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ABSTRACT

Explicit formulas are given for the error at an arbitrary point

in the electron density. spin density and form factor derived from an

approximate wave function. In the derivation extensive use is being made

of some previous results by Kinoshita. The main treatment is preceeded

by a short discussion of some of the more mathematical aspects of the

problem and a simple numerical example is given in the last paragraph.
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1. INTRODUCTION

The properties of an atom in its ground state can be calculated from the

solution of the time independent Schr~dinger equation

where E is the lowest eigenvalue of the Hamilton operator H and to is the

corresponding eigenfunction which depends on the space and spin co-ordinates

of the electrons. Unfortunately, however, the Schrddinger equation is of such a

complicated form that, except for the simplest case of the hydrogen atom, it

does not seem possible to obtain the exact solution. On the other hand there are

methods available by which approximations to ýo of varying degree of accuracy

can be obtained. As more and more refined calculations had been made, at least

on small atoms, there has been a continued interest in deriving limits of error

for the expectation value of the energy 1) and other quantities calculated from

an arbitrary trial wave function ) .

The main purpose of this paper is to show that it is possible to derive

limits of error for quantities of the type kro(a) - r-(a)I , where a is an

arbitrary point in three dimensional Euclidian space, -r0 is the electron density

derived from the exact solution and -r is an approximate electron density obtained

from a trial function i . This will be achieved in terms of four quantities; the

exact ground state and first excited state energy, the expectation value and the

mean square deviation of the energy. The derivation is based largely on ideas

to be found in a paper by Kinoshita 3) Kinoshita estimated the error in the

relativistic corrections for a helium atom trial wave function. This required

an estimate of the error in the electron density at the singularities of the potential.

It will be shown here that these results can be generalized to apply on one hand

to an arbitrary point in space and on the other hand to any atomic system. From

this, one will be able to conclude that if a wave function gives good energy and

small mean square deviation for the energy, the electron density will be a good

approximation to the exact density, everywhere, even in those regions of space

which from the point of view of energy may seem unimportant.

It is well known that the state vectors which describe a quantum mechanical

system are elements of the Hilbert space of quadratically integrable functions
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These functions form a Hilbert space only if the integration is understood in the

sense of Lebesque (von Neumann loc. cit.). From this it follows that two wave

functions, which differ on a set of zero measure (e.g. set of isolated points),

describe the same physical situation. Therefore, it may at first sight seem

surprising that one can meaningfully discuss the value of the electron density

in a given point. It will be discussed in the next introductory chapter how the

ambiguity on a set of zero measure can be removed if not only * but also H4$

belongs to the Hilbert space of quadratically integrable functions. This require-

ment seems reasonable both from the mathematical and physical stand point.

The preparatory mathematical considerations of the next section are, however,

not strictly necessary for the understanding of the subsequent main discussion.

2. PRELIMINARY DIGRESSIONS

Let us consider an atomic system with N electrons and with nuclear

charge Z . Let-rI and ;i denote the position and spin co-ordinates of the i-th

electron and let xi stand for the collection of r. and •i " The Hilbert space

associated with this system will be denoted by L A (x 1 , ... xN) defined as the

set of all functions 40(xIt .... XN) which are antisymmetric in the variables xi

and satisfy the condition

41)j k XW)I 2r..a j d~~(ýv 0 (1)

Since the set of Riemann integrable functions do not form a Hilbert' space but only

a-linear vector space, the integration over r i is in the sense of Lebesque,

whereas the integration over the spin variable ý. denotes summation. Two

functions which differ on a set of zero measure (zero measure in 3N dimensional

Euclidian space 5)) are to be considered identical. The Hamilton operator

H is given in the form
A/ N

_ +

where the notation is self-explanatory. •h•i3 operator H , as it stands, is not

yet well defined in the mathematical sense. As a start one may define H for

functions which have second derivatives everywhere. It was shown by Kato 6) that,

provided the original definition of H is not too restrictive, there is one and

only one self-adjoint extension. It is necessary to make this extension in order
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to have a resolution of the identity belonging to H i.e. a complete set of eigen-

functions. The linear vector space on which the self-adjoint extension is defined

is cailed the domain of H and it will be denoted by DH 0 DH is a proper

subset of IL2 i.e. D C L2 . As shown by Kato the domain D consists of
A 2 L A H scnit

all functions F L A which satisfy the condition

where 4 is the Fourier transform of 0 . This may be written somewhat

loosely in the form

(k#, cck =I/kc!41< Po (4)

whvrit- K is the kinetic energy operator. It follows from condition (3) that if
24) 1)11 then H4) LA , that is, (HO, HR) < w . Following the suggestion of

Kiuoshita 7) we require that an acceptable trial function 4) should satisfy con-
2 2ditioj (3) i.e. we require not only t) e LA but also Hiji LAý . Let us now

(define the first order density function r(r1 ) as

wlicih is I times the probability of finding an electron with arbitrary spin at

the FHsiliuf r.. It is a consequence of a lemma by Kato (loc. cit.) that if 4) e DH

y(r,) is essentially continuous i.e. it can be made continuous by changing its
value on a set of zero measure. Here we shall be interested to estimate the
quantity ITo(a) - T(a) I , where To is the exact density and a a fixed point.

