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PREFACE

For most applications of satellites and re-entering space vehicles,

one must be concerned with the accuracy with which position and velocity

can be determined and predicted while on orbit and at the time of earth

impact. This MOM-r-ndiam A!esoribas a computing program for estimating,

In terms of confidence regions, the on-orbit and impact errors of such

vehicles.

In estimating impact errors, guidance errors are e, 4ined with

orbital prediction errors. The analytica&ly determined sensitivity

coefficients are used in this program as a means of error propagation.

Their expression as functions of orbital parameters may make them useful

for other purposes, such as estimating performance requirements of

tracking and prediction systems.
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SUMMARY

This Memorandum describes a computing program fox determining errors

in position and velocity on a satellite orbit. Error coefficients are

computed from analytic formulas. These may be used in the further

computation of systematic and random errors in the prediction of satellite

position and velocity. The computing program handles the propagation of

variance-covariance and the determination of confidence regions for

position and velocity estimates.
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LIST OF SYDOL9*

a semi-major axis of elliptical orbit

d central angle between ascending node and radius vector
from earth's center at time t.

I eccentric ano•aly (elliptical orbit parameter) at
time t

Seccentric anomaly (elliptical orbit paramster) at
time t1

e eccentricity of elliptical orbit

G universal constant of gravity

i inclination angle of orbital plane

K with subscript - error sensitivity coefficient or
partial derivative (Other capital letters with sub-
scripts are also used to designate these coefficients
or partial derivatives).

k, ke -V- - Gauss constant for orbital motion

ke .07436574 for displacement in eerth radius units and
time in minutes

1, m, n, p with subscripts - direction cosines

M mass of the earth or of the larger body in the re-
stricted two body problem

p point (on orbit) for which an error estimate is desired

P1  point (on orbit) for which the initial evaluation has
been made

r radial distance from center of mass of larger body in
a two-body system

S magnitude of velocity in orbit

t time for which the estimate is made

t 1 time of the initial estimate

v true anomaly (orbital parameter) at time t

Capital letters with and without subscripts are used to designate
mnlaeu, mad the M .boltm is Weined in the text.



)dV

vI true anomaly (orbital parameter) at time t

Xo, YO, Zo coordinates associated with input variances

x, y, z coordinate of point on orbit at time t

X', Y', Zl coordinates of point on orbit at time t

x,y,z; z 1 ,y 1 ,z 1 , etc. velocity components

0 angle between horizontal direction and velo-
city increment

7 angle between horizontal direction and total
velocity vector

A1' A2 , A3 variances added to x, y, z components of velo-
city errors due to guidance system

)k with subscript - eigenvalue of covariance matrix

Sangle between orbitrary reference line and radius
from earth center to vehicle at time t

• (same) at time t,

X statistical parameter associated with a par-
ticular distribution function

f angle which the nodal line makes with the
reference direction, generally through the
point of Aries

0 angle between the nodal line and the radius
vector at perigee
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I. INTRODCTION

In first-order error propagation in any system, a necessary step

is the determination of partial derivatives which are error sensitivity

coefficients. When it is feasible, there is an advantage in having

these coefficients expressed as analytic functions. The coefficients

concerned with the propagation of position and velocity errors into

position errors (and other related coefficients) for Keplerian orbits

were given in an earlier RAND paper.(i) For the present Memorandum this

vet bas been extended to include veloity errors at a teminal point

"as well as position errors an the earth's surface for impact tra-

jectories.

These coefficients are used in the propagation of variance-co-

variance for position and velocity errors in orbits. The resu.Lting

variance-covariance matrices are used to determine confidence regions

for position and velocity errors at selected points on an orbit. The

introduction of guidance errors for orbits that are impulsively changed

permits an assessment of errors for points on anew trajectory in-

cluding errors at impact with the earth's surface, when the new tra-

jectory intersects the earth's surface.

This Moomoandua is intended to provide suficient information for

possible future users of the computing program to assemble the proper

input data and interpret the output data. It should also provide the

equations and background information for re-programming for another

comWter.
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I1. ERROR SENSITIVITIES

The error sensitivities are coefficients in the first-oider error

equations and are obtained by partial differentiation of the equations

of motion expressed in a particular coordinate system.

The second-order differential equations characterizing two-body

motions can be solved to give the position and velocity of each body as

a function of time. When these are solved to give the motion of an

infinitesimally smaller body moving about the center of a body of great

mass, the usual form taken is that of parameters describing the shape

of the path (a conic section) and an equation (generally transcendental)

relating time and angular position. When the "total energy" Is negative,

the path is an ellipse and time and angle are related through Kepler's

equation.

