UNCLASSIFIED 405154 AD

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

ASD-TDR-63-186

63 3-5

ADVANCED COMMUNICATION THEORY TECHNIQUES

TECHNICAL DOCUMENTARY REPORT NO. ASD-TDR-63-186

March 1963

Electromagnetic Warfare and Communications Laboratory Aeronautical Systems Division Air Force Systems Command Wright-Patterson Air Force Base, Ohio

Project No. 4335, Task No. 433502

Prepared under Contract No. AF 33(657)-7610 Purdue Research Foundation Purdue University Lafayette, Indiana Authors: J. C. Hancock, Principal Investigator D. G. Lainiotis J. C. Lindenlaub R. G. Marquart H. Schwarzlander

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

Copies of this report should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

ASD-TDR-63-186

FOREWORD

This report describes the studies undertaken on Air Force Contract AF 33(657)-7610 under Task No. 433502 of Project No. 4335 at the Communication Sciences Laboratory of Purdue University. The work was carried out under the direction of the Electromagnetic Warfare and Communications Laboratory, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio.

The principal investigator wishes to acknowledge the suggestions of and discussions with the project engineer, Mr. B. W. Russell of ASD, as well as his associates.

The contributions of Mr. D. Weiner and Mr. D. J. Kostas to Chapters II and III respectively are also gratefully acknowledged.

ASD-TDP-63-186

1

ABSTRACT

Under this contract a number of topics have been studied and analyzed in detail in order to bring together and somewhat extend the concepts of communication theory as they apply to some current problems in digital communication systems.

Radio wave channels are characterized by a model which accounts for both multiplicative and additive disturbances. A large amount of experimental data pertaining to radio disturbances is evaluated and correlated. The importance of the Rayleigh fading channel is emphasized and previous work is extended to determine the capacity and efficiency of the Rayleigh channel.

Detection theory concepts have been extended to treat the problem of signal detection in the presence of statistically unknown additive disturbances. Several detectors based on non-parametric statistical techniques are treated in detail. These detectors are compared to the conventional likelihood detectors. Design procedures are formulated.

Signal design techniques are used to optimize transmitted waveforms and the improvement in system performance is determined. The criterion used in this analysis is the minimization of intersymbol influence and the minimization of transmitter power for a fixed probability of received errors.

The tradeoffs available between transmitter power and coding complexity are thoroughly investigated for the binary symmetric channel. Results are obtained for both Hamming and Bose-Chandhuri codes.

Recommendations for further work in promising areas are made. The need to supplement theoretical work with experimental work is pointed out. -111-

ASD-TDR-63-186

TABLE OF CONTENTS

Page

CHAPTER I - INT	RODUCTION	l
1.1 Chann	el Characterization	2
1.2 Capa d	ity of the Rayleigh Fading Channel	2
1.3 Mon-1	marametric Detection	2
1.4 Optim	nization of Signaling Waveforms	3
1.5 Perfo	ormance of Error Correcting Codes	4
1.6 Reco	mendations	5
CHAPTER II - CI	IANNEL CHARACTERIZATION	6
2.1 Intro	duction	6
2.2 Addit	ive Disturbances	7
2.2.1	. Thermal Noise	8
2.2.2	Man-Made Noise	9
2.2.3	Moise from Precipitation, Blowing Snow or Dust, and Corona	9
2.2.1	Atmospheric Noise	10
2.2.5	Concluding Remarks	14
2.3 Milti	plicative Disturbances	14
2.3.1	3-30 kc/s VLF	17
2.3.2	30-300 kc/s LF	17
2.3.	300 kc/s -3 mc/s MF	18
2.3.1	3 - 30 mc/s HF	19
2.3.5	30 - 60 mc/s VHF Ionospheric Scatter	2 1
2.3.6	30 - 300 mc/s Meteor Scatter at VHF	22
2.3.7	50 - 10,000 mc/s Tropospheric Scatter	22
2.3.8	B Space Communications	23
2.3.9	Concluding Remarks	24

ŕ

1

• • •

.....

•

.

•

•

.

CHAPTER III - CAPACITY OF THE RAYLEIGH FADING CHANNEL	26
3.1 Introduction	26
3.2 Calculation of Channel Capacity	26
3.3 Determination of the β Factor	29
3.4 Discussion of Results	31
CHAPTER IV - NONLIKELIHOOD DETECTION THEORY	35
PART I GENERAL THEORY	35
4.1 Introduction	35
4.2 Statement of the Problem	35
4.3 Inadequacy of Present Methods	35
4.4 The Non-likelihood (Non-parametric) Detection Criterion	36
4.5 General Properties of Non-parametric Detectors	39
4.6 Summary of Important Properties of Non-likelihood Detectors	47
4.7 A Practical Design Procedure	48
4.8 General Conclusions	50
4.9 Experimental Work Needed	52
PART II SPECIFIC NONLIKELIHOOD DETECTORS; EXAMPLES	53
4.10 Optimum (Suboptimum) Likelihood Detector	53
4.11 The Optimum Detector	53
4.12 Detection Problems	55
4.13 The Mann-Whitney Detector	59
4.13.1 The Detection Problem of Translation Alternatives	61

*	I	?age
	4.13.2 The Noncoherent Detection Problem	63
Ĩ	4.13.3 Detection of Monstationary Signals in Noise	67
4.14	The Kolmogorov-Smirnov Detector	69
	4.14.1 DC Detection Problem	75
T	4.14.2 Translation Alternatives	75
	4.14.3 Rayleigh Moise Detection Problem	76
	4.14.4 Noncoherent Detection Problem	76
4.15	Rank Detectors	76
	4.15.1 DC Detection Problem	78
	4.15.2 Translation Alternatives	79
	4.15.3 Noncoherent Detection Problem	79
CHAPTER V	- OPTIMIZATION OF SIGNALING WAVEFORMS	80
5.1	Introduction	80
5.2	Outline of Problems	82
	5.2.1 General Discussion	82
	5.2.2 Factors which Determine the Transmitted Waveforms	83
	5.2.2.1 The Channel	84
	5.2.2.2 The Performance Criterion	84
:	5.2.2.3 Constraints	84
	5.2.3 Problems Investigated in the Past	85
	5.2.4 Specific Problem Considered in this Chapter	86
5.3	Complete Elimination of Intersymbol Interference	8 6
	5.3.1 Waveforms which Achieve Complete Elimination of Intersymbol Interference	86

ASD-TDR-63-186

•

I

		Page
	5.3.2 Specific Examples	88
	5.3.2.1 RC Low-Pass Network	88
	5.3.2.2 RLC Low-Pass Network	92
	5.3.3 Pulse Transmission Efficiency	93
	5.3.3.1 n for the Waveforms Considered in Section 5.3.2.1	97
	5.3.3.2 n for the Waveforms Considered in Section 5.3.2.2	97
5.4	Optimum Waveshapes for Complete Elimination of Intersymbol Interference	97
	5.4.1 Maximization of η_p	99
	5.4.1.1 RC Low-Pess Network	100
	5.4.1.2 RLC Low-Pass Network	101
	5.4.2 Bandpass Channels	103
5.5	Comparison with Simple Rectangular Pulse Transmission	105
	5.5.1 Simple Rectangular Pulse System	105
	5.5.2 Comparison of the Transmission of Section 5.4.1.1 with that of Section 5.5.1	108
	5.5.3 Summary of Comparison	112
5.6	Sensitivity of the Optimum Performance to Changes in Channel Parameters	112
	5.6.1 The Pulse of Section 5.4.1.1 Transmitted Through an Arbitrary RC Low-Pass Network	113
5.7	Transmission of Overlapping Pulses	115
	5.7.1 The Pulse of Section 5.4.1.1 Transmitted with Overlap	118
5.8	Conclusions	118

CHAPTER V	1 - PERFORMANCE OF ERROR CORRECTING CODES	122
6.1	Introduction	122
6.2	Outline	122
6.3	Coding for Error Reduction	124
	6.3.1 Introduction	124
	6.3.2 Group Codes	125
	6.3.3 The Decoding Table	125
	6.3.4 Perfect, Quasi-Perfect Codes	127
	6.3.5 Hamming Codes	127
	6.3.6 Bose-Chandhuri Codes	129
6.4	Characteristics of Code Performance	129
	6.4.1 Costs	129
	6.4.1.1 Complexity	129
	6.4.1.2 Information Rate Reduction	130
	6.4.1.3 Omissions	130
	6.4.1.4 Delay	131
	6.4.2 Advantages	131
	6.4.2.1 Reliability	131
	6.4.3 Measure of Merit	131
6.5	Restrictions Introduced	132
	6.5.1 Symmetric Memoryless Source	132
	6.5.2 Symmetric Memoryless Channel	132
	6.5.3 Additive White Gaussian Moise	133
6.6	Reliability of Symmetric Mode Binary Modulation Systems	133

Ì

1

		Page
6.6.1	Introduction	133
6.6.2	PSK/MF - Coherent Detection	134

6.6.2 PSK/MF - Coherent Detection	134
6.6.3 Summary of Other Systems	134
6.7 Performance of Binary ED/ED Codes	135
6.7.1 Introduction	135
6.7.2 General Error Rate Equation	136
6.7.3 Specific Solution Methods	138
6.7.3.1 Computer Simulation	138
6.7.3.2 Analytic Approach; Hamming SEC Codes	139
6.7.3.3 Analytic Approach; Hamming SEC/DED Codes	140
6.7.4 Summary of Hamming Code Error Rate Equations	142
6.8 Results	145
6.8.1 Fixed Bandwidth Analysis	145
6.8.2 Fixed Information Binit Rate	147
6.8.3 Merit	148
CHAPTER VII - SUMMARY AND CONCLUSIONS	183
7.1 Introduction	183
7.2 Nonlikelihood Detection Theory	183
7.3 Optimization of Signaling Waveforms	184
7.4 Performance of Error Correcting Codes	185
LIST OF REFERENCES	188
APPENDIX I, Evaluation of a Certain Integral	191
APPENDIX II, Derivation of the Optimum s(t)	193
APPENDIX III, Determining the Lower Bound of β	197

.

Page

APPENDIX IV, Derivation of the Hamming Error Rate Equation	198
APPENDIX V, Results of Computer Simulation Bose-Chandhuri (15, 7) and (15, 5) Codes	223
APPENDIX VI, Hamming Code Error Rate Equation Coefficients	226

-x-

ASD-TDR-63-186

LIST OF ILLUSTRATIONS

Figure M	mber	Page
2.1	Channel Model	6
2.2	A Typical Amplitude Probability Density Distribution of an Atmospheric Noise Envelope	ш
2.3	Comparison of System Performance for Gaussian and Atmospheric Noise	15
2.4	Radio Noise Measurements During IGY, Gunbarrel Hill, Colorado	16
3.1	Rayleigh Fading Channel Capacity Divided by the Capacity of Unity Gain Channel as a Function of Signal-to-Noise Power Ratio at the Receiver	33
3.2	Efficiency Factor β , vs. the Ratio of Noise Power Received to the Minimum Power Received	34
4.1	Communication System	37
4.2	Probability Density of U _{nn} for Large Values of m and n, Under Signal and No Signal Conditions	41
4.3	Probability of Error vs. Signal-to-Noise Ratio for Gaussian Noise	64
4.4	Probability of Error vs. Signal-to-Noise Ratio for Rayleigh Noise	65
4.5	Probability of Error vs. Signal-to-Noise Ratio for the Problem of Mon-Coherent Detection of Sine-Wave in Gaussian Moise	66
5.1	Communication System, as Considered in this Chapter	83
5.2	RC Low-Pass Network	88
5.3	Input-Output Pulse Pairs Obtained in Section 5.3.2.1(a)	90
5.4	Input-Output Pulse Pair Obtained in Section 5.3.2.1(b)	91
5.5	Input-Output Pulse Pair Obtained in Section 5.3.2.1(c)	91
5.6	RLC Low-Pass Network	92
5.7	Input-Output Pulse Pairs Obtained in Section 5.3.2.2(a)	94
5.7	Input-Output Pulse Pairs Obtained in Section 5.3.2.2(a)	94

I

Ī

I

1

I

I

1

.

LIST OF ILLUSTRATIONS (continued)

Figure	Number	Page
5.8	Input-Output Pulse Pairs Obtained in Section 5.3.2.2(b)	9 5
5.9	Refinement of Figure 5.1	96
5.10	η_p for the Waveforms Obtained in Section 5.3.2.1	98
5.11	η_p for the Waveforms Obtained in Section 5.3.2.2	98
5.12	Optimum Waveform for RC Low-Pass Channel	102
5.13	η for RC Low-Pass Channel	102
5.14	Optimum Waveform for RLC Low-Pass Channel	104
5.15	$\hat{\eta}_{\mathbf{p}}$ for RLC Low-Pass Channel	104
5.16	Simple Rectangular Pulse System	106
5.17	Contours of Constant I and $\frac{h}{\eta}$ for the Performance Comparison in Section 5.5 $\eta_{\rm P}$	109
5.18	Contours of Constant $\frac{n}{p}$ for the Performance Comparison in Section 5.5 n_p	111
5.19	Pulse Optimized for Channel Time Constant $\frac{1}{\alpha}$, after Transmission through A Channel with Time Constant $\frac{1}{\gamma}$	114
5 .20	Received Energy During (0, a) When the Channel Time Constant is $\frac{1}{\alpha}$ and the Pulse is Optimum for a Channel Time Constant $\frac{1}{\alpha}$	114
5.21	Comparison of Energy Received During and After the Interval (0, a)	116
5.22	Pulse Transmission with Overlap	117
5.23	Pulse Transmission Efficiency Using Overlapping Pulses as Function of the Fraction of Overlap	119
6.1	Error Rates: Hamming SEC Codes - Fixed Bandwidth System	151
6.2	Error Rates: Hamming SEC Codes - Fixed Bandwidth System	152
6.3	Error Rates: Hamming SEC Codes - Fixed Bandwidth System	153
6.4	Error Rates: Hamming SEC Codes - Fixed Bandwidth System	154
6.5	Error Rates: Hamming SEC/DED Codes - Fixed Bandwidth System	155

LIST OF ILLUSTRATIONS (continued)

Figure Mu	aber	Page
6.6	Error Rates: Hamming SEC/DED Codes - Fixed Bandwidth System	156
6.7	Error Rates: Hamming SEC/DED Codes - Fixed Bandwidth System	157
6.8	Error Rates: Hamming SEC/DED Codes - Fixed Bandwidth System	158
6.9	Error Rates: B-C (15,5), (15,7) Codes - Fixed Bandwidth System	159
6.10	Rejection Rates: Hamming SEC/DED Codes - Fixed Bandwidth System	160
6.11	Rejection Rates: Hamming SEC/DED Codes - Fixed Bandwidth System	161
6.12	Rejection Rates: Hamming SEC/DED Codes - Fixed Bandwidth System	162
6.13	Error Rates: Hamming SEC Codes - Fixed Information Binit Rate	163
6.14	Error Rates: Hamming SEC Codes - Fixed Information Binit Rate	164
6.15	Error Rates: Hamming SEC Codes - Fixed Information Binit Rate	165
6.16	Error Rates: Hamming SEC Codes - Fixed Information Binit Rate	166
6.17	Error Rates: Hamming SEC/DED Codes - Fixed Information Finit Rate	167
6.18	Error Rates: Hamming SEC/DED Codes - Fixed Information Binit Rate	168
6.19	Error Rates: Hamming SEC/DED Codes - Fixed Information Binit Rate	169
6.20	Error Rates: Hamming SEC/DED Codes - Fixed Information Binit Rate	170
6.21	Error Rates: B-C (15,5), (15,7) Codes - Fixed Information Binit Rate	171

-xiii-

ASD-TDE-63-186

.

I

LIST OF ILLUSTRATIONS (continued)

Figure	Number	Page
6.22	Rejection Rates: Hamming SEC/DED Codes - Fixed Information Binit Rate	172
6.23	Rejection Rates: Hamming SEC/DED Codes - Fixed Information Binit Rate	173
6.24	Rejection Rates: Hamming SEC/DED Codes - Fixed Information Binit Rate	174
6.25	Merit: Hamming SEC Codes	175
6.26	Merit: Hamming SEC Codes	176
6.27	Merit: Hamming SEC Codes	177
6.28	Merit: Hamming SEC/DED Codes	178
6.29	Merit: Hamming SEC/DED Codes	179
6.30	Merit: Hamming SEC/DED Codes	180
6.31	Merit: B-C (15,5), (15,7) Codes	181
6.32	Modulation-Detection Systems: Comparison	182

LIST OF TABLES

Page

2-1	Channel Characterization	25
6-1	Information Binit Rate-Fixed Bandwidth System	146
6-2	Optimum Code Length PSK/MF System	150
V- 1	Computer Simulation, B-C (15,7) Code	224
V- 2	Computer Simulation, B-C (15,5) Code	225

-XY-

•

ASD-TDR-63-186

I

I

I

.

I

I

and the second

.

•

5

•

LIST OF IMPORTANT SYMBOLS

Chapter

A	multiplicative channel gain	III
G _n (f)	noise power spectral density	17
G _s (f)	signal power spectral density	11
No	white noise power spectral density	Ħ
N	noise power	Ħ
P	signal power	Ħ
W	information bandwidth	Ħ
s(t)	sample function from a stationary random process	Ħ
n(t)	sample function of a Gaussian noise process	n
Ħ	rate of received information	n
C	channel capacity	Ħ
I(S/ I)	average mutual information	π
β	efficiency factor	n
E	energy	n
{ N(t) }	noise random process	IV
N(t)	sample function from the noise random process $(H(t))$	M
N'(t)	sample function from the noise random process $\{X(t)\}$	n
s(t)	signal function	Π
Y(t)	input to the detector; sample function from $\{Y(t)\}$	n
A	amplitude of the signal	11
P(y)	probability distribution function of the random variable Y under no signal conditions	11
Z	signal-to-noise ratio	n
z	average signal-to-noise ratio	Ħ

-xvi-

.

ASD-TDR-63-186

I

I

T

i

p(y)	probability density function of Y under no signal conditions	IV
P _z (y)	probability distribution function of Y under signal conditions $(z\neq 0)$	ŧı
p _z (y)	probability density function of Y under signal conditions	11
y _i	samples from the random process (Y)	n
E _o [U _{mm}]	mean of the random variable U under no signal conditions	11
E _z [U _{mn}]	mean of the random variable U under signal conditions	Ħ
~[U_m]	standard deviation of U under no signal conditions	n
∽_[U_mn]	standard deviation of U under signal conditions	n
K	a constant	н
n	number of samples from {Y(t)}	11
m	number of samples from N'(t)	11
α	probability of false alarm	n
β	probability of false dismissal	11
U mm	test statistic	11
Eu*,u	asymptotic relative information efficiency of detector U# with respect to the detector U	Ħ
υ _α	threshold value; a value of the test statistic U resulting in a false alarm probability $\boldsymbol{\alpha}$	L1
Ln	likelihood ratio	11
	product of N terms	TT
M i=l	summetion of M terms	**
E(U)	efficacy of the test statistic U	*1
	-xvii-	

ASD-TDR-63-186

ø _o (y)	probability density of the Gaussian random variable y under no signal conditions	IV
N	noise standard deviation	n
$\emptyset_{z}(y)$	probability density of the Gaussian random variable Y under signals conditions	Ħ
tn	optimum test statistic for the D-C detection problem	11
t' n	optimum test statistic for the noncoherent detection problem	17
V	the Mann-Whitney test statistic	π
Pe	the sum of the false alarm and false dismissal pro- babilities	**
Kun	the Kolmogorov-Smirnov test statistic	Ħ
T _n (y)	empirical distribution function of the sample $y_1 \dots y_n$	Ħ
s _m (y)	empirical distribution function of the sample $y_1 \dots y_m$	57
ĸα	a threshold value of Kan resulting in false alarm probability α	Ħ
R	a rank test statistic	11
R# mn	the rank statistic for the D-C detection problem	n
Tmn	the rank statistic for the noncoherent detection problem	n
H,	hypothesis of signal being absent	n
н'	hypothesis of signal being present	н
a	pulse duration	v
a _i	constants	99
Ъ	time duration	н
đ	pulse duration	Ħ
e _i (t)	input signal (into channel)	**
e _o (t)	output signal (from channel)	Ħ
e _l (t)	a pulse waveform	Ħ

-xviii-

ASD-TDR-63-186

.

.

^h i	coefficients	V
h_1(t)	unit step response of network	11
j	√-1	11
k _i	coefficients	Ħ
8	transform variable	11
u(t)	unit step function	n
С	capacitance	n
D(s)	polynomial in s	Ħ
D _n	denominator of an expression	п
E _i (s)	Laplace transform of e _i (t)	n
G _a (s)	a certain class of entire functioning	n
H(s)	network transfer function	Ħ
L	inductance	11
N(s)	polynomial in s	11
N _ŋ	numerator of an expression	11
P _i (s)	polynomial in s	11
R	resistance	11
α	inverse time constant	11
r	inverse time constant	11
ð _j	poles of a transfer function	11
δ	variation	18
η ρ	pulse transmission efficiency	H
η _p	optimum pulse transmission efficiency	Ħ
λ	characteristic value	n
A	number of received error patterns, weight=j, for which the corrected word contains a given specific binit in error; independent of the binit chosen	VI

-xix-

ASD-TDR-63-186

đ, number by which reference is made to a specific binit VI. in the code word E energy per binit number of the jth binit in error in the received word e, (e,) set of all binits in error in the received word; (e_1, e_2, \ldots, e_i) , when the word contains i errors as for e_j , (e_j) , but at the decoder output e'(e') k number of information binits in a code word number of error patterns (e,) of weight i in a Hamming code word for which each of the corresponding (e') L have weight i + 1M, as for L_i , for which the weight of each (e_i^t) is i-1 11 N, as for L_i , for which the weight of each (e_i^i) is i Niα as for L_i, for which $d_{\alpha} \in (e_1^i)$, where d_{α} is an information binit Ħ as for $\mathbf{M}_{i\alpha}$, with the added condition that (e_i) is such N' iα that y=l (see "y" below) ** length of a Hamming SEC code word; = 2^{m} -1, m = positive n, N integer. "N" is used on figures; "n" is used in text. n' length of a Hamming SEC/DED code word; = n + 1 Pe channel binit error probability P'e decoder output binit error probability indicator, Hamming SEC/DED codes; = 1 if the received У word is retained, = 0 if the received word is discarded indicator, Hamming SEC/DED codes; = 1 if the overall. z check binit is received in error; = 0 ir the overall check binit is received correctly €, e_f binary sequences; possible received words a, a, code words vector, modulo 2, addition

ASD-TDR-63-186

-xx-

CHAPTER I

INTRODUCTION

A study of advanced Communication Theory Techniques was undertaken by the Communication Sciences Laboratory of Purdue University for the Aeronautical Systems Division, Wright Patterson Air Force Base during February 1962. The purpose of this program was to help unify present diversified aspects of statistical communication theory, stressing the interrelation which exists between information, decision and coding theories.

The major emphasis of this research is placed on the connecting of a number of theories to stress the roles which they play in determining the performance of a communication system. Although the major portion of this study was originally to be a collecting, simplifying, and integration of previous studies into a gross framework, it soon became apparent that considerable extensions were needed in a number of areas before this could be accomplished. Four primary areas of investigation were chosen for further study. These include: a) a discussion of channels, their characteristics and capacities, b) the use of non-likelihood detection to combat non-Gaussian noise sources, c) the application of signal design techniques to channels which have memory, and d) the trade-off in system parameters in a coded system. This report contains the results of studies made in the above areas.

Manuscript released by authors in March 1963 for publication as an ASD Technical Documentary Report ASD-TDR-63-186 The principal problems and results derived from this study are summarized in this first chapter. The detailed discussion is presented in the remaining chapters of the report.

1.1 Channel Characterization

The characterization of radio wave channels is treated in detail in Chapter II. A simple model, useful in analysis, is presented which accounts for degradation in the received signal in terms of both multiplicative and additive disturbances. Additive and multiplicative disturbances commonly encountered in typical channels are discussed. The importance and applicability of the Rayleigh fading channel is pointed out. The chapter brings together and correlates a great deal of experimental data and results that were previously only to be found scattered throughout the technical literature.

1.2 Capacity of the Rayleigh Fading Channel

In Chapter III the capacity of the Rayleigh fading channel is derived. The results are compared with the capacity of the mity gain channel for different received signal-to-noise power ratios. In order to compare the Rayleigh channel to other channels, the efficiency factor β (defined as the required received energy per information bit received in the presence of a given Gaussian disturbance) is also evaluated.

1.3 Non-parametric Detection

The problem of detection of a signal in hoise of known statistical properties has been investigated thoroughly in the past. However, these methods are completely inapplicable and inappropriate whenever these

-2-

noise statistics are unknown. In Chapter IV a detection criterion based on the methods of non-parametric statistics is utilized that permits the design of detectors on the basis of much less <u>a-priori</u> information. Several detectors based on this detection criterion are investigated and their properties obtained. A comparison between the optimum (likelihood) detectors and these new (non-likelihood) detectors is made on the basis of information efficiency. Also, a practical design procedure is formulated for the design of these new (non-likelihood) detectors.

1.4 Optimization of Signaling Waveforms

In Chapter V the application of Signal Design to digital communications is considered. This essentially involves two basic questions: (1) how can the transmitted waveforms be optimized; and (2) how much improvement in system performance may be achieved in this manner. It is pointed out that many factors combine to determine the best signal to be transmitted in any particular situation, among these being the characteristics of the channel and the criterion of performance.

In the work performed thus far, a dispersive channel with additive Gaussian noise is considered. Radio transmissions through - or reflected or scattered by - the ionosphere are examples of such channels, where the dispersive nature arises from the existence of some continuous range of path lengths through the inhomogeneous medium due to finite antenna apertures. Digital communication over such channels is usually limited to certain maximum transmission rates because the transmitted pulses appear smeared out at the receiver and thus require at least a certain minimum spacing to be distinguishable at the receiver. The performance criterion

-3-

which is, therefore, applied to the Signal Design problem is the minimization of intersymbol interference and the minimization of transmitter power required for a specified probability of received errors.

In order that numerical results may be obtained, a particular channel model is considered on which most of the discussion in the chapter is based. The method of approach is quite general, however, and the results obtained indicate the advantages to be gained by the proper design of signals.

1.5 Performance of Error Correcting Codes

Chapter VI deals with a quantitative analysis of the relative advantages of increases in transmitted power versus the use of error-correcting codes for binary symmetric channels. This analysis is subdivided into three major sections. The first section deals with the characterization of binary communications channels by the transitional or error probabilities, given the signal-to-noise ratio at the receiver and the modulation system used; the channel disturbances are restricted to additive white Gaussian noise.

The second section considers the determination of the bit error probability at the decoder output as a function of the channel error probability and the code characteristics. The analytically derived expression for Hamming codes is entirely new; the proof of the derivation is included as Appendix IV.

The final section presents, in graphical and tabular form, detailed results for the error rates and figures of merit for Hamming codes, based upon both constant transmitted binit rate and constant information binit rate. The results obtained by computer analysis for two of the shorter multiple-error correcting Bose-Chandhuri codes are also presented.

-4-

1.6 Recommendations

The final chapter of this report brings together the results and recommendations of the problems considered in this effort. Areas that look particularly promising are discussed in greater detail and specific recommendations for continued study and/or experimental phases are made.

-5-

CHAPTER II

CHANNEL CHARACTERIZATION

2.1 Introduction

The specification and design of a reliable communication system requires fairly accurate knowledge of the channel through which one desires to transmit signals. In the past a large variety of different types of channels have been used for radio wave propagation. A partial listing is given below:

- a) Ground-wave systems
- b) Line-of-sight systems
- c) Systems employing reflection from the ionosphere
- d) Ionospheric-scatter systems
- e) Meteor-trail-reflection systems
- f) Beyond-line-of-sight systems employing diffraction
- g) Tropospheric-scatter systems

Although the transmission characteristics of these channels vary widely, the simple model shown in Fig. 2.1 can be used to analyze the performance of each of the channels. Note that the amplitude and phase distortion

FIGURE 2.1

experienced by the transmitted signal, s(t), is attributed to both the multiplicative disturbance, $A(t)e^{j\theta(t)}$, and the additive noise, n(t).

This chapter presents a brief survey of the types of additive and multiplicative disturbances commonly encountered in typical channels.

2.2 Additive Disturbances

Additive noise is frequently assumed to be Gaussian. For many systems the Gaussian assumption appears to be a good one. Yet, there are many other systems (for example, those which employ ionospheric channels) in which the Gaussian assumption does not lead to a satisfactory prediction of system performance.

A literature survey on the statistical characterization of radio noise revealed that intensive work in this area has just begun, most of it having been carried out within the last four or five years. The initial measurements have been made at frequencies below 10 mc/s. Very little data is available above this frequency. The statistical data which has been obtained thus far pertains to the <u>envelope</u> of the noise as measured by a linear envelope detector, and <u>not to the noise itself</u>. Since a knowledge of the statistics of the envelope is not sufficient to deduce the statistics of the noise, much more statistical data remains to be taken before the noise can be adequately characterized so as to enable accurate prediction of system performance.

Radio noise falls into several categories. The most usual types of additive noise encountered are:

- a) thermal noise
- b) man-made noise
- c) noise from precipitation, blowing snow or dust
- d) noise from corona
- e) atmospheric noise

Each of these types of noise is briefly discussed in the following sections.

2.2.1 Thermal Moise (1, 2, 3, 4)

From thermodynamical reasoning it can be shown that all materials which are capable of absorbing radiation are sources of thermal noise. In fact, good absorbers of radiation are good thermal noise sources while poor absorbers of radiation are poor sources of thermal noise. Hence, thermal noise is generated by the ground, the troposphere, the ionosphere, and extra-terrestrial sources.

While the ground may act as a good reflector of radio waves at glancing incidence, this is typically not true at steeper angles of incidence, particularly for vertical polarization. The two obvious ways of reducing ground noise (which is rarely serious below about 200 mc/s) are to limit the sensitivity of the antenna in the direction o_1 the ground, and to increase the reflection coefficient of the ground. The former may be achieved by minimizing side lobes in the downward direction; the latter may be achieved by using an artificial ground plane of radial wires, or mesh, or in special cases by taking advantage of the very high reflection properties of sea water.

Under some circumstances, and particularly at wavelengths less then about 1.5 cm, the troposphere can act as an absorbing medium. The two atmospheric constituents responsible for this absorption are water vapor and oxygen.

VHF radio waves can, under certain circumstances, undergo significant absorption in the ionosphere; on these occasions the ionosphere will act as a source of thermal noise. Since the number of decibels of attenuation in the ionosphere at VHF is proportional to $\frac{1}{r^2}$, the ionosphere contribution to thermal noise tends to decrease rapidly with increasing frequency.

-8-

Extra-terrestrial thermal noise originates from the various galaxies, the sun, the moon, and the planets. Galactic noise imposes a very important limitation to communication systems in the HF and VHF bands (3 - 300 mc/s). The intensity of thermal noise generated by the sun varies considerably, especially in the VHF band, and during years of high sunspot number. The contributions due to lunar and planetary thermal noise are likely to be negligible compared to that of the sun.

2.2.2 Man-Made Noise (1, 5)

Man-made noise is generated by almost all types of electrical devices and machinery. Since it is almost always propagated along power lines or by groundwave, the propagation is not affected appreciably by ionospheric conditions. However, there is some experimental evidence that man-made noise may also be received from distant sources via ionospheric propagation.

The noise is usually impulsive in nature. When many sources are involved, the envelope probability density is similar to that of atmospheric noise. However, the dynamic range is usually considerably less than that encountered in atmospheric radio noise. The radiated energy often has strong components which extend far into the radio-frequency spectrum (up to tens of megacycles per second).

2.2.3 Noise From Precipitation, Blowing Snow or Dust, and Corona

The radio noise caused by precipitation, blowing snow, or blowing dust or sand is the result of charged particles actually hitting the antenna. These particles become charged as they move through the air, and as these contact the antenna, the charge is transferred to the antenna. Corona noise is caused by the presence of a low, highly-charged cloud passing over the autenna, causing an actual corona discharge at the tip of the antenna. Not much is known quantitatively about the levels encountered under these two conditions. When these conditions have been observed at various noise recording stations, the level of the noise has increased on all frequencies up to 20 mc/s to the top of the recorder scale, which has been in several cases as much as 50 db above the level prior to the occurrence of the phenomenon.

2.2.4 Atmospheric Moise (1, 6, 7, 8)

The principal sources of atmospheric noise are the lightning discharges which occur during thunderstorms. Approximately 44,000 thunderstorms occur somewhere in the world every day. Due to these storms there occur on the average 100 lightning strokes per second. The amount of charge involved in a lightning stroke is about 10 coulombs and the peak current is in the region of 50,000 amperes. Lightning energy, like ordinary radio signals, reaches a receiver by all of the well-known mechanisms of propagation, including surface wave, tropospheric wave, and ionospheric sky wave. In addition, there is the whistler mode of propagation for frequencies below 35 kc/s in which the lightning energy is guided by the earth's magnetic lines of force up to distances half way around the world. The spectrum of the radiated energy covers a wide frequency range, from as low as a few cycles to tens of megacycles per second.

A typical amplitude probability density distribution of an atmospheric noise envelope is shown in Fig. $2.2^{(9)}$. The coordinates are plotted as noise level in decibels above the root mean square voltage versus the percentage of time that each level is exceeded. Rayleigh graph paper is

FIGURE 2.2 A TYPICAL AMPLITUDE PROBABILITY DENSITY DISTRIBUTION OF AN ATMOSPHERIC NOISE ENVELOPE

used so that a distribution of the form

 $P(X \ge x) = e^{-x^{m}}$

plots as a straight line with a negative slope of $\frac{1}{m}$. In particular, the Rayleigh distribution plots as a straight line with a slope of - 1/2.

The lower portion of the curve, representing low voltages and high probabilities, is composed of many random overlapping events, each containing only a small portion of the total energy. The Central Limit Theorem states that if several independent events of this type are superimposed, the sum tends rapidly to a Gaussian process as the number of components (of roughly equal power) is increased. Hence, we would expect the lower portion of the curve to approach a Rayleigh distribution since the envelope of a Gaussian process is Rayleigh.^(10, 11) This is seen to be the case, the slope of the lower portion of the curve being very close to - 1/2.

The section representing very high voltages exceeded with low probabilities is, in general, composed of nonoverlapping large pulses occurring infrequently. From experimental measurements of atmospheric noise distributions, this section has been found to be well represented by a straight line on Rayleigh graph paper with values of m in the range from +0.1 to +0.4.⁽¹²⁾

On this graph paper, the remaining section of the distribution has been found to correspond quite closely to an arc of a circle tangent to the above two straight lines. The National Bureau of Standards has developed a graphical method for constructing the entire envelope amplitude probability distribution from only three measured statistical moments.⁽⁹⁾

The dynamic range of the distribution, as measured between the

0.0001 per cent and 99 per cent intercepts, has been observed to vary from a low of 59 db to a high of 102 db. An average dynamic range appears to be around 73 db. The variations in dynamic range for frequencies above 35 kc/s agree with expectations based on the distribution of distances to thunderstorms where it is apparent that small dynamic ranges will result if the range of distances to the effective thunderstorms is small. The above statement does not necessarily hold for frequencies below 35 kc/s because of the whistler mode of propagation.

The envelope amplitude distributions for the highest and lowest observed average power levels show a difference of 46 db between the root mean square values of voltage. The high-level curve was obtained on a day with a large number of local afternoon mountain thunderstorms while the low-level curve was obtained during the morning of a relatively quiet day.

It should be pointed out that the distributions mentioned above are strictly valid only for the bandwidth in which the measurements are made. Typical bandwidths used were on the order of 1100 cycles per second. The principal effects of reducing the predetection bandwidth are a reduction in the dynamic range with a greater and greater portion of the distribution curves becoming a straight line of slope equal to -1/2. Measurements in an 0.2 cycle band yielded a Rayleigh distribution over the entire range measured. These results are reasonable since as the observing bandwidth is reduced, the energy from all the received impulses is spread out over a greater period of time with a resulting decrease in the amplitudes of the impulses.

Generally, the additive noise encountered on ionospheric channels is atmospheric noise. Montogmery has shown that in a binary narrow-band

-13-
frequency modulation system the errors can be calculated as one-half the probability of the noise envelope exceeding the carrier envelope. Hence, the envelope statistics described above can be used in calculating the probability of error for a narrow-band FSK system utilizing an ionospheric channel. Experimental curves have been obtained which overlap the theoretical curves quite closely. Fig. 2.3 shows the large discrepancies which can occur in system performance if Gaussian noise is assumed rather than atmospheric noise. For signal-to-noise ratios larger than 6 db the error rates experienced with atmospheric noise are much larger than those experienced with Gaussian noise.

2.2.5 Concluding Remarks

The Gaussian assumption is likely to be a good one for thermal noise internal to the receiving system, solar, lunar, planetary, and cosmic noises. In terms of frequencies, all noise above 150 mc/s can usually be assumed to be Gaussian. It should be pointed out that above 300 mc/s the thermal noise generated internally in the receiving system is usually the controlling noise. Between 30 and 150 mc/s the major noise is most often of galactic origin. Below 30 mc/s atmospheric noise and man-made noise predominate over the other types of noise for a greater percentage of the time. This is shown in Fig. 2.4.

2.3 Multiplicative Disturbances

Multiplicative disturbances are responsible for such phenomena as fading, dispersion, multipath, phase distortion, and time delay. Since these disturbances vary widely, depending upon the frequency of the transmitted radio wave, they are most easily discussed by making reference to the pertinent frequency bands.

FIGURE 2.3 COMPARISON OF SYSTEM PERFORMANCE FOR GAUSSIAN AND ATMOSPHERIC NOISE

RADIO NOISE MEASUREMENTS DURING IGY GUNBARREL HILL, COLORADO

2.3.1 3-30 kc/s VLF⁽¹⁾

VLF propagation, occurring in the form of waveguide modes between the earth and the ionosphere, is often referred to as ducting. Propagation in the VLF range is characterized by low attenuation to very great distances, with great reliability and stability of transmission. Because of the large physical structure required for transmitting antennas (one wavelength is 30 kilometers at 10 kc/s) antennas are electrically small, and either costly or inefficient. The Q of many typical transmitting antenna systems in this frequency range limit the modulation bandwidth to less than 100 cps.

The amplitude of VLF signals is highly variable at short distances. The amplitude also has a tendency to change rapidly during the period of sunrise or sunset along the path. At these distances, the amplitude generally goes through a rapid maximum or minimum, before tending toward the more steady value characteristic of midday or midnight.

At distances beyond about 1000 km, attenuation is typically 2 to 4 decibels per 1000 km. Penetration of VLF energy into conducting earth or even sea water makes the frequency range useful for communication between buried antennas or submarines. The constancy of phase of the received signal at distances beyond about 500 km allows communication systems to use stored reference phase information.

VLF systems are commonly used for reliable long-range communication, navigational aids, and frequency and timing standards.

2.3.2 30-300 kc/s LF⁽¹⁾

The LF spectrum is characterized by higher path attenuation, lower background noise levels, and more stable propagation time delays relative to VLF paths. Transmitting power and antenna requirements are appreciably less than those of the usual VLF station, and in addition the bandwidths available are greater. The higher path attenuation results from the fact that as the frequency increases, the ionosphere behaves less and less as a sharp boundary. Hence, the radio waves reach the receiver only after they have penetrated into the ionosphere and lost energy in absorption.

The fading speed and the depth of fading depend on the frequency, the transmission distance, and the time of day. During the daytime the amplitude is substantially constant. The fading during the nighttime is much more irregular. The amplitude fluctuations are approximately Rayleigh but assume large values more often than would be expected on a Rayleigh distribution.

As with VLF the transmitting installations are characterized by their large physical size and high construction and maintenance costs. LF waves are not adversely affected during periods of ionospheric disturbance and the phase stability of transmission, permitting frequency comparison within a few parts in 10^{10} , makes possible long range radio navigation utilizing phase comparison between spaced phase-locked transmitters. 2.3.3 300 kc/s -- 3 mc/s MF⁽¹⁾

The medium frequency range is a transition range in which the importance of the ground wave at the lower frequencies gives way to the importance of the sky wave at the higher frequencies. Ground-wave attenuation increases with frequency, so that in the higher part of the frequency range only short distance services are possible, especially over paths of poor conductivity.

-18-

Sky-wave propagation via the E and F regions of the ionosphere is important mainly only during the night hours; it is sometimes observable during daytime, but is usually highly absorbed in the D region of the ionosphere. Transmission in this frequency range, especially above about 500 kc/s, is very susceptible to absorption, and, even at night, sky waves are often attenuated below useful levels.

Because of the unreliability of the sky wave, the frequency range is probably most useful from the low end up to about 1 mc/s, where the ground wave enables broadcast coverage out to several hundred miles.

2.3.4 3-30 mc/s HF⁽¹⁾

HF propagation is characterized by the ability of high frequency waves to penetrate the lower ionosphere and be reflected from the F region of the upper ionosphere. Absorption is of minor concern and transmission loss, even for a long transmission distance (10,000 km or more), may be quite low. Useful signal-to-noise ratios are obtainable out to very great distances with very low power and simple antennas.

Because of considerable variability of propagation conditions, transmission is very unreliable. The consequence is that for optimum results the transmitter must be capable of changing to four or five different frequencies, hoping that one will work.

Multipath is a serious problem. At HF there are a large number of possible propagation paths with multipath time delays ranging from a few microseconds to a few milliseconds. Multipath propagation imposes a limit on keying speeds in digital systems since if the multipath delays are such that during the sampling time there is still energy arriving from the preceding pulse, there is a high probability of error. Pulse durations should be somewhat more than twice the length of the greatest significant multipath delay. At HF it usually occurs in the range of from 1 to 5 milliseconds for paths longer than about 100 km. Multipath can be reduced by operating at as high a frequency as possible. At the MUF (maximum usable frequency) only one geometric mode is possible.

In addition to multipath effects, dispersion may cause important distortion of the transmitted waveform in the case of short pulses. The first-order effect is a lengthening of the pulse. Under worst conditions pulses on the order of 1 microsecond in width are stretched to 13 microseconds.

Both fast and slow fading are observed in connection with the transmission of HF radio waves. The fast fading is usually due to the interference of two or more unresolved propagation modes. The slow fading is attributable to variations in absorption, or changes in the effective gains of the transmitting and receiving antennas resulting from changes in the angles of departure and arrival of the signals. In fast fading, fades tend not to occur simultaneously at nearby frequencies. This effect is called selective fading. Slow fading tends to occur across a broad band of frequencies and is referred to as flat fading. The fading distributions of the amplitudes approximate the well-known Rayleigh distribution when the wave arrives via several modes with approximately equal amplitude and randomly varying phases. Fading rates from 1 cps to 15 cps are commonly observed.

Phase and frequency stability is very poor at HF. This imposes genuine limitations on minimum modulation excursions for FSK and PSK systems. Phase perturbations up to 140° and frequency shifts up to 50 cps have been observed.

In spite of the difficulties mentioned above, there is a great density of radio services in the high frequency range. A substantial part of the

-20-

world's frequency assignments are concentrated in this small fraction of the whole spectrum.

2.3.5 30-60 mc/s VHF Ionospheric Scatter⁽¹⁾

Irregularities in electron density in the lower ionosphere give rise to incoherent scattering of radio waves in the frequency range between 30 and 60 mc/s. Reliable transmission is obtained in the 1000 to 2000 km distance range. The scattered radio waves are extremely weak and system losses ranging between 140 and 210 db are commonly experienced. Typically, ionospheric scatter suffers around 150 db more loss than does ionospheric reflection. To compensate for the large losses, extremely large high gain antennas are employed.

Fading is observed at rates varying from 0.2 to 3 cps. During most of the day the envelope fading is approximately Rayleigh distributed, though amplitude distributions indicate peaks from meteor reflections during the night hours. The fading characteristics depend upon the beamwidth of the antennas employed. For a 60° horizontal beamwidth, the fading rate has been observed to be four to five times greater than for a 6° beamwidth system, and the depth of fading several decibels greater for the wide beam system.

Multipath caused by reflections from meteor trails usually displays delays varying from 6 microseconds to 1 millisecond. The time delays of multipath due to auroral ionization are typically between 0.1 and 4 milliseconds. During times of high solar activity, distant ground backscatter can be propagated by the F_2 layer of the ionosphere resulting in delays up to 80 milliseconds. Typically, the delays from this source are between 12 and 60 milliseconds. Because of the intersymbol interference caused by such multipath, an upper bound is placed on the keying rate of digital systems. As with HF signals, the frequency and phase stability is poor. At 50 mc/s the expected Doppler shift is 6 kc/s. The large Doppler shifts are due mainly to meteor reflections. Often these signals are stronger than the direct scatter signal. Large phase shifts are experienced During night hours 180° shifts occur approximately 1 per cent of the time. Instantaneous phase shifts of 90° occur about 0.2 per cent of the time. 2.3.6 30-300 mc/s Meteor Scatter at VHF⁽¹⁾

Each day billions of meteors enter the earth's atmosphere. In burning up they form long columns of ionized particles. These columns diffuse rapidly and usually disappear within a few seconds. However, during their brief existence the ionized columns will reflect radio signals, giving rise to what is called meteor scatter or meteor propagation.

Meteor-burst communication systems are basically weak-signal systems because the signal loss associated with the meteor-trail reflection is relatively high. For example, a typical system operating at 50 mc/s over a 1300 km path with a transmitter power of 2 kw was commonly set to transmit messages whenever the signal at the receiver exceeded 2×10^{-14} w (2 microvolt open-circuit voltage for a 50 ohm source). This corresponds to a system loss of 170 db. Of this total about 90 db represents the attenuation associated with the length of the transmission path and 80 db the scattering loss. Under similar circumstances ionosphere scatter propagation would exhibit a system loss of the order of 180 db. Messages are transmitted only during the brief intervals when meteor propagation is present.

At 50 mc/s Doppler shifts as large as 5 kc have been observed. 2.3.7 50-10,000 mc/s Tropospheric Scatter⁽¹⁾

Tropospheric scatter results from irregularities in the refractive index of the atmosphere. The signals are much weaker than the VLF and LF signals which employ tropospheric duct propagation. They are very reliable and are found to be present on a given path with substantially the same average intensity day and night, week in and week out, regardless of surface meteorological conditions. They also exhibit rapid fading, characteristic of multipath transmission.

The dominant feature of tropospheric scatter signals is their rapid fading. If a constant intensity signal is emitted at the transmitter, the level of the received signal varies erratically in time with an amplitude distribution that often closely approximates the Rayleigh law. Occasions have occurred, however, when this is not the case. Spectra of the rapid signal fluctuations closely approximate a Gaussian distribution.

Measurements made at frequencies of 400, 3,670, and 5,050 mc/s utilizing antennas with several degrees beamwidth indicate that time delays of about 1 microsecond at distances of about 200 miles can be expected. At 3,700 mc/s 1 microsecond pulses were not substantially widened after transmission over distances up to 285 miles. It appears that modulation bandwidths of several megacycles may be used.

2.3.8 Space Communications

The frequency of the transmitted signal must be above 30 mc/s to enable the radio waves to penetrate the ionosphere. Between 30 to 60 mc/s the wave experience considerable amplitude and angular scintillations. Above 100 mc/s radio waves propagate into space fairly Well. Severe fading has been noticed at certain frequencies and multipath has been observed which cannot be explained by current theories. Many measurements are currently being made to understand the radio wave propagation involved in space communication.

-23-

2.3.9 Concluding Remarks

The results of this section are summarized in Table 2-1. The tabulated disturbances and propagation characteristics must be taken into account in developing a communication system. The remainder of this report is an effort in that direction. In particular, the capacity of a Rayleigh fading channel, the design of systems when the statistics of the additive noise are unavailable, the process of signal design and selection, and the use of error-correcting codes are discussed.

TABLE 2-1

CHANNEL CHARACTERIZATION

FREQUENCY BAND	METHOD OF PROPAGATION	TYPICAL DISTANCES	MULTIPATH	PHASE STABILITY	RELIABILITY	TYPICAL MODULATION BANDWIDTHS
3-30kc/s	ducting	5-20 Mm *	no	gocđ	very good	20-150 cps
30-300kc/s	ducting	1-5 M m	no	good	good	250 срв
300 kc/s- 3 mc/s	transition region be- tween duct- ing and ionospheric reflection	200 miles	no for ground wave, yes for sky wave	good for ground wave, poor for sky wave	good for ground wave, poor for sky wave	2-75 kc/s
3-30m.c/s	ionospheric reflection	1-10Mm	уев	very poor	poor	3 kc/s
30-60mc/s	ionospheric scatter	1000- ** 2000 km	уез	very poor	fair	5 kc/s
50- 10,000mc/s	tropospheric scatter	100- 1000 km	yes	very poor	good	10 mc/s

* Mm = megameter

1

1

٠

.

** km = kilometer

-26-

CHAPTER III

CAPACITY OF THE RAYLEIGH FADING CHANNEL

3.1 Introduction

As was discussed in Chapter II many of the communication channels commonly used experience Rayleigh type fading. In this chapter the following assumptions are made concerning the parameters of the channel model given in Fig. 2.1.

1) The multiplicative disturbance $A(t)e^{j\theta t}$ is equal to A, where A is a random variable, Rayleigh distributed with parameter $\sqrt[7]{2}$ $p(A) = 2Ae^{-A^2/r^2}$ $A \ge 0$ = 0 A < 0 (3-1)

2) The additive noise n(t) is assumed to be a stationary Gaussian random process with zero mean and uniform power spectrum over information bandwidth W. If $E[n^2(t)] = N$, then the noise spectrum is $G_n(f) = \frac{N}{2W} = N_o$

3) The signal s(t) is a sample function from a stationary random process and has a finite power P. The power spectrum of the signal is $G_g(f)$ and the signal is bandlimited to W cycles per second.

In this chapter the channel capacity of the Rayleigh fading channel is derived. The results are then used to evaluate β , the required received energy per information bit received in the presence of a given Gaussian noise spectral density.

3.2 Calculation of Channel Capacity

Capacity is defined as the maximum information, on the average, that an observer at the output of the channel can obtain about a signal transmitted from the channel input. The maximization of the information rate being carried out through the variation of the input signal characteristics, i.e., the encoding process. Capacity C, may therefore be expressed as:

$$C = \max I(S/X)$$

$$\left\{ s(t) \right\}$$
(3-2)

To solve for the capacity of the Rayleigh fading channel using the above Eq. (3-2) is a very difficult non-linear problem.

Another expression for the capacity is given by $Fano^{(14)}$

$$C = \max I(S/X)$$

$$\left\{ \mathbf{G}_{g}(\mathbf{f}) \ge \mathbf{0} \right\}$$
(3-3)

It is easier to solve for the capacity of the Rayleigh fading channel using the above Eq. (3-3) since maximizing over the power spectrum of the signal is maximizing under less restrictive conditions.

