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\ PREPACE

For most applications of satellites and re-entering space vehicles,
one must be concerned with the accuracy with which position and velocity
can be determined and predicted while on orbit and at Qhe ti‘me‘ot éarbh
impact. This-Memorendum-desoribes a computing propam: for ’estkimting,
in terms of confidence regions, the on-orbit and impact errors of such
vehicles,

In estimating impact errors, guidance errors are c¢: vined with
orbital prediction errors. The analytically determined sensitivity
coefficients are used in this program as a means of error propagation.
Their expression as functions of orbital parameters may make them useful
for other purposes, such as estimating performance requirements of
tracking and prediction systems.



 F0S5F503

SUMMARY

This Memorandum describes a computing program for determining errors
in position and velocity on a satellite orbit. Error coefficients are
coamputed from analytic formilas. These may be used in the further
computation of systematic and random errors in the prediction of satellite
position and velocity. The computing program handles the propagstion of
variance-covariance and the determination of confidence regions for

position and velocity estimates.
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LIST OF SYMPOLS

a semi-major exis of elliptical orbit

d central angle between ascending node and radius vector
from earth's center at time t,

] eccentric anamaly (elliptical orbit parameter) at
time t

B, eccentric anamaly (elliptical orbit persmeter) at
time tl

e eccentricity of elliptical orhit

G universal constant of gravity

i inclinetion angle of orbital plane

K wvith subscript - error sensitivity coefficient or
partial derivative (Other capital letters with sub-
scripts are also used to designate these coefficients
or partial derivatives).

1/(24 - Gauss constant for orbital motion

X .074365T4 for displecement in esrth redius units and
time in minutes

l, m,n, p with subscripts - direction cosines

M mass of the earth or of the larger body in the re-
stricted two body problem

P point (on orbit) for which an error estimate is desired

point (on orbit) for which the initial evaluation has
been made

r redial distance from center of mass of larger body in
8 tvo-body system

magnitude of velocity in orbit
t time for which the estimate is made
tl time of the initial estimate

true snomaly (orbitel persmeter) at time ¢

'Capitul letters with and without subscripts are used to designate
mtrices, and the symbolimm is defined in the text,

LM ey SRR TGOS S A 1
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x z
o’ Yo %
X, ¥y 2

xl’ Y10 %y

X,¥525 29,9712y ete.

true anomaly (orbital parameter) at time 4y

coordinates associasted with input variances
coordinate of point on orbit at time ¢

coordinates of point on orbit et time tl

velocity components

angle between horizontal direction and velo-
city increment

angle betveen horizontal direction and total
velocity vector

variances added to x, y, 2z components of velo-
city errors due to guidance system

with subscript - eigenvalue of covariance matrix

angle between orbitrary reference line and redius
from earth center to vehicle at time ¢

(same) at time t,

statistical parameter associated with a per-
ticular distribution function

angle vhich the nodal line makes with the

reference direction, generally through the
point of Aries

angle between the nodal line and the redius
vector at perigee



I. TINTRODUCTION

In first-order error propagation in any system, & necessary step
is the determination of partisl deriveatives which are error sensitivity
coefficients, When it is feasible, there is an sdventage in having

these coefficients expressed es snelytic functions. The coefficients

1
?
|

concerned with the propsgetion of position and velocity errors into
position errors (and other relsted coefficients) for Keplerian orbits
vere given in an earlier RAND peper.(l) For the present Memorandum this
vork has been extended to include velocity errors at a terminal point

a8 well as position errors on the earth's surface for impact tra-
Jectories.

These coefficients are used in the propagation of variance«co-
variance for position and velocity errors in orbits. The resu.ting
varjance-covariance matrices are used to determine confidence regiomns
for position and velocity errors at selected points on an orbit. The
introduction of guidence errors for orbits that are impulsively changed
rernmits an assessment of errors for points on s new trajectory in-
cluding errors at impact with the esrth's surfece, when the new tre-
Jectory intersects the earth's surface,

This Mamorandum is intended to provide sufficiemt information for
possible future users of the computing program to assemble the proper
input date and interpret the output data. It should also provide the

equations and background information for re-programming for another

computer,

O T



II. ERROR SENSITIVITIES

The error sensitivities are coefficients in the firat-oxrder errer
equations and are obtained by partial differentiation of the equations
of motion expressed in a particular coordinate system.

The second-order differential equations characterizing two-body
motiens can be solved to give the position and velocity of each body as
a function of time, When these are solved to give the motion of an
infinitesimally smaller body moving about the center of a body of great
mass, the usual form teken is that of perameters describing the shape
of the path (a conic section) and an equation (generally transcendental)
relsting time and angular position. When the “total energy" is negative,
the path is an ellipse and time and angle are related through Kepler's

equation,

COORDINATE SYSTEMS
Figure 1 shovs polar coordinates in the plane and a graphical re-

lationship between true anomaly v and eccentric anomealy E, Figure 2
gives more detailed position and velocity coordinates in the plsnes and
Fig. 3 shows the three-dimensional picture. In all representations
Pl(xl,yl,zl) is the point where observations are made, and P(x,y,z)