COMMIATE SrSrus

Figure 1 shows polar coordinates in the plane and a graphical re-

lationship between true anomaly v and eccentric anomaly E. Figure 2

gives more detailed position and velocity coordinates in the planes and

Fig. 3 shows the three-dimensional picture. In all representations

p1 (x2 ,yl,z3) is the point where observations are made, and P(x,1,#)

is the point for which predictions are made. In path prediction from

initial position and velocity, It is essential to note that perigee

and apogee are initially undetermined, requiring angular position, 00

to be measured from an arbitrary reference.



3

E, VI

Fig. I - Polar coordinates in trajectory plane

2\

Fig. 2- Detailed position and velocity coordinates
in the plane
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Perigee

Arbitrary
reference

Fig. 3 -Three dimensional picture of trajectory
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MW33M OF ]DERIVATIONS

The two parameters describing the elliptical path are a, the semi-

major axis, and e, the eccentricity. In terms of initial position and

velocity (see Fig. 2) these can be expressed as
22

r 2 + (r 1 1 2

a r 1  r1
r F•" k

~2

k a

With zero time reference at perigee or perihelion, etc., the re-

lation between time and angular position is t - E - e sin k,

knovnas Kepler's equation. The eccentric anomaly E is related to true

anomaly v by cos E . ico v + e an ambiguous expression unless we includeano~• vby os -1.+ e cosy'

0 <E < xfor o <v <x

x <E <2x for x <v <2s

Avxlar7 relations used are:

r -a i' - 2 )

r + a coo v

*. ke sin v

k &(1- e2)a

r

0 - •a

ev -a(l-'eo )-rer.



6

tan ,7 e sin v
1 + e cos v

1 + a coo V008 7=

1 + e2 + 2e cos v

2 1
ra

For earth satellite orbits and ballistic missiles, k equals Ka equals

.o73 for tine in minutes, and distance in earth radius units equals

314 44 n mi.

Using the constraint

k(t - tl) = a3/2 [E - E + e(sin E.n E)] -) constant,

partial differentiation yields the first-order error expressions for

errors in a and e, and for position and velocity in the plane at my tine

t or for ay true anomaly v.

The initial position and velocity vectors determine the plane defined

by a unit vector n1 . Errors in coponet•..ts of this vector are determined.

Fra these, errors in position and velocity perpendicular to the plane and

errors in angles i and 0 defining the location of the plane follow.

The first-order error equations for which the coefficients have been

determined analytically by partial differentiation are listed below.

Lbeling at thes partial derivatives is quite arbitrary and grv out at

work which extended oyer som tine.
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-K1 dfj+ K2  + K3 dr1

;- K4 K, d1 + K6 d~r1

dr M j+K 1 . de+ K-1, dr,

di' = K7* + Y-8 d,+ Kq dri'

dda 1E+1k + K 1 8 dr 1 + K1 dr

do -do,+ K10df,+I o,+K 12 dr1  1

dnzj.l - K20 c'#1 + K21 y

d21- K~ 22dy

d'-Y23 dnl~l + K.4 dnlzl
diL - KJ 0 + KK,4y,

dn=K ux + %~ dnlz1

dn = T + KM dy1

d4y a %N di + KO dfl

dyr a # + KQ dyri

Ui a D, 1 S + D2 d1 + D-. di'

dv -1ýdil+ R2 d~i+ 13 di'l

Ini the following error equations, the coeffi cienats evaluated later

mr for the particular case of earth satellites or ballistic missiles Ame

imite or displacemet are n mi., units of velocity are ft/sec.



dx - KA errn + KB din + KC eth + Ks dz

dy m % dS' + -

dz a Y-0 dil + KH Bk + K, dzl

d-N 1l 1 +N 2 d*1  z

d-4 P1 d_*1 + P2 dy

dz - Ld 1 + L 2 d 1 + L3 d

•"3 1

dI - P3 dil + F2 dl1- + '-3 di

4 m ,% di. + 2 dx1 + Q3  (in der)s)

dR- T, di, + T2 ft11 + T 3 dxI + T4 dz

dR - error in range an the ea~rth's surface (in plane of

trajectory).

ERR(J CFIMC8M

The expressions for coefficients in the first-order error equations

which aer partial derivatives aer listed below. In som ceamee, these co-

efficients are given as functions of others wbich aer also listed:

k2af

r'2 - k

K3  T 2a

Sa(l - 02)

ke .
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r-44

K5•,( - 2) (1 2
k e [

Ke 2

e+ecoo2 vi.+ 2co v.