Using Eq. (3-3) for the conditional information rate (assuming A the attenuation factor is known) results in

Since the attenuation factor A is a random variable it is necessary to average over all possible values of the random variable. Thus,

$$= \max \left\{ \begin{array}{c} \int_{0}^{f} f_{0} + W & \int_{0}^{\infty} \\ \left\{ \begin{array}{c} G_{g}(f) \ge 0 \end{array} \right\} \int_{0}^{f} df & \int_{0}^{\infty} \\ \int_{0}^{\infty} df & \int_{0}^{\infty} \int_{0}^{\infty} df & \int_{0}^{\infty} \\ \int_{0}^{\infty} df & \int_{0}^{\infty} \int_{0}^{0$$

Integrating with respect to A, (see Appendix I for details)

$$C = \max_{\substack{\{n,n\} \geq 0}} (\ln 2)^{-1} \int_{\mathbf{r}_{0}}^{\mathbf{r}_{0}+W} \operatorname{Ei}\left\{\frac{-G_{n}(\mathbf{f})}{\sigma^{2}G(\mathbf{f})}\right\} \exp\left\{\frac{G_{n}(\mathbf{f})}{\sigma^{2}G_{g}(\mathbf{f})}\right\} d\mathbf{f}$$
(3-7)

where

$$\mathbf{Ei}(t) = \int_{\infty}^{t} \frac{\mathbf{e}}{\mathbf{u}} \, d\mathbf{u} = \mathbf{e}^{t} \sum_{\mathbf{k}=\mathbf{l}}^{\infty} \frac{(\mathbf{k}-\mathbf{l})!}{t^{\mathbf{k}}}$$
(3-8)

$$= -\ln \frac{-1}{\gamma t} + \sum_{k=1}^{\infty} \frac{t^k}{k k!} \qquad t < 0 \qquad (3-8')$$

$$-Ei(-t) = e^{-t} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}(k-1)!}{t^k} \qquad t > 0 \qquad (3-9)$$

Applying calculus of variations to maximize the above integral with respect to $G_g(f)$ yields

$$\frac{\partial}{\partial G_{g}(f)} \left[\exp\left\{ \frac{G_{n}(f)}{\sigma^{2} G_{g}(f)} \right\} \operatorname{Ei}\left\{ \frac{-G_{n}(f)}{\sigma^{-2} G_{g}(f)} \right\} + \lambda G_{g}(f) \right] = 0 \quad (3-10)$$

where λ is the Lagrange multiplier for the power constraint,

$$f_{o}^{f} = P$$

$$\int_{f_{o}}^{f} G_{g}(f) df = P$$

Carrying out the above differentiation and simplifying results in

$$\lambda \sigma^2 G_g^2(f) - \sigma^2 G_g(f) - G_n(f) \exp\left\{\frac{G_n(f)}{\sigma^2 G_g(f)}\right\} = 0 \quad (3-11)$$

From this result it is observed that if the additive noise power spectrum is uniform over a bandwidth W, then the power spectrum of the signal s(t) must also be independent of f. The signal power spectrum therefore equals,

$$G_g(f) = \frac{P}{2W}$$

Therefore, it has been proved that in order to transmit at a maximum rate through a Rayleigh fading channel the input signal s(t) must be from a stationary process with uniform spectral density. It is shown in Appendix II that the input signal must also be Gaussian with zero mean.

The capacity of the Rayleigh fading channel is therefore

$$C = -(\ln 2)^{-1} W \exp\left\{\frac{W}{\sigma^2 p}\right\} EI \left\{\frac{-W}{\sigma^2 p}\right\}$$
(3-12)

3.3 Determination of the B Factor

One way to compare communication systems is to compare their efficiency in terms of β , the received signal energy required per information bit received in the presence of a given uniform Gaussian noise spectral density⁽¹⁵⁾

$$\beta = \frac{Emin}{2M_{o}}$$
(3-13)

E min = minimum received energy required per information bit

received.

 $N_{o} = noise spectral power density.$

Equivalently, β may be expressed as

$$\beta = \frac{P \min}{2N_{H}}$$
(3-14)

P = minimum received power required per bit of information

received.

H = rate of received information (bits per second).

Letting H be equal to the maximum received information rate, on the average, for the Rayleigh fading channel one obtains for β

The lower bound on β occurs as the received signal-to-noise power ratio goes to zero. (See Appendix III and graph 3.2 for proof.) This lower bound on β is shown to be given by

$$\beta_{\min} = \ln 2 \tag{3-16}$$

Note that this lower bound on β is the same as that obtained by Sanders for the single path channel having no fading. In fact the lower bound on β will always equal ln2 and is independent of the type of probability density function for the attenuation factor A. To see why this is so one notes that the conditional lower bound on β (conditional in the sense that A is fixed) is independent of the value of A. Averaging over the different values of A will therefore yield the same value as for the unity gain channel.

Another way of defining β in order to bring out the dependence of the channel is to define β as the minimum required energy transmitted per bit of information received. Under this definition the lower bound on β can be shown to be

$$\beta_{\min} = \frac{\ln 2}{\sigma^2} \tag{3-17}$$

where this lower bound on β is obtained by letting the signal-to-noise power ratio approach zero. Since $\sigma^2 \leq 1$ for all passive channels, the lower bound of β is increased by a factor σ^{-2} over that of the single path with gain equal to unity. In other words, assuming the transmission rate is the same, the minimum power that must be transmitted is increased by σ^{-2} in order to maintain the same probability of error.

3.4 Discussion of Results

The capacity of the Rayleigh fading channel is a function of the information bandwidth W and of the ratio of received signal power to the received noise power,

$$C = \frac{-W}{\ln 2} \exp\left\{\frac{M}{\sigma^2 p}\right\} \quad \text{Et}\left\{\frac{-M}{\sigma^2 p}\right\}$$

It should be noted that if

then

$$\operatorname{Ei}\left\{\frac{-\mathrm{II}}{\sigma^{2}\mathrm{P}}\right\} \approx -\ln\left[\frac{\sigma^{2}\mathrm{P}}{7\mathrm{N}}\right]$$
(3-18)

where $\gamma = 1.781072$

The capacity may therefore be approximated by

$$C \approx W \log \frac{P'}{N}$$
 (3-19)
where $P' \equiv \sigma^2 P$

Comparing the above equation with that for the unity gain channel one obtains

$$C = W \log \left(1 + \frac{P'}{R}\right) \approx W \log \frac{P'}{R}$$
(3-20)

If the signal-to-noise ratio $\frac{-2p}{N} \ll 1$ then

$$C \approx \frac{W}{\ln 2} \left\{ \frac{\sigma^2 P}{W} \right\} = \frac{W}{\ln 2} \frac{P'}{W}$$
(3-21)

However, the unity gain channel having a signal-to-noise ratio

-32-

$$\frac{P'}{N} \ll 1, \text{ has the capacity}$$

$$C = \frac{W}{\ln 2} \ln \left\{ 1 + \frac{P'}{N} \right\} \approx \frac{W}{\ln 2} \quad \frac{P'}{N} \qquad (3-22)$$

Hence, for small signal-to-noise ratios, i.e., $\frac{P!}{N} \prec \langle 1 \rangle$, the capacity of the Rayleigh fading channel is identical to that of the unity gain channel.

From Fig. 3.1 it is observed that the capacity of the Rayleigh fading channel is never less than 83% of the capacity of the unity gain channel.

It should be noted that the channel variance σ^2 can be determined experimentally by transmitting a known carrier sin $\omega_0 t$, and measuring the average power at the receiver.

Fig. 3.2 illustrates that $\beta = \frac{W \operatorname{Emin}}{N}$ is a monotonically decreasing function of the received noise to the received signal power ratio. Qualitatively this implies that the received signal energy required per information bit transmitted (assuming that the bandwidth is constant) varies as

$$E_{\min} \alpha N_0^k \qquad k < 1$$

CHAPTER IV NONLIKELIHOOD DETECTION THEORY PART I GENERAL THEORY

4.1 Introduction

The problem of detection of a signal in noise of known statistical properties has been investigated thoroughly in the past. However, these methods are completely inapplicable and inappropriate whenever these noise statistics are unknown.

In this investigation, a detection criterion based on the methods of non-parametric statistics is utilized which permits the design of detectors on the basis of much less <u>a-priori</u> information. Several detectors based on this detection criterion are investigated and their properties obtained. A comparison is made between these new (non-likelihood) detectors and the optimum (likelihood) detectors on the basis of information efficiency. Also, a practical design procedure is formulated for the design of these new (non-likelihood) detectors.

4.2 Statement of the Problem

1

Given a signal immersed in noise of unknown distribution function, a detector is to be designed based on a detection criterion that does not require knowledge of the noise and of the mixture of signal and noise probability densities.

4.3 Inadequacy of Present Methods

Detectors which determine the presence or absence of a signal in noise have been investigated extensively in the past. These investigations, however, have been based on the assumption that a great amount of <u>a-priori</u> information is available concerning the probability densities of the noise and of the mixture of signal and noise. These detectors are based on the likelihood ratio.

However, these likelihood (optimum) detectors are completely inadequate and inappropriate whenever these noise probability densities are not known. This is so, since these detectors are optimum only for a particular pair of noise and mixture of signal and noise probability distributions for which they have been designed. In general, the probability of error (reliability of transmission of information) of the likelihood detectors depends on the functional form of these distributions. Therefore, if a likelihood detector which is optimum for a particular pair of probability distributions is used in another situation in which the distributions are different from the pair of distributions for which the detector is optimum, then it is possible and quite probable that the probability of error of the detector (unreliability of transmission) may increase to such an extent as to make the detector completely inapplicable. Moreover, due to this lack of a-priori information of the probability distributions, it is not possible to predict and evaluate theoretically the performance of these likelihood detectors. Hence, the likelihood detectors are inappropriate whenever there is incomplete information concerning the functional form of the underlying distributions.

4.4 The Non-likelihood (Non-parametric) Detection Criterion

(

In this investigation a detection criterion is used which leads to the design of detectors on the basis of much less <u>a-priori</u> information. These detectors, hereon called non-likelihood detectors, are based on statistical tests known in the statistical literature as non-parametric statistical tests.

- 36-

In order to state this detection criterion we will introduce some assumptions and notation:

-37-

where $P_{o}(Y)$ is the distribution function of any of the data elements $(since \{Y(t)\}\)$ is stationary) when signal is absent, and $P_{z}(Y)$ is the cumulative distribution function for any data element when the signal is present. Note that $P_{z}(Y)$ depends both on Y and on the signal-to-noise ratio z.

The above decision procedure simply states that: if the signal is absent then the cdf. of the Y_1 , is $P_0(Y)$ and must be the same as the cdf. of the Y_{n+j} 's since both sets of observations were obtained from sample functions of the same continuous stochastic process $\{N(t)\}$. If the signal is present, then the cdf. of the Y_1 's is $P_2(Y)$ which is not the same as the cdf. $P_0(Y)$ of the Y_{n+j} 's.

In a practical case, the sample function N'(t) of the noise process $\{N(t)\}$ must be obtained from the noise entering the receiver during a time that no information is transmitted (signal absent). If the noise process is stationary then N'(t) can be obtained once and for all before the transmission of information begins. From N'(t), the m samples will then be obtained and stored in the receiver, to be compared later with the n samples obtained from Y(t). If though the noise random process is not stationary, then, before the transmission of information of information commences, one obtains the m samples from the noise entering the receiver and uses them only for as long as the noise random process remains fairly stationary. Whenever the noise process varies considerably then the transmission of information must be interrupted for a sufficient time to enable one to obtain a new set of m samples to be used subsequently. If the noise process variations are of a permanent nature, a periodic sampling of the noise is necessitated. During sampling, the transmission of information must cease to permit the

acquisition of the m samples from the noise entering the receiver.

A practical example of a stationary type of noise is the case of continuous jamming with stationary noise. In this case, the m samples need be obtained only once, prior to commencing the transmission of information. A practical case of non-stationary noise is the case of on-off jamming where the jamming is on or off for periods comparable to the sampling interval required to obtain the n samples. In this case two sets of m samples must be available, one to be obtained and used when the jamming noise is off and the other set to be obtained and used when the jamming noise is on.

The theory of non-likelihood detection would be useful if it satisfies the following requirements: 1) it suggests the structure of the detection system; 2) it specifies procedures for evaluating the performance of such systems (information rate, probability of error); and 3) it specifies techniques of system comparison. It will be seen subsequently that the nonlikelihood theory of detection does satisfy all of the above requirements.

4.5 General Properties of Non-parametric Detectors

Ì

In this investigation a restriction of the level of generality will be made by considering the detection of weak signals in noise. This means that the peak-signal-to-rms noise ratio and thus z is assumed to be very close to zero. This is appropriate since the weak signal case is the most troublesome and least amenable to solution and the case one usually desires to solve in practice. This is also expedient since it simplifies the analytical expressions found.

Nany of the non-parametric detection test statistics satisfy the following properties:

- 39-

1) The non-parametric detection statistic U_{mn} (the subscript mn is to show dependence on the samples m and n) is asymptotically Gaussian under H'_o (no signal). The mean and standard deviation of this limiting distribution are denoted by $E_o[U_{mn}]$ and $\sigma_o[U_{mn}]$, respectively, 2) U_{mn} is asymptotically normal under H'₁ (signal present). The mean and standard deviation of this limiting distribution are denoted by $E_z[U_{mn}]$ and $\sigma_z[U_{mn}]$, respectively;

$$\lim_{z \to 0} t \frac{\int_{z}^{2} [U_{mn}]}{\int_{0}^{2} [U_{mn}]} = 1$$
(4-1)

4)

3)

$$E_{z}[U_{mn}] = E_{0}[U_{mn}] + z \frac{dE_{z}[U_{mn}]}{dz} + 0(z^{2})$$
(4-2)

5)

6)

$$\lim_{z \to 0} \left[\frac{d\mathbf{E}_{\mathbf{z}}[\mathbf{U}_{\mathbf{mn}}]}{d\mathbf{z}} \middle/ \mathbf{C}_{\mathbf{0}}[\mathbf{U}_{\mathbf{mn}}] \right]^{2} = \frac{\mathbf{K}_{\mathbf{mn}}}{\mathbf{z} = \mathbf{0}} = \frac{\mathbf{K}_{\mathbf{mn}}}{\mathbf{m} + \mathbf{n}}$$
(4-3)

where K is a constant independent of m, n, z and defined by Eq. (4-3); K depends only on $P_O(Y)$ and $P_Z(Y)$.

$$\frac{dE_{z}[U_{mn}]}{dz} \not\models 0 \qquad (4-4)$$

$$(1-4)$$

$$\lim_{m \to \infty} \int_{n \to \infty}^{\infty} \int_{n \to \infty}^{2} [U_{mn}] = 0 \qquad (16)$$

On the basis of the above properties it can be shown that the nonparametric detection tests possess the property of consistency. A detection test of H'_{O} against H'_{O} of probability of false alarm \prec is said to be consistent if

$$\liminf_{m \to \infty} \beta_{mn} = 0 \tag{4-5}$$

where β is the probability of false dismissal. Note the dependence of β on m and n shown by the subscript mn. The property of consistency is an extremely important one since it states that for fixed z and α the decisions on the presence or absence of the signal become more reliable as more observations are obtained.

According to property (1) above the following general character of non-parametric detection statistic U_{mn} obtains when m and n are moderately large:

PROBABILITY DENSITY OF U FOR LARGE VALUES OF m AND n, UNDER SIGNAL AND NO SIGNAL CONDITIONS

FIGURE 4.2

So then

$$\alpha_{mn} = \left[2\pi \sigma_0^2 [U_{mn}] \right]^{-1/2} \int_{U_{k}}^{\infty} dy \exp \left[-1/2 \left(y - E_0 [U_{mn}] \right)^2 / \sigma_0^2 [U_{mn}] \right]$$
(4-6)

or

$$\alpha_{mn} = 1/2 (1 - erf \lambda x)$$

where

erf x =
$$2(\pi)^{-1/2} \int_{0}^{x} \exp(-u^2) du$$
 (4-7)

)

anđ

$$\lambda_{\alpha} = \left[\mathbf{U}_{\alpha} - \mathbf{E}_{\mathbf{o}} [\mathbf{U}_{\mathbf{mn}}] \right] / \sigma_{\mathbf{o}} [\mathbf{U}_{\mathbf{mn}}]$$

Also,

$$\beta_{mn} = \left[2\pi \sigma_x^2 [U_{mn}] \right]^{-1/2} \int_{\infty}^{U_{ox}} \exp\left[-1/2(y - E_z[U_{mn}])^2 / \sigma_z^2 [U_{mn}] \right] dy \quad (4-8)$$

When z is sufficiently small then using properties (3) and (4) we obtain:

$$\beta_{mn} = 1/2 \left\{ 1 - \operatorname{erf} \left[\frac{z \frac{dE_z[U_{mn}]}{dz}}{z^{1/2} \sigma_0[U_{mn}]} - \lambda d \right] \right\}$$
(4-9)

or

$$\frac{z \frac{d\mathbf{E}_{z}[\mathbf{U}_{mn}]}{dz}}{z^{1/2} \sigma_{o}[\mathbf{U}_{mn}]} - \lambda \propto = \operatorname{erf}^{-1}(1 - 2\beta_{mn})$$
(4-10)

and from (4-8) there follows

$$\lambda \propto = \operatorname{erf}^{-1} \left(1 - 2\beta_{mn}\right) \tag{4-11}$$

Adding Eq. (4-6) to Eq. (4-10) gives

$$\frac{z \frac{dE_{z}[U_{mn}]}{dz}}{2^{1/2} \sigma_{o}[U_{mn}]} = erf^{-1}(1-2\alpha_{mn}) + erf^{-1}(1-2\beta_{mn})$$
(4-12)

-42-

Using property (5) the following relation obtains

$$Kz^{2} \frac{mn}{m+n} = 2[erf^{-1} (1-2a_{mn}) + erf^{-1} (1-2\beta_{mn})]^{2}$$
 (4-13)

The above relation states that

a) for decreasing signal-to-noise ratio z, the number of samples n must increase in order to maintain a constant probability of error (constant \propto and β). If proportional sampling is used, then an increase in the number of samples means an increase in the sampling interval and consequently a decrease in information rate.

b) for increasing signal-to-noise ratio and constant number of samples (constant information rate) the probability of error (or \checkmark , β) decreases

c) for increasing signal-to-noise ratio and constant reliability (constant probability of error) the number of samples n required decreases and thus the information rate increases.

The above relation is an extremely important one. It permits the design of a system that will guarantee a certain desired \measuredangle and β for the minimum possible z. That is, if an $\measuredangle = 10^{-4}$, $\beta = 10^{-3}$ is desired and a signal is to be detected so weak that $z = 10^{-3}$, the only thing we need to know is K in order to determine the required samples $\frac{mn}{m+n}$. It is also possible thereby to obtain the performance characteristics of the detector in question.

To facilitate comparison between the non-likelihood detectors and the likelihood detectors the following limiting properties of the likelihood detectors are stated.⁽¹⁶⁾

The likelihood statistic U_n satisfies the following relations: (1') U_n is asymptotically normal under H_o (no signal). The mean and standard deviation of the limiting distribution are denoted by $E_o[U]$ and $\sigma_o[U_n]$ respectively; (2') U_n is asymptotically normal under H_1 . The mean and standard deviation of this limiting distribution are given by $E_z[U_n]$ and

$$\begin{aligned} \sigma_{z}^{r}[U_{n}] \text{ respectively;} \\ (3') & \lim_{z \to 0} \frac{\sigma_{z}^{2}[U_{n}]}{\sigma_{o}^{2}[U_{n}]} = 1 \end{aligned}$$
(4-14)

(5')
$$\lim_{z \to 0} \left[\frac{d\mathbf{E}_{z}[\mathbf{U}_{n}]}{dz} \right| \qquad z = 0 / \sigma_{0}[\mathbf{U}_{n}]^{2} = \mathbf{K}n \qquad (4-16)$$

where K is a constant independent of n and z and dependent only on $P_{O}(Y)$ and $P_{z}(Y)$.

$$\frac{d\mathbf{E}[\mathbf{U}_n]}{d\mathbf{z}} \bigg|_{\mathbf{z}=\mathbf{0}} \neq \mathbf{0}$$

$$(4-17)$$

On the basis of the above properties, it can be shown that the likelihood tests are consistent. Also similarly to the proof for the case of non-likelihood detectors is the proof for the following property of the likelihood detectors:

$$\frac{Kz^{2} n = 2[erf^{-1} (1-2\alpha_{n}) + erf^{-1} (1-2\beta_{n})]^{2}}{(4-19)}$$

It was stated previously that a detection theory to be complete must also incorporate a means of comparison between different detectors. Toward this end the asymptotic relative efficiency [A.R.E.] of a nonlikelihood detector $U_{m^{\#}n^{\#}}^{*}$ with respect to the non-likelihood detector U_{mn} is defined as:

$$\mathbf{E}_{u^{\#},u} = \underset{z \longrightarrow 0}{\operatorname{limit}} \underbrace{\frac{\mathbf{m} \cdot \mathbf{n}}{\mathbf{m}^{\#} \mathbf{n}^{\#}}}_{\mathbf{m}^{\#} + \mathbf{n}^{\#}}$$
(4-20)

where 1) the false dismissal and the false alarm probabilities of U_{mn}

and
$$U_{m\neq n}^*$$
 are equal
 $\alpha_{mn} = \alpha_{m\neq n}^* = \alpha$
 $\beta_{mn} = \beta_{m\neq n}^* = \beta$

2) the U and U_{min}^* and U_{min}^* detectors are for the detection of the same signal in the same noise and for the same small signal-to-noise ratio (weak signals)

For $m^{\#} \gg n^{\#}$ and $m \gg n$, $E_{u^{\#}u} = \lim_{z \to 0} \frac{1}{n^{\#}}$. Thus, the A.R.E. of one nonlikelihood detector with respect to another is an indication of how many more observations one non-likelihood detector requires than the other to detect a given weak signal with a prescribed accuracy \ll , β when $m^{\#} \gg n^{\#}$ and $m \gg n$.

From the given properties (1) - (7) of the non-likelihood statistics, it can be proven that $E_{u \neq u} = \frac{e(U \neq u)}{e(U_{mn})}$

where
$$e(U_{mn}) = \left[\frac{dE_z[U_{mn}]}{dz} \right|_{z=0} / \sigma_0[U_{mn}] \right]^2$$
 (4-21)
= $\frac{Kmn}{m+n}$
= K n if m>> n

and

ļ

$$E_{u*u} = \frac{K}{K*}$$

It is also useful to define the A.R.E. of a non-likelihood detector U^*_{ment} with respect to a likelihood detector U_n as follows:

$$\underbrace{\mathbf{E}}_{\mathbf{U}^{*}_{\mathbf{m}^{*}\mathbf{n}^{*}}, \mathbf{n}} \underbrace{\mathbf{U}}_{\mathbf{z} \to \mathbf{0}}^{= \ \mathbf{limit}} \underbrace{\mathbf{n}}_{\mathbf{n}^{*}} \tag{4-22}$$

in the direction of the same weak signal (same z) and with the same \checkmark , and β . So since

$$K * z^{2} \frac{n * m *}{m * n *} = 2 \left[erf^{-1} (1 - 2\alpha) + erf^{-1} (1 - 2\beta) \right]^{2}$$
(4-23)

for the non-likelihood detector

and

$$Kz^{2} n = 2[erf^{-1}(1-2\alpha) + erf^{-1}(1-2\beta)]^{2}$$
 (4-24)

for the likelihood detector

it follows that

$$E_{u^{*},u} = \frac{K^{*}}{K} \frac{1}{1 + \frac{n^{*}}{m^{*}}}$$
(4-25)

Since K* and K are independent of z, m, n, m* and n*, $E_{u^{\#},u}$ is independent of z and depends on the sample sizes only through the ratio $\frac{n^{\#}}{m^{\#}}$; that is the ratio of sample sizes used by the non-likelihood detector. Thus, the A.R.E. of $U_{m^{\#}n^{\#}}^{*}$ with respect to U_n is as high as possible if $m^{\#} > n^{\#}$. That is, the number of observations from the auxiliary noise source N'(t) should be much larger than the number of observations from Z(t).

Thus, one design criterion for the non-likelihood detector is, m* >> n*, and so

 $E_{u\neq u} = \frac{K\neq}{K}$.

It should be stressed that K* and K are dependent on $P_{o}(Y)$ and $P_{r}(Y)$. The comparison of a non-likelihood detector to a likelihood detector is valid only for a particular pair of cdf's. To gain some insight on the physical significance of the asymptotic relative efficiency consider the following: one of the most important considerations in a detection problem is the length of time required to detect the signal with a certain accuracy α , β . In most cases the m* observations obtained from N'(t) by the non-parametric detector can be obtained before the n* observations are obtained from Z(t), and can be stored in the non-likelihood detector. So, the only time consumed is that used in obtaining the n* samples from Z(t). Similarly, the only time spent by the likelihood detector is that used in obtaining the n samples from Z(t). If periodic sampling is employed, then n* and n are proportional, respectively, to the time required by the non-likelihood and likelihood detectors to detect the same weak signal with the same accuracy \triangleleft , β . Thus, the justification for the criterion of A.R.E. (asymptotic relative efficiency) is that for periodic sampling it gives an indication of how much better the information rate of the non-likelihood detector is than that of the likelihood detector in the detection of the same weak signal for a prescribed probability of error.

4.6 Summary of Important Properties of Mon-likelihood Detectors

The following are the most significant properties of the non-likelihood detectors for their design.

- 1) Asymptotic normality under signal and under no-signal conditions
- 2) The performance relation for weak signals

$$Kz^{2} n = 2[erf^{-1}(1-2\alpha_{mn}) + erf^{-1}(1-2\beta_{mn})]^{2}$$
 (4-26)

-47-

3) No knowledge of the cdf's $P_O(Y)$ and $P_Z(Y)$ is required other than some functional of $P_O(Y)$ and $P_Z(Y)$ e.g. max. $P_O(Y) - P_Z(Y)$ for the determination of K. Note that K depends only on $P_O(Y)$ and $P_Z(Y)$. 4) The efficiency of the non-likelihood detector is highest when m >> n.

4.7 A Practical Design Procedure

In a practical situation a certain reliability (α, β) is specified and the weakest signal (or smallest z) to be detected is known. A case of the latter is the case of radar detection where z is a function of among others the range of the radar system. So the smallest z for the particular range can be easily determined theoretically or experimentally if the range is known. The first step in the design of a suitable detection system is to choose a non-likelihood detector from the many available e.g. a Mann-Whitney detector, or a Kolmogorov-Smirnov detector based on the Mann-Whitney and Kolmogorov-Smirnov statistical tests, respectively.

The non-likelihood statistical detection tests are asymptotically normal under signal and no-signal conditions and there the situation is as depicted in Fig. 4.2. Now, the threshold U_{χ} that will ensure the required probability of false alarm is given by

$$\ll = \int_{\mathbf{U}_{\mathbf{X}}}^{\infty} \mathbf{p}_{\mathbf{0}} (\mathbf{U}_{\mathbf{m}\mathbf{n}}) \, \mathrm{d} \, \mathbf{U}_{\mathbf{m}\mathbf{n}}$$
 (4-27)

where since $p_0(U_{mn})$ is Gaussian the only constants required are the mean and standard deviation of the random variable U_{mn} under no-signal conditions. These constants can be obtained experimentally, so that

$$\alpha' = \frac{1}{\left[2\pi \sigma_0^2 \left[U_{\text{mn}}\right]\right]^{1/2}} \int_{U_{\alpha'}}^{\infty} \exp\left[-1/2 \frac{\left[y - B_0 \left[U_{\text{mn}}\right]\right]^2}{\sigma_0^2 \left[U_{\text{mn}}\right]}\right] dy \qquad (4-28)$$

writing

$$\lambda_{c_{x}} = \frac{U_{c_{x}} - E_{c_{x}}[U_{m_{x}}]}{U_{c_{x}}[U_{m_{x}}]}$$

and

erf X = 2 (x)^{-1/2}
$$\int_{0}^{X} \exp(-u^{2}) du$$

it follows that

$$\mathcal{L} = 1/2 \ (1 - \operatorname{erf} \lambda \mathbf{a}) \tag{4-29}$$

or

$$\lambda \alpha = \operatorname{erf}^{-1}(1-2\alpha)$$

80

$$U_{ol} = \sigma_{o}[U_{mm}] [erf^{-1} (1-2\alpha)] + E_{o}[U_{mm}]$$
 (4-30)

Therefore, if $\sigma_0[U_{mn}]$ and $E_0[U_{mn}]$ are found experimentally and the required \ll is specified then the threshold U_{∞} can be obtained. If U_{mn} exceeds U_{∞} the decision that a signal is present is made. If U_{mn} is less than U_{∞} the decision that no signal is present is made.

Having insured the required value of \prec through the proper selection of U_{α} , a value of β smaller or equal to the specified value is to be obtained. To do so, we employ the relation

$$Kz^{2} \frac{ma}{m+n} = 2[erf^{-1}(1-2\alpha) + erf^{-1}(1-2\beta)]^{2}$$
 (4-31)

It is taken that $m \gg n$ to insure the highest information efficiency, so that

$$Kz^2 n = 2[erf^{-1}(1-2\alpha) + erf^{-1}(1-2\beta)]^2$$
 (4-32)
The right side of the equation is a known number and so is z, being the smallest signal-to-noise ratio for which a detection is to be affected. The constant K can be obtained theoretically or most often by experiment. Therefore, since everything else is known the number of observations n that will give us the specified \measuredangle and a maximum β equal to the specified false dismissal probability, is obtained. Thus, the whole design problem has been completed. For the case of periodic sampling the number of observations n will give also the time required for detection and consequently the information rate.

From the above design procedure it is seen that the following quantities need to be known:

- 1) the constant K that depends on some functional of $P_{o}(Y)$ and $P_{z}(Y)$
- 2) the mean $\mathbf{E}_{O}[\mathbf{U}_{mn}]$ and $\sigma_{O}[\mathbf{U}_{mn}]$ of the statistic \mathbf{U}_{mn} under no-signal conditions.

Experimental work must be done to obtain these quantities. A detailed description of this experimental work is given in another section of this report.

4.8 General Conclusions

It was stated previously that, for a detection theory in general to be complete,

1) it must suggest the structure of the detection system

2) it must specify procedures for evaluating the performance of such systems (information rate, probability of error)

3) it must specify techniques of system comparison

In Part II of this report where particular non-likelihood detection

criteria (e.g., Mann-Whitney, Kolmogorov-Smirnov, etc.) are investigated, it is shown that the criterion itself suggests the structure of the detection system. These detection systems can be easily implemented using digital techniques.

An evaluation of the performance of the non-likelihood detectors can be made through the relation.

 $Kz^2 n = 2[erf^{-1} (1-2 \checkmark) + erf^{-1} (1-2\beta)]^2$

Through it a lower bound for the information rate may be obtained when α , β , and the smallest z are specified. Also, when the information rate (or n) and the smallest z are specified, an upper bound for the probability of error can be had.

Using the concept of asymptotic relative efficiency a comparison can be made between the different systems. The A.R.E. for periodic sampling becomes a comparison between different systems on the basis of information rate for the same probability of error and same signal-to-noise ratio.

Thus, it is seen that the theory of non-likelihood (non-parametric) detection is complete.

Moreover, the non-likelihood detectors are the only ones appropriate for the case where little is known about the probability distributions. In fact, the only quantities that need to be known are the mean and standard deviation of U_{mn} under no-signal conditions and the constant K. These quantities are easier to obtain than the probability distributions.

Another extremely important advantage of the non-likelihood detectors is that, no assumption is required on the nature of the channel, e.g., whether the noise is additive, multiplicative or both. The only thing it requires is that $P_{o}(Y)$ and $P_{z}(Y)$ have different means.

4.9 Experimental Work Needed

Experimental work is needed to obtain the means and standard deviations of different non-likelihood detectors under different noise densities. Also, the effect of the dependence of the observations on the performance of the system should be ascertained. An experimental set-up can be easily made to do that. Another quantity that has to be experimentally determined is the constant K that depends on $P_{\alpha}(Y)$ and $P_{\alpha}(Y)$ and the particular detector used. A procedure to obtain K is the following: using the same noise and signal and noise probability densities a plot of n vs 2[erf⁻¹ (1-2 \checkmark) + erf⁻¹ (1-2 β)]² for the same z is obtained. From the inverse of the slope of the line that is obtained, K for the detector under consideration and for the particular noise and signal used can be deduced. This experiment is repeated for different noises and signals, if the experiment is done in the laboratory, or it can be done only once in the field for the actual noise and signal that pertain to the particular communication problem of interest (ionospheric transmission, etc.).

PART II SPECIFIC HONLIKELIHOOD DETECTORS; EXAMPLES

4.10 Optimum (Suboptimum) Likelihood Detector

To facilitate comparison of the non-likelihood detectors with the likelihood detector certain results will be obtained pertaining to the likelihood detector. In particular the asymptotic relative efficiency of the likelihood detector will be obtained for various noise and signal and noise distributions.

4.11 The Optimum Detector

It is well-known that the optimum detector bases its decisions on a statistical test known as the likelihood ratio

$$L_n(y_1; ...; y_n; z) = \prod_{i=1}^{n} \frac{p_z(y_i)}{p_o(y_i)}$$
 (4-33)

The important assumption that $P_z(y)$ can be expressed as a series of ascending powers of the signal-to-noise ratio z is now made. In so doing it is assumed that $P_z(y)$ has derivatives of all orders with respect to z at z = 0. It is also assumed that the series converges for all y and for all z. So,

$$P_{z}(y) = P_{o}(y) + zb(y) + O(z^{2}) \qquad 0 \le z < \infty$$

$$-\infty < y < \infty \qquad (4-34)$$

where

Į.

Ī

$$b(y) = \frac{dP_z(y)}{dz} \qquad z = 0 \qquad (4-35)$$

Eq. (4-34) is differentiated with respect to y to obtain

ı

$$p_{z}(y) = p_{0}(y) + zb'(y) + 0(z^{2}) \qquad 0 \le z < \infty$$

$$-\infty < y < \infty \qquad (4-36)$$

where

$$b'(\mathbf{y}) = \frac{db(\mathbf{y})}{d\mathbf{y}} = \frac{d}{d\mathbf{y}} \left[\begin{array}{c} \frac{d\mathbf{P}_{\mathbf{z}}(\mathbf{y})}{d\mathbf{z}} \\ z=0 \end{array} \right]$$
(4-37)

If $P_{z}(y)$ is absolutely continuous, then exchanging differentiation in Eq. (4-37) $b'(y) = \frac{dp_{z}(y)}{dz} |_{z=0}$ (4-38)

Substituting Eq. (4-36) in Eq. (4-33) we obtain

$$L_n(y_1; ...; y_n; z) = 1 + z \sum_{i=1}^n \frac{b'(y_i)}{p_0(y_i)} + O(z)^2$$
 (4-39)

When a strictly increasing relationship exists between two test statistics, then these statistics are equivalent for a given detection problem. If z is sufficiently small the term $O(z)^2$ in Eq. (4-39) may be neglected. Thus, the following equivalent statistic is obtained.

$$\mathbf{L}_{n}^{*}(\mathbf{y}_{1}; \ldots; \mathbf{y}_{n}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbf{b}'(\mathbf{y}_{i})}{\mathbf{p}_{0}(\mathbf{y}_{i})}$$
(4-40)

or

$$\mathbf{L}_{n}^{*}(\mathbf{y}_{1}; \ldots; \mathbf{y}_{n}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial \mathbf{z}} \ln \mathbf{p}_{z}(\mathbf{y}) \Big|_{z=0}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbf{b}'(\mathbf{y}_{i})}{\mathbf{p}_{0}(\mathbf{y}_{i})}$$
(4-41)

The test L_n^* is known as the locally optimum detection criterion since it is optimum only for values of z close to zero. It should be stressed that the L_n^* - test is optimum only for the particular pair of cdf's

-54-

 $P_{o}(y)$ and $P_{z}(y)$ for which it has been designed. The statistic L_{n}^{*} is different for different detection problems with different cdf's $P_{o}(y)$ and $P_{z}(y)$.

It is shown in reference (16) that L_n^* satisfies properties (1') - (7') if the integral

$$\int \left[\mathbf{b}^{2} (\mathbf{y}) / \mathbf{p}_{0}(\mathbf{y}) \right] d\mathbf{z} < \infty$$
(4-42)

is bounded. It is also shown that

$$\frac{d \mathbf{E}_{z} [\mathbf{L}^{*}]}{dz} \bigg|_{z=0} = \int \bigg[b'^{2}(\mathbf{y}) / \mathbf{p}_{0}(\mathbf{y}) \bigg] dz = \mathbf{K}$$
 (4-43)

The quantity

٩

$$\mathbf{e}[\mathbf{U}_{\mathbf{mn}}] = \left[\begin{array}{c} \frac{\mathbf{d} \ \mathbf{E}_{\mathbf{z}}[\mathbf{U}_{\mathbf{mn}}]}{\mathbf{d}\mathbf{z}} \\ \mathbf{z} = \mathbf{o} \end{array} \middle| \mathbf{c}_{\mathbf{o}}[\mathbf{U}_{\mathbf{mn}}] \right]^{2}$$
(4-44)

= Kmn m+n

= Kn when m >> n

has been named by Pitman as the efficacy of the test statistic U_{mn} .

The efficacy of L_n^* is

$$\mathbf{e}(\mathbf{L}_{n}^{*}) = n \int \left[\mathbf{b}^{*2} (\mathbf{y}) / \mathbf{p}_{0}(\mathbf{y}) \right] dz \qquad (4-45)$$

4.12 Detection Problems

1

The first problem, that of detecting a constant signal in additive normal noise, is known as the DC detection problem. The random process N(t) is assumed to be a normal process. Thus, when S(t) is absent the pdf for any data element y, i=1, ..., n is given by

where m and $\delta_{\mathbf{N}}^2$ are the mean and variance of the noise. The signal-to-noise ratio z for this problem is defined as

$$z = \frac{A}{\sigma_{N}}$$
(4-47)

where A is the magnitude of the constant signal.

Thus.

$$\emptyset_{z}(y) = \emptyset_{0}(y-z)$$
(4-48)

So for the above problem $p_{o}(y)$ and $p_{z}(y)$ are related as follows

$$\mathbf{p}_{o}(\mathbf{y}-\mathbf{z}) = \mathbf{p}_{\mathbf{z}}(\mathbf{y}) \tag{4-49}$$

Whenever H_0 specifies a pdf $p_0(y)$ and H_1 specifies a pdf $p_2(y)$ such that Eq. (4-49) is valid, then the detection problem is known as a test for translation alternatives.

The optimum test statistic L_n^{\bigstar} for the DC detection problem hereon designated as t_n is shown to be

$$t_{n}(y_{1}; \ldots; y_{n}) = \frac{1}{n} \sum_{i=1}^{n} \frac{y_{i} \mathscr{O}_{o}(y_{i})}{\mathscr{O}_{o}(y_{i})}$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_{i}$$
(4-50)

where

$$y = \frac{y-m}{N}$$
(4-51)

It is seen that t_n is independent of z and that the optimum detector is a

summing device. The efficacy of t_n is obtained as

$$\mathbf{e}(\mathbf{t}_{n}) = \mathbf{n} \int \mathbf{y}^{2} \, \boldsymbol{\emptyset}_{o} \, (\mathbf{y}) \, d\mathbf{y} = \mathbf{n} \tag{4-52}$$

Thus,

k = 1

The second problem to be examined is the noncoherent detection of a sine-wave in additive normal narrow-band noise, hereon known as the noncoherent detection problem. The process $\{N(t)\}$ is a narrow-band normal random process with mean zero and N(t) is a sample function of this process. Y(t) is the same as N(t) when signal is absent and is the sum of N(t) and a sine-wave when signal is present. The Y_i is a random variable which is obtained from the envelope of a narrow-band normal noise when signal is absent and from the envelope of a narrow-band normal noise plus sine-wave when signal is present. The Y_i when signal is present is

$$\Psi_{\mathbf{A}}(\mathbf{y}) = \frac{\mathbf{y}}{\sigma_{\mathbf{N}}^2} \exp\left[-\frac{(\mathbf{y}^2 + \mathbf{A}^2)}{2\sigma_{\mathbf{N}}^2} \mathbf{I}_0 (\mathbf{A}\mathbf{y} / \sigma_{\mathbf{N}}^2)\right] \quad \mathbf{y} \ge 0 \tag{4-53}$$
$$= 0 \qquad \qquad \mathbf{y} < 0$$

where I_0 is the modified Bessel function of first kind, zero order, A is the peak of the sine-wave, and σ_N^2 is the mean square value of the noise. The pdf when signal is absent is gotten by setting A = 0; thus,

$$\psi_{0}(\mathbf{y}) = \frac{\mathbf{y}}{\sigma_{\mathbf{N}}^{2}} \exp\left[-\frac{\mathbf{y}^{2}}{2\sigma_{\mathbf{N}}^{2}}\right] \qquad \mathbf{y} \ge 0 \qquad (4-54)$$
$$= 0 \qquad \mathbf{y} < 0$$

Let,

$$\mathbf{y} = \frac{\mathbf{y}}{\sqrt{2}\sigma_{\mathbf{N}}^2} = \frac{\mathbf{y}}{\sqrt{2}\sigma_{\mathbf{N}}^2}$$
(4-55)

and

$$z = \frac{A^2}{2 \sigma_N^2}$$
 (4-56)

thus,

$$\psi_{0}(y) = 2y \exp(-y^{2}) \quad y \ge 0$$

= 0 $\quad y \le 0$ (4-57)
$$\psi_{z}(y) = 2y \exp(-y^{2}-z) I_{0}(yz^{1/2}z), \quad y \ge 0$$

= 0 $\quad y \le 0$ (4-58)

The optimum test statistic for the noncoherent detection problem denoted by t'_n is

$$t_n'(y_1; ...; y_n) = \frac{1}{n} \sum_{i=1}^n (y_i^2 - 1)$$
 (4-49)

The t'_n test is a locally most powerful test for the noncoherent detection problem since it charges for values of z other than those close to zero. The detector is a simple square-law device. The efficacy is given by

$$e(t_{n}') = n \int (y^{2} - 1)^{2} \Psi_{0}(y) dy = n$$
 (4-60)

thus, k = 1

It can be shown⁽¹⁶⁾ that in general for translation alternatives

$$e(t_n) = n \tag{4-61}$$

and

$$k = 1$$
 (4-62)

It should be stressed that while the likelihood detector L_n is optimum for all values of z, the modified likelihood detector L_n^* may or may not be optimum depending on the particular pair of cdf's $P_o(y)$ and $P_z(y)$. 4.13 The Mann-Whitney Detector

The Mann-Whitney test was introduced by Mann and Whitney⁽¹⁸⁾ and is based on the statistic

$$V_{mn}(y_1; ...; y_{n+m}) = \frac{1}{mn} \sum_{i=1}^{n} \sum_{j=1}^{m} C(y_i - y_{n+j})$$
 (4-63)

where

The case x = 0 is not considered since if P(y) and $P_{z}(y)$ are continuous, the probability is zero that any one of the y_{i} 's is equal to any one of the y_{n+j} 's.

The statistic V_{mn} essentially counts the number of times the magnitude of an observation y_i exceeds the magnitude of an observation y_{n+j} . This detector can be implemented using digital techniques.

Mean and Whitney have shown⁽¹⁸⁾ that V_{mn} has asymptotically a normal distribution when H_0^i is true if P(y) is continuous and limit of $\frac{m}{n}$ exists as m, n approach infinity. Lehman⁽¹⁹⁾ has shown that V_{mn} has asymptotically a normal distribution when H_1^i is true if P(y) and $P_z(y)$ are continuous and if the limit of $\frac{m}{n}$ exists as m, n approach infinity.

In reference (18) it is shown that

$$\mathbf{E}_{z}[\mathbf{V}_{mn}] = \int \mathbf{P}(\mathbf{y}) \, d\mathbf{P}_{z}(\mathbf{y}) \qquad (4-64)$$

$$\operatorname{mn} \sigma_{z}^{2} [\mathbf{V}_{mn}] = (\frac{\mathbf{m}+\mathbf{n}+1}{12}) + (\mathbf{m}-1) (\alpha - \epsilon_{1}) + (\mathbf{n}-1) (\alpha - \epsilon_{2}) - (\mathbf{m}+\mathbf{n}-1)\alpha^{2} \qquad (4-65)$$

-60-

where

$$\boldsymbol{\alpha} = \frac{1}{2} - \int = \frac{1}{2} - \int \mathbf{P}(\mathbf{y}) \, d\mathbf{P}_{\mathbf{z}}(\mathbf{y})$$
$$\boldsymbol{\epsilon}_{1} = \frac{1}{3} - \int \mathbf{P}^{2}(\mathbf{y}) \, d\mathbf{P}_{\mathbf{z}}(\mathbf{y})$$
$$\boldsymbol{\epsilon}_{2} = \frac{1}{3} - \int [1 - \mathbf{P}_{\mathbf{z}}(\mathbf{y})]^{2} \, d\mathbf{P}(\mathbf{y})$$

when

$$z = 0$$

 $E_0 [V_{min}] = \frac{1}{2}$ (4-66)

$$\sigma_0^2 [\mathbf{v}_{mn}] = \frac{(\mathbf{m}+\mathbf{n}+\mathbf{1})}{12mn}$$

$$= \frac{1}{12n} \quad \text{if } \mathbf{m} >> n$$

$$\mathbf{m} >> 1$$
(4-67)

Thus, the false-alarm probability of the Mann-Whitney detector is indeed independent of P(y), since \prec depends only on the mean and variance of the test statistic under H_0^i , if the test statistic satisfies conditions (1') - (7'). It is shown in reference (16) that V_{mn} does satisfy conditions (1') - (7') if the series expansion for $P_z(y)$ and $P_z(y)$ can be performed and if the efficacy of V_{mn} is not zero.

The efficacy of V_{mn} is given by (16)

$$e(\mathbf{V}_{mn}) = \frac{12mn}{m+n} \left[\int b'(\mathbf{y}) \mathbf{P}(\mathbf{y}) d\mathbf{y} \right]^2$$

$$= 12n \left[\int b'(\mathbf{y}) \mathbf{P}(\mathbf{y}) d\mathbf{y} \right]^2 \quad \text{if } m \gg n$$
(4-68)

The Mann-Whitney detector is particularly well suited to detection problems in which one of the random variables is stochastically larger than the other. Thus, the Mann-Whitney detector is very effective whenever the y_i 's are stochastically larger than the y_{n+j} 's e.g., translation alternatives, noncoherent detection problems.

4.13.1 The Detection Problem of Translation Alternatives

For translation alternatives

Ì.

$$p_{\sigma}(y) = p(y-z) \tag{4-69}$$

where, the mean and variance of the random variable with pdf p(y) are zero and one, respectively.

It should be noted here, that the asymptotic relative efficiency of any detector with respect to the likelihood detector must necessarily be less than, or at most, equal to unity. That is, any detector that has the same \propto and β as the likelihood detector must use a larger number of samples or it must take a longer time for it to decide.

However, if the ARE of the non-likelihood detector with respect to the modified likelihood detector $L_n^{\#}$ is obtained, for those cdf's for which $L_n^{\#}$ is not the optimum test statistic, then the ARE can be anything from zero to infinity.

For translation alternatives the efficacy of V_{mn} is (16)

$$e(\mathbf{v}_{mn}) = \frac{12mn}{m+n} \left[\int p^{2}(\mathbf{y}) d\mathbf{y} \right]^{2}$$
(4-70)
= 12n $\left[\int p^{2}(\mathbf{y}) d\mathbf{y} \right]^{2}$ if m>>n

Hence, the ARE of the V_{mn} detector with respect to the t_n detector for translation alternatives is, if $m >> n^{(20)}$

$$\mathbf{F}_{V,t}(\mathbf{p}) = 12 \left[\int \mathbf{p}^2(\mathbf{y}) \, d\mathbf{y} \right]^2$$
 (4-71)

In particular for the DC detection problem, $p(y) = \emptyset_0(y)$, thus,

$$E_{V,t}(\emptyset_0) = 12 \left[\int (2\pi)^{-1} \exp(-y^2) \, dy \right]^2 \qquad (4-72)$$

= 0.955!!

It is seen that the ARE is very high for the DC detection problem for which the t_n modified likelihood detector is optimum!!

$$E_{V,t}(p) \text{ can be very large}^{(16)} \text{ and the minimum possible value of it}$$

is $\frac{108}{125} = 0.865$ and occurs for the density $p(y)$ given by⁽²¹⁾
 $p(y) = \frac{35}{100} (5-y^2) \quad y^2 < 5$ (4-73)

= 0 otherwise

For the case of the noise having a Rayleigh distribution that is when

$$p(y) = \frac{y}{\mu^2} e$$
 when signal is absent (4-74)

and

$$p_{z}(y) = \frac{y-z}{\mu^{2}} e \frac{-(y-z)^{2}}{2\mu^{2}} \quad \text{when signal is present}$$
 (4-75)

and for

$$\mu^2 = \frac{1}{0.43}$$
 or $\sigma_N^2 = 1$

then

$$E_{V,t} = 12 \left[\int p^{2}(y) \, dy \right]^{2}$$
(4-76)
= 3.48

Thus, the use of the Mann-Whitney detector instead of the modified likelihood detector t_n for the problem of translation alternatives does not entail a serious loss of information rate.

4.13.2 The Moncoherent Detection Problem

For the noncoherent detection problem $e(V_{mn})$ is

$$e(\mathbf{V}_{\mathbf{nn}}) = \frac{12\mathbf{nn}}{\mathbf{n}+\mathbf{n}} \left[\int_{0}^{\mathbf{y}} \psi_{0}^{2} (\mathbf{y}) d\mathbf{y} \right]^{2}$$

= $\frac{12\mathbf{nn}}{\mathbf{n}+\mathbf{n}} \left[\int_{0}^{\infty} 2\mathbf{y}^{3} \exp(-2\mathbf{y}^{2}) d\mathbf{y} \right]^{2}$ (4-77)
= $\frac{3}{4} \frac{\mathbf{nn}}{\mathbf{n}+\mathbf{n}}$
= 0.75 n if $\mathbf{n} > \mathbf{n}$

Thus, the ARE of the Mann-Whitney detector with respect to the t_n^{\dagger} modified likelihood detector is

$$\mathbf{R}_{\mathbf{V},\mathbf{t}_{n}^{\prime}} = 0.75 \text{ for } \mathbf{m} >> \mathbf{n}$$
 (4-78)

Since the Mann-Whitney detector satisfies conditions (1') - (7') then for $z \rightarrow 0$ (weak signals) it obeys the performance relation

$$Kz^{2} \frac{mn}{m+n} = 2 \left[erf^{-1} (1-2\alpha_{mn}) + erf^{-1} (1-2\beta_{mn}) \right]^{2}$$
(4-79)

or for maximum information rate m >> n and

$$Kz^2 n \approx 2 \left[erf^{-1} (1-2\alpha_{mn}) + erf^{-1} (1-2\beta_{mn}) \right]^2$$
 (4-80)

The above relation Eq. (4-80) has been plotted in Figs. (4.3), (4.4) and (4.5). In particular, P_e defined as

$$\mathbf{P}_{\mathbf{a}} = \alpha + \beta \tag{4-81}$$

is plotted vs. the signal-to-noise ratio z (or S/N), for various values of the number of samples (observations) n and for m >> n.

Pe vs. S/N

PROBABILITY OF ERROR VS. SIGNAL-TO-NOISE

RATIO FOR GAUSSIAN NOISE FIGURE 4.3

FIGURE 4.5

4.13.3 Detection of Monstationary Signals in Moise

In all the detection problems thus far considered it was assumed that the peak signal-to-rms-noise ratio remained constant in time. In many practical situations as in scatter propagation this assumption is not justified. The noise N(t) introduced in the channel is a sample function of the continuous stochastic process $\{N(t)\}$. Here it is still assumed that $\{N(t)\}$ is stationary. Thus, the cdf of y_{n+1} j=1, ..., m is still P(y).

The continuous stochastic process $\{Y(t)\}\$ is not stationary when signal is present when the signal strength varies with time. Thus, the cdf of y_i i=1, ..., n differs from the cdf of y_j j=1, ..., n and $j \neq i$.

