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TDR-63-2

ABSTRACT

The plane strain problem of a step load, p, moving on the surface of a
half-space of granular material governed by internal friction and cohesion is
being considered because of its importance to Air Force research in pro-
tective construction, As a preliminary step towards a more complete solution,
in this paper it is assumed that in regions of slip the elastic deformations may
be neglected in favor of those resulting from slip. The latter assumption

limits the application to Mach numbers of less than about 0, 20,

Two possible types of behavior of the material are considered, During
slip, one material exhibits dilatancy, while the other does not change in
volume, Because of neglect of the elastic deformations in the slip region,
only deg.nerate results are obtained for the case of dilatancy; while stresses
can be determined, deformations, velocities and accelerations vanish, For

the other material, all desired quantities are obtained,

A significant finding is that for values of p above a certain limit, granular
particles will be expelled at the surface ahead of the pressure front, The

applied pulse will be preceded by a preciirsor of expelled grains,
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1. INTRODUCTION

The present paper is the first step tovard the deternination of the
effects of a pressure distridution p (x-Vt) moving vith a veloaity V on the
surface of a half-space consisting of a granular material, (Fig. 1), Because
of the complexity of the matter only the steady-state situation is being

studied, 1. e., the effects of initial (starting) conditions are excluded,

The equivalent steady-state probles for an elastic halfespace has been
treated by Cole and Huth, {[Ref. 1), for the case of a moving line load
p (x=Vt) » § (x=Vt), vhere § is Dirac's delta function. Using the principle
of superposition, the effect of an arbitrary load p (x=-Vt) can be found by
integrations. Considering the behavior of a greanular materisl to be governed
by internal friction of the Coulomb type and possidly cohesion, the elastic
solution can be applied up to a certain intensity of the loads p; beyond this
critical intensity, vhich depends on the veloscity V and the distridutiom of p,
internal slip must occur in the material requiring a different analysis vhich

is to be developsd in this paper,

For s complete understanding of all possible situations, the elastie
properties of the material and the slipping effects must be taken iato acecouant
simultanecusly, However, the problem becomes very involved, and it appears
advantageous to treat at first the simple case of a step load,(Pig. 2) ,for an
elastically extremely rigid material, such that the elastic deformstions can de
sssumed to vanish. In spite of the serious implications of this assumption,
vhich limits the application of the theory to lov Mach numbers, the results
obtained permit a physical understanding of a peculiarity of the Coulomd type

material {n dynamic situations: When the pressure vave exceeds a certain



intensity, a precursor occurs,consisting of particles expelled from the

surface shead of the applied pressure vave,

The squivalent of the dynamic problem treated here is the static one
of determining the limiting load p vhich may act on one half of the surface
of a half-space, (Fig. 3a). This problem is a special case of one treated
by Prandtl, (Ref. 2], who considers a load p of rinite length 1, (PFig. 3b).

The present treatment for the limiting ease V + o overlaps Prandtl's problem for

lsm,

In order to formulate equations of motion, the “yield" condition betveen
the stresses defining the occurrenae of slip must be supplemented by & flov
rule defining the strain rates. Assuming the material to be isotropic, the
principal axes of the stress tensor and the strain-rate tensor must necessarily
coincide everyvhere. However, this statement does not suffice and further
relations are required. Ia accordance with the theory of plasticity, Drucker
and Prager, [Ref, 3], have formulated such relaticns by postulating the
cxhu;o; of a plut.i; potential, The conditiom

t-d‘olT"-c-o (11)

1 8 2 L |
in terms of the invariants Jl ~e, e, 0.,. Ja . 4 { “- .8’ 'y (.' ..’) .(.’..1) |
is the generalization of the Coulomd yield condition for a three-dimensional state

of stress, vhere c‘. aa, g_ are the ‘prtnctpd. stresses and vhers g and ¢ are

]
sppropriate constants connected vith the valuss of the slip angle and cohesion,
(Ref. 3). The concept of the plastie potentisl then defines the plastic straian
rates C“ es derivatives of the yield function £ vith respect to the stresses

4

by - xﬁu (1-2)



vhere ) is an arbitrary positive quantity vhich may be & function of the
location. For the case of plane strain,of interest here, the resulting
stress=strain rate relations are given in (Ref, 4], It is noted that the
use of the yield condition f as plastic potential requires that slip be

accompanied by a volume expansion,

As an alternative to the ideal isotropic material defined by {3}, one
oan define the behavior of a materisl in plane strain completely by supplementing
the Coulomb yield condition and the requirement that the axes of the strees
tensor and strain rate tensors agree,by the statement that the plastic
dsformations are incompressible. This assumption has been utilized dy
Ishlinski ,[Ref. 5],t0 formulate equations of motion for plane problems and
for problems of spherical symmetry, The assumption of incompressidility wvhich
sppears not unrsasonable « or physically impossible - is incompatible with
the formulation by Drucker and Prager. To clarify the fundamental d4ifference
betveen the tvo materials, one can generalise the "assumed” incompressivility
{n plane strain to a three dimensional statement, Por an isotropic materisl
any condition may be only in terms of invariants; the appropriste flow rule
dafines the strain rates again as derivatives of a plastic potential, dut
the function to be used {s '1 o7 “2)’ vhere 7 may be an arbitrary function.
As the result doces not dspend on the form of the function F, its choice only
affects the valus of the arbitrary factor ), one may, vithout loss of generality,

use £, ®* J ., The combination of Eq. (1) and

1° %
R A
¢." (1-3)
weowW, W,

defines the three-dimensicnal behavior of the material postulsted ia [3).



The difference in the formulations of [3} snd [5] lies {n the fact that
(3) assumed the function f in the yield condition to be the plastic poteantial.
It is conventional to use the yleld function as plastic potentiasl, but the use
of another function of the invariants vwill not be ruled out here, in spite
of certain thermodynamic difficulties resulting from the use of different

functions*) in the yield condition and in the flov rule.

Without attempting to decide on the physical applicability of the two
concepts, the folloving paper vill pursue both possibilities. It vill be seen
that the solutions of dynamical problems for the dilating material (Drucker-Prager)
become degenerate if the elastic deformations are ignored, such that the alteme~
tive case of the "incompressible” material gives more interesting results and

its analysis vill be emphasized.