*1 - +2 I',

a(i - a2) (e + coS v )
K 6 " e r, (1 + 0 cos v1 )

&,- e2) (e + coo v )
K-- •r (i + a co) vi)

"K K" K13 + K•, L.j

K8 -2 K13 + Y5K14

K9  K 53 K1 3 + K6 K1 + K15

K1 - K , K .16 + K4 -1 +,KK19

Kl.2 K16 + F'5 K17 '. K19

K12 - K3 K16 + 6 K17 + K1+ K9 K19

r ini E 1/2 k(t - b) asin 3
r -~ IL

K13 0 h in E 2r

r- coo E, sini E a.(sin E - sin El) sin E

ri sin I
K i, 0 i n 3
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1+CosV 1+ e CosCv
K6 esinv1  esinv

r cos v + e r 1coo v÷ 2ae

-( + osacoo v1)

1 + a coo vK-19 e or sin v

-1

K21 -2 1 lr,

K 1
K -- co

K23 ' - coe(m + v1 )

K2 o - un(c1+ v)

= r )ý- K K = .0098745519
KA r,

K0B - rK0K

KD rK122
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K, - K s

K8 K9

S,.- K20 K23

KL=K 20 Ks

K1 = -r K2 41

K = r K23

Kp=-K2 r sin(v vY1

%~ =-K 2 1 r sin(v -v 1 ) K 22 r cos(v -vi)

sin i

K S- -sTiT

k

r a

-k
r 2 2'

r C aCK

D" 5C ÷ KI C K i
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D2-C -2 (+ C2K

D3 - Cl K'3 + C2 19

e2 + 0 coo v

sin v
D5 ý(1 + e2 + 2 e coS V)

D2

F2 - r

3 Ky

01 • 1+.06v
Ia +ra coon v
e 2sin~r0 v

o2 r sin v

G 1 + a cog v
G3 "•r-rsi v

G, IL , K + G2 1 + G03 Y-7

-l 0-2 + G2 F3 + G 3%

R3 - G K + 02 + 03 K9

Q, D4R, D5Yj x *OOcaO'l1

2 a + z .oooi64
ri

_.%
'2(D413 +D5 %) x ."16630

! -K-
2. - A -ton 7

T2 - % - tan 7



13

T4 K -tan~

L,- Disin y + (D 4 H, + D5 KO) I corn ,

D 2 BID 7 + (D 4 2+ D5 IS) A coony
L2~ 1

L3=D3-' s,+ (D4,li3 +D 5 KI) Icoo 7

21- D Coo 7 - (D 4 H, + D5 K4) I siny

N2-D 2cos,'-y-(D 4 2+ D5 K;) siny

P,-- K~o(4 coosA v + uin Av) A

P2 K2(rOsin a v - r coo A v) - K21(ro coon a v + *sin a v)

-a Di sin, 7 + (D41 Ili + D5 KO) I coo ,'

a2 D 2 Bin,' + (Dý %2 + D5 1C) A coo y'

13 a D3 sin y + (1DH 3 +D5 Kg) &coo,

w-a O + D5 K4

W2 - D4 %2 + D5 K;

W3 - D4 "3 +D3
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III. PROPAGATION OF VARIANCE- COVARIANCE

This program starts with a variance-covariance matrix for posi-

tion and velocity errors at some point on a nominal orbit. The orbit is

specified by position and velocity at the point and/or its osculating

Keplerian parameters. If necessary this variance-covariance matrix

is transformed to a new coordinate system and also transformed with

respect to units. Transformations to new coordinate systems or from

one column vector to another are obtained by the matrix multiplication

C = A B AT

where, for example, B is the variance-covariance matrix associated with

colum vector x, and C is the vuriance-covariance matrix for enore in

a colrnn vector y, and A is a sensitivity matrix

The input variance-covariance matrix may come from a number of

sorces, such as a differrntial correction routine *hch baa beo sed

to process actual tracking data and has the variance-covariance matrix

for initial condition error estimates as a by-product of the orbit

determination process. We have used for our source a program vhich

similates the errors in radar tracking of a satellite and computes

the statistical parameters associated with least squares polyomial

fitting of short arcs of the trajectory. We are now using a more



general woam(2) which generates variance-covarmance matrices result-

ing from the use of a wide variety of tracking data from as many as

12 different trackers in orbit determination.

This input matrix represents the variances and covariances for

errors in initial conditions consisting of three components of posi-

tion and three of velocity. Since it is convenient to use a coordi-

nate system associated with the plane of the trajectory for the

determination of error sensitivities, a coordinate transformation of

the input variance-covariance matrix is usually necessary. Since the

sensitivity coefficients as given in Section II are functions of the

Keplerian parameters a, e, i, w, and v1 , it is also necessary to com-

pute these parameters from the initial conditions, xo, Yo) Z Xo'

y0 , 10.