The detection criterion for the detection of nonstationary signals in noise (e.g. when Rayleigh fading is present in the channel) is equivalent to testing

H[!]₀: cdf of y_i is P(y) i = 1, ..., m+n signal is absent against

where some but not all of the z_i are allowed to be zero. The above hypothesis testing problem is discussed by Noether.⁽²²⁾

The mean and variance of the Mann-Whitney detector for the above hypothesis is (16)

$$\mathbf{E}_{z} [\mathbf{V}_{\mathbf{M}\mathbf{n}}] = \frac{1}{n} \sum_{i=1}^{n} \int \mathbf{P}(\mathbf{y}) \, d\mathbf{P}_{z_{i}} (\mathbf{y})$$
(4-82)

assuming the series expansion of $P_{z_i}(y)$ is possible for all i = 1, ..., n then

$$p_{z_{1}}(y) = p(y) + z_{1} b' (y) + 0(z_{1})^{2}$$
 (4-83)

where

$$b'(y) = \frac{d}{dz} p_{z}(y) | z = 0$$

thus,

$$\mathbf{E}_{\mathbf{z}} \begin{bmatrix} \mathbf{V}_{\mathbf{nn}} \end{bmatrix} = \frac{1}{n} \sum_{\mathbf{i}=\mathbf{l}}^{n} \int \mathbf{P}(\mathbf{y}) \begin{bmatrix} \mathbf{p}(\mathbf{y}) + \mathbf{z}_{\mathbf{i}} \mathbf{b}^{\mathbf{i}}(\mathbf{y}) + \mathbf{O}(\mathbf{z}_{\mathbf{i}}^{2}) \end{bmatrix} d\mathbf{y} \qquad (4-84)$$

$$= \frac{1}{n} \sum_{\mathbf{i}=\mathbf{l}}^{n} \int \mathbf{P}(\mathbf{y}) \mathbf{p}(\mathbf{y}) d\mathbf{y} + \frac{1}{n} \sum_{\mathbf{i}=\mathbf{l}}^{n} \mathbf{z}_{\mathbf{i}} \int \mathbf{b}^{\mathbf{i}}(\mathbf{y}) \mathbf{P}(\mathbf{y}) d\mathbf{y}$$

$$= \frac{1}{n} \sum_{\mathbf{i}=\mathbf{l}}^{n} \int \mathbf{P}(\mathbf{y}) d\mathbf{P}(\mathbf{y}) + \left\{ \frac{1}{n} \sum_{\mathbf{i}=\mathbf{l}}^{n} \mathbf{z}_{\mathbf{i}} \right\} \int \mathbf{b}^{\mathbf{i}}(\mathbf{y}) \mathbf{P}(\mathbf{y}) d\mathbf{y}$$

$$= \frac{1}{n} \sum_{\mathbf{i}=\mathbf{l}}^{n} \frac{1}{2} + \overline{z} \int \mathbf{b}^{\mathbf{i}}(\mathbf{y}) \mathbf{P}(\mathbf{y}) d\mathbf{y}$$

$$= \frac{1}{n} + \overline{z} \int \mathbf{b}^{\mathbf{i}}(\mathbf{y}) \mathbf{P}(\mathbf{y}) d\mathbf{y} \qquad (4-85)$$

whe

$$\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$$
(4-85)

The mean and variance of the Mann-Whitney statistic remain as before,

thus,

$$\mathbf{E}_{\mathbf{O}}[\mathbf{V}_{\mathbf{mn}}] = \frac{1}{2} \tag{4-86}$$

.

.

.

$$\int_{0}^{2} [V_{mn}] = \frac{m+n}{12mn}$$
 (4-87)
= $\frac{1}{12n}$, for m >> n

and in the weak signal case when the z_i are very small, then it can be shown⁽¹⁶⁾ that

$$\sigma_0^2 \left(\mathbf{v}_{\mathbf{mn}} \right) = \sigma_0^2 \left(\mathbf{v}_{\mathbf{mn}} \right) \tag{4-88}$$

It is concluded from the above that all the results obtained previously and pertaining to the Mann-Whitney detector are applicable when the signal is nonstationary (e.g., Rayleigh fading in the channel) by substituting for z the average \overline{z} defined by

$$\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$$
 (4-89)

Thus,

$$\mathbf{E}^{2} n = 2 \left[\operatorname{erf}^{-1} (1 - 2\alpha_{m}) + \operatorname{erf}^{-1} (1 - 2\beta_{m}) \right]^{2}$$
(4-90)

for m>>n

where K has been defined as

$$\mathbf{K} = \frac{1}{n} \mathbf{e}(\mathbf{V}_{\mathbf{MN}}) \tag{4-91}$$

= 12
$$\left[\int b'(y) P(y) dy\right]^2$$

If $\int b^{*}(y) P(y) dy$ is known, then the only information needed to obtain the sample size n in order to detect a nonstationary signal in noise with accuracy α , β is the average signal-to-noise ratio parameter \overline{z} . The parameters \overline{z} and K may be obtained experimentally for any particular pair of signal and signal and noise distributions.

4.14 The Kolmogorov-Smirnov Detector

The Kolmogorov-Smirnov detector is based on the test statistic $K_{mn}(y)$ defined as

$$\mathbf{K}_{\mathbf{M}\mathbf{n}}(\mathbf{y}) = \max_{-\infty < \mathbf{y} < \infty} \left| \mathbf{T}_{\mathbf{n}}(\mathbf{y}) - \mathbf{S}_{\mathbf{M}}(\mathbf{y}) \right|$$
(4-92)

The functions $T_n(y)$ and $S_m(y)$ are the empirical distribution functions of the samples y_1, \ldots, y_n , and y_{n+1}, \ldots, y_{n+m} , respectively, and are defined as follows

$$T_{n}(y) = \frac{1}{n} \text{ number of } y_{1}'s \text{ in the sample } y_{1}, \dots, y_{n} \text{ that are less or}$$
equal to y
$$S_{m}(y) = \frac{1}{m} \text{ number of } y_{n+j}'s \text{ in the sample } y_{n+1}, \dots, y_{n+m}, \text{ that}$$
are less than or equal to y

The asymptotic distribution of $K_{mn}(y)$ under H_0^{\prime} was shown⁽²³⁾ to be

Prob
$$\left[\left(\frac{mn}{m+n}\right)^{1/2} K_{mn}(\mathbf{y}) \leq \mathbf{x} \right] =$$

= 1 - 2 $\sum_{j=1}^{\infty} (-1)^{j-1} \exp(-2j^2 \mathbf{x}^2)$ (4-93)
if $\mathbf{x} \geq 0$
= 0, if $\mathbf{x} \leq 0$

provided P(y) is continuous and that the limit of $\frac{m}{n}$ exists as m and n approach infinity. It is noted that the limiting distribution in Eq. (4-93) is independent of the form of P(y), so that the false alarm probability of this test is independent of P(y).

The asymptotic distribution of $K_{mn}(y)$ when signal is present has not yet been investigated and in general, it is extremely difficult to obtain. However, Massey⁽²⁴⁾ has shown that an upper bound for the false dismissal probability of the K and S detector is

$$\beta_{mn} \leq (2\pi)^{-1/2} \int_{\lambda_1}^{\lambda_2} \exp\left(-\frac{x^2}{2}\right) dx$$
 (4-94)

where

$$\lambda_{1} = \frac{d - (\frac{m+n}{mn})^{1/2} K_{\alpha}}{\left[\frac{P(x_{0})[1-P(x_{0})]}{m} + \frac{P_{z}(x_{0})[1-P_{z}(x_{0})]}{n}\right]^{1/2}}$$

$$\lambda_{2} = \frac{d + (\frac{m+n}{mn})^{1/2} K_{\alpha}}{\left[\frac{P(x_{0})[1-P(x_{0})]}{m} + \frac{P_{z}(x_{0})[1-P_{z}(x_{0})]}{n}\right]^{1/2}}$$

$$d = \max |P_{z}(x) - P(x)|$$

$$= |P_{z}(x_{0}) - P(x_{0})|$$

E

I

I

Ι

I

I

I

ſ

Γ

Γ

ľ

and K_{∞} determines the critical region of false-alarm probability \propto and is given by

Prob.
$$\left[\left(\frac{\mathbf{mn}}{\mathbf{m}+\mathbf{n}} \right)^{1/2} \mathbf{K}_{mn}(\mathbf{y}) > \mathbf{K}_{\alpha} \right] = \alpha$$
 (4-95)

The probability distribution given in Eq. (4-93) has been published by Smirnov⁽²⁵⁾. This table permits one to find the critical values K very easily.

The largest β occurs for λ_2 being largest and λ_1 being smallest possible. When m and n are very large then λ_2 is almost infinity. The smallest λ_1 for fixed d occurs when

$$P(x_0) = P_z(x_0) = 1/2$$
 (4-96)

thus,

$$\lambda_{\perp} = 2 \left[d \left(\frac{mn}{m+n} \right)^{1/2} - K_{\infty} \right]$$
 (4-97)

So the upper bound of β is given by

$$\beta_{mn} \leq (2\pi)^{-1/2} \int_{\lambda_1}^{\lambda_2} \exp(-x^2/2) dx$$
 (4-98)

where λ_1 is given by Eq. (4-97)

It is seen from Eq. (4-97) that λ_1 approaches infinity as m and n approach infinite. Thus,

limit
$$\beta_{mn} = 0$$

 $m \rightarrow \infty$
 $n \rightarrow \infty$ (4-99)

which means that the Kolmogorov-Smirnov detector possesses the important property of consistency. Note that this is true for all continuous cdf's P(y) and $P_z(y)$.

The statistic K_{mn} does not satisfy condition (1) so it is not possible to use the methods developed in Part I to obtain the asymptotic relative efficiency. However, one may proceed as follows. The relation between K_{α} , and α is given by Eq. (4-93)

$$2 \sum_{j=1}^{\infty} (-1)^{j-1} \exp(-2j^2 \kappa^2) = \alpha$$
 (4-100)

When \ll is small then $K_{\not i}$ is large so that in the series expansion of Eq. (4-100) the only significant term is that for j = 1.

Thus,

$$\mathbf{K} = \left[\frac{1}{2} \quad \ln \frac{2}{\alpha}\right]^{1/2} \tag{4-101}$$

The upper bound for the false dismissal probability β is

$$\beta \leq (2x)^{-1/2} \int_{1}^{\infty} \exp(-x^2/2) dx$$
 (4-102)

or

$$\beta \leq \frac{1}{2} \left\{ 1 - \operatorname{erf} \left(\frac{\lambda 1}{\sqrt{2}} \right) \right\} = \frac{1}{2} \left\{ 1 - \operatorname{erf} \left[\frac{\lambda 1}{(2)^{1/2}} \right] \right\}$$

which because of Eq. (4-97) becomes

$$d\left[\frac{mn}{m+n}\right]^{1/2} - X_{\alpha} \leq \frac{1}{(2)^{1/2}} \text{ erf}^{-1} (1-2\beta)$$
(4-103)

adding Eqs. (4-101) and (4-103) yields

$$d^{2} \frac{mn}{m+n} \leq \left\{ \left[\frac{1}{2} \ln \frac{2}{\alpha} \right]^{1/2} + \frac{1}{(2)^{1/2}} \operatorname{erf}^{-1}(1-2\beta) \right\}^{2}$$
(4-104)

The quantity d can be obtained for translation alternatives and for very small z, (weak signals), as

$$d = \max | P_{z}(y) - P(y) | \qquad (4-105)$$

$$-\infty < y < \infty$$

$$= \max | P(y-z) - P(y) |$$

$$-\infty < y < \infty$$

$$= \max \liminf \left\{ z \left[\frac{P(y-z) - P(y)}{z} \right] \right\}$$

$$-\infty < y < \infty \qquad z \rightarrow 0$$

Assuming that

$$\lim_{z \to 0} \frac{P(y-z) - P(y)}{z} = P(y)$$
(4-106)

exists for all y, then

= z M_f

where

.

$$M_{f} = \max p(y)$$
$$-\infty < y < \infty$$

Thus, Eq. (4-104) becomes

$$z^{2} M_{f}^{2} \frac{mn}{m+n} \leq \left\{ \left(\frac{1}{2} f n \frac{2}{\alpha}\right)^{1/2} + \left(\frac{1}{2}\right)^{1/2} \operatorname{erf}^{-1}(1-2\beta) \right\}^{2}$$
(4-108)

For the likelihood detector it was found that

$$e(t_n) = n$$
 for translation alternatives (4-109)
or K = 1

thus for the t_n - test and for translation alternatives the following relations obtain

$$z^{2} n = 2 \left[erf^{-1} (1-2\alpha) + erf^{-1} (1-2\beta) \right]^{2}$$
(4-110)
In Part I, it was defined that

$$\mathbf{E}_{\mathbf{k}'\mathbf{t}} = \liminf_{\mathbf{n}^{\#}} \frac{\mathbf{n}}{\mathbf{n}^{\#}}$$

$$\mathbf{z} \to 0 \qquad (4-111)$$

where both tests are for the same value of z and accuracy α , β . Thus, a lower bound for $\mathbf{E}_{\mathbf{k},t}$ may be obtained as follows

$$\mathbf{E}_{\mathbf{k},\mathbf{t}} \geq 4\mathbf{M}_{\mathbf{f}}^2 \quad \mathbf{Q}(\alpha,\beta) \quad \frac{\mathbf{m}^*}{\mathbf{m}^* + \mathbf{n}^*} \tag{4-112}$$

where m*, n* are the number of samples for the Kolmogorov-Smirnov detector, and

ر ی و میخوند کارد و افغانی میکود و م

$$Q(\alpha,\beta) = \frac{\left[\operatorname{erf}^{-1}(1-2\alpha) + \operatorname{erf}^{-1}(1-2\beta)\right]^2}{\left[\left(\frac{\ell}{2} n \frac{2}{\alpha}\right)^{1/2} + \operatorname{erf}^{-1}(1-2\beta)\right]^2}$$

 $\mathbf{E}_{\mathbf{k},\mathbf{t}}$ is as large as possible when $\mathbf{m}^{*} >> \mathbf{n}^{*}$ and then

$$\mathbf{E}_{\mathbf{k},\mathbf{t}} \geq 4\mathbf{M}_{\mathbf{f}}^2 \quad \mathbf{Q}(\alpha,\beta) \qquad \mathbf{n} \gg \mathbf{n} \qquad (4-113)$$

for translation alternatives

Thus, for the various problems discussed before it follows that 4.14.1 DC Detection Problem

-75-

$$p(y) = \emptyset_0(y) \text{ and } M_{\emptyset_0} = (2\pi)^{-1/2}$$
 (4-114)

80

$$\mathbf{E}_{\mathbf{k},\mathbf{t}}(\boldsymbol{\beta}_{0}) \geq \frac{2}{\pi} \mathbf{Q}(\boldsymbol{\alpha},\boldsymbol{\beta}) = 0.64 \mathbf{Q}(\boldsymbol{\alpha},\boldsymbol{\beta})$$
(4-115)

For a value of $\alpha = \beta = 10^{-3}$

$$\mathbf{E}_{k,t}(\mathbf{ø}_0) \ge 0.50$$

and for $\alpha = \beta = 10^{-5}$

$$\mathbb{E}_{\mathbf{r},\pm}(\mathbf{\emptyset}_0) \geq 0.55$$

The above values are sufficiently high to warrant use of the Kolmogorov-Smirnov detector whenever this detector is appropriate.

4.14.2 Translation Alternatives

It is shown in reference (16) that a lower bound for $E_{k,t}$ for translation alternatives exists, and it is

$$\mathbf{E}_{\mathbf{k},\mathbf{t}} \geq \frac{1}{3} \mathbf{Q}(\alpha,\beta) \tag{4-116}$$

which for $\alpha = \beta = 10^{-3}$ becomes

$$\mathbf{E}_{k,t} \ge 0.26$$

For this problem one obtains

$$4 m_{f}^{2} = 9.28$$
 (4-117)

and, therefore,

$$\mathbf{E}_{\mathbf{k},\mathbf{t}}(\mathbf{Rayleigh}) \geq 9.28 \ \mathbf{Q}(\alpha,\beta) \tag{4-118}$$

which for $\alpha = \beta = 10^{-3}$ becomes

$$\mathbf{E}_{k,t}(\mathbf{Rayleigh}) \geq 7.3$$

k.14.4 Moncoherent Detection Problem

It can be shown easily for⁽¹⁶⁾the noncoherent detection problem that

$$\mathbf{E}_{\mathbf{k},\mathbf{t}} \geq \left(\frac{2}{\mathbf{e}}\right)^2 \mathbf{Q}(\alpha,\beta) \qquad \mathbf{m} >> \mathbf{n} \qquad (4-119)$$

which for $\alpha = \beta = 10^{-3}$ becomes

$$\mathbf{E}_{\mathbf{k},\mathbf{t}} \geq 0.42$$

and for $\alpha = \beta = 10^{-5}$ becomes

$$E_{k,t} \ge 0.47$$

4.15 Rank Detectors

The rank detectors to be discussed in this section are optimum in the sense that for a given α , m, and n they have the smallest β among all size $-\alpha$ rank tests. It should be stressed that these detectors are optimum only for a particular pair of cdf's P(y) and P_z(y).

It has been shown⁽²⁶⁾that if $p_z(y)$ is greater than zero whenever p(y) is greater than zero, then the optimum rank detector of H'₀ against H'₁ is based on the statistic

$$R_{mn}(y_{Nl}; \dots; y_{NN}; z) =$$

$$= E_0 \left[\frac{N}{1 + 1} p_z y_{iy_{Ni}} / p(z_{iy_{Ni}}) \right]$$
(4-120)

where y_1 is the i-th smallest of the combined sample y_1, \ldots, y_{n+m} and y_{Ni} is defined as

$$y_{Ni} = 1$$
, if y_i falls in y_1 , ..., y_n
= 0, if y_i falls in y_{n+1} , ..., y_{n+m}

where N = n+m

For weak signals, z is very small and substituting the series expansion for $P_{z}(y)$ in Eq. (4-120) we obtain an equivalent expression

$$R_{mn}^{*}(y_{N1}; \ldots; y_{NN} = \frac{1}{n} \sum_{i=1}^{N} \alpha_{Ni} y_{Ni}$$
 (4-121)

Where

$$\alpha_{Ni} = \mathbf{E}_{0} \left[\mathbf{b}' (\mathbf{y}_{i})/\mathbf{p}(\mathbf{y}_{i}) \right]$$

In order to use \mathbb{R}^*_{mn} we must know the numbers α_{Ni} . These are very difficult to compute. The function b'(x)/p(x) is found from the particular pair of cdf's P(y) and $P_{z}(y)$ for which the rank detector is optimum. The complexity of the function b'(x)/p(x), and of the cdf P(y) determine whether it is feasible to obtain the numbers α_{Ni} .

It can be shown (16) that \mathbb{R}^*_{mn} satisfies conditions (1') - (7') if the integral

 $\int \left[\mathbf{b'}^2(\mathbf{y})/\mathbf{p}(\mathbf{y}) \right] d\mathbf{y}$

is bounded and if b'(y) is not identically zero.

The mean and variance of R_{mn}^{+} are⁽¹⁶⁾

$$E_{0}(\mathbf{R}^{*}_{\mathbf{MD}}) = \int b^{\dagger}(\mathbf{y}) \, d\mathbf{y} = 0 \qquad (4-122)$$

$$\sigma_{0}^{2}(\mathbb{R}^{*}_{mn}) = \frac{m}{n \ m} \int \left[b'^{2}(\mathbf{y})/\mathbf{p}(\mathbf{y}) \right] d\mathbf{y} \qquad (4-123)$$

Also the efficacy of \mathbb{R}^{*}_{mn} can be shown⁽¹⁶⁾ to be

$$e(\mathbf{R}_{\underline{\mathbf{M}}}^{\underline{\mathbf{H}}}) = \frac{\mathbf{M}}{\mathbf{M}} \int \frac{\mathbf{b}^{2}(\mathbf{y})}{\mathbf{p}(\mathbf{y})} d\mathbf{y}$$
$$= n \int \left[\mathbf{b}^{2}(\mathbf{y})/\mathbf{p}(\mathbf{y}) \right] d\mathbf{y} \quad \mathbf{m} > n \qquad (4-124)$$

The asymptotic relative efficiency of \mathbb{R}^{*}_{mn} with respect to the likelihood detector L_{n}^{*} was proven⁽¹⁶⁾ to be

$$E_{R^{\pm},L^{\pm}} = 1 \text{ for } m >> n$$
 (4-125)

Eq. (4-125) above states the extremely important fact that the rank detector based on \mathbb{R}^{*}_{mn} has the same information efficiency as the likelihood detector based on L^{*}, when the efficiencies are calculated for the particular pair of cdf's P(y) and P_z(y) for which both detectors are optimum. Moreover, the rank detection has the additional advantage that its false alarm probability does not depend on the actual cdf of the y_i's under no signal conditions.

4.15.1 DC Detection Problem

For this detection problem the statistic \mathbf{R}^{*}_{mn} takes the form

$$\mathbf{R}_{\mathbf{M}\mathbf{n}}^{*}\left(\mathbf{y}_{\mathbf{N}\mathbf{l}}^{*}; \ldots; \mathbf{y}_{\mathbf{N}\mathbf{N}}^{*}\right) = \frac{1}{n} \sum_{i=1}^{\mathbf{N}} \mathbf{E}_{\mathbf{0}}\left[\mathbf{y}_{i}^{*}\right] \mathbf{y}_{\mathbf{N}i} \qquad (4-126)$$

where $E_0(y_1)$ is the expected value of the i-th smallest observation of a sample of N from the standard normal distribution.

It has been shown⁽¹⁶⁾ that $\mathbb{E}_{\mathbf{R}_{mn}^{*}}$ is always greater or equal to one and equals one only if p(y) is the standard normal density. Thus, it is always more efficient to use \mathbb{R}_{mn}^{*} than the likelihood detector based on t_{n} , for the problem of translation alternatives.

4.15.2 Translation Alternatives

It can be shown (16) that an upper bound for the sample n exists, and it is

$$n \leq \frac{2}{z^2} \left[erf^{-1} (1-\alpha_{mn}) + erf^{-1} (1-2\beta_{mn}) \right]^2 \quad m >> n$$
 (4-127)

for translation alternatives and for R* as given by Eq. (4-126). 4.15.3 Noncoherent Detection Problem

For this problem an equivalent statistic for R^{\star}_{mn} is T_{mn} defined as

$$T_{mn} (y_{N1}; ...; y_{NN}) = \frac{1}{n} \sum_{i=1}^{N} y_{Ni} \sum_{j=N+1-i}^{N} j^{-1}$$
 (4-128)

According to Eq. (4-125) the nonlikelihood detector based on T_{mn} has the same information efficiency as the likelihood detector based on t'_n . In addition, the rank detector based on T_{mn} has the decided advantage that its false alarm probability is independent of P(y).

CHAPTER V

OPTIMIZATION OF SIGNALING WAVEFORMS

5.1 Introduction

In communication systems, the transmitted signal seems to be that part which has until now received the least scrutiny in the light of modern communication theory. Instead, most communication system analysis usually begins by taking for granted one of the conventional modulations, or a choice of signals is made from a number of traditional types, on the basis of past experience.

Actually, all other factors being fixed, a suitably designed signal holds the promise of transferring to the transmitter some of the signal processing operations now called for at the receiver in order to achieve near-optimum reception. This would be of particular interest in ground-toair and ground-to-space communication. Aside from this, an improvement in performance (error rate) of any given system is indicated if the transmitted signal is optimized with respect to the characteristics of the channel.

In order to determine the extent of possible improvements and to examine some of the problems involved in effecting such improvements, this investigation of Signal Design was initiated, and the work performed in this area thus far is reported in this chapter.

First comes a discussion of the signal design problems which arise in digital communication systems, with a breakdown into various categories, according to the constraints imposed by the system requirements and the

-80-

channel. Then follows a discussion of the specific problem investigated so far and the results obtained.

The work so far has been concerned with the determination of optimum waveshapes which will not give rise to intersymbol interference in a dispersive channel -- i.e., a "channel with memory" -- if the channel characteristics are assumed known. This differs from other published work in signal design, as indicated in section 5.2. A very simple channel model is considered in order that specific results may be discussed.

In section 5.3, reference is made to recent literature on waveforms which eliminate intersymbol interference, and several simple examples of such waveforms are presented. If the channel, transmission rate, and transmitted energy (per waveform) are specified, many such waveforms can be found, but they will generally result in different values of received energy. Therefore, in section 5.4, those waveforms are found which maximize the received energy, given a certain channel. Such waveforms are optimum if the receiver contains a matched filter.

The elimination of intersymbol interference is accomplished at the expense of signal energy. This trade-off is examined in section 5.5. How accurately must the channel parameters be known in order to make possible near-optimum performance? This question is investigated in section 5.6. In section 5.7 it is shown that further optimization is possible if the transmitted waveforms are permitted to overlap somewhat.

Although the results obtained thus far are very interesting, it is clear that considerably more work is required to illuminate the problem considered here as well as other applications of optimum signal design.

-81-

5.2 Outline of Problems

5.2.1 General Discussion

One of the problems involved in the design of a communication system is the specification of waveforms to be transmitted. It is a difficult problem for the following reasons:

1) Often the most important factor determining the optimum transmission waveform is the exact nature of the transmission channel, which, in thecase of radio communication, is usually only vaguely known, and in general also varies considerably with time.

2) All portions of the system impose requirements -- some conflicting -on the signal waveform, making the optimization of the signal waveform often a difficult, if not impossible analytical problem; also, a mathematical solution, if successful, may still not be very useful if it results in a waveshape that is difficult to generate.

Of recent interest are feedback communication systems. These could be arranged to measure channel parameters -- continuously, if necessary -- and then to use the channel estimates thus obtained at the transmitter for proper signal shaping. This is a way of overcoming the difficulty no. 1) above.

The purpose of the current study is to investigate the maximum improvements which can be obtained by proper signal design and thus pertains to item no. 2) above. For this reason in all subsequent discussion it will be assumed that the transmission channel is completely specified.

It should also be pointed out that the scope of this program is restricted to digital communication systems. The situation under consideration may thus be represented by the simple diagram in Fig. 5.1.

-82-

COMMUNICATION SYSTEM, AS CONSIDERED IN THIS CHAPTER

FIGURE 5.1

The waveform generator produces a train of waveforms $e_i(t)$ which are selected from a signal alphabet. The channel is completely specified; it may contain sources (noise, interference), delays, and non-linearities. The "waveform observer" is a suitable device for deciding on the transmitted symbol from the observed waveform, $e_0(t)$. Note that filters and other networks following the waveform generator and preceding the waveform observer can be conveniently lumped into the channel.

5.2.2 Factors Which Determine the Transmitted Waveforms

In any given communication system, a number of requirements restrict the types of signals to be considered for $e_i(t)$. Often the requirements combine to limit $e_i(t)$ to only a single pair of (binary) waveforms. These requirements can be grouped for convenience into three basic categories:

- A) The exact nature of the channel
- B) The performance criterion
- C) Specified constraints concerning the transmission and reception processes.

Typical examples of each category follow.

-83-

5.2.2.1 The Channel

Various ways in which a channel may act on a signal are:

- a) Dispersion, representable by transmission through a lumped constant network
- b) Dispersion, representable by transmission through a distributed constant network
- c) Multipath
- d) Monlinear operation, as in the case of Doppler
- e) Some combination of the above

These effects are present to various extents, regardless of the noise; so that in conjunction with any of the above cases might be considered

- a) No appreciable noise or interference present
- b) Moise of specified statistics present
- c) Specified interfering signals present

5.2.2.2 The Performance Criterion

This must be determined in the case of any communication system design and depends on the nature and purpose of the system. Sometimes several criteria are to be satisfied.

Examples of such criteria are:

- a) Minimization of intersymbol interference
- b) Minimization of adjacent channel interference
- c) Minimization of error rate
- d) Minimization of cost, if suitably defined

5.2.2.3 Constraints

These are additional requirements for the communication system which are initially specified. They may be:

.

- a) Alphabet size. A binary, ternary, or larger signal alphabet may be specified.
- b) Signaling rate. A certain fixed rate may be specified.
- c) Restrictions regarding the generation of waveforms may be given, such as maximum bandwidth, maximum average signal power, maximum peak power.
- d) The detection system may be specified as coherent, or incoherent; maximum permissible delay or storage capacity at the receiver may be specified.
- e) The maximum allowable degradation in system performance resulting from specified changes in certain system parameters.

5.2.3 Problems Investigated in the Past

Considerable work has already been done for some of these cases by a number of investigators.

Optimum signals to be used in the presence of white and colored Gaussian noise have been determined for channels representable by linear constant parameter networks for the case where the duration of each signaling element is substantially larger than the significant part of the channel impulse response, as discussed by Middleton (Ref. 27, Chapter 23) and Lerner (Ref. 28, Chapters 8 and 11). Signals suitable for use with multipath channels have been found to be maximal length binary shift register sequences, as discussed by Price and Green (Ref. 29). Transmission with Doppler has primarily been investigated in connection with Radar (Refs. 30 and 31) which gives rise to different requirements than a communication link because the pertinent information in the received radar signal is its delay.
5.2.4 Specific Problem Considered in this Chapter

Discussion henceforth is limited to channels representable by linear lumped constant networks, with additive Gaussian noise of constant spectral density. No restriction on signaling rate is imposed. The criterion a), minimization of intersymbol interference is applied first. This is then combined with criterion c), minimization of error rate, which in the presence of interfering white Gaussian noise implied maximum energy transfer through the channel. An arbitrary fixed signaling rate is assumed.

5.3 Complete Elimination of Intersymbol Interference

It has been shown by Gerst and Dismond (Ref. 32) that in the case of pulse transmission through linear lumped constant networks, intersymbol interference can be completely eliminated by the use of appropriate signaling waveforms. They also show how to find such waveforms, given the transfer function of the network under consideration. Section 5.3.1 is a summary of the results obtained by Gerst and Dismond which are pertinent to the problem under consideration. The word "pulse" is used in the following and subsequent sections to mean a waveform which is nonzero only in a specified finite time interval.

5.3.1 Waveforms which Achieve Complete Elimination of Intersymbol Interference

a) For any lumped-element constant parameter network, there exist input pulses of arbitrary length <u>a</u>, such that the corresponding outputs of the system are pulses of the same length <u>a</u>.

b) Pulses which satisfy a) may be constructed by one of the following methods:

-86-

Method I:

Ī

I

ļ

The Laplace-transform $E_i(s)$ of the desired input pulse of duration <u>a</u> is given by

$$\mathbf{E}_{i}(s) = G(s) \cdot \prod_{j=1}^{n} \left\{ 1 - \exp\left[-\frac{a - \max(a_{j})}{n} \left(s - \tilde{r}_{j}\right)\right] \right\}; \quad (5-1)$$
where G(s) is an entire function[#] of the form $\frac{1}{D(s)} \sum_{i=1}^{k} e^{-a_{i}s} P_{i}(s)$,

 a_i , i =1, ..., k are non-negative real numbers smaller than <u>a</u>, and j_j , j = 1, ..., n are the n poles of the network transfer function. The simplest function satisfying the requirements for G(s) is, therefore,

$$G(s) = \frac{1-\epsilon}{s} .$$
 (5-2)

<u>Method II</u>: $\sum_{i=0}^{m} k_i s^i$ If $H(s) = \frac{N(s)}{D(s)} = \frac{1=0}{n}$ is the transfer function of the net- $\sum_{i=0}^{n} h_i s^i$ work where $m \le n$ and $h_n = 1$,

then we have for the input pulse, $e_i(t)$, and the associated output pulse $e_o(t)$:

^{*} An entire function is a function of a complex variable which is analytic and has no singularities in the finite plane.

$$e_{1}(t) = h_{0}e_{1}(t) + h_{1}e_{1}^{i}(t) + \dots + h_{n}e_{1}^{(n)}(t),$$

$$e_{0}(t) = k_{0}e_{1}(t) + k_{1}e_{1}^{i}(t) + \dots + k_{n}e_{1}^{(n)}(t);$$

$$(5-3)$$

where $e_1(t)$ is a pulse which has the specified duration and is differentiable n times.

5.3.2 Specific Examples

5.3.2.1 RC Low-pass Network

a) Given the following network, which has the transfer function $H(s) = \frac{d}{s+\alpha}$, $\alpha = \frac{1}{RC}$:

RC LOW-PASS NETWORK

FIGURE 5.2

By method I of section 5.3.1, using

$$-\frac{1}{2}as - \frac{1}{2}a(s+\alpha)$$

$$E_{1}(s) = \frac{1-\epsilon}{s} [1-\epsilon], \qquad (5-4)$$

the following input and output functions are obtained, where u(t) is the unit step:

$$-\frac{1}{2}\alpha a - \frac{1}{2}\alpha a$$

$$e_{1}(t) = u(t) - (1-\epsilon) u(t) - (1-\epsilon) u(t) - (1-\epsilon) - \frac{1}{2}\alpha a$$

$$e_{0}(t) = (1-\epsilon^{-\alpha t}) u(t) - (1-\epsilon^{-\frac{1}{2}\alpha a})(1-\epsilon^{-\alpha t}(t-\frac{1}{2}a)u(t-\frac{a}{2}) - \frac{1}{2}\alpha a$$

$$+ e (1-\epsilon^{-\alpha t}(t-a)) u(t-a) . \quad (5-6)$$

b) If, instead, $\mathbf{E}_{i}(s)$ is chosen to be

I

l

1

$$\mathbf{I}_{1}(s) = \left(\frac{1-\varepsilon}{s}\right)^{2} \left(1-\varepsilon^{-(a/3)(s+a)}\right), \qquad (5-7)$$

then a typical pair of input-output waveforms is the one shown in Fig. 5.4 for the case $a \ll = 1$. The input pulse is now continuous.

c) Applying method II to the RC low-pass network, one notes that the input and output waveforms are of the form

$$\begin{array}{c} e_{1}(t) = \alpha e_{1}(t) + e_{1}^{i}(t) , \\ e_{0}(t) = \alpha e_{1}(t) ; \end{array} \right\} (5-8)$$

where $e_1(t)$ is a pulse waveform which must be a differentiable function of time.

A suitable function to be used for $e_1(t)$ is

$$e_{1}(t) = \begin{cases} (1-\cos\frac{2\pi t}{a})^{2}, & 0 \leq t \leq a \\ 0, & \text{otherwise} \end{cases}$$
(5-9)

With this choice for $e_1(t)$, the following input and output functions result:

$$e_{1}(t) = \alpha (1 - \cos \frac{2\pi t}{a})^{2} = \frac{2\pi}{a} (\sin \frac{4\pi t}{a} - 2 \sin \frac{2\pi t}{a}),$$
 (5-10)

$$e_{o}(t) = \alpha (1 - \cos \frac{2\pi t}{a})^{2} , \qquad \qquad \int 0 = t \leq a \qquad (5-11)$$

For several values of $a \ll$, the waveforms are shown in Fig. 5.5.

INPUT-OUTPUT PULSE PAIRS OBTAINED IN SECTION 5.3.2.1(a)

FIGURE 5.3

-90-

ľ

5.3.2.2 RLC Low-pass Network

a) The RLC network shown below is considered next. To be specific, $R = \sqrt{\frac{2L}{C}}$ is assumed.*

RLC LON-PASS METHORK

FIGURE 5.6

The transfer function is $H(s) = \frac{2\alpha^2}{s^2+2s\alpha+2\alpha^2}$, where $\alpha = \frac{R}{2L} = \frac{1}{\sqrt{2LC}}$.

By method I, using

$$\mathbf{E}_{1}(s) = \frac{1-\epsilon}{s} (1-\epsilon^{-(a/3)[s+d(1+j)]})(1-\epsilon^{-(a/3)[s+d(1-j)]}), \quad (5-12)$$

the input and output pulses are:

$$e_{1}(t) = u(t) - (1 + 2e^{-a \cdot a/3} \cos \frac{a \cdot a}{3})u(t - \frac{a}{3}) + (e^{-2a \cdot a/3} + 2e^{-a \cdot a/3} \cos \frac{a \cdot a}{3})u(t - \frac{2a}{3})$$

$$- e^{-2a \cdot a/3} u(t - a) , \qquad (5 - 13)$$

$$e_{0}(t) = h_{-1}(t) - (1 + 2e^{-a \cdot a/3} \cos \frac{a \cdot a}{3}) h_{-1}(t - \frac{a}{3}) + (e^{-2a \cdot a/3} + 2e^{-a \cdot a/3} \cos \frac{a \cdot a}{3}) h_{-1}(t - \frac{a}{3}) + (e^{-2a \cdot a/3} + 2e^{-a \cdot a/3} \cos \frac{a \cdot a}{3})h_{-1}(t - \frac{2a}{3}) - e^{-2a \cdot a/3}h_{-1}(t - a), \qquad (5 - 14)$$

^{*} This example is also presented in Ref. 32.

where

$$h_{-1}(t) = u(t)[1-e^{-\alpha t}(\cos \alpha t + \sin \alpha t)]$$
 (5-15)

Typical waveforms are shown in Fig. 5.7.

b) Method II is now applied to the same network, and the same auxiliary function $e_1(t)$ is chosen as was used in section 5.3.2.1. The resulting input and output functions are:

$$e_{i}(t) = (2x^{2})(1 - \cos\frac{2\pi t}{a})^{2} + 8\frac{\pi d}{a}(\sin\frac{2\pi t}{a} - \frac{1}{2}\sin\frac{4\pi t}{a}) + 8\frac{\pi^{2}}{a^{2}}(\cos\frac{2\pi t}{a} - \cos\frac{4\pi t}{a}),$$

$$0 \le t \le a. \qquad (5-16)$$

$$e_{o}(t) = 2x^{2}(1 - \cos\frac{2\pi t}{a})^{2}, \qquad 0 \le t \le a. \qquad (5-17)$$

The waveforms are again plotted for several values of $a \propto in$ Fig. 5.8. 5.3.3 Pulse Transmission Efficiency

Since for any given network a wide variety of input pulses result in output pulses of the same duration, which of these input pulses are to be preferred over other such input pulses? The answer to this question in general depends on additional specifications regarding the communication system, such as are listed in section 5.2.2. In the specific case under consideration as outlined in section 5.2.3, however, it is desirable to maximize the received energy, which will minimize the error rate in the case of a matched-filter receiver.

A convenient concept for this purpose is the "pulse transmission efficiency," $\eta_{\rm p}$, defined as the ratio of the "energy contents" of the

THEFT-OUTIVE FURME PAIRS COMMITTEE IN ADDITION 5.3.2.2 (a) FIGURE 5.7

INVE-OVERUE PULAE PAINS OBBAINED IN SECTION 5-3-8-8 (a)

710088 5.7

FIGURE 5.8

output and input pulse waveforms, each on a "one-ohm basis":

$$\eta_{\rm p} = \frac{\int_{0}^{a} e_0^2(t) dt}{\int_{0}^{a} e_1^2(t) dt}$$
(5-18)

The implication is that the network representing the channel does in fact not present a frequency-dependent input impedance to the waveform generator, (Fig. 5.1) and the waveform observer does not load the channel output. The latter condition can always be maintained by incorporating in the network representing the channel any loading at the channel output. The former condition, however, applies only if the waveform generator is suitably de-coupled from the channel, as would be the case in a radio transmission. Fig. 5.1 might, therefore, be specialized to the following normalized form where the amplifiers have unit gain, infinite input impedance, zero output impedance:

REFINDENT OF FIGURE 5.1

FIGURE 5.9

Using this representation,
$$\int_0^a e_1^2$$
 (t) is the energy supplied by the

waveform generator, and $\int_0^a e_0^2(t)$ is the energy delivered to a waveform observer which has 1 ohm imput impedance.

5.3.3.1 $\eta_{\rm p}$ for the Waveforms Considered in Section 5.3.2.1

Three types of input-output pulse pairs were considered for the NC low-pass network, under a), b), and c) in section 5.3.2.1. The pulse transmission efficiencies for these three types are plotted in Fig. 5.10 as functions of the pulse duration (a) expressed as a multiple of the time constant $(\frac{1}{d})$. It may be noted from these curves that the rectangular shaped input pulse (type "a") results in the greatest energy transfer through the channel for all but very long pulse durations (longer than five time constants).

5.3.3.2 η_p for the Waveforms Considered in Section 5.3.2.2

The values of η_p for the two types of waveforms considered under a) and b) of section 5.3.2.2, for the RLC low-pass network, may be plotted as function of the pulse duration similar to the above, and the graph in Fig. 5.11 results. It can be seen that for this network, the rectangular shaped input pulse also results in the greater energy transfer through the network.

5.4 Optimum Waveshapes for Complete Elimination of Intersymbol Interference

In section 5.3, it was seen that a number of pulse shapes may be applied to a given network so that the output is a pulse of the same duration, but these input pulse shapes in general differ in their ability to transmit energy through the network.

Of the many pulse shapes of specified duration which, when applied

ł

PIONE 5.11

to a specified network, produce a pulse output, can one be found which maximizes η_p ? 5.4.1 Maximization of η_p

If "Method II" of section 5.3.1 is used to describe the input-output pulse pairs of specified duration associated with a given network, then η_p can be seen to depend only on the choice of the relatively unrestricted auxiliary function, $e_1(t)$. The only requirements on $e_1(t)$ are that it be a pulse which has the specified duration, and it must be differentiable n times, where n is the order of the denominator of the network transfer function.

The Calculus of Variations can, therefore, be applied to find that pulse shape for $e_1(t)$ which maximizes η_p , but with the limitation that in general only 2n-times differentiable functions are admitted as possible solutions.

The expression for $\eta_{\rm p}$ is

ſ

$$\eta_{p} = \frac{\int_{0}^{a} e_{0}^{2}(t) dt}{\int_{0}^{a} e_{1}^{2}(t) dt} = \frac{\int_{0}^{a} \left[\sum_{i=0}^{m} k_{i} e_{1}^{(i)}(t)\right]^{2} dt}{\int_{0}^{a} e_{1}^{2}(t) dt} = \frac{H_{\eta}}{\int_{0}^{a} e_{1}^{(i)}(t)} = \frac{H_{\eta}}{\int_{\eta}^{\eta}}$$
(5-19)

Then the first variation of η_p , $\delta \frac{H}{D_{\eta}} = \frac{D \delta M}{D_{\eta}} - \frac{M}{D} \delta D_{\eta}$ must vanish for all variations δe_1 vanishing at t = 0 and t = a. Let $\lambda = maximum$ value of η_p ; then for all such δe_1 , the following condition must hold for the optimizing function $e_1(t)$:

$$\delta \mathbf{M}_{\eta} - \lambda \delta \mathbf{D}_{\eta} = \delta \int_{0}^{\mathbf{R}} \left[\left(\sum_{\mathbf{i}=0}^{\mathbf{R}} \mathbf{k}_{\mathbf{i}} \mathbf{e}_{\mathbf{i}}^{(\mathbf{i})} \right)^{2} - \lambda \left(\sum_{\mathbf{i}=0}^{\mathbf{n}} \mathbf{h}_{\mathbf{i}} \mathbf{e}_{\mathbf{i}}^{(\mathbf{i})} \right)^{2} \right] dt = 0 .$$
 (5-20)

Then the optimizing function $e_1(t)$ must satisfy Euler's equation of order 2n, in the interval $0 \le t \le a$:

$$(k_{0}^{2} - \lambda h_{0}^{2}) e_{1}(t) + [2(k_{0}k_{2} - \lambda h_{0}h_{2}) - (k_{1}^{2} - \lambda h_{1}^{2})] e_{1}''(t) + + \dots + + (-1)^{n-1} [2(k_{n-2}k_{n} - \lambda k_{n-2}h_{n}) - (k_{n-1}^{2} - \lambda h_{n-1}^{2})] e_{1}^{(2n-2)}(t) + + (-1)^{n} (k_{n}^{2} - \lambda h_{n}^{2}) e_{1}^{(2n)}(t) = 0, k_{1} = 0 \text{ for } 1 > m;$$
 (5-21)

with the boundary conditions

$$e_1(0) = e_1(a) = e_1'(0) = e_1'(a) = \dots = e_1^{(n-1)}(0) = e_1^{(n-1)}(a) = 0.$$
 (5-22)

Because boundary conditions are specified at both end points, equation (5-21) is readily solved only for simple cases.

5.4.1.1 RC Low-pass Network

For the network of section 5.3.2.1, Euler's equation becomes

$$e_1'' + \alpha^2 (\frac{1}{\lambda} - 1) e_1 = 0.$$
 (5-23)

The solutions of this equation, satisfying $e_1(0) = e_1(a) = 0$, are of the

form
$$e_1(t) = c \sin \alpha \left(\frac{1-\lambda}{\lambda}\right)^{1/2} t$$
, where $\frac{1-\lambda}{\lambda} = \left(\frac{n\pi}{a\alpha}\right)^2$, $n = 1, 2, ...$

The value of n which results in the largest λ is clearly n = 1, so that the optimum pulse transmission efficiency in the RC low-pass case is given by

-100-

$$\widehat{\eta}_{p} = \frac{1}{1 + \left(\frac{\pi}{a^{1}}\right)^{2}}$$
(5-24)

and the optimum waveforms are:

$$e_{1}(t) = e_{1}(t) + e_{1}'(t) = c \left[\alpha \sin \frac{\pi}{a} t + \frac{\pi}{a} \cos \frac{\pi}{a} t \right]$$
$$= \frac{c\alpha}{\cos \arctan \frac{\pi}{a\alpha}} \sin(\frac{\pi t}{a} + \arctan \frac{\pi}{a\alpha}); \qquad (5-25)$$

$$e_0(t) = \alpha e_1(t) = c \alpha \sin \frac{\pi}{a} t.$$
 (5-26)

The optimum waveforms are shown in Fig. 5.12 for the case $a \neq = x$, and $\hat{\eta}_p$ is plotted in Fig. 5.13, with the results obtained in sections 5.3.3.1 shown as dotted lines for comparison. For small $a \ll$, this optimum signal can be seen to result in about a 1 db improvement over the best signal of section 5.3.2.1.

In this first-order case, the variational solution represents an optimization over all those functions $e_1(t)$ whose first derivative exists and is continuous, over the pulse duration. It therefore takes into account all permissible functions $e_1(t)$ except those which contain abrupt changes of slope for $0 \le t \le a$. That no function of the latter type can be the optimum $e_1(t)$ can be surmised from the fact that it could be approximated arbitrarily closely by a function with continuous derivative, while the above solution has no suggestion of corners in the interval $0 \le t \le a$. 5.4.1.2 RLC Low-pass Network

If the variational method is applied to the network considered in section 5.3.2.2, the Buler differential equation becomes:

$$e_{1}^{\prime \prime \prime \prime}(t) + 4 \propto \frac{4}{(1-\lambda)} e_{1}(t) = 0$$
. (5-27)

-101-

-102-

The following results are obtained, which are plotted in Figs. 5.14 and 5.15:

$$\hat{\eta}_{p} = \frac{1}{1 + (\frac{3}{2\sqrt{2}} \frac{x}{ad})}$$
(5-28)

$$e_{1}(t) \doteq c \left\{ \left[2d^{2} - \left(\frac{4.73}{a}\right)^{2} \right] \cos \frac{4.73}{a} \left(t - \frac{a}{2}\right) - 9.46 \frac{d}{a} \sin \frac{4.73}{a} \left(t - \frac{a}{2}\right) + .133 \left[2d^{2} - \left(\frac{4.73}{a}\right)^{2} \right] \cosh \frac{4.73}{a} \left(t - \frac{a}{2}\right) + 1.26 \frac{d}{a} \sinh \frac{4.73}{a} \left(t - \frac{a}{2}\right) \right\}$$
(5-29)

$$e_{0}(t) = c(2a^{2}) \left[\cos \frac{4.73}{a}(t-\frac{a}{2}) + .133 \cosh \frac{4.73}{a}(t-\frac{a}{2})\right]$$
 (5-30)

Fig. 5.15 also shows the results obtained in section 5.3.3.2 as dotted lines for comparison. It can be seen that for small $a \triangleleft$, the optimum signal (Eq. 5-29) results in an improvement of about 2.5 db over the 3-step signal of section 5.3.2.2.

The above solution represents an optimization over the restricted class of pulse waveforms $e_1(t)$ which are four times differentiable in the range 0 4 t 4 a.

5.4.2 Bandpass Channels

|

Although only low-pass networks have been considered up until now, the above results may be generalized to bandpass equivalents if the "high-Q assumption" is valid, that is, if the response of the bandpass network is effectively zero at zero frequency. In that case, the optimum pulse waveforms are modulated carriers, with the carrier frequency equal to the center-frequency of the network and the envelope equal to the pulse shape as obtained for the equivalent low-pass case.

FIGURE 5.15

5.5 Comparison with Simple Rectangular Pulse Transmission

The complete cancellation of intersymbol interference has of course been achieved at the expense of a reduction in received energy for a fixed transmitted energy (per pulse). For instance, it can easily be verified, that the gated sine wave signal in section 5.4.1.1 results in a smaller received energy than would a rectangular pulse of equal duration applied to the same channel, given a fixed transmitted energy. But full use of the energy of the rectangular pulse can only be realized if a single pulse is to be transmitted, so that the receiver may observe the exponentially decaying transient over a suitable length of time (which depends on the channel time constant)--i.e., no chance for intersymbol interference.

Thus it is clear that a meaningful comparison must include a consideration of intersymbol interference and transmission rate. For this purpose, a "conventional" transmission consisting of rectangular pulses is appled to the RC low-pass channel, and the performance of this system is compared with the one in section 5.4.1.1.

5.5.1 Simple Rectangular Pulse System

IJ

1

Let the transmitted signal element of duration <u>a</u> consist of a rectangular pulse of duration <u>d</u>, where $d \neq a$. This signal element and its opposite polarity counterpart comprise the binary signal alphabet. The duration <u>d</u> is fixed but not initially specified, in order to permit some control over the intersymbol interference by selection of a suitable value for <u>d</u>. Channel input and output waveforms for a typical transmission of this type are shown in Fig. 5.16:

SIMPLE RECTANGULAR PULSE SYSTEM

FIGURE 5.16

It can be seen that it may be desirable to make \underline{d} smaller than \underline{a} , in order to reduce the intersymbol interference. An expression for this interference will now be obtained.

First it is necessary to give a quantitative definition for the intersymbol interference. As previously stated, the waveform observer is assumed to be a matched filter. Its output after every received signal element, and in the absence of interference of any kind, is one of two possible voltage levels of equal magnitude and opposite polarity. By intersymbol interference will be understood the fractional contribution to this voltage level, due to signal energy transmitted prior to the particular signal element intended to be indicated by this voltage.

The intersymbol interference experienced by any received element may thus depend on the polarities of several preceding signal elements. In the computations which follow, the <u>maximum</u> intersymbol interference, denoted by I_, will always be considered; i.e., the interference which -- for the system being considered -- arises from a string of equal polarity pulses.