1s the point for which predictions are msde, In path prediction from
initial position and velocity, it is essential to note that perigee
and apogee are initially undetermined, requiring angular positiom, §,

to be measured from an arbitrsry reference,

R Rl



Fig. 1 — Polar coordinates in trajectory plane

Fig.2 — Detailed position and velocity coordinates
in the plane
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OUTLINE OF DERIVATIONS

The two parameters describing the elliptical path are a, the semi-

major axis, and e, the eccentricity. In terms of initial position end

velocity (see Fig. 2) these can be expressed as

2

e 2
r]+ (rl v,

l 2
- I eses =
e X

k= vGM
With zero time reference at perigee or perihelion, etc,, the re-

lation between time snd angular position is —13‘72 t=E- e sin E,
a
The eccentric anomaly E is related to true

snomaly v]:>ycoal:‘.--‘£—1—"'—E

known as Kepler's equation,

T+ e cosv’ an ambiguous expression wnless we include

O0KE<xforo<v<x
X <E<2x for n <v < 2x

Auxiliary relations used are:
ra a‘l - 32)
+ ecos v

*- kesiav
a(l - &)

:

*_k all - @

T

& -7

cos E =

all -6") - »r
cos v =
er
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_esinv
1;an-’“l«’-ecoav
cos y = l+eco§v
1+e2+zecosv
TRV

For earth satellite orbits and ballistic missiles, k equals Ke equals
.0T436575 for time in minutes, and distance in earth radius units equals

34 n mi.
Using the constraint

k(t - tl) = 33/2 [E -E ¢+ e(sin E, - sin E)] = constant,

partial differentiation yields the first-order error expressions for
errors in a and e, and for position and velocity in the plane at any time
t or for any true anamaly v.

The initial position and velocity vectors determine the plane defined
by & unit vector o). Errors in componeits of tals vector are determined.
From these, errors in position and velocity perpendicular to the plane and
errors in angles i and 0 defining the location of the plane follow.

ERROR BQUATIONS
The first-order error equations for vhich the coefficients have bdeen

determined analytically by pertial differentiation are listed below.
Lebeling of these partial derivatives is quite arbitrary and grew out of
work which extended over somes time.



---Kld!' K2d¢ + Kg ary

d,e L]

e =K db + K dp + Kgar

de = Kj ab +x'a§1+xédrl

dr = K4 .x,% * Ky a7,

d_r-K_?di' +K8d¢ +K9d:r

ap = ap, + l(1.6""""17'3"“18‘“‘ tKg dr

df = af) + K, aF H(11“ tKpdn
anyx) = Ko &y + Ky g
ang2zy = Kpp &y

U = Koy dmyxy + Ky Gz

U = KJ &) + K dyy

a0 = Kg ax) + Kp dojzy

an = K &y + Ky dyy

dy = K di + K an
dytxpwl'#xqwl
di.-nldi'1+D2dﬁl+D3dr1

dv e E a4y o+ Hy e
47.wldi~1+w2dpl+w3drl

In the following error squations, the coefficients evaluated later

are for the particular case of earth satellites or ballistic missiles vhen

units of displacement are n mi, units of velocity are ft/sec.



dx = Ky a&) + Ky ab) + Ko ax) + K dzy
&y = Ky &y + Kp &y

dz = Ky %) + Ky dby + Ky dz)
disnldz1+nadﬁ+n3dzl
& = Py &y + Py dyy

dz = L 38 + L, at) + L, dny
as = Y az +!'2d.ﬁ+1‘ dz,

d7-qldz’1+qadﬁ+a3dz1(indamu)

dR-'I.'ldi1+T dz +T3°‘1+Th 1

dR = error in range on the earth's surface (in plane of
trajectory).
ERROR COEFFICIENTS
The expressions for coefficients in the first-order error equations
wvhich are partial derivatives are listed below. In some cases, these co-
efficients are given as functions of others which are also listed:

2s ry

Kla

2a Va(l-ee)
K, = k




v J\/e(1 - 32) sin

V1
k
2
Vail-eai 2, N1
X = 2 a(l - &%) - &
ke
e+ecos2v + 2 co8 v.
K - : 2
1}1

a(l - ea) (e + cos v, )

Kg = —7 .

e x) (1 + e cos vl)

a(l - 02) (e + cos vl)

l%““_r-f(].+ect:m vl)
K=K kst k, Ky
Kg = Ky K3 + K5 Ky,
Ky =K3K3+ KoKy + K5
Ko=KKet KKt KKy
Ky =K Kgt KK v Kg Ky
Kp = K3Kgt Ko Kp + Kig * Ky Kyg
r2 ain E a2 k(s - t) e sink
x13'r'?LsTn_Q'g T
T, cos sinE oee(sin E - sin E,) sin E
xlk-“[lrl:iq + T 3

rl sin B

STy

Pt

2
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‘1+°°°8v1_l+ecosv
15.6 e sin vy e sin v

rcosv+aae_rlc°8vl+2”

Kl'{ rsinv :c:L sin vl

«(1 +@cos v

Kg= L
erl sin vy

Bl-o-ecosv
l(:I.9 er sin v

=1

xzo-rlal

£

1

b

1
Kez"'q

K?J.=

‘l-‘"l\)

K23 = = cos(w + vl)