COGBDIA• TRAW4MATION TO PLANE OF TMJWTCFX

Given the initial conditions x0 , Yo, Zo' xo0 -yo, o in an arbi-

trary inertial coordinate system, the transformation of the initial

variance-covariance matrix B to the coordinate systm associated

with the plane of the trajectory as given in Figs. 1, 2, and 3 is ob-

tained as

[A B1 [] [AT AT]

where

A l m2 m`3
A nl n2 n3

LPl P2 P3j
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with the elements of A determined from

r 0  4z0  ' jx

xoYo z'o

ho B 2 3 80

0 0

Pl r 0 2  r•"3 =r-

N1 = P213 - P3L2  n, N2

N~inp 3 L =1 A 3 + N22+ N3

+ N3

2 A 2  N+NN 3 = Pit 2 - Pa2l 2
N3

n 3  $1i2+ N22 + f32

'l - '23 - 3 P2

a2  = -3Pl " n-P3

S= nIP2 - n2pl

THE OSCULATING IELIA PARAMETZRS

To obtain a, e. 1, w, v from the initial conditions X, TOP' Zoo

iop jop io' one may use,

ro %

1oi1 + Yok +z0

io =

00o 002 00 •o
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1 .2

2 o

0 e

k = .07436574 (when displacements
are in earth radius units and
time is in minutes)

2.2 2r 0  r -r0 \
ke2a + a-

V =tan-1 e sin v1
e coo v1

where

e sin v 1 ke

a(1- e)2 r0

e coB v1 = r

To determine i and w., compute

y0 io0 -0o0

niy D

ly~ - j-yo
niz D

D =ro• 0 2
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sin i=+ 2+nly

0 < i < 1800

cos i = nl1 z

+ n nl2 + n 2
i to _

nlz

sin d.- o (n + x `0 nlx + Yo nly + 2o y0 n l n,r sin i

0

sin d > o if zo 0 >o

sindýo if 7o o

cos d y 0 nix" x an iy

r sin i

d -d v- 1

TRANSFOY4ATION OF VARIAME-COVARIAMCE MATRIX FROM INITIAL POINT TO
AM TRAJECTOR-Y POW

If C1 represents the variance-covariance matrix for errors in

the initial point and G the sensitivity matrix of partial derivatives

which relates errors for another orbital time to the initial condition

errors, then the variance-covariance matrix for position and velocity

estimates at the new orbital time is given by

R-GCc1 GT
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vhere the elements of G are determined from the error coefficient ex-

pressions and more specifically

Kc 0 KD KA 0 KB

o K7 o 0 K% a

G o K1  KH o KG

0 0 N3  N2 o N1

0 P2  0 0 P1 0

o o L3  L2 o

COF'MNM RUGI0ONS

The H matrices resulting from transformations of this kind repre-

sent the ernr situation for other trajectory points in terms of

variances and covariances. For certain purposes a tither des-

scription in terms of confidence regions is desirable. It is possible

to define an o per cent confidence region (generall~y an ellipmoid) for

position arrors, or another for velocity errors. This is the reaom in

which estimates would fall e per cent of the time if the sxerlaent ves

repated a vwy 1arg nuiber or times. If we consider a partittiaIn

of the I matrix into

1 2 3 -

then J 1 represents the variance-covariance matrix for position errors

and J3 the varisam e-Covaaianc matrix for velocity errors.
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The quadratic form defining a confidence ellipsoid for posit ion

errors is given 1y(3)

X2
1 -a W xT Jl x

22
where Xiu s the i-a level of the X2 distribution for three degrees

of freedom. For a a 50 per cent, y. - 2.366 and for a = 95 per cant,

2
x " 7.815. Accordinglr, the eigenvalus of the Jmatrix deteine

the size of the seui-axes of the confidence ellipsoid and the elgen-

vectors and/or the associated rotation matrix detemines the relative

orientation of the confidence e*LALpseod. If the genvalmus are re-

spectively Xi' X'2' X3 then the semi-maJor axes are given by

d 2 = .366 Xs s = 1,2,3

for the 50 per cent confidence ellipsoid, and

do - T7.81s5 s = 1,2,3

for the 95 per cent confidence ellipsoid.

Operating in an identical manner with J3 deteines the con-

fidence region for velocity errors. The six-dlmensional confidence

region (hyperellipsoid) for the combined position and velocity estimates

is obtained in an analogous manner, with

do = 5.3J Is s = l,.. 6

for the 50 per cent confidence region,

and
ds =F2. ;2 s - 1, .. 6

for the 95 per cent confidence region.



21

IICOMPORATION OF GUIDANCE ERRORS

When a trajectory is changed by impulsive velocity components,

errors due to the guidance system may be introduced. If there is no

correlation with prediction errors, the variances in impilsive velocity

components are simply added to those due to the prediction process.

In gen ral when correlation exists, the guidance errors are incorporated

by transforming to i covarience matrix for a nine element vector, in-

troducing guidance error variances, and then transforming back to a

6 x 6 variance-covariance matrix. The transformation which we use

recognizes the possibility of a relationship between the predicted

position error in the plane and in-plane velocity component error when

a stellar referenced stabilized platform is used.