 E_{Ol} , the energy received in the interval 0 < t < a, due to a signal element transmitted during 0 < t < a, is: (assuming pulse amplitude = 1 at channel input)

$$\mathbf{E}_{01} = \int_{0}^{d} (1 - \epsilon^{-\alpha t})^{2} dt + \int_{d}^{a} [(1 - \epsilon^{-\alpha d}) \epsilon^{-\alpha (t-d)}]^{2} dt$$
$$= d - \frac{1}{\alpha} + \frac{\epsilon^{-\alpha d}}{\alpha} - \frac{1}{2\alpha} (\epsilon^{2\alpha d} - 2\epsilon^{\alpha d} + 1) \epsilon^{-2\alpha a}.$$
(5-31)

The value of the output voltage at t = 0, due to a single transmitted pulse initiated at t = -a, is $e_0(0) = (e^{\alpha d} - 1)e^{-\alpha a}$. After another element length this voltage decays to $e_0(a) = (e^{\alpha d} - 1)e^{-2\alpha a}$; etc. The maximum possible interfering waveform, in the interval 0 < t < a, due to a string of equal-polarity input pulses preceding t = 0 is therefore

$$e_{\mathbf{x}}(t) = (\epsilon^{\alpha d} - 1) \left(\sum_{n=1}^{\infty} \epsilon^{-\alpha n} \right) \epsilon^{-\alpha t}$$
$$= \frac{(\epsilon^{\alpha d} - 1)\epsilon^{-\alpha n}}{1 - \epsilon^{-\alpha n}} \epsilon^{-\alpha t} , \quad 0 < t < a.$$
(5-32)

Contribution by this interference to the output of the matched filter is

Į_

$$E_{ox} = \int_{0}^{a} e_{o}(t) e_{x}(t) dt$$

$$= \frac{(\epsilon^{\alpha d} - 1)^{-\alpha a}}{1 - \epsilon^{-\alpha a}} \left[\int_{0}^{d} (1 - \epsilon^{-\alpha t}) \epsilon^{-\alpha t} dt + \int_{d}^{a} (1 - \epsilon^{-\alpha d}) \epsilon^{-\alpha (t - d)} \epsilon^{-\alpha t} dt \right]$$

$$= \frac{e_{o}^{2}(0)}{2\alpha} - \frac{\epsilon^{\alpha (a - d)} - \epsilon^{-\alpha a}}{1 - \epsilon^{-\alpha a}}.$$
(5-33)

The intersymbol interference is therefore

$$I_{m} = \frac{E_{ox}}{E_{ol}} = \frac{e_{o}^{2}(0) (\epsilon^{\alpha(n-1)} - \epsilon^{-\alpha n})}{[2\alpha d + 2\epsilon^{-\alpha d} - 2 - e_{o}^{2}(0)] (1 - \epsilon^{-\alpha n})}.$$
 (5-34)

As in earlier sections, it is again convenient to normalize with respect to α and thus to make a α one variable in the above equation, while <u>d</u> can be written as a fraction of a.

The solid curves in Fig. 5.17 are contours of constant I_m plotted in the a α , $\frac{d}{a}$ plane. Some incidental facts about the rectangular pulse system may be noted. It can be seen that as a α decreases, I_m increases rapidly. For small values of a α , changing <u>d</u> has mittle effect on the maximum intersymbol interference. However, for any given value of a α (given channel time constant and transmission rate), I_m is always minimized by making d = 0. Unfortunately, this means no transmission.

The pulse transmission efficiency of the rectangular pulse system, $\eta_{r}(d)$, is given by the expression

$$\eta_r(d) = \frac{\mathbf{E}_{01}}{\mathbf{E}_1} = \frac{\mathbf{E}_{01}(d)}{d}$$
 (5-35)

This may be compared with n_p for the transmission system in section 5.4.1.1. <u>5.5.2 Comparison of the Transmission of Section 5.4.1.1 with that of</u> <u>Section 5.5.1</u>

An RC low-pass channel with a certain time constant $\frac{1}{\alpha}$ is assumed given, and it is desired to transmit at a certain rate $\frac{1}{a}$ through this channel; i.e., a is assumed specified. In addition it is specified that the intersymbol interference may not exceed a certain value.

Two types of transmissions are considered for use in this situation, the gated sinusoid transmission of section 5.4.1.1 and the rectangular

|.

pulse transmission of the previous section, the latter with arbitrary value for <u>d</u>, $d \leq a$. For the specified conditions, how do the pulse transmission efficiencies for the two types of signals compare?

It is merely necessary to consider the ratio $\frac{\eta_r(\tilde{d})}{\eta_p}$. If this ratio is greater than 1, the rectangular pulse transmission is more efficient; if it is less than 1, the gated sinusoid transmission is more efficient.

Contours of constant values for this ratio are shown as dashed lines in Fig. 5.17. To the left of the contour $\frac{\eta_r}{\eta_p} = 1$, the rectangular pulse transmission is more efficient. Note that this is possible only if about 4% maximum intersymbol interference, or more, is permitted. Thus, if the allowable maximum intersymbol interference is greater than about 4%, <u>and</u> <u>also</u> is such that it can be satisfied by the rectangular pulse transmission for a specified value of $\alpha\alpha$, then <u>d</u> can be adjusted to make the rectangular pulse transmission more efficient. For instance, if $\alpha\alpha = 1.8$ and $I_m = 40\%$ maximum are specified, then transmission of rectangles of duration $\frac{3}{4}$ a is 50% more efficient than the gated sinusoid transmission.

What happens as $\frac{1}{\alpha\alpha}$ -- the product of transmission rate and time constant -- is to be increased, while the maximum tolerated I_m is held constant, can be seen by sliding along the appropriate I_m contour in Fig. 5.17, or by referring to Fig. 5.18, where I_m is read along the vertical axis. Let the specified maximum intersymbol interference be 10%. The performance of the rectangular pulse system can be seen to be as follows:

 $a\alpha > 6.5$: $I_m < 0.1$ always, for $d \le a$ (greatest efficiency is achieved with d slightly less than a; $\eta_r < \eta_p$ slightly).

FIGURE 5.18

6.2< aα<6.5: I_m≤0.1 by suitable selection of d; η_r slightly less than η_p
3.0< aα<6.5: I_m≤0.1 and η_r≥η_p by suitable selection of d
2.4< aα<3.0: I_m≤0.1 but η_r<η_p for all allowable d
aα<2.4: I_m exceeds 0.1

5.5.3 Summary of Comparison

In summary the following conclusions may be drawn from the above com_arison. Consider a fixed channel time constant:

 If the time allotted to one signal element is sufficiently long (compared to the channel time constant), the gated sinusoid signal is very slightly superior to the rectangular pulce signal.

2. There is a range of element durations in which the rectangular pulse transfers more energy through the channel than does the gated sinusoid, and yet does not produce excessive intersymbol interference. For instance, if no more than 10% maximum intersymbol interference is tolerated, this range is about 2:1, corresponding to $3.0 < a\alpha < 6.2$.

3. For short durations (high transmission rate) the gated sinusoid transmission becomes much less efficient than the rectangular pulse transmission, but the latter results in very large intersymbol interference. In other words, as the transmission rate is increased, the intersymbol interference produced by the rectangular pulse system increases, and it takes an increasing fraction of the transmitted energy to achieve elimination of the intersymbol interference.

5.6 Sensitivity of the Optimum Performance to Changes in Channel Parameters

After the optimum input pulse - one which maximizes the energy transfer through the given channel - has been found, it is of interest to determine the effect of slight changes in the channel characteristics. In such a case, the output is generally no longer a pulse, and consideration must be given to the energy received during the intended pulse duration, as well as the energy received thereafter due to the remaining transient, the sum of the two being the total received energy for t > 0.

A change in the channel parameters (or their inaccurate determination) thus affects system performance not only by a change in the received energy, but also by the introduction of intersymbol interference which had been thought eliminated. Besides, the received waveform also changes, so that the "waveform observer" would have to be matched to a new waveform in order to utilize fully the received energy. This latter problem is not considered in this section, but the received energies have been computed for a particular case.

5.6.1 The Pulse of Section 5.4.1.1 Transmitted Through an Arbitrary NC Low-pass Network

In section 5.4.1.1 the input pulse waveform of specified duration was found which effects the most efficient energy transfer through an RC low-pass network of time constant $\frac{1}{\alpha}$ and results in a pulse at the output. If this input waveform is applied to an RC low-pass network with time constant $\frac{1}{\pi}$, then the following observations can be made:

- a) The output waveform is a pulse only if $\alpha = \gamma$. (Fig. 5.19)
- b) For a given transmitted energy the energy received during the interval $0 \le t \le a$ increases with γ , but for $\gamma > \alpha$ it is less than it would be if the transmission were optimized for γ , whereas for $\gamma < \alpha$ it is greater than what it would be if the transmission were optimized for γ . (Fig. 5.20)

c) For $0.5 \leq \frac{7}{\alpha} \leq 2.6$, approximately, the energy received <u>after</u> the time interval (o, a) is always less than 10% of the energy received <u>during</u> (o, a). For $0.8 \leq \frac{7}{\alpha} \leq 1.3$, approximately, the energy received <u>after</u> the time interval (o, a) is always less

than 1% of the energy received <u>during</u> this interval. (Fig. 5.21) More detailed information may be taken from the accompanying graphs which give the results of the computations performed. It may be concluded that the performance of the system of section 5.4.1.1 is not very sensitive to small changes in channel time constant.

5.7 Transmission of Overlapping Pulses

In this section, a mode of pulse transmission is considered which differs from the one implied in the discussion up till now. It will be shown that a further improvement over the optimum transmission of section 5.4 is possible.

So far, it has been assumed that signal energy which is transmitted during the interval (o, a) but received after time t = 3 causes intersymbol interference, i.e., the next signaling element is transmitted and received in the interval (a, 2a). Instead, pulses are now transmitted so that their durations partially overlap, the region of overlap being specified. The receiver is assumed to make no observations during the interval of overlap.

The same kind of channel is assumed as has been considered in previous sections.

In order to make the results obtained here commensurate with those of the earlier sections, the transmission rate, $\frac{1}{a}$, should remain the same; i.e., new pulses are initiated every <u>a</u> seconds. The pulse duration

COMPARISON OF EMERGY RECEIVED DURING AND AFTER THE INTERVAL (0, a)

FIGURE 5.21

is, therefore, taken to be a + b, where b is the interval of overlap, as indicated in Fig. 5.22.

PULSE TRANSMISSION WITH OVERLAP

FIGURE 5.22

Since the waveform observer is only operating during the interval (b, a), the performance criterion becomes the ratio

$$\eta_{p}(b) = \frac{\text{received energy during the interval (b, a)}}{\text{average transmitted energy per pulse}}$$
(5-36)

Because the waveforms also overlap at the transmitter, the denominator of the above expression requires some additional assumptions. Let it be assumed that successive transmitted pulses are selected independently with equal probability from an antipodal binary waveform alphabet. In that case,

$$\eta_{p}(b) = \frac{\int_{b}^{a} e_{o}^{2}(t) dt}{\int_{b}^{a} e_{1}^{2}(t) dt + \frac{1}{2} \int_{0}^{b} [e_{1}(t) + e_{1}(t-a)]^{2} dt + \frac{1}{2} \int_{0}^{b} [e_{1}(t) - e_{1}(t-a)]^{2} dt}$$
$$= \frac{\int_{b}^{a} e_{o}^{2}(t) dt}{\int_{0}^{a+b_{2}} e_{1}^{2}(t) dt}$$
(5-37)

5.7.1 The Pulse of Section 5.4.1.1 Transmitted with Overlap

As a specific example, the optimum system of section 5.4.1.1 will now be called upon to transmit at some rate $\frac{1}{a}$ with some overlap b, $0 \le b < a$. Is it possible to achieve an improvement over the performance obtained in section 5.4.1.1?

For this system,

$$\eta_{\rm p}(b) = \frac{(a^2 - b^2) + \frac{1}{\pi} (a + b)^2 \sin \frac{2\pi b}{a + b}}{(a + b)^2 + \frac{\pi^2}{\alpha^2}}$$
(5-38)

A plot of this expression, for different values of $a\alpha$, is given in Fig. 5.23 and indicates that a non-zero value for b can improve the energy transfer through the system, in spite of the fact that some of the received energy is deliberately discarded.

This shows that further optimization of the transmitted signal is possible (beyond the optimum obtained in section 5.4) while still avoiding intersymbol interference.

5.8 Conclusions

The investigation reported in this chapter shows that definite

FIGURE 5.23

improvements can be achieved in the performance of a communication system by giving suitable consideration to the design of signals. An alternate benefit to be derived from an application of signal design would be the easing of coding requirements while maintaining the same system performance.

Optimum pulse signals have been found for non-overlapping transmission which satisfy the requirment of zero intersymbol interference at the receiver. This optimization has been made for arbitrary signaling rates. The signals obtained in this manner for a given channel can be used for transmission at rates that are sufficiently high to prohibit the use of simple rectangular pulses because these cause excessive smearing of the received waveforms.

It has been shown that for a simple channel model the performance obtained with signals that are optimized for this channel does not degrade rapidly with changes in the channel characteristics. This is of particular interest in establishing requirements for channel identification measurements.

Finally it has been shown that further performance improvement is possible by permitting successive transmitted waveforms to overlap somewhat.

Only very specific cases have been examined in some detail in this preliminary study. However, the results obtained give some insight into the properties and behavior of signals in digital communications. They also point out the need for much more work in this area. More theory must be developed to treat the problem of signals design, while the results to be obtained are almost certain to greatly benefit the communications art. Further investigations should specifically be concerned with the following topics:

ł

2

- Continuation of the work presented in this chapter, that is, the optimization of transmission for the system model as described in section 5.2.3.
- The application of other performance criteria, such as given in section 5.2.2.2, suitably related to practica! system requirements.
- 3) Consideration of models for more general types of channels, as listed in section 5.2.2.1, which also includes the problem of specifying appropriate channel models on the basis of specified practical system parameters.
CHAPTER VI

PERFORMANCE OF ERROR CORRECTING CODES

6.1 Introduction

An important method of increasing the reliability of digital data transmission systems is the coding of the information to be transmitted in such a manner as to enable the receiver to detect and possibly correct the more probable error patterns that the channel may introduce. A brief heuristic discussion of the philosophy of coding for error reduction appears later in this chapter.

Many coding/decoding schemes, of varying complexity and capabilities, have been proposed; it is standard to express the capability of a code in terms of the types and magnitudes of the error patterns which that code will detect, or detect and correct. However, such expressions of capability are useful in the analysis of the "goodness" of the code only with reference to other codes of similar complexity; they do not allow comparison of the performance of an uncoded channel to that of a channel utilizing the code.

It is the intention of this chapter, then, to explore the relative advantages (principally, an increase in reliability) of coded versus uncoded systems, and the costs (in the most general sense) of attaining these advantages. Although the form of a general solution valid for all codes of the type studied is presented, analytic and numerical results are obtained only for the more easily implemented codes.

6.2 Outline

This chapter is divided into several sections. A brief outline of the contents of each section follows.

Section 6.3 presents briefly a discussion of the field of error reduction coding. Much of the mathematics involved in the formulation of error correcting and error detecting codes is omitted; however, sufficient detail is included to enable the reader unfamiliar with the terminology to follow the remainder of the chapter.

Section 6.4 discusses the parameters involved in assessing the quality, from performance standpoint, of coding schemes; a measure of code merit is postulated and discussed in the last part of this section.

Section 6.5 presents and discusses the restrictions introduced upon the systems to be analyzed in detail. There are: a binary system, a symmetric memoryless source and a symmetric memoryless channel disturbed by additive white Gaussian noise.

In section 6.6, a brief resume of the relationships between channel signal-to-noise ratio and the binit rate is presented.

Section 6.7 relates the channel probability of error to the binit probability of error at the decoder output. The general solution is a variation of a form found in the literature, as is the philosophy of the computer simulation method of solution; the analytic solution for the Hamming codes, however, is new.

The numerical results are presented in detail in Section 6.8; the accompanying text explains the exact interpretation of the graphs, and includes examples of their use.

Mathematical derivations in the body of the report are reduced to a minimum; when these are available in other publications, reference is made through the bibliography. The derivation of the Hamming code error rate equations is new, and is presented in detail in Appendix IV. The results of computer simulation are presented in Appendix V. Tables of coefficients for the Hamming code error rate equations are included as Appendix VI.

6.3 Coding for Error Reduction

6.3.1 Introduction

It is the intention of this section, not to detail with mathematical precision the various methods and philosophies of error reduction coding, but to present heuristically, with a minimum of such mathematics, a general discussion of the field. For detailed or mathematical discussions of coding theory and specific codes, many excellent references are available.

Shannon⁽³³⁾ in his treatment of the theory of communication, proves that information may be transmitted over a noisy channel with arbitrarily low error rate provided the rate at which such information is supplied to the transmitter is lower than the channel capacity, or, in other words, providing that there is room for the insertion of redundancy. A very simple example of such redundancy insertion is a system that transmits every binary digit, or "binit", three times; the observer (i.e., the decoder) at the receiver assumes that the actual transmitted binits all had the same value as that of the largest number of identical received binits. Such a system interprets correctly, then, any error pattern which results in either zero or one error in every block of three binits corresponding to a single transmitter input binit.

However, in this example, three binits are used to convey the information originally contained in one -- obviously a very high sacrifice of channel capacity. The search for better codes may be described as a search for efficient methods of introducing redundancy into the information to be transmitted.

-124-

6.3.2 Group Codes

This coding review will deal with group codes only. Group codes have several interesting characteristics; their main distinguishing feature, however, is the general encoding and decoding method. The information binits supplied to the transmitter are accepted in fixed length blocks. To each such block is adjoined a fixed number of check binits, whose values are determined by the information binit values, forming a code word. Similarly, at the receiver, the incoming stream of binits is broken up again into code words (note that synchronization is required -- each received word is a transmitted word, except for binits changed, and thus in error, by the noise in the channel). Each code word is then interpreted, after the correction procedure is completed, as a representation of a particular block of information binits.

Another characteristic of group codes is that the set of all code words forms a vector space, where the individual elements of each vector (code word) are elements from the modulo 2 field (in the modulo 2 field, 0 + 0 = 0; 0 + 1 = 1; 1 + 1 = 0). Thus, the vector addition of any two code words is also a code word.

6.3.3 The Decoding Table

There are many ways of representing a particular group code; perhaps the most straightforward and complete, however, is the decoding table. The decoding table is a rectangular array of all possible received words; the code words appear in the top row, with the all-zero word (always a member of the set of all code words) at the top of the first (left hand) column. The remainder of the words appear exactly once each in the reaminder of the array. The rules for setting up the array are as follows; to form the ith row (assuming rows 1, 2. ..., i-l are already formed), place any word not yet used in any previous row in the first column. Then, in each of the other columns, place the word resulting from the vector (modulo 2) addition of this first column entry and the code word heading each cloumn.

Consider the possibility of a word appearing more than once in the table. Allow Θ to represent vector (modulo 2) addition; set ϵ_1 = the word in column 1, row i, with ϵ_j similarly defined, and i < j. Set also, ω_1 = any code word, and ω_2 = also any code word. Assume now, that some word appears twice in the table; in particular, let the entry in row i under ω_1 = the entry in row j under ω_2 ; then $\epsilon_1 \oplus \omega_1 = \epsilon_j \oplus \omega_2$.

Notice, now, that $\omega_2 \oplus \omega_2 = 0$, where 0 represents the vector (word) with all zero entries; also, $\omega_2 \oplus 0 = \omega_2$; then, "adding" ω_2 to both sides

 $\epsilon_1 = \epsilon_1 \oplus \omega_1 \oplus \omega_2$

but, for a group code, $\omega_1 \oplus \omega_2 = \omega_3$, some code word; then $\epsilon_j = \epsilon_i \oplus \omega_3$ i.e., ϵ_j already appears in a previous row (in particular, in the ith row under ω_3). Such a choice of ϵ_j as the first word of the jth row would violate the rules for forming the table. Thus, the situation of

 $\epsilon_i \oplus \omega_1 = \epsilon_j \oplus \omega_2$, with $i \neq j$, cannot occur. Also, if i = j, then $\omega_1 = \omega_2$ -- and this defines one and the same position in the table.

The rows of the decoding table are normally given the name "cosets"; the entry in the first column in each row is termed the "coset leader". Note, now, that a received word must be either a code word or the "sum" (•) of a code word and a coset leader. Thus, if the decoder is designed to search this table for a given received word and change the received word to the code word heading the column in which the received word was found, the decoder is, in effect, making the assumption that the error pattern introduced in the transmitted word by the channel is the coset leader for the coset containing the word actually received. In brief, the error patterns corrected by any given code are coset leaders of the corresponding decoding table.

When, in the formation of the decoding table, the additional rule is introduced that the word chosen for a coset leader is a word of least "weight" (weight = number of l's) among those yet to be used, the table is said to be in standard array.

6.3.4 Perfect, Quasi-Perfect Codes

A perfect t-error correcting group code is a code that corrects all patterns of t or fewer errors in a code word, but no others. A quasi-perfect t-error correcting code is one that corrects all patterns of t or fewer errors and some patterns of t+1 errors, but no others.

Zquivalent definitions would be that perfect t-error correcting codes have as coset leaders all patterns of weight t or less, and no others, while quasi-perfect codes have, in addition, some coset leaders of weight t+1.

6.3.5 Hamming Codes (34)

The basic Hamming codes of length $n = 2^{m} - 1$ binits correct any word received containing, at most, one error; they are perfect codes and, as such, have all coset leaders (other than the first) of weight one. Thus, an n binit word length Hamming code has n + 1 cosets. The number of information binits is k = n-m, leaving m check binits.

One particularly interesting way of encoding the message results in a simple decoding scheme without using a decoding table. Consider

-127-

the ordered binary numbers from 1 to n, written with m places (i.e., for m = 3: 001, 010, 011, 100, 101, 110, 111). Let the ith number correspond to the ith binit in the n-place code word. Notice that there are m binits whose binary position representation contains exactly one 1; let these be the m check binits.

Now select all those binits whose binary position equivalent contains a 1 in the "first" (right hand) position -- namely, 1, 3, 5, 7, ..., n-2, and n; let this be the first "check sequence". Similarly the second check sequence is to be made up of those whose binary equivalents contains a 1 in the second position, and so on. Now each check sequence contains, as its first binit, one of the check binits, <u>and no other</u>. Form the code word, then, by filling in arbitrarily all except the check binits; sum (modulo 2) the value of the binits in each check sequence, omitting the check binit, and enter this sum as the corresponding check binit. The sum over any complete check sequence is then zero.

Then, in decoding, again sum the binits in each check sequence. Interpret each sum (modulo 2) as the entry in the corresponding position of an m place binary "check" number. If one error (i.e., a O changed to a 1, or a 1 to a O) had occurred during transmission, a little investigation will show that the resulting check number is the binary position equivalent of the binit in error.

The basic SEC (Single Error Correcting) Hamming code may be modified so as to detect, without correction, all double errors as well as many of higher order. Consider adding another check binit to a Hamming SEC code word; the value of this binit is 1 if the weight of the basic word is odd, and 0 if the weight is even. Now, for any double error, the check word may be non-zero (thus locating the error) or zero (indicating that it is the overall check binit that is in error).

6.3.6 Bose-Chandhuri Codes (35, 36)

1

A full treatment of these codes would not be in keeping with the intent of this report. Suffice it to say that Bose and Chandhuri have devised a general method for constructing codes capable of correcting up to and including t errors, t being any positive integer, and that it has been shown⁽³⁷⁾ that two-error B-C codes are quasi-perfect, while B-C codes with $t \ge 3$ are not.

6.4 Characteristics of Code Performance

The characteristics of performance referred to are not those technical details associated with the coding-decoding processes; these details are characteristics of the code itself and, although they indicate in a general sense the correction capabilities of the code, they cannot be used as measures of merit or performance. What is meant by the code performance characteristics are the overall measures of the advantages gained by the use of the code, the cost of attaining these advantages, and the merit of the code. (A measure of merit is defined below.)

6.4.1 Costs

6.4.1.1 Complexity

Associated with any code are the mathematical manipulations required to code the input information, and to correct, as applicable, and decode the coded messages at the receiver. Generally, the coding schemes may be implemented with relative ease; the decoding/correction methods, however, range from the relatively simple to the extremely complex.

6.4.1.2 Information Rate Reduction

The information contained in a received sequence of independent digits is a function of the <u>a-priori</u> transmitter probabilities for the digit values and the probability of an error being introduced during transmission. It may appear that, for fixed <u>a-priori</u> probabilities for the information digits, a code designed to reduce the probability of error would result in an increase in the information rate; however, <u>for a fixed</u> <u>digit transmission rate</u>, this increase is, for the low initial error probability case of interest, negligible compared to the reduction in the rate caused by the code redundancy. Thus, for the fixed bandwidth (or constant transmitter rate) case, the net change in the information rate is a decrease, and must be considered as a cost.

6.4.1.3 Omissions

This cost arises only when error-detecting codes are used with oneway channels. In such a situation, a message received in error may be assumed to fall into one of three categories; the error pattern is either one which the code is designed to correct, one which the code is designed to detect without correction, or one which is beyond both the correction and detection abilities of the code. In this latter case, the pattern will normally be interpreted incorrectly by the decoder as being a different correction or detection-without-correction error pattern. Thus, insofar as the decoder is concerned, all received patterns are either correctable, or non-correctable. Although the action to be taken by the decoder upon the detection of a non-correctable error pattern is part of the decoding procedure, those actions will have significant effects on code performance. In the analysis to follow, it is assumed that those received words containing detectable but non-correctable high order error patterns will be discarded; the resulting probability of an information binit being discarded, or the omission rate, is investigated in detail in this chapter.

6.4.1.4 Delay

-

The decoding of any group code requires that the complete code word be available; thus, there can be no output from the decoder until the entire word is received. Except in special situations, this delay is too short to be of significance in the evaluation of code performance.

6.4.2 Advantages

6.4.2.1 Reliability

Ignoring the insignificant increase in information rate resulting from a reduced probability of error (as discussed in 6.4.1.2), decreasing the probability of error for the received information binits at the decoder output, and thus increasing the reliability to be placed in the received data, is the only reason coding would be used.

6.4.3 Measure of Merit

In general, under the constraint of fixed energy/binit and fixed binit transmission rate, coding will buy an increase in reliability at the price of a reduction in information rate. Having two parameters of performance for each code makes comparisons of the value of different coding schemes difficult.

Another system eliminating this difficulty may be postulated. Consider the application of coding to a channel for which the average power and the maximum allowable error rate are specified as design requirements. The error rate required then may be used to calculate the required ratio of the energy per binit to the noise spectral density, E/N_{O} , for coded as well as uncoded systems. From these ratios and the fixed average power limitation, a maximum rate of information binit transmission, relative to that for the uncoded system, may be obtained. Such a quantity is well suited for use as a criterion of comparison among different coded, as well as uncoded, systems; it yields directly the changes in the rate of transmission of information binits resulting from the use of error correcting codes.

It should be remembered that for the small error probabilities of interest, the information binit transmission rate is very nearly the information transmission rate of the system. Thus, another proposed criterion, the ratio of information rate to bandwidth, is a function of the number of redundant binits per code word only; these values are supplied in tabular form.

6.5 Restrictions Introduced

As is implied in the chapter title and in the preceding discussions, the major restriction imposed is that of a binary system. In addition, the following restrictive assumptions are made.

6.5.1 Symmetric Memoryless Source

It is assumed that the information to be transmitted has already been coded for maximum content per binit; this infers that the source emits a series of independent binits, each of whose two values (usually 0 and 1) are equally probable.

6.5.2 Symmetric Memoryless Channel

The most efficient modulation system is the phase-reversal keyed; for such a system, the transmission of a 0 or a 1 requires an equal amount of power, and maximum transmission rate (and minimum average probability of error) is obtained when the receiver decision system is adjusted for equal transitional probabilities, 0-transmitted to 1-received, and 1-transmitted to 0-received. A similar situation occurs with all symmetric modulation systems.

By memoryless channel, it is implied that there is no intersymbol interference. The solution for the error rate of a channel having symbol smearing is, for all practical purposes, an unsolved problem; treatment of this situation is beyond the intended scope of this chapter. 6.5.3 Additive White Gaussian Noise

There are two main motivations behind the assumption of additive Gaussian channel perturbance. The first is a practical one, from the viewpoint of analysis; such an assumption greatly facilitates the analysis of system behavior. Greater justification, however, is provided by consideration of the type of system for which error correcting codes hold the greatest benefits. As mentioned in 6.4.1.1, coders are easily implemented, can be made light in weight, and draw little power; decoders, however, can be extremely complex. One of the most critical applications of communication links, so far as minimizing transmitter weight and power requirements while maintaining high information rates and low error rates are concerned, is transmission from space vehicles and satellites to ground stations. In the discussion of channel characterization of Chapter II, it is pointed out (2.3.8) that the frequencies of value for space communications lie above 100 mc. It is further advanced, in 2.2.5, that the majority of the additive disturbances in the 30 to 150 mc range - indeed, virtually all such disturbances, for frequencies above 150 mc - are in fact Gaussian in nature.

6.6 Reliability of Symmetric Mode Binary Modulation Systems

6.6.1 Introduction

The formulae and relationships quoted in this section are derived and/or collated by Hancock and Sheppard in a previous report, "Information Efficiency of Binary Communications Systems", Contract AF 33(616)-8283. They are presented here only in the interest of providing an analytic basis for the graphical presentation to follow.

6.6.2 PSK/MF - Coherent Detection

This system represents the best possible binary system attainable, with respect to probability of error. The graphical results to follow are based upon this system.

The filter output is described by the conditional probabilities

$$p(x \mid o_t) = \frac{1}{2\pi N_o E} e^{-\frac{(x+E)^2}{2N_o E}}$$
(6-1)

and

$$p(x \mid 1_t) = \frac{1}{2\pi N_0 E} e^{-\frac{(x-E)^2}{2N_0 E}}$$
(6-2)

where x = filter output

E = energy per binit

 N_{O} = noise spectral density (double-sided)

For symmetric operation, the resulting probability of error is

$$\mathbf{P}_{\mathbf{e}} = \frac{1}{2} \left[1 - \operatorname{erf} \left(\sqrt{\frac{\mathbf{E}}{2N_{o}}} \right) \right]$$
(6-3)

6.6.3 Summary of Other Systems

ASK - LED: $P_e = e^{-\lambda}$, where λ is the solution to the integral equation (6-4)

$$\int_{0}^{\Lambda} e^{-\left[\alpha + \frac{E}{2N_{0}}\right]} I_{0} \left(\sqrt{\frac{2\alpha E}{N_{0}}}\right) d\alpha = e^{-\lambda}$$
(6-5)

ASK - Coherent Detection:

$$P_{e} = \frac{1}{2} \left[1 - \operatorname{erf} \left(\sqrt{\frac{E}{8N_{o}}} \right) \right]$$
(6-6)

PSK - Synchronous Detection:

$$P_{e} = \frac{1}{2} \left[1 - \operatorname{erf} \left(\sqrt{\frac{E}{2N_{o}}} \right) \right]$$
(6-7)

PSK - Phase Comparison:

$$P_{e} = \frac{1}{2} e^{-\frac{E}{4N_{o}}}$$
 (6-8)

ASK/MF - LED: $P_e = e^{-\lambda}$, where λ is the solution to (6-9)

$$\int_{0}^{\lambda} e^{-\left[\alpha + \frac{B}{N_{0}}\right]} I_{0} \left(\sqrt{\frac{4\alpha E}{N_{0}}}\right) = e^{-\lambda}$$
(6-10)

ASK/MF - Coherent Detection:

$$\mathbf{P}_{\mathbf{e}} = \frac{1}{2} \left[1 - \operatorname{erf} \left(\sqrt{\frac{\mathbf{E}}{4\mathbf{N}_{o}}} \right) \right]$$
(6-11)

FSK/MF - LED:

$$P_{e} = \frac{1}{2} e^{-\frac{E}{4N_{o}}}$$
 (6-12)

FSK/MF - Coherent Detection:

$$P_{e} = \frac{1}{2} \left[1 - erf \left(\sqrt{\frac{E}{4N_{o}}} \right) \right]$$
 (6-13)

PSK/MF - Phase Comparison:

$$\mathbf{P}_{\mathbf{e}} = \frac{1}{2} \mathbf{e}^{-\frac{E}{N_{o}}}$$
(6-14)

6.7 Performance of Binary EC/ED Codes

6.7.1 Introduction

This section is concerned specifically with the derivation, analytically and/or experimentally, of what is termed the "error rate equation". The error rate equation is defined to be the equation for the binit probability of error at the decoder output given, as the independent variable, the channel word or digit error probability.

It is assumed throughout that the transitional probabilities for the channel are equal, and that the probability of a single error in the channel is independent of the past history of the channel.

It should be noted that errors at the output of the decoder no longer occur independently. All simple error patterns received by the decoder are corrected, while those of higher order are not; hence, the output errors occur in bursts.

6.7.2 General Error Rate Equation

In the derivation of an error rate equation, the first logical step is to express the decoder output error probability P' as a summation:

 $\begin{array}{l} P'_{e} = \sum \\ all input \\ error patterns \end{array} \begin{array}{l} P(arbitrary information binit in error at the \\ decoder output the specific input error pattern) \\ P(a specific input error pattern) \end{array} \begin{array}{l} (6-15) \end{array}$

For a symmetric channel with independent errors and error probability p,

and for group codes,

 $P(\text{specific input error pattern}) = P_e^i (1-P_e)^{n-i}$ (6-16)

where

n = word length

i = number of errors in the pattern

since each word is decoded independent of the other words received.

Define k = number of information binits in the code word. Arrange these binits in a sequence so that "the α th binit", reads as "the α th binit in the sequence of k information binits in a code word", refers to a unique binit.

Now, P an artitrarily chosen info binit = a specific info binit = $\frac{1}{k}$ (6-18) thus,

 $P'_e = \frac{1}{k} \sum_{\alpha=1}^{k} P\{\text{the } \alpha \text{th info binit at the decoder output is in error}\}$ (6-19)

Consider the set of all binits in the code word; with each binit associate a number d_j , $l \leq d_j \leq n$, so that by referring to "the d_j th binit", reference is made to a unique binit in the word.

Every information binit is also in the set; let d_{α} = the code word binit corresponding to the α^{th} information binit, as previously defined.

Then,

$$P'_{e} = \frac{1}{k} \sum_{\alpha=1}^{k} P\{d_{\alpha} \text{ is in error at the decoder output}\}$$
(6-20)

Define (e_j^i) as the specific set of binits in a word in error at the decoder output, with $l \neq j \leq i'$, i' = total number of errors in the word at the decoder output. Then each e_j^i corresponds to a d in error.

Define (e_j) in a similar manner, but for the set of errors at the <u>decoder input resulting in the set</u> (e_j^{t}) at the output. Here, $l \leq j \leq i$, and i is not generally the same as i'. Then, with " ϵ " read as "belongs to" or "is included in",

$$\mathbf{P}_{\mathbf{e}}^{\prime} = \frac{1}{\mathbf{k}} \sum_{\alpha=1}^{\mathbf{k}} \sum_{\mathbf{all}} \left\{ \mathbf{e}_{\mathbf{j}} \right\} \mathbf{P} \left\{ \left(\mathbf{e}_{\mathbf{j}} \right) \right\} \mathbf{P} \left\{ \left(\mathbf{e}_{\mathbf{j}} \right) \right\}$$
(6-21)

Now, $P\{(e_j)\} = P_e^j (1-P_e)^{n-j}$ (6-22)

Note, however, that $P \{ d_{\alpha} \in (e_{j}^{t}) \}$ is, <u>for a given (e_{j}^{t}) </u>, such that either $d_{\alpha} \in (e_{j}^{t})$ and $P\{ d_{\alpha} \in (e_{j}^{t}) \} = 1$, or $d_{\alpha} \notin (e_{j}^{t})$ and $P\{ d_{\alpha} \in (e_{j}^{t}) \} = 0$. Define $N_{i\alpha}$ = the number of received error patterns (e_{j}) containing i errors each for which $d_{\alpha} \in (e_{j}^{t})$. Then

$$\mathbf{P}_{\mathbf{e}}' = \frac{1}{\mathbf{k}} \sum_{\alpha=1}^{\mathbf{k}} \sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{N}_{\mathbf{i}\alpha} \mathbf{P}_{\mathbf{e}}^{\mathbf{i}} (\mathbf{1} - \mathbf{P}_{\mathbf{e}})^{\mathbf{n} - \mathbf{i}}$$
(6)

The problem is now one of determining the parameters $N_{i\alpha}$.

6.7.3 Specific Solution Methods

6.7.3.1 Computer Simulation

Rewrite Eq. (6-22), thus

$$\mathbf{P}_{\mathbf{e}}' = \sum_{\mathbf{i}=\mathbf{l}}^{\mathbf{n}} \qquad \frac{1}{\mathbf{k}} \left[\sum_{\alpha=\mathbf{l}}^{\mathbf{k}} \mathbf{N}_{\mathbf{i}\alpha} \right] \mathbf{P}_{\mathbf{e}}^{\mathbf{i}} (\mathbf{l}-\mathbf{P}_{\mathbf{e}})^{\mathbf{n}-\mathbf{i}}$$

Now, for error correcting codes, $N_{i\alpha}$ = the number of received error patterns (e,) containing i errors for which the associated d_{α} is in error; then $\sum_{i=1}^{k} N_{i\alpha}$ is just the total number of information binits in error at the decoder output as a result of <u>all</u> of the i-fold error pattern inputs, and $\frac{1}{k} \sum_{\alpha=1}^{k} N_{i\alpha}$ is the average number of times an information binit is in error as a result of all $\binom{n}{i}$ i-fold input error patterns; i.e., then,

$$\frac{\frac{1}{k}\sum_{\alpha=1}^{k} N_{i\alpha}}{\binom{n}{i}} = \text{the probability that an arbitrary information binit is in error}$$

given that some 1-fold error pattern occurred at the decoder input and

 $\binom{n}{i} P_e^i (1-P_e)^{n-i}$ = probability of an i-fold error pattern input.

Returning to (6-23), a method of solution by computer simulation is obvious. Set up a decoder on the computer and, with an assumed "transmitted" all-zero code word, simulate all possible error patterns (by generating all 2^{n} n binit binary numbers) and apply these to the decoder. Then for each value of i ones (i.e., errors) in a code word, record the total number of ones (errors) in the information binits at the decoder output for all such i-fold patterns. This number is, then, $\sum_{i=\alpha}^{k} N_{i\alpha}$.

This method of solution, although straightforward, is quite lengthy. For a code of length n, the number of error combinations that must be examined is 2^n -- and the method of examination (i.e., the decoding process) can be quite complex. Analytic solution, where possible, is preferred. 6.7.3.2 Analytic Approach; Hamming SEC Codes

Several simplifications are possible when dealing with Hamming codes; these arise, basically, as a result of these codes being perfect. (Although this property is not used explicitly, the results implied by this property are invaluable).

The first simplifying property is the relationships between the (e_j) and (e_j^{t}) . For any received error patterns (e_j) , the "corrected" error pattern (e_j^{t}) must fall into one of three categories: it is identical with (e_j) ; it is (e_j) with one error deleted; or, it is (e_j) with one error added.

Secondly, it is possible to show (see Appendix IV) that the number of error patterns (e_j) of fixed length i for which the corresponding (e'_j) is such that $(e'_j) = (e_j)$ with β adjoined $\beta \notin (e_j)$, for some fixed β , is independent of the value of β considered; a similar condition exists for all (e'_j) formed by deleting β from an (e_j) of length i (and here $\beta \in (e_j)$ is implied). It is also proved in Appendix IV that the number of (e_j) of length i for which the associated $(e'_j) = (e_j)$ and $\alpha \epsilon (e'_j)$; for which $(e'_j) = (e_j)$ with some $\beta \not \epsilon (e_j)$ adjoined, and $\alpha \epsilon (e'_j)$; and for which $(e'_j) = (e_j)$ with some β deleted $\beta \epsilon (e_j)$, and $\alpha \epsilon (e'_j)$; are each independent of the α chosen. From these, it is obvious that the $N_{i\alpha}$ are independent of α ; redefining $A_i = N_{i\alpha}$, (6-23) becomes

$$P'_{e} = \sum_{i=1}^{n} A_{i} P_{e}^{i} (1-P_{e})^{n-i}$$
(6-25)

and

 A_{i} = the number of received error patterns (e_{j}) of weight (number of errors) i for which the "corrected" error patterns (e'_{j}) contain some specific binit chosen from the full code word.

6.7.3.3 Analytic Approach: Hamming SEC/DED Codes

For these codes, the original definition of P'_e must be examined. In this report, it is assumed that those error patterns of order large enough to be detected but not corrected are to result in the entire word being discarded -- i.e., the complete lack of reception is preferable to accepting as valid a group of information binits known to contain large numbers of errors. With reasonably small channel error probabilities, the average number of words discarded is shown to be an extremely small fraction of the total received words, while the multiplicative increase in reliability is of the order of 10 to 100, compared to the SEC codes.

Then, P'_e = Probability of an arbitrary information binit being in error after decoding, given that the word in which the binit was contained was not discarded.

In Appendix IV, the indicator y is defined as having a value 1 for words that are not discarded, and 0 for those that are. Then

 $P_e^i = P\{arbitrary \text{ information binit in error after decoding } y = 1\}$ (6-26) The actual analysis and the resulting computations are simplified by working with the formulation

$$P'_{e} = \frac{P\{\text{arbitrary information binit in error after decoding and y = 1\}}{P\{y = 1\}} (6-27)$$

The numerator may then be expanded as discussed previously, and $P\{arbitrary information binit in error after decoding and <math>y = 1\}$

$$=\sum_{i=1}^{n'} \left[\frac{1}{k} \sum_{\alpha=1}^{k} N_{i\alpha}^{\prime}\right] P_{e}^{i} (1-P_{e})^{n'-i}$$
(6-28)

with $n' = 2^{m}$ = code word length (= n + 1) and $N_{i\alpha}$ ' = the number of received error patterns of weight i for which y = 1 and the associated d is in error.

Two different conditions for discarding the received word are studied. The first of these, and the more common, is that the overall parity check is satisfied, but the internal checks are not -- this corresponds to the number of received errors being even, and $(e_j^{t}) \neq (e_j)$. This discards all double errors, as well as most even weight error patterns.

The second condition considered is that for which the criterion of the first applies and, alternatively, the condition that the informal parity checks are satisfied while the overall check is not. This then detects and discards many of the odd-weight error patterns as well; unfortunately, it also discards the one weight=1 pattern for which the error occurs in the overall check binit. For a Hamming SEC/DED code operating under the first condition of word-discard, the errors patterns of interest (for even i) are those for which (e_j) is such that $(e_j^t) = (e_j)$, length = i, and length = i-l (i-l corresponding to the i-weight error patterns with one of the errors in the overall check binit). As previously discussed, the relationships required are shown in Appendix IV, to be independent of the particular α under consideration.

6.7.4 Summary of Hamming Code Error Rate Equations

The following results are derived in detail in Appendix IV. For the SEC codes of length $n = 2^{m}-1$,

$$P'_{e} = \sum_{i=0}^{n} \frac{1}{n} [(i-1) M_{i} + iN_{i} + (i+1) L_{i}] P_{e}^{i} (1-P_{e})^{n-i}, \qquad (6-29)$$

where M_i = number of error patterns of weight i for which (e_j^{i}) has weight i-l (i.e., deletion of some member of (e_j) to form (e_j^{i}));

N_i = number of error patterns of weight i for which $(e_j^i) = (e_j);$ L_i = number of error patterns of weight i for which (e_j^i) has weight (i + 1) (i.e., adjoining some $\beta \notin (e_j)$ to (e_j) to form (e_j^i) .

Note that this form preserves the physical meaning of the parameters. With M_1 , N_1 and L_1 as defined above, the probability of receiving a word of error-pattern weight i satisfying the conditions defined for M_1 is just $M_1P_e^1(1-P_e)^{n-1}$ If the assumption is made that the probability of error for a binit after "correction" is independent of that binit being an information binit, then the probability of an arbitrary information binit being in error is just

$$P'_{e} = \sum_{\substack{\text{weights} \\ \text{of } (e'_{j})}} \frac{\text{weight of } (e_{j})}{n} \cdot P((e'_{j}) \text{ having the given weight})$$
(6-30)

-143-

The probability of (e_j^t) having weight i is just

$$L_{i-1}p_e^{i-1} (1-P_e)^{n-i+1} + N_i P_e^{i} (1-P_e)^{n-i} + M_{i+1}P_e^{i+1} (1-P_e)^{n-i-1}$$
,

and P' becomes

ł

ì

-

ì

. •

$$P'_{e} = \sum_{i=0}^{n} \frac{1}{n} \left[L_{i-1} p_{e}^{i-1} (1-P_{e})^{n-i+1} + N_{i} P_{e}^{i} (1-P_{e})^{n-i} + M_{i+1} p_{e}^{i+1} (1-P_{e})^{n-i-1} \right] \quad (6-31)$$

-- now, $L_{-1} = 0$ and $M_{n+1} = 0$, obviously. Thus

$$\mathbf{P}_{e}^{\prime} = \sum_{i=0}^{n} \left[\frac{i+1}{n} \mathbf{L}_{i} \mathbf{P}_{e}^{i} (1-\mathbf{P}_{e})^{n-i} + \frac{i}{n} \mathbf{N}_{i} \mathbf{P}_{e}^{i} (1-\mathbf{P}_{e})^{n-i} + \frac{i-1}{n} \mathbf{M}_{i} \mathbf{P}_{e}^{i} (1-\mathbf{P}_{e})^{n-i} \right], \quad (6-32)$$

as before.

It is shown in Appendix IV that the parameters L, M and N are related by the iterative equations,

$$M_{i} = (n-i+1)M_{i-1}$$

$$N_{i} = \frac{1}{i}L_{i-1}$$

$$L_{i} = {n \choose i} - N_{i} - M_{i}$$
(6-33)

with initial values $M_0 = L_0 = 0$; $N_0 = 1$ For the SEC/DED codes of length n' = n+1 = 2^m, operating under the first word-discard conditions discussed above,

-144-

$$P'_{e} = \frac{1}{P(y=1)} \left\{ \sum_{\substack{i=2\\ i \neq e}}^{n+1} \frac{1}{n} [iN_{i} + (i-1)N_{i-1}] P_{e}^{i} (1-P_{e})^{n+1-i} \right\}$$

$$+\sum_{i=1}^{n} \frac{1}{n} [(i-2)M_{i-1} + (i-1)M_{i} + (i-1)N_{i-1} + iN_{i} + iL_{i-1} + (i+1)L_{i}]$$
(i odd)
$$P_{e}^{i}(1-P_{e})^{n+1-i} \}$$
(6-34)

and

$$P\{y=1\} = \sum_{\substack{i=0\\(i \text{ even})}}^{n+1} [N_i + N_{i-1}]P_e^i (1-P_e)^{n+1-i} + \sum_{\substack{i=1\\(i \text{ odd})}}^{n} (n+1)P_e^i (1-P_e)^{n+1-i} (6-35)$$

-- the "physical interpretation" analysis, along the lines of that for equation (6-30), is obvious.

The condition for discarding the word in this case is that $(e_j^{\iota}) \neq (e_j)$ and i = even.

For the second set of word-discard conditions,

$$P'_{e} = \frac{1}{P[y=1]} \left\{ \sum_{i=2}^{n+1} \frac{1}{n} [iN_{i} + (i-1)N_{i-1}] P'_{e}(1-P_{e})^{n+1-i} \right\}$$
(i even)

$$+\sum_{\substack{i=1\\(i \text{ odd})}}^{n} \frac{1}{n} [(i-2)M_{i-1}^{+} (i-1)M_{i}^{+} iL_{i-1}^{+} (i+1)L_{i}] P_{e}^{i(1-P_{e})^{n+1-i}} \bigg\} (6-36)$$

with

$$P \{y=1\} = \sum_{i=0}^{n+1} [N_{i}+N_{i-1}]P_{e}^{i}(1-P_{e})^{n+1-i} + \sum_{\substack{i=1\\i=0\\(i \text{ even})}}^{n} [M_{i-1}+M_{i}+L_{i-1}+L_{i}]$$

$$P_{e}^{i}(1-P_{e})^{n+1-i} \qquad (6-37)$$

with the conditions for discarding a word being $(e'_j) \neq (e_j)$ and i = even, or $(e'_j) = (e_j)$ and i = odd.

In all cases, for i < 0 or i > n, $L_i = M_i = N_i = 0$.

6.8 Results

This section contains detailed numerical analyses of the performance of Hamming SEC codes of lengths 7, 15, 31, 63, 127, 255 and 511 binits; SEC/DED codes of lengths 8, 16, 32, 64, 128, 256 and 512 binits; and the Bose-Chandhuri (15, 5) and (15, 7) codes; in all cases, the modulationdetection system used is phase-shift keying with matched filter reception. A comparison and conversion graph is supplied for use with other symmetric systems. A brief introduction to each subsection, with examples of the use of the graphs, is included.

During the compilation of results, it was found that the probabilities of error for the SEC/DED codes operating under the second set of worddiscard conditions was only marginally better than those for such codes operating under the first, more common set, while the probability of worddiscard was greatly increased. For this reason, numerical results for the second set of conditions have been omitted.

6.8.1 Fixed Bandwidth Analysis

The graphs included in Figs. 6.1 through 6.12 are based upon a fixed bandwidth restriction - i.e., the information binit rate of the coded system is reduced in proportion to the redundancy of the code, maintaining a constant transmitter rate.

Table 6-1 lists the information binit rate of each coded system, based upon an uncoded rate of unity. For low error probability, this rate is very nearly the information rate.

As an example, consider a PSK-MF system for which the Ratio $\frac{E}{N_0}$ is 9.5 db. The bandwidth of the channel is fixed; however, a reduction in information binit transmission of 8% is permitted. What decrease in error probability is attainable?

From Table 6-1, the shortest Hamming code that can be used is either the (127, 120) SEC code, or, if binit rejections are permitted, the (128, 120) SEC/DED code. The uncoded error probability is 1.4×10^{-3} ; (Fig. 6.3). With the SEC/DED code, the factor is 52, reducing the error rate to 2.7 x 10^{-5} (Fig. 6.7), but this introduces information binit rejections by the receiver with a probability of 1.2×10^{-2} (Fig. 6.11).

Code	Rate	Code	Rate
Hamming	SEC	Hamming	SEC/DED
(7, 4)	0.571	(8, 4)	0.500
(15, 11)	0.733	(16, 11)	0.683
(31, 26)	0.839	(32,36)	0.808
(63, 57)	0.905	(64, 57)	0.891
(127, 120)	0.945	(128, 120)	0.938
(255, 247)	0.969	(256, 247)	0.965
(511, 502)	0.982	(512, 502)	0.980
Bose-Chandhuri C	odes		

(15.5

0.333

0.467

(15, 7)

INFORMATION BINIT RATE-FIXED BANDWIDTH SYSTEM

(No Coding = 1)

6.8.2 Fixed Information Binit Rate

Figs. 6.13 through 6.24 provide a code performance analysis under the restriction of constant rate of information binit transmission. To provide a criterion of comparison, the ordinate of the graphs is the ratio $\frac{\mathbf{E}'}{M_0}$, in db, where \mathbf{E}' is the energy per <u>information</u> binit (for the uncoded case, this is then the energy per transmitted binit).

In this case, then, the actual energy pertransmitted binit is reduced from the graphed value in proportion to the redundancy of the code under consideration.

Example: A PSK-MF system is to be used under a transmitted-power restriction that results in an uncoded $\frac{E}{N_o}$ of 11.0 db. If the information binit transmission rate is to be maintained, what is the shortest Hamming SEC code that will result in an output error probability of 10⁻⁴?

To hold both the information binit transmission rate and the average power constant, the energy per information binit must be held fixed - i.e., $\frac{E'}{N_0}$ is to remain at 9.0 db. Reference to Figs. 6.13 through 6.16 shows that the shortest code that satisfies the error rate requirement is the (15, 11) code and this results in an error rate of 3.5 x 10⁻⁵.

An interesting phenomenom is emphasized by the constant information binit rate graphs -- that the "best" code, in terms of lowest probability of error, is not always either the shortest or the longest code permissible. The longer codes lose less power due to redundancy, but have greater inherent error rates, while the words of the shorter codes, although inherently less prone to multiple errors, sacrifice much of the transmitter power in the check binit transmission. Generally, then, at any fixed power level, constant information binit rate operation will result in an optimum code in a particular set of codes.

In particular, for all of the Hamming SEC codes investigated, no improvement at all is possible below an $\frac{E'}{N_0}$ ratio of 7.0 db. From 7.0 db to 10.1 db, the (31, 26) code results in the lowest P'_e ; from 10.1 to approximately 11.2 db, the (63, 57) code is best, while from 11.2 db to approximately 15 db, the (127, 120) code is optimum. From 15 db out to the maximum ratio studied, both the (255, 247) and the (511, 502) codes give approximately equal, and lowest error probabilities. A comparable situation exists for the SEC/DED codes.

