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ABSTRACT

The plane strain problem of a step load, p, moving on the surface of a

half-space of granular material governed by internal friction and cohesion is

being considered because of its importance to Air Force research in pro-

tective construction. As a preliminary step towards a more complete solution,

in this paper it is assumed that in regions of slip the elastic deformations may

be neglected in favor of those resulting from slip. The latter assumption

limits the application to Mach numbers of less than about 0. Z0.

Two possible types of behavior of the material are considered. During

slip, one material exhibits dilatancy, while the other does not change in

volume. Because of neglect of the elastic deformations in the slip region,

only deg.nerate results are obtained for the case of dilatancy; while stresses

can be determined, deformations, velocities and accelerations vanish. For

the other material, all desired quantities are obtained.

A significant finding is that for values of p above a certain limit, granular

particles will be expelled at the surface ahead of the pressure front. The

applied pulse will be preceded by a precursor of expelled grains.
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1. INTRODUCTION

The present paper to the first stop toward the determination of the

effects of a pressure distribution p (x-V%) moving with a velocity V an the

surface of a half-space consisting of a granular material, (rig, 1), Became

of the complexity of the matter only the steady-state situation Is being

studied, 1. *.1 the effects of Initial (starting) conditions ane excluded.

The equivalent steady-state problem for an elastic halfespace has been

treated by Cale and Huth, [Jtsf. 1J,*for the case of a moving lise load

p (x-Vt) a & (i-Vt), * ere 4 is Dirsc's delta function. Using the principle

of superposition, the effect of an arbitrary load p (x-Vt) can be found by

Integration@. Considering the behavior of a granular material to be governed

by Internal friction of the Coulomb type and possibly cohesion, the elastic

solution can be applied up to a certain intensity of the loads p6 beyond this

critical Intensity, vhieh depends on the velocity V and the distribution of p,

internal slip must occur In the material requiring a different analysis which

is to be developed in this paper.

For a complete understanding of all possible situations, the elastic

properties of the material and the slipping effects must be taken into account

simultaneously. However, the problem becomes very Involved,, aad It appears

advantageous to treat at first the simple came of a step loea,(?ig. 2) ,for an

elastically extremely rigid material, such that the elastic deformations can be

assumed to vanish. In spite of the serious implications of this assmptiong

which limits the application of the theory to low Hach numbers$ the results

obtained permit a physical understanding of a peculiarity of the Coulomb type

material in dynamic situationsi When the pressure wave exceeds a certain

1.



intensity* a precursor occurs consisting of particle$ expelled from the

surface ahead of the applied pressure wave.

The equivalent of the dynamic problem treated here is the static one

of determining the limiting load p which may act on one half of the surface

of a half-space, (Fig. 3a). This problem ti a special ease of one treated

by Prandtl, (Ref. 21, who considers a load p of finite length 19 (Fig. 3b).

The present treateont for the limiting ease V + o overlaps Prandtl's problem for

In order to formulate equations of notion* the oyieldeooadition between

the stresses defining the occurrence of slip =uat be supplemented by a flow

rule defining the strain rates. Assuming the material to be isotropic, the

principal axes of the stress tensor and the strain-rate tensor must necessarily

coincide everywhere. However, this statement doe8 not suffice and further

relations ae required. In accordance with the theory of plastieitys Drukoer

and Prager, [Ref. 31. have fornulated such relations by postulating the

existence of a plastic potential. The condition

r a ea#
in toer of the Invariants J1 -no +U2 +e3 2 " ( *l " e *~' P ) +(*,-i)tl

Is the generalization of the Coulomb yield condition for a three-dimensinl state

of streess where o I I a a re the principal stresses end where a and e ae

appropriate constants oonnected with the values of the slip angle and cohesion,

(Raef. 31. The concept of the plastie potential then defines the plastic strain

rates A as derivatives of the yield function f with respect to the stresses

iJj
I i (1-2)
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vhere I is an arbitrary positive quantity vhiah may be a function of the

location. For the case of plane streainof interest here, the resulting

stress-strain rate relations are given in (Ref. h.i It is noted that the

use of the yield condition f as plastic potential requires that slip be

accompanied by a volume expansion.

As an alternative to the ideal isotropic material defined by (3), one

can define the behavior of a material In plane strain completely by supplementing

the Coulomb yield conditionoand the requirement that the axes of the stress

tensor and strain rate tensore agreeby the statement that the plastic

deformations are incompressible. This assumption has been utilized by

IshLaski ,[Ref. 5),to formulate equations of aotion for plane problems and

for problem of spherical symetry. The assumption of incompressibility which

appears not unreasonable - or physically Impossible - is incompatible with

the formulation by Drucker and Prager. To clarify the fundemental difference

betveen the two materials, one ca generalize the "assumed' incompressibility

in plane strain to a three dimensional statement. For an Isotropic material

any condition may be only In term of invarlantel the appropriate flow rule

defines the strain rates again as derivatives of a plastic potential, but

the function to be used Is t I F (J2)where 7 may be an arbitrary function.

As the result does not depend on the form of the function FO its choice only

affects the value of the arbitrary facor ts, one may, vithout loss of generality,

use f a J2 The combination of 1q. (1) and

of
0 i i(1-3)

defines the three-dimensional behavior of the material postulated in [5).

3



The difference in the formulations of (31 and [51 lies in the fact that

(31 assumed the function f in the yield condition to be the plastic potential.

It is conventional to use the yield function as plastic potential, but the use

of another function of the invariants vll not be ruled out here, in spite

of ertasin thermodynamic difficulties resulting from the use of different

functionsV) in the yield condition and In the flow rule.

Without attempting to decide on the physical applicability of the tvo

concepts, the folloving paper vill pursue both possibilities. It vll be seen

that the solutions of dynmical problems for the dilating material (Drucker-Prager)

become degenerate if the elastic deformations are ignored, such that the alternam

tive case of the "incompressible" material gives more Interesting results and

its analysis viii be emphasized.

A comment on steady-state solutions of the type considered here Is in

order. Due to the fact that the manner in vhich the loads at large distances from

the front have been applied at early times is not included in the statement of the

problem, there can be no uniqueness or existence theorems, and there may be more teM

one solution for a given case. In the elastic problem (•], there is no steady-state

solution if the velocity V equals that of Rayleigh waves; for other velocities

5) An elementary consequence of the tvo different assumptions May be of interests
In the non-dilating material, 1q. (3), in the case of plane strain the transverse
stress a3 is equal to the mean of the other tro principal stresses

aa + a2
3 2

For the dilating material, on the other hand, the absolute value of the trans-
verse stress is necessarily larger than the mean,

131 2
the excess depending on the state of stress and on the material constants.
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the solutions still contain arbitrary constants. The boriszotal stress

contains,* seg, an open constant, equivalent to the superposition of a unform

state of horisontal stress this indeterminacy sean not be removed, In sow

cases, solutions oa be excluded by additional general considerations of the

stsaring situation oue has in mind. This is best seen on the elementary example

of a half-space of an invisoid compressible fluid, loaded by a pressure pulse p

progressing with supersonic velocity V. There is an obvious solution, (Fig. he),
where the load produces a plane wave of intensity ps progressing with a front

inclined at an appropriate angle a, However, this is not the only steady-state

solutic| An alternative is a plane vave whose front Is inclined at an angle

of 180° a. Combinations of the two are also correct steadk-state solutions.

If one io interested in states generated by the application of pressures on the

surface only, one can reason that solutions innluwng the wave front shown In

(Fig. 4b) can not occur, such that a unique solution is obtained.

Similar simple consietrations do not exist in subsonic situationsa leaving

one even in the relatively simple elastic case with non-u-ique solutions. It Is$

therefore, to be expected that non-uniqueness may also occur in the case of

the material considered in this paper.



2. BEH)AVIOR OF MAT~ERIAL

It will be found convenient to formulate the equations describing the

behavior of the material In en unusual meanner6 using the mJajr principal

stress and its direotion as Independent variables..

In accordance with the usual conventions, positive stresses and positive

strain rates Indicate tension and elongation, respectively. The Inequalities

required to describe the material behavior will be on the quantities 4.0to

_a9eto. As the material to be considered requires that at least the major

principal stress 01 Is compression, It follows that the quantities at each

side of the inequalities are positive numbers.

Two types of material will be considered. Both are assumed to permit

no elastic deformations at alli Wn deformations which occur are caused by

slip. Whenever such slip occurs, the Coulomb condition between the stresses

must be satisfied.

CASE A. Incompressible Material.

This material agrees with the one a@ssued In (5) and to described by

the following assumptions a

1. The material is Incompressible$ I. s.0 in addition to mismuming that

the elastic deformations vanish, there is no volume cheapg during

slip.

2. The state of stress which may eist io any element is restricted,

such that at least one of the two principal stresses, (fig. 5),

must be compressivel let

spa *a (1



and the restriction requires

-.0 b 0 (2-2)

a, vill be referred to as the majore principal stress.

3. The permissible states of stress are further restrieted by the

condition t

we, ! k@ (2-3)

where k is a positive number, k t 1, which defines the angle of

interior friction and the variable a is deficed by

a a *(et # s) (2w.4)

-In this relation s t 0 is a material constant defining the amount

of cohesion. The requirement #I 10 leads to the condition 0 , -a;

if, on physical groundog one wishes to insure that as is also

compressive, 0 D 0 could be specified.

k.if

"02 8 ko (2-5)

the element vill be rigid, and all strains vanish. If, however,

002 a -ka (2-6)

the elements while incompressible, say deform but only in such

fashion that the principal axes of the strain rate tensor cl, gas

are parallel to a,& a,, respectively. In addition, the strain

rate 9t must be negative or vanisho

~ 0 (2-7)

Due to the assumed incompressibility

£~ 2*0 (2-8)
such that 1q. (M)e assures dissipation of energy during deformation.