The transformation required is:

M= HT

where H is the variance-covariance matrix for errors at the trajectory

point before the impulsive velocity increment is added and

1 0 0 0 0 0

o 1 0 0 0 0

o 0 1 0 0 0

o 0 0 1 0 0

La 0 0 0 0 1 0

0 0 0 0 0 1

£71 0 0 0 0 0

0 0 0 0 0 0

91 0 0 0 - 0 0
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171 - r

- V coso
191= r

See Fig. 4 for definition of IS and V•. This Is for the stellar refer-

enced platform and applies to circular orbits. For Ideal campmnsatIom,

10 and V 0 have particular values. For other cases, other Iam correla-

tioes could be Introduced in an analogous manner.

It has been shown by Frick•") and others that the relationship

between the impulsive velocity increment and the in-place predicted

position error for circular orbits can result in compensation of in

plane position error to first order for a particular velocity in-

crement when the range to impact is fixed. Figure 4 shows sche-

matically how this is accomplished. This range error compensation

occurs when 1, and ihe particular values of 0 and V are given

by solving first for the required velocity components as follows,

4 gke sin2 AV . 1 -cos AV

x rl(rI - cos AV) I 2  2"r r1 (rI -Cos AV) x

(1 - cos AV) 2  0 for

r1 3 (rI - cos AV) x

Pnd ( -- coo, AV) L _ [r coxA
z= r 1 sin AV sn3 -ýi

xI
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\ 

VT

Fig. 4-Scheme for error compensation by stellar inertial reference
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+~k
So +z

v• - o•6 x s rtlsec

13- tan -1 z

T'-- x
e

where r Is the radius of the initil owbit and AT is the chmp In tw

anomaly identical with the angular range to impact. Another interesting

case is the minimum impulse path occuring whenz- 0. The value of

V 0 and 0 can be obtained by solving

o sin2 AV
64 _ _ _ _ 3 (l - co AV) 2

x 1 + rl 2 - 2r, cos AV x r12 (l + rl2 2r, cos AV)

for S
x

ý 1( _ Cos AV r(1rl coo AV)6 r 1 sin AV Ssin AV S

x

i~ ( 0 /k ý x).z k e

0 6V15 •1x ,20"N60.2 x ft/sec

1=tan 1 z

e



To incorporate guidance errors into the M matrix we add variance

terms to the diagonal elements in the lower right hand corner, thus

K7 becomes

•% becomes % + &2

and X99becomes~ M9 +A

If covariances in the guidance errors are appreciable and known, these

may be added also. The resulting M, matrix is transferred to

a6x6by

P N NJ NT

with

1 0 0 0 0 0 0 0 0

0 i 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
NM

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1

POWAGR3DNOf 1 VARIANCE IN JEW 1IAJRZORT

Since the sensitivity coefficients are expressed analytically in

terms of the osculating o aital parameters, these parameters for the

new orbit mast be determined. These follow from
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+. .v si SUU020.fo 16

* 2 +&vp coou03

1

a 2

k e

e

V e-1 (e sin vi)
v1 - e coon V 1

1 e 2

where esiny v 1 C

a (1-e 2 r-
e coosv 1 = r

V- V1+ AV
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The value of v does not change and w is arbitrary for the pur-

pose. These new trajectory parameters now constitute the input to

a new computation of error sensitivity coefficients. If one is con-

cerned about the variance-covarience, for errors or confidence regions

for a general point on the new trajectoiy the procedure is identical

with that described on pages 19-20. However, if the errors in a tan-

gent plane at the earth's surface at the point of intersection or

impact are to be described, the transformation requires a different

set of sensitivity coefficients. The 2 x 2 variance.covariance matrix

for errors at the impact point is given by

R =QP T

where Q is the sensitivity matrix2 3: A T1 0 T2]

and the sensitivity coefficients are appropriate for the new trajectory

and the impact point. A confidence region which is now an ellipse is

defined by the quadratic form

Xii [x~] RIY

with x2a = 1. 386 for a a 50 per cent confidence

Ix .a 5.99 for a a 95 per cent confidence

The eigenvalues and/or eigenvectors for the R matrix then determine

the size and direction of the mmi-aes of the confidence ellpa.
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IV. LAYW]! O THE PR01AM

The routine was coded using FAP and FORTRAN for the IBM 7090

computer. It contains the following:

Hand-coded subroutines:

PAMT7 - computes the orbit change

KEP - computes error coefficients

AEI - computes a, e, 1, w, V1

MAaMeY computes product of two matrICes (6x6)
MATW81J and (9x9), respectively

STEP2 - pre(post)-multiplier of the input
covariance matrix

SCALE - scales a matrix to avoid overflow in BIGI0

ARCSIN . computes COS" 1 and SIN"I from Hastings
ARCCOSJ approximation

AVG6 - averages elements of a real symetric matrix

XERA - checks for BEGIN flag

RTCD - computes 0 and V on orbit change (see
options for this part)

Library routines:

SHARE EIGEN - computes eigenvalues and eigenvectore

RAND X006 - tan-' of double argument

COSF ý - standard FORTRAN library
plus J
plum the master routine
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PROGRAM DESCRIPTION

Step 1: Start with a given covariance matrix, B(6x6), that

gives the errors in the initial conditions of a

nominal orbit specified by x 0 Yo )z 0o J X 0 yo zo

These conditions are combined using a subroutine called

AMI to give the alternate specification of the orbit

by a, e , I, w , v1 . The eigenvalues of the

matrix B are found and printed. If these are not

all positive, the matrix is not meaningful and the

program will halt later on.