A comment on steady-state solutions of the type considered here is in
order. Dus to the fact that the manner {n vhich the loads at large distances from
the front have been applied at early times is not included in the statement of the
problem, there can be no uniquenass or existence theorems, and there may be more than
one solution for a given case. In the elastic problem [1], there {s no steady-state
solution {f the velocity V equals that of Rayleigh vaves; for other velocities

%) An slementary consequence of the tvo different assunptions way bLe of interest.
In the non-dilating materisl, Eq. (3), in the case of plane strain the transverse

streos 63 is equal to the mean of the other tvo principal stresses

o, +0
1 2
3._.————

2

For the dilating material, on the other hand, the absolute value of the trans-
verse stress is necessarily larger than the mean,

9 * 9,

2

g | »

3

the excess depending on the state of stress and on the material constants,

4



the solutions still contain arbitrary constants. The horisortal strees .x
contains, e.g., sn open constant, equivelent to the superposition of s uniform
state of horizontal stress; this indeterminecy can not be removed, In some
cases, solutions can be excluded by sdditional general considsrations of the
starting situation one has in mind. This is best seen on the elementary example
of a half-space of an inviscid compressidle fluid, loaded by & pressure pulss p
progressing vith supersonic velocity V. There {s an obvious solution, (Pig. h),
vhere the load produces a plane wvave of intensity p, progressing vith a front
fnclined at an appropriate angle o, However, this {s unot the only steady~-state
solution} an alternative {s a plane vave vhose front is inglined at an angle

of 180° o, Combinations of the tvo are also correct steady-state solutions.
1f one is interested in stetes generated by the spplication of pressures on the
surface only, ons can reason that solutions incluiing the vave froat shown in

(rig. ) can mot occur, such that s unique solution is obtained.

Similar simple considerations do not exist in subsonic situstions, leaving
one even in the relatively sinple elastic case vwith non-unique solutions, It {s,
therefore, to be expected that non-uniqueness may also occur {n the case of

the material considered in this paper,



2, BEHAVIOR OF MATERIAL

It will be found convenient to formulate the equations describing the
behavior of the material in an unusual manner, using the major principal

stress and its direction as independent variadles.

In accordance with the usual conventions, positive stresses and positive
strain rates indicate tension and elongation, respectively. The inequalities
required to describe the material bshavior vill be on the quantities -0
=0,y 6tc. As the material to be considered requires that at lsast the major
principal stress ¢, is compression, it follovs that the quantities at each

side of the inequalities are positive numbders.

Tvo types of material vwill be considered. Both are assumed to permit
no elastic deformations at ally any deformations which ocour are caused by
slip. VWhenever such slip occurs, the Coulomb condition betveen the stiresses
sust be satisfied.

CASE A, Incompressible Materinl.

This material agrees vith the one assumed ia [5) and is described by
the folloving assumptions)

1. The material {s incompressible, {. ¢., in sddition to assuming that
the elastic deformations vanish, there is no volume change during
slip.

2. The state of stress vhich may exist in any element {e vestricted,
such that at least one of the two principal stresses, (Fig. 5),

must be compressivej let

0 > w0 (2-1)



and the restriction requires

.q, > 0y (2-2)
0, vill be referred to as the “major" principal stress.
3. The permissible states of stiress are further restricted by the
condition:
9, 2 ko (2-3)
vhere k is & positive number, k ¢ 1, vhich defines the angle of
interior friction and the varisble o i daritadvby

g e efa ¢s) (2-4)
In this relation s > 0 1s & materisl constant defining the amount
of cohesion. The requirement ¢, < 0 leads to the condition 0 2 -s;
if, on physical grounds, cne vishes to insure that 9, {s also
compressive, ¢ > 0 could be speaified.
b, If

-d, *» ko (2-5)
the element will be rigid, and all strains vanish. If, hovever,
.3, = ko (2-6)
the slement, vhile f{ncompressible, may deform but only {n such
fashion that the principal axea of the strain rate tensor E,. 3,.
are parsllel to o;, 930 vespectively. In addition, the strain

rate ;' nust be negative or venishi

¢ 20 (2-7)
Dus to the sssumed incgnpronltbility
§,¢¢, =0 (2-8)

such that Bq. (7)% assures dissipation of energy during deformation.

¥ Gee note on page 44.



The statements 1. to k. express the situstion in & material vith
s coefficient £ of internal Coulomdb friction and cohesion. The relation
betveen X and f can be found in the folloving manner: Consider a
rectangular element, (Fig. 5), under the action of the principal stresses
0, and 0,. If & plane making an arbitrary angle o vith the direction of
% is dravn, the normsl and tangential stresses, ou and t°. vespectively,

are!l

¢ ® 0 coslas ¢ 0 sinla
[ | 2

t » (0 «0 )sin @ cos & (2-9)
[ ) 2

No slip can occur if for all values of a the dirsct pressure
multiplied by the friction coefficient, «fo ,is larger than the excess of
e
the shear stress |t | over a value |t.| vhich defines cohesion, or
[

|*al - s
L

g
a

«f

The condition of elip vill be reached {f the largest value of

the sbove ratio as function of ¢ just reaches f, 1.e., vhen

.'I (2-10)

Bubstitution of o and '2 from Eqs. () and (6) $nto Eqe. (9)

gives after rearrangement

g --.L;—-l-ol.i-!ceu 20-000-20
a

ITal » 0 25 stn 20 ¢ § s10 20 (2e11)



To find the angle o for which the maximum of the fraction in
Eq. (10) occurs, kqe. (11) are substituted, and differentiation vith
respect to a is performed. After cancellation of common factors, one

finds e condition for ai

[c}—-;—5-0¢2‘—-;—5-col 20?.cosau] o8 2a +

* [u -1—:2'-5. sin 20 ¢ -;- sin 20 I'IIJ sin 26 » 0 (2-22)

Noting from Eq. (11) that the expressions in parentheses are,
vespectively, the numerator sand dencminator of Bq. (10), one obtains f ia

terus of the as yet unknowvn angle @)

- £O8 20
freom (2-13)

Rearranging Eq. (12) to separate terma vhich contain ¢ and those
vhich do not, gives after simplificstion

c[}—%—k- cos 20 ¢ L;—-k-]o cos @ [o cos a « 2|7, | ein c] .0

(2-14)

This relation must hold regardless of the value of ¢, requiring
that the coefficient of ¢ and the second ters each vanish individually.

The vanishing of the coefficient of ¢ gives a condition on &1

l~k
cos 20 & o o (2+18)
f ® e gos 2° ] L:-—k-
1. eoli'a 177 : (2-16)

The vanishing of the second term ia Eq. (1) relates finally



|Tsl and o1

Itg| = s cot o _ svk
@ T (2-17)
vhere the identity cotac . i : ﬁ:: :: vas used.

CASE B, Material vith Dilatancy
It 18 agsin assumed that the elastic deformations of the material

vanish, but in accordance vith the assumptions in {3] there vill be an

increase in volume associated vith slip.