S')eenote on pa Li. 7



The statements 1. to U. express the situation In a material with

C coefficient f of internal Coulomb friction and cohesion. The relation

betvwen k and f can be found in the following manneri Consider a

rectangular element, (Fig. 5)0 under the action of the principal stresses

01 and 02. If a plane making an arbitrary angle a vith the direction of

01 Is drawns the normal and tangential stresses, a and T * respectively,

o a * cog2 s * 0 in 2 a

( •a, .e 01si W coo a (2-9)

No slip can occur If for all values of a the direct pressure

multiplied by the friction coefficient -foa Ois larger then the excess of

the shear stress [- I over a valu• IJ vhich defines cohesion, or

a f

a

The condition of slip vill be reached if the largest value of

the above ratio as function of a Just reaches ft i.e., when

ma "T9j . f
a (2-10)

Substitution of a and 1 from SXq. (4) and (6) into Eqs. (9)1 2

gives after rearrangement

a l wo 1-:ý cog 2a a a coo2 a
2 2

ma -2,sin 2a* sin 2.a (2-11)

8



To find the angle a for which the maamlau of the fraction in

Eq. (10) occurs, Xqs. (11) are substituted, and differentiation vith

respect to a io performed. After cancellation of common factorso one

finds a condition for at

a L. co..o 2& + a co.2] co 2s.

"* [2 a "in 2" sin 2a" i'ts eta 2a.o (2-,2)

Noting from 1q. (11) that the expressions In parentheses mae

reopective3y, the numerator and denominator of Eq. (10)6 one obtains f is

terms of the aM re unknown angle as

f coo 2a

sin 2a (2-13)

Rearranging Sq. (12) to separate terms which contais an d those

which do not, Lives after simplification

2 . .1. [..os...,,.. Ii 6. (2-14)

This relation mout hold regardless of the value of @9 requiring

that the coefficient of a and the second tore each vanish Individually.

The vanishing of the coefficient of a gives a condition on go

eos 2s -. I - r r(2-15)
From Sq. (13)

cos 2a 24

The vanishing of the second term in Sq. (14) relates ftinay

9



J Jand en

cots a a
'52~ (2-17)

2 1 + cos 2a
vhere the identity cot a 1 - cos 2e vu used.

CASE B. Material vith Dilatancy

It in agin assumed that the elastic deformations of the material

vanish, but In accordance vith the assumptions In (31 there viii be an

Increase in volume associated vith slip.

Retaining •qs. (3) and (Me), the material vill remain rigild If the

Inequality (5) applies, and a sllp It Eq. (6) is satisfied. In this

cases the direction of the principal strain rates g and I coincide vitha a

those of the principal stresses 0,0 a@, respectively. The values of gle

£ required by the assumptions In (3) for the asse of plane strain can be

found conveniently from (Rot. 49, Sq. 61 by lotting the a, ywa-es coincide

vith the principal ones$ and noting that sin 4 in the reference has the
i-k

value k In the symbols employed here

vheres similarly to 3q. (1-2)& A denotes an arbitroa-y location dependents

pgott quantity.

10



3. SOLUTIONS IN REOIONS WITH. AND WITHOUT BLIP. EP, ICTIVIL.

As a preliminary to the construction of solutions satisfying the boundary

conditions an the surface, it it convenient to consider, respectively, solutions

in regions vhere either Eq. (2-5) or Eq. (2-6) io satiesfede ieo, regione

vithout slip, and vith slip, respectively.

In areas vhere Eq. (2-6) ti satisfied, the equations of motion In Cartesian

coordinates x, y vith respeot to the fixed origin 0. (Fig. 6) pare,

io " IT + in s

(3-1)

7X Lat Ix -W]

vhere u Yv are, respectivslyl the x and y components of the volocity, and 0 , e

and V are the stresses.

Consider an element, (i-. 5) in vhich the mAjor principal stress i

inclined at an anale I to the horizontal# In the condition of slp, Eua, (2I-)

and (2-6) give

a ke (3-2)

vhere k and are pouitive quantities, Expressing the stress components in term

of the principal stresses and of the angle $, one obtains after substitution of

(2)

ga ..[,4k. +U c 20 coal$

Go@ -@ - '-8] "(33)
2 . 1



From this point on, the tvo types of material described in Section 2

require separate treatment.

A. Region vith Slip in the Incompressible Material

As stated in Section 2, the principal strain rates ;, and tt are parsllel

to a, and o:! further, from 3q. (2-7), I1 0. Introducing a nev variable,

the positive quantity i. defined by

;e .; (3 -.I)

the condition (2-8), expressing incompressibility, requires

The components of the strain rate tensor, *x, ¢X / 3 can nov be

expressed, alternatively, In terms of ; and I. or in tons of a and. v. This

leads to the folloving relationst

&z " 4aoe 20 a (3-6a)

a, - + csan 21 -vJ (3-6b)

SW . sin 21 2 (3-60)

At this point, use Is made of dimensional oonsideratioms and of the fact

that only steady-state solutions are to be determined. Stresseso velocities,

strain rates, eta., can be expressed in the general forms

pnI n,2 0"1 f [t. L.&tJ (3-7)

vhere f means a function of the variables stated.

If the ratios R. and awe considered as parameters defining the

12



partioular phyricul. problemS the exponents n .am uniquely defined by thek

dimension of the expressed qGuantity. Thereforet

a, g*, g*. r *, p f(I)

Vu, vM ... "v f(c)

P1 (3-8)
0 - t-•

vhere

x-Vt (3-8)

and the functions f differ, of couure, for different quantities. the derivatives

of f I f(A.!i) I f(C) vith respect to x, y and t are

If I -d
I~x yd.

w7 y c (3-19)

L .V df

Applying theme relations to the dorivatives In 3to (1) and (6) giv•e

!F43 4± - . Lu Ait d( dc T (3-10)

13



and

duR- y-e' coo 28

- " a - Y; 2( 3 - l 1)

dy du
IT - 4I *-4 2ye $in 26

The term o being a function of C vhich might vanish idontieally, the

tvo situations e 0 and * 0 require separate consideration,

Case 1. 0 0
Ill tio ofdu dy

Eimination of Shand-d in Eqi. (11) furnishes the e3L'atiom

co 2 1 2 @is 96 a0 (3-12)

The variable C, defined by Eq. (8a).oan be expressed by the angle 0.

(Fig. 6). defining the position of the element vith respect to the moving fronto

C a sot 0 (3-13)

Substitution into Zq. (12) glies two possible values for the direotcsO

of the major principal wdis

To obtain the stresses, one rinds fraA the first two Ike. (11)

I-t d- • 0 (3-15).
dc dc 0

which permits elimination of all velocity ters frm qes. (10),

Changing the independent variable in the resulting diffrenttal equations

from C to 0, one obtains

di 2 do
do &out$ + Got2O =1#1..(1)



Zxcluding the points 0 1 v where A vanishes substitution of Eq*, (3)

furnishes a first order differential equation for the quantity 9j

d -k 2s0 01 1 (3-17)

Its solution is

0 e TI - (0 0o06 ) (-

The upper or lower signs are to be selected in the same manner as In

Eq. (lh),vhilo C is an arbitrary constant.

The accelerations a% and ay , and velocities u and v can be obtained from

Eqs. (1) and (10). The right hand sides or Eq*. (1) ar pa and pay, respectively$

and one recognises therefore that the right hand sides of qso. (10) are wa and

Pya. respectively. Substitution of Eqs. (3) and (11) into Eqs. (10)

givee therefore

% 1-k c 0 in 0 do 1-k c do

(3-19)
1-k 6102 do 1-k

vhich are the components of a radial acceleration

a & 1-k do

(P2 Q a (.20)

Eqs. (10) also furnish simple differential equations for a and v

(3.21)

15



For any vedge shaped region, 0 to O0l these equations define the

velocities in terms of those at one sides say 060 The fact that the accelera-

tion is purely radial suggests introduction of polar velocities ur and U01

One then finds tvo separate equations

dU aom

r dl

(3-22)

[L2uo ] (Vfn0 g -k di

(Viu02) 20 d0

The fact that the term (V sin 0 + u,) may vanish indicates tvo distinct

ranges of solutions. If the velocities u and v are small$ u t( 1 aUd T 4 Is

Eqs. (21) may be solved direotlyt

(3-23)v(0) -1-k (a(0) - *(0o)] T (0o)
2PV 0

Case 2. e - 0.

If the conditions (2) concerning the stresses are satisfied, but a , 0.

the region is on the verge of slip. In this cases Bqs. (11) give d" (? Os

and the right hand sides of Eqs. (10) vanish, leaving the equations of

statie equilibrium

' (7±. N0

(3-2•1)
di d

a d C

.16



Substitution of Eqs. (3) furnishes tvo non-linear simultaneous liffer-

ential equations for a and 0

k sin 20 - coo 20) - 1*k1 do + cor 20 sin 20 )(.,L-) + 1 . f w 0

(3-25)

20sin 2+ C coo 20)- ( + [coo 2- sin 20][(l.k).+ . 0.o

These equations can be separated, giving

4Us0

[6(1-k) # fJ 0 (3-26)

unless the determinant

sin 20 - con 20) - A (,cono 20" sin 20]

[2- .sin 20. C ooe 20)- C 2 [c s 20 - C . 2,1(

vanishes.

is
If the determinant does not vanish, the second •q. (26) gives o 0

because by definition the term ([(l-k) + a 0. One obtains therefore the obviofs,

yet important, solution:0)

a a coait. 0 ounst. (3-28)

Consider next the singular case rhen the determinant (27) vanishes.

Expanding and noting Eq. (13), one findsl

I - € (3-29)

0) Eqs. (28) describe a region of uniform stress* the stresses satisfying

the slip condition (2).