1(2“ = - gin(® + vl)

b o K.L]. K
K, = —_—x K = .0098T45519
1'1 2

Kg=rKoly

Q
'_'H |"l

kp=*Ke
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Kg = Xp Ky
K = Ky
AR

K
- 2

Ky = Ky

Ky = Koo Kp3

K = X1 Kp3 * Foo Ky

Ky, = X0 K5

Ky = Kz Kg * XKoo K5

Ky = T Xa

Ko = ¥ Kpg

KP'-K20r81n(v'vl)
qu-l(arsin(v- ;) -l(azrcos(v-vl)

K- - 32y

amasatas o205 e R i RIS
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D,
Dy
D,

Ds

]

|
w

G

G,

G, =

3

=0 K+06K 6K
Hy= 0 Ky + G Ky + 03 Kg
Hy=0 K3+ O K+ 03K

Y
%

=C K+ Cp K3

=32+0c08V
l+e

sin v

12

2

(L+e + 2 e cos V)

B N

-]

+ @ COs V
esinv

28 tTcCO8V
rsinv

l+ecos vV
ersinv

=D B+ DK
Dy

+ D K}

b5,

x

000164261

000164281

%'(%nB+D5Ké) x 0166365
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Tu"n'ﬁti'n—y
I.J_-Dlsin7+(bl‘81+n5xi)§cosy

D231n7+(DhH£+D5K5)écos7
T,

L2 1
‘D33m7+(Dh33+D5Ké)écosy
Ly X,

llanlcogy-(nkn1+n5x,;)ésm7

D2c037-(Dh52+D§K5)591n7
T

N2 A
Ns N ?Lcos 7 - (D:z;l3 + Dj_xé) 8 sin ¥

Py = - K,(rf cos & v+ £ sin 4 v) &V = v - vy

x&(rﬁsmAv-rcos Av)-xa(rﬁco-Av«»i-unAv)

P, = X
Jl"D1‘m7+(Du“1*D5xl';“°°‘7
Ja'D2°m7*(Dunz+D5K§)‘°°‘7
33-D331n7+(D,‘K3+D5Ké)icos7

LR LR

Wo =D Hy+ Dy Ky

Wy = D, By + Dy K3
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IIX. PROPAGATION OF VARIANCE-COVARIANCE

This program starts with a variance-covariance matrix for posi~
tion and velocity errors at some point on a nominal orbit. The orbit is
specified by position and velocity at the point and/or its osculating
Keplerian parameters. If necessary this variance~covariance matrix
is transformed to a new coordinate system and also transformed with
respect to units. Transformations to new coordinate systems or from

one column vector to another are obtained by the matrix multiplication
C=ABA"

where, for example, B is the variance-covariance matrix associated with
colum vector x, and C is the variance-covariance matrix for errors in

a column vector y, and A is a sensitivity matrix

[ 3y, o, ”
EKQ-..-..
ay2

‘E.ouoouco

The input variance-covariance matrix may come from a number of
sources, such as a differential correction routine which has been used
t0 process actual tracking data and has the variance-covariance matrix
for initial condition error estimates as a by-product of the orbit
determination process. We have used for our source a program vhich
similates the errors in radar tracking of a satellite and computes

the statistical parsmeters associated with least squares polynomial

fitting of short arce of the trajectory. Ve are now using a more



15

general m(a) vhich generates variance-covariance matrices result-
ing from the use of a wide variety of tracking data from as many as
12 different trackers in orbit determination.

This input matrix represents the variances and covariances for
errors in initial conditions consisting of three components of posi-
tion and three of velocity. Since it is convenient to use a coordi-
nate system assoclated with the plane of the trajectory for the
determination of error sensitivities, a coordinate transfamation of
the input variance-covariance matrix is usually necessary. Since the
sensitivity coefficients as given in Section II are functions of the
Keplerian parameters &, e, i, », and vys it is also necessary to com-

»
)y X

pute these parameters from the initial conditionms, Xy Vo1 2 o

(o]
vy , 2
Yo? o

COORDINATE TRANSFCRMATICN TO PLANE OF TRAJECTORY

Given the initiel conditions x , ¥, Z, 5:0, &o, 'zo in an arbi-
trary inertial coordinate system, the transformation of the initial
verisnce-covariance matrix B to the coordinate systam associated
with the plane of the trajectory as given in Figs. 1, 2, and 3 is ob-

tained as

Q
[}
o)

where

-

e e e
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with the elements of A determined from

- 2 . . -2 .2
ro—,{x°+y°+zo 8o W% * Y t 3
X y z
0 o o
L=, by= L, =
1 5, 2 8, 3 so
x y 2
o o o
Py ==, P, Py =
1 T, 2 T, 3 r,
- N
Nl p2£3 P3£2 ) 1
! ) 3
y +N2 +N3
N2- p3“l - Pl"3 X
2
n2-
+N.  + N
Ny =pyfp= Py 3
N
3
n., =
3 ﬁ12+1i22+1132
W = 0BPy - APy
Dy = NPy = DyP,
My = WPy = 0Py

THE OSCULATING KEPLERTAN PARAMETERS

To obtain 8, e, 1, v, v, from the initial conditions Xy Vg1 2o

1

xo, yo, zo, one may use,

2 2 2
ron.ﬁo + Y, 2,

XX +YY +22
. %o * Yoo X
r = =

°

o
. L2 .2, 2
so-‘ﬁo +¥,0 4 2
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a = 1’52
2 ..o
T 2