Retaining Eqs. (3) and (4), the materisl vill remsin rigid if the
inequality (5) spplies, and may slip if Eq. (6) {s satisfied. In this
case, the direction of the principal strein rates 3. and ;z coincide with
those of the principal stresses 90 %0 respectively., The valuss of 3‘.
;a required by the sssumptions in [3) for the case of plane strain can be
found conveniently from [Ref. &, Eq. 6) by letting the x, y~sxes coincide
vith the principal ones, and noting that sin ¢ in the reference has the

valus i—:—% in the symbols employed heres

il-é[i-;—i--x]

i - % [%—-‘;—% . 1] (2-18)

vhere, similarly to Eq. (I-2), ) denotes an arbitrary, location dependent,

ggl;ttvo quantity.

10



3. SOLUTIONS IN REGIONS WITH, AND WITHOUT SLIP, RESPECTIVELY,

As a preliminary to the construction of solutions satisfying the boundary
conditions on the surface, it is convenient to consider, respectively, solutions
i regions vhere either Eq. (2-5) or Eq. (2-6) is satisfied, {.e., regions
vithout slip, and with #lip, respectively.

In areas vhere Eq. (2-6) 1is satisfied, the equations of motion &n Cartesian

coordinates x, y vith respect to the fixed origin 0, (Fig. 6),are:

o, It [ W ]

— e B Pl Ul § P

'} 3] ot x

, , 9 . - (3-1)
4 0. 4 v 14

x ¥y 3% t} 3 124

vhere u, v are, respectively, the x and y components of the velocity, and 0.. i'

and t are the stresses.

Consider an element, (Fig. 5), in vhich the major principal stress is
inclined at an angle 0 to the horiszontal, In the condition of slip, Eqs, (2-b)
and (2-6) give

0y =0 =3

o, "~ ke (3=2)

vhere X and s are positive quantities. Expressing the stress components in terme
of the principal stresses and of the angle ¢, one obtains after substitution of
(2)

0’0 -0 BB - L;‘ cos ﬂ] -8 oin2e (33}

T e -c[l'i.k-] sin 20 « z. sin 20

1

c‘- -d[l-%-k- + &cu 20] -s cosle



From this point on, the tvo types of material described in Bection 2

require separate treatment,

A. Region with S1ip in the Incompressible Material
As stated in Section 2, the principsl strain rates ¢, snd ¢, are parellel
to ¢, and 0,{ further, from Kq. (2-7), ¢, < O. Introducing s nev varisble,

the positive quantity ‘, defined by

o8¢ (3-4)
the condition (2-8), expressing incompressibvility, requires
¢, = o (3-5)

The components of the strain rste tensor, 5!!. o €, can nov be

[ J
H
b2 4
expressed, alternatively, in terms of ¢ and 0, or in terms of u and v. This

leads to the following relations:

;xx “og cos 20 ® %3 (3<6s)
&n-oico- 20-{-} ' (3-6v)

iv--: sin 20-%[%’30%3 (3-60)

At this point, use is made of dimensional considerations and of the fast
that only steady-state solutions are to be determined, Stresses, velocities,

strain rates, etc., ocan be expressed in the general form:

n ] n X=Vi, g.

ply’ .’ f[—;!&'-‘eg (3"1)
vhere £ means a function of the variables stated,

If the ratios Emd ;%! are considered as parsseters defining the

12



particular physical problem, the exponents nk are uniquely defined by the

dimension of the expressed quantity. Thereforet

Oy ys 0p0 Teeo =P £(¢)

Vu, V¥ see = z f(()

v e - L #(0) (3-8)
] = 2(¢)
vhere
t = 5;_!*.. (3-8a)

and the functioas f 4iffer, of course, for different quantities. The derivatives

of £ 8 r(l-v—t-) 8 £(g) vith respect to x, y and ¢t are

%=
[ ]
< -
als

=
| B

<t

&8

(3-9)
Tz

Applying these relations to the derivatives in Eqs. (1) and (6) gives

TR T « Y (3-10)

13



and
f:-“f--yi cos 0
CEp = vécon (3-11)
dav

-R- ‘%‘é-.a‘.ina

The term : being s function of { vhich might vanish identically, the

tvo situations e ¥ 0 and em0 require separate consideration,

Cucl.;to

Elimination of %‘é and -:-; in Egs. (11) furnishes the relatiom;

((-%) cos 20 ¢ 2sin R0 e 0 (3-12)

The varisble {, defined by Eq. (8a),can be expressed by the angle ¢,

(rig. 6), defining the position of the element with vespect to the moving fromt:

{=oot ¢ (3-13)

Substitution into Eq. (12) gives tvo possible values for the direction
of the major principal axis

RY R (3-14)

To obtain the stresses, one rinds froa the first two lgs. (11)

dv
%‘ Cggeo (3-13),

vhich permits elimination of all velocity terms from Eqe. (10),

Changing the independent varisble im the resulting 4differential equations
from { to ¢, one obtains

4o d a
E,,—x-mmcu'o m"’oj‘-;-“lf:%-o (3-16)

%




Excluding the points § = 0, ¥ vhere %% vanishes, substitution of Iqs. (3)

furnishes a first order differential equation for the gquantity ¢:
a p
a%.t?r-*-':.n-o (0990, 7) (3-17)

Its solution s

’H‘ gvo, )
o= -:F ( 0, " (3-18)

The upper or lover signs are to be selected in the same manner as in

Eq. (14),vhile C is an arbitrary constant,

The accelerations a, and & end veloecities u and v can be obtained from
Eqs. (1) and (10). The right hand sides of Eqs. (1) are " and u,. respectively,
and one recognizes therefore that the right hand sides of Eqs. (10) are .yl: and
”'y' respectively, Substitution of Eqs. (3) and (1k) into Eqs. (10)

gives therefore

l-k 40 l=k 4
- cos & sin @ | cos ¢
*x © Zpy ©° & 2 Tﬁx I |

(3=19)
2 do 1-k (-]
L . — eind == 0 sin d
%y a "ﬁ?‘ [ )
vhich are the components of s radial acceleration
. w1k %
20 /xi’ *y'c’ (3~20)

Eqs. (10) also furnish simple differential equations for w and v

oV %(1 - vcot g) = ot g3

(3-21)
pv%(l-%w%cot ) -%'-L %%

15



For any vedge shaped region, Oo to dl. these equations define the
velocities in terms of those at one side, say Ué. The fact that the accelera~
tion is purely radial suggests introduction of polar velocities u, and “ﬁ'