Step 2: A transformation matrix A, is found (su.,routine STEP2)

such that the given covariance matrix is transformed

into a coordinate system associated with the plane of

the trajectory.

Step 5: This new matrix is now called C where

C = A 1BA 1T.

Step 4: Convert the units of C to nautical miles and ft/sec.

to give the matrix C1 ; i.e.,

if

then .[Dxkl E2

1 xk2 Fxk3

where k, (3414J4) ; ~k k 966 I k3 -
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Step 5: Input the Av' s (change in true anamly) to be considered.

Compute the error coefficients for the orbit using

subroutine KIP. The formulas are contained in

Sec. II . Although all of these coefficients are not

used in the program, they may be printed out at the

option of the user by setting the correct value

of KPRINT (see input requirements). The sensitivity

matrix G is computed using the proper error

coefficients. TMe matrix G 6ives the yropWted ezzw in

x , y , z , x , y , z , for a given v

Step 6: For each G compute

H - GC GT

for the errors in position and velocity.

Step 7: Various submatrices of H are then used to give

confidence ellipsoids for which semi-axes, angles of

rotation, eigenvalues and eigenvectors are computed

and printed.

This completes the first part of the program. If one

wishes to go on to a new trajectory, the value of KFLPO is

appropriately set on input and computation proceeds.

Step 8: There are three options for input of data on the

new trajectory.
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a. specify I , V A , A 3 ,. Av , KIM - 1.

b. minimum impulse path,

KIM- 2, specify A 1 2 A3 , Av , machine

computes 0 and V .

c. range compensation path,

KIM- 3, specify A A 2 , A3 , Av ,'machine

computes 0 and V .

Then, having a value of 0 and V, an L(6x9) matrix

is deteruined so that the X(9x9) matrix can be found

NM -IIL T .

Step 9: N1 is formed by changing three elements of the N matrix

as follows:

m77 to 277, Al

m to 8 +2
m99 t 99 +A3

where A1 , A2 , A3 , are inputs. (Not cumulative)

Step 10: A new transformation, matrix N(6x9), is found so that

the following transformation can be made:

P - M41 NT

where

"1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0

O 0 0 0 1 0 0 1 0

O 0 0 0 0 1 0 0 1
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Step 11: New values of a , e , i , w , V1 , and new values

of the error coefficients (which will be printed if

KPRINT IS SET 4 0) are found.

Step 12: A new sensitivity matrix Q(6x2) is computed living the

errors in range and y, ind a coarlace matrix R(2W2)

is determined for these errors,

R aQPQT .

Step 13: The confidence ellipsoid semi-axes are computed and printed,

which completes the problem.

OPTIONS

KPRINT - 0 No error coefficient printout.

S0 Error coefficients printed.

KFLAG < 0 Change to new trajectory (ies).

> 0 Go to new case - no change of trajectory.

KLM a 1 Specify , V , Al &2 , A3 , on new trajectory.

- 2 Specify A1 , A2 , A Av ;compute , Vp,

minimum impulse path. 0 < 0.

- 3 Specify A1 , A2 ' A3 ' Av ;compute , V2 , range

compensation path. 3 > 0.

KMN - 0 Compensation desired. a zreaseable fo p> 0 t•xajetwlef

S0 No compensation desired.
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IRPUT

Card No. Description Format

1 - 0 Error coefficients I 2
printed

a 0 Error coefficients
not printed

2Xo YO y 0 ' s (Earth radius units) 3118.8

3 x'0 Yo , o , (Earth radius .-- it/aln) 3118.8

4-15 Covariance matrix, B; diagonals are 3118.8
variances (or standard errors), off
diagonals are cross product terms; i.e.,

Ia Products of
z~u9 fe bthese units

Products d 2
of then,_ • Wmi.

units [
16 KX T5 - Count of the number of Av's 112

(true anomalies) to be input.

1! Lvs In dePvesp I w card F12.0

174KUN5
o 0 Change trajectory.

17+9U K"LA 0 Don't change trajectory; go

to new case. Next card is the

I+4KUNT card.
Let L - 17+K0UNT54l

L KM, Ma 2112

K4 T - Number of new trajectories
to be computed.