17



vhere the angle y is defined by

coo 2y - 1* (3-30)

Substitution of Eq. (29) Into Eq. (25) finally gives

do1-ku
do 0 (3-31)

and

o•Ce -(3 132)

Except for the value of the exponent, this reeult and 2q. (168) are similar.

The solution (32) satisfies static equilibrtia end is the one obtained in the

classical static problem [Ref. 2).

B. Material vith Dilatancy.

The components of the strain rate tensors o.. 90 iy and toW c be expressed

in terms of the principal strains, and therefore from 1q.(2-18) by the arbitrazy

function 1. Proceeding as in Section A., one finds that Eqeo (10) remain valid,

but in lieu of Eqs. (11) one finds

du 1-kZ ac o o 2 0 + k
22

dLv A v 1-k
dc 7' 7 cos 20 2 TE'k

dv* dC

Elimination of (AY) furnishes the relation

(- )@0co 20 - 2 sin 201 NI

and after substitution of Eq. (13) one finds

0 a 0J + Y' 18 (3-34)



where y has the value defined in Eq. (30). Proceeding by substitution of

Eq@. (3) into Eq*. (10), one obtains a set of two simultaneous non-homogeneous

do d6
linear equations in L and dG

sino20- 00 .28- d , @o., 26*si... ] [ ..-) ] uwV (l-)

[ sin 20 * co0 20) - 1 do + [oe 20 - sin 2 (l-k) + d] a wV 1 C . ")

(3-35)

Observing that the value I given by Eq. (34) is Just the one for which the

determinant (27) of the coefficients of the above equations vanishes, one must

conclude that these equations have solutions only if a determinant formed by the

dOcoefficients of it and by the right hand sides vanishes. Ignoring trivial factos,5

it is necessary that

du
(V -u + Cv) SO

cos 28 - C sin 21 d- (3-3)

for 0 + Y. The determinant vanishes if 0 u 0 or w (which are trivial roots)

or if A 0 0. The factor V - u + tv can ales vanish, giving a velocity distribution

u u V, v a 0, which in turn again leads to A a 0. One finds therefore that the

only possible motion occurs without slip. The velocities must be constant

u a constant V N constant (3-37)

while the stresses satisfy the equations of equilibrium, and are therefore the

stresses for the static problems treated in [2) and derived above in Eq. (32).

19



C. Regions without Slip.

In locations without slip, when the inequality (2-5) it satisfied, the

two materials considered may be treated jointly. If no slip occurs, the velocities

u and v in Equ. (1,10) are necessarily constants, such that their derivatives

vanish, and one is left vith the equation of equilibrium

dox 1

-T d. o (3-38)7 dc

In analogy with the solution in [2) for the static case, the construction

of solutions in the present problem will involve the matching of sectors with

and without slip, (Fig. 7). Prior to undertaking the matching of sectors,

solutions applicable to the sectors without slip must therefore be obtained. The

problem to be studied concerns the possible states of equilibrium in wedges of

arbitrary angles *,(Fig. 8a or b). loaded on the horisontal surface by a normal

load pi on the inclined face, matching with the solution in the region with

slip leads t o two conditionst

a.) The major principal stress must have the direction y required by the

solution in A or B above.

b.) The principal stresses at the boundary must satisfy the slip conditions

Eq. (2-6).

However, there is one addltional condition.

c.) Amon& the solutions of Eqs. (38) only those are acceptable vhich satisfy,

in addition, the inequality (2-3), which limits the possible state of stress in

the Coulomb material.
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Eqs. (38) can be satisfied by expressing the stresses in the usual manner

by an Airy stress-function F. In the absence of a compatibility equation,

there is no further condition on F(0)9 and It it left arbitrary. In these

circumstances, families of lolutions satisfying all requirements exist, at least

for certain ranges of 0.

The multitude of solutions can be restricted by noting that the assumption

of an elastically undeformable material vas introduced because in cae of slip$

for sufficiently large values of I and 0, there will be important situations

where the elastic deformations can be expected to be small versus the slp

deformations. However$ in regions without slip, the elastic deformations ought

not to be ignoredl because they are not small vwrsus the (non-existent) slip

deformations. Retaining the elastic deformations, the acceleration terms on the

right hand side of Eqs. (10) remain, and an additional condition expressing

elastic compatibility applies. The appropriate differential equations which

contain the velocity V as parameter, would be those of reference (11, to be

applied to a wedge, (Fig. 8a, b). in lieu of the half spaces. Howevers having

Ignored the elastic term required for wave propagation in the *lip region, the

analysis here is restricted to values

V 44 op (3-39)

For the present purpose, it suffices therefore to study the solutions of

the elastic problem for the Uniting case V 4 0, In this case, the acceleration

terms vanish aeain, such that the equations of equilibrium remain valid; hoWeveer

the compatioility equation has still to be satisfied. All stresses being functions

of * • the latter becomes

L' (a + )- a o (3.-e)
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The solution of Eqs. (38 and 40) subject to the boundary conditions a.) and

b.) above is routine, but contuins three parameters B0, k, and s. Having obtained

the solution, it remains to be determined for vhat range of the parameters

condition a.) above is satisfied. This complicates the presentation appreciably

and the entire matter is therefore relegated to Appendix Al only pertinent

conclusions are listed belovi

1. For the "incompressible" material, vhen at the inclined face of the wedge

y , it vas found that solutions satisfying all conditions (a. b, and a)

exist in the range

r 1 Ar (3-ta1)

provided the directions of the major principal stress is as shown in (Fig. 9a or b),

i. e., vhen 4 makes the angle ÷ B vith the horizontal side of the vedge. For

this orientation of the major principal stress, no solution exists for other

angles, just one solution exists for each combination of k and s. The value ofa

on the inclined face of the vedge is given in Eq. (A-35). For the vedge angles

w 3wB * •and 7, the solutions represent uniform states of stress, and are of the

type previously found, Eq. (28), for the special case e - 0.

2. For the "incompressible" material, similar solutions exist if the direction

of the major principal stress vith the horizontal is (1 ), (Fig. 1Oa, b)pbut

only if

or 3w(3-4a2)

For these tvo values of 0, a solution exists for any combination of

k and a. These solutions represent states of uniform stress, *Ad an of the

type previously found in Eq. (28).
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3. In part A of this section, under Case 2, a solution vithout slip with

a non-uniform state of stress, Eqs. (29 to 32)9 has been developed for the

"incompressible" material. In viev of our present reasoning, the compatibility

condition (40) should be satisfied in a region vithout slip. The solution

Eqs. (29 to 32) must, therefore, be chocked in this respect, Not unexpectedly,

one finds that compatibility is violated, such that this solution will not be

considered further.

4. In the case of the material with dilatancy when the angle y(g) satisfies

1-k
the equation cos 2y * k�' solutions also exist for ranges of vode angles 5.

The details are not presented, for reasons discussed in Section 5 where the

material vith dilatancy is discussed.

5. For completeness sake, the possibility of regions of no slip between two

regions vith slip has been considered, because this possibility vould permit

geometries different from (Fig. 7). Such regions exists provided s i. The

solutions are uniform states of stress, covered by Eq. (28), (The situation,

however, can not be utilised in the construction of scutionso)

6. It is of interest to know for what values of ps and up to vhat values of

po elastic solutions for the half space exist without slip, I. eg solutions where

the inequality (2-3) is satisfied everywhere. Eqs. (38@ 40) apply again with

appropriate boundary conditions at O s 0, is (Fig. 12), and ar considered in

Appendix A.

If there is no cohesion, s * 0, no solution satisfying 3q, (2-3) exists

for p 0 0.

However, if a 0 0, an unusual situation occurs, The solutions of the

differential equations for the stresses satisfying the boundary ocdition on the
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surface are not unique, as a state of uniform horisontal stress a a constant

can be added to any solution one may find. This arbitrary horizontal stress

enters the condition for slip, Eq. (2-3). and the value of p up to which no

slip occurs depends on the assumed intensity of the horizontal state of stress,

There is, however, a most "beneficial" state for which the load p become a

maximum. This "distinguished solution" defines the value of p above which solutions

without slip can not possibly exist. A plot of these critical values of p vi. k

is given in Appendix A,(rig. A.M).
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I. SOLUTIONS FOR THE "INCOMPRESSIBLE" MATERIAL.

a. Construction of Solutions.

In this aection, the solutions applying for the *incompressible" material,

Case A in Section 2, will be obtained. The available ingredients ares

le A solution in a region with slips treato4 under A, Case l0 in the

previous section. It was found that in such a region, the major principal

stress makes anagle # t with the position vector 0• Eq. (3-114), while @ is given

by Eq. (3-18). It will be seen that the case of the lower sign, (Fig. 13), viii

be used. In this case

1-k

where C is an open but positive constant. The equation indicates that 0 increases

with increasing values of .

2. Of solutions without slip obtained under As Case 2 in Section 39 only

the ones defined by Eq. (3-28)

a a coast. 1 0 const. (4-2)

representing a state of uniform stress can be considered. The other solution,

Zqs. (3-29 to 32) is not to be used, for reasons stated in Section 3 under C,

item 3. Solutions of the type of Eq. (2) will be used for 45° wedges as shohm sa

(Fig. Ika, b). In (Fi. lSa)O , the major principal stress is inclined at I * j ,

while in (Fig. lhb) the Inclination is I a 0.

3. Additional solutions without slip in wedge shaped regions are described

in Section 3 under C. item 1. Of interest are solutions for wedges a J 4 ILI

(ig. ii).
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Let us now consider the problem of a step load progressing with velocitiy

V4 (rig. 2), for material properties k and a. for various values of the load,

starting with small values or Re For sufficLently small values of this ratios

It has been shown in Appendix A that (elastic) solutions without slip exists

provided that p it less than a critical value pas given in (Fig. A-4). As

pointed out in Section 3 under C. item 6s the solutions are not even unique,

1. e., there are families of solutions if p c peo but there is just one if p a Pu

The critical value Ps vanishes if a a 0o If cohesion is present, assuming likely

values of ks the limit p5 is 2s to 3@6 i. e., at an uninterestingly i*oV 16e1 of

stress.