One then finds tvo separate equations
a
u ® w -i

r aJ
(3-22)

Py 1-k dt
[“2’“4 (Vlin‘#%)'.-éo—-a—a-

The fact that the term (V sin ¢ ¢ “G) may vanish indicates tvo distinct

ranges of solutions, If the velocities u and v are small, % << 1 and % <« l,

Eqs, (21) may be solved directly!

uld) = 57 rcow & 9 e uldy)
J

o

(3-23)
vid) = 257 [9(9) = 9(d )] ¢ v(g,)

Case 2, & = 0,

If the oonditions (2) concerning the stresses are satisfied, dut ) 0,
dy v
the region is on the verge of slip, In this case, Eqs. (11) give a"a” o,

and the right hand sides of Eqs, (10) vanish, leaving the equations of
statio equilibrium

dﬂx qt 0
w® - tw
(3-2k)
d 4
—‘w(-—ol .o
ag a¢

16



Substitution of Eqs. (3) furnishes tvo non-linear simultansous differe

sntial equations for g and @

[355¢ s1n 20 = cos 20) - 255 $2 ¢ [ con 20 + stn 20 J{e(1-k) ¢ 8] %‘% v o

(3-25)

[%'ﬂnin 20 + { cos 20) - (%5]%0 [cu 20 - { sin 20][I(1-k) . l] %%' 0

These equations can be separated, giving

do ,
r‘- (¢]

[e(1-x) ¢ 8]} %- 0 (3-26)

unless the determinant

[_1_;_15“ sin 20 « cos 20) - -1-2-,5] [( cos 20 ¢ sin 20]

[l'ai(un 20 + § cos 20) - ¢ L}“] [°°' 20 - L oin 2.]

(3-27)

vanishes.

If the determinant does not vanish, the second Eq. (26) gives %% .0,
because by definition the term [o(1-k) ¢+ 8] » 0. One obtains therefore the cbvious,

yet important, solution:w)
¢ = gonst. ¢ = const. (3-28)

Consider next the singular case vhen the determinant (27) vanishes,

Expanding and noting Eq. (13), one finds:

..G:y “-29)

'; Eqs., (28) describe a region of uniform stress, the stresses satisfying
the slip condition (2),

17



vhere the angle v is defined by
cos 2y = 3% (3-30)

Substitution of Eq. (29) into Eq. (25) finally gives

_t'l_o_ l-k S o
w'mItRO (3-31)
and
lak
3 d
g ® Ce A - o (3~32)

Except for the value of the exponent, this result end Eq. (18) are similar,
The solution (32) satisfies static equilibrium and is the one obtained in the

classical static provlem {Ref, 2].

B. Material vith Dilatancy.

The components of the strain rate tensor, 5”‘. ;W and 3" can be expressed

in terms of the principal strains, and therefore from Eq.(2-18) by the srbitrary
function A, FProceeding as in Bection A., one finds that Eqs. (10) remain velid,

but in lieu of Eqs. (11) one finds

du A Ay 1-k
-&----e-lcoo 20051- STy

A X -
(:—z--zxcm 20-51 %—;{'
%‘é" g%%-- Ay sin 20 (3-33)

Elimination of {Ay) furnishes the relation

(-:--t) sos ao-zunzn-i-;-'i‘-(;o%)-o

and after substitution of kq. (13) one finds

0ogey 18 (3-34)



vhere y has the value defined in Eq. (30), Proceeding by substitution of

Eqs. (3) into Eqs. (10), one obtains a set of two simultaneous non-homogeneous

do L]
linear equations in a and a

y

€ sin 20 - cos 20)--1%"-]%%0 [z cos 20 + sin 20] [a(l-k)+-]%%--.vu1-§¢¢§)

|5
do aé

[%-‘-‘-(.u 20 + { cos 20) - c-l-g-‘i] & [m 20 = § ain 20][0(1-1:) + -] v

(3-35)

Observing that the value # given by Eq. (34) is just the one for which the
determinant (27) of the coefficieants of the above equations vanishes, one must
conclude that these equations have solutions only {f a determinant formed by the
coefficients of -g% and by the right hand sides vanishes. Ignoring trivial factors,

it is necessary that

€ cos 20 ¢ sin 20 -:—‘;'-
(Veuselv o0
cos 20 - { sin 20 %{' (3-36)

for 8 = § + y. The determinant vanishes if J = O or v (vhich are trivial roots)
or if A = 0, The factor V = u + {v can also vanish, giving a velocity distribution
ueV, ve 0, vhich in turn again leads to A # 0, One finds therefore that the

only possible motion occurs without slip., The velocities must be constant
u = constant v = gonstant (3-37)

vhile the stresses satisfy the equations of equilibrium, and are therefore the

stresses for the static problems treated {n (2] and derived sbove in Eq., (32),
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C. Regions without Slip,

In locations without slip, vhen the inequality (2-5) s satisfied, the
tvo materials considered may be treated jointly. If no slip ocours, the velocities
u and v in Equ. (1,10) are necessarily constants, such that their derivatives

vanish, and one is left vith the equation of equilibrium

doy dr
b A
drv do
—_— b A

In snalogy with the solution in [2]) for the static case, the construction
of solutions in the present problem will involve the matching of sectors vith
and vithout slip, (Fig. 7). Prior to undertaking the matching of sectors,
solutions applicable to the sectors vithout slip must therefore be obtained, The
problem to be studied concerns the possible states of equilibrium in vedges of

arbitrary angles §,(Pig. 8a or b), loaded on the horizontal surface by a normal

load p; on the inclined face, matching vith the solution i{n the region with

8lip leads *o two conditions:

a.) The major principal stress must have the direction y required by the

solution in A or B ahove.

b.) The principal stresses at the boundary must satisfy the slip conditions

Eq. (2’6) .
Hovever, there is one add‘tional condition,

6.) Among the solutions of Eqs. (38) only those are scceptable which sstisty,
in sddition, the fnequality (2-3), vhich limits the possidle state of stress in

the Coulomb material,
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Eqs. (38) can be satisfied by expressing the stresses in the usual manner
by an Alry stress-function F. In the abseace of a compatibility equation,
there is no further condition on P(f), and it is left arbitrary. In these
eircumstances, families of solutions satisfying all requirements exist, at least

for certain ranges of 8.