(o} ke

k = .07T436574 (when displacements
are in earth radius units and
time is in minutes)

1,2]?_2 r 2
.- _02_.9_+(1-;2)
k" a
e
e sin v
V. =ta,n-1_————-l
1 e cos V
1l
where
. / 2
ro a!l-e)
e siln v, = k
1l e
t:.(l-e)e-ro
e cos VvV, =
1l r
o
To determine i and w, compute
YoZo = Yo%

nix = D

z2 X -2
o =90 )
iy D
n %Y " *oYo
iz ~ D
D=r s2.1°2
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2 .
sin 1 = + n1x +nly
0 <1 <18°
cosi=nlz
2 2
+Jn +n
1=tan'l—_—1£___ﬂ
oy,

2 2 2 2 2_ 2
‘md-t«/z°(llu+nly2>+xonu+y°nly+aoyonnnll
rosini

sind>oifz°>o
sind?oiszZo

Yo Pix ~ ¥o Py

cos d =
ro sin 1

wad-vl

TRANSFORMATION OF VARIANCE~COVARIANCE MATRIX FROM INITIAL POINT TO
RY

1t Cl represents the variance-covariance matrix for errors in
the initial point and G the sensitivity matrix of partial derivatives
vhich relates errors for another orbital time to the initiel condition
errors, then the variance=covariance matrix for position and velocity
estimates at the new orbital time is given by

T

HeGC, G

2



19

vhere the elements of G are determined from the error coefficient ex-

pressions and more specifically

c ° K K 0K

Ga ooKIl(Bo KG

CONFIDENCE REGIONS

The H matrices resulting from transformations of this kind repre-
sent the error situation for other trajectoxry points in temms of
variances and covariances. For certain purposes a further des-
scription in terms of confidence regions is desirsble., It is possible
to define an @ per cent coufidence region (gemerally an ellipsoid) for
position errors, or another for velocity errors. This is the region in
vhich estimatee would fall ¢ per cent of the time if the experiment were
repeated a very large number of times. If we consider a partitioning
of the K metrix into

then Jl represents the veriance-covariance matrix for position errors

and J

3 the variance-covariance matrix for velocity errors.

A

e R e A
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The quadratic form defining s confidence ellipsoid for positien

errors is given by(S)
2 T
X 1-Q = X Jl X
vhere xi-a is the 1-Q level of the X2 distribution for three degrees

of freedan. For o = 50 per cent, x2-2.366androra- 95 per cemt,
x* = 7.815. Accordingly, the efgenvalues of the J, matrix determine

the size of the semi-axes of the confidence ellipscid and the eigen-

vectors and/or the associated rotation matrix determines the relative
orientation of the confidence eliipsoid. If the eigenvalues are re-

spectively \1, ).2, )‘3 then the semi-mejor axes are givem by

d, = /2,366 A 8 =1,2,3

for the 50 per cent confidence ellipsoid, and

dS = "/7.815 XB 8 =1,2,3

for the 95 per cent confidence ellipsoid.

Operating in san identical manner with .73 determines the con-
fidence region for velocity errors, The six-dimensional confidence
region (hyperellipsoid) for the combined position and velocity estimates

is obtained in an enalogous menner, with

ds = ‘\’5.3)‘8 ls 8 = l,co 6

Tor the 50 per cent confidence regiom,

and [
ds=«12.592 )‘B Bal, o-6

for the 95 per cent confidence region.
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INCORPORATION OF GUIDANCE ERRORS

When a trajectory ie chenged by impulsive velocity components,
errors due to the guidence system mey be introduced. If there is no
correlation with prediction errors, the variances in impulsive velocity
components are simply added to those due to the prediction process.

In gen ral when correlation exists, the guidence errors sre incorporated
by treansforming to ~ covarience metrix for a nine element vector, in-
troducing guidence error veriences, and then transforming back to a

6 x 6 variance-covariance matrix. The transformation which we use
recognizes the possibility of a reletionship between the predicted
position error in the plane and in-plane velocity component error when

a stellar referenced stabilized platform is used.

The transformation required is:

M=LHL

vhere H is the variance-covarisnce matrix for errors st the trajectory

point before the impulsive velocity increment is added and

B ]

o O O © o ¢
© O © o r» o
O O O » O O
o O ¥ o o ©

o O ©o o
» O O O o o

o
o
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-V, 8in
o - p 2P
Tl r

-V, cos B

toy = —B—
91 r

See Pig, 4 for definition of S and V This is for the stellar refer-

B.
enced platformm and applies to circular orbits. FPor ideal compensation,

g and V_ have particular values. For other cases, other known correla-

-]
tions could be introduced in an analogous manner.