= 0 compensation desired
IN • 0 no compensation desired

1+1 KIM - As explained in writeup - step 8 I 12



Card No. Description Format

L + 2 1 ' 2 ' 43 'A 6112.8

A1 ' 4 2 ' A3 , - Elements to add to

M matrix to get )! matrix.

AV - Quantity to add to V1 to get V.

L+ 3 If KLM- l; 0, V 6U12.8

if KLM - 2 or 3 next card like L + 1

Repeat cards L + 1, L + 2 (and L + 3 if ax. 1)
KOUM-l times.

L+KOUNT "BEGIN" punched in cola. 1-5 - Signifies the A6

start of a new case.
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OUTPUT

FIRST PAGE

1. Characteristic roots of B, the input covariance matrix.

These must all be positive or B is not a valid matrix

for this problem. The first three are in ERU2 and the

last three in (ERU/min) 2

2. The initial conditions x, y, z, x, y, z in ERU and

ERU/min, respectively.

3. The Keplerian parameters of the orbit.

a in MEN

e non-dimensional

v} degrees

II. The input covariance matrix.

The upper left-hand corner (3x3) in (W) 2

The lover right-hand corner (Wx3) in (/r/min) 2

The upper right and lover left-hand corners are
combinations of these units.

5. Transformation matrix, A .

Non-dimensional, takes B from the initial reference
system to a coordinate system associated with the
orbital plane.
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SECOND PAGE

1. Transformed matrix C, w AlBAiT

Units are the same as B.

2. C1 Matrix.

Units changed from (ERU)2 to (nautical miles)2 and

2 2
(ERU/min) to (Ft/eec)

3. True anomaly, v, change in true anomly, Av.

The angle the vehicle moves from perigee.

i4. G Matrix; error sensitivity matrix.

a. First row; error in x .

b. Second row; error in y

c. Third row; error in z .

d. Fourth row; error in x

e. Fifth row; error in y

f. Sixth row; error in z

5. H Matrix - G0T ; transformed matrix gives error in

position and velocity at a new point on the trajectory

specified by Av. Same units as C.

DOTE: If it is desired to print out all the error

coefficients, they will be printed after Step 2

above, and Step 3 will begin a'new page. If there

is more than one v , each new v will begin a

new page.
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a+st PNjumber of Av'a + 2 if error coefficients printed.,umber of f's + 1 if no error coefficients printed.

1. 1i (n) (n w 1, ... number of Av's)

Upper left-hand corner of H .

Error situation in position (n mi)2.

2. Roots of Jl "

3. Semi-axes of confidence ellipsoid,

i.e., where you would expect to find the object
50 pWr cent and 95 per cent of the time, resgpctivly.

4. L-Matrix - Eigenvectors of J1 "

Rotation matrix to give new coordinate system
with no correlation.

5. a , , 7 - angles relating new region to the old.

N+ 2nd Page

Same as above but for J 3 (n) , the lower right-hand
corner of H.

N+3rd Page

Sam as above but for total H matrix. Now you have a
confidence hyperellipsoid. Step 5 is not done.

NOTE: These three pages are repeated n times for the n
values of v

N+3nrlst Page,

1. V• , "1 , A , 2 ' &3 , &v .

- angle (in degrees) between the velocity increment

and the original velocity vector.

V - velocity Increment (ft/sc)
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622 Error variances for guidance (ft/uC)2

Av - Change in true anomaly on new trajectory
(in degrees).

2. Parameters associated with new and old orbits aa
labeled:

a ,e - same units as Step 3, page 1.

vI , W , i - radians.

3. Q(k,k) 1at"Ix - another sensitivity matrix.

First row; errors in r

Second row; errors in y

4. R(k,k) - covariance matrix for r and y errors.

5. Semi-axes for 50 per cent A• 95 per Cent CCoiLdmcO SO bhetos.

NOTE: If K represents the number of new trajectories to

be considered, the above five steps vill be output K

times. As before, if all the error coefficients are

to be printed, they will be printed after Step 2 and

Step 3 will begin a new page.
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V. FUR COM
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MAIN ROUTINE (STATEMENT NUMBERS IN PARENTHESES)

BEGIN

OUTPUT TITLE

(1(10)

INITIAL CONDIT- YES A TEST IPTO RNE
IONS AND CO- TS O EVARIANCE MATRIXBEIWODCS

B(6,6)?