The multitude of solutions can be restricted by noting that the assumption
of an elastically undeformable material was introduced because, in case of slip,
for sufficiently large values of E and G, there vill be {mportant situations
vhere the elastic deformations can be expected to be small versus the slip
deformations. Hovever, in regions without slip, the slastic deformations ought
not to be ignored because they are not small versus the (non-existent) slip
deformations. Retaining the elastic dsformatiocns, the acceleration terms on the
right hand side of Eqs. (10) remain, and an additional condition expressing
elastic compatibility applies. The appropriate differential equations vhich
contain the velocity V as parameter, vould be those of reference (1], to be
spplied to a vedge, (Fig. 8a, b), in lleu of the half space. However, having
ignored the elastic terms required for vave propagation in the slip region, the

analysis here is restricted to values
Vedy ¢a (3+39)

For the present purpose, it suffices thersfore to study the solutions of
the elastic problem for the limiting case V #+ 0. In this case, the acceleratiom
terms vanish sgain, such that the equations of equilibrium remain valid; hovever,
the compatinility equation has still to be satisfied. All stresses being functions

of { = ?, the latter becomes
) .
[tpﬂvc’ %;)] (og ¢ 8,) =0 (3-40)
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The solution of Eqs. (38 and LO) subject to tne boundary conditions s.) and

b.) above is routine, but contains three paremeters g, k, and s, Having obtained
the solution, it remains to be determined for what range of the parameters
condition a.) above is satisfied. This complicates the presentation appreciably
and the entire matter is therefore relegated to Appendix A; only pertinent
conclusions are listed below:

1. For the "incompressible” material, vhen at the inclined face of the vedge
ys s+ 1';. it vas found that solutions satisfying all conditions (a, b, and ¢)

exist in the range

FsBage (3-41)

provided the directions of the major principal stress is as shovn in (Fig. 9s or »),
1. ., Vhen O, makes the angle {- + 8 vith the horizontal side of the vedge, For
this orientation of the major principal stress, no solution exists for other
angles, just one solution exists for each combination of k and s, The value of @
on the inclined face of the wedge is given in Eq. (A-35). FPor the vedge angles

8= i-snd %’-—, the solutions represent uniform states of stress, and are of the

type previously found, Eq. (28), for the special case e = 0,

2. For the "incompressible” material, similar solutions exist if the direction

of the major principal stress vith the horizoantal is (8 = ]'; )e (Hﬁs. 10a, b),but

only if

3-1';' or 6-13,'1 (3-k2)

For these twvo values of 8, & solution exists for any combination of
k and s, These solutions represent stetes of uniform stress, and are of the

type previously found in Eq. (28),
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3. In part A of this section, under Case 2, a solution vithout slip with
s non-uniform state of stress, Eqs. (29 to 32), has been daveloped for the
"{ncompressible” material, In viev of our present reasoning, the compatibility
condition (40) should be satisfied {n a region vithout slip. The solution
Eqs. (29 to 32) must, therefore, be checked in this respect. Not unexpectedly,
one finds that compatibility is violated, such that this solution will not be

considered further,

b, In the case of the material vith dilatancy when the angle y(s) satisfies
the equation cos 2y = -i—:-E-, solutions also exist for ranges of vedge angles §.
The details sre not presented, for reasons discussed in Section § vhere the

material vith dilatancy {s discussed.

$. For coupleteness sake, the possibility of regions of no slip between tvwo
regions vith slip has been considered, because this possibility wvould permit
geomatries different from (Fig. 7). Buch regions exist, provided g = i. The
solutions are uniform states of stress, covered by Eq. (28). (The situationm,

hovever, can not be utilized {n the construction of sciutions.)

6, It is of interest to knov for vhat values of p, and up to vhat values of
p, elastic sclutions for the half space exist vithout uiip. 1. e., solutions vhere
the inequality (2-3) is satisfied everywhere. Eqs. (38, 40) apply againm with
appropriate boundary conditions at § = 0, ¥, (Fig, 12), and sre considered in

Appendix A.

If there is no cohesion, s = 0, no solution sstisfying Eq. (2+3) existe

for P * 0.

However, if & ¥ O, an unusual situation occurs, The solutions of the

di fferential equations for the stresses satisfying the boundary condition on the
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surface are not unique, as a state of uniform horizontsl stress o: e constant

can be added to any solution one may find, This arbitrary horizontal stress

enters the condition for slip, Eq. (2-3), and the valus of p up to vhich no

slip occurs depends on the assumed intensity of the horizontel gtate of stress,
There is, however, a most "beneficial® state for wvhich the load p becomes s
maximum. This "distinguished solution" defines the valus of p above which solutions
vithout slip can not possibly exist, A plot of these critical veluss of p ve. &

is given in Appendix A,(rig. A.L).
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b, SOLUTIONS FOR THE “INCOMPRESSIBLE™ MATERIAL,

a., Construction of 8olutions,
In this section, the solutions applying for the "incompressidle” material,

Case A in Section 2, vill be obtained. The available ingredients are:

1. A solution in & region vith slip, trested under A, Case 1, in the
previocus section, It vas found that im such & region, the major principal
stress makes an angle ;%vith the position vector g, Eq. (3=14), while ¢ is givea
by Eq. (3-18). It vill be seen that the case of the lover sign, (Fig. 13), vill

be used, In thtl case

1-k
et 2T 0L (k1)

vhere C is an open but positive constant, The equation indicates that ¢ increases

vith i{ncreasing values of ¢,

2. Of solutions vithout slip obtained under A, Case 2 in Bection 3, only

the ones defined by Eq. (3+28)

¢ = oonst, ¢ © gonst, (4e2)
representing a state of uniform stress can be considered, The other solution,
Bqs. (3-29 to 32) 1is not to be used, for reasons stated in Section 3 under C,
ftem 3. Solutions of the type of Eq. (2) vill be used for 45° vedges as shown in

(rig. l4a, b)., In (Fig, 1da), the major principal stress is inclined at ¢ » ;- .

vhile in (Pig. 1kb) the inelinstion 1s o = 0.

3. Additionsl solutions without slip in vedge shaped regions are described
in Section 3 under C, {tem 1. Of interest are solutions for vedges * sp < é"p
(n‘o 1,’0

25



Lat us nov consider the problem of a step load progressing vith uloofty
V, (Frig. 2), for material properties k and s, for various valuss of the load,
sterting vith small values of !-. For sufficiently small values of this ratio,
it has been shown in Appendix A that (elastic) solutions vithout slip exist,
provided that p 4{s less than a critical value Py given in (Fig. A-k). As
pointed out in Section 3 under C, item 6, the solutions are not even uniqus,
. e,, there are fanilies of solutions {f p < p.. but there is just cne if p = Py
The oritical value p. vanishes if s = 0, If cohesion is present, assuming likely
values of k, the limit p, 1s 28 to 3s, 1. e,, st an uninterestingly iov lewel of

stress.