I£ has been shown by Frick(h) and others that the relationship
between the impulsive velocity increment and the in-place predicted
position error for circular orbits cen result in compensation of in
plane position error to first order for a particular velocity in-
crement when the range to impact is fixed, Figure 4 shows sche-
matically how this is accomplished. This range error compensation
occurs vhen %g = 1, and vhe particuler values of p and V, are given

B
by solving first for the required velocity components as follovws,

. 2

8 4 So/ke sin - AV é 3 N 1l - cos AV é 2
""("7?"""'7

b4 rl rl cos AV) x rlé (rl - cos av) x

(1 - cos AV)2
rl3 (rl - cos AV)

=0 for Sx

end
5 (1=-cosav) 1 _ r) - cos AV} 8
2 rl sin A 3 8in AV x
x
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Fig. 4—Scheme for error compensation by stellar inertial reference
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-t 20.92608 x 10
VB sB x 20 rtlsec
B = ta.n-l éz
% $
‘k_ - X
e

vhere r is the radius of the initial oxbit and AV is the change in true
anomaly identical with the angular range to impact. Another interesting

case is the minimum impulse path occuring when g = 0, The value of

VB and £ can be obtained by solving
s
e ein® AV 2
éb_e é3__(l-cosAV)
x 2 x 2 2
1+ r" -2r cosav r, 1+ r," - 2r, cos av)
for §
x

i ( rl-cosAV),

. - [] . 2 . 2
SB v So/ke - Sx) + Sz ke

6
Vg = éa x 20'92% x 10 £t/sec
-1 5
B = tan r_z-g )



To incorporate guidance errors into the M matrix we add variance

terms to the diagonal elements in the lower right hand corner, thus

Kn becomes I(.” + Al

”88 becomes “88 + A2
and l99 becomes )(99 + A:,5

If covariances in the guidance errors are appreciable and known, these

may be added also. The resulting "1 matrix is transferred to

a 6x6vy
P=NW KW

vith -
1 o o0 o o o0 0o o0 o0
©6 1 o o o0 o o0 o 0
©o o 1 o0 o o0 o0 o o

“’

©o o o 1 o o 1 o o
©o o o o0 1 o o 1 o
©o o o o o0 1 0o o 1
8 J

PROPAGATION OF VARIANCE IN NEW TRAJECTORY

Since the sensitivity coefficients are expressed snslyticelly in
terms of the osculating o oital parsmeters, these parsmeters for the
new orbit must be determined. These follov from

e ATV SAEET Y, AR sk ARG RIS Tt



_ 20,9608 x 1c®
00

)= &4 Vgein B/u u
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The value of v does not chenge end ® is arbitrary for the pur-
pose. These new treajectory perameters now constitute the input to
a nev computation of error sensitivity coefficients. If one is con-
cerned sbout the variance-covarisnce, for errors or confidence regions
for e general point on the new traJectof§ the procedure is identical
with that described on pages 19-20. However, if the errors in a tan-
gent plene at the esrth's surface at the point of intersection or
impact are to be described, the transformation requires & different
set of sensitivity coefficients. The 2 x 2 veriance.coveriance matrix

for errcrs at the impact point is given by

R=QPQ"
vhere Q is the sensitivity matrix

0
T3 T

0 KF 0 0 KE 0

Q=

and the sensitivity coefficients are approprieste for the new trajectory
and the impact point. A confidence region which is now an ellipse is
defined by the quadratic form

Lo B[]

y

vith lea = 1.386 for a = %50 per cent confidence

2

Xl.

o = 599 for a = 95 per cent confidence

The eigenvalues and/or eigenvectors for the R matrix then determine

the size and direction of the semi-axes of the confidence ellipse.

R i



IV. LAYOUT OF THE PROGRAM

The routine was coded using FAP and FORTRAN for the IBM 7090
computer. It contains the following:

Hand-coded subroutines:

PAST7 - computes the orbit change
KEP - computes error coefficients
AEI - computes a, e, i, w, vy

MATMPY computes product of two matrices (6x6)
MATMPS “ and (9x9), respectively

STEP2 - pre(post)-multiplier of the input
covariance matrix

SCALE - scales a matrix to avoid overflow in EIGEN
mcsni} _ computes COS™! and SIN! from Hastings
ARCCOS approximation

AVG6 - averages elements of a real symmetric matrix
XERA - checks for BEGIN flag

RTSXD - computes P and VB on orbit change (see

options for this part)

Library routines:

SHARE EIGEN - computes eigenvalues and eigenvectors
RAND X006 - tan > of double argument

SQRTF

COSF - standard FORTRAN library

SINF

plus the master routine



PROGRAM DESCRIPTION

Step 1: Start with a given covariance matrix, B(6x6), that
gives the errors in the initial conditions of a

nominal orbit specified by X, Y z )°'° ) io .

o’ "o’ %o
These conditions are combined using a subroutine called
AEI to give the alternate specification of the orbit
by a, e, i, w, vy e The eigenvalues of the
matrix B are found and printed. If these are not
all positive, the matrix is not meaningful and the
program will halt later on.

Step 2: A transformetion matrix A, is found (suoroutine STEP2)
such that the given covariance matrix is transformed
into a coordinate system associated with the plane of
the trajectory.

Step 3: This newv matrix is now called C where

T

C = Alml .