When constructing solutions with slip, it is clear that solution I. above

is insufficient to satisfy the condition at either the loaded or the free surfases

because the directions of the principal stresses at the surface cannot be at

ansles ± • to a surface. Transition regions without slip are necessary as Indieated

in (Fig. 7).

The solutions 1. 2 and 3 above can be combined, (Fg. ) to form a sonm

tinuous solution for the half spaces consisting of a non-slip wedge of angle

j oJ the loaded side, a non-slip wedge of angle I on the unloaded side,

and an interior wedge of angle (?- ") in which slip occurs.

Consider first the csue I a i, such that slip occurs in a 900 wedge. Under

the load, the state of stress, (Fig. lla), Is uniform, the major prineipal stress

bleing vertieall In this range

In the adjoining sector with slip, the major principal stress makes therefioe
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the angle with the position vectors obtaining the value of C in Eq. (1) by

matching the values of v at r, one finds

*(04~.!I *.pkJg~(L. 0.

As the direction of the major principal stress in the regios $ s I must

match the direction in the slip region, m Iust be horisontal, such that (Fig. lkb)

appliese and one finds that thi solution described requires a vertical pressure

at Of

PO a k(p *A .k W k A (4°5)

The surface at 0 Is, however, a free surfaces where the pressure should

vanishl, p 0 0. Solving 3q. (5) for the value p vPL for vhieh p 0 O, one

obtains

such that a steady state solution for the specifie value p u has been obtaised.

The subscript L has been selected becaus this value represents a liditing sitMuAics,

as vill be recognised, later.

One could now proceed to varY the angle S in (Fig. 16) and try to obtain

solutions for values p 0 p L* However, the presence of cohesion masks the true

state of affairs, and " a first step only the case a a 0 will be considered. Ia

this coes, ZEq. (1, h# 5) retain the exponential term on the right hand side enOM

and 1q. (6) gives P Ol t. e.@ only a trivial solution, for p e O0 has bees

determned.

If one uses different angles a in (Fig. 16) on the loaded sides, one agai

finds only trivial solutions p a 0, as is easily confirmaed. The rlation between
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p and a on the inclined face for the vedge, (Fig. 15)- it

* 2p (1-cos 26) - s(l-cos 20 + sin 20- 20 s 2c )
({k) (1-co' 20) + (1-k) (sin 20 - 26 coo 26) (4-T)

When s 0 0, the value of a at the Inclined face is therefore proportional

to pi matching of the solution (1) gives C, and the stress # at 0 r W. both

proportional to p. This is to be matched with the 450 wedge shown in (Fig. lhb).

If s a 0, and the stress at 0 a 0 vanishes, the stress a in this wedge necessarily

vanishes, and p must also vanish.

There is, therefore, for s a O, no solution for the bound"ar value problem

formulated, 1. a., for a finite value of p behind the moving front, and no

pressure ahead of the front. From a purely mathematical point of view, this is

connected vith the fact that the equations are hyperbolic, and 4aving prescribed

conditions on one side, one cannot simultaneously prescribe conditions on the

other. However, the physical problem must have a solution - there must be a

response - if a pressure wave is applied to the half-space. The mathematical

and physical concepts can be reconciled, by allowing for the possibility of

particles of the material being expelled from the unloaded surface ahead of the

pressure front. It is reasoned, that the non-existence of solutions of the problem

for certain applied loads in the formulation used so far indicates that the body

cannot exist under these loads, and will disintegrate. The process of disintegra..

tion has been studied for a simple equivalent situation in Appendix B on a moehamiobi

model exhibiting Coulomb properties. A mechanism is demonstrated vhich expelbi

particles on an unloaded surface, the momentum of the particles providing a

reactive pressure required to obtain a solution in the interior of the body.

In this revised situation, regardless of the value of sa Eqs. (1 1.) represeat
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a solution of the steady state problem for p! p L, but a reactive pressure

according to Eq. (5) is exerted by particle@ expelled from the surface ahead of

the pressure front p.

Continuing the discussion for a m 0, the limit pL w 0, and the solution

Eqs. (4, 5) applies for all values of p. However, it is not the only solution.

Varying the angle 0 of the non-slip region in (Fig. 16), other solutions can be

obtained. The value of 6 at 0 u I - 0 follovs from Eq. (T) for a a 0:

2g 1-cou 2e)
el, - ) (1+;) '(-coe 20) + (1-k) (sin 20 - 21 coo 2') (4•8)

In the adjoining slip region a is given by Eq. (1) vhere C is obtained by

matching values at 0 v • - 1. In the non-slip region, 0 ' 0 4 •. the value of a

in constant, and one finds

o(O) a O(W - 0) *- ri;; (R' a (4-9)

The required reactive pressure to be exerted by expelled particles at

0 becomes

p ks(O) a kW(e - ) "2  I - (4-10)

In addition to the solution for I w 1450 found first, there exists therefore

a vhole family of solutions for i ! 6 4 r. All these solutions are mathematically

unobjeotionable; this lack of uniqueness in steady-state problems vas discussed

in the introduction and is nothing unusual.

Comparing the poesible solutions for various angles 6. (Fig. 16), it is

seen that the one for 5 * 450 vhere slip occurs in a 900 WEge has distinctive
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properties, and it vill be called the "principal solution". Among all solutions

for a given value of the applied pressure p, it requires the smallest pressure p 0

exerted by the particles expelled on the free surface. To demonstrate this

consider (Fig. 17). It shove the values of o for the "principal solution" as

function of g plotted as Curve Il in the range 3 w 0 < the curve decays

exponentially as given by Eq. (4), while the remainder is horizontal. Curve II

in (Fig. 17) is the locus of the values 0(1 - B) according to Eq. (8), i. e.,

the value of o at the interface of the slip and non-slip regions. The end points
1 i

of the curve are unity and W respectively, and it has a minimum at A a s can

be found by differentiation of Eq. (8). One can easily demonstrate that between

and 3 Curve II is always above Curve I, and between and the slope of

Curve I Is always steeper (downward) than that of Curve II.

Curve III indicates the situation for an intermediate value of $. At the

interface 0 a (v - 0) the value of a is defined by point C, the value a then

decreases exponentially, I. e., the decay curve C-D is a portion C .D1 of the

curve A B displaced horizontally, such that the final value at the surface,

9(0). and p0 a ko(O) is necessarily larger than for the "principal solution".

In the general case, when cohesion does not vanish, the situation ts more

complicated. For low pressures, p 4 P., there are elastic colutions without

slip anywherel for p ! pL there is the "principal solution", requiring disintegra-

tion at the free surface If p b p while for p * pL no disintegration occurs#

(Fig. 18) shows a plot of p Sand pL versus k, indicating that everywhere pL b Pse

There is, therefore, a gap between the levels of pa and pL where neither the elantic

nor the "principal solution" applies. For such values of p solutions can be cona

structed by utilizing wedge angles A 3 P, (Fig. 16). If a t 0 the Curve IIS (71. IT)M

describing o at the inclined face is modified, but the general situation remains
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similar, such tha for any value p L PI ps I a value of S exists for which p

given by Eq. (10) viii vanish, In other words, in the range

PL ),P1

the Eqs. (8l go and 10) and the condition p 0 a 0 define a sprinoipal solution"

in which slip occurs in the range V' 0 4 v - So where X' * $ 4 !, (Fig. 16).

For this solution the pressure on the surface ahead of the wave vanishes such

that no disintegration occurs, (It would also be possible to find solutions io

this range where po b 0. requiring disintegration. Such solutions are not

oonsidered,because a uprincipal solution" vith p 0u 0 exists.)

The method of selecting the *principal solution" Is not very satisfactory

as Intuitive reasoning has to be employed. More definite conclusions showing

that theme solutions are the ones approached in transient cases after a long tfime,

vould require consideration of the starting conditions, which would pose a major

yet unsolved problem. As an alternative, one might study the stability of the

various solutions against perturbations. This might permit elimination of sons

excess solutions,, but such an approach might not be successful. Stability

considerations are unable to resolve thoe lz..k of uniqueness In the elastic rolutions

for p 4 p

An additional point Is worth discussing and Illustrates the Inherent

complexities of the type of problem considered. (Fig. 18) shows plots of p aand L

and also of the value of a static load p Pvhich can be supported by a half space

according to the classical analysis by Prandtl (2), It is seen that PP, b L

such that the present paper contains In the limit V -* 0, solutions where

steady-state notion occurs at pressure levels below P. (where equilibrium is

possible). It is outside the province of this paper to Investigate If this in.

dicates an Instability of the static solution (21 for the material considered
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here or not. It to important, howevere, to point out that the fact that the

limit V * 0 of the present solution does not give the static situation io not

due to a mathematical error. In the static case, when the load p a pp is

applied, slip must occur in some locations before the *tate of equilibrium

is reached. If the load to moved with a velocity V, hoveverasmall, slip has

to occur continuously, and a slipless solution at the level p a pp to therefore

not possible. The dynamic solution for V * 0 does not approach the static

solution.
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b. Discussion of Strains and Accelerations due Lo the uPrincipal 8olutioe."

In the preaeding subsection (a) solutions with slip have been obtained

covering the reage of pressures, p b p , where pi defines the limit up to which

elastic solutions without slip exist. If cohesion Is present, * i 0, then theog

is a narrow range p,,( p 6 Pi, where the "principal solution' " selected involves

slip but does not require surface disintegration ahead of the pressure pulse. For

larger pressures# p > pl. solations exist only with slip and surface disintegra-

tion, the "principal solution" being the one with the least reactive pressure due

to expelled particles.