When constructing solutions vith slip, it is clear that solution 1. avove
is insufficlent to satisfy the condition at either the loaded or the free surface,
because the directions of the principal stresses at the surface cannot be at
angles :i- to & surface. Transition regions vithout slip are necessery as {ndieated

in (Flg. 7) .

The solutions 1, 2 and 3 sbove caa be cambined, (Fig. 16), to form s oone
tinuous solution for the half space, consisting of & non-slip vedge of angle
i << E! on the loaded eide, s nou-slip vedge of angle i on the unlosded side,
and an interior vedge of angle (el e §) 1in which elip occurs.

Consider first the case § » i. such that slip occurs in & 90° vedge. Under
the load, the state of stress, (Fig, 14a), {s unifors, the major primcipal stress

being verticaly In this range
é!gdf_' 9espas ‘-3 (b=3)

In the adjoining sector vith slip, the major principal stress makes therefore
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L4

the angle -'r vith the position vector; obtaining the value of C in Eq. (1) by

matching the values of ¢ at J = %1. one finds
§<¢_‘_%!l c'(v'-:-:—k-)o'z%':{‘(e""”-r:-; (b))

As the direction of the major principal stress in the region ¢ s i must
match the direction in the elip region, g, must be horisoatal, such that (rig. 1bv)
applies, and one finds that thé solution deseribed requires a vertical pressure
st § * 0y

l-k
b, = alp o K e T v - B (h=5)

The surface at § = 0 {s, hovever, & free surface, vhere the pressure should
vanish, », * 0. Bolving Bq. (5) for the valus p ”, for vhieh P ©® 0o One
obtains

[ 1-k
U RTIIN
such that a steady state solution for the specific value p » p“ has been obtained.

The subsaript L has been seleated because this value represents a limiting situstiom,

a8 vill be recogniszed. later.

One could now proceed to vary the angle § in (Fig. 16) and sry to obtain
solutions for values p ¢ px‘. Hovever, the presence of cohesion masks the true
state of affairs, and as a first step only the case s = 0 will be considered. Ia
this cese, Eqs. (1, 4, 5) retain the exponential terms on the right hand sidse ealy,
and Eq. (6) gives p& ®» 0,1, ¢,y only a trivial solution, for p ® 0, has been
doternined,

If one uses 4ifferent angles 8 in (Fig. 16) on the losded side, one again
finds only trivial solutions p = 0, as is easily confirmed. The relation betveea
27



P and 0 on the inclined face for the vedge, (Fig. 15), is

(k=7)

When s = 0, the value of ¢ at the inclined face is therefore proportional
to p} matching of the solution (1) gives C, and the stress ¢ at ¢ » i. both
proportional to p, This is to be matched with the 45° wvedge shown in (Pig. 1kv).
If s = 0, and the stress at §J = O vanishes, the stress ¢ in this vedge necessarily

vanishes, and p must also vanish,

There is, therefore, for s = 0, no solution for the boundary valus problem
formulated, i, e., for a finite value of p behind ths moving front, and no
pressure ahead of the front. From a purely mathematical point of viev, this 1is
connectsd with the fact that the equations are hyperbolic, and aaving prescribed
conditions on one l.idl. one cannot simultaneously prescribe conditions on the
other., However, the physical problem must have a solution = there must be a
response ~ if a pressure vave is applied to the half-space. The mathematical
and physical concepts can be reconciled, by alloving for the possibility of
particles of the material being expelled from the unloaded surface ahead of the
pressure front. It is reasoned, that the non-existence of solutions of the problu
for certain applied loads in the formulation used so far indicates that the body
cannot exist under these loads, and vill disintegrate. The process of disintegra-
tion has been studied for a simple equivalent situation in Appendix B on a mechanical
model exhibiting Coulomdb properties. A mechanism is demonstrated vhich expels:
particles on an unloaded surface, the momentum of the particles providing a

reastive pressure required to obtain a solution in the interior of the body.

In this revised situation, regardless of the value of s, Eqs. (3, §) represeat
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s solution of the steady state problem for p > pl.' but a reactive pressure
according to Eq. (5) is exerted by particles expelled from the surface ahead of

the pressure front p,

Continuing the discussion for s = 0, the limit pL = 0, and the solution
Eqs, (4, 5) applies for all values of p, However, it is not the only solutionm.
Varying the angle 8 of the non-slip region in (l"ig. 16)! other solutions can be

obtained. The value of @ at § = v - § follows from Eq. (T) for s = 0:
( ) 2p (l=cos 2
ols - 8) = TIT (1-cos 5ﬂi + (1-k) ilIn 28 - 28 cos 28)

In the adjoining slip region o is given by Eq. (1) vhere C is obtained by

(4-8)

]
matching values at § = s = 8, In the non-slip region, 0 < ¢ S 5o the value of @

is constant, and one finds

lek /3w
0(0) = ofx = B) «~? Tik (é’ ° .) (4=9)
The required reactive pressure to be exerted by expelled particles at
d = 0 beconmes

1-k (3v
p, ® ke(0) = ko(v < 8) o T (F" * ') (k-10)

In addition to the solution for § = k5% found first, there exists therefore
& vhole family of solutions for ; <8< é'-‘ All these solutions are mathematically
unobjectionable; this lack of uniqueness in steady~-state problems was discussed

in the introduction and is nothing unusual,

Comparing the possidle solutions for various angles 8, (H!. :|.6)I it is

seen that the one for § = 45° where slip occurs in & 90° vedge has dlatinctive
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properties, and it vill be called the "principal solution”, Among all solutions
for a given value of the applied pressure p, it requires the smallest pressure P,
exerted by the particles expelled on the free surface., To demonstrate this
consider (Fig. 17)., It shows the values of o for the "principal solution” as
function of ¢ plotted as Curve I} in the nngo* <g < %1 the curve dscays
exponentially as given by Eq. (4), vhile the remainder is horizontal, Curve I1I
in (Fig. 17) is the locus of the values o(¥ = 8) according to Eq. (8), 1. e.,
the value of ¢ at the interface of the slip and non-slip regions, The end points
of the curve are unity md% respectively, and it has a minimum at 8 » ’;'. as can
be found by differentiation of Eq. (8). One can easily demonstrate that betveen
{' and %’1 Curve II is slways above Curve I, and botvuni‘ md‘;' the slope of

Curve I is alvays steeper (downward) than that of Curve II,

Curve III indicates the situation for an intermediats value of §. At the
interface § = (v = g) the value of g is defined by point C, the value g then
decreases exponentially, {, e.,, the decay curve C-D {s a portion Cl-Dl of the
curve A B displaced horizontally, such that the final value at the surface,

g(0), and P, ¥ kg(0) is necessarily larger than for the "principal solution",

In the general case, vhen ochesion does not vanish, the situation is more
complicated. For lovw pressures, p < P,s there are elastic rolutions vithout
slip anyvherey for p » 1 there is the "principal solution", requiring disintegre~
tion at the free surface if p » pL. vhile forp » pL no disintegration occurs,

(Fig. 18) shows a plot of p. and p_ versus k, indicating that everyvhere pL > p..