Step 4: Convert the units of C to nautical miles and ft/sec.

to give the matrix Cys i.e,,

ir
DE
then c - kal Exka]
1 Exk2 kas

6|2
2 344k x 20.926) . 20.926 x 10
vhere k = (344k) ;k2-‘_2g-),k3-(—-25——,

6 x 10~
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Step 5: Input the Av's {change in true ancmaly) to be considered.
Compute the error coefficlents for the orbit using
subroutine KEP. The formulas are contained in
Sec, II. Although all of these coefficients are not
used in the program, they may be printed out at the
option of the user by setting the correct value
of KPRINT (see input requirements). The sensitivity
matrix G 1is computed using the proper error
coefficients. The matrix G gives the propagated errors in
X, ¥, 2, X, ¥, 2z, foragiven v .

Step 6: For each G compute

T
H= GClG

for the errors in position and velocity.

Step T: Various submatrices of H are then used to give
confidence ellipsoids for which semi-axes, angles of
rotation, elgenvalues and eigenvectors are computed

and printed.

This completes the first part of the program. If one
wishes to go on to a new trajectory, the value of KFLAG is
appropriately set on input and computation proceeds.

Step 8: There are three options for input of data on the

new trajectory.



a, specify p, V,, & A A Av , KIM =]l ,

1’ 27 73

b. mipnimum impulse path,

A 4 Av , machine

KIM = 2, specify Al’ 02 % !

computes B and VB.
C. range compensation path,
KIM = 3, specify Al » A2 ’ As , A&v , machine

computes f and VB .
Then, having a value of £ and Vﬁ
is determined so that the M(9x9) matrix can be found

Marm?,

, an L(6x9) matrix

Step 9: "1 is formed by changing three elements of the M matrix

as follows:
B 0 Bt 4
mgg Yo mgg * 4,

m to m__+ A

99 9 3

where 4., , A

1 4

o1 b5, are imputs. (Not cumuletive)
Step 10: A nev transformation, matrix N(6x9), is found so that

the folloving transformation can be made:

P= xmlnT
vhere
(1 o 0 0 0 0 0 0 0
0 1 0 o0 o0 o0 o0 o0 o
g=|0 0 1 0o o o o o0 o
0 (o] 0 l 0 (o] 1 0 0
0 0 0 1 0 0 1l 0
0 0 0 0 1 0 0 l.J




Step 11:

Step 12:

Step 13:

New values of a , e, 1, w, vy and new values
of the error coefficients (vhich will be printed if
KPRINT IS SET ¢ 0) are found.
A new sensitivity matrix Q(6x2) is computed giving the
errors in range and y, and a covariance matrix R(2x2)
is determined for these errors,
R= Q" .
The confidence ellipsoid semi-axes are computed and printed,

vhich completes the problem.

OPTIONS

KPRINT = O No error coefficient printout.

# O Error coefficients printed.

KFLAG < O Change to new trajectory (ies).

> 0 Go to new case - no change of trajectory.

KIM = 1

Specify B , VB , Al » A2 ’ A5 , on new trajectory.

Specify Al » A2 ’ As R Avi compute B , vB »

minimum impulse path. B < O,
SpecifyAl, Ae, As, Av;couput.ea,vz, range

compensation path. B > O.

KMY = 0 Compensation desired. Only reascmable for B > O trajectories.

¥ 0 No compensation desired.
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INPUT

Card No. Description Format
1 = 0 Error coefficients I 2

printed

KPRINK, 0 Error coefficients

not printed
2 Xy 0 ¥y 0 2y s (Earth redius units) 3E18.8
3 X, io , io , (Earth redius wits/min) 3218.8
h-15 Covariance matrix, B; diagonals are 3E18.8

variances. (or standard errors), off
diagonals are cross product tems; 1i.e.,

a
m,2 Products of
T ° c these units
Products 4 2
of thege | e /min.)
units 4
16 K#UNT5 - Count of the number of Av's 112
(true anomalies) to be input.
17
: Av's in degrees, 1 per card F12.0
1T+KGUNTS-
< 0 Change trajectory.
17*"““ KFLAG {2 0 Don't change trajectory; go 112
t0 new case. Next card is the
I#KZGUNT card.
Let L = 17+K@UNTS+1
L xgunr, 212

KPUNT - Number of new trajectories
to be computed.

= 0 compensation desired

Kun ; 0 no compensation desired

1+1 KIM - As explained in writeup - step 8 I12



Card No. Deserigtion Format
L+ 2 b, by, By, B 6r12.8

Al,AE,As,-Elementstoa.ddto
M matrix to get M.I. matrix,
A, - Quantity to add to V, to get V.

1
L+ 3 If KIM = 1; B, V, 6£12.8
if KIM = 2 or 3 next card like L + 1
Repeat cards L + 1, L + 2 (and L + 3 12 KIM = 1)
KPUNT-1 times.
LKOUNT  wypqr® punched in cols. 1-5 - Signifies the A6

start of a nev case,
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OUTPUT
FIRST PAGE
1. Characteristic roots of B, the input covariance matrix.

2.

3.

5.

These must all be positive or B is not a valid matrix
for this problem. The first three are in ERU2 and the
last three in (ERU/m:I.n)2 .
The initial conditions x, y, z, X, :}, z in ERU and
ERU/min, respectively.
The Keplerian parameters of the orbit.

a in ERU

e non-dimensional

degrees

< B .

1

The input covariance matrix.

The upper left-hand corner (3x3) in (IRU)2

The lover right-hand cormer (3x3) in (ERU/min)>

The upper right and lower left-hand corners are
combinations of thege units.