An interesting feature of the SEC/DED codes is that the probability of rejection is asymptotic to 0.5 as the $\frac{E}{N_o}$ ratio drops. This is a natural outcome of the fact that, for high channel error probabilities, the probability of a received word containing at most one error becomes very small; for the remaining error patterns, all of those with even parity (neglecting those for which the check word is zero) are discarded -i.e., the probability of rejection approaches the probability of an arbitrarily chosen set of binary digits having even parity.

6.8.3 Merit

The merit graphed in Figs. 6.25 through 6.31 is arrived at by calculating the ratio $\frac{E'}{N_o}$ required to obtain a given error rate for the coded system, and dividing this into the corresponding $\frac{E'}{N_o} = \frac{E}{N_o}$ for the uncoded system. The resulting figure indicates 1) the factor by which the transmitted power may be reduced (while maintaining a constant information binit rate) by the use of coding, or 2) the increase in information binit rate attainable at a fixed average transmitter power. Example: An uncoded PSK-MF system is operating with an error rate of 0.15 x 10^{-4} . With no restrictions on bandwidth, how much faster may the information be transmitted, with the same average transmitter power and error probability, if a Hamming SEC code with N = 63 is used? If an increase of 30% is desired, how much power can be saved while simultaneously achieving this increase, using this code?

Referring to Fig. 6.26, the merit of the (63, 57) code at $P'_e = 0.15 \times 10^{-4}$ is 1.40; thus, the information binit rate may be increased by this factor. If an increase to 1.30 times the original rate is desired, the average power may be reduced by 1.40/1.30 = 1.08, or 0.3 db.

ł

1

The existence of an optimum length code for a given error probability/uncoded $\frac{E}{N_o}$ ratio range, when operating under a fixed information binit rate constraint, as discussed in 6.8.2, is again illustrated by the merit graphs. (Recall that these graphs are based upon either the increase in the information binit rate at a constant average power, or, alternatively, the allowable power decrease at constant information binit rate.) Moreover, these graphs expand this information, making a more accurate determination of the crossover points possible. These are listed in Table 6-2.

	Error Probability Mange	Optimum Length
SEC codes:	above 1.2 x 10 ⁻²	Uncoded
	1.2×10^{-2} to 8.5×10^{-3}	15
	8.5×10^{-3} to 2.0 x 10^{-4}	31
	2.0×10^{-4} to 3.5×10^{-7}	63
	3.5×10^{-7} to 10^{-12}	127
	10 ⁻¹² to 10 ⁻¹⁸	255
	10 ⁻¹⁸ to below 10 ⁻²⁰	255/511
SEC/DED codes:	above 0.12	Uncoded
SEC/DED codes:	above 0.12 0.12 to 1.4 x 10 ⁻²	Uncoded 8
SEC/DED codes:	above 0.12 0.12 to 1.4 x 10^{-2} 1.4 x 10^{-2} to 6.5 x 10^{-4}	Uncoded 8 16
SEC/DED codes:	above 0.12 0.12 to 1.4 x 10^{-2} 1.4 x 10^{-2} to 6.5 x 10^{-4} 6.5 x 10^{-4} to 1.4 x 10^{-6}	Uncoded 8 16 32
SEC/DED codes:	above 0.12 0.12 to 1.4 x 10^{-2} 1.4 x 10^{-2} to 6.5 x 10^{-4} 6.5 x 10^{-4} to 1.4 x 10^{-6} 1.4 x 10^{-6} to 10^{-11}	Uncoded 8 16 32 64
SEC/DED codes:	above 0.12 0.12 to 1.4 x 10^{-2} 1.4 x 10^{-2} to 6.5 x 10^{-4} 6.5 x 10^{-4} to 1.4 x 10^{-6} 1.4 x 10^{-6} to 10^{-11} 10^{-11} to 2 x 10^{-19}	Uncoded 8 16 32 64 128

TABLE 6-2

OPTIMUM CODE LENGTH PSK/MF SYSTEM

It should be noted that the two Bose-Chandhuri codes analyzed never, in the range for which the merit exceeds unity, out-perform the optimum Hamming code; this is a natural result of the high redundancy of the Bose-Chandhuri codes.

Finally, it must be realized that the increases in information rate permitted by coding are conditional upon the effects of increasing the transmitted binit rate and the system bandwidth, other than the resulting energy-per-tinit decrease already considered.

FIGURE 6.1

FIGURE 6.5

FIGURE 6.7

FIGURE 6.9

FIGURE 6.13

FIGURE 6.15

FIGURE 6.16

FIGURE 6.18

FIGURE 6.20

FIGURE 6.21

FIGURE 6.22

-175-

-176--

MERIT: HANMING SEC CODES FIGURE 6.27

MERIT: HAMMING SEC/DED CODES FIGURE 6.28

-178-

-179--

-180-

-181-

-182-

MODULATION-DETECTION SYSTEMS: COMPARISON FIGURE 6.32

CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Introduction

This chapter contains a brief summary and recommendations for future work in the areas studied.

7.2 Nonlikelihood Detection Theory

The communication engineer has been frequently faced in the past with the detection of a signal in noise of unknown statistics and will continue to do so in the future, with the increasing importance of outer space travel and of jamming of communications by an enemy. In both of the above cases, it is most difficult to obtain these noise statistics. No detection method presently available will guarantee the required reliability. The theory of nonparametric detection is the only theory applicable and appropriate for these problems. Moreover, nonparametric detection theory is complete in the sense that

(1) It suggests the structure of the detection system which in most cases can be implemented digitally.

(2) It specifies procedures for evaluating the performance of such systems (probability of error, information rate, etc.).

(3) It specifies techniques of system comparison.

The properties of and results concerning nonparametric detectors obtained thus far, were obtained under the severe assumption of independence of the observation samples. This independence is hard if not impossible to be guaranteed since the appropriate sampling times that will result in independent samples are unknown, whenever the probability density and spectral density of the noise are unknown. If one attempts to hopefully obtain independent samples by sampling at very long intervals, this would decrease the information rate to such an extent as to render the system useless for the transmission of information.

It is, therefore, imperative to establish the validity or not of the results thus far obtained, for the practical case of dependent samples. If the results are valid for dependent samples, this would guarantee a practical and reliable communication system of high information rate even in the presence of noise of unknown statistics. Further extensive research is required to obtain the constant K for the various nonparametric (non-likelihood) detectors and for various actual or simulated channel conditions (tropospheric scatter, ionospheric, line-of-sight transmission, etc.). Knowledge of these constants would permit the quick design of a communication system appropriate to a particular channel condition.

7.3 Optimization of Signaling Waveforms

The investigation reported shows that definite improvements can be achieved in the performance of a communication system by giving suitable consideration to the design of signals. An alternate benefit to be derived from an application of signal design would be the easing of coding requirements while maintaining the same system performance.

Optimum pulse signals have been found for non-overlapping transmission which satisfy the requirement of zero intersymbol interference at the receiver. This optimization has been made for arbitrary signaling rates. The signals obtained in this manner for a given channel can be used for transmission at rates that are sufficiently high to prohibit the use of simple rectangular pulses because these cause excessive smearing of the received waveforms.

It has been shown that for a simple channel model the performance obtained with signals that are optimized for this channel does not

-184-

degrade rapidly with changes in the channel characteristics. This is of particular interest in establishing requirements for channel identification measurements.

Finally it has been shown that further performance improvement is possible by permitting successive transmitted waveforms to overlap somewhat.

Only very specific cases have been examined in some detail in this preliminary study. However, the results obtained give some insight into the properties and behavior of signals in digital communications. They also point out the need for much more work in this area. More theory must be developed to treat the problems of signals design, while the results to be obtained are almost certain to greatly benefit the communications art.

Further investigations should specifically be concerned with the following topics:

(1) Continuation of the work presented in this chapter, that is, the optimization of transmission for the system model as described in section 5.2.3.

(2) The application of other performance criteria, such as given in section 5.2.2.2, suitably related to practical system requirements.

(3) Consideration of models for more general types of channels, as listed in section 5.2.2.1, which also includes the problem of specifying appropriate channel models on the basis of specified practical system parameters.

7.4 Performance of Error Correcting Codes

1

The results contained in Chapter VI cover only the Hamming SEC and SEC/DED codes. Although these codes are the most practical, insofar as implementation is concerned, there are many other codes whose characteristics warrant further study. Of these, the Bose-Chandhuri t-error correcting codes are particularly important.

Another type of group code is the burst-error correcting code. Unfortunately, standards of comparison of performance for these codes are rather difficult to formulate; and analysis of the causes of burst noise, the duration of the noise, and its effect on binary transmission channels would be a prerequisite to a definitive analysis of a burst-error coded channel. However, one application of burst-error correcting codes for which the basic channel disturbance may be assumed normal is that where the burst code is used in conjunction with the more standard group codes.

Consider a channel using a (15, 11) Hamming SEC code. The information binits at the decoder output are either error free, or contain three or more errors in each group of eleven derived from a single transmitted word - i.e., the errors introduced by the channel, including the coder/ decoder, occur in bursts of eleven or less (excluding the possibility of two words both being decoded in error within a short time period). Thus, a further reduction in the error rate may be obtainable by the encoding of the original message by a burst-error correcting code capable of correcting bursts of length eleven or shorter - i.e., the final system would appear as follows:

Of course, the Hamming code may be replaced by a Bose-Chandhuri group code. It is anticipated that such a system would be capable of reducing the error rate to an extremely low value; in fact, such a system would correct the high-order error patterns resulting from a complete channel fade, providing such a fade did not last longer than one Hamming code word.

Another class of codes worthy of study are the sequential codes; these have the advantage of being, in general, easily implemented. No work, so far as can be determined, has yet been done on assessing these codes.

Finally, codes designed around the use of limited feedback channels have not yet been analyzed. Coding for such system is quite different from one way channel coding, and is deserving of separate and complete treatment.

The field of error-correcting code design is so new, and is progressing at such a rate, that very few codes (except for the Hamming codes - in this report) have been analyzed in detail. At this stage, communications system design problems relating to the possible use of error correcting codes cannot, in general, be answered by reference to the existing literature. It is hoped that further research into code performance will fill this void.

LIST OF REFERENCES

- 1. NBS Radio Propagation Course, 1962, Central Radio Propagation Laboratory, U. S. Department of Commerce, Boulder, Colorado.
- 2. Hancock, J. C., <u>An Introduction to the Principles of Communication</u> <u>Theory</u>, McGraw-Hill Book Company, Inc., 1961, pp. 186-192.
- 3. Wiesner, J. B., "Communication Using Earth Satellites," <u>Lectures on</u> <u>Communication System Theory</u>, ed. E. J. Baghdady, McGraw-Hill Book Company, Inc., 1961, pp. 585-587.
- 4. Rafuse, R. P., "Characterization of Noise in Receiving Systems," <u>Lectures on Communication System Theory</u>, ed. E. J. Baghdady, McGraw-Hill Book Company, Inc., 1961, pp. 379-382.
- Allen, R. A., "Man-made Radio Noise," <u>The Radio Noise Spectrum</u>, ed. D. H. Menzel, Harvard University Press, 1960, pp. 1-6.
- Gambling, L. B., "Lightning Facts and Fancies," J. Brit. INE, vol. 23, March, 1962, pp. 163-170.
- Helliwell, R. A., "Whistler mode propagation," <u>The Radio Noise Spectrum</u> ed. D. H. Menzel, Harvard University Press, 1960, pp. 93-99.
- Helliwell, R. A., and Morgan, M. G., "Atmospheric Whistlers," <u>Proc. IRE</u>, vol. 47, Feb., 1959, pp. 200-208.
- Crichlow, W. C., "Determination of the Amplitude-Probability Distribution of Atmospheric Radio Noise From Statistical Moments," <u>Journ.</u> Research (D. Radio Propagation), NBS 64 D, Jan. - Feb., 1960, pp. 49-56.
- Landon, V. D., "The Distribution of Amplitude with Time in Fluctuation Noise," <u>Proc. IRE</u>, vol. 30, Sept., 1942, pp. 425-429.
- 11. Rice, S. O., "Properties of a Sine Wave Plus Random Noise," <u>Bell System</u> <u>Technical Journal</u>, vol. 27, Jan., 1948, pp. 109-157.
- 12. Watt, A. D., and Maxwell, E. L., "Measured Statistical Characteristics of VLF Atmospheric Noise," Proc. INE, vol. 40, Jan., 1957, pp. 55-62.
- Montgomery, G. F., "A Comparison of Amplitude and Angle Modulation for Narrow Band Communications of Binary-Coded Messages in Fluctuation Noise," <u>Proc. IRE</u>, vol. 42, Feb., 1954, pp. 447-454.
- 14. Fano, R. M., Transmission of Information, pp. 172-178.
- Sanders, R. W., "Communication Efficiency Comparison of Several Communication Systems," <u>Proc. IRE</u>, vol. 48, April, 1960.

16.	Capon, J., "Nonparametric Methods for the Detection of Signals in Noise," Technical Report No. T-1/N, Columbia University, 1959.
17.	Rice, S. C., "Mathematical Analysis of Random Noise," <u>Noise and</u> <u>Stochastic Processes</u> , ed., N. Wax, Dover Publications Inc., New York, 1954.
18.	Mann, H. R., and Whitney, D. R., "On a Test of Whether One of Two Random Variables is Stochastically Larger Than the Other," <u>Ann. Math.</u> <u>Stat</u> ., 18, 1947, p. 50.
19.	Lehmann, E. L., "Consistency and Unbiasedness of Certain Non- Parametric Tests," <u>Ann. Math. Stat</u> ., 22, 1951, p. 165.
20.	Andrews, F. C., "Asymptotic Behavior of Some Rank Tests for Analysis of Variance," <u>Ann. Math. Stat</u> ., 25, 1954, p. 724.
21.	Hodges, J. L., and Lehmann, E. L., "The Efficiency of Some Non- parametric Competitors of the t-Test," <u>Ann. Math. Stat</u> ., 27, 1956, p. 324.
22.	Noethe, G. E., "Asymptotic Properties of the Wald-Wolfowitz Test of Randomness," <u>Ann. Math. Stat</u> ., 21, 1950, p. 231.
23.	Smirnov, N. V., "On the Estimation of the Discrepancy Between Empirical Curves of Distribution for two Independent Samples," Bull. Math. Univ. Moscow, Serie Int., 2, 1939, p. 3.
24.	Massey, F., "A Note on the Power of a Non-parametric Test," <u>Ann</u> . <u>Math. Stat</u> ., 21, 1950, p. 440.
25.	Smirnov, N. V., "Table for Estimating the Goodness of Fit of Em- pirical Distributions," <u>Ann. Math. Stat</u> ., 19, 1948, p. 279.
26.	Hoeffding, W., "Optimum Non-parametric Tests," Proc. 2nd Berkeley Symposium, Univ. of Calif. Press, 1951, p. 83.
27.	Middleton, David, <u>An Introduction to Statistical Communication</u> <u>Theory</u> , McGraw-Hill Book Company, Inc., 1960.
28.	Baghdady, E. J., ed., <u>Lectures on Communication System Theory</u> , McGraw-Hill Book Company, Inc., 1961.
29.	Price and Green, "A Communication Technique for Multipath Channels," Proc. INE, 46, March, 1958, pp. 555-570.
30.	Turin, G. L., "An Introduction to Matched Filters," <u>INE Trans. on</u> <u>Inf. Theory</u> , vol. IT-6, June, 1960, p. 310.

1

•

-189-

- 31. Key, Fowle, and Haggerty, "A Method of Designing Signals of Large Time-Bandwidth Product," Lincoln Lab. Report No. 41G0007 (April, 1961).
- 32. Gerst and Diamond, "The Elimination of Intersymbol Interference by Input Signal Shaping," <u>Proc. IRE</u>, 49, 7, pp. 1195-1203 (July, 1961).
- 33. Shannon, C. E., "A Mathematical Theory of Communication," <u>Bell</u> System Technical Journal, vol. 27, No's 3 and 4, July/October, 1948.
- 34. Hamming, R. W., "Error Detecting and Error Correcting Codes," Bell System Technical Journal, vol. 29, No. 2, April, 1950.
- 35. Bose, R. C., and Ray-Chandhuri, D. K., "On a Class of Error Correcting Rinary Group Codes," <u>Information and Control</u>, vol. 3, No. 1, March, 1960.
- Bose, R. C., and Ray-Chandhuri, D. K., "Further Results on Error Correcting Binary Group Codes," <u>Information and Control</u>, vol. 3, No. 3, Sept., 1960.
- 37. Gorenstein, D; Peterson, W. W.; Zierler, N;, "Two-Error Correcting Bose-Chandhuri Codes are Quasi-Perfect," <u>Information and Control</u>, vol. 3, No. 3, Sept., 1960.

1

-191-

APPENDIX I

EVALUATION OF A CERTAIN INTEGRAL

Consider the integral (Eq. 3-6)

$$C = \max \left\{ (\ln 2)^{-1} \int_{f_0}^{f_0+W} df \int_{0}^{\infty} dx \frac{2A}{6^2} e^{-A^2/6^2} \ln \left\{ 1 + \frac{A^2 G_g(f)}{G_n(f)} \right\}$$
(I-1)

Making a change of variable $y = A^2$ results in

$$\begin{array}{c} \mathbf{C} = \max \\ \left\{\mathbf{G}_{g}(\mathbf{f}) \geq \mathbf{0}\right\} \end{array} \left(\ln 2 \right)^{-1} \int_{\mathbf{f}_{O}}^{\mathbf{f}_{O} + W} d\mathbf{f} \int_{O}^{\infty} \frac{\mathbf{e}^{-\mathbf{y}/\sigma^{2}}}{\sigma^{2}} \ln \left\{ 1 + \frac{\mathbf{y}\mathbf{G}_{g}(\mathbf{f})}{\mathbf{G}_{n}(\mathbf{f})} \right\} d\mathbf{y}$$
 (I-2)

Integrating with respect to y by parts yields

Now, let

$$u = -\left\{1 + y \frac{G_{g}(f)}{G_{n}(f)}\right\} \frac{G_{n}(f)}{\sigma^{2}G_{g}(f)}$$

and

$$du = -\frac{dy}{\delta^2}$$

Then C can be expressed as

$$\begin{cases} \mathbf{C} = \max_{\{\mathbf{u}_{g}(\mathbf{f}) \ge 0\}} & -(\ln 2)^{-1} \int_{\mathbf{f}_{0}}^{\mathbf{f}_{0} + W} d\mathbf{f} \exp\left\{\frac{\mathbf{G}_{n}(\mathbf{f})}{\sigma^{2}\mathbf{G}_{g}(\mathbf{f})}\right\} \int_{\infty}^{\infty} -\frac{\mathbf{G}_{n}(\mathbf{f})}{\sigma^{2}\mathbf{G}_{g}(\mathbf{f})} \frac{\mathbf{e}^{\mathbf{u}}}{\mathbf{u}} d\mathbf{u} \qquad (\mathbf{I}-\mathbf{4}) \end{cases}$$

$$C = \max_{g_{g}(f) \ge 0} -1 \int_{0}^{f_{g}(f)} \exp\left\{\frac{G_{n}(f)}{\sigma^{2}G_{g}(f)}\right\} \operatorname{Ei}\left\{\frac{-G_{n}(f)}{\sigma^{2}G_{g}(f)}\right\} df \qquad (I-5)$$

which is identical to Eq. (3-7).

APPENDIX II

DERIVATION OF THE OPTIMUM s(t)

To show that the input signal must be from a stationary Gaussian random process for the Rayleigh channel to obtain capacity, consider the following channel.

 $I[S/X, A = A_1]$ is defined as the average conditional information rate averaged over all x(t), given that $A = A_1$.

To see that the average conditional information rate is a maximum when s(t) is Gaussian, let $A \ s(t = k) \equiv r_k$, be a random variable with power constraint $P' \ge A^2 E[s_k^2]$ and $n(t = k) \equiv n_k$, a Gaussian random variable with $E[n_k] = 0$, and $E[n_k^2] = N$. Also denote $x(t = k) = x_k$, then

$$E(x_k^2) = E(r_k^2) + E(n_k^2) \le P' + N$$
 (II-1)

The average uncertainty of x_k is equal to that of x(t) since x(t) is a stationary process,

$$H(X) = \frac{1}{2} \log 2\pi \quad \epsilon(P' + N)$$
 (II-2)

This can be shown by considering

1

$$H_{e}(\mathbf{X}) = - \int_{-\infty}^{\infty} p(\mathbf{x}_{k}) \ln p(\mathbf{x}_{k}) d\mathbf{x}_{k}$$
 (II-3)
$$H_{e}(X) - \frac{1}{2} \ln 2\pi e [P' + N]$$

$$= - \int_{-\infty}^{\infty} p(x_{k}) \ln p(x_{k}) + \int_{-\infty}^{\infty} p(x_{k}) \ln \left\{ \frac{e^{-\frac{x_{k}^{2}}{2(P' + N)}}}{[2\pi(P' + N)]^{1/2}} \right\} dx_{k} \quad (II-4)$$

$$= \int_{-\infty}^{\infty} p(x_{k}) \ln \frac{e^{-\frac{x_{k}^{2}}{2(P' + N)}}}{[2\pi(P' + N)]^{1/2}p(x_{k})} dx_{k}$$

Using the fact that $lnt \leq t-1$, equality if and only if t = 1, one obtains

$$\mathbb{H}_{e}(\mathbb{X}) - \frac{1}{2} \ln 2\pi e(\mathbf{P}' + \mathbf{N}) \leq \int_{-\infty}^{\infty} d\mathbf{x}_{k} \mathbf{p}(\mathbf{x}_{k}) \left[\frac{e^{-\mathbf{x}_{k}^{2}/2(\mathbf{P}' + \mathbf{N})}}{[2\pi(\mathbf{P}' + \mathbf{N})]^{1/2}\mathbf{p}(\mathbf{x}_{k})} - 1 \right]$$
(II-5)

equivalently equality if and only if
$$p(x_k) = \frac{e^{-x_k^2/2(P'+N)}}{[2\pi(P'+N)]^{1/2}}$$

= 0

It has, therefore, been proven that H(X) obtains its maximum when x_k is Gaussian with zero mean and variance (P' +N). If this condition is satisfied

$$H(X) = \frac{1}{2} \log 2\pi e(P' + N)$$
 (II-6)

 x_k will be Gaussian with zero mean and $E(x_k^2) = P' + N$ if r_k is Gaussian with zero mean and a variance equal to P'. Hence,

$$C = \max_{\mathbf{x}} I(\mathbf{R}/\mathbf{X}) = \max \left\{ H(\mathbf{R}) - H(\mathbf{R}/\mathbf{X}) \right\}$$

$$p(s_k) \qquad p(r_k) \qquad (II-7)$$

$$= \max_{p(x_{k})} \left\{ H(X) - H(X/R) \right\}$$

The maximum H(X) has been obtained above. It must further be shown that for r_k Gaussian distributed, H(X/R) is a minimum.

Solving for
$$H(X/r=r_k)$$

 $-(x_k-r_k)^2 - (x_k-r_k)^2$
 $H(X/r=r_k) = -\int_{\infty}^{\infty} dx_k \frac{e}{(2\pi N)^{1/2}} \log \frac{e}{(2\pi N)^{1/2}}$ (II-8)

$$= \frac{1}{2} \log 2\pi eN$$

$$H(X/R) = \int_{-\infty}^{\infty} H(X/r=r_k) p(r_k) dr_k \qquad (II-9)$$

$$= \frac{1}{2} \log 2\pi eN$$

It has, therefore, been shown that r_k and hence s_k must be Gaussian with zero mean and variance $P' = Po^2$ in order for the average conditional rate to be a maximum.

The average information rate is

1 I

#

$$I(S/X) = \int_{-\infty}^{\infty} I(S/X, A = A_{1}) p(A_{1}) dA_{1}$$
 (II-10)

To maximize I(S/Y) the integrand must be maximized for every value of A_1 . The integrand is maximized if $I(S/X, A = A_1)$ is maximized for every value of A_1 . In order for $I(S/X, A = A_1)$ to be maximized it was proved that s(t) had to be a stationary Gaussian random process with zero mean, and a variance P'.

APPENDIX III

DETERMINING THE LOWER BOUND OF β

Starting with Eq. (3-15') and letting $\alpha = \frac{N}{\sigma^2 P_{min}}$

 β may be expressed as

-

$$\beta = -\ln 2 \frac{e^{-\alpha}}{E_{i}(-\alpha)}$$
(III-1)

To find the minimum β calculate

$$\frac{\delta\beta}{\delta\alpha} = \ln 2 \left\{ \frac{e^{-\alpha}}{\mathbf{E}_{1}(-\alpha)} + \frac{e^{-\alpha}}{\alpha^{2}\mathbf{E}_{1}(-\alpha)} + \frac{e^{-2\alpha}}{\alpha^{2}(\mathbf{E}_{1}(-\alpha))^{2}} \right\}$$
(III-2)

$$= \ln 2 \frac{e^{-\alpha} \{ (\alpha+1) \mathbb{E}_{1}(-\alpha) + e^{-\alpha} \}}{\left[\alpha \mathbb{E}_{1}(-\alpha) \right]^{2}}$$

and note that

$$\frac{\delta\beta}{\delta\alpha} \rightarrow 0 \text{ as } \alpha \longrightarrow \infty$$

Therefore,

$$\beta_{\min} = \lim_{\alpha \to \infty} - \ln 2 \frac{\frac{e^{-\alpha}}{\alpha}}{E_{i}(-\alpha)}$$
(III-3)

Using l'Hopital's rule

$$\beta_{\min} = \ln 2 \quad \lim_{\alpha \to \infty} \frac{e^{-\alpha}}{e^{-\alpha}} = \ln 2 \qquad (\text{III-4})$$
$$\alpha \to \infty \quad \frac{e^{-\alpha}}{\alpha} = \ln 2$$

This is the result stated in Eq. (3-16).

-198-APPENDIX IV

DERIVATION OF THE HAMMING ERROR RATE EQUATION

1. Glossary of Symbols

This glossary is intended to aid the reader in following the proofs presented by obviating the necessity of searching the Appendix for symbol definition.

Operators, Relationships

- Written a @ b, where a and b are m binit binary numbers. Treat each of a and b as an m-dimensional vector with elements from the modulo 2 field (Modulo 2 field: contains two elements, 0, 1, with 0+0 = 1+1 = 0, and 0+1, = 1) and add, component by component.
 Sum, under the conditions of @, of n binary numbers.
- \bigcup Written a \bigcup b, where a and b are sets. a \bigcup b is then the set of all elements belonging to a or b or both.

 $\bigcup_{i=1}^{n} : \text{ The set of all elements belonging to one or more of the}$

- ε: Written a∈b, where a is an element of the type found in set b (for example, a itself may be a set, and b a set of sets of the same type as a). Meaning, "a is a member of the set b," or "belongs to."
- $\not \epsilon$: See ϵ ; " does not belong to."
- P{a}: Probability of a.
- P{a b}: Probability of a, given b.

Variables

- d_j : Binary number, $1 \le d_j \le n = 2^m 1$, m binits; member of the set (d_j)
- e_j: Binary number, $0 \le e_j \le n = 2^m 1$, m binits; the binary re-, presentation of the position number $(1, \ldots, n)$ for a binit in error in a received code word, <u>not</u> including the overall check binit of the DED/SEC case; member of the set (e_j)
- ej: As for e, for the code word after the error correction procedure of the decoder has been applied
- $l_i(β)$: Number of sets (d_j) belonging to $\lambda_i(β)$; shown to be constant, $=l_i$, for all β.
- m: Length of the binary numbers d_j , e_j , e'_j , β and γ .
- $\begin{array}{ll} m_{i}(\beta): & \text{Number of sets } (d_{j}) \text{ belonging to } \mu_{i}(\beta); \text{ shown to be constant, } = m_{i}, \text{ for all } \beta. \end{array}$
- n: Length of a SEC code word, in binits; the number of values that may be assumed by d_j , e_j , e'_j , β and γ . (Note that $n = 2^{m}-1$).

n': Length of a DED/SEC code word;
$$n = n'-1$$
 for such codes.

$$\begin{split} \mathbf{n}_{\mathbf{c}}: & \text{Number of errors in the first n binits of a received word.} \\ \mathbf{n}_{\mathbf{c}}: & \text{Number of errors in the first n binits of a received word} \\ & \text{after "correction".} \\ \mathbf{n}_{\mathbf{i}}: & \text{Number of sets } (\mathbf{d}_{\mathbf{j}}) \text{ belonging to } \mathbf{v}_{\mathbf{i}}. \\ \mathbf{n}_{\mathbf{t}}: & \text{Number of errors in total received word, = n_{\mathbf{c}} \text{ for SEC} \\ & \text{codes, = n_{\mathbf{c}} or n_{\mathbf{c}}-1, \text{ SEC/DED codes.} \\ \mathbf{N}_{\mathbf{i}}: & \text{Same as } \mathbf{n}_{\mathbf{i}}. \\ \mathbf{N}_{\beta}(\mathbf{\lambda}_{\mathbf{i}}): & \text{Number of times } \beta \text{ is used as an element in the sets } (\mathbf{d}_{\mathbf{j}}) \\ & \text{belonging to } \bigcup_{i=1}^{n} \lambda_{\mathbf{i}}(\gamma); \text{ shown to be constant, } \mathbf{N}(\mu_{\mathbf{i}}), \\ & \gamma=1 \\ & \text{for all } \beta. \\ \mathbf{N}(\mathbf{\lambda}_{\mathbf{i}}): & \text{See } \mathbf{N}_{\beta}(\mathbf{\lambda}_{\mathbf{i}}). \\ \mathbf{N}_{\beta}(\mu_{\mathbf{i}}): & \text{Number of times } \beta \text{ is used as an element in the sets } (\mathbf{d}_{\mathbf{j}}) \\ & \text{belonging to } \bigcup_{i=1}^{n} \mu_{\mathbf{i}}(\gamma); \text{ shown to be constant, } \mathbf{N}(\mu_{\mathbf{i}}), \\ & \gamma=1 \\ & \text{for all } \beta. \\ \mathbf{N}(\mathbf{u}_{\mathbf{i}}): & \text{See } \mathbf{N}_{\beta}(\mu_{\mathbf{i}}). \\ \mathbf{N}_{\beta}(\mathbf{v}_{\mathbf{i}}): & \text{Number of times } \beta \text{ is used as an element in the sets } (\mathbf{d}_{\mathbf{j}}) \\ & \text{belonging to } \bigcup_{i=1}^{n} \mu_{\mathbf{i}}(\gamma); \text{ shown to be constant, } \mathbf{N}(\mu_{\mathbf{i}}), \\ & \gamma=1 \\ & \text{for all } \beta. \\ \mathbf{N}(\mu_{\mathbf{i}}): & \text{See } \mathbf{N}_{\beta}(\mu_{\mathbf{i}}). \\ \mathbf{N}_{\beta}(\mathbf{v}_{\mathbf{i}}): & \text{Number of times } \beta \text{ is used as an element in the sets } (\mathbf{d}_{\mathbf{j}}) \\ & \text{belonging to } \mathbf{t}_{\mathbf{i}}; \text{ shown to be constant, } = \mathbf{N}(\mathbf{v}_{\mathbf{i}}), \text{ for all } \beta. \\ \mathbf{N}(\mathbf{v}_{\mathbf{i}}): & \text{See } \mathbf{N}_{\beta}(\mathbf{v}_{\mathbf{i}}). \\ \mathbf{P}_{\mathbf{e}}: & \text{Channel probability of error; for symmetric channels, \\ transitional probability. \\ \mathbf{y}: & \text{Omission index}. & (\text{SEC/DED codes only}). \mathbf{y} = 0 \text{ if the received error pattern can be detected but not corrected, \\ \end{array}$$

and, therefore, the whole code word is discarded; y = 1 if the code word is not discarded.

.

P': Decoder output binit error probability

z :	Check index (SEC/DED codes only). $z = 1$ if the overall
	check binit is received in error, and $z = 0$ if the over-
	all check binit is received correctly (at the decoder
	input in both cases).
β:	Binary number, $1 \beta n = 2^{m}$ -1, m binits in length.

 γ : As for β .

<u>Sets</u>

1

- (d_j): Set of unique binary numbers d_j (see d_j).
 (e_j): Set of unique binary numbers e_j, each e_j corresponding
 - to an error in the received code word (see e_j),
- (e'j): Set of unique binary numbers e'j, each e'j corresponding to an error in the received, "corrected" code word (see e'j, e'j).

$$\lambda_{i}(\beta)$$
: Set of all (d_{j}) , where the number of elements in (d_{j})

is is satisfying
$$\sum_{j=1}^{\infty} \Theta d_j = \beta \neq 0$$
, and $\beta \notin (d_j)$.

 $\mu_i(\beta)$: Set of all (d_j) , where the number of elements in (d_j)

is i, satisfying
$$\sum_{j=1}^{1} \Theta d_j = \beta \epsilon(e_j)$$
.

 v_1 : Set of all (d_j) , where the number of elements in (d_j) is i, satisfying $\sum_{j=1}^{i} \oplus d_j = 0$.

2. Theorem

For all non-repetitive sets (d_i) of elements d_i , each such element being the binary representation of a number from the set (1, 2, ..., n), n = SEC code word length = 2^{m} -1, m an integer, form the sets of sets $\lambda_{1}(\beta), \mu_{1}(\beta)$ and ν_{1} thus:

 $\lambda_i(\beta)$ = The set of all sets (d_j) containing i elements and satisfying $\sum_{j=1}^{1} \mathbf{d}_{j} = \beta \neq 0, \text{ with } \beta \in (\mathbf{d}_{j});$

 $\mu_i(\beta)$ = The sets (d_i) containing i elements and satisfying

$$\sum_{j=1}^{i} d_{j} = \beta \epsilon (d_{j})$$
 (implying $\beta \neq 0$ as well);

 v_i = The set of all sets (d_i) containing i elements and satisfying

$$\sum_{j=1}^{i} \mathbf{d}_{j} = \mathbf{0}$$

Define, then, $l_{i}(\beta)$ = the number of distinct sets $(d_{i}) \in \lambda_{i}(\beta)$ $m_i(\beta) = \text{the number of distinct sets } (d_i) \in \mu_i(\beta)$ $n_i = \text{the number of distinct sets } (d_i) \in v_i$

and

 $N_{\beta}(\lambda_{i})$ = the number of times β is used as an element in the distinct sets $(d_j) \in \left[\bigcup_{\gamma=1}^{j} \lambda_j(\gamma) \right]$

 $N_{\beta}(\mu_{1})$ = the number of times β is used as an element in the distinct sets $(d_j) \in \left[\bigcup_{\gamma=1} \mu_j(\gamma) \right]$

 $N_{\beta}(v_i) =$ the number of times β is used as an element in the distinct sets $(d_i) \in v_i$

Then it is postulated that $l_i(\beta)$, $m_i(\beta)$, and $N_{\beta}(\lambda_i)$, $N_{\beta}(\mu_i)$ and $N_{\beta}(\nu_i)$ are each independent of β , $l \leq \beta \leq n = 2^m - 1$, for a fixed 1.

Corollary:

$$m_{i} = \frac{n-i+1}{n} n_{i-1}$$

$$n_{i} = \frac{n}{i} l_{i-1}$$

$$l_{i} = \frac{1}{n} \binom{n}{i} - n_{i} - m_{i}$$

$$N(\lambda_{i}) = i l_{i}$$

$$N(\mu_{i}) = i m_{i}$$

$$N(\nu_{i}) = \frac{i n_{i}}{n}$$

where m_i , l_i , $N(\lambda_i)$, $N(\mu_i)$, and $N(\nu_i)$ are the constant values taken on by $m_i(\beta)$, $l_i(\beta)$, $N_{\beta}(\lambda_i)$, $N_{\beta}(\mu_i)$ and $N_{\beta}(\nu_i)$ respectively, for a fixed i and any β , $l \neq \beta \neq n$.

<u>Proof</u>: The method of proof to be used is mathematical induction. Parts (1) and (5) establish that, if the theorem is true for i - 1, it is then true for i. Part (6) shows the theorem to be true for i = 1, completing the proof.

It is implied throughout the proof that each set (or set of sets) referred to is non-repetitive in its elements (or sets).

Assume, now, that the theorem is true for i-l; the inductive proof follows.

(1) Consider the sets (d_j), (d_j) ε ν_{i-1}; since a given β appears once, at most, in any one (d_j), the number of sets (d_j) ε ν_{i-1} such that β∉(d_j), is [n_{i-1}-N_β(ν_{i-1})]. Adjoining β to each such set results in the formation of [n_{i-1}-N_β(ν_{i-1})] distinct sets (d'_j), each of whose sum
(Φ) is β, and each containing β. Thus, each such (d'_j) ε μ_i(β), and m_i(β) ≥ n_{i-1}-N_β(ν_{i-1})

Conversely, for every set $(d_j^i) \in \mu_i(\beta)$, deletion of β from each (d_j^i) results in a set of distinct sets (d_j) , with $(d_j) \in v_{i-1}$ and $\beta \notin (d_j) - i.e.$,

 $n_{i-1} - N_{\beta}(v_{i-1}) \ge m_{i}(\beta)$

Thus, $m_i(\beta) = n_{i-1} - N_{\beta}(\nu_{i-1})$; since n_{i-1} and $N_{\beta}(\nu_{i-1})$ are independent of β , $m_i(\beta)$ is similarly independent.

(2) With each $(d_j) \in v_{i-1}$, containing (i-1) elements, associate the n-(i-1) sets (d'_j) formed by adjoining δ_k to (d_j) , for each $\delta_k \notin (d_j)$; each (d'_j) so formed has the property that $(d'_j) \in \mu_i(\delta_k)$. Conversely, every $(d'_j) \in \mu_i(\delta)$ may be associated with exactly one $(d_j) \in v_{i-1}$ by deletion of δ , and that (d_j) has the property that $\delta_\ell(d_j)$.

Thus, associated with each of the $N_{\beta}(v_{i-1})$ sets in v_{i-1} containing a given β are (n-i+1) unique sets belonging to $\bigcup_{j=1}^{n} \mu_{1}(\gamma)$ [note that none of these sets can belong to $\mu_{1}(\beta)$]. Also, with each of the $[n_{i-1}-N_{\beta}(v_{i-1})]$ sets in v_{i-1} not containing β , there is associated exactly, in one-to-one correspondence, one set in $\bigcup_{j=1}^{n} \mu_{1}(\gamma)$ [in particular, belong to $\mu_{1}(\beta)$], such that each such set contains β . Finally, then, the total number of sets in $\bigcup_{\gamma=1}^{n} \mu_{1}(\gamma)$ containing β is $(n-i+1)N_{\beta}(v_{i-1}) + n_{i-1}-N_{\beta}(v_{i-1}) - - or,$ $N_{\beta}(\mu_{1}) = (n-i)N_{\beta}(v_{i-1}) + n_{i-1}$

With $N_{\beta}(v_{i-1})$ and n_{i-1} independent of β , $N_{\beta}(\mu_i)$ is similarly independent.

(3) Consider the sets (d_j) such that $(d_j) \in v_i$ and $\beta \in (d_j)$ for a given β . By deleting β from each (d_j) , a set of new distinct sets (d_j) is formed, and, for each such (d_j) , $\sum_{j=1}^{i-1} d_j = \beta$, and $\beta \notin (d_j) - i.e.$, $(d_j) \in \lambda_{i-1}(\beta)$. Conversely, every $(d_j) \in \lambda_{i-1}(\beta)$ may be associated uniquely with exactly one set $(d_j) = (d_j, \beta)$ in v_i . Thus.

 $N_{\rho}(v_{i}) = l_{i-1}(\beta)$

Since $l_{i-1}(\beta)$ is independent of β , $\mathbb{N}_{\beta}(\nu_i)$ is similarly independent.

(4) The sets of sets $\lambda_i(\gamma)$, $\mu_i(\gamma)$ and ν_i are disjoint and exhaustive in the set of all sets of i binary numbers chosen out of the binary numbers (1, 2, ..., n = 2^m-1) -- that is, any set of i binary numbers (and there are $\binom{n}{i}$ such sets) belongs to exactly one of the (2n+1) sets $\lambda_i(\gamma)$, $1 \le \gamma \le n$, $\mu_i(\gamma)$, $1 \le \gamma \le n$, and ν_i .

Also, in the set of all i-element sets, each β , $1 \neq \beta \neq n$, is used as an element an equal number of times -- specifically, each β is used $\frac{1}{n}\binom{n}{i}$, or $\binom{n-1}{i-1}$ times. It is established in (2) and (3) that, given a β used $N_{\beta}(\mu_{i})$ times as an element in the sets of $\bigcup_{\gamma=1}^{n} \mu_{i}(\gamma)$ and $N_{\beta}(\nu_{i})$ times in the sets of ν_{i} , $N_{\beta}(\mu_{i})$ and $N_{\beta}(\nu_{i})$ are independent of β . It follows that

$$N_{\beta}(\lambda_{1}) = \binom{n-1}{1-1} - N_{\beta}(\mu_{1}) - N_{\beta}(\nu_{1})$$

with $N_{\beta}(i)$ independent of β .

(5) Consider a set $(d_j) \in \lambda_i(\beta)$; form a new set (d_j^k) by deleting d_k from (d_j) , $1 \neq k \neq i$, and adjoining β .

Then, recalling that, in modulo 2 vector arithmetic, $\underline{a} \oplus \underline{b} = \underline{a} \oplus \underline{b}$ (θ = vector "subtraction," elements from the modulo 2 field), then

$$\sum_{j=1}^{i} \mathbf{d}_{j}^{k} = \sum_{j=1}^{i} \mathbf{d}_{j} \mathbf{a}_{k} \mathbf{a}_{k$$

Thus, it is demonstrated that, for each $(d_j) \in \lambda_i(\beta)$, there are exactly i associated sets, one each in each of $\lambda_i(d_j)$, 1 j i, containing β ; it is obvious that no two different $(d_j) \in \lambda_i(\beta)$ can be so associated with the same (d_j^k) in some $\lambda_i(d_k)$, and that every $(d_j^i) \in \lambda_i(\delta)$ with $\beta \in (d_j^i)$ must be associated with exactly one $(d_j) \in \lambda_i(\beta)$. Since the total number of sets in $\bigcup_{\gamma=1}^n \lambda_i(\gamma)$ containing β is $N_\beta(\lambda_i)$, the number of times β is used as an element of these sets, it follows that the number of sets in $\lambda_i(\beta)$ is given by

$$L_{i}(\beta) = \frac{N_{\beta}(\lambda_{i})}{i} , i \neq 0$$

Since $N_{\beta}(\lambda_{i})$ is independent of β , similarly $l_{i}(\beta)$ is independent of β .

(6) Finally, consider the case for i = 1. Then every set (d_j) consists of a single element d_1 . For every such set, $\sum_{j=1}^{i} d_j = d_1 \in (d_j)$; thus j=1

every set $(d_j) \in \mu_1(d_j)$, and $m_1(\beta) = 1$, for all β , $l \leq \beta \leq n$. Also, $l_1(\beta) = 0$ and $N_{\beta}(\lambda_1) = N_{\beta}(\nu_1) = 0$, $N_{\beta}(\mu_1) = 1$, independent of β .

(7) Since $l_i(\beta)$, $m_i(\beta)$, $N_{\beta}(\lambda_i)$, $N_{\beta}(\mu_i)$ and $N_{\beta}(\nu_i)$ are all independent of the β chosen, redefine

$$\begin{split} & l_{i} = l_{i}(\beta); \ m_{1} = m_{i}(\beta); \ \text{and} \\ & \mathbb{N}_{\beta}(\lambda_{i}) = \mathbb{N}(\lambda_{i}); \ \mathbb{N}_{\beta}(\mu_{i}) = \mathbb{N}(\mu_{i}); \ \mathbb{N}_{\beta}(\nu_{i}) = \mathbb{N}(\nu_{i}). \end{split}$$

Summarizing then, it has been shown that

$$m_{i} = n_{i-1} - N(v_{i-1})$$

$$N(\mu_{i}) = (n-1)N(v_{i-1}) + n_{i-1}$$

$$N(v_{i}) = l_{i-1}$$

$$N(\lambda_{i}) = \binom{n-1}{i-1} - N(\mu_{i}) - N(v_{i})$$

$$l_{i} = N(\lambda_{i})/1$$
(IV-1)

Also, in the set v_i of all i-length sets whose sum is zero, the total number of elements is in_i ; but each of the n elements (1, ..., n) is used an equal number of times, so that the number of times any one element appears in these sets is given by

$$N(v_1) = \frac{in_1}{n}$$
 (IV-2)

Using (IV-1) with (IV-2), it follows that

$$m_i = \frac{(n-i+1)n_{i-1}}{n}$$
 (IV-3)

$$n_{i} = \frac{n l_{i-1}}{i}$$
 (IV-4)

$$l_{i} = \frac{1}{n} \left[\binom{n}{i} - n_{i} \right] - m_{i}$$
 (IV-5)

$$N(\lambda_1) = i l_1$$
 (IV-6)

$$N(\mu_{i}) = 1 m_{i}$$
 (IV-7)

$$N(v_i) = \frac{i n_i}{n}$$
 (IV-8)

(9) The following lemma results immediately:

Lemma

The probability that an arbitrary non-repetitive set (d_j) of i binary numbers chosen from the set $(1, 2, ..., n=2^m-1)$ is such that

(a) $(d_j) \epsilon \lambda_i(\beta)$, is given by $l_i/\binom{n}{i}$; (b) $(d_j) \epsilon \mu_i(\beta)$, is given by $m_i/\binom{n}{i}$; (c) $(d_j) \epsilon \nu_i$, is given by $n_i/\binom{n}{i}$.

3. Error Rate Equation, SEC Hamming Codes

For these codes, the length $n = 2^{m}-1$. Then, Probability that the β^{th} binit is in error after correction =

$$P \{\beta \in (e_{j}^{*})\} = \sum P(\beta \in (e_{j}^{*}) | n_{e}=i) P \{n_{e}=i\}$$
(IV-9)
(1)
$$P \{\beta \in (e_{j}^{*}) | n_{e}=i\} = P \{\beta \in (e_{j}), \sum e_{j} \neq \beta | n_{e}=i\}$$
$$+ P \{\beta \notin (e_{j}), \sum e_{j} = \beta | n_{e}=i\}$$
(IV-10)
$$= P \{\beta \in (e_{j}), (e_{j}) \in \{\begin{bmatrix} n \\ 0 \\ \gamma=1 \\ (\gamma\neq\beta) \end{bmatrix} \cup \begin{bmatrix} n \\ \gamma=1 \\ (\gamma\neq\beta) \end{bmatrix} \cup \{\gamma=1 \\ (\gamma\neq\beta) \end{bmatrix} + P((e_{j}) \in \lambda_{1}(\beta) | n_{e}=i)$$

-- with the $\lambda_i(\gamma)$, $\mu_i(\gamma)$ and ν_i all disjoint, this becomes

$$P\{\beta \epsilon(e_{j}^{i})|n_{e}=i\} = P\{\beta \epsilon(e_{j}), (e_{j}) \epsilon v_{i} |n_{e}=i\}$$
$$+P\left\{\beta \epsilon(e_{j}), (e_{j}) \epsilon \left[\bigcup_{\substack{j=1\\ \gamma=1\\ (\gamma\neq\beta)}}^{n} \mu_{i}(\gamma)\right]|n_{e}=i\right\}$$

$$+ \mathbb{P} \left\{ \beta \epsilon(e_j), (e_j) \epsilon \left[\bigcup_{\substack{\gamma=1\\ \gamma\neq\beta}}^{n} \lambda_i(\gamma) \right] |n_e=i \right\} + \mathbb{P} \left\{ (e_j) \epsilon \lambda_i(\beta) |n_e=i \right\}$$
(IV-11)

or

$$P\{\beta \in \{e_{j}^{\prime}\} \mid n_{e}=1\} = P\{\beta \in \{e_{j}\} \mid \{e_{j}\} \in v_{i}, n_{e}=1\} P\{\{e_{j}\} \in v_{i} \mid n_{e}=1\}$$
$$+P\{\beta \in \{e_{j}\} \mid \{e_{j}\} \in \begin{bmatrix} n \\ \bigcup \\ \gamma=1 \\ (\gamma \neq \beta) \end{bmatrix}, n_{e}=1\} P\{\{e_{j}\} \in \begin{bmatrix} n \\ \bigcup \\ \gamma=1 \\ (\gamma \neq \beta) \end{bmatrix} \mid n_{e}=1\}$$

$$+ P \left\{ \beta \varepsilon(e_{j}) \mid (e_{j}) \varepsilon \begin{bmatrix} n \\ j \\ \gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix}, n_{e}=1 \right\} P \left\{ (e_{j}) \varepsilon \begin{bmatrix} n \\ j \\ \gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix} \right\} n_{e}=1 \right\}$$

$$+ P \left\{ (e_{j}) \varepsilon \lambda_{i}(\beta) \mid n_{e}=1 \right\}$$

$$+ P \left\{ (e_{j}) \varepsilon \lambda_{i}(\beta) \mid n_{e}=1 \right\}$$

$$P \left\{ (e_{j}) \varepsilon \begin{bmatrix} n \\ j \\ \gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix}, \mu_{i}(\gamma) \right\} \mid n_{e}=i \right\} =$$

$$Number of (e_{j}) \varepsilon \begin{bmatrix} n \\ j \\ \gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix}$$

$$Total number of (e_{j})$$

$$(IV-13)$$

-209-

with the $\mu_i(\gamma)$ disjoint,

Number of
$$(e_j) \in \begin{bmatrix} n \\ \bigcup \\ \gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix} = \sum_{\substack{\gamma = 1 \\ \gamma \neq 1 \\ (\gamma \neq \beta)}}^{n}$$
 Number of $(e_j) \in \mu_i(\gamma)$
$$= \sum_{\substack{\gamma = 1 \\ (\gamma \neq \beta)}}^{n} m_i(\gamma)$$
$$= \sum_{\substack{\gamma = 1 \\ \gamma \neq \beta}}^{n} m_i(\gamma)$$
The denominator of (IV-13) is merely $\binom{n}{i}$; thus,

$$\mathbb{P}\left\{ (\mathbf{e}_{j}) \in \left[\bigcup_{\substack{\gamma=1\\(\gamma\neq\beta)}}^{n} \mu_{1}(\gamma) \right] | \mathbf{n}_{e}=1 \right\} = \frac{(n-1)m_{1}}{\binom{n}{1}} \tag{IV-14}$$

Similarly,

L

Î

.

$$P\left\{ \begin{pmatrix} e_{j} \end{pmatrix} \in \begin{bmatrix} n \\ \bigcup \\ \gamma = 1 \\ (\gamma \neq \beta) \end{pmatrix} | n_{e} = i \right\} = \frac{(n-1)l_{i}}{\binom{n}{i}}$$
(IV-15)

$$P[(e_{j}) \in v_{i}(\beta) | n_{e} = 1] = \frac{n_{i}}{\binom{n}{i}}$$
(IV-16)

and

$$P\{(e_j) \in \lambda_i(\beta) | n_e = i\} = \frac{l_i}{\binom{n}{i}}$$
(IV-17)

(3)

$$P\left\{\beta \in (e_{j}) \mid (e_{j}) \in \left[\bigcup_{\substack{\gamma=1\\ (\gamma\neq\beta)}}^{n} \mu_{i}(\gamma)\right], n_{e} = i\right\}$$
Wumber of $(e_{j}) \in \left[\bigcup_{\substack{\gamma=1\\ (\gamma\neq\beta)}}^{n} \mu_{i}(\gamma)\right]$ such that $\beta \in (e_{j})$

$$= \frac{1}{(\gamma\neq\beta)}$$
Total number of $(e_{j}) \in \left[\bigcup_{\substack{\gamma=1\\ (\gamma\neq\beta)}}^{n} \mu_{i}(\gamma)\right]$

$$\frac{1}{(\gamma\neq\beta)}$$
(IV-18)

Now,

Number of
$$(e_j) \in \begin{bmatrix} n \\ \bigcup & \mu_j(\gamma) \end{bmatrix}$$
 such that $\beta \in (e_j)$
 $\gamma = 1$
 $(\gamma \neq \beta)$

= Number of
$$(e_j) \in \left[\bigcup_{\substack{j=1\\ \gamma=1}}^n \mu_i(\gamma) \right]$$
, with $\beta \in (e_j)$

- Number of
$$(e_j) \epsilon \mu_i(\beta)$$
 with $\beta \epsilon (e_j)$. (IV-19)

Number of
$$(e_j) \in \begin{bmatrix} n \\ \bigcup \\ \gamma = l \end{bmatrix}$$
 with $\beta \in (e_j) = \mathbb{N}(\mu_i)$, while

all $(e_j) \in \mu_1(\beta)$, $(=m_j)$ satisfy $\beta \in (e_j)$. Thus, the numerator of (IV-18) becomes

$$N(\mu_{1}) - m_{1} = (1-1)m_{1}$$

Again, since the $\mu_i(\gamma)$ are disjoint,

Total number of
$$(e_j) \in \begin{bmatrix} 0 \\ \gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix} = \sum_{\substack{\gamma = 1 \\ \gamma \neq 1 \\ (\gamma \neq \beta) \end{bmatrix}}^n$$
 Number of $(e_j) \in \mu_1(\gamma)$
$$= \sum_{\substack{\gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix}} m_1(\gamma) = (n-1)m_1 \qquad (IV-20)$$

-211-

So that

$$\mathbf{P}\left\{ \begin{array}{c} \beta \epsilon(\mathbf{e}_{j}) | (\mathbf{e}_{j}) \epsilon \left[\bigcup_{\substack{\gamma=1 \\ \gamma \neq \beta}}^{n} \mu_{i}(\gamma) \right], n_{e} = 1 \end{array} \right\} = \frac{i-1}{n-1} \quad (IV-21)$$

Similarly,

=

$$\mathbb{P} \left\{ \beta \varepsilon(\mathbf{e}_{j}) | (\mathbf{e}_{j}) \varepsilon \left[\bigcup_{\substack{\gamma = 1 \\ \gamma \neq \beta}}^{n} \lambda_{1}(\gamma) \right] , \mathbf{n}_{e} = 1 \right\}$$

Number of
$$(e_j) \in \begin{bmatrix} n \\ \forall_{j=1} \\ \gamma_{j=1} \end{bmatrix}$$
 such that $\beta \in (e_j)$

$$\frac{(\gamma \neq \beta)}{\text{Total number of } (e_j) \in \begin{bmatrix} n \\ \forall_{j=1} \\ \gamma_{j=1} \\ (\gamma \neq \beta) \end{bmatrix}}$$
(IV-22)

or

$$P\left\{\beta\epsilon(e_{j})|(e_{j})\epsilon\left[\bigcup_{\substack{\gamma=1\\(\gamma\neq\beta)}}^{n}\lambda_{i}(\gamma)\right], n_{e}=i\right\}=\frac{N(\lambda_{i})}{(n-1)l_{i}}=\frac{i}{n-1}$$
(IV-23)

since for every $(e_j) \epsilon \lambda_i(\beta)$, $\beta \notin (e_j)$; also, $P\{\beta \epsilon(e_j) | (e_j) \epsilon \nu_i, n_e = i\} = \frac{N(\nu_i)}{n_i} = \frac{i}{n}$ (IV-24)

Substituting, (IV-12) becomes

(4)

$$P\{\beta \epsilon(e_{j}^{i})|_{n_{e}}=1\} = \frac{1}{n} \cdot \frac{n_{i}}{\binom{n}{i}} + \frac{i-1}{n-1} \cdot \frac{(n-1)m_{i}}{\binom{n}{i}} + \frac{1}{n-1} \cdot \frac{(n-1)l_{i}}{\binom{n}{i}} + \frac{l_{i}}{\binom{n}{i}}$$

$$= \frac{1}{n-1} \cdot \frac{\binom{in_{i}}{i}}{\binom{n}{i}} + \frac{1}{(n-1)l_{i}} \cdot \frac{(n-1)l_{i}}{\binom{n}{i}} + \frac{1}{(n-1)l_{i}} \cdot \frac{(n-1)l_{i}}{\binom{n}$$

$$= \frac{1}{\binom{n}{i}} \left\{ \frac{1n_{i}}{n} + (i-1)m_{i} + (i+1)l_{i} \right\}.$$
 (IV-25)

i

Lamber

Define: $L_i = nl_i$ $M_i = nm_i$ (IV-26) $N_i = n_i$

Then

$$P\{\beta \in (e_{j}^{t}) | n_{e}^{t} = i\} = \frac{1}{n\binom{n}{i}} \left[(i+1) L_{i}^{t} + iN_{i}^{t} + (i-1) M_{i}^{t} \right]$$
(IV-27)

and the parameters are given by

$$M_{i} = (n-i+1) N_{i-1}$$

$$N_{i} = \frac{1}{i} L_{i-1}$$

$$L_{i} = {n \choose i} - N_{i} - M_{i}$$
(IV-28)

with initial values $M_1 = n$, $L_1 = N_1 = 0$ (or, alternatively, $M_0 = L_0 = 0$, $N_0 = 1$). (5)

 $P\{n_e = i\} = {n \choose i} P_e^i (1-P_e)^{n-i}$, where $P_e =$ channel probability of error. Equation (IV-9) becomes

$$P\{\beta \in (e_{j}^{\prime})\} = \sum_{i=0}^{n} \frac{1}{n} \left[(i+1)L_{i} + iN_{i} + (i-1)M_{i} \right] P_{e}^{i} (1-P_{e})^{n-i}$$
(IV-29)
(6)

 P_e^{\dagger} = probability that an arbitrary information binit is in error at the decoder output = $\sum_{i=1}^{n}$ (Prob. that the arbitrary binit = a specific info. info bits binit in the code word) (Prob. that the in the code word specific info. binit is in error).