L
There 1s, therefore, a gap bLetween the levels of Py and P vhere neither the elastic
nor the "principsl solution” applies. For such values of p solutions can be cone
structed by utilizing vedge angles § > ]‘;. (rig. 16). If s ¢ O the Curve II, (Fig. 17),

describing 0 at the inclined face is modified, but the general situation remains
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similar, such that for any value pL >»p> p.. a valus of § exists for vhich ’o

given by Eq. (10) vill vanish. In other vords, in the range
>p> be
P >P P, (k=11)

the Eqes. (8, 9, and 10) and the condition P, ® O define a ®prinecipal solution®
in vhich slip occurs in the range i ¢« g <ue=p, vhere i <g ¢ 31. (Pig. 16),

For this solution the pressure on the surface ahead of the vave vanishes such
that no disintegration occurs. (It would also be possible to find polutions in
this range vhere P, » 0, requiring disintegration, 8uch solutions are not

considared because & "principal solution” wvith », "0 exists.)

The method of selecting the "principal solution” is not very satisfactory
as i{ntuitive reasoning has to be employed, More definite conclusions showing
that these solutions are the ones approached in transient cases after a long uin.
vould require consideration of the starting conditions, vhich vould pose a major
yot wavod problem, As an alternative, one might study the stability of the
various solutions against perturbvations. This might permit elimination of some
excess solutions, but such an approach might not be successful, Btability
considerations are unable to resolve the lzik of uniqueness in the elastic rolutions

forp ¢« p.,
)

An additional point is vorth discussing and illustrates the inherent
complexities of the type of problem considered. (Fig. 18) shows plots of P, and ’I.‘
" and also of the value of & static load pp vhich can be supported by a half space
according to the classical analysis by Prandtl (2], It is seen that Pp ® Py
such that the present paper contains in the limit V <« 0, solutions vhere
steady-state motion cccurs at pressure levels below pP (vhere equilidbrium is
possidble). It is outside the province of this paper to investigate 1if this ine

dicates an instability of the static solution [2] for the material considered
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here or not. It {s important, hovever, to point out that the fact that the
limit V + 0 of the present solution doss nct give the static situation is not
dus to a mathematical error. In the static case, vhen the load p » ’P is
applied, slip must occur in some locations before the state of equilidrium

is reached. If the load i{s moved vith a velocity V, hovever.small, slip has

to ocour continuously, and a slipless solution at the level p » Pp is therefore
not possible. The dynamie solution for V < O does not approach the static

solution.



be Discussion of Strains and Accelerstions dus to the "Principal Solution"

In the preceding subsection (a) solutions vith slip have been obtained
covering the range of pressures, p » Py vhere P, defines the limit up to which
elastic solutions without slip exist. If acohesion is pressnt, s ¥ 0, then thers
is & narrov range p,< p ¢ P where the "principal solution ™ selected involvea
slip but does not require surface disintegration ahead of the pressure pulse, For
larger pressures, p > Pre solutions exiat only vith slip and surface disintegre~
tion, the "principal solution” being the one with the least reactive pressure due
to expelled particles.

It 1s naturally of interest to discuss the magnitude of accelerations and
strains sssociated vith the princzipal solutions, For these quantities, there
being only small, quantitative differences betwsen the ra.jes p ¢ Py, and p > Ppo

only the latter vill be considered.

A quantity of intarest {s the total permanent strain produced at any point
due to the passing of the shock wave on the surfece. This strain gives an indice~
tion of the deformation to which a target, say s cylindrical shell, (Pig. 19),
vwould be subjected if the presence of the target would not affect the force field®),
To obtain the total strain, the strain rates at the target at depth y must be
obtained, and integrated with respect to time, Substituting Eq. (3-23) into Eq, (3~11)
and noting that the angle @ in the solution employed is defined by Zq. (3-1k) with
the lower sign, one finds

H .ﬁy% (h-12)

This expression applies in the alip region ';- <¥ < ]}!. The value of ¢ is

)™ Whether or not the target affects the free field substantially or not depends
on relative stiffness, but little is knows about the matter at present,
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givan by Eq. (b).

%% 2(p i:: 1+k) o= 1+k(i'l 0 (4-13)

vhich permits the determination of the strain rates ;xx' E” and Eﬂ from
Eqs. (3-6).

To integrate the resulting expression with respect to time, it is noted

that
y
a2y sinsg (b-10)
Hence
&
. -i:-“- ¢
-‘x.'y-J‘y“'zAL':. cot ¢ af
3In (k=15)
. v 1-k
S (1-00t%) T2’ &
vhere
1-k)
A w LK 1ok sk 2 (1+k) (M16)

2vB P Tk * Tk
v L
The limits in the above integrals are thoss of the slip region § < « a‘-
The nature of the integrals requires numerical integration, Another quantity of
interest is the acceleration history. The accelerations in the non-slip regions,
(Fig. 19), vanish; in the slip region, i—:d < %1. Eq. (3-20) defines the redial
sccelerstion., Using Eq. (13)

. (pl_h ) m{_ {-;-5[3—1 .am-x(ﬂ}

Example: The physigal memning of these results is best discussed for a

(=1T)

typiocal case, We select k -%- and no cohesion, s = 0, Using Eqs. (13) to compute
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the permanent strains, one finds the principal permanent strains

‘1.2 N : 0.111 ;% (.)

the direction being defined by 6 ~ 0.5, To interpret the result it vill be

compared with the magnitude of elastic strains which are of the ordor% o HNoting

the expresaion for the welocity of Pewaves in an elastic medium czp - -p-rrg%—'-a-:}-ﬁ ’
Eq, (a) may be written

2
~ s B2
‘1,2 -13[1‘3;?] )

Due to the basic sssumptions on vhich this paper is based, YV must be small
versus cp, such that the term in parentheses 1s much larger than unity., The
permanent strain is, therefore, much larger than elastic strains at this stress

level.