Transformation matrix, Al .
Non-dimensional, tekes B from the initial reference

system to a coordinate system associated with the
orbital plane.

P S
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SECOND PAGE
1, Transformed matrix C, = AlBAlrr .
Units are the same as B.
2. C1 Matrix.
Units changed from (ERU)2 to (nautical milea)2 and
(ERU/min)2 to (1“‘(:/sec)2 .
3. True anomaly, ¥, change in true anamaly, Av.
The angle the vehicle moves from perigee.
b, G Matrix; error sensitivity matrix.
a. First row; error in x .
b. Second row; error iny .
¢. Third row; error in z ,
d. Fourth row; error in X .
e, Fifth row; error in 3} .
f. Sixth row; error in z .
5. H Matrix = GOGT ; transformed matrix gives error in

position and velocity at a new point on the trajectory

specified by Av. Same units as cl .

NOTE: If it is desired to print out all the Vei'ror
coefficients, they will be printed after Step 2
above, and Step 3 will begin & -new page. If there
is more than one v , each new v will begin a

new page.
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st oJNumber of Av's + 2 if error coefficients printed.
Ml _ Page, N umber of Av's + 1 if no error coefficients printed.

1, Jl (n) (nw=1, ... number of Av's)

Upper left-hand cornmer of H .

Error situation in position (n mi)e.
2. Roots of Jl .
3. Semi-axes of confidence ellipsoid,

i.e., where you would expect to find the object
50 per cent and 95 per cent of the time, respectively.

b, L-Matrix - Eigenvectors of J; -

Rotation matrix to give new coordinate system
with po correlation.

5. a,f , 7 - angles relating new region to the old.

N+2nd Page

Same as above but for Js(n) , the lower right-hand
corner of H.

N+ 3rd Page

Same as above but for total H matrix. Now you have a
confidence hyperellipsoid. Step 5 is not done.

NOTE: These three pages are repeated n times for the n
values of v .

M3nt1st Page,
1. Vb,ﬂ,Al,Ae,As,Av.

B = angle (in degrees) between the velocity increment
and the original velocity vector.

Vg " velocity increment (ft/sec)



2.

3.

4

5,
by

2
= Error variances for guidance (ft/sec)

Av = Change in true anomaly on new trajectory
(in degrees).

Parameters associated with new and o0ld orbits as
labeled:

a,e - same units as Step 3, page 1.

1

, w, i - radians.

Q(k,k) matrix - another sensitivity matrix.
First row; errors in r .
Second row; errors iny .

R(k,k) - covariance matrix for r and y errors.

Semi-axes for S0 per cent and 95 per cent confidence as before.

If K represents the number of new trajectories to

be considered, the above five steps will be output K
times., As before, if all the error coefficients are
to be printed, they will be printed after Step 2 and

Step 3 will begin a new page.
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FLOW _CHARTS
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e et g e
MAIN ROUTINE (STATEMENT NUMBERS IN PARENTHESES)
OUTPUT TITLE
NO
[ [(}) (10)
INPUT K PRINT,
INITIAL CONDIT- YES INPUT gf‘c,r.mﬁi '
JONS AND CO- = YEST FOR NEW *
VARIANCE MATRIX WORD CASE
8 (6,6
MAKE MATRIX B
SYMMETRIC BY
AVERAGING
ANTIPODAL
ENTRIES
(mo1) (300}
L USE A} TO PORM
OBTAIN EIGENVALUES AR CALL THE PRE (POST)
OF B =b® >0 CONDITIONS, AND STEP 2 MULTIPLIER OF B ¢
CALL AEI 7Nt 10 GET Al COMMJTE C = AIBAI
. 80y W, AND AVERAGE ENTRIES
“wo4)
INPUT THE NUMBER OF Av's, KOUNTS, THEN THE AV's THEMSELVES, FORM C)
A FLAG, KFLAGT TO INDICATE WHETHER A CHANGE TO C "ANGE OF
A KEW ORBIT 15 TG BF MADE A5 INDICATED ON U TS RO
THE [NPUT SHEET <)
v vi-Av
(700)
PUT UPPER LEFT
= HAND CORNER
OF H MATRIX
INTO FF7
(703)
MATRIX LSING V"
IN ] CALL
PUT ENTIRE
comren- 0,60 =] oy e O)
AND AVERAGE INTO FF7 OVERFLOW
ENTRIES
ool)
PUT LOWER RIGHT
2 HAND CORNER
OF H MATRIX
’ INTO ¢F7
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SUBROUTINE KEP - ERROR COEFFICIENTS