Since the probability that any specific binit β in the code word is in error after correction, $P(\beta \epsilon(e_j^t))$, is independent of β , this is also the probability that any info. bit is in error. Hence,

$$\mathbf{P}_{\mathbf{e}}^{\prime} = \mathbf{P}\{\boldsymbol{\beta} \in (\mathbf{e}_{j}^{\prime})\}$$

or,

$$P_{e}^{i} = \frac{1}{n} \sum_{i=0}^{n} \left[(i-1) M_{i}^{i} + i N_{i}^{i} + (i+1) L_{i}^{i} \right] P_{e}^{i} (1-P_{e}^{i})^{n-i}$$
(IV-30)

In actual computation, the coefficients of the terms for i = 0, i = 1 are both zero; the summation may start at i = 2.

4. Error Rate Equation; SEC/DED Hamming Codes

Į

For these codes, P_e^{\dagger} is defined as the probability that an arbitrary information binit is in error after decoding given that the code word was not discarded by the decoder. Then, the desired probability, analagous to 3., is

Probability that the β^{th} binit is in error after correction, given that the code word is not discarded =

$$P\{\beta (e_{j}^{*})|y = 1\} = \frac{1}{P\{y = 1\}} P\{\beta (e_{j}^{*}), y = 1\}$$
(IV-31)
$$= \frac{1}{P\{y=1\}} \left\{ \sum_{i=0}^{n} P\{\beta\beta (e_{j}^{*}), y = 1, z = 0, n_{t} = i\} + \sum_{i=1}^{n+1} P\{\beta (e_{j}^{*}), y = 1, z = 1, n_{t} = i\} \right\}$$

where the length of the code word is $n = n+1 = 2^m$; z=0/z=1 indicate that the overall check binit is not/is in error, respectively, and y=0/y=1 indicate that the code word is/is not discarded.

Again,

$$P(\beta (e_{j}^{i}) y=1) = \frac{1}{P(y=1)} \left\{ \sum_{i=0}^{n} P(\beta (e_{j}^{i}), y=1|n_{t}=i, z=0) P(z=0|n_{t}=i) P(n_{t}=i) + \sum_{i=1}^{n+1} P(\beta (e_{j}^{i}), y=1|n_{t}=i, z=1) P(z=1|n_{t}=i) P(n_{t}=i) \right\}$$
(IV-32)

For a code word to be discarded, two sets of conditions may be imposed.

(a) The overall parity check is zero, while the checkword is not. This detects and discards all double errors,as well as the majority of patterns of all other evennumbers of errors.

(b) The conditions of (a) are satisfied, or the check word is zero while the overall check is not. This detects and discards a large number of error patterns with odd,
> 1, errors; however, it will also discard the single one-error pattern in which the error occurs in the overall check binit.

The error rate equation under conditions (a) is developed in detail, while that for (b) is stated without proof.

(2)

$$P\{\beta \in (e_{j}^{*}), y = 1 | n_{t} = i, z = 0\}$$

$$= P\left\{\beta \in (e_{j}), \sum e_{j} \neq \beta, y = 1 | n_{t} = i, z = 0\right\}$$

$$+ P\left\{\beta \notin (e_{j}), \sum e_{j} = \beta, y = 1 | n_{t} = i, z = 0\right\}$$

$$-- \text{ with } n_{t} = i \text{ and } z = 0, \text{ then } n_{e} = i. \qquad (IV-33)$$

-214-

(1)

Following the method of 3.(1), this becomes

Î

ĺ

Ι

1

$$\begin{split} \mathbb{P}\{\rho\varepsilon(e_{j}^{i}), y = 1 \mid n_{t} = 1, z = 0\} \\ &= \mathbb{P}(\rho\varepsilon(e_{j}), (e_{j})\varepsilon v_{1}, y = 1 \mid n_{e} = 1) \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon \left[\begin{array}{c} 0 \\ -\gamma + 1 \\ (\gamma \neq \beta) \end{array} \right], y = 1 \mid n_{e} = 1 \right\} \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon \left[\begin{array}{c} 0 \\ -\gamma + 1 \\ (\gamma \neq \beta) \end{array} \right], y = 1 \mid n_{e} = 1 \right\} \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j})\varepsilon \lambda_{1}(\beta), y = 1 \mid n_{e} = 1\right\} \\ &+ \mathbb{P}\left\{e_{j}\right)\varepsilon \lambda_{1}(\beta), y = 1 \mid n_{e} = 1\right\} \\ &+ \mathbb{P}\left\{e_{j}\right)\varepsilon \lambda_{1}(\beta), y = 1 \mid n_{e} = 1 \right\} \\ &+ \mathbb{P}\left\{e_{j}\right)\varepsilon \lambda_{1}(\beta), y = 1 \mid n_{e} = 1 \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon v_{1} \mid n_{e} = 1\right\} \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon v_{1} \mid n_{e} = 1\right\} \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon v_{1} \mid n_{e} = 1\right\} \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon \left[\begin{array}{c} 0 \\ \gamma - 1 \\ (\gamma \neq \beta) \end{array} \right] \mid n_{e} = 1 \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon \left[\begin{array}{c} 0 \\ \gamma - 1 \\ (\gamma \neq \beta) \end{array} \right] \mid n_{e} = 1 \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon \left[\begin{array}{c} 0 \\ \gamma - 1 \\ (\gamma \neq \beta) \end{array} \right] \mid n_{e} = 1 \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon \left[\begin{array}{c} 0 \\ \gamma - 1 \\ (\gamma \neq \beta) \end{array} \right] \mid n_{e} = 1 \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon \left[\begin{array}{c} 0 \\ \gamma - 1 \\ (\gamma \neq \beta) \end{array} \right] \mid n_{e} = 1 \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon \left[\begin{array}{c} 0 \\ \gamma - 1 \\ (\gamma \neq \beta) \end{array} \right] \mid n_{e} = 1 \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon \left[\begin{array}{c} 0 \\ \gamma - 1 \\ (\gamma \neq \beta) \end{array} \right] \mid n_{e} = 1 \\ &+ \mathbb{P}\left\{\rho\varepsilon(e_{j}), (e_{j})\varepsilon \left[\begin{array}{c} 0 \\ \gamma - 1 \\ (\gamma \neq \beta) \end{array} \right] \mid n_{e} = 1 \\ &+ \mathbb{P}\left((e_{j})\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left((e_{j})\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1}(\beta) | n_{e} = 1, 1 \\ &+ \mathbb{P}\left(\left(e_{j}\right)\varepsilon \lambda_{1$$

(3) Now,

$$P\{\beta \in (e_{j}), (e_{j}) \in v_{i} \ n_{e} = i\} = P\{\beta \in (e_{j}) | (e_{j}) \in v_{i}, n_{e} = i\} P\{(e_{j}) \in v_{i} | n_{e} = i\}$$

$$P\{\beta \in (e_{j}), (e_{j}) \in \begin{bmatrix} n \\ \gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix} | n_{e} = i\}$$

$$= P\{\beta \in (e_{j}) | (e_{j}) \in \begin{bmatrix} n \\ \gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix}, n_{e} = i\} P\{(e_{j}) \in \begin{bmatrix} n \\ \gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix}, n_{e} = i\} P\{(e_{j}) \in \begin{bmatrix} n \\ \gamma = 1 \\ (\gamma \neq \beta) \end{bmatrix} | n_{e} = i\}$$

$$(IV-36)$$

$$P \left\{ \beta \epsilon(e_j), (e_j) \epsilon \left[\bigcup_{\substack{\gamma=1 \\ \gamma\neq\beta}}^n \lambda_1(\gamma) \right] | n_e = i \right\} \\
 = P \left\{ \beta \epsilon(e_j) | (e_j) \epsilon \left[\bigcup_{\substack{\gamma=1 \\ \gamma\neq\beta}}^n \lambda_1(\gamma) \right], n_e = i \right\} P \left\{ (e_j) \epsilon \left[\bigcup_{\substack{\gamma=1 \\ \gamma\neq\beta}}^n \lambda_1(\gamma) \right] | n_e = i \right\} . (IV-38)$$

Using these, with (IV-14) through (IV-23), (IV-35A, B) become

$$P\{\beta \in (e_{j}^{t}), y = 1 | n_{t} = i, z = 0\} = \frac{in_{i}}{n\binom{n}{i}}, i \text{ even}$$
(IV-39A)

$$P\{\beta \in (e_{j}^{i}), y = 1 | n_{t} = i, z = 0\} = \frac{1}{\binom{n}{i}} \left\{ \frac{in_{1}}{n} + (i-1)m_{1} + (i+1)l_{1} \right\}, i \text{ odd}$$
(IV-39B)

(4)

In a similar manner, with $n_t = i$, z = l (then $n_e = i-l$), $P\{\beta \epsilon(e_j^i), y = l|n_t = i, z = l\}$ $= P\{\beta \epsilon(e_j), (e_j) \epsilon v_{i-l}, y = l|n_e = i-l\}$

+
$$P\left\{\beta \in (e_j), (e_j) \in \left[\bigcup_{\substack{\gamma=1\\\gamma\neq\beta}}^{n} \mu_{i-1}(\gamma)\right], y = 1 \mid n_e = i-1\right\}$$

($\gamma \neq \beta$)
+ $P((e_j) \in \lambda_{i-1}(\beta), y = 1 \mid n_e = i-1)$ (IV-40)

obtaining

,

Ì

$$P\{\beta \in (e_j^t), y = 1 | n_t = 1, z = 1\}$$

$$=\frac{(1-1)n_{1-1}}{n(n)}, i \text{ even}$$
(IV-41A)

$$= \frac{1}{\binom{n}{i-1}} \left\{ \frac{\binom{(i-1)n_{i-1}}{n} + (i-2)m_{i-1} + il_{i-1}}{n} \right\}, i \text{ odd}$$
 (IV-41B)

(5)

For an arbitrary received error pattern containing i errors,

$$P\{z = 0 | n_t = 1\} = \frac{n'-1}{n'} = \frac{n-1+1}{n+1}$$
 (IV-42A)

and

.

1

$$P\{z = 1 | n_t = 1\} = \frac{1}{n+1}$$
 (IV-42B)

Also,

$$P\{n_{t}=i\} = {\binom{n+1}{i}} P_{e}^{i} (1-P_{e})^{n+1-i}$$
(IV-43)

(6)

Finally, substituting (IV-39A, B) through (IV-43) into (IV-32),

$$P\{\beta \in (e_j^{\prime}) | y = 1\} = \frac{1}{P\{y=1\}} \left\{ \sum_{\substack{i=0\\i=0\\(i \text{ even})}}^{n-1} \left[\frac{in_i}{n\binom{n}{i}} \right] \left[\frac{n-i+1}{n+1} \right] \binom{n+1}{i} P_e^{i}(i-P_e)^{n+1-i}$$

$$+ \sum_{\substack{i=1\\ i=1\\ (i \text{ odd})}}^{n} \frac{1}{\binom{i}{i}} \left[\frac{in_{i}}{n} + (i-1)m_{i} + (i+1)l_{i} \right] \left[\frac{n-i+1}{n+1} \right] \binom{n+1}{i} P_{e}^{i} (1-P_{e})^{n+1-i} \\ \frac{1}{(i \text{ odd})} + \sum_{\substack{i=1\\ i=1\\ (i \text{ odd})}}^{n} \frac{1}{\binom{i-1}{i-1}} \left[\frac{(i-1)n_{i-1}}{n} + (i-2)m_{i-1}^{+}(i)_{i-1} \right] \left[\frac{1}{n+1} \right] \binom{n+1}{i} P_{e}^{i} (i-P_{e})^{n+1-i} \\ \frac{1}{(i \text{ odd})} + \sum_{\substack{i=2\\ i=2\\ (i \text{ even})}}^{n+1} \left[\frac{(i-1)n_{i-1}}{n\binom{n}{i-1}} \right] \left[\frac{1}{n+1} \right] \binom{n+1}{i} P_{e}^{i} (1-P_{e})^{n+1-i} \right]$$
 (IV-44)

Now,

$$\binom{n+1}{i} = \frac{\binom{n+1}{!}}{\binom{n+1-i}{!}} = \left[\frac{n+1}{n+1-i}\right] \left[\frac{n!}{1!(n-1)!}\right] = \left[\frac{n+1}{n+1-i}\right] \binom{n}{i}$$

$$= \left[\frac{n+1}{i}\right] \frac{n!}{(i-1)![n-(i-1)]!!} = \left[\frac{n+1}{i}\right] \binom{n}{i-1}$$
(IV-45)

so that

.

So that

$$P\{\beta \varepsilon(e_{j}^{\prime}) | y=1\} = \frac{1}{P\{y=1\}} \left\{ \frac{1}{n} \sum_{\substack{i=0 \ (i \text{ even})}}^{n-1} in_{i} P_{e}^{i} (1-P_{e})^{n+1-i} \right\}$$

$$+ \frac{1}{n} \sum_{\substack{i=1 \ (i \text{ odd})}}^{n} [in_{i}^{+} (i-1)nm_{i}^{-} + (i+1)nl_{i}] P_{e}^{i} (1-P_{e})^{n+1-i}$$

$$+ \frac{1}{n} \sum_{\substack{i=1 \ (i \text{ odd})}}^{n} [(1-1)n_{i-1}^{+} (i-2)nm_{i-1}^{-} + inl_{i-1}] P_{e}^{i} (1-P_{e})^{n+1-i}$$

$$+ \frac{1}{n} \sum_{\substack{i=1 \ (i \text{ odd})}}^{n+1} [(1-1)n_{i-1}^{-} P_{e}^{i} (1-P_{e})^{n+1-i}] \right\} (IV-46)$$

$$+ \frac{1}{n} \sum_{\substack{i=2 \ (i \text{ even})}}^{n+1} [(1-1)n_{i-1}^{-} P_{e}^{i} (1-P_{e})^{n+1-i}] \left\{ (IV-46) + \frac{1}{n} \sum_{\substack{i=2 \ (i \text{ even})}}^{n+1} P_{e}^{i} (1-P_{e})^{n+1-i} \right\}$$

-218-

.

-219-

Using (IV-37),

$$P\{\beta \varepsilon(e_{j}^{i}) y = 1\} = \frac{1}{P(y=1)n} \left\{ \sum_{\substack{i=0 \ (i even)}}^{n-1} iN_{i} P_{e}^{i} (1-P_{e})^{n+1-i} + \sum_{\substack{i=1 \ (i odd)}}^{n} [iN_{i} + (i-1)M_{i} + (i+1)L_{i}] P_{e}^{i} (1-P_{e})^{n+1-i} + \sum_{\substack{i=1 \ (i odd)}}^{n} [(i-1)N_{i-1} + (i-2)M_{i-1} + iL_{i-1}] P_{e}^{i} (1-P_{e})^{n+1-i} + \sum_{\substack{i=1 \ (i odd)}}^{n+1-i} [(i-1)N_{i-1} P_{e}^{i} (1-P_{e})^{n+1-i}] + \sum_{\substack{i=2 \ (i even)}}^{n+1-i} [(i-1)N_{i-1} P_{e}^{i} (1-P_{e})^{n+1-i}] + \sum_{\substack{i=2 \ (i even)}^{n+1-i} [(i-1)P_{e}^{i} (1-P_{e})^{n+1-i}] + \sum_{\substack{i=2 \ (i even)}^{$$

(7)

Now,

$$\sum_{\substack{i=0\\(i \text{ even})}}^{n-1} i N_i P_e^{i} (1-P_e)^{n+1-i} = \sum_{\substack{i=2\\(i \text{ even})}}^{n+1} i N_i P_e^{i} (1-P_e)^{n-i}$$
(IV-48)

-- since the first term in the left summation is zero. For N_{n+1} , note that, although it is implied that the L_i , M_i , and N_i are defined only for $0 \le i \le n$, setting $\binom{n}{i} = 0$ for i < 0, i > n, allows the iterative equations (IV-28) for L_i , M_i , and N_i to be extended to values of i > n; a similar situation exists for the rewritten forms

$$N_{i-1} = \frac{M_i}{n-i+1}$$
$$L_{i-1} = iN_i$$

 $M_{i-1} = {n \choose i} - L_{i-1} - N_{i-1} ;$

for i<0; a brief examination reveals that the values obtained for L_i , M_i , and N_i are identically zero for i<0 and i>n. In particular, $N_{n+1} = 0$, allowing the extension of summation of (IV-48).

Then, (IV-47) becomes

$$P\{\beta \in (e_{j}^{i}) | y = 1\} = \frac{1}{nP(y=1)} \left\{ \sum_{\substack{i=2\\i=2\\(i \text{ even})}}^{n+1} [iN_{i} + (i-1)N_{i-1}] P_{e}^{i}(1-P_{e})^{n+1-i} + \sum_{\substack{i=1\\i=1\\(i \text{ odd})}}^{n+1-i} [(i-2)M_{i-1} + (i-1)M_{i} + (i-1)N_{i-1} + iN_{i} + iL_{i-1} + (i+1)L_{i}] P_{e}^{i}(1-P_{e})^{n+1-i} \right\} (IV-50)$$
(8)

An argument identical to that of 3.(6) results in the conclusion that $P'_e = P \{arbitrary info. bit in error after decoding\}$ $= P\{\beta \in (e'_j) | y = 1\}$

or

$$P_{e}^{i} = \frac{1}{nP[y=1]} \left\{ \sum_{\substack{i=2\\ (i \text{ even})}}^{n+1} [iN_{i} + (i-1)N_{i-1}] P_{e}^{i}(1-P_{e})^{n+1-i} + \sum_{\substack{i=1\\ (i \text{ odd})}}^{n} [(i-2)N_{i-1} + (i-1)N_{i} + (i-1)N_{i-1} + iN_{i} + iL_{i-1} + (i+1)L_{i}] P_{e}^{i}(1-P_{e})^{n+1-i} \right\} (IV-52)$$

(IV-51)

This may be reduced slightly by using Eq. (IV-28) if desired; however, the present symmetrical form is illustrative of the principles involved, and is convenient for computer programming.

(9)

$$P(y = 1) = \sum_{i=0}^{n+1} P(y = 1 | n_t = i) P(n_t = i)$$
 (IV-53)

Now,
$$P\{y = 1 | n_t = i\} = 1$$
, i odd ;
but $P\{y = 1 | n_t = i\} = 0$, i even and $e = j \neq 0$; (IV-54)

Thus, for i even,

ļ

1

$$P\{y = 1 | n_{t} = i\} = P\{y = 1, z = 0 | n_{t} = i\} + P\{y = 1, z = 1 | n_{t} = i\}$$

= $P\{y = 1 | n_{t} = i, z = 0\} P\{z = 0 | n_{t} = i\}$
+ $P\{y = 1 | n_{t} = i, z = 1\} P\{z = 1 | n_{t} = i\}$
= $P\{(e_{j}) \in v_{i} | n_{e} = i\} P\{z = 0 | n_{t} = i\}$
+ $P\{(e_{j}) \in v_{i-1} | n_{e} = i-1\} P\{z = 1 | n_{t} = i\}$ (IV-55)

Substituting from (IV-16) and (IV-42A, B), this becomes

$$P\{y = 1 \mid n_{t} = i \} = \left[\frac{n_{1}}{\binom{n}{i}} \right] \left[\frac{n-i+1}{n+1} \right] + \left[\frac{n_{1-1}}{\binom{n}{i-1}} \right] \left[\frac{i}{n+1} \right]$$
$$= \frac{n_{1}}{\binom{n}{i} \frac{n+1}{n+1-i}} + \frac{n_{1-1}}{\binom{n}{i-1} \frac{n+1}{i}}, i \text{ even}$$

Using (IV-45)

$$P\{y = 1 | n_t = i\} = \frac{1}{\binom{n+1}{i}} [n_i + n_{i-1}], i \text{ even}$$
 (IV-56)

(10)

Using (IV-55), (IV-56), and (IV-43), (IV-53) becomes

$$P\{y = 1\} = \sum_{\substack{i=1\\i \neq 1\\(i \text{ odd})}}^{n} {\binom{n+1}{i}} P_{e}^{i} (1-P_{e})^{n-i+1} + \sum_{\substack{i=0\\i \neq 0\\(i \text{ even})}}^{n+1} [N_{i}+N_{i-1}] P_{e}^{i} (1-P_{e})^{n-i+1} (IV-57)$$

where, as before, $N_{j}=0$, j<0, j>n. (11)

A similar development for conditions (b) results in the following expressions:

$$P_{e}^{i} = \frac{1}{nP[y=1]} \left\{ \sum_{\substack{i=2\\ i=2\\ (i \text{ even})}}^{n+1} [iN_{i}^{+} (i 1)N_{i-1}] P_{e}^{i} (1-P_{e})^{n+1-i} + \sum_{\substack{i=1\\ i=1\\ (i \text{ odd})}}^{n} [(i-2)M_{i-1}^{+} (i-1) + i^{+} IL_{i-1}^{+} (i+1)L_{i}] P_{e}^{i} (1-P_{e})^{n+1-i} \right\}$$
(IV-58)

and

$$P\{y = 1\} = \left\{ \sum_{i=1}^{n} [L_{i} + L_{i-1} + M_{i} + M_{i-1}]P_{e}^{i}(1-P_{e})^{n+1-i} + \sum_{i=0}^{i=1} [N_{i} + N_{i-1}]P_{e}^{i}(1-P_{e})^{n+1-i} \right\}$$

$$(IV-59)$$

$$(IV-59)$$

•

•

٠

•

APPENDIX V

-223-

RESULTS OF COMPUTER SIMULATION -- BOSE-CHANDHURI (15,7) AND (15,5) CODES

The tables included in this appendix show the numerical results of computer simulation of the Bose-Chandhuri (15,7) 2-error correcting code and the (15,5) 3-error correcting code. The tables are arranged so that the entry in the ith column and jth row is the number of i-weight error patterns resulting in j errors in the decoded information binits. The coefficient of the ith term in the corresponding error rate equation is determined by

1

 $\frac{1}{k} \sum_{j=0}^{k} j B_{ij}$, where B_{ij} is the i column, j row entry, and k is the total number of information binits in the code word (k = 7 for the (15,7) code; k = 5 for the (15, 5) code).

15	0	0	0	0	0	0	0	Ч	I
14	0	0	0	0	0	0	0	15	
ព	0	0	0	0	0	0	0	105	
ส	0	0	0	45	105	105	65	135	
я	0	0	82	7224	452	387	273	0	
ค	0	0	135	530	1083	891	364	0	
6	0	4	474	1208	1635	9 / TT	471	0	
8	0	218	996	1709	1969	าารา	362	0	
2	0	362	ווצו	1969	1709	996	218	0	
~	0	124	9211	1635	1208	474	Ŧ	0	
	0	364	391	1083	230	135	0	0	
4	0	273	387 8	452	224	29	0	0	
~	ມີ	65	105	1 05	45	0	0	0	
2	105	0	0	0	0	0	0	0	
Ч	15	0	0	0	0	0	0	0	
0	Ч	0	0	0	0	0	0	0	
7	0		2	m	4-	2	9	2	

Table V-1. Computer Simulation, B-C (15,7) Code

,

•

15	0	0	0	0	0	-	
7	o	0	0	0	0	15	
ຊ	0	0	0	0	0	105	
12	0	0	0	0	0	455	
Ħ	0	154	308	322	161	1/20	
01	0	339	873	לאבנ	616	28	
τ.		121	1527	1773	484	0	
		.062	124	991	1083	0	
00		63	66	र त्र	62]	0	
5	0	10	ส	ส	2	0	
9	0	984	1773	1527	721	о	
ſ	প্থ	919	אננ	873	339	0	
7	150	191	322	308	154	0	
~	455	0	0	0	0	0	
~	105	0	0	0	0	0	
~	بر	0	0	0	0	0	
c	Ч	0	0	0	0	0	
	1						
	0 17	Ч	2	ŝ	-4	ŝ	I

İ.

Ì

l

I

.....

L L'-----

į

ł

•

Table V-2. Computer Simulation, B-C (15,5) Code

-226-

APPENDIX VI

HANDLING CODE ERROR RATE EQUATION COEFFICIENTS

This appendix contains tables of the error rate equation coefficients for the Hamming SEC codes, and the SEC/DED codes operating under the two previously postulated sets of word rejection conditions as calculated by the IEM 7090 Digital Computer.

Although each coefficient is an integer, the size of most of the coefficients is beyond the integer storage capabilities of most computers. For this reason, the coefficients are presented in the form

where the symbolic "EXXX" is to be read as "x 10^{+XXX} ". Again, as a result of the characteristics of the computer, numbers such as "7.0000000x10[°]" often appear as "6.9999999E 0".

The coefficients presented are "A(I)", to be read as "a,", where

$$P'_{e} = \sum_{i=0}^{n} a_{i} P_{e}^{i} (1-P_{e})^{n-i}, \text{ for SEC codes;}$$

and
$$P'_{e} = \frac{P\{\text{arbitrary information binit in error and word accepted}\}}{P\{\text{word accepted}\}}$$

with

P{arbitrary information binit in error and word accepted}

 $= \sum_{i=0}^{n} a_i P_e^{i} (1-P_e)^{n'-i}, \text{ for SEC/DED codes;}$

and "B(I)", to be read as "b,", where

 $P\{\text{word accepted}\} = 1 - P\{\text{word rejected}\}$

$$= 1 - \left[\sum_{i=0}^{n'} b_i P_e^{i} (1-P_e)^{n'-i} \right], \text{ for }$$

SEC/DED codes.

		<u> </u>	ERR	OR RATE	EQUATION C	OFFIC	IENTS	. <u></u>	
· <u>.</u> ··-··-		НА	MMIN	G SINGLE	ERROR COP	RECTIN	G CODES		· . · . · . · . · . · . · . · . · . · .
								<u></u>	
I	A	(1)		I	A(1)			A(1)	
<u> </u>	<u> </u>	F	·		1.800000)F 1		A . 0000000	
1		Ε	ŏ		1.5999999	E I	<u> </u>	1:00000000E	<u> </u>
2	8.999	9999E	0	5	1.2000000	E I			
N	= 15		0	6	2.0020007	·F 3	11	9.72009055	2
1	0.	Έ	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.0669997	<u>E 3</u>	12	3+3599998E	2
2	2.099	9998E	1	8	3.3679997	Έ 3	13	8+3999997E	1
3	1.190	0000E	2	9	2.9119997	E 3	14	1.500000E	1
5	1.036	0000E	3	10	1.9669998	<u>E 3</u>	13	1.0000000E	0
N	= 31				<u></u>				
0	0.	Ξ	0	11	3.0817054	E 7 ·	.22	1.4044872E	7
2	4.499	9999E	1	13	8.7527003	E 7	24	1.9900398E	6
	5.749	0007F	2	12	3+3619190		23	5+7343643E	<u> </u>
. 4	4.759	9996E	3	15	1+4573224	ε 8	26	1.39082985	.5
5	3.082	7997E	4	16	1 + 5480789	ε 8	27	2.6704997E	4
6	1.567	9297E	5	17	1 • 4461485	<u>E 8</u>	26	3.9199998E	3
, ,	0+J70 9.154	34735 18075	D	10	1+1872603	E 8	29	4419999988	2
ğ	6.115	1993E	6	20	5.3855249	<u>5 (</u>	31	1.0000000E	
10	1.480	0927E	7	21	2.9551231	<u>E 7</u>			
<u></u>	a 63				·				
0	0.	E	0	22	1.8661421	E 16	43	9.12953176	15
2	9.300	0000E	1	24	6+02611347	E 16	45	1+83174566	15
3	2.510	9998E	3	25	9.7765238	E_16	A6	7.323465AF	14
4	4+587	9995E	4	26	1 • 4837992	E 17	47	2.7052537E	14
5	6.493	0793E	<u> </u>	27	2+1086189		48	9.20531335	13
6	/•331	3442E	•	28	2.8078501	L 17	. 49	2+8754434E	13
	5•369	3306E	8	30	4.1053458	E 17		-++21221605- 2+1343423F	12
	3.645	1927E	9	31	4 - 5111079	E 17	52	5.0200919E	11
10	2.164	9648E	10	32	4.6520090	E 17	53.	1.0615585E	11
12	5+340	8157F	<u>1 1</u> 1 1	33	4 5024307	<u> </u>	54	2+0022493E	10
13	2.256	2160E	12	35	_3 • 4852302	E 17	55	4.85064376	7 8
14	8.632	8226E	12	36	2.7859991	E 17	57	6.0614169E	7
15	3.007	8571E	13		2.0879491	<u>E 17</u>	<u> </u>	6.3794584E	6
16	2.804	9747E	13	38	1 • 4661 753	E 17	59	-5+4978495E	5
18	7.569	6746E	14	<u> </u>	549282036	E 16	<u> </u>	1 AR90000=	
19	1.887	0983E	15_	41	3.4066575	E 16	62	6+3000000E	ĩ
20	4.359	0252E	15	42	1 . 8269100	E 16	63	1.0000000L	0

İ.

				-228-		
	1	A(1)	l	A(1)	1	
	N = 1	127 E 0	43	E-1000400E		2.50440046 23
	1 0	E 0	43	1+0020557E	34 87	1 1949864E 33
	2 1	8900000E 2	45	1 • 8893005E	34 88	5.4934755E 32
	3 1	0478999E 4	46	3.4410860E	34 89	2.4342988E 32
	4 4	0101596E 5	47	6+0565392E	34 90	1.03923426 32
	5 1	1835178E 7	48	1.0304493E	35 91	4.2716872c 31
	0 2	5079643E 8	49	1.6952360E	35 92	1.6897762E_31_
	/ 50 A 9,	3403/21E 9	50	2009/4012E	35 73	0.42//4/2E JU
	9 10	3747458E 12	52	6.1856810E	35 95	8+2478876E 29
	10 1	7842929E 13	53	8.9184543E	35 96	2.7779318E 29
•	11 20	0702452E 14	54	1.2447877E	36 97	8.9694439E 28
	12 20	1678964E 15	55	1 . 6822080E	36 98	2.7737637E 28
	13 20	0651840E 16	56	2.2014555E	36 99	8.2072324E 27
	-14 10	8016995E 17	57	2 • 7902652E	36 100	2.3210036E 27
	16 14	0767087F 19	50	4.0741206E		042000908E 20
	17 .7	4436275E 19	60	4.6942821E	36 103	3+9528030E 25
	18 4.	8014877E 20	61	5+2405285E	36 104	9.2095567E 24
	19 2.	8994527E 21	62	5+6685934E	36 105	2.03654275 24
·····	20 1.	6439586E 22	63	5.9413712E :	36 106	4.2666591E 23
	21 8.	7750841E 22	64	6.0341936E 3	36 107	8.4520714= 22
	23 2	1055785F 24	66	5.44309765		1.5796899E 22
	24 9	5042216E 24	67	5+2329003E		4.5885410F 20
<u> </u>	25 4.	0723190E 25	68	4.6851578E	6 111	7.0908030E 19
	26 1.	6590295E 26	69	4.0642031E 3	112	1.0220155E 19
	27 6.	4357836E 26	70	3+4155840E 3	36 113	1.36856296 18
·	28 2	3805598E 27	71	2 7807052E	36114	1.6955570E 17
	29 8.	4068946E 27	72	2.1928059E 3	6 115	1.9333826E 16
*******************************	31 9	1658343F 28		1.0747433E	<u> </u>	2+0172916E 15
	32 2.	8356588E 29	75	B+8696313E 3	5 11A	1.63476065 13
	33 8.	4105718E 29	76	6+1485381E	119	1.24676256 12
_	34 2.	3936507E 30	77	4+1252912E 3	5 120	8.3810028E 10
	35 6.	5419528E 30	78	2.6783169E 3	15 121	4.8885821E 9
	30 1.	7182619E 31		1.6822607E 3	122	2.4239656E 8
	37 4. 38 1	054010/1E 31	80	1 • 0219721E 3	123	9.9336083E 6
	39 2	4692474E 32	82	3.4086933E	<u>4 124</u>	3+2289597E 5
	40 5.	5681260E 32	83	1.8703507E 3	4 125	1.2700000E 2
ى مىنغرية كماريسايين اين ا	41 1.	2103413E 33	84	9.9136964E 3	3 127	1.0000000E 0
	42 2.	5373143E 33	. 85	5.0741606E 3	3	· · · · · ·
	N = 2	55				
	0 0.	E O	10	1.1471767E 1	6 20	2.11281905 28
	1 0.	<u>E 0</u>	- 11	2.7872717E 1	7 21	2.4769118E 29
	2 3.	8099999E 2	12	6.1395853E 1	8 22	2.75426411 30
	<u> </u>	2190996E 4	13	1+2358827E 2	0 23	2.9114812E 31
	- Ji 5 2.	01763875 -	. 14	20200021E 2	1 24	2.9316804E 32
	6 9.	8078245E 9	15	642514522F 2	<u> </u>	2+8172105E 33
	7 3.	9869002E 11	17	9+3056751E 2	4 27	2127627405 34
	. 8 1.	3903531E 13	. 18	1+29875856 2	6 28	1.9197300E 36

····						
•	<u> </u>	A(1)	1	A(1)	<u> </u>	A(1)
	• •				•	
·	<u> </u>	1.2100827E 38	87	2.1549805E 69	144	1.93210700 74
	31	9.0661405E 38	88	4.1608024E 69	145	1•4892618E 74
	32	6.5445957E 39	89	7.8950674E 69	146	
	.1.3	4.5565611E 4U	90	1.4723806E 70	147	8•4339064E 73
	34	3.0020010E 41	91	<u>CID990372E 70</u>	148	
	36	1.24932205 42	72	90000000000000000000000000000000000000	149	4.4/73/01E /3 3.1845306E 73
L	30	7.59446905 43	93	1.50069315 71	150	2.23047245 73
	38	4.4714683E 44	95	2.5700502E 71	152	1.53615275 73
	39	2.5517584E 45	96	4+3280337E 71	153	1.0409010E 73
	40	1.4123949E 46	97	7.1675411E (1	154	6.9390461E 72
•	41	7.5870889E 46	98	1.1673743E 72	155	4.5507427E 72
	42	3.9578368E 47	99	1.8699897E 72	156	2.9358420E 72
	43	2.0060988E 48	100	2.9463547E 72	157	1.8630546E 72
	44	9.8854057E 48	101	4.5664002E 72	158	1.1628791E 72
	45	4.7381511E 49	102	6+9619583E 72	159	7+1389108E 71
	46	2.2100882E 50	103	1+0441949E 73	1.60	4.3101168E 71
	47	1.0036924E 51	104	1.5408048E 73	161	2+5590327E 71
	48	4.4399375E 51	105	2+2369263E 73	162	1.4940364E 71
	49	1.91392258 52	106	3.1953234E 73	163	8.5765524E 70
	50	8.0430552E 52	107	4+4911457E 73	164	4.84057298 70
	51	3.2963797E 53	108	6•2115171E 73	165	2•6858286E 70
	52	1.3180623E 54	109	8.4538506E 73	166	<u>1•4649441ë 70</u>
	53	5.1436738E 54	110	1 • 1 322567E 74	167	7•8539355E 69
	54	1.9597441E 55	111	1.4923985E 74	168	4.1384535E 69
	55	7.2921824E 55	112	1.93592976 74	169	2.1430524E 69
		2:00000000 00		2.47157295 74	170	1.0905093E 69
	57	3.37033365 57	114	3110563046 74	171	5 • 4 5 2 3 0 3 E 6 B
		1.11042765 58	115	3102 00020E 74	172	(+0/82516E 68
•	60	1.48784075 EP	110		173	
	61	1.19822785 59	119	5+6021379E 74	176	0 1254 906E 6
	62	3.8097619F 59	119	7.6704965E 74	175	
	63	1.18564235 60	120	8.76567055 70	177	E-BE041205 44
	64	3.6125006F 60	120	9+8607030E 74	178	2.5701E445 64
<u> </u>	65	1.0778494F 61	122	1+0919380F 75	179	1.1152341E 66
	66	3.1499109E 61	123	1.1903124E 75	180	4.7349257E 65
<u> </u>	67	9.0181818E 61	124	1.2773250E 75	181	1.97282535 55
	68	2.5299256E 62	125	1.3493454E 75	182	8.0654503E 64
	69	6.9558280E 62	126	1.4032305E 75	183	3.2349463E 64
	70	1•8746651E 63	127	1.4365513E 75	1,84	1 .2727280E 64
	71	4.9534854E 63	128	1+4477740E 75	185	4.9109261E 63
	72	1.2834716E 64	129	1+4363766E 75	186	1.8581343E 63
	73	3.2615423E 64	130	1.40288918 75	187	6.8928814F 62
	74	8.1300257E 64	131	1.3488530E 75	188	2.5064312E 62
	75	1.9882054E 65	132	1.2767033E 75	189	8.9322430E 61
	76	4.7708636E 65	133	1.1895878E 75		3.1191093E 61
	77	1.1234736E 66	134	1.0911400E 75	. 191	1.0670343E 61
	78	2.5966922E 66	135	9.8522884E 74	192	3.57530576 60
	79	5.8915462E 66	136	8+7571144E 74	193	1+17311556 60
*	80	1.3123411E 67	137	7.6620655E 74	194	3.7684564E 59
	81	2.8703068E 67	138	6.5990953E 74	195	1 . 1848957E 59
	82	6.1649237E 67	139	5+5945947E 74	196	3+6457379E 58
•	83	1.3004590E 68	140	4+6686313E 74	197	1.0974130E 58
	84	2+6945435E-68	141	3+8347535E 74	198	3.2308798E 57
	85	5.4845586E 68	142	3.1002846E 74	199	9.3007822E 56

j ·
			-230-			
1	A(1)	1	A(I)		<u> </u>	
201	7+1972309E 55	220	1.22097365	13 238	1.23533705	26
202	1.9335369E 55	221	1.9424180E	2 239	8.82368096	24
203	5.0730177E 54	222	2.9882747E	240	5.9069637E	23
204	1+2994608E 54	223	4 . 4419402E 4	0 241	3.6917886E	22
205	3.2485746E 53	224	6.3739573E	39 242	2.1445708E	51
206	7.92316598 52	225	8•8209268E 3	38 243	1.15202265	20
207	<u>1.8845924E 52</u>	226	1.1761004E 3	38 244	5+6889046E	18
208	4.36996795 51	227	1.5091260E 3	37 245	2.56462735	17
209	9.87422036 50	228	1+8614412E	246	1.04676926	10
210	2 • 1 / JZZ JOE DU	229	2.50264685 3		3+82958095	14
212	9.71065285 48	230	2.72021725		2.3000742-	1.1
213	1.9695700F 48	232	2+B261470F -3	249	3+3008743C	11
214	3.8835740E 47	233	2+8017319E 3	31 251	1.68711735	H
215	7.4403308E 46	234	2.6453637E 3	0 252	2.68833575	6
216	1.3842178E 46	235	2.3740005t 2	29 253	3+2003999E	4
21 ?	2.4992289E 45	236	2+0203896E 2	8 254	2.5500000E	2
218	4.3764374E 44	237	1 • 6265558E 2	255	1 • 0000000E	0
219	7.4277433E 43	<u> </u>				
N	= 511					
0	0. E 0	36	1 .7475956E 5	4 72	1.23349386	88
1	0. E 0_	37	2.3041678E 5	5 73	7.5194716E	88
2	7.6499999E 2	38	2.9497778E 5	6 74	4.5108573E	62
3	1.7297498E 5	39	3 . 6692783E 5	7 75	2.6633701E.	90
4	2.7376117E 7	40	4+4379869E 5	8 76	1 • 5480373E	91
5	3.3309134E 9	41	5.2226148E 5	9 77	8+8589792E	91
6	3•2771594E 11	42	5.9835006E 6	0 78	4.9924204E	92
<u>_</u>	2.7018898E 13	43	6.6779550E 6	79	2.7709884E	93
	1.1891106F 17	44	7.7043386E 6	2 80	1.5150374E	94
10	645661520F 18	46	7.97651265 6	A 82	0.1010177E	94
11	3.2624064E 20	47	8+0595562E 6	4 02 5 93	2.24501325	95 06
12	1.4725954E 22	48	7:9532081E 6	6 84	1.1682809F	90
13	6.0872431E 23	49	7.6633305E 6	7 85	5.9379378F	97 97
14	2+3199633E 25	50	7.2272424E 6	8 86	2+9755514E	98
15	8 • 1 991 988E 26	51	6+6609505E 6	9 87	1 • 4702813E	99
16	2.7005916E 28	52	6.0056900E 7	0 88	7 • 1645817E	99
17	B•3259917E 29	53_	5+2992852E 7	1 89	3.4434485E1	00
18	2•4119546E 31	54	4.5778088E 7	2 90	1+6325342E1	01
	0.58//42UE 32	55	3.8728994E 7	3 91	7.6357083E1	01
21	4-16795175 35	50	3+2099597E 7	4 92	3+5237559E1	02
22	9.7050896F 36	<u> </u>	2+0760676E 7	5 93	1+6046550E10	23
23	2+1530913E 38	50	1+6210104E 7	0 94 7 01	7.2115027E1	53
24	4.5603517E 39	60	1424151315 7		1 400-410E1	<u></u>
25	9.2388797E 40	61	9.3295275E 7	8 97	6.0539503F1	5
26	1.7933762E 42	62	6+8806444E 7	9 98	2.583581411	06
27	3+3407388E 43	63	4.9816602E 8	0 99	1 .0886836E1)7
28	5.9809307E 44	64	3.5416474E 8	1 100	4.5302296E10	07
29	1.0304814E 46	65	2.4730327E 8	2 101	1+8617414E10	88
30	1 • 7108245E 47	66	1 . 6964906E 8	3 102	7 . 5568364E10	•
	2+7401621E 48	67	1+1435905E 8	4 103	3.0298569E10)9
32	4+2386803E 49	68	7+5767789E 8	9 104	1+2000651E1	0
	9.1738964F BI		4+9350097E 8	5 105	4.6959819E1	· ·
35	1+2859911F K1	71	1.00070K95 A		1.015617881	1
		/1	1 77017DEE 8	r <u> </u>	0+9364229E1	1

		A(1)	11	A(1)	<u> </u>	M(1)
•.	108	2.6187607F112	165	4.8359080F137	222	1.2667989:150
	109	9.7710332E112	166	1.0140384E138	223	1.6490878-150
1	110	3.6033302E113	167	2.1074136E138	224	2.12972115150
	111	1.3134707E114	168	4.3408656E138	225	2.7286512E150
1	112	4.7328501E114	169	8.8622897E138	226	_3.4683508150
i	113	1.6859455E115	170	1 • 7933715E139	227	4.3737200E150
•	114	5+9376512E115	171	3.59716902139	228	5.47186156150
	115	Z-11022025116	172	7+1520236E139	229	0.79169836150
1	117	2.42403965117	175	2.75386015140	230	1-02177225151
1	118	8.1624180E117	175	5+3334510E140	231	1.2384887+151
	119	2.7183078E118	176	1.0239894E141	233	1.48936195151
F	120	8.9538025E118	177	1.9490084E141	234	1 • 7769744E151
1	121	2.9172478E119	178	3.6776735E141	235	2.1034742E151
-	122	9.4020658E119	179	6.8799270E141	236	2.47041891151
-	123	2•9976739E120	180	1•2760140E142	237	2.8786147E151
	124	9.4554609E120	181	2.3463762E142	238_	3.3279597E151
1	125	2.9508296E121	182	4.2777941E142	239	3.8172987E151
*	120	9-1115866E121	183		240_	4 • 3442978E151
1	128	8-4170158F122	104	2.46206625143	241	4.90535152151
1	129	2.5183773E123	186	4.3400204F143	243	6.10856155151
-	130	7.4570780E123	187	7.5831517E143	244	6.7369009E151
,	131	2.1853698E124	188	1.3138349E144	245	7.3718136E151
	132	6.3388764E124	- 189	2.25721705144	246	8.0035505E151
÷ .	133	1.8199226E125	190	3.8455221E144	247	.8+6215694E151
	134	5.1721233E125	191	6.4967299E144	248	9.2148064E151
i	135	1 • 4550621E126	192	1 • 0884278E145	249	9•7719957E151
1	130	4.03239192120	193	1.60632886145	250	1.0282015E152
	138	3+0500673E127	194	4.8683492F145	201	1+0734253E152
	139	8.2435949E127	196	7.88901635145	253	1.14676565156
4	140	2+2060866E128	197	1.2678448E146	254	1 • 1653314£152
	141	5.8458350E128	198	2.0207772E146	255	1.1790770E152
•	142	1.5339372E129	199	3.1943800E146	256	1+18368286152
:	143	3.9858808E129	200	5+0081488E146	257	1.17904116152
•	144	1.0256875E130	201	7.7874783E146	258	<u>1•1652604E152</u>
	140	6.59767075130	202	1+2010243E147	259	1 • 1426608E152
	140	1.64934115131	203	2.78735645+47	260	1+111/616E152
•	148	4.0838960E131	205	4 1945986F147	261	1 + 0 / 320182132
	149	1.0016130E132	206	6+2610579E147	263	9.76991115151
;	150	2.4333407E132	207	9+2697959E147	264	9.21255931151
	151	5+8559826E132	208	1.3613298E148	265	8.6192034±151
-	152	1.3960678E133	209	1.9830454E148	266	8 • 0011096E151
	153	3.2971504E133	210	2+8653881E148	267	7.3693395E151
	154	7.7145751E133	211	4+1069639E148	268	6 • 7344336E151
-	155	1 •7883042E134	212	5+8391550E148	269	6+10613726151
	1:0	4 • 1 U / 1016E 134	213	8+2352298E148	270	5.4931781E151
: •	157 158	7 10400400E134 2 1072403E138	214	1+15213366149	271	4+9031032E151
i	159	4.7077615F135	216	2+20130425140	272	4+3421729E151
	160	1.0421806E136	217	3+0063468F149	274	J+01031392101
				A 072020104 40		
	161	2+2861953E136	2 18	44U/JUZ91E149	<i>e 1</i> 9	2 4 4 7 6 9 4 0 2 6 1 6 1
	161 <u>162</u>	2 • 2861953E136 4 • 9698001E136	218	5.4741867E149	275	2+8769402£151 2+4689053£151

j.