MAK(E MATRIX B

SYMMETRIC by
AVERAGING
ANTIPODAL

ENTRIES

(1101)

OBTAIN EIGENVAWUES OTU IE-CL H IE(OT

CAL AE CODITONSAAN TO GET Al COMPUT C - AIBAI

INPUT THE NUMBER OF AV ICOUNTS, THEN THE AV', THEMSELVES,.OM
AND A FLAG, KFLAG7 TO INDICATE WHETHER A CHANGE TO (C______________OF_

A NEW ORBIT IS TO BE MADE AS INDICATED ON U SF~
THE INPUT SHEETQ

V VI , AV
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S Ui

0-

EL T

Li

00

u0i

zz
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SUBROUTINE KEP - ERROR COEFFICIENTS

OUTPUT : EE40 SNVIi 0 YS UPT RO

P12= ,, F2- .07436574 Al (2, I) ?PSIT FA

Al (343)PP
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SUBROUTINE AEI, 3, e, 1, W, V,

T 

ENTER

COMPUTE: COMPUTE;
COMPUTE: COMPUTE:

j_ j2.j2ý 2

2
t F

Vo y o j o o o - r.
FKE .07436574 E)

FKE

COMPUTE: 
COMPUTEi

-2. D. i. 2_ i 2

2 iy

tm- -. Vo - vo Y020 1 yolo

D D

compum

TAN-1 2 (.,.2+ý ll+x.2 2 y 2 ". 2 + 2. y ýjy

0 iy 0 'y Vo ox iy
d- +Y."I Yly

SUBROUTINE AVG 6 J-J+)

NO

NO

Is YES Is YES
j 1-1 -0

1-1 + I A (1, J) A (1, 11 + A (1, 11
NO

ýt 2

A (1, 1) -A (1, A
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SCALE
.0 RETURN

< 0 NN:N-? (1) a 9
I-INN

RECIP - 1/0

*:MAX A (1, J) 1) A (1, J) - RELIP * A (1, J

1, 1; 1 IN A (J, 1) :A

RTSXD

;ITE"NG S' 
is

.1 GUESS CIM K - Sx xw
ENTER KZZ FUN TI N + FUNCTION .1< .1 1 Y" RETURN

FORM 2 

YEI

DERIVATIVE DOE It ?

NO
3(3)

(2)

USING Sx smo tx

GUESS COMPUTE
FUNCTION +
DERIVATIVE

FORM 3

S.. -
FUNCTION

DER

Is
x - S.j Sxotx

? 

(5)

(6)

RETURN
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SUBROUTIK PAST 7

ENTER RETURN

N 0

(SDI)

INPUT 14-0:7F
CASES AND TYPE

OF CASES TO ANY
ZERO FN BE INPUT LEFT

MATRIX AND FORM FN FOR NEW 0491T TO
0 MATRIX MATRIX ALSO INPUT DO

WHETHER OOMPEN- ?
SATION DESIRED

OR NOT

YES

ZERO 
INPUT A A INPUT 41, A 21 A31 AV

* Vo .1 KIM .3 COMPUTE it AND Vo
MATRIX 42, A3 FOR RANGE

AND CONTINUE COMPENSATION
PATH

-2

INPUT al, A2, A3, AV

COMPUTE OAND V

FOR MINIMUM
IMPULSE PATH

FORM FL MATRIX FORM FP FN (FM) IN I FORM R 0 (FP) OT

FORM FM FL (M) FL T COMPUTE il, ilo 1 0, V, OUTPUT - DETER-

HmH PAST 7 COMPUTE ERROR MINE OUADRATIC

INCREMENT 3 ELEMENTS COEFFICIENTS FORMS - OBTAIN

OF FM MATRIX FORM 0 MATRIX AND W. - OUTPUT
A14D OUTPUT IT

Kmm NO FL (7, 1)-0
Ft (9, 1)-0

fi 

Is

YES

FL (7, 1)

-VFL (9, 1)



VI. PHESMEI LIMTATIONS AND POSSIBLE MODIFICATIONS OF THE PROGAM

The sensitivity coefficients are here determined for a theoret-

ical Keplerian orbit. Even for cases of moderately high dreg the

error in these coefficients due to this assumption will not be serious.

However, the error in predicted position and velocity components due

to error in estimation of drag force represents an additional error

component that is not included in this program. An effect which is

external to this program is the validity of the input covariance

matrix. This program does check on the requirement of positive de-

finiteness of the input covariance matrix for physical realizability,

but otherwise imposes no restrictions.

In progrming prediction intervals, exact multiples of 1800 must

be avoided since the sine of v and v1 occurs in the denominator of

certain expressions, rendering them nte. The error in long-

tude of the node also becomes infinite for zero inclination angle.

The case for zero eccentricity or exactly circular orbits is also

avoided in the program by making eccentricities never less than .001

in computing error coefficients. In practice this gives values for

error coefficients sufficiently close to those for a circulm orbit.

It is obvious that a more sophisticated statement of guidance

errors including their covariances could be incorporated Into the

present program without much difficulty. A major modification of the

program would be required to compute error sensitivity coefficients for

the high drag re-entry case since this would involve integration of the

equations of motion and a numerical determination of partial derivatives.
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