The ambiguity on zero measure can now be removed by the following argument.

In reality one never measures the electron density at a point but only in a small

volume, let us say AV . It seems therefore reasonable to consider instead of

O(a) - y(a) I the quantity

Because of the essential continuity of -o and -r the result is independent of

the way the limiting procedure is carried out and of possible. discontinuities on a

Inc ideutally this result is far from trivial. As it is stated by Kato that

for N > 1 there exist functions which belong to DH and are still

essentially discontinuous, it apparently does not hold for the wave func-

tion itself.
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sero measure. This is equivalent to redefining the densities so that they

become continuous everywhere. In the following we shall thus be able to

assume that the densities had been chosen continuous.

3. LIMITS OF ERROR FOR THE ELECTRON DENSITY

Let *(x 1, o.. xN) be an approximate atomic wave function which

satisfies conditions (1) and (3). It can always be written in the form

where *o is a ground state elgenfunction for the Hamilton operator given by

equation (2) (the ground state may be degenerate), f is a function orthogonal to

the ground state solutions and ij is a constant which can be chosen real and

positive. If o and ti are normalized then so is f . For typographical

convenience we assume all three functions to be real. The constant 'n satisfies

the inequality 8)

where X = (Hi, *) and E0 , E, are the exact ground state and first excited

state energies. The inequality

can easily be derived from equation (6) for any linear operator A * If A is

self -adjoint and positive definite the identity A = rA4x and Schwarz s

inequality allows us to put this in the simpler form

Lot us now put A = 6(a - ri), where 6(a - r1 ) is the Dirac 6 function in

the point a working on the spacial co-ordinates of electron I. One thus obtains

IQ- 427 -(Xs) (& ý-wf) + ,o) (10)

Our aim is to majorie the right hand side of inequality (10) in terms of Eo,
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E 1 0 X and a, where a"=,(Ht•, Hi) - • This will be achieved in two

steps. First it will be shown that the unknown expression [6(a - rl)f, f] can

be majorized in terms of (Kf, f) and (Kf, Kf) where K is the

kinetic energy operator. Secondly, it can be proved that the integrals (Kf, f)

and (Kf, Kf) on their turn are bounded by an expression which contains only

the afore mentioned four quantities. Let us therefore consider ( 6(a - r,)f, f]

in detail. By the definition of the 6 function

where g(E 1, 1 .x. 2 , x.N =)f(r1 1 1 a. ' x2 and 6(rI) is the Dirac

6 in the origin. The identity

-17- ,))f- (12)

where d¶= dr, .. • d d, - d , can be proved by partial integration provided

f g2 d9pd1 ldr.Z ... d•Ndý,I ... dN exists everywhere except possibly on

r set of isolated points. This leads to the inequality

-- I ( ) d / # A{!f, / (13)

The first term in the right hand side expression may be estimated by using

Schwarz's inequality as

If ýVz~,I/ (v -f2D I 9 L - (14)

On the other hand

$r =
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which leads to

and also

In similar fashion one may write

since

This gives

Irfl e/ ,v~/g- ad1 ) ~a~~'

and therefore

Substituting inequalities (15) and (16) into (13) one obtains

I(&r/)V)2)/ 9~z ) (IV2 , 29) 2- (17)
The Laplace operator V1  is invariant under translation by a and therefore

From this it follows that

V~ f(c4~ ) (k4 (18
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_-q k ) I The substitution of (18) into inequality (10) gives
N/

V A/ý r(;TI i~fk~j(19)

The first part of our programme has now been accomplished. 4TF--,-(Y)

and l1Kf 11 are the only unknown quantities in the right hand side expression.

These can be majorized as

~ (~~) (20)

where a is a numerical constant given by

Cx -2(4 z Z-2Z(Z-O)(A- J/-/) A). 1)')

For details the reader is referred to Appendices I and II. If one introduces

the notation
C= (Z + q' ez-4 Eo)

+V 2-l~ (2 3)

it will follow from inequalities (19), (20) and (21) that

/ /-ý9".Lk r(q C C (24)

which leads to the final formula

w/h'e)r ga)/ve b -yeution (j n seai) (25)

where C is given by equation (Z3) and Tj satisfies inequality (7).
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We may thus conclude that the error in the electron density 1ro(a) -

"T(a) , at any given point a , is bounded by an expression which depends

besides y (a) only on the quantities X, (r, E° and q. Inequality (7) gives
an upper bound for 71 whereas X and cr can be calculated from the wave func-

tion 4; . As for E0 and EI one may either use experimental values or else

it is possible to give upper and lower bounds by known methods.