It Is naturally of Interest to discuss the magnitude of accelerations and

strains associated vith the prin:ipal solutions. For these quantities, there

being only small, quantitative differences between the ra"os p 4 Pt and p > P t

only the latter will be considered.

A quantity of Interest is the total permanent strain produced at any point

due to the passing of the shock wave on the surface. This strain gives an indica-

tion of the deformation to which a target, say a cylindrical shell, (Fig. 19).

would be subjected if the presence of the target voul4 not affect thie force fields),

To obtain the total etrain, the strain rates at the target at depth y must be

obtained, and integrated with respect to time. Substituting Nq. (3-23) into Eq. (3-11)

and noting that the angle 0 in the solution employed is defined by Eq. (3-14) with

the lower sign, one finds

* 1-k dc 1112

This expression applies in the slip region - 0 C F. The value of @ is

1) or or not the target affects the free field substantially or not depends

on relative stifftess, but little io knowi about the matter at present.
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given by Eq. (4),
do .-2(p -k +sk 1-2

dT P *.k 1+k e-2 1+k (-..l3)

vhich permaits the doteristntion of the strain rates * xx. ty and 'x from

Eqs. (3-6).

To integrate the resulting expression vith respect to time, it is noteA

that

at a dO •-•
V sin2ol

Hance

-g - ý J 4t-s2A 0 r Co Got

6 Ji3 M wt Atft (1 - cot 2 o) •2 1-k do

vhere

A 1-k 1-k k.- 0-2 (1+k)A -- V7 T+T 1+k

The limits in the above integrals are those of the slip region 0 •

The nature of the integrals requires numerical integration. Another quantity of

interest is the acceleration history. The accelerations in the non-slip regions$

(Fig. 19), vanish; in the sUp region, Eq. (3-20) defines the radial

acceleration. Using Eq. (13)

1-' 1 ki.)k exp 1,k[o (2cot"1(5T

Examples The physigal meaning of these results Is best discussed for a

1typical cuseo We select k * and so achesiono 9 w 0. Using Eqs. (15) to coMpute
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the permanent strains, one finds the principal permanent strains

C 1,2 0-111

the direction being defined by 0 % 0.5. To interpret the result it vil be

compared with the magnitude of elastic strains which are of the order * Roting

the expression for the velocity of P-waves in an elastic medium d2 1*J. 1
p pt+4

Eq. (a) may be vritten

1'2 E 0 (b)

Due to the basic assumptions on which this paper ts based, V must be small

versus c , such that the term in parentheses is much larger than unity. The

permanent strain is, therefore, much larger than elastic strains at this stress

level.

Eq. (b) also permits an estimate of the range of applicability of the

present theory, which Ignores elastic straines It should be applicable as long

as the slip strains, Eq. (b), are appreciably larger than elastic ones, !I. This

condition is reasonably satisfied up to Nash numbers V c 0.2, and the theory

Op V
presented will therefore be applicable up to such values of -

ep

The value of the radial acceleration a, given by Eq. (17) is plotted in

(Fig. 20). The acceleration a vanishes if III . 1; its maximum value in the

range IyI 1 tis

max a % 0.2) -- (e)

Py

For comparison purposes one can express p in terms of the velocity of

elastic shear waves os and of the modulus of rigidity, 0g

max a % 0.2 (d)
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This value may be compared with the acceleration due to a step wave in

the elastic case, which can be obtained from the results in Ref. (1). Using

the curve in Fig. 5 of this paper, the effect of a stop wave can be found by

integration. It is seen that the acceleration given by Eq. (d) is of equal
V

magnitude as the elastic one for MT a 0.5 which corresponds to a a 0.25. As
T

the accelerations in the elastic case decrease with the fourth power of V, the

present solution gives again substantially larger values than (Ref. 1] provided

-- < 0.2.
cp

It is important to note that the accelerations do not depend on the velocity

V, but that the total strains are proportional to V2 . The independence of a Is

due to the fact that the accelerations are solely determined by the stress fields

by virtue of Eqs. (3-1), and the velocity V does not explicitly appear in these

equations. To find strain rates and strains, one and two integrations, respectively,

with respect to time are required. Because of Eq. (14), each such integration
1

introduces a factor V. explaining the fact that the strains are proportional to
-2

V.

The above comparison of effects permits an interesting prediction for the
V

range of larger Mach numbers, • • 0.2, for a material having combined elastic and

Coulomb-slip properties. While for low Mach numbers, the slip effects are much

larger than the elastic ones, this is not the case for larger values of L. For
p 

°
such values, the occurrence of slip will not change the order of magnitude of

acceleration and strains found by a purely elastic anasysis ignoring slip. One

can understand this conclusion by noting that for large values of V, the slip stage

lasts only a short time such that displacements due to slip have only little time

to develop, and will remain of the same magnitude as the elastic ones.

36



Another prediction for results at larger Mach nusbers concerns the dis.

integration of the surface aheed of the pressure vave. This effect vili occur

also at larger Mach numbers, but of course only for sub-seismic velocities.
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5. THE MATERIAL WITH DILATANCY.

For this material a solution has been obtained in section 3 under B,

where the direction of the major principal stress makes an angle ± y with the

radial, (Fig. 21) where

coo 2y = lwk(5)

This solution could be matched with regions of uniform stress it the

angles are selected am shown in (Fig. 22). One can then find a value p a pP

where the surface ahead is a free surface, the solution agreeing with the static

one found by Prandtl (2]. For larger values of the load, p > pp I one obtains

a solution requiring a pressure p0 ahead of the pressure front, p 0 being supplied

again by the disintegration of the surface.

One could further investigate if solutions exist for wedges without slip

at angles other than 90 -- r and-y, utilised in (Fig. 22). This Investigation

has not been made for reasons explained hereafter.

In Section 3 under C, it was concluded that in regions without slip the

equations of elLAtic compatibility should be satisfied, such that the solutions

found in this paper would apply for an actual elastic-Coulomb material in the limit

when X and 0 are large. The fact that elastic deformation in areas where slip

occurs ar neglected in the present paper is defensible as long as the slip deforma-

tions are large versus the elastio ones* This argumentf* unfortunately, does not

apply for the solutions found in Section 3 under 39 because it was found that the

solution requires A A 0, and according to ,•q (3-33) all strains and deformation

vanish. In these circumstances ignoring of the elastic deformations Is not
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Justified*) if one desires, as vo do, to obtain a solution vhioh applies to &

material having elastio-Coulamb properties.

In these circumstances, it vas decided not to pursue all the details

of the possible solutions, as vas done in Section 4 for the alternative material.

It vould be unreasonable to vaste etfort on a solution because all deforustions

vanish and one obtains in the end rather trivial results All accelerations and

the free field strains (corresponding to Sq. (4-15) for the other material) vanish,

the only non-vanishing results concern stresses.

For materials vith Dilatanoy an analysis including elastic deformations

is neaessary, and Is planned for the future. Incidentally, one can easily

understand that the coupling of slip and volume expansion 1an qs. (2-9) requires

that a meaningful analysis must retain the effects of elastic volume changes.

9) In oF"r ..to avoid misunderstandings, it should be stressed that the above
objection to Ignoring elastic effects only applies in the dynamie problem
studied here# The objection does not apply in a static case, treated by
Prandtl (2), and the above reasoning should not be misconstrued into an
objection to the latter solution.
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6. SUMMARY OF CONCLUSIONS

The possibility of steady-state solutions with slip has been investigated

when the half-space is loaded by a moving step load, (Fig. 2). Restricting the

study to low Mach numbers, the elastic deformations were neglected in the slip

regions. Tvo materials were considered4 both follow the Coulomb rule, defining

the stresses at slip, but have different flow rules.

One material is assumed to remain constant in volume during slip, while

the other, using the concepts of Drucker and Prager (23 exhibits Dilatancy. For

the latter material only unsatisfactory results are obtained, because elastic

deformations were neglected. For the other material, the results obtained are

expected to be valid up to Mach numbers "0- -. 2
op

A major finding of the present study Is the recognition that for pressures

p above a critical value, disintegration of the surface ahead of the pressure wave

must occur, producing a precursor of dust particles. The mechanism of the dis-

integration has been studied on a mechanical model, and it has been shown that

elements in a boundary layer near the free surface will be accelerated upward and

finally expelled,(Fig. 23). This manner of disintegration occurs for both types

of materials considered, and is expected to occur beyond the range I V 0.2 of the

present studybut only for subseismio velocities V.

Detailed results for the material vithout volume change during slip are

presented in Section 4., obtaining stresses, accelerations and permanent strains.

It is demonstrated (BSection h.b) that accelerations end permanent strains, In the

range V 0. are substantially larger than the corresponding quantities in an

elastic median when no slip occurs.
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The results can be utllsoed to study the equivalent probleu for a looking

mdi~m having Coulomb properties behind the looking front. Such an investigation

is under vay.

For the material vith Dilatancy only stresses can be obtained as the

ansa.1y.i degenerates and aooeleratlons and strains awe found to vanish. To obtain

meaningful results elastic effects must be retained.
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APPENDIX A

STATIC, ELASTIC SOLUTIONS FOR WEDGE SHAPED REGIONS AND FOR THE HALF-SPACE

WITHOUT SLIP.

As background for Section 3C, the elastic stresses are obtained for

wedge shaped regions,(Fig. A-1). Using for convenience polar coordinates

and stress components ar I a* and v , the folloving conditions on the

surfaces are to be satisfied.

On the surface 4- 0:

0(o). P, ,.o, (A-1)

while on the surface 0 P •, the direction of the major principal stress shall

be in a specified direction, defined by the angle 7(p), (rig. A-1). (Of interest

will be the angles 7(p) - ± •). Further, at 0 - • the two principal stresses

a and a2 are required to satisfy the slip condition, such that

- - (. + 8)

(A-2)
2- -kg

Having obtained solutionsfor these boundary conditions, it is to be Investigated

which of the solutions, if any, satisfy the Coulomb rule

- a 2> k#. - k(. 1 + s) (A-3)

everywhere.