(2) Q)
0 ERROR !
KFLAG = I . OUTRUT ERROR
CONVRT = 017453293 pea gmfv"m YES o] mEssact
FKE = ,07436574 ( SET KFLAG = |
RETURN
YES ND
M @
outeuT o SINV = SINF
‘ RROR .
COEFFICIENTS ex 001 (V*CONWRT)
(8
ERROR
COMPUTE FCNS REDUCE V, VI
| IN EQUATIONS 1002w + NO YES omugsr:&oa
3-91 OF COMPUTE EE, EET, ’ SET KFLAG = =)
D-7803-1 RESP RETURN
MATMPY OR MATMPE
(2
cu, N=cq, N+
2ER0 OUT AU, KB, D
c, )
IC(=IA) 121, 1A RETURN
K= J=t,
K=1, JA
ERROR |1
OUTPUT ERROR
MESSAGE
IC=JC=0
RETURN
STEP 2 - N MATRIX
1R e
FCNY = FP2* FL3 - FP3 * A2 - - Nt
FCN2 = FP3 * FLI - FP1 * FL3 M3 = FNT * FP2 - FN2 * Pl
COomPUTE: FCN3 = FP) * FLZ - FP2* FLY AL(L, T)a PM1
Fl=s A FPlmx gt Al (}, 2) = M2
ole o/’o AL(1) 3) = FM3
FL2=y Al FP2=y /% FNDENM -,/rcm’ T FCNZE + FONDT Al (2, |; = ANt
. Al (2, 2) = N2
FN3 = FCNI/FNDENM A1 (3, 1) =FP)

Al (3, 3} =FP2
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SUBROUTINE AEl, a, ¢, |, w, v,

COMPUTE:

COMPUTE: . COMPUTE; COMPUTE:
. 7. 2 e ! i o (1)
XKWL . 7, .2 em— o
° . M °. 'S e T2 c 2 v.-rgn" FK
xx tyy *ri 2 s
o0 ToYo  “o'o — o(l-e)-¢
[ neeee——— FKE = 07436574 f KE,
A ° T
.—._.._.—2- Q
e -1
e~ 00\ Lo+ =
FKE a
COMPUTE: COMP&JT”E: Cix COMPUTE:
22 00 A2 .2
"luz*"iyz iy o VAR EA
oo n o ia Ve o o tofo Vot
iz " b x D
COMPUTE:
) 7,2, 2 2 2,2 2
R ! /‘e Ity % M Y MY Dy,
T x %
w-d_v‘ L) x oy
SUBROUTINE AVG 6
J=J+)
I= J=1

[=) el A(I'J)_A(LJ);A(J,I)

AL, D =AL, )}




a=0
a=MAX (a, |Al, O]
J= N

21,01 =

SCALE

0 NN
< | 20

» =N
=asl)

=1, NN

RECIP = 1/l

=2

(2)
USING Sk,
GUESS COMPUTE
FUNCTION +

DERIVATIVE
FORM 3

All, )= RECIP * A (L, J)
AU, N =A(l, ) u
J=l, 1=, N

[0}

RTSXD

USING Sno §xms
GUESS COMPUTE "= o -
FUNCTION + FUNCTION
DERIVATIVE DER
FOM 2

Sxm Sx, -
FUNCTION
DER

Sxg * 8
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SUBROUTINE PAST 7

(800} (801)
INPUT 2D, OF
CASES AND TYPE
ZERO FN OF CASES TO
Y onioag MAmT —e mn'ﬁa'z'd:%{nm
G maTix ALSO INPUT
WHETHER COMPEN -
SATION DESIRED
OR NOT
(8)
i e
2 83
AT AND CONTINUE

80) ‘

FORM FL MATRIX
FORM P FL (W) FLT
mH PAS

HmH PAST 7
INCREMENT 3 ELEMENTS
OF FM MATRIX

NO

YES

INPUT 4.: Azl 44, av
COMPUTE S AND V.

COMPENSATION
PATH

INPUT 8, 4, &y, av
COMPUTE B AND V,

FOR MINIMUM
IMPULSE PATH

FORM FP PN (M) FNT

COMPUTE /), ijoe, VI
COMPUTE ERROR
COEFFICIENTS

FORM Q MATRIX
AND OUTRUTIT

FOMR G (FP) QT
OQUTPUT - DETER-

A7, 1)=0 -
FL(9, 1)=0

Vg ting
Ao,y A8

-V,
R, 1) _%3.5

MINE QUADRATIC
FORMS - OBTAIN
o's AND b's ~ QUTPUT

AT T

sl

b e e ™ S

e
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V1. PRESENT LIMITATIONS AND POSSIBLE MODIFICATIONS OF THE PROGRAM

The sensitivity coefficients are here determined for a theoret-
ical Keplerian orbit. Even for cases of moderately high dreg the
error in these coefficients due to this assumption will not be seriocus.
However, the error in predicted position and velocity components due
to error in estimation of drag force represents an additional error
component that is not included in this program. . An effect which is
external to this program is the validity of the input covariance
matrix, This program does check on the requirement of positive de-
finiteness of the input covarisnce matrix for physiceal realizability,
but otherwise imposes no restrictions.

In programming prediction intervals, exact multiples of 180° must
be avoided since the sine of v and v, occurs in the denominator of
certain expressions, rendering them indeterminate. The error in longi-
tude of the node also becomes infinite for zero inclination angle.

The case for zero eccentricity or exactly circular orbits is also

avoided in the program by meking eccentricities never less tham .00l
in computing error coefficients, In practice this gives values for
error coefficients sufficiently close to those for a circular orbit.

It is obvious that a more sophisticated statement of guidance
errors including their covariances could be incorporated into the
present program without much difficulty. A major modification of the
program would be required to compute error sensitivity coefficients for
the high drag re-entry case gince this vould involve integration of the

equations of motion and & numericel determination of partial derivatives,
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