1	A(1)	I	<u>A(1)</u>	11		
279	1.4483105F151	336	1.02122916141	393	2.70/4830[118	
280	1.23757576151	337	5.3188553E140	394	8.11427556117	
281	1.0209870E151	338	2.7462097E140	395	2.40955376117	
282	8.35672825150	339	1 4055922E140	396	7.0761126E116	
283	6 • 7860528E150	340	7+1315565E139	397	2.05491866116	
284	5.4671408E150	341	3+5867225E139	398	5.9007369E115	
285	4.3698087E150	342	1 • 7880868E139	399	1.6753243E115	
286	3+4651392E150	343	8+8357925E138	400	4.7026354E114	
287	2.7260379E150	344	4.3276985E138	401	1.3049731E114	
288	2.1276136E150	345	2.1009290E138	402	3.5797048E113	
289	1.6474032E150	346	1.0108733E138	403	9.7061051E112	
290	1 • 2654643E150	.347	4.8205986E137	404	2+6011238E112	
291	9.6435955E149	348	2.2783045E137	405	6.8890733E111	
292	7.2906052E149	349	1.0671282E137	406	1.8030552E111	
293	5.4678896E149	350	4.9533910E136	407	4+6630456E110	
294	4.0682120E149	351	2+2785413E136	408	1+1915327E110	
295	3.0026934E149	352	1.0386429E136	409	3.0080181E109	
290	2019855726149	353	4+69155958135	410	/•5016145E108	
297	1.1504203E149	354	2+0998881E135	411	1.84/94//2108	
270.	R-2241308E148	355	4.00243625134	412	4 • 4 90 1 90 / 1 0 /	
300	5+8310979F148	357	1.7818052F134	413	2.56362355106	
301	4.1011602E148	358	7.6861584E133	415	6+0065224E105	
302	2.8612432E148	359	3+2848411E133	416	1.38945255105	
303	1.9801102E148	360	1.3907854E133	417	3.1730105E104	
304	1.3592689E148	361	5.8335277E132	418	7.1525490c103	
305	9.2554485E147	362	2+4238849E132	419	1.5913475E103	
306	6.2511541E147	363	9.9766884E131	420	3.4941083E102	
	4.1878202E147	364	4.0675998E131	421	7.5705254E101	
308	2.7827566E147	365	1 • 6426721E131	422	1.6183929E101	
309	1.8340704E147	366	6.5706400E130	423	3.4131794E100	
310	1 • 1 989591E147	367	2+6031030E130	424	7+1006651E 99	
311	7.7738159E146	368	1.0213734E130	425	1.45696805 99	
312	4.9991872E146	369	3+9688950E129	426	2.9482014E 98	
313	3.1885515E146	370	1.5273142E129	. 427	5.8825292E 97	
314	2.0170185E146	371	5.8202634E128	428	1.15/2125E 97	
	1.2654415E146	372	2.1963100E128	429	2.2441150E 96	
310	/ + 8 / 3 / / SSE 145	373	8+2065831E127	430	4.2894274E 95	
	4+000//12E145	374	3.0361939E127	431	8.0800407E 94	
310	209/30//20143	375	1 • 1121808E127	432	1+4997675E 94	
320	1.0861676E145	370	4 • 0334806E126	433	2+7426157E 93	
321	6.4829998F144	377	5.14734455125	434	4.94V4020E 92	
322	3.8372526E144	378	1 A 8 1 0 001 E 125	435	0 /053200E 91	
323	2.2522787F144	380	6.30771006124	430	1+5314054E 91	
324	1.3109113E144	381	2+17448535124	437	4+44077765 HO	
325	7.5659910E143	382	7+4194530F123	430	7.43450066 88	
326	4.3300340E143	383	2.50550496123	440	1.21033425.00	
327	2.4572049E143	384	B+3734325E122	441	1.9675520F A7	
328	1.3826345E143	385	2.7693195E122	442	3.1230824E 86	
329	7.7140180E142	386	9+0631672E121	443	448753754E 85	
330	4.2672899E142	387	2.9349439E121	444	7.4836084E 84	
331	2.3405225E142	388	9+4038918E120	445	1.1292776E 84	
332	1.2727801E142	389	2.9811110E120	446	1+6748752E 83	
333	6.8622165E141	390	9+3494366E119	447	2.4409494E 82	
334	3.6680588E141	391	2+9007035E119	448	3.4948542E 81	
335	1.9438342E141	392	8+9023570E118	449	4.9146144E 80	

-232-

				-233-		
	<u> </u>	A(I)	I	A(1)	ł	A(1)
•	450	6.7862936E 79	471	5.1088740E 59	492	1.6237257E 34
Ī	451	9.1991532E 78	472	4.33872688 58	3 493	6+2704596± 32
1	452	1 + 22 30201E /8	473	3058494896 57	<u> </u>	2.28940795 31
	453	2.0453120F 76	474	2.208007326 30	5 495	2.5465740F 28
1	455	2+5678903E 75	476	1 • 7038523E 54	497	7.7013018E 26
1	4 56	3.1604653E 74	477	1.2528271E 53	498	2.1693719E 25
-	457	3.8119467E 73	478	8.9299655E 51	499	5.6629968E 23
1	458	4.5042481E 72	479	6+1650122E 50	500	1.3618374E 22
	459	5.2123148E 71	480	4 .1185706E 49	501	2.9960305E 20
•	460	5.9049912E 70	481	2+6598987E 48	502	549800774E 18
•	462	7+10062575 68	483	9.99133236 (44	503 5 504	1.70515625 15
]	463	7.5309313E 67	484	5 • 7862550E 44	505	2.36826335 13
1	464	7.8074092E 66	485	3.2278560E 43	506	2.8137678E 11
	465	7.9083306E 65	486	1.7303896E 42	2 507	2.7803922E 9
1	466	7.8232586E 64	487	8.9011443E 40	508	2+1935438E 7
1	467	7.55461455 63	488	4.3865824E 39	509	1.2953999E 5
	46.0	1.52082425 62	489	240674381E 38	510	5.1099998E 2
1	470	5.8565418F 60	490	703013100C 30	110 0	1.000000E 0
					· · · · · · · · · · · · · · · · · · ·	
·						······
;			- <u>+</u>		-	······································
		<u> </u>				
						
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

					-2	:34-					
			ERROR	RATE	EQUAT	TION COE	FFICIENTS				
			HAMMIN	IG SIN	IGLE E	ERROR CO	RRECTING				
			/DOUE	LE EF	ROR (DETECTIN	G CODES				
DETE	ECTION WITHO	υτι	CORRECT	ON DO	CURS		K WORD IS NO	0N=2	LERO AND		
OV	ERALL PARIT	Y CI	HECK IS	SATIS	FIED	•					
1	A(1)		8(D		I	A(1)		ы(1	<u> </u>	
											-
	<u>N = 8</u>			F			2.7000005				<u> </u>
1	0. E	ŏ	0.	E	0	5	2•/999999E	6	2.79999	е 99Е	1
2	0. E	0	2.7999	999E	1	7	7.9999999E	0	0.	Ë	0
3	2.7999999E	1	0.	E	0	8	1.0000000E	0	0.	Ξ.	0
4	6•9999999E	0	5.5999	998E	1						
	N = 16										
0	0. E	0	0.	<u> </u>	0	9	6.2799993E	3	0•	É	0
1	0. E	0	0.	E	0	10	2.7999997E	2	7.55999	93E	З
2	<u> </u>	0	1.2000	000E	<u>_2</u>		2.9399997E	<u> </u>	0.	<u> </u>	
د م	1.39999999E	2	0.	E	0 7	12	1.0500000E	2	1.67999	98E	3
5	1.4279999E	3	0.	E	0	14	0. E	<u> </u>	1.20000	DOF	2
6	1.6799999E	2	7.5599	995 <u>E</u>	3	15	1.6000000E	1	_0.	E	ō
7	5.1599994E	З	0.	Ε	0	16	1.000000E	0	0.	E	0
88	4.3499996E	2	1.1999	999E	4						
	N = 32						·				
0	0. E	0	0.	Ε	0	17	2.9942274L	8	0.	E	0
1	0. E	<u>'o</u>	0.	Ξ_	<u> </u>	18	8.2807187E	6	4.56714	245	8
2	0. E	0	4 • 9599	999E	2	19	2.0422734E	8	0.	E	0
	6 • 1999997E	2	0.	<u> </u>	<u> </u>	20	4.4148644E	6	2.18729	02ċ	8
4	1.5499999	2	3+4719	996E	4	21	8.3406479E	7	0.	E	0
6	5.2079994E	3	8.7841	592E	5	23	1.9779237F	0	0.2004	<u>, 205</u>	
7	7.9632791E	. 5	0.	E	ō	24	2.4784497E	. 5	_1.01878;	38E	7
8	8.2614992E	4	1.0187	838E	7	25	2.5695277E	6	0.	ε	0
9	8.2695589E	6	0.	<u> </u>	0	26	2.2567998E	4	8 • 784159	91E	5
10	0+2007992E	57	6+2500	456E	7	27	1 •6578798E	5	0.	Ë	0
12	2.6489185F	6	2.1872	902F	8	20	4.33000075	<u></u>	<u></u>	20 <u>5</u> 5	4
13	1.4314619E	8	<u></u>	E	0	30	0• E	0	4.959999	с 99Е	2
14	6.4405589E	6	4.5671	424E	8	31	3.1999999E	1	0.	ε	0
15	2. 5629986E	8	0.	E	0	32	1.0000000E	0	0.	Ε	0
16	9+3981135E	6	5.8228	405E	8						
	N = `64						- <u></u>				
0	0. E	0	0•	Ξ	0	9	4 .1821257E	9	0.	ε	0
1	0• E	0	0•	E	0	10	3.6977662E	8	1.491060	SIE	11
	U. E		2+0159	999E	3	11	1.3543059E	11	0.	E	0
و م	2+0UJYYY8E	3	U .	E	0 K	12	9+6218882E	.9	3.232897	73E	12
<u> </u>	6+9526793E	5	0.	273 <u>5</u> E	0	14	1+6356852F	12	4.710794	<u> </u>	0
6	1.0936798E	5	7.3807	768E	7	15	3+8711394E	13	0.	E	
7	7+5537566E	7	0.	E	0	16	1 .9083105E	12	4.808935	37E	14

•

•					
			-2,5-		
•					
	A(1)	<u> </u>		<u> </u>	B(1)
18	1.5827722E 13	3.5454114E 15	42	8.2387484E 14	7.9091995E 16
19	2.6440638E 15	0. E 0	43	2+7398631E 16	0. E O
20	9.3799435E_13	1.9313161E 16	44	2.10758755 14	_1•9313161E_16
21	1.3709352E 16	0.0.E0	45	6.0758117E 15	
22	4.3155349E 14	7.9091995E 16	46	4.0448622E 13	<u>3.54541145 15</u>
24	1.4686466F 19	2 4673263F 17	47	5.7249314F 12	4.8089357F 14
25	1.5802637E 17	0. E 0	49	1.2080757E 14	0. E 0
26	3.8184809E 15	5.9215830E 17	50_	5.8417331E 11	4.7107946E 13
27	3.5924182E 17	'0• E0	51	1.0346558E 13	0• E O
28	7.6478410E 15	1.1012890E 18	52	4.1694847E 10	3+2328973E 12
29	6+3134243E 17		53	6.0816503E 11	0. E 0
	1+100/330E 10	1.5949/04E 18	54	2.33684535 10	1.4910661E 11
32	1+4317370E 16	1+8039887E 18	55	6.0544945E 7	4.35697055 9
33	9.1544397E 17	0. E 0	57	5.4567853E 8	0. E 0
34	1.3449650E 16	1.5949704E 18	58	1.0572238E 6	7.3807767E 7
35	7.5747529E 17	0. E 0	59	6.9292433E 6	0. E 0
36	9.8329383E 15	1.1012890E 18	60	9.7649993E 3	6.2495995E 5
37	4.8739483E 17	0. E 0	61	3.9059997E 4	0. E 0
38	5 • 5808567E 15	<u>5.9215830E 17</u>	62	0• E 0	2.0159999E 3
40	2 • 4 3 0 1 2 0 0 E 1 7	0. E U 2.4673263E 17	63	6+3999998E 1	
41	9.3348610E 16	0. E 0	04	1.00000002 0	<u> </u>
	N = 128				
• 0	0. E 0	0. E 0	31	1.2003604E 29	0. E 0
1	0. E 0	0• E 0	32	2.8863401E 27	1.4662611E 30
	1.0667998E 4	B+12/9998E 3		1 • 1246232E 30	0. E 0
	2.6669998E 3	1.0582655E 7	.35	2 4 7 2 1 4 0 2 C 20	
5	1.2236194E 7	0. E 0	36	1.8312272E 29	8.2690103F 31
6	1.9842478E 6	5.3812798E 9	37	6.0584490E 31	0. E 0
7	5.8271685E 9	0. E 0	38	1.1509788E 30	4.9237662E 32
8	6.9813629E 8	1.4185322E 12	39	3.5242318E 32	0. E 0
9	1•4683292E 12	0. E 0	40	6.2208773E 30	2.5281645± 33
10	2.2486746F 14	2.250/38/E 14	41	1 • 7671539E 33	
12	1.7377477E 13	2.3540680E 16	42	7.6695566F 33	
13	2.2819737E 16	0. E 0	44	1.1754639E 32	4.3428050F 34
14	1.4859963E 15	1 • 7254542E 18	45	2.8913562E 34	0. E 0
15	1.3278879E 18	0. E 0	46	4.1390579E 32	1.4627070E 35
1,6	9+1155268E 16	9.2613750E 19	47	9.4976252E 34	0. E 0
17	8.5203363E 19	0. E 0	48	1.2715828E 33	4.3064273E 35
18	4.1663318E 18	<u>3.7626604E</u> 21	49	2.7256853E 35	0. E 0
10	3.37040165 31		50	3+4168382E 33	1+1108824E 36
19	3.3796015E 21	0. E 0 1.1872184F 23	61	6 . BADO1425 25	A
19 20 21	3.3796015E 21 1.4606526E 20 1.0419043E 23	0• E 0 <u>1•1872184E 23</u> 0• E 0	<u> </u>	6+8499163E 35	0. E 0
19 20 21 22	3.3796015E 21 1.4606526E 20 1.0419043E 23 4.0188810E 21	0• E 0 <u>1•1872184E 23</u> 0• E 0 2•9695877E 24	<u>51</u> 52 53	6+8499163E 35 8+0476589E 33 1+5104135E 36	0. E 0 2.5158220E 36 0. F 0
19 20 21 22 23	3.3796015E 21 1.4606526E 20 1.0419043E 23 4.0188810E 21 2.5475892E 24	0• E 0 <u>1•1872184E 23</u> 0• E 0 <u>2•9695877E 24</u> 0• E 0	<u>51</u> 52 <u>53</u> 54	6.8499163E 35 8.0476589E 33 1.5104135E 36 1.6644285E 34	0. E 0 2.5158220E 36 0. E 0 5.0105467E 36
19 20 21 22 23 . 24	3.3796015E 21 1.4606526E 20 1.0419043E 23 4.0188810E 21 2.5475892E 24 8.8399496E 22	0 • E 0 <u>1 • 1872184E 23</u> 0 • E 0 <u>2 • 9695877E 24</u> 0 • E 0 5 • 9875923E 25	51 52 53 54 55	6.8499163E 35 8.0476589E 33 1.5104135E 36 1.6644285E 34 2.9269957E 36	0. E 0 2.5158220E 36 0. E 0 5.0105467E 36 0. E 0
19 20 21 22 23 24 25	3.3796015E 21 1.4606526E 20 1.0419043E 23 4.0188810E 21 2.5475892E 24 8.8399496E 22 5.0227412E 25	0 • E 0 1 • 1872184E 23 0 • E 0 2 • 9695877E 24 0 • E 0 5 • 9875923E 25 0 • E 0	51 52 53 54 55 56	6.8499163E 35 8.0476589E 33 1.5104135E 36 1.6644285E 34 2.9269957E 36 3.0273547E 34	0. E 0 2.5158220E 36 0. E 0 5.0105467E 36 0. E 0 8.7879781E 36
19 20 21 22 23 24 25 26	3.3796015E 21 1.4606526E 20 1.0419043E 23 4.0188810E 21 2.5475892E 24 8.8399496E 22 5.0227412E 25 1.5782256E 24	0 • E 0 1 • 1872184E 23 0 • E 0 2 • 9695877E 24 0 • E 0 5 • 9875923E 25 0 • E 0 9 • 8675520E 26	51 52 53 54 55 56 57	6.8499163E 35 8.0476589E 33 1.5104135E 36 1.6644285E 34 2.9269957E 36 3.0273547E 34 4.9917207E 36	0. E 0 2.5158220E 36 0. E 5.0105467E 36 0. E 8.7879781E 36 0. E 0. E
19 20 21 22 23 24 25 26 26	3.3796015E 21 1.4606526E 20 1.0419043E 23 4.0188810E 21 2.5475892E 24 8.8399496E 22 5.0227412E 25 1.5782256E 24 8.0948132E 26 2.316079E 26	0 • E 0 1 • 1872184E 23 0 • E 0 2 • 9695877E 24 0 • E 0 5 • 9875923E 25 0 • E 0 9 • 8675520E 26 0 • E 0 1 • 344645E 20	51 52 53 54 55 56 57 58	6.8499163E 35 8.0476589E 33 1.5104135E 36 1.6644285E 34 2.9269957E 36 3.0273547E 34 4.9917207E 36 4.8483197E 34	0. E 0 2.5158220E 36 0. E 5.0105467E 36 0. E 0.7879781E 36 0. E 1.3588670E 37
19 20 21 22 23 24 25 26 27 26 27 28	3.3796015E 21 1.4606526E 20 1.0419043E 23 4.0188810E 21 2.5475892E 24 8.8399496E 22 5.0227412E 25 1.5782256E 24 8.0948132E 26 2.3160797E 25	0 • E 0 1 • 1872184E 23 0 • E 0 2 • 9695877E 24 0 • E 0 5 • 9875923E 25 0 • E 0 9 • 8675520E 26 0 • E 0 1 • 3446496E 28 0 • E 0	51 52 53 54 55 56 57 58 59	6.8499163E 35 8.0476589E 33 1.5104135E 36 1.6644285E 34 2.9269957E 36 3.0273547E 34 4.9917207E 36 4.8483197E 34 7.4997357E 36	0. E 0 2.5158220E 36 0. E 0 5.0105467E 36 0. E 0 8.7879781E 36 0. E 0 1.3588670E 37 0. E 0

•			_			-236-				
	1	A(1)		B(1)		<u> </u>	A(1)		B(J)	
	62	8+5184579E	34	2.23348475	37	96	H.6590204E	27	1.46626116	30
	63	1.1609964E	37	0. E	0	97	3.67487628	29	0. E	0
	64	9.3559102E	34	2.3764012E	37	98	9.2243860E	26	1.5301185E	29
	65	1 • 1972686E	37	0• E	0	99	3.59448708	28	0. E	•
	66	9.0680360E	34	2.2334847E	37	100	8.2717134E	25	1.3446496E	28
	49	1.00939976	37	U. B5404725	27	101	2.94/01205	21	U. 94755205	26
	69	8+7493608F	36	1:0540473E	<u></u>	102	2+0081771E	26	<u>9+00/35205</u>	<u>-20</u>
	70	5+8514204E	34	1.3588670E	37	104	3.8306447E	23	5.9875923E	25
	71	6+1962892E	36	0. E	0	105	1.1246100E	25	0. ε	0
	72	3+8923132E	34_	8 • 78 79 781E	36	106	1+9363699E	22	2.9695876E	.24
	73	3.8675492E	36	0. E	0	107	5+1118663E	23	0. E	0
	74	2.12658637E	34	5.0105467E	36	108	_7.8875237E	20	<u>1:1872184E</u>	
	76	1+1761962F	34	2.5158220F	36	110	2.54609165	19	0. TA26604E	21
	77	1.0273829E	36	0. E	0	111	5.2976223E	20	0. E	0
	78	5.3302675E	33	1.1108824E	36	112	6.3808686E	17	9.2613750E	19
	79	4.3605776E	35	0. E	0	113	1 + 1588818E	19	0. E	0
	80	2.1193047E	33	4.3064273E	35	114	1.2100256E	1.6	1.72545426	18
	82	1.02220855	35	0. E	0 76	115	1 •88889528	17	0. E	0 L
	83	5.2790442F	34	0. F	<u> </u>	110	2.2085725E	16	2.3540680E	16
	84	2.2440675E	32	4.3428050E	34	118	1.6337723E	12	2.2507387E	14
	85	1.4987856E	34	0. E	0	119	1 .7594368E	13	0. E	0
	86	5.9464650E	31	1.1240201E	34	120	1.0472044E	10	1.4185322E	12
	87	3.7018770E	33	0. E	0	121	8.8698611E	10	0. E	0
	80	1 • 3685930E	31	2+5281645E	33	122	4.0346372E		5.3812796E	<u> </u>
	90	2.7260025E	30	4.9237662E	32	123	2.0233017E	8	1.05824555	0
	91	1 • 4664229E	32	0. E	0	125	3.3070797E		0. E	0
	92	4.6798030E	29	8.2690103E	31	126	0• E	Ō	8-12799986	3
	93	2.3325509E	31	0• E	0	127	1 • 280 0000E	2	0. E	0
	94	6.8917156E	28	1.1918272E	31	128	1 • 0000000E	0	0• E	0
	73	311/444985	30	0• E	0					
		N = 256								
	0	0. E	0	0. E	0	21	2.6881936E	29	0. E	0
	1	0. E	0	0. E	0	22	1.1300992E	28	3.3533137E	31
	2	0. E	0	3.2639999E	4	23	3 .1869075E	31	0. E	0
	3	4.3179997E	4	0• E	0	24	1•2176934E	30	3+3121260E	33
	<u>-</u>	2-0511360E	4	<u>1.7410174E</u>		25	3.1103785E	33	<u>0.</u>	0
	6	3.3732213F	7	3.6709350F	11	20	1 + VO / 04 3 / E	32	2.7308223E	35
	7	4.0849783E	11	0. E	0	28	8 • 1604264E	33	1.9025451F	37
	8	5.0008099E	10	4.0806335E	14	29	1 • 7464678E	37	0. E	0
	9	4.3785686E	14	0. E	0	30	5+2013671E	35	1.1318174E	39
	10	.4 .2545484E	13	2.7773698E	17	31	1.0276223E	39	0. E	<u>o</u>
	11	2.3311043E	17	0. E	0	32	2.8439732E	37	5.8017053E	40
	13	1.29727855	20	1 + COGIZIBE	20	33	3+2110206E	40	3 60	0
	14	8+8599968E	18	4 • 1312897E	22	35	2.295364AF	- JY 42	C+3829480E	42
	15	4.1514229E	22	0. E	0	36	5.5464196E	40	1.00575075	<u> </u>
	16	2.4606318E	21	1.0039377E	25	37	8.8437908E	43	0. E	0
	17	9.9308201E	24	0• E	0	38	2.0062049E	42	3.4464487E	45 .
 	18	5.1890383E	23	1.8818911E	27	39	2.9989053E	45	0. E	0
	20	1+0301934E	27	U• E	0	40	6+4038818E	43	1+0451134E	47
	<u> </u>	U-3306/136	2 3	Z+1934197E	67		0.9994839E	46	0. F	0

t

•

-						
			:	2 37-		
	1	A(1)	B(1)	1	A(J)	B(1)
	42	1.8133917E 45	2.8185290E 48	99	3.0373641E 72	0. E 0
	43	2.4018825E 48	0. E 0	100	1.8772780E 70	1.2254871E 73
	44	4.5768562E 46	6.7903902E 49	101_	7.5127550E 72	_0. <u>E</u> _0
	40	1+0339997E 48	1.4673802E 51	102	4.4943151E 70	
	47	1.2247012E 51	0• E 0	104	1.0079483E 71	6.3268140E 73
	48	2.0990860E 49	2.8547570E 52	105	3.7777310E 73	<u>0. E 0</u>
	49 50	3.8426127E 50	0. E 0 5.0169149E 53	106	2+1185374E 71 7+6864691E 73	1.3046992E 74 0. E 0
	51	4.1006853E 53	0. E 0	108	4.1746880E 71	2.5233669E 74
	52	6.3636675E 51	7.9888502E 54	109	1.4665367E 74	0. E 0
	53 54	6+ 161 7362E 54	0 • E 0 1.1559547F 56	110	7.7152997E 71	4.5/86796E 74
	55	9+2519264E 55	0. E 0	112	1.3376977E 72	7.7968667E 74
	56	1.3072101E 54	1.5238335E 57	113	4.4075025E 74	0. E 0
	57	1+2067941E 57	0 + E 0	114	2+1765068E 72	1.2463365E 75
	59	1.4374500E 58	0. E 0	116	3.3240289E 72	1.8706259E 75
	60	1.8578772E 56	2.0213703E 59	117	1.0277646E 75	0. E 0
	61	1.5670127E 59	0. E 0	118	4.7661068E 72	2+6367071E 75
	63	1.5666186E 60	0 E 0	120	6.4170356F 72	<u> </u>
	64	1.8597451E 58	1.8969402E 61	121	1 • 8626372E 75	0. E 0
	65	1.4390995E 61	0. E 0	122	8.1141027E 72	4.3417099E 75
	67	1.0394305E 59	$1 \cdot 6215523E 62$	123	2+2822504E 75	0. E 0
•	68	1.3313474E 60	1.2780935E 63	125	2.6266704E 75	0. E 0
	69	9.4857537E 62	0. E 0	126	1.0750917E 73	·5.5699987E 75
	70	9.9754578E 60	9.3028268E 63	127	2.8397818E 75	0. E 0
•	72	6 • 9065492E 61	6.2619379E 64	120	2.8841506E 75	0. E 0
	73	4.5450138E 64	0. E 0	130	1.1092216E 73	5.56999878 75
	74	4.4246065E 62	3.9032204E 65	131	2.7517422E 75	0. E 0
	76	2+62622325 63	2.2557875E 66	132	2.4662912F 75	5.0732986E 73
	77	1.6005600E 66	0. E 0	134	8.9122109E 72	4.3417099E 75
	78	1.4459486E 64	1.2101476E 67	135	2.0763688E 75	0. E 0
	79 80	8+4882386E 66	U. E.O	136	7+2726403E 72	3.4908673E 75
	81	4.1826479E 67	0. E 0	138	5.5739216E 72	2.6367071E 75
	82	3.5139865E 65	2.7974760E 68	139	1.2193689E 75	0. E.O
	83	1.9169514E 68	0. 'E 0	140	4.0117590E 72	1.8706259E 75
	85	8 • 1791022E 68	0. E 0	141	8+5033846E 74	<u>0• E 0</u>
	86	6.4022087E 66	4.8597229E 69	143	5+5672915E 74	0. E 0
	87	3.2517434E 69	0. E 0	144	1.7198970E 72	7.7968667E 74
····	89	2.4003/27E 67	1.0230655E 70	145	3+4213695E 74	0. E 0
<u> </u>	90	8.80644855 67	6.3876106E 70	147	1.9731223E 74	
	91	4.1714176E 70	0. E 0	148	5.7208687E 71	2.5233669E 74
	92	2. 74516025 68	2.0897832E 71	149	1 . 0675433E 74	0. E 0
	94	9.2017323E 68	UI E O	150	2.9979303E 71	1.3046992E 74
	95	4.0707431E 71	0. E 0	152	1+4731552E 71	6+3268140E 73
	96	2.6875653E 69	1.8275443E 72	143	2.5770537E 73	0. 5.0

·· ·

-

- -- --

ţ

.....

,

.

.

والمراجع والالمراجع المتعام المراجع

<u> </u>	A(1)	B(1)		<u>À(1)</u>	B(1)
156	2.9285538E 70	1.2254871E 73	207	9.8077582E 52	0. E
157	4.7988966E 72	0. E 0	208	9.0960398E 49	2.8547570E 5
158	1.1837613E 70	4.8908821E 72	209	5+3573898E 51	0. E
159	1.8767701E 72	0. E 0	210	4.7204331E 48	1.4673802E 5
160	4.4792754E 69	1 .8275443E 72	211	2+6389042E 50	0. E
161	6.8691495E 71	0. E 0	212	2.2052125E 47	6.7903902E 4
162	1.5858304E 69	6.3903092E 71	213	1.1680222E 49	0. E
163	2.3516917E 71	0. E 0	214	9.2396629E 45	2.8185289E 4
164	.5.2500681E 6E	2.0897832E 71	215	4.6276072E 47	0. E
165	7.5264015E 70	0. E 0	216	3.4580961E 44	1.0451134E 4
166	1.6243005E 68	6.3876106E 70	217_	1.6341407E 46	Q. E
167	2.2503375E 70) 0. E 0	218	1.1509280E 43	3.4464487E 4
168	4.6932571E 67	1.8236655E 70	219	5.1192119E 44	0. E
169	6.2815060E 69	0. E 0	220	3.3894785E 41	1.0057507E 4
170	1.2655528E 67	4 • 8597229E 69	221	1.4158153E 43	<u>0.</u> E
171	1.6357455E 69	0. E 0	222	8.7839228E 39	2.5829479E 4
172	3.1823844E 66	1 . 2078258E 69	223	3.4324687E 41	<u>0.</u>
173	3.9706352E 68	0. E 0	224	1.9907813E 38	5.8017053E 4
174	7.4565080E 65	2.7974760E 68	225	7.2560499E 39	0. E
175	8.9769303E 67	0. E 0	226	3.9183633E 36	1.1318174E 39
176	1.6264737E 65	6.0327392E 67	227	1-3270130E_38	0. E (
177	1.8885307E 67	0. E 0	228	6+6449186E 34	1.9025451E 3
178	3.2997287E 64	1.2101476E 67	229	2.0818708E 36	0. E (
179	3.6933887E 66	0• E Q	230	9.6214638E 32	2.7308223E 3
180	6.2200022E 63	2.2557875E 66	231	2.7746685E 34	0. <u> </u>
181	6.7077510E 65	0• E 0	232	1.1771036E 31	3.3121260E 3
182	1.0882140E 63	3.9032204E 65	233	3.1063202E 32	0. E (
183	1.13003965 65	0. E 0	234	1.2020147E 29	·3•3533136E 3
184	1.7650070E 62	6.2619379E 64	235	2.8827637E 30	<u>0.</u> E (
185	1.7638205E 64	0. E 0	236	1.0098760E 27	2.7934197E-29
186	2.6506216E 61	9.3028266E 63	237	2.1830452E 28	0, <u>E</u> (
187	2.5474225E 63	0• E 0	238	6.8610615E 24	1.8818911E 27
188	3.6807840E 60	1 • 2780935E 63	239	1.3235738E 26	<u>0. E</u> (
189	3.3996553E 62		240	3.6909477E 22	1.0039377E 29
190	4 1193902E 39	1.0215523E 62	241	6.2761425E 23	0. E (
191	4 • 1001430E 01		242	1.5315136E 20	4.1312895E 22
192	3.3/92331E 30	1.0909402E 01	243	2.2597731E 21	<u> 0 </u>
193	40/404212E OU		244	4.7399160E 17	1.2681218E 20
174	0.0F22F21E 50	2.04214946 80	245	5+9453675E 18	<u>0.</u> E (
195	4.04004545 54		240	1+0400188E 15	2.7773698E 1
.193	A-74215005 54	2.02137032 39		1.08506516 16	<u>0.</u> E (
108	5.5642010E 55		248	1+5502510E 12	4.0806335E 14
190	4.1A09579E 57	1.6345001E 56	249	1.40584395 ()	
200	4.6686078E 54	1.52343365 57	250	-1 +4033088E 9	3+6709350E 1
201	3.33696205 54		263	6.80084055 F	
202	3,57604355 43	1.155USA75 54	252	0.00004956 5	1. /410174E
202	2.44083848 66	1+133+34/E 30	253	C+ 1243371E 6	U. E (
204	2.49651588 52	7.9888502E 54	204 288	24560000E 3	J. 2039999E
205	1.6243184F 64		200	1.00000005 0	
			200		U. L. (

·			-2	39-		
[·		A(I)	8(1)	1	A(1)	<u>u(1)</u>
r –		N = 512	E 0		4.33068025 73	
L	1		0. E 0	56	6.9292096E 71	3.23732675 75
	2_	0. E 0	1.3081599E 5	57	2.92828395 75	_0
F	3	1.7373998E 5	0. E 0	58	4.5039861E 73	2.03170156 77
L -	<u> </u>	4:3434990E 4	2+8243171E 9	<u> </u>	2.7068929E 75	1.1034965 79
	6	5.5603741E 8	2.4247608E 13	61	1.0571040E 79	0. E 0
ſ	7	2.7346614E 13	0• E O	62	1.50766538 77	6.36215335 80
	8	3.3831574E 12	<u>1.1064268E 17</u>	63	5.6697248E 80	
	10	1.19120868 16	3.1165830E 20	۵ ۹ دن	2.82719748 32	$0 \cdot t 0$
i –	11	3.3280680E 20	0. E 0	66	3.75425486 80	1.40023215 04
L _	12	2.7235578E 19	5.9380820E 23	67	1.31343905 84	Q. <u>c.</u> Q
	13	6.2345026E 23	0• E 0	60	1.08499902 02	6.4030003r 02
r -	14	4.3559463E 22	U. E 0	<u> </u>	200200702 00 60 3046300000	2.04U1000E 67
L.	16	5.1339162E 25	8.3949828E 29	71	2.30685736 87	0. <u> </u>
	17	8.5960509E 29	0. Ł 0	72	2.7/03375E 85	1.00007905 09
	18	4.6341159E 28	6.7357405E 32	73	8.75296522 55	0. <u> </u>
-	19	6.8289376E 32		74	1.01810998 87	3+59959835 90
-	20	4.3381123E 35	0. E 0	76	3.5112146E 60	1.20674516 92
_	22	1.8980691E 34	2.2572528E 38	77	1.0407016E 92	0. E 0
	23	2.2501420E 38	0. E 0	78	1.1379649E 90	3.8170262E 93
•	24	8.9880698E 36	9.7981942E 40	79	3.2702304E 93	0. E 0
	25	3.5601143F 39	3.5824608E 43	80	9.6760552E 94	1+1349733E 95
	27	3.5200765E 43	0. E 0	82	9.9717369E 92	3.1816163E 96
	28	1.1953767E 42	1.1169599E 46	83	2.6990879E 96	0. E 0
-	29	1.0902907E 46	0• E 0	84	2.7027420E 94	8.4181403E 97
-	30	2.9112466F 48	3.0013101E 48	85	1.1002180E 97	
-	32	8.5792714E 46	7.0144122E 50	87	1.76783658 99	
	33	6.7628054E 50	0. E 0	88	1.6740130E 97	4.9769927E100
-	34	1.8679412E 49	1.4373917E 53	89	4.1599067E100	_0. E 0
-	35	1.37772998 53	0 • E 0	90	-3-8334725E 98	1.11439906102
. -	37	2.4789275E 55	0. E'0	92	8.3157798E 99	2+36486315103
_	38	6.0751756E 53	4 . 1827903E . 57	93	1.9570307E103	0. E 0
•	39	3.9642562E 57	0• E 0	94	1.7103914E101	4.76056512104
-	40	<u>9.1907324E 55</u>	6.0114741E 59	95	3.91994036104	0. E 0
	42	1.2458597E 58	7.7608773E 61	90 97	7.4545314E105	0. E 0
•	43	7.2763053E 61	0. E 0	98	6.1894893E103	1.65241681107
_	44	1.5206252E 60	9.0419139E 63	99	1.3470417E107	0. E 0
	45	8.4327238E 63		100	1.09079698105	2.85387398108
	40	8.8572075E 65	0. E 0	102	2+314/044E108	0. E 0
	48	1.6522976E 64	9.1696444E 67	103	3.78554052109	0. E 0
	49	8.4636513E 67	0. E 0	104	2.9189614E107	7.3432590E110
•	50	1 +5366130E+66	8.0405427E 69	105	5.8960471E110	0. E 0
· •	52	1.2834153E AA	6+4573559E 71	107		1+0705704E112
-	53	5.8998541E 71	0. E 0	108	6.4350903E109	1.55891252113
	54	9.8323764E 69	4.7638227E 73	109	1+2389794E113	0. E 0

ľ

			-240-		
1	A(1)	ə(1)	I	A(1)	(]) تا
110	8-90001626110	2.11684446114	167	3-1-14921-138	0. Ë 0
111	1.6738038E114		168	1.20600/02130	1.95/34062139
112	1.1750207E112	2.7448485E115	169_	1.3203105139	0. <u> </u>
113	2.1592304E115	0. E O	170	5.2232732E136	8.0300/062139
114	_1.4817739E113_	3.4006971E116	171	5.39054046139	U.+EU
115	2.6613693E116	0. E O	172	2.0954542213/	J.18/4295c140
116	1.7858822E114	4.0279649E117	173	2.124/0712140	<u> </u>
117	3.1359616E117	0. E Ú	174	8.1167513E137	1.22046082141
118	2+0582647E115	4.56362636116	175_	8.0873110E140	
119	3.53454962118		176	3:03627762130	4.51356526141
120	2.0700120110	4 • 94 04 00 3E 11 9	178	1.04704346134	1.61254005142
122	2.20603416117	127U216E120	179	1.05576002142	
123	3.03788076120		180	3.H296345E134	5+5664162E142
123	2.4221803E118	5.1106454E121	181	3.6229903E142	0. Ë 0
125	3.8963756E121	0. E 0	182	1.2917317E140	1.85691386143
126	2.34648316119	4.8723431E122	183	1.2010498E143	0. Ë 0
127	3.6950815E122	0. E 0	184	4.21075216140	5.9873230c143
128	2.1791710E120	4.45422548123	185	3.84889622143	0. E 0
129	3.3600708E123	0. E O	186	1.3267579E141	1.8662490E144
130	1.9409825E121	3+9063318E124	187_	1.1923172E144	0. Ē Û
131	2.9310777E124	0. E O	188	4.04145822141	5.62433392144
132	1.6588049E122	3+2878518E125	189	3.5710520E144	0. E.O
133	2.4538103E125	0. E O	190	1.1903261E142	1.6390916=145
134	1.3607945E123	2+6569206E126		1.0342252E145	0. د 0
135	1.9722744E126	0. E 0	192	3.3903138E142	4•6198674E145
136	1.0719810E124	2.0622392E127	193	2.0907565E145	<u>0. E0</u>
137	1+5225692E127	0• E O	194	9.3394650E142	·1•2595375E140
138	8 • 1123506E124	1.5380076E128	195	7+8477958E145	0• E 0
139	1 • 1293661E128	0. E 0	196	2.40869706143	3•3220550E146
140	5.8997452E125	1+1025443E129	197	2.056/4652146	<u> </u>
141	0+05192106120		198	6+415/48/E143	8+4//602UE146
142	4+12480046126	1.59985766129	199	5+2151573E146	
144	2.77336245127	5.038H915E130	200	1.2705626262147	2.09343032147
145	3.63964176130	0. E 0	201		5-00301105147
146	1.79386616128	3.21460796131	202	3.03819015147	
147	2+3091082F131		204	9.0232562F144	1.15724535144
148	1.1165900E129	1.9736897E132	205	6.9819553E147	0. E 0
149	1.4100026E132	0. E 0	206	2.0401860E145	2.5911552E148
150	6.6904260E129	1+1669530E133	207	1+55306535148	0. E 0
151	8.28932341132	0• E 0	208	4+4653292E145	5+6166971E148
152	3+8601246E130	6+6442903E133	209	3.3443753E148	0. E 0
153	4.69321026133	0. E 0	210	9.4615017E145	1.17877691149
154	2.1451775E131	3.6444617E134	211	6+9723522E148	0• £ 0
155	2.5597010E134	0. E O	212	1.9410278E146	2.3954479E149
156	1 •1485821E132	1+9263194E135	213	1+4074385E149	0• E 0
157	1•3453207E135	0. E 0	214	3.8557486E146	4.7139590E149
158	5.9267437E132	9.8140870E135	215	2.7510884E149	0• E 0
159	6.8150017E135	U• E O	216	7•4170155E146	8.90392072149
160	2.9480842E133	4+820/072E136	217	5+2076510E149	<u>0•</u> <u></u>
161	3+3283760E136		218	1+3817497E147	1.65830292150
102	1+4139816E134	2.2835979E137	219	905472159E149	<u>0.</u> E 0
	1000/0941E137	UN EQ	220	204731234E147	2.96491376150
163	6.6008665124	1.04347405134		 A statistic to the state of the state 	
163 <u>164</u>	6+5408565E134	1.0434740E138	221	1+69528428150	0. E 0

			-2	41-		
· · ·	I	A(1)	d(1)	l	A(1)	(1) ئا
1	به مز مز	7.3763683E147	d.61.56005E150	281	2.25555276151	J. E U
	225	4.0003724E150	0. E 0	262	3.6275940E148	0.000002E191
	226	1.20972446148	1+4004543E151	<u> </u>	1.5142701=151	0. 50
	227	7.8420711E1:50	0. E 0	204	2.39412335148	2.20056148151
· -	228	1.92204206148	2+205:5614E151	285	9+83694935150	
-	229	2.9586763F148	3.3655852E151	200	6.1911771E150	
	<u>ا</u> تے	1.8581140E151	Ú• E 0	203	9.48390211147	8+6156005E150
* 	232	4.4127879E148	4.9764087E151	289	3.7750170-150	0. <u>E</u> 0
1	233	2.7278507E151	0• E 0	290	5.6917999E147	5.13502542150
 	234	6.3772195E148	7.1302784E151	291	2.2298238E150	
1	235	3+8804480E151 8-930426HE14H	U. 0003644F151	272	3+3090547E147	2.96491372150
	237	5.3490337E151	0. E 0	294	1.8634507E147	1.65530295150
i	238	1.21186328149	1.3321945E152	295	7.07090556149	0. <u> </u>
	239	7.1452584E151	0. E 0	296	1.01640581147	8.98392872149
	240	1.5936464E149	1.7372875E152	297	3.7954640L149	<u>0.</u> <u>c</u> 0
-1	241	9.2496493E151		298	5.3692201E146	4.71395902149
	242	2.J309623E149	2.1957226E152	300	2.74673746146	2.3454474c144
	244	2.5083968E149	2.6896600E152	301	9.9322580±148	
、	245	1.41087141152	0. E O	302	1.3606540=146	1.17877696149
	246	3.0025234E149	3.1933185E152	303	4.0413-05E148	0. E 0
	247	1.6625120E152	0. E 0	304	6+5262504=145	5.61669712140
•	248	3.4832274E149	<u>3.6746934E152</u>	305	2.20401000148	
	250	3.9164310£149	4.0986556E152	307	1.0433974E148	
• • • • • •	251	2.10102605152	U. E Q	308	1.06233935145	-1.15724535140
1	252	4+2679421E149	4.4310734E152	309	4.6166271E147	0. E 0
	253	2.25466222152	0• E 0	310	5.9279196E144	5-0030110E147
• •	254	4.5078016E149	4.6433115£152	311	1.9763406E147	
-	200	2+3444084E152	0. E U 4.7162899E152	312	2.4964773678144	
	257	2.36272396152	0. E 0	314	1.01744706144	6.4776020±146
-	258	4.5788516E149	4.6433115E152	315	3.2824600±146	0. E 0
	259	2.3079213E152	0• E 0	316	4.01236916143	3+32205496140
1	260	4.40343232149	4 • 43107348152	317	1.27325502146	<u>0. د 0</u>
	261	2.10002336152		318	1.53090192143	1.25953756146
	263	2.00500405152		320	40//811/1E145	4.6198674F145
	264	3.7079517E149	3•3746935E152	321	1.7344676E145	0. E.O
	265	1.7831763E152	0. E 0	322	2.0172894E142	1+6390916E145
	266	3.2466310E149	3.1933185E152	323	6+0895313E144	0• <u> </u>
	267	1.5370449E152	0• E 0	324	6•9650664E141	5•6243339E144
I	268	2.7551244E149	_2.6896600E152	325	2.0675105c144	<u>0. E 0</u>
-	209	2.26594976149	2.1957226F152	320	6.78723306143	
	271	1+0396281E152	0. E 0	328	7.50612321140	5.9873230=143
	272	1.8061326E149	1 • 7372875E152	329	2.1540364E143	0. 20
	273	8.1574860E151	0. E 0	330	2.3421509E140	1.80091300143
	274	1.3951703E149	1+33219456152	331	6.6078123E142	0. Ľ O
·	275	6.2030669E151	0. E 0	332	7.0035401E139	5.00041026146
-	270	4.57102545151	0 F A	333	1.9590017E142	
- .	278	7.5763550E148	7.1302784E151	339	5.6118928E141	
T ·	279	3.2640857E151	0• E 0	336	5.7965305c138	4-5135051E141
L	280	5.3257785E148	4.9764087E151	337	1.5531147E141	<u>0. E 0</u>

I	<u>A(1)</u>	ن	I	A(1)	ن (۱)
14 A.M.	1.57.20292130	1	1461-	المراجع سرار فالمراجع والأرد المراجع	0 0
	4.1.1.1.4.2(0.14.)	1022040000141	395	6.09063200114	4.02/90495117
340	4110100200140		-967	0.11010202114	
341	1. 7152705140			5.17321075113	3-40009715116
343 343	1.05002502140		340	7557406122116	
343	2.67166606139		400	4.1965027F112	2.74484855115
344	2.57365606136	1.00774665130	400	4.00760855114	
345	6.42862766138		402	13.2526010c111	2.11684446114
346	6.08392086135	4 - 60042885138	403	4.55031536113	
347	1.4929332F138		404	2.4072005F110	1.55891256113
348	1.38793786135	1.04347405138	404	3.2900312E112	
349	3.34543256137	0.	406	1.7001349-109	1-0505904511-
350	3-05489876134	2.28359796137	407	2.20-3597-111	
351	7.23193235136	0. 6. 0	408	1.14.14.1.1. stricts: 1.0.0	7.3432590F110
352	6+4857852E133	4 42070721 136	409	1.45453450110	
353	1.50779886136	0. E 0	410	7.35090026100	4.09000705109
354	1+3278906F133	9+8140870F1.35	411	Sease Share are i dira	
355	3+0311870E135		412	4.4940.450100	2003341/395100
356	2.62112335132	1.92631946135	/ 413	5.57658731107	
357	5.8742414E134	0. E 0	414	2.6147434E104	1.05241085107
358	4.9868413E131	3-6444616E134	415	3+1642756E106	0. Ē 0
359	1.0970999E134	0. E 0	416	1.44007772103	9.09062965105
360	9.1424003E130	6+6442903E133	417	1.7067536=105	
361	1.9741383E133	0. E 0	418	7.60578311101	417605651E104
362	1.6146228=130	1 + 1669530E133	419	8 • /430965=103	0. E 0
363	3.42155375132	0. E 0	420	3-79633432100	2:3648631E103
364	2.74620806129	1.97368976132	421	4.25116096102	Ø. E 0
365	5.7102721E131	0. E 0	422	1-7974727E 99	1:1143990E102
366	4.4969518E128	3.2146078E131	423	1 9597109E101	0: E 0
367	9.1737429E130	0. E O	424	8:0656990E 97	4.97699276100
368	7.0874819E127	5.0388913E130	425	6.5576332E 99	0. 5 0
369	1.4182629E130	0. E 0	426	3.4268032E 96	2.1046040E 99
370	1.0747719E127	7.5998574E129	427	3.5364544E 98	0. E 0
371	2.1093405E129	U. E 0	428	1.3771113E 95	8.4181403E 97
372	1.5676465E126	1 .1025443E129	429	1.38162406 97	0. E 0
373	3.0169682E128	0. E 0	430	5.2290814E 93	3-18161625 76
374	2.1985645E125	1.5380075E128	431	5.0974315E 95	0 0
375	4.1483747E127	0. E 0	432	1.8740388E 92	1.13497336 95
376	2.9637122E124	2.0622392E127	433	1.7740290c 94	0• జు
377	5.4016615E126	0. E 0	434	6.3317537c 90	3.0170262E 93
378	3.8386589E123	2.6569206E126	435	5.8170153E 92	<u>0.</u> E 0
. 379	6.)584347E125	0. E 0	436	2.01432036 89	1.20074516 92
380	4 . 1753473E122	3.2878517E125	437	1.79483306 91	0• E U
381	8.4821961E124	0. E 0	438	6.0261105E 87	3.59959832 90
382	5.7035023E121	3.9063317E124	439	5.2042364E 89	<u>0.</u> E Ö
383	9.9249578E123	0• E 0	440	1.6929852E 86	1.00667985 69
384	6+5375131E120	4+4542253E123	441	1 • 4160895E 88	<u>0.</u> È Ú
385	1 • 1 1 42 75 2E 1 2 3	0• E 0	442	4.40018385 84	2.64010985 87
386	7.1884325E119	4.8723431E122	443	3.6106200E 86	<u>0.</u> E 0
307	1+1990111E122	0• E 0	444	1.10020076.03	6.4830863E 83
368	7.5790806E118	5.1106454E121	445	8.6128860E 84	0. E 0
389	1.2385003E121	U• EO	446	2.5369661E 81	1.48823218 84
390	7.6588206E117	5.1379316E120	447	1.9189700E 83	0. E 0
391	1.2250143E120	0• E 0	448	5.4592074E 79	3.1881770E 82
392	7.4142263E116	4.9484663E119	449	3.9863156E 81	0. E 0
393	1.1604840E119	0• E 0	450	1.0942731E 78	6.3621531E 80
394	6.6725111E115	4+5636263E118	451	7.7062088F 79	0.

-242-

Ì

						-243				
1		A(1)_		년(1)		1	<u>A(I)</u>		D(1)	
45	2 2	030192AF	76	1.1803496		483	1.758/8685	A 7		F
45	3 1	38357486	78	0.	E O	464	2.0662941E	43	1.1169599	E 46
45	4 3	54553375	74	2.0317014	E 77	465	0+1090406E	44	0.	E 0
45	5 2	3021011E	76	U.	E 0	460	0+0540752E	40	3.5824607	E 43
	o_5_	04230045	72	3.2373267	<u>E (5</u>	407	1.0194010E	42	• • ·	Ē V
45	it 7	54100000	74	Ú•	E O	488	1.82/57422	8د	9.7981942	E 40
45	8 B	3393117E	70	4.7638227	E 73	467	4.5933203E	39	0.	E <u>Ú</u>
4 5	9 5	0254 7955	72	0.	E O	490	4.22751705	د: ق	c • c 57 c 528i	E 38
46	0 1	1353289E	69	6 • 4573559	<u>E 71</u>	491	9.6799449E	<u>- 36</u>	<u>0.</u>	<u> </u>
46	1 6	5596719E	70	0.	EO	492	8.11801492	<u>ج</u> د:	4.3109356	- 35
46	2_1	4198304E	67	8.0405427	<u>E 69</u>	493	1.0864301E	34	0.	<u> </u>
46	3 70	8537187E	68	0.1404444	EO	494	1.2718076E	30	6.7357403	- 32
40	4 1	02022115	65	9.1696444	<u>E 67</u>	495	2.30819295	<u></u>	<u> </u>	<u> 0 </u>
40	6 1	396242VE	60	0.6066999		490	1009101405	21	8.3949828	
46	7 8	6747100F	64	913400003		<u> </u>	2+0233070E	<u>-60</u>	U. 1403933	<u> </u>
46	A 1.	61734226	61	U. 0414134	5 63	470	1.04947232	26	0.1403923	- 20
46	9 7	7717890F	62	0.	FO	500	1.13441576	21	5.9340820	- U - Un
40	0 1	3941 7635	59	7.7608772	E 61	500	1.3917978F		0.	- 23
47	1 6	3674290	60	0.	E O	502	5.9798674F	17	3.1165830	F 20
47	2 1	0845063E	57	6.0114741	E 59	503	6.0872894E	18	0.	E 0
47	3 4	6972218E	58	0.	E O	504	2.1313891E	14	1.1064267	£ 17
47	4 7	5779822E	54	4.1827903	E 57	505	1.7288389E	15	0.	- 0
47	5 3	1048879E	56	0.	E O	506	4.6892486E	10	2.4247605	= 13
47	6 4.	7322423E	52	2.6010630	E 55	507_	2.0415717E	11	0.	E 0
47	7 1 0	8291 349E	54	0.	E O	508	5.0162444L	6	2.82431711	=
	8 2	3261 057E	50	1 • 4373917	E 53	509	2.2064978E	<u>'7</u>	0.	- 0
47	9 90	3464666E	51	0.	E O	510	0	0	1.3081599	ະ ອ
48	0 1	2868906E	48	7.0144122	<u> </u>	511	5.1199998E	_2	<u>0.</u> t	<u> </u>
48	1 4.	3845603E	49	0.	EO	512	1.000000UE	0	0• E	- 0
. 48	2 5.	5292603E	45	3.0013101	E 48					
				·····		·····				
·										
•										
							· · · · · · · · · · · · · · · · · · ·			
			_							
·····										
							_			
•										
• <u> </u>										
<u></u>										
*			<u></u>							

.