The equations of equilibrium,(3-38) in polar coordinates for stresses which

are independent of r, become

-- + r - = 0
•,, (A-li)

+ 2r - 0
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while the compatibility equation (3-40) becomes

d2
-M (@ar + 6,]6 oA0

The general solution of the differential equations (4,5) may be written

r = A + B#*- C sin 24 - D coo 24

a A + Be + C sin 2# + D cos 2# (A-6)

B
r .-C cos 24 + D sin 2#

where A, B, C and D are arbitrary constants. Determining A and B from the

boundary conditions (1) gives the stresses in terms of C and D:

ar -p - D( + cos 2$) - C(24 + sin 2$)

-- p - D(l - co, 24) - C(2# - sin 2$) (A-7)

-D sin 2$ + C(l - coo 2#)

It is now convenient to express the or 0 o# and i in terms of principal stresses

al 0 02 and of the angle y - y($) which the direction of al makes with the radial,

(Fig. A-l). Further, the stresses a1 and a2 may be expressed by two other functions

of *, namely a q(4) a and

a1" ( +s)

92 rid(A-8)

Using the conventional expression for the stresses in terms of the principal

stresses, one finds

Or a a 1co 27 + a2 sin 27 - - ((1-i). + 8] co 27 - if

0 .1 sin 2 7 + a 2 coo2 7 - - ((l-1)0 + $I sin2 y - is (A-9)

.= (a 1 " a 2 )sin 7 cOs7 - - (1-i)0 + S) sin 7 cos 7
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Elimination of o from these equations gives tvo relations between or 0 #0

', i and y

or -qa

a rq
1 -2 tan 21 a 0

r + a l(-k) kI - • sin 2y +- sin 2y 0

a. SOLUTIONS FOR WEDGE SHAPED REGIO3WHIEN y($) . ±

Applying these relations at the boundary op , using the values

f~ e) k , T p) - _+(A - u.)

one substitutes the values of a r C* *and i for -Pfrom qs. (7) andi

obtains two simultaneous equations for the constants C and D:

C sin 20 + D cos 2p =0 (A-12)

(1 - cos 2p) ± 20 + + D sin 2+t ± k - + "

The upper and lower sign is to be used in this and subsequent equations a in

Eq. (11). The values of the constant C and D are

C a N cos 20

(A-13)
D a - N sin 2f

where

1-k k

+. ±P - l+ k 
(-k

1-cos 2 1-k (sin 20 - 20 coo 20)

It Is noted that the denominator of this expression may vanish for certain

combinations of A and k, if the lover sign applies. In such cuaes, no

solutions exist.



It is nov necessary to investigate if any of the solutions obtained satisfy

the Coulomb rule Eq. (3). It is easy to see that for the special values

A 1 and p - ,Eq. (3) is satisfied everywhere. In these cases C. a0

and the state of stress defined by Eqs. (7) is uniform, ax and a being

constant, while r vanishes. Having prescribed that the slip condition (2)

is satisfied at $ - 0, it is obvious that Eq. (3) is satisfied everywhere.

This gives the folloving simple solutions

(A-15)

a y a x )

The discussion of the solutions for other angles A becomes much more involved.

As a first step, the angle 7 can be determined from Eq. (10) by substitution

of Eqs. (7) and (13):

cot (2,) s 2 0-# ) (A-16)

The fact that the denominator vanishes for * - 0 and * w 21 - a (if 0 >

presents no difficulty. One can now determine the derivative 7' a d AsI As

will be seen shortly, the behavior of the quantity l+' Is of Interest, and

one finds

cos 20 [cos 25 - cos 2(B-$)] (A-17)

1 + cos 2 (20) - 2 cos (21t) cos 2(A-0)

Applying this equation for the boundary * a 0 one finds

,(p) coo 20 (A-18)+- cos4
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In the range 0 < 0 < a the right hand side has the sign of (- cos 23) and one

finds the inequalities

1+7,(p) < 0 (A-19)

< A < +,,+(A) > 0 (A-20)

diAs a next step, aa expression for the derivative i' l dT rill be obtained.

For this purpose, Eqs. (9) are substituted into Eqs. (4) giving after manipulations

(1+7l)[0(1-1) + s] sin 7 + 6' cos 7 + uki coo 7 - 0 (A-21)

+ s) cos y + o' sin y - 0 . (A-22)

Excluding locations vhere sin 2y w 0, one can eliminate o' and obtain a relation

S(l+4) [0(l-i) + a] (1÷7') coo 2y -El1"A
u sin 27 "c,+•j (A-23)

Applying this result to the determination of the sign of it at 0 w •0 one has,

in addition to Eqs. (19,20),the folloving Information

ip -k y (P) -_±

14 >o , 6(1-1) + S >o a•>o (A-94)
coo 2y - 1- _ 1-k

14• 1+k

Using Eqs. (19), (20), (23) and (24) one finds that i. < 0 provIdeds

7(p- (fand)

or (A-95)

70) 19,and 0<0<rs or ?.<A<g



For the complementary ranges of P one finds i' > 0. The important point is

that the material at the boundary s a A is Just at the verge of the slip,

i a k, such that the condition i' < 0 must be satisfied, otherwise the Coulomb

rule is violated at small distances from 0 a A. This restricts the ranges to

be studied further to those defined in Eq. (25).

In the geometries defined by Eq. (25), the Coulomb rule Is satisfied near

0 - p; to investigate other locations, Eq. (16) is used to obtain the rang of

7 $eC varies from 0 to P. 9quation (A-16) is simple enough to draw general,

qualitative conclusions. The three cases in Eq. (25) separate into a total of

four situations, listed in the following table depending on the prescribed value

of 7(P) - ± ' and on the wedge angle P. The function 7($) decreases in al

cases monotonically from y(O) to 7(p):

7(0) 7(0)

SS"

x (A-26)

4< <s S S

To proceed, a general expression for i($) is required, and may be obtained from

Eqs. (10). One could solve the second of these equations for i, but the result

would break down whenever sin 27 a 0, i.e., according to Eq. (26) on the surface

C a 0. To circumvent this difficulty, one forms the difference of the two equa-

tions (10) and finds the alternative relation

-r --.- - coo 27 +- coS 27 0(A-)

2 1A 2 14



Using Eqs. (7) and (13), one obtains

p+N sin 2(p-$) _ sin 20+24 coo 2]ip+) - coo 2y (A-28)

ain 2(0-) + sin 20 - 24 cos 2]
-o- I icos 2-y

This result can be used to check on the values of E(O). Taking the value of Y(O)

from Eq. (26), and considering values P permitted by Eq. (25) one finds:

If 0 < 0 < , or if. < 0 < ,*the value of the cosine is

coo (27(0)1 - + 1, and

i(0) - p-s-2N sin 20 (A-29)

If, however, < 0 < ! , or If < 0 < a , then coo 127(0)] u - 1, and

i(O) .P 2N sin 20 (A-30)

p-8

Before evaluating Eqs. (29,30) knowledge of the permissible range of I is required.

From the definition, Eq. (8), for the principal stresses it is. clear that I > k

is a sufficient condition for the satisfaction of the Coulomb rule If i 1s the

major stress. But there will be locations where a2 is the major stress, and in

such locations k must not exceed an upper limit, which can be easily computed.

If a a 0, the upper limit is simply 1 , but in general

k 1 +(l+k) (A-31)k<<E ak

Figure (A-2) gives the typical appearance of the plot of the four branches of i(O).

Regardless of the values of s, the value of 1(0) is always at the limit of slip

if -* or . , because the solution Eq. (15), (a constant state of stress) applies

there. For p < . or > ý (Fig. A-2) shows that the Coulomb rule Is always vio-

lated, and no solutions exist for such angles.
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In the range < < . the value k(O) has a maximum for To

verify that Eq. (31) is satisfied at this points Eqs. (13) are substituted in

Eqs. (7) and one finds for 6 - O *r -ae - - p , I a 0, a state of stress vhIoh

certainly satisfies the Coulomb rule and therefore Eq. (31). If a 0j, the

peak value of E at is unity.

We have nov arrived at the conclusion that in addition to Eqs. (15)

suitable solutions may exist only If y(O)m+ 4 and < 0 < 3. It is still not

known if the solutions in this range satisfy the Coulomb rule expressed by Eq. (31)

everywhere or not. To confirm that (31) is satisfied It is necessary to consider

the situations for A a separately. For simplicity, the argument will be deaon-

strated for a a 0 only.

For the case *< , the value of y ranges from to 1 (for 0 O), suchthato

with the exclusion of * - 0,

sin 2y > 0 and cos 27 < 0

In the above range for A the siag of 1 + y' given by Eq. (17) does not change,

and for * 1 0

1 +7 > 0•

The ratio
•>0

is therefore positive; this statement holds even In the li~it * a 0.

Equation (23) gives the sign of k' for a a 0:

sipgn~ sign [i)(os 2y (A-32)

It is known already from Fig. (A-2) that 1 > 1(0) > i(A) U k, and the above

equation indicates that, beginning at 0 a Op the value of iE is negative.
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As * increases this could only change if i became equal to unity, which is

impossible as i(O) < 1. The value of i will therefore, decrease smoothly from

* - 0 to * - , such that the Coulomb rule for < 0 <1 is satisfied everywhere.

For values ! < 0 < the proof is a little more complicated, because

k(#) increases from 4 w 0 to a maximum value, and subsequently decreases to

a~) k.

According to Eq. (26), y ranges from y(0) - x to 7(0) - . Equation (16)

yields easily the locations where 7y ' or ; , respectively:

Y(P - !)1- ý- and y(20- )- .