It also follows from formula (25) that if a sequence of trial functions
converges to the exact solution i.e. 11 4(n) _ qo 01 -" 0 and if in addition

II (H . (n)) (n) 11 _ 0 , the convergence to the electron density is uniform.

It is to be noted that these arguments can easily be generalized to apply

to a molecular system. The only difference in the final formula would be that
n

now Z = Z Z , where n is the number of atoms in the system.
Q=i a

A final remark concerning the spin density should perhaps be made.

The spin density at a point a may be defined as

where the spin matrix S works only on the co-ordinates of electron I. Since

fl SZ = it can be shown by using Schwarz's inequality that

r /) ,r# C
where T(a) is again the total electron density. The spin density plays an

important role in the 4iscussion of the hyperfine interaction and the above

formula might be of use for testing the reliability of very accurate calculations.

4. LIMITS OF ERROR FOR ATOMIC FORM FACTORS

The form factor is defined, apart from an unimportant numerical factor,

as the Fourier transform of the electron density 9). Let therefore 'jo(k) and
j(k) denote the Fourier transforms of -r.(r) and y(r) . By substituting

A- I e-ik. r in inequality (8) one obtains

2I r - A
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and because of Schwarz's inequality this leads to

) /

since O and f are normalized. This gives

Moreover, since 1i(k) 1,C fr (T) r= - one also has the formula

(.27T)L/x,
The last two inequalities might be useful for estimating the accuracy of the

form factors used in crystallography.

5. NUMERICAL EXAMPLE

Here we shall illustrate the use of formula (25) by applying it to the

helium atom. Since for helium Z = 2 and N = 2 we have

where

C -c':•- x -(A -(.A (- 0,)

2
Here we made use of the fact that i2 is bounded;

Table I lists the values of C', 247 and q 2 for a set of wave func-max

tions containing 6, 18 and 38 variational parameters. For the exact ground state

and first excited energies E0 = -2. 903 725 a.u. and E -2. 146 a.u. were

used (reference 3).

It seems that inequality (28) gives sensible error limits at least for very

accurate wave functions.
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TABLE I. The calculated values of 2•-, C' and i2 max for helium atom

wave functions.

No. of 2I2 2 C1

parameters max

62.90324 0.016 90 0.000485 0.40 0.040

18 2.903 715 0.000 922 0.000 013 0.0602 0.000 906

38 2.903 722 0.000 115 0.000 004 0.032 0.000 246

The values of -) and o,2 were taken from Table II in reference 7.
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APPENDIX I

Upper bound for vji -[)

Here we shall sketch the proof of inequality (20) in section 3. From

equation (6)

it follows that

`7- +2 L (49)

which may be written as

) (30)

N
where V_-1 z . Clearly

and also

- Z (,l.,c.,) •?-Z 3v.ZN(ir1+,,2.

For details see Kinoshita (1959) loc. cit. The substitution into equation (30)

leads to

which can be solved for q'.ffRT f) to give the desired formula

C~k 7 Z F- IV
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APPENDIX II

Upper bound for -q 11 Kf H

As K = H - V

ý2lkfl //- ' I//4I/ -
while from equation (6) it follows that

where a -I (H - X )4 I This gives

It remains to show that 1 II Vf II is bounded

= Z A/2( )4Z') /) -
+ AJ(I-&J )( A I3)(I

.N- )# . 'rz 2, rI) (A-

since f is antisymmetric in the electron co-ordinates. By dropping the term

-ZN(N - 1)(N - 2)(-L f, f) which is always negative and applying Schwarz's-ZN(N I r)N 2)--

inequality to the three aniA four body terms, one obtains
(V,[V•C) !EZ2 @ f <)., ,. _ N ,,,.÷ Ae 9C)l•

Z2 )•ývO D , -..22 A/(A/-/) L• • 7 )

The last two terms cancel partly. This is a consequence of the inequality

r1( r + r. from which it follows that I 1 - I I -1 I <0
12 2 1 r 2 r1 r12 r2 r 1 2
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and therefore - ('-

(v~(, VI) ~ ~(,~,,C+ Y
-,- z(Ž'•-,I)Nc'w-,) (#c/, 47).

It was shown by Kinoshita, loc. cit. (1959), that

( -',,,r JF, ý) -Z4 (- V,<2ý

and so one obtains

where O Z (4Z2+c2Z(z-/)(A/--/)- N('V--I ) .)

Substituting this into inequality (31) the desired formula

is obtained as it was shown in Appendix I that T1pf(Kf,---) is bounded. This is

a generalization of Kinoshita's formula for the many-electron case.
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