1.

							و مربع المالي في المراجعة مسيد الم					•
				ERROR R	ATE	EQUA	TION COE	FFICIENTS				-
				HAMMING	SIN	GLE	FRROR CO	RECTING				
				/DOUBL	EER	ROR	DETECTIN	G CODES				
DETE	CTION W	THOL	лс	ORRECTIO	N OC	CURS	IF CHEC	K WORD IS N	ON-Z	ERO AND		
	D OVERAL	ARITI L PA	Y CH	ECK IS S Y CHECK	ATIS 15 n	IFIEL Iot s) = OR = SATISFIED	IF CHECK WO	RD I	5 ZERO		
											•	
1	AC	1)		8(1)		1	A(1)		8(1)		******
	N = 6	3						• • • • • • • • • • • • • • • • • • • •			······	
.	. 0.	<u>E</u>		0.	<u>E</u>	<u></u>	5	2.3999999E		2.79999995	1	-
2	0.	Ē	ŏ	2.79999	99E	ĭ.	. 7	6.9999999	Ō	1.0000000E	Ō,	
3	2.49999	999E	j: -	7.00000	OOE	0	8	1.0000000E	0	0. E	0	
	6.99999	999E	<u>.</u>	5.59999	98E	1		, 		•		
	N = 10	5										
0	0.	E	0	0.	E	0	9	5.8799994E	3	7.14999 96E	2	
1	0.	E	0	1.00000	OOE	0	10	2.7999997L	2	7.5599993L	3	
2	.0.	E	0	1.20000	OOE	2	11	2.7509998E	3	2+7299998E	2	
<u>.</u>	1+32999	777 <u>5</u> 2085"	r	3449999	90C 90C		······································	1.0500000E		1.0777798L	<u>1</u>	
	1.34399	998F	3.	2.72999	98E	2	· 14	0. E	ō	1.2000000	2	
	1.67999	999E	2	7.55999	95E	<u> </u>	15	1.5000000E		1.0000000E	<u>,</u>	
7	4 . 84499	994E	З	7.14999	96E	2	16	1.0000000E	0	0. E	0	
8	4.34999	796E	2	1.19999	99E.	4						
	"N #****32	y							. <u>é</u>			
0	0.	- ε	O	0.	E.	0	17	2+9003106E	8	1.7678832E	7	
1	0.	E	0	1.00000	ÖÖE	0	18	8.2807187E	6	4.5671424E	8	•
2	0.	E	0	4 • 95999	99E	2	19	1 • 9778178E	8	1.0855423E	7	
3	6.04999	97E	Ź	1.54999	99E	2	20	4 • 41 48644E	6	2.18729026	8	-
4	1.54999	299E	2	3.47199	96E	4	21	8 • 0760564E		4.0320145E		
5	3.40079	197E	4	0+29299	905 025	ۍ ۲	22	1.01.01025		0+2300430E	, 	
- -	3020/91 7.7770/	025		0 + /0 + 15	965 005		23	2.0784491926		01/052490E	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	8.26140	+765 2025	2 A	1.01878	705 785	7	25	2 44736775	6	1.0518298F	, K	
o '	8+0230	790E	6	8.76524	90E	<u></u> 5	26	2.2567998L	••••	8.78415915		
10	6+28679	992E	5	6.25004	56E	7	27	1 .6047498L	5	6+2929996L	3	
11	4 . 42318	382E	7	4.03201	45E	6	28	1 .0850000E	3	3.4719996E	4	
12	2.64891	85E	6	2.18729	02E_	8	29	4+1999997E	3	1+5499999E	2	
13	1+38736	533E	8	1.08554	23E	7	30	0. E	0.	4+9599999E	2	
. 14	6+44055	589E	6	4.56714	24E	8	31	3.0999998E		1.0000000E	0	
15	2.58012	271E	8	1.76788	32E	7	32	1.0000000E	0	0• E	0	
1.6	9 • 3981	35E	6	5.82284	05E		• • • • • • • • • • • • • • • • • •	, 	100 das ant res 100 d		و مواقع خوامی کرد بار کرد بر مرد می مرد م	
	N = 64	2										
່	0.	Ε	0	0.	E	0	8	8+6492779E	6	4+3569705E	9	
1	0.	E	0	1.00000	OOE	0	9	4.1216123E	9	4.3032157E		
2	0.	E	0.	2.01599	99E	3	10	3+6977662E	8	1+4910661E	11	
_ 3 ,	2+57299	98E_	3 .	6.50999	99E	2	U_	1+3343363E	11_	_1.1618682E_	10	
4	6+50999	98E	2	6+24959	95E	5	12	9.6218882E	9	3.2328973E	12	
5	6+85967	794E_		_1.191.33	00E.	<u> </u>			-12-	_2.0526338E_		
0	1+0230	(70E	5	/•380/7	995	1	14	1+0J30822E	11	4+7107946E	13	•
	7					_			-			

-244-

-

.

1

-	2	4	5-
	_		

•

.

. . .

			-245-		
- i	A(1)	تر (۱) 	· · · · · · · · · · · · · · · · · · ·	A(1)	
16	1.9083105E 12	4.8089357E 14	41	9.1879964E 1	6 2.2925216= 15
17	3.7077297E 14	2.1552653E 13	42	8.2387484E 1	4 7.9091995E 16
18	1.5827722E 13	3.5454114E 15	43	2.6967078E 1	6 6.4231226E 14
19	2.6036151E 15	1.3624805E 14	44	2.1075875E 1	14 1.9313161= 16
20	9.5799435E 13	1.9313161E 16	45	5.9800123E 1	5 1.5624205t 14
21	1.3498593E 16	6.4231226E 14	46	4.04486221	3 3.5454114E 15
22	4.3155349E 14	7.9091995E 16	47	9.8704418E 1	4 2.1552653c 13
23	5.2548893E 16	2+2925216E 15	48	5.7249314L 1	2 4.8089357= 14
24	1.4686466E 15	2.4673263E 17	49	1.1889926E 1	14 2•4924837E 12
25	1.5557862E 17	6.2662255E 15	50	5.8417331E 1	1 4.7107946c 13
26	3.8184809E 15	5.9215830E 17	51	1.01829896 1	3 2.0526338⊨ 11.
27	3+5366096E 17	1.3228698E 16	52	4.1694847E 1	0 3.2328973L 12
28	7.6478410E 15	1.1012890E 18	53 <u>·</u>	_5•9854331E_1	1 1.16186822 10
29	6.2150948E 17	2.1700277E 16	54	1.9967937E	9 1.4910661E 11
30	1.1867338E 16	1.5949704E 18	55	2.2988645E 1	0 4.3032157E 8
31	8.4819571E 17	2.7767021E 16	56	6.0544945E	7 4.3569705E 9
32	1.4317370E 16	1+8039887E 18		5.3703375E	8 9.7065020E 6
33	9.0112658E 17	2.7767021E 16	58	1.0572238E	6 7.3807767E 7
34	1.3449650E 16	1.5949704E 18	59	6+8194103E	6 1.1913300E 5
35	/ + 400 / 90E 1/	2.17002776 16	60	9 /049993E	
	900329303E 15	1.32286086 16	···· 62 ··	3.04399972 	
38	5.5808567F 15	5.9215830F 17	63	6.3000000E	1 1.000000E 0
30	2.30103565 17	6.2662255E 16	64		
· 40	2.4477445E 15	2.4673263E 17	04		
•	N = 128				
•••••••••••••••••••••••••••••••••••••••	0. E 0	0• E 0	30	2.8237916E 2	6 1.5301185E 29
1	0. E 0	1.000000E C	31	1.1911359E 2	29 3.8087787E 27
2	0. E 0	8.1279998E 3	32	2.8863401E 2	7 1.4662611E 30
3	1.0604999E4	2.6669999E 3	33	_1•1159642E_3	30 3.3586505E 28
4	2.6669998E 3	1.0582655E 7	34	2•4927482E 2	18 1.1918272c 31
5	_1.2155470E7_	2.0669248E 6	35	8.8666862E 3	0 2.5203990E 29
6	1.9842478E 6	5.3812798E 9	36	1.8312272E 2	9 8.2690103E 31
7	5.7867826E 9	7.3848267E 8	37,	6.0116510E 3	1 1.6189592E 30
8	6.9813629E B	1.4185322E 12	38	1+1509788E 3	10 4.9237662E 32
·	1.4578577E_12_	1•4892733E 11		3.4969718E_3	12 8.9468800E 30
10	1.3845528E 11	2.250/38/E 14	40	6.2208/73E 3	0 2.5281645E 33
	2+23233675 14	1.9011250E 13	41	1 + /534680E 3	4.2/20806E 31
12	1 • / 3 / / 4 / /E 13	2+304000VE 10	42	2.41000105 3	
	1.49500435 15	1.72545425 19	A 4	1.17546305 3	10//01105E 32
15	1.6157876E 18	1.0325552E 17	44	2.86801565 3	12 40 J4200 JUL J4
16		9.2613750E 19	<u>_</u>	4.13005705 3	
17	8.4565274F 19	4.8044187E 18	40	9.4238421F 3	
18	4.1663318E 18	3.7526604E 21	48	1.2715828E 3	13 4.3064273F 35
19	3.3541406E 21	1.7152617E 20	49	2.7044923E 3	5 5.5361431E 33
20	1.4606526E 20	1.1872184E 23	50	3.4168382E 3	13 1•1108824Ë 36
21	1.0340167E 23	4.8076334E 21	51	6.7966136E 3	5 1.3377926E 34
22	4.0188810E 21	2.9695877E 24	52	8.0476589E 3	3 2.5158220E 36
23	2.5282255E 24	1.0776320E 23	53	1.4986516E 3	6 2.8406250E 34
24	8.8399496E 22	5 .9875923E 25	54	1.6644285E 3	4 5.0105467E 36
25	4.9844347E 25	1.9612901E 24		2.9041869E_3	6 5 3082384E 34
26	1.5782256E 24	9.8675520E 26	56	3.0273547E 3	4 8.7879781E 36
	8.0328982E_26_	.2•9352298E_25		.4 • 9527977E3	6
28	2.3160797E 25	1.3446496E 28	58	4.8483197± 3	4 1.3588670E 37
29	1.0704736E 28	3.6509630E 26	59	7.4412214E 3	6 1.2694607E 35

.

•	2	45	•
---	---	----	---

						-240.				
1		A(1)	••	8(1)		1	A(1)		(1)	
6	o	6.8431865E	34	1.8540473E	37	95	3.1495223E	30	3.35005052	८ ೮
6	1	9.8572545E	36	1.62740698	35		8.6590204E	27	1.40020115	30
63	2	8.5184579E	34	2.2334847E	37	97	3.6460128E	29	3.8087787E	27
6	3	1.1519284E	37	1.8423945E	35	° ° 98	9.2243860E	26	1.5301185E	29
6	4	9.3559102E	34	2.3764012E	37	99	3.5662492£	28	3.6509630L	26
6	5	1 • 1879126E	37	[°] 1 •84 23945E	35	100	8.2717134E	25	1.34464965	28
6	6	9.0680360E	34	2.2334847E	37	101	2.9244518E	27	2.9352298	25
6	7	1.0810812E	37	1.6274069E	35	102	6+1915003E	24	9+86/5520E	20
	0	/ • / 330114E	34	1.00404736	31	103	1.97237400	20	5.0476027E	28
5	9 0	5-85142045	30	1.35846705	33	104	3.03004472	25	1.0776320E	23
7	1	6-1478059F	36	-1.05555570E	· 34	105	1.9363699E	22	2.9695876E	24
7	2	3.8923132E	34	8.78797815	36	103	5.0716775E	23	4.8076334E	21
7	3	3.8372757E	36	5-3082384E	34	108	7.8875237E	20	1.1872184E	23
7	4	2.2808837E	34	5.0105467E	36	109	1.84296826	22	1.71526175	20
7	5	2.1089420E	36	2.8406250E	34	110	2.5460916E	19	3.7626604E	21
70	6	1 • 1761962E	34	2.5158220E	36	111	5.2559589E	20	4.8044187E	18
7	7	1+0193352E	` 36`	1 .3377926E	34	112	6.3808686E	17	9•2613750E	19
71	8	5.3302675E	33_	1.1108824E	36	113	1.1497663E	19	_1.0325552E_	17
7	9 ~	4.3264091E	35	5+5361431E	33	114	1.2100256E	16	1.72545426	18
8	0	2.1193047E	33	4.3064273E	35	115	1.8740353E	17	1.6539787L	15
81	1	1.6095727E	35	2.00941496	33	116	1.6798228E	14	2.3540680E	16
87	2	7.3783200E	32	1.4627070E	- <u>35</u> 	117	2+1911950E	19		13
8.	٤	3.2440676E	34	0.38312565	32	118	1.74650125	12	2+250/38/E	14
8i	₩ 5, ··	1.4870310F	- 32 - 34 -	-4.3428050E	-42-	119	107455913E "1.0472044F	13		12
84	6	5.9464650F	31	1.1240201F	34	121	8.80005155	10	7.36482675	а. А.
	- 7	3.6728362E	33	-4.2726806E	-31-	í22	4.0346372E		"5.3812796t"	
8	8	1.3685930E	31	2.5281645E	33	123	2.5034397E	8	2.06692485	6
89	9 **	7.8655654E	32	8.9466800E	30	124	8.2676995L		1.05826555	7
90	0	2.7260025E	30	4.9237662E	32	125	3.2810397E	5	2.66699999E	3
9	1	1•4549131E	32	1.6189592E	30	126	0• E	0	8+12799985	3
9	2	4.6798030E	29	8.2690103E	31	127	1.2700000L	2	1.000000E	•
9:	3	2.3142385E	31	2.5203990E	29	128	1.0000000E	0	0. ಟ	0
94	4	6+8917156E	28	1 • 1918272E	31					
		N 5 256								
	o	0. E		0. E	0	20	8.5582713E	25	2.7934197E	29
:	1	0. E	Ó	1.0000000E	ō	21	2+6780949E	29	1.2310669E	28
	2	0. E	0	3.2639999E	4	22	1.1300992E	28	3.3533137E	31
	3	4.3052996E	4	1.0794999E	4	23	3.1748874E	31	1.3378949E	30
4	4	1.0794999E	4	1.7410174E	8	24	1.2176934E	30	3.3121260E	33
	5	2.0444153E		_3.4412297E	7_	25	_3.0986075E_	33_	_1.2053541E_	32
	5	3.3732213E	7	3.6709350E	11	26	1.0876437E	32	2•7308223E	35
	7	4.0709200E		_5.1413609E	10	27	2.5254559E	35	9.12257276	33
	ы о	5.0008099E	10	4.0806335E	14	28	8.1604264E	33	1.90254515	37
	×	4.3030000E	14	4.4095/3/E	13	29	1.7398229E	37	5.8658590E	35
1 1	1	4 4 2 3 4 3 4 8 4 E	17	2 4 7 5 7 6 9 7 5	17	- 30	5+2013671E	35	1.13181745	39
12	• · ·	2.3311063F	16	1.268121AF	20	31	2.44307395	.J7	.J. 2338096L	<u>.</u>
1 :	3 .	1.2925386F	20	9.3339884F	18	77	5.19111205	40	1.5447474	4¥ 70
14	4	8.8599968E	18	4.1312897E	22	34	1.34528545	30	2.5820480F	۵۶ ۵۶
1 5	5	4.1361077E	22	2.6137832E	21	35	2.2865804F	42	6.424A121F	40
10	5 "	2.4606318E	21	1.0039377E	25	36	5.5464196E	40	1.0057507E	 44
	7.	9.8939110E.	24	.5.+5581331E.	.23.		.8.8098960E_	43-	-2.3451527E	42
18	B	5•1890383E	23	1.8818911E	27	38	2.0062049E	42	3.4464487E	45
19	7	1+8282923E	2.7	9.2443776E	25		2.9873959E	45	7•5548100E.	43

i	•				211					
1								و هدی خده در		
		1	A(I)	B(I)		1	A(1)		8(1)	
1				·····	• · · · · · · · · · · · · · ·		and the state of t			
1		40	6.4038818E	43 1.0451134E	47	97	1.1450762E	72_	1.1821592E_	70
•		41	8.96490305	46 2.1592014E	45	98	7.3423172E	69	4.8908321E	72
		42	1.8133917E	45 2.8185290E	48	99	3.0255265E	72	3.0610394E	70
ì		43	2.3926429E	48 5.5008227E	46	100	1.8772780E	70	1.2254871E	73
1		44	4.57685628	46 6+7903902E	49	101	7.4834695E	72	7.42286882	70
		45	5.7046396E	49 1.2545209E	48	102	4.4943151E	70	2.8763616E	73
1		40	1.0339997E	48 1.4673802E	51	103	1.7336052E	73	1.00000105	71
1		47	1 . 2199000E	DI 200/112905	4 9 1		1.00/94835	73	0+320014UE	73
•		40	2.3488202F	52 4.7522167F	50	105	2.11853746	"7J"	1.3046992E	74
• .		50	3.8426127E	50 5.0169149E	53 1	107	7.6564898E	73	7.1726186E	71
1		51	4.0848537E	53 7.9468241E	51	08	4.1746880E	71	2.5233609E	74
4	•	52	6.3636675E	51 7.9888502E	54 1	109	1.46081588	74	1.34361052	72
	A ar en verlag englis va	53	6.4367710E	54 1.2058642E	53 1	110	7.7152997E	71	4.5/867965	74
I		54	9.5621262E	52 1.1559547E	56 1	111	2.61441466	74	2.3617285E	72
1		55	9+2161571E	55 1.6649046E	54 1	112	1.3376977E	72	7.79686676	74
		56	1.3072101E	54 1.5238335E	57 1	13_	4.3903036E	74	3.8964040E	72
1		57	1.2021255E	57 2.0967762E	55 1	114	2.17650688	72	1.2463365E	75
	مرية معوديني وحجوهم بو	20	1.62991 /55	55 1.8345002E	58	115	6.9194023E	-74	6+0351167E	72
÷.		59	1.05707755	50 2041429/3E	56 1	110	3+32402895	76	1.0702096	73
		61	1.05/0//25	50 200213703E	57 1	117 118	1 023 1529E	72	8.111000UE	75
		62	1.9401105E	57 2.0427494E	60 1	19	1.4221930E	75	1.19909576	73
1	••••••	63	1.56054796	60 2.4668118E	58	20	6 41 70356E	72	3.4908672E	75
		64	1.8597451E	58 1.8969402E	61 1	21	1.8553646E	75	1.5386743E	73
		65	1.4335203E	61 2.1973601E	59 1	22	8.1141027E	72	4.3417699E	75
		66	1•6394365E	59 1.6215523E	ó2 1	23	242,733383E	75	1.85489926	73
	N	67	1.2120897E	52 1.8033066E	60 1	24	9.6367806E	72 .	5.0732986E	75
		68	1.3313474E	60 1.2780935E	63 1	25	2.6164119E	75	2.1009426E	73
		69	9.44894592	62 1•3656242E	-61	26	1.0750917E	73	5+5699987E	75
4		70	9.9754578E	60 9.3028268E	63 1	27	2.8286896E	75	2.2359112E	73
		71	6.8016443E	63 9+5571711E	61 1	28	1.1266896E	73	5.7461170E	75
•		72	0 + 9000 492E	61 0+20143/9E	64 1	29	2.01280315	15	2023591125	73
		74	4.4246065F	62 3.9032204F	65 1	30	2.74000136	75	2.10094265	73
•.		75	2.7903256E	65 3.7144373E	63 1	32	1.02585085	73	5.07329866	75
-		76	2+6262232E	63 2.2557875E	66 1	33	2.4566545E	75	1+85489928	73
	a destruction and design taxas	77	1.5943400E	66 2.0679487E	64 1	34	8.9122109E	72	4.3417099E	75
÷		78	1 • 4459486E	64 1•2101476E	67 1	35	2.06825468	75	1.5386743E	73
		79	8+4552413E	66 1.0692791E	65 1	36	7.2726403E	72	3.4908073E	75
•		80	7.3930629E	64 6.0327392E	67 1	37	1.6355009E	75	1.1990957E	73
		81	4 • 1663832E	67 5•1404604E	65 1	38	5.5739216E	72	2003070716	75
		82	3+5139865E	65 2.7974760E	68 1	39	1.21460285	75	8.7776660E	<u>1è</u>
		80		68 202990366 <u>5</u>	66 1	40 .	4.0117590E	72	1.87062092	75
		55	5-1472784F	60 1.2070239E	64	41	0+4701444E	14	6+035110/E	76
•		55	6+4022087E	66 4.8507222E	60 L	42	2 • / 1 1 00 / 5E	12	1.2403305E	75
		87	3.2340074E	69 347239257E	67 1	44 44	1.71080706	72	7.79086575	74
-		88	2 • 4583727E	67 1.82366555	70 1	45	3.4079925E	74	2.30172656	72
í •-	···· ····	69	1.20069305	70 1.349970JE	φ υ 1	46	1.0240306E	72	4.57867762	74
		90	8.8064403L	67 6.3876106E	/0 1	47	1.9054070E	74.	1.34361605	76
•	•	91	4 • 1551 747E	70 4.5694607E	68 1	48	5.7206687E	71	2.5233669E	74
;		¥2_	2.9451602E	68 2.0897832E	<u>'71 1</u>	49	1.06336878	74	7.1726106E	71
•		93	1.3427190E	71 1.4451800E	69 1	50	2.9979303E	71	1.30469926	74
		94	9+201.7323E_	64_6.3403092E	.711	51	5.39581675	73	3.59169275_	7.1
		75	4.05486465	71 4.2733956E	69 1	52	1.4731552E	71	6•3268140Ë	73·
		70	2+00/2023E.	07 1.8275443E	.72	53	2.5669742E	73	1.068650186	7.1

ł

			<i>ph</i> 8			•
1	A(I)	u(I)	1	A(1)	D(1)	
· 0		E 0	55	4.3223409E 7.5	/. /DJ1411E /1	. 1
1	0. E 0	1.0000000E 0	56	6.9292090E 71	3.23/320/E /D	
. 2	0. E 0	1.30815998 5	57	2.72204106 75	0.00022196 /0	-
	1.7348496E 5	4.3434970E 4	58	4.003 Joule 73	2.001/0102 77	· • ·
4	4.34349966 4	2.02431718 9	59			
	3.3525056 <u>9</u>	2.424/00.5		2 · / VOO9296 / 5	1.10034906 /9	
7	2.72997196 13	3.4300-00E 12	62	1.0000000000000000000000000000000000000		
	3.30315742 12	1.1004200E 17		5.050/021E 00	0.09014106 /0	•
9	1.20612836 17	1. diabarat 10	64	10/10000C /0	3.1001/11C 0C	
10	1.1412060E 10	3.1100030E 20	65	Zeurlisder Be	4.3001/2/2 00	
	3.3220581E 20	2.7633505E 19	<u>, ió</u>	3.1.42.405 80	1.40023212 54	
12	201233316466 33	309380840E 23	67° 44			
13	4+35594638 22	H HO H ZOZE ZZ	69-	2:001049970E 82	0.4030005 D3	• •
15	8.4157004E 26	5+20000005 25	70	7.0056396E 83	2.04010000 07	
16	5.1339182E 25	0.3949020E 29	71	2.3023970E 67	3.21033/95 00	
17	6.5001557E 29	4.7932674E 28	72	2.7703395E -85	1.00007986 89	
18	4.03411592 20	6.1357405E 32	73	8./360353E 88	1.10/40000 07	
19	0.0162194c 32	3.4271609E 31	74	1.01610996 87	3.5445483E 40	
20	3.3000060E 31	4.310930dc 35	75. ",≟	3.10642995 90		
	1.50005015 30	2.2012524726 34		1.0465735 42	1.3.4.36765 92	
23	2.24591456 38	9.4106219E 36	78	1 1379649E 90	3.8170262E 93	
24	8.90000965 30	9.7961942E 40	79	3.2638987E 93	4.10301705 91	
25	9.6766392E 40	3.7420718E 39	80	3.4704420E 91	1.13497332 95	
26	3.5601143E 39	3.5824608E 43	81	9.6573148E 94	1.16457/6E 93	
27	3.51342166 43	1.2619236E 42	62	9.9/17369E 92	3.10101032 90	
28	1.19537676 42	1.11095995 40	63	5.0239704r 70	3.2250302C 74	
	1 .0002244E 40	3.001 1101F 44	84	20/02/4200 94	0+41014036 97	••••••
31	2.9057153E 48	9.1321.77E 46	ບບ ຍຕ່	0.9179596E 95 -		
32	8.5792714E 46	1.0144122E 50	87	1 . /64409/E 99	2.01007335 97	
33	6.7499365E 50	1.9966304E 49	68	1.6/40130E 97	4. 97699272100	
34	1.8679412E 49	1.4373917E 53	67	4.15184106100	4.64004255 90	
35	1.375103dE 53	3.8416175E 51	90	3.83347258 98	1.01143950E102	
-30	3.5/90068E 51	2.6010630E 55	91	9+25026806101	1.01132526100	
37	204/41902E 00	5.5484000E 53	<u></u>	8.315//986 99	2.3640631:103	
39	3.9566 /BZE 57	9.9400307E 55	93	1.7103914=101	4.760302405101	
40	9.190/324E 55	6.011474'1E 59		3.91233495104	4.0991107610c	
41	לכ בדפסברבסיב	1.3543104E 56		3.330000012102	9.09002972100	
42	1.24585978 58	1.7000773E 01	97	./ + 4400644E105	7.63010955105	
43	7.2623633E 61	1.0600429E 00	<u>98</u>	6.18945932103	1.00241065107	
44	1.5206252E 60	9.0419139E 63	ソソ	1.34442/0210/	1.35227135105	
45	0 4105497E 63	1+8402330E 62	100	1.0907969E105	C.8538739E108	
40 47	1 +0704730E 02	710400004E 00 1.485233455 44	101	2.5102/032108	<+	
4B	1.6822978E 64	9.1696444E 67	103	3.7/81896F100		
49	8+4473891E 67	1.6992352E 66	104	2.91898148107	7+343259061110	
50	1.53661302 66	800405427E 69	105	5+8845956E110	5.5839152E108	•••••
51	7.3694765E 69	1.42.03983E 60	106	4+4387761E108	1.0955904112	
52	1.20341536 68	6+4573559E 71	107	8.7J50392E111	8.13522552107	
	5.8885010 <u>2 71</u>	1.090/705E 70	108	6.4350903E1.09		مر به
54	9.8323764E 69	4.7636227E 73	109	1.2365722E113	1.130721/2111	
• • •	••••••					

I

R

I

I

1

i

I

1

l

Ţ

	ì	A(1)	<u>ع(1)</u>		A(1)	B(1)	
•	164	6.78553465 70	2.4753614F	73 206	LANHAISNAF S	1 0169148E	4.3
	155	1.14440405 73	/+4/20000L	70 207	9.76933196 3	2 4.72221076	ں ت
	100	2.9205530E 70	1.22040/1E	73 208	9.0760378E 4	9 2.80475/0c	్రం
	157	4 . /801238E 72	3.0610394E	70 209	5.3363991E	1 2.57112936	49
	158	1.1837613E 70	4.8900821E	72 210	4.7204331E 4	8 1.4673802E	51
	159	1.8694278E 72	1.1821592E	70 211	2.62856425 5	0 1.20452096	40
	160	4.4792754E 09	1+8275443E	72 212	2.2052125E 4	7 6. 1903902E	49
	161	6+8422739E 71	4+2733956E	69 213	1.1634454E 4	9 5.500822/E	46
	162	1.5858304E 69	6+3903092E	71 214	9.2396629E 4	5 2.01852896	40
	163	2.3424900E 71	1 •4451800E	69 215	4+6094732E 4	7 2015920146	40
	104	5.40-04041E 08	2008978325	11 210	344069901E 4	4 1.0451134 <u>C</u>	
	100	1.4909490E /U	4 • 30 9 400 /E	70 21H	1.1509280- 4		- 4 -3 - 41-5
·· • · •	167	2.2415 11F 70	1.4447055	70 210 68 210	5419914995 4	4 Co 1411 DC /C	40
	168	4.6932571E 67	1.82366558	70 220	3.301497856 4		44
	169	6.2569223E 69		6/ 221	1.40 YODYOL 4	J 0.42401215	40
	170	1.2655520E 67	4.00772275	69 222	6.7037220E 3	9 2.50294796	44
• • •	171	1.62934335 69	9.0840733E	66 223	3.41901076 4	1 1.54436365	39
	172	3.1823844E 66	1 .2078258E	69 224	1.99076135 3	8 5+80170535	40
	173	3.9550934E 68	2.2998386E	66 225	7.2276102E 3	9 3.23000965	37.
	174	7.4565080E 65	2.7974760E	68 226	3.9183633E 3	6 1.1318174E	لاق
	175	8.9417905E 67	5.1404604E	65 227	1+3610117E 3	8 5.00000990	55
	176	1.6264737E 65	6.0327392E	67 228	6.0449186E 3	4 1.9025451c	37
	177	1.6611370E 67	1.0692791E	00 E29	2.073/104E 3	6 9.1225727s	33
	178	3.277267E 64	1.21014/6E	67 230	9.6214038E 3	2 2.73002232	ن ت
	179	3+67892926 00	2.0679487E	64 231	2.10379216 3	4 1.2053541E	54
	180	6.2200022c 63	2 ວວ / ວ / ວ ຍັ	66 232	1+1771036E 3	1 3•3121260E	_33
•,	191	6+6614667E 60	3./1443/JE	63 233	3.0941432E 3	2 -1.33789496	30
*******	102	1.00821406 03	3.9032204E	<u>65</u> <u>234</u>	1.2020147E 2	9 3035331365	31
	103	1012001002 00	6.2614374E	64 235	1.000H760F 2	7 2.7034107m	20
News	104 185	1. 7569140- 64	012017317E	61 237	2.17448705 2	H U. 244377-F	2.7
	186	2.6506216F 61	9.302H266E	63 238	6486106158 2	A 1.84144116	27
	187	2.5374470E 63	1 • 3656242E	61 239	1.3183847E 2	6 5.5581JJIE	23
	168	3.6807840E 60	1 •2780935E	63 240	3.6909477E 2	2 1.00395772	29
	189	3.3863419E 62	1.8033066E	60 241	6+2515361E 2	3 2.61378526	21
	190	4.7195902E 59	1.6215523E	62 242	1.53151365 2	0 4.1312895E	22
	191	4.1697491E 61	2.1473601E	59 243	2+2009131E 2	1 9.3339884E	10
	192	5.5792351E 58	1.0969402E	61 244	4.7399160c 1	7 1.2681218E	20
	193	4.7298238E 60	2+46681185	58 245	5.9220562E 1	8 2+4307682E	10
	194	6.0706685E 57	2.0427494E	60 246	1.0466188E 1	5 2.7773698E	17
	195	4.9339511E 59	2.5470176E	57 247	1.0808106E 1	6 4.4095737E	13
	196	0.0690656E 56	2.0213703E	<u>59 248</u>	1.5502510E 1	<u>2 4.08063355</u>	14
	197	4 1245122E 58	2 • 41429/35	56 249	1+2/033//E 1	3 5.1413609E	10
	100	5.5042010E 55	1.00477001E	58 2 50	1 40550685	A 3+0104320E	. J _ <u>1</u> .
	200	401440007E 07	2009011025	55 251	6+0/06940E	9 3044122976	7
	201	3.32384065 56	1.664 90465	64 262	2.7004717E	5 10/4101/4E	<u></u>
	202	3.57604355 53	1.15595475	54 255 56 256	2010901176		4
	203	2.43127655 55	1+2058646	53 255	2.445000005	2 1.000000r	<u>-</u>
	204	2.4965158E 52	7+9888502E	54 25A	1 + 00000000		- v
••••••••	205	1.6179547E 54	7.9468241E	51	XX_Y_X_Y_X	¥===#.¥========.K_	¥.
							
	.				*******		
	• •	····	~~~~~~~~~				

				-250-		
	1	A(1)	8(1)	I	A(1)	P(I)
	224	7.3763683E147	8+6156003E150	281	2.25415000151	8.0403627E148
	225	4.84888846150	2.1581146E148	282	3.6275940E148	3.36000042101
	226	1.2097244E148	1+4004543E151.	283	1.5113194E151	5.35275905140
	227	7.8267621E150	3.4529331E148	284	2039412332145	202020145101
	228	1.92204266148	2.2055614E151	دىغ	9.01772902100	
	229	1022340145101	3+352/3962148	<00	1.0009012140	1.40045436151
	 "⊇31"	2095007032140	3.3635652E151	287	6+1730799E150	2+15611462146
	232	4.41278798148	4.475408781.1	200	3.70764055150	
	233	2.72252495151	1.17029982149	209		541 300254F150
	234	6.37721902148	7.1302784E151	291	2+2254666E150	7.66622685147
	235	3.0728723E151	1.65067825149	272	3.30905476147	2.96491376150
	236	0+9304260E148	9.90036448151	293	1.27335668150	4.3.65641c147
	-237 -	5.3365675ETST	2.20020926149	294	1.003400/E147	1.65530296150
	238	1.21186328149	1.33219456152	295	7.03706811149	2.39615566147
	239	7.1313067E151	2.9688163E149	296	1.0164058E147	8.90392072147
	240	1.5936464149	1.73720/20152	297	3.76604716149	1.27062366147
	241	9.2315079E151	3.8370950E149	290	5. JO922011140	4071090906149
	242	2.0309623E149	2.19572266152	. 299	1.9091/006149	6.60240012140
	243	1+1301430E152	4.7/434002149	JOO	2014013142140	2839344175149
· · · · · · · · · · · · · · · · · · ·	244	2.50839682149	2.0090000152	301	·9•91204/96140	/ 3030100100140
	240	1.00252345140	3 • 75 / 64 / 9E 149	202	100000402140	101/0//092149
	240		5.1955165E152		4.03103202140	1059077512140
	248	3.4832274E149	3.67469345152	304	- 000202004E145	
	249	1.89497228152	7.62438296149	.100	1.0.00004042148	7.49309712145
	250	3.9164310E149	4.09865566152	307	1.0418.725148	
	251	2.0975223E152	6.3723661E149	308	1.00233735145.	
	252	4.26794211149	4.43107346152	309	4.00700386147	1.49012065145
	-523-	2.20020000102	BIJIT294DET49	310	2. 12/19190E144	5.0030110E147
	254	4.50780166149	4.04331152152	511	1.97247796147	6.35718666144
	250	2.33405405102	9.19301596149	312	2.47641705144	c.0934263c147
	256	4.0147639-149	4 • 7162899E152	313	8.1717356E146	2.6177531E144
	257	2.35810916152	9.19361572149	314	1.0174470c144	8+4776020=146
	258	4.5785516-149	4.6433115E152	315	3.2760442E146	1.04281382144
	227	2.30341345152	E•9112940E149	316	4+0123891E143	3.3220549c146
	200-	4+4034323E149	4+4310734E152	317	1.2707663E146	4.01959916143
	262	4.10441972149		310	1.03090196143	1.25953756146
••••	263	2.0010862F152	7.624 34245149	319	4.1001111E140	1.49899885143
	264	3.70795176149	3.67469356152	320	1.73107725142	4.61986746145
	265	1.7796931E152	6.729b5d6E149	322	2+01725345143	1.44600155142
	266	3.24663106149	3.19331856152	323	6+0776281E144	1.84645246143
	267	1.53404246152	5.757647ve144	324	6.96506642141	362433396144
	268	2.7551244E149	4.6896600E152	325	2.06340902144	6.360000105141
	269	1.2815407E152	4 • 7743466E149	326	2+3253729E141	1.50024-902144
	270	2.26594976149	2.1957226E152	327	6.7759/13E143	2.0173702E141
	271	1.0375971E152	3+8370950E149	328	7.0001232E140	5.9074230E143
	272	1.8061326E149	1.737c0/5E152	324	2014406006143	0.50290295140
	21J 274	0+141520JE151	2.90001002149	330	2034215092140	1.00041386143
• • • • •	274	6.10000000149	1.3321945E152	331	0.5948951E142	1.9900000140
	276	1.044404HE124	C+CD020722149	332	7+0635481E139	5+5604162E142
	277	4+56209505151	1460067828100	<u></u>	1 . YDD1 (20E142	500000 (0E1 - y
	278	7.5763550E14H	7 1 302 / BAE 1-1	334	20050232139	1+01204002142
• • • • • • •	279	3.2577064E151	1 . 1 70 2 44 44 1 44			-1+5767500-100-1
	280	5.3257785E148	4.9764087E151	317		4.51356516141
			an the second state of the second second second second second second second second second second second second			-40.01276036136

· • ·

•			-251-		
1	A(1)	B(1)	1	A(1)	۲ (1)
110	8.9000162E110	2.11604446114	167	3.1153682E136	1.000-4975130
111	1.6705513E114	1.5002759E112	100	1.20000/06130	1090/34002109
112	1+1750207E112	2 • 7448485E115	169	1.31774196139	1.190039361300
113	2.1550340E119	1.90142416113	1 70	502232/32E130	ປະຊົວບບ/ບອະ1
· · · · · · · · · · · · · · · · · · ·	1+4817739E113	3.4006971E116	171	5+3800325E139	
115	2.0001901E116	2.30320335114	172	209340422107	3610/42936140
117	3.12906518117	4.02/9049611/	173	2012062006140	1.22069266136
118	2.0562647E115	4.56362635116	175	5+0715441+140	4.61290036141
119	3.5276772E118	2.75091246110	176	3.0302//dc138	4.51356526141
120	2•2090012E110	4.94840005119	177	2.7072014E141	1.67673002137
121	3.0052130213	3.1372374E117	178	1.0970834E139	1.61254000142
122	2.3950301E117	5.1379316E120	179	1+0537014E142	5.86620706139
123	3.93022192120	3.10806252118	180	3+0296345139	5.5664102E142
124	2+4221803E118	5.1106454E121	181	3.61332671142	1.9900806140
120	3+000/900E121	3 • 104 391 3E119	182	1+2917317E140	1.85691382143
127		4.0723431E122	183	1+1987076E143	6.55290292140
128	2.1791710F120	2.0900143E120 A.ASA225AE123	184	4+210/521E140	5+98732302143
129	3.3535413E123	2.5947336E121	186	1+3267579F141	1.000/3/020141
130	1.9409825E121	3.9063318E124	187	-1 • 1899919E144	6.360024902144
131	2.9253742E124	2+2291552E122	188	4.04140020141	5.0243337144
132	1.6568049E122	3.2876518E125	189	3.00400072144	1.00003202142
133	2.4490349E125	1.6383241E153	190	1.19032611142	1.63909104145
134	1.3607945E123	2.00092062126	191	1.03220791145	5.40700346142
135	1.96643566126	1.4556470E124	192	3.3403130E142	4.61900/40142
130	100/198106124	2.0622392E127	193	200711060E145	1.47679666140
138	8.1123506F124	1 • 10/0002E125	194	9+5394050c142+	1.29953/55146
139	1.12716766128		1.12 	1,00324009E145	4.01939912143
140	5.8997452E125	1 • 1025443E129	190	204000970E143 - 200027341F146 -	1.04281386184
141	8.0362451E128	5.6424472E126	198	6+4157457E143	B+4 //o024=140
142	4.12460041126	7.0990076E129	199	5+2049828E146	2+61/7531=144
143	5.5090704=129	3.04013456127	200	1.00030612144	2.01345036147
144	2.7733024L127	5+0386915E130	201	1.2/700021147	0.3271006-144
145	3.0325543E130	2.50201425128	202	J.6027087E144	5.0030110=147
140	1. 1930001F159	3.2140079E131	203	3.0322021E147	1.47012065145
147	203040112E131	1.00028026129	204	9.0232062E144	1.15/24556148
149	1.40720000129	1.09/3009/132	205	6+9683320E147	3.4025255145
150	6+6904260E129	1.16695308133	200	2.04018606145	2.5911552=140
151	0.2731773E132	2 • 4747475E130	203	4.46532925145	104935971E145
152	3.86012402130	6.6442903E133	209	3.3378490E148	1.59577510146
153	4.6040756E133	3.0594176E131	210	9.4615017c145	1.1707769-149
154	2.14517755131	3.6444617E134	.211	6+9587456E148	3.30168182146
155	2.5547746E134	1+6472662E132	212	1.9410270E146	2.39544792149
120	1.14658216132	1.9263194E135	213	1•4046918E149	6.60246618146
15/	1.34209902135	8.5476672E132	214	3.8557486E140	4.7134540E144
150	-20 YCD 142 (5132		215	2.74571926149_	1.+27062365147
160	2.9480842F133	4 4 E / J 7 / 47E L J J 4 4 H 20707 25 L 24	210	744170155E146	8.90372972147
. 161	3.3218902E13A	2.0625602F134		1. 191. 7. (40/9C) 49	203761006147
162	1+4139816E134	2+2835979E137	210 ·	1 - JOI 14912147	1+65830292120
163	1.5645391E137	9.5957557E134	220	2149431234619 <u>%</u>	
164 .	6.5408565E134	_1.0434740E138		LAG919751E160	
165	7+1076717E137	4+3068132E135	222	4035717096147	
166 .	2+9188753E135	4.6004286E138	223	249101949E150	

.

i

	I	A(I)	5(1)	1		D(1)	
	338	1.5767022E130	1.2204000£141	390	1.0-032402110	L.00/72002110	
	339	4.14360512140	1.2009208100	370	0.07003256114	4.02190494111	
	340	4.1421769E137	3.1074295E140	397	9.1131/cullo	eUuruuriii	
	341	1.06973246140	J.14020J7E13/		"==1/3210/clis"		
	342	1.05079976137	0.0300700E137	5.2	(.0012400E110	1.90142416113	
	343	2.00044282139	7.79603936136	400	4.19050276112	~~ · /4404036119	
	344	2.57350602136	1.75734066137	401	5.7700032114	1.0002/092112	
	345	0.41600900110	1.00 264776130	402	3.60000100111	C.110044441114	
	546	0.00392002135	4.0004200E130	403	4.04141020113	1.100/21/2111	
· • · ·	347	1.49001432130	4.30001322133	404	2.4072005E110	1.00091234113	
	348	1.30793702135	1.0434740E130	400	3.2035501c11z	0.10022004107	
-- -	349	3.33889176137	9.5457557E134	400	1. 1001 3476107	1.09009045112	
	350	3.0548987E134	2.2835979E137	407	2.20472076111	5.50371325100	
····	351	7.2177925E136	2.0620602E134	400	1.14013001100	7.34365905110	
	352	6.4857852E133	4.0207072E130	40ý ·	1.4024155E110	3.054077522107	
	353	1.5048506E136	4.2759749E133	410	7. 300 7002E100	4.07000/05107	~~~~
•	354	1.32789000133	9•0140070E135	411	9.3312742E106	2.27016002100	
• ••••	່ລວວໍ້	3.02220022135	0.54/00/2E102	416	4.47408306105	2.0000/072100	
	356	2.02112332132	1.92031946133	413	5. JODG/YZE10/	1.3522/136105	
• ••••••••	-137	5.002/25/E124	1.04 /20026132	414	C.01474346104	1.0024100010(
	いじな	4.98084132131	3.0444016E134	41:0	3.10000dc100	/+0301095E103	
• • • • • • •	`359 `	"1.0949547E134"	3.0594176E131	416	1.44007776103	9.0986296E105	
	360	9.1424003E130	6+6442903E133	417	1 • 7034151E105	4.0991167E102	
	~361 ^{~~}	1.9702781E133	5.4747475E130	418	7.6057831E101	4.7005651E104	
	362	1.6146220E130	1.1667530E133	419	8.7267926E103	2.0900248E101	
	"363 ``	3.41480336132	9.4366342E129	420	3.7963343E100	2.30440312105.	
	364	2 • /462000c129	1.9730897E132	421	4.24284526102	1.0113252E100	
	365	5.6991061E131	1.5662052E129	422	1 . 1974727E 99	1.11439906102	
	366	4.4969010E128	3+2146078E131	423	1.9558775E101	4.64004256 98	_
	367	9.15580432130	2.50201426126	424	8.0056990E 97	4+9/699272100	
	368	7.0874819E127	5.0308913E130	425	8.5408930E 99	2.01669335 97	
	369	1.4154096E130	3.84813456127	420	3.42000326 90	2.10460405 99	
	370	1.07477192127	1.5998574E129	427	305295304E 98	8.29507105 95	
/	3/1	2010021076129	5.69244/2E126	428	1.3/711138 95	8.41514035 97	
	3/2	1.00/04032120	1.1025443E129	429	1.3/89212E 97	3.22565022 94	
	3/3	3.0110684E128	8-0983093E125	430	5+2290814E 93	3.18101026 90	
	3/4 	2019030456125	1.5380075E128	431	5.08/4598E 95	1.10457765 93	
	373	4 • 1 4 V 2 0 2 4 E 1 2 7	1 • 10 / 0002E 125	432	1.87403886 92	101349/335 93	
		20903/122E124	2.0022392E127	433	1.1/1000065 94	4.10301/02 91	
•	378	3.83866806121	1040304706124	434	0.00110015 00	3.01/02026 93	
	370 ^{°°}	6.944H267e125	1.53.5.2.41.51.2.4			1.33939702 90	
•.	380	4.77534736122	AND COLVELLO	430			
	381	8.4656981E424	2+229199251cc	4.17	Delicol 1000 M7		
	382	5+70350236121	3.9063317E124	430	1940004F 64		
	383	9 9055479E123	2.5947338E121	440	LADYCYCOCE do		
	384	6+5375131E120	4 4542253E123	441	1.4133191E AA	3.2163579F 'AS	
	385	1.1120960E123	2.8980145E120	442	4.4601838E 84	2.64010HHE HT	
	386	7.1884325E119	4.8723431E122	443	3.60355635 86	8.163540nc by	
· • • • • • •	387	1 . 1974646E122	3.1043413E114	444	1.100405/8 83	0 40 3000 0 0 0	
	388	7.5790808E118	5.1106454E121	445	8.5700300E 84.	1.93009046 02	
	389 (1+2360781E121	3+18806255118	446	C.JOYUGIE BI	1.40023210 04	

394 6.67251115115 4.00002005110 401 7.69110226 79 1.71150976 77

......

447 1.9152137E 63 4.3001757E 60

450 1.0942/312 70 0.30215312 60

3.1001770c ud

مد*ار* معدلا بالمدين و م

448 5+4074E 79

949 30 Y/85107E 81

-252-

.

390 7.6585206E117 5.1379316E120 391 1.2226184E120 3.1372594E117

393 1.10021442119 2.90091242110

392 7.4142263E116 4.948460JE119

. ·

1	•			-2,3			
1	1	A (I)			AVIT		
ī	. .	~~~/		and the second second second second second second second second second second second second second second secon	•		<i></i>
1	452	2.0391926E	76 1+1803496E	79 483	1.7553453E	47 J. 6400778C	40
	453	1.3808679E	78 3.0594404E	75 484	2.0002941E		40
•	454	3•5255339E	74 2.031/014E	77 485	6.0770001E		
	455	2.2975971E	76 5.0682219E	7 <u>5</u> 486		42 30/420/105	بون
* -	456	5.6423564E	72 3.2373207E	15 407	1.001004054	JU 9.7701942C	40
	457	3+5347308E	74 /•/631411E	71 400 73 409	4.00403016	39 9.4100c175	<u>ుం</u>
	400 ~~~~~~~~~~	5+01564/15	10 401636227E	470	4. 66131 10E	שט בובט/בטבטב	oL
1	460	1.1353207E	09 0.407000	71 491	9.68090495	36 1.97924922	_ 34
	461	0.0400377E	70 1.4203903E	66 492	6.1180149E	32 4.31093585	35
I	462	1.41933046	67 0.0400427E	69 493	1.68313026	34 304271009C	-16
1	 	7.03035255	06 1.0974304E	00 494	1.14755485	31 4. 79326745	
	464	1+6262211E	65 9.1690-44E	67 495	1.54151455	27 0.39498285	29
I	465	8+5814191E	66 1.8523305E	64 497	2.0164531E	28 5.28686555	20
1	400	1070030716	63 9.5400003E	496	1.5494723E	24 0.14039636	20
•	468	1.61739228	61 9.0419139E	63 499	2.22104002	25 4.4074CUE	66
•	469	7.7565827E	02 1.6000424E	60 500	1.134015/6	21 5.900020E	23
	470	1.3941763E	59 7.7000712E	61 501	1.30907435	22 2010333036	
1	471	6.3549705E	60 1.3543104E	50 500	5.9790074E	14 14/1/00000	16
	472	1.08450635	57 6.0114741E	59 503	6.0753775C	14 1.1004207L	17
•	473	4.6880310	58 9.948530/E	55 504	1.725455/5	15 3.43005000	14
•	4/4	/•D//Y0225 ""#	54 4.182/903E	5/ 505	4.6892480E	10 -4247000E	1.5
	476	4.73224236	52 2.6010630E	55 507	2.03601100	11 2.0122005	<u> </u>
•	477	1.82555606	54 3.8416175E	51 508	503102444c	0 2002431/15	9
	478	2.6261057E	50 1.4373917E	53 509	202021 / 902	7 4034349906	4
•	479	9.5277872E	51 1.9966304E	49 510	0•/ E		5
•	480	1.2868906E	48 7.0144122E	50 511	5.1099990E		
	481	4.3759811E	49 9-1321977E	46 512	1.00000000	••••	-
•	402	3.52920UJE	45 3.0013101E	40			
•							
`		*** * *** * *******************		******			
•						و چو و به مناون کار و به مرمونه کوچ	
_							
T							
T.							
	· · · · · ·		، به نام وروه گرو و نام که و نام که و نام م				
1						نه که بدور مان ور من خاص مرد به مانور ور مقرق م	
ł		** *****************					
•			1				
		***			و هر به تو به به به به به به به به به به به به به		*********
-							
	a an an an an an an an an an an an an an			و هم و سال بود او ها او من و با و او می و و می و و و و و و و و و و و و و و		، کاری میں من اور سے کا ناری خاطری میں دو دو بار بار بار _{استیک}	
1							
1	ta itangkan pertakan pertakan	i ar ffe men ei den an en sek sin songek före binge som inderingen og					

•	•						
÷			وفيواب كالي الماكم المراجع المراجع المالي الم	مر ما دو در ان دان است. مر ما دو در ان دان است. مر ما دو در ان دان است.	بې بې بې بې بې بې بې بې بې وې		یک بخون کے عالیٰ کے عالیٰ کے عالیٰ
					t	,	
٠	••••						
:							
			و م م م م م م م م م م م م م م م م م م م				

Í.