Using this knowledge one can show again that

1 + 71'
sin 2 0

for the entire range 0 < * < p , and the sign of il Is therefore again given by

Eq. (32). Substituting the appropriate values of y at * a 0 , a end noting that

in these locations k < 1 , one finds

i,(o)>o , i,(P)<o

indicating a maximum of k in the interior. To locate the maximm, examine the

value of i at * a - ! where7 y and corn 2y 0 , sin 2y -- 1.

In general, the value of i(O) is given by Eq. (28), but this equation

breaks down if coo 2y n 0. However, using Eq. (16) one finds

sin 2(-) co 2$ - co 2(-)(A-33)

cor 27 sin 2y

Substituting this expression in Eq. (28), one obtains a valid expression for

* - . Forming the combination o- n obtains (for a a

50- one
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(1 + cos 20) 1-
Sl+k > o . (A-34)

"" 0 -k
l+i 1 - cos 2p - xr cos 20

The inequality is easily proved, because in the range considered vs have

0 > coo 20 > - 1.

The above inequality implies i < 1, and !q. (32), with cos 2y - 0 gives

'1i#a - . < 0

Indicating that the maximum value of k occurs between 9 a 0 and 9 . - . In

this range the angle y is limited by <- << s or 0 < coo 27 < 1.

For the maximum value of f the derivative (32) must vanish. Approaching fram

* a 0, having started with i < 1, and noting the above inequality on coo 2y, It

is clear that the second factor in 9q. (32) will be the one to vanish when

k max. i ; or

coo 27 -M 0o
1 + max

In this equation coo 27> 0, such that max i < 1 completing the proof.

In the final stage, only the case a a 0 has been considered. However, the

values of i being a continuous function of as one reasons that the conclusions

mist also hold for small values of the ratio (small vs. unity), This region

suffices for the present purpose, as values of p comparable to a are not of
a)

interest anyway

5) It Is demonstrated In subsection b that elastic solutions exist up to same

value ; > 1, the critical ratio being a function of k. If solutions for

wedges without slip, satisfying the Coulomb rule everyvhere did exist for all

values of < A < , even for values where I is not small vs. unity, they
p

would ultimately lead to solutions (for the half-space) of the steady-state

problem with slip, for values p where elastic solutions also exist. In such

a case solutions with slip would not be expected to have physical significance,

even if they do exist.



Summaizing, it has been found that for 7(0) = s solutions eoset only

for vedges <_ D Vhile for sol) = - * moutions (11. 15) exist only

forz - orp-• .

For the ase the folloving expression for the value of the

stress parameter a on the Inclined face -0 can be obtainedi

ow .2(l - coos0 - s~ -P coo 21 21 coo 2P + sin 2p) (A-35)
(1 - oo - . ) + (-kL)to. 2- - 20 coo 20)
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b. SOLUTIONS WITHOUT SLIP FC THE HALF-SPACZ.

In order to determine up to vhat level of the load p, the elastic stresses

satisfy the Coulomb rule for a half-space, the left side of vhich Is loadedo

(Fig. A-3), the solution is obtained from Eq. (6). Surprisingly, the four

boundary conditions, *,(O) . O0 g,(x)- -- p,•(O) - •(x) - 0 permit the deter-

mination of only three of the four constants. The last oneD, remains open,

such that the stresses become, vith D - - D

gor
mn 2-$ sn2 +D(l+ cos 2$)

- - + sin 2$ D(l - coso 2) (A-36)
p

"" * ((l-coo 24)-sinO .
p

A restriction on the constant B follovs imediately by considering the stresses
t the free surface -O;e- 0and r u�M . Requiring one principal

stress to be compressive, the Coulomb rule gives

0 -a a X(A-37)

The free constant Is physically equivalent to an additional uniform horisontal

state of stress a s a 0. The lack of uniqueness of the solution

is a consequence of the lack of a prescribed state of stress at infinity.

To determine if slip occurs at any point, the value of

2
5 +5

is required. Using the usual expressions for the principal stresses one obtains

. - b -r .. (A-38)

p
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vhere

A a sin 2  .1+2f.-215 sin 4 coso (A-39)

If the value of V is given, one could find the mnlmum value of E for any

ratio I ; and the solution vould satisfy the Coulomb rule vhen k _< en i .

A .change of ff viU,, of course, effect min n j it is of interest to knov the

most beneficial value of V vhich raises mm £ to its highest value# because It

defines values 2 above vhich elastic solutions vithout aslp cannot exist*

To find extremal values of £ vith respect to 4 and It the somfehat slipler

expression 1 + £ Is formed,

l.E ÷V * (A-4o)

and differentiation vith respect to 0 and g ive; tvo equations2(D-0) + so [- - *--• &] a -2(,"- '0 -. "-", -
(A.lu)

Addition of these equations indicates that either

2(0) + 10.. 0 (A-42)
p

or

+ .o. (A-.3)

If Sq. (42) applies, the right hand side of (4l) must also vanish, Living

4 - a. FA', and according to Eq. (38), i a 0. This situation Is trivial.

The alternative, Bq. (43), becomes after substitution

4 Ds in2  0 (A-44)

yielding the conditions

.o, or,.o, or,., . (A-4s)
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The last two possibilities, w * 0 or x. lead again to trivial cases.

Thin leaves the root D - 0. Substitution of this value In either of

,qs. (41) gives a relation betveen! and *

z Sl - con )(

a 2(,in -cos -Aco))

It can be shown that the solution minimizes v with respect to 0 , and that

D - 0 gives the highest values of the minimum "a desired. Cmwuting min f

and equating it to the value k of the material to be considered, one finds

k.1nm , coo (A-47)

This is a parametric representation of P as function of k. It defines the

values of p sbove vhich no elastic solution without slip exist. Figure (A-4)

shove a plot of R versus k. It is noted that the location 6 at vhich the

minimum occurs varies with k; for small values of k the angle Is also quite

small; i Increases vith k, and reaches the value 4 .1 for k m1.

2

55



APPENDIX B

ON THE DISINTEGRATION OF BODIES OF MATERIALS GOVERNED BY THE COULOB RULE.

In the materials considered the premishible states of stress are limited

by the inequality (2-3)

- a 2 _ ka.

If one subjects a body to loads where this condition cannot be satisfied,

the body being unable to support the loads must disintegrate entirely or at

least in part. To establish the manner in which the disintegration occurs

requires a physical description of the behavior of the elements of the body

beyond the mathematical statements In Section I. In the following a sinqle

situation will be considered in which the material can be represented by a

mechanical model which has properties in agreement with relations Eq. (2-2 to

2-8) when the cohesion a vanishes. (An alternative model with cohesion can also

be formed).

Consider the plane structure covering a rectangular area, (Fig. Bl); the

structure is built of identical square elements and carries loa(.s P1 i in one

direction,and P2 in the other. Each element consists of four masses connected

by inextensible linkage bars under 45 degrees to the vertical, (Fig. B2). Let

the elements be small and of width 2a and height 2a. The hinges are assumed to

have friction, the friction moments being proportional to the load transferred

to the hinge by the bar. If the unit is to be In equilibrium under forces

P1 > P2 acting on the element, (Fig. B2), the forces must satisfy the inequality

P P2 > kP1

If however

P2 kPl (B-2)

the unit can be in steady motion or at rest. The coefficient k can be obtained

56



by equilibrium considerations from the friction in the hinges,, vhere by reason

of symmetry the forces In one link only need be considered.

The friction in a hinge may be defined by the maximm normal distance f

at which the resultant force 8 in the linkage bar vill bypass the center of the

hinge. This applies to the hinges at both ends of the link and due to the type

of linkage motion, the resultant must pass through the mid-point of the linkage,

(Fig. B-3). The resultant vllU therefore make an angle a vith the link,, uch that

f a sin .(-3)

Laterj, it vill be convenient to know the connection between a and k. Equilibrium

at the four hinges requires the folloving tvo relations between the coressive

resultant 8 and the forces P, and P2 - kPl , acting on the elsmnt in the limiting

state,

P1 28 cos (o - C)

2" k'l " 25 sin a)

or

k -tan(l - a)•(B4

The changes In vertical and horisontal "strain" (Fig. B-2), vill be of

equal magnitude in similarity vith Eq. (2-8). It is further assumed that the

angular motion of the links it restricted to a small angle, such that the

motion a cannot exceed a set value j . When this situation is reached, the

unit vill be deemed to become rigid,

The element described behaves like the material considered under A In

Section 2, provided the vertical axis of the element, (Fig. B-2)D is in the

direction of the major principal stress. The only difference lies in the

limitation on the strain resulting from the condition s <
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A number (2N) of such elements arranged in a horizontal line. (Fig. B-i4),

will be in incipient motion if each element to vertically loaded by the force

P, while horizontal forces kP are applied at the ends and transmitted from

element to element. The arrangement simulates a rectangular region of a Coulomb

material at the verge of slip. Let us determine the response of the model if

the forces kP on the sides are suddenly removed. The behavior of the model ought

to give an insight on what will happen in case of a granular material.

It has already been stated that the linkage bars are Inextensiblej for

simplicity it is further assumed that they are massless, while each of the four

masses at the hinges has one quarter of the total mas N of each unit. Also,

for simplicity, it is assumed that rotation of the mases Is prevented (e.g. or-

top and bottom by the stiffness of plates in a testing machine by means of which

the loads P are applied, while the other masses will not rotate by reason of

symnetry).

Consider the motion of the i-th elemento (Fig. B-5). It is acted on by

the external forces P on top and bottom; by as yet unknown horizontal forces

P -1 and P from the two adjoining elementsj In addition, at each end of each

linkage bar there will be friction momnnts acting on theme bars, fS6 and f ,

where 8L and % are the resultants transferred by the left and right linkae,

respectively. At the top and bottom hinges, the friction moments do not balance,

the difference being supplied by the external support preventing rotation.

Tht motion of the element is fully described by two generalizod coordinatesi

the horizontal displacement x, of the center 0j of the untj, and the relative

motions 41 , horizontal and vertical# respectively, of the mse points with

respect to the center 0* . For reasons of symmetry in the arrangement, (Fig. B-0)

no vertical motion of the center 0 need be considered. For small motlons, the
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rotation of the linkages is • To write Lagrange's equations, one obtains the

kinetic energ

2T M (kI + 41(B-5)

vhile the potential energy vanishes. The gmneralized forces Qx and Q4t due to the

physical forces shown In (Fig. B-5) are

QXI " Pi-l -",
(3-6)

Q a 2, - P1-f. - Pi - M (% +

Noting Eq. (3), the equations of motion become

W1 "ax " X, -" l - -P1
Y4 "1 ,. a I 2P -P1-.1 - P, -2 C2P+.. sin (OL + %,). (B-8)

The second equation still contains the resultants 5 L and % In the linkage

bars, which can be expressed in terms of 'I and 91 . Th forces acting on

the two lateral msses are shown in (Fig. B-6); their accelerations re

'1 2: , respectively, such that

+ (+" - ,.) m P].1 - 2 sin (+" a)

• *+ "') - 2 iln ( B - ?)%-I

or

"s - %)(89 + BL) a ,.' + (+ ,,-9)

Substitution into 3q. (8) gives

+ ,. ,2 P (?Ip) + (3')
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where the relation

sin a l-k

wan obtained from Eq. (14).

Eq. (10) was derived on the tacit understanding that £ b Oe indicating

that the element deforms in the manner shown in (Fig. B-5). An alternative

relation valid if tI c 0 could easily be derived, but 15 not required for the

present purpose. Further, it it possible that the external and Inertial forces

are such that the friction is sufficient to prevent any deformation of the unit,

such that 0 * 0. If, in this case the unit is not subject to acceleration,

x •a O0 the forces PL and PL-1 will be equal,

P uP
S I-1 (B-12)

and must satisfy the Coulomb-inequality

P P, D kP (B-13)k

Equivalent relations for 0 • 0 could be derived, but will not be required for

the present purpose.

The differential equations (7) and (10) and the relations (12. 13) permit

determination of the response of the group of elements shown in (Fig. B-4) when

the lateral loads kP are suddenly removed at a time t a 0. Considering xi, si

and P[ as functions of t, the forces PN and P-, must vanish for t ) 0:

P , IP -o aa- 0
U -N

Further, when adjoining elements are in contact, the geometric relation

xL÷" Xi 6 €1÷1 a €6
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must be satisfied. At t w 0, Eq. (15) will apply for all values 1.1I • 1 -No

but thereafter separation might occur if P1 i 06 or due to the limitation an

the motion of the linkages, € -• V. These possibilities, and the question

whether the strain rate It is positive, negative or zero, smut be carefully

considered.

To start, the simple case of two elements, 1 1 .* will be solved, (Fig. B-7),

where for reasons of symmetry only unit (1) need be studied. Subject to

later cheok, it Is assumed that i , O such that Es0. MT) and (10) apply.
1

1 Po

2k Po(0.16)

Eq. (15) becomes

and elimination of ;1 and g gives the simple relation

3+k

Po Is poeitiv a required. Further, using the Initial conditions

C 1 al a a "0, O n one finds

1 1 O, a' 1 O, 0* b Of 1 • 0

For sufficiently small values of t all conditions for the validity of

Eqs. (16) are therefore satisfied. The centroids 01 of the elements move avq

from each other, while the "strain rate" 11 is poeitive. However# at s4

Instant t * I, the strain S1 reaches the limit 10 and the elements freeze,

0 .
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At this instant, the centroids of both elements still have outward velocities,

S• 0, such that the elements will separate and fly apart.
1

The value of the pressure between the two elements prior to separation

is given by Eq. (18). It is noted that the value P0 , regardless of the exact

value of k, is always slightly larger than the value kP required to prevent

ilip under static conditions. This means that the solution for a larger number

of elements, N • 1, can be stated without further analysis. For t c t, the

outside elements N, -N, in Fig. (B-4) behave exactly as the element just

analyzed in the case N a 1. The interior elements, N-1 to -(M-l) do not move

or change shape, because the force, Eq. (18), exerted by the outside elements

does not produce slip. At t w r, the outside elements separate, and a new

situation arises. The elements (N-i) and -(N-l) begin to move, while no motion

occurs in the other elements, until separation occurs again, etc.

We find, therefore, that in case of a large number of elements, the dis-

integration of the model structure occurs in a layer of elements at the boundary.

The accelerations of the elements in the boundary layer produce a reactive pressure

which produces in the interior a state of stress satisfying the Coulomb-rulesZ

In the above derivations, linearity was asuomed, and enforced by permitting

only a finite small deformation j of the elements. If the restriction had been

dropped, the element, after experiencing large strains, could still not exceed a

certain finite strain where the linkage is fully extended; separation would

therefore occur, and is not just due to the assumption g ' 6.

Visualizing the mechanism of acceleration and subsequent separation in a

granular medium, one can see,(Fig. B-8), how a grain 3 might be expelled by
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appropriate wedge-like surfaces of two other grains, 1 and 2j if the latter

are pressed together.

In analogy to the modal, ve expect that on a free surface in a Coulomb-

type granular material, disintegration will occur if the problem has no

solution for which the pressure acting on the surface vanishes. The process

of disintegrstion and acceleration will occur in a thin boundary layer, and

will restore a pressure sufficient to satisfy the Coulomb Inequality below

the surface.

One might be tempted to critise the use of the mechanical model became

it cannot represent a Coulomb material if the principal stresses should change

direction during loading. However, this criticism is not pertinent beoause

the process of disintegration occurs in the Immediate vicinity of a surface

where such directions necessarily cannot change.

The model could be adapted to permit representation of a material

with dilatancy, or with cohesion. In the former case, linkages making angles

other than 900 would be used. A model for the second case is obtained by

specifying the friction in the hinges to be a constant plus fS. Such a modal

could also be given tensile strength by providing attraction between the

elements. The basic conclusions are not affected by the use of the

above modifications.
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LIST OF SYMBOLS.

A,B,C,D,B In Appendix A: arbitrary constants of differential

equation.

a, a , ay Acceleration in radial, x- and y- direction, respectively.

a In Appendix B: one half of height of elements.

c , c Velocities of compressive and shear waves, respectively,p s

in an elastic material.

c In Section 1: a constant in Eq. (I-i).

a Basis of natural logarithms.

6 Positive quantity, defining the principal strain rates.

E Young's modulus.

f, f1  In Section 1: yield function, plastic potential, respectively.

f In Section 3: any function.

f In Appendix B: distance shown in (Fig. B-3).

F In Section 1: an arbitrary function.

O Modulus of rigidity.

i,J Subscripts, i,J - 1,2,

1 J2 Invariants of strain deviator.

k Constant defining the stress at which slip occurs In

Coulomb material, Eq. (2-6).

k In Appendix A: a parameter expressing the principal

stresses in a non-slip elastic region, Eq. (A-8).

I Length of load in Fig. 3.

n, n2 , n3  Exponents in Eq. (3-7).

N In Appendix A: expression defined by Eq. (A-1i).

Other symbols which are locally used are defined where they occur.
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0 In Appendix B: centroids of elements.

P" P1 1 P2 Pi In Appendix B: forces acting on the elements.

p Intensity of applied step pressure.

PO Surface pressure at # a 0 (ahead of applied load).

PL Limiting value of p, Eq. (4-6).

pp Maximum static pressure according to ?randtl [Ref. 21.

ps Limiting value of p below which solutions without slip exist.

Q X, Q4 Generalized forces.

0 > 0 Parameter defining cohesion.

S In Appendix B: force in links.

t Time.

T Kinetic energy.

u, u* • ur , v Components of velocity, horizontal, tangential, radial

and vertical, respectively.

V Velocity of applied pressure pulse.

x, y Cartesian coordinates, (Fig. 1).

x, In Appendix B: displacement of i-th elements.

* Derivative with respect to t, &, respectively.

In Section 1: Coefficient in Drucker and Prager's

(Eq. 1-1), also inclination of pressure front, (7ig. •).

In Section 2: Angle defining position of slip plane,

(Fig. 5).

In Appendix B: angle between resultant force and link#

(Fig. B-3).

Opening angles of wedge shaped region@ in which no slip

occurs.

1-k7 Angle, cos 27 = •
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b Dirac's Delta Function.

A In Appendix A: expression defined by Eq. (A-39).

•, & Strain and strain rate, respectively, with appropriate

subscripts,-i&, I etc.

* In Appendix B: Deformation of element.

1 '2 Principal strain rates in direction of principal

stresses, oa , a2 , respectively.

Angle defining direction of major principal stress,

(Fig. 5).

X Location dependent quantity when deriving strain rates

from potential functions, Eqs. (1-2), (1-3), (2-9).

V Poisson's ratio.

X - Vt Non-dimensional variable.

y
= 3.1415...

P Mass density of material.

a Independent, necessarily positive variable, defining

the principal stresses, Eqg. (3-2).

a1 , 02 Major and minor principal stresses, respectively.

0x , 0 y , ar , a$ 0 *j Stress components.

I Shear stress.

4 Position angle of an element, (Fig. 6), measured

clockwise from horizontal.

Note re Numbering of Equations.

Throughout this report, equations are numbered by hyphenated numbers, such as
Eq. (2-7), (3-18), or (B-14). The first number, 2, 3, B, respectively, indicates
that the equation occurs in Section 2, 3, or in Appendix B.
When an equation is referred to, the full number, say (2-7), is quoted if the

reference occurs in a different section. However, if an equation is mentioned

in the section in which it originally appears, only the second half of the number

is quoted: In Section 2, Eq. (2-7) would therefore, be quoted simply as Eq. (7),
etc.
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