Eq. (b) also permits an estimate of the range of applicability of the
present theory, vhich ignores elastic strainet It should be applicable as long
as the slip strains, Eq, (b), are appreciably larger then elastic ones, gg. Thie

condition is reasonably satisfied up to Magh numbers _V:'; < 0,2, and the theoxy

presented vill therefore be applicable up to such values of {-; R

The value of the radisl acceleration a, given by Eq. (1T) is plotted in
(rig. 20). The acceleration a vanishes if ";‘l » 1} its maximun valus in the

range |§| <11

max a & 0.2k %y_ (a)

For comparison purposes cne can express p in terms of the velocity of

elastic shear vaves 0. and of the modulus of rigidity, G,

029
max a 0,24 5;— (a)
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This value may be compared with the acceleration due to a step vave in
the elastic case, which can be obtained from the results in Ref, [1l). Using
the curve in Fig. 5 of this paper, the effect of a step vave can be found by
integration, It is seen that the acceleration given by Eq. (d) is of equal
magnitude as the elastic one for MT s 0,5 vhich corresponds to~§— s 0,25, As
the accelerations in the elastic case decrease vith the fourth pgvor of V, the
present solution gives again substantially larger values than [Ref. 1] provided

Yo <o.2.
[

p
It is important to note that the accelerations do not depend on the velocity

V, but that the total strains are proportional to V-z. The independence of a is
due to the fact that the accelerations are solely determined by the stress field,
by virtue of Eqs, (3-1), and the velocity V does not explicitly appear in these
equations, To find strain rates and strains, one and tvo integrations, respectively,
vith respect to time are required. Because of Eq. (14), each such integration
introduces & factor %} explaining the fact that the strains are proportional to
V2,

The above comparison of effects permits an interesting prediction for the
range of larger Mach numbers, %— > 0.2, for s material having combined elastic and
Coulomb-slip properties. Hhilepfor lov Mach numbers, the slip effects are much

v
larger than the elastic ones, this is not the case for larger values of reg For

P
such values, the occurrence of slip will not change the order of magnitude of

acceleration and strains found by a purely elastic analysis ignoring slip. One
can understand this conclusion by noting that for large values of V, the slip stage
lasts only a short time such that displacements due to slip have only little time

to develop, and will remain of the same magnitude as the elastic ones,
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Another prediction for results at larger Mach numbers concerns the dig-
integration of the surface ahesd of the pressure vave, This effect vill oceur

also at larger Mach numbers, but of courss only for sub-seismic velocities,



5. THE MATERIAL WITH DILATANCY,

For this material a solution has been obtained in Section 3 under B,
vhere the direotion of the major principal stress makes an angle + y vith the

redial, (Pig, 21) ,vhere

L .3

1w
cos 2y = yov (5-1)

This solution could be matched vith regions of wniform stress if the
angles are selected as shovn in (Fig. 22). One can then find a value pa P
vhere the surface ahead is a free surface, the solution agreeing vith the static
one found by Prandtl (2], For larger values of the load, p > Pp ¢+ One obtains
a soluticn requiring a pressure Py shead of the pressure front, P being supplied

sgain by the disintegration of the surface.

One could further investigate if solutions exist for vedges without slip
at angles other than 90° = andy, utilised in (Fig. 22). Tnis investigation

has not been mads for rsasons explained hereafter.

In 8ection 3 under C, it vas concluded that in regions vithout slip the
equations of elwstic compatibllity should be satisfied, such that the solutions
found in this paper would apply for an actual elastic-Coulomd material in the limit
vhen E and G are large. The fact that elastic deformation in areas vhere slip
ooccurs are neglected in the present paper is defensible as long as the slip deforma~
tions are large versus the elastic ones. ‘mi- argument, unfortunately, does not
apply for the solutions found in Section 3 under B, because it was found that the
solution requires A m 0, and according to Bq. (3-33) all strains and deformations

vanish, In these circumstances ignoring of the elastic deformations is not
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Justified®) 1f one desires, as we 40, to obtain a solution vhich applies to a
material having elastic-Coulomd properties.

In these circumstances, it vas decided not to pursue all the details
of the possible solutions, as was done in Section & for the alternative material.
It would be unreasonable to wvaste effort on a solution because all deformations
vanish and one obtains in the end rather trivial yesults: All sccelerations and
the free field strains (corresponding to Eq. (4e15) for the other material) vanish,

the only non~vanishing results concern stresses,

For materials vith Dilatancy an analysis including elastic deformations
is necessary, and is planned for the future. Incidentally, one can easily
understand that the coupling of slip and volume expansion in Eqs. (2<9) requires

that & meaningful analysis must retain the effects of elastic volume changes.

¥) In order to avoid misunderstandings, it should be stressed that the above
objection to ignoring elastic effects only applies in the dynamic problea
studied here, The objeation Aces not apply in a static case, treated by
Prandtl (2], and the above reasoning should not be misconstrued into an
ocbjeation to the latter solutiom.
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6., SUMMARY OF CONCLUSIONS

The possibility of steady-state solutions with slip has been investigated
vhen the half-space is loaded by a moving step load, (Fig. 2), Restricting the
study to lov Mach numbers, the elastic deformations were neglected in the slip
regions, Tvo materials were cousidered; both follow the Coulomd rule, defining

the stresses at slip, but have different flov rules.

One material is assumed to remain constant in volume during slip, vhile
the other, using the concepts of Drucker and Prager {2) exhibits Dilatancy. Yor
the latter material only unsatisfactory results are obtained, because elastic
deformations vere neglected, For the other material, the results obtained are

v
expected to be valid up to Mach numbers :" ~0,2.
P

A major finding of the present study is the recognition that for pressures
p above a critical value, disintegration of the surface ahead of the pressure vave
must ocour, producing a precursor of dust particles, The mechanism of the dis-
integration has been studied on a mechanical model, and it has deen shown that
elements in a boundary layer near the free surface vill be sccelerated upwvard and
finally expelled,(Fig. 23), This manner of disintegration occurs for both types
of materials considered, and is expscted to occur beyond the range %; <€ 0,2 of the

present study,but only for subseismic velocities V,

Detailed results for the material without volume change during slip are
presented in Section k, obtaining stresses, accelerations and permanent strains,
It is demonstrated (Section 4,b) that accelerations and permanent strains, in the
renge %—Q 0.2, are substantially larger than the correspoanding quantities in an

o
eleatic medium when no slip occurs,
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The results cen he utilized to study the squivalent problem for a locking

nediun having Coulomd properties behind the locking front, BSuch an investigation
is under vay.

For the material wvith Dilatancy only stresses can be obtained as the
analysis degenerates and acoelerations and strains are found to vanish, To obtain

msaningful results elastic effects must be retained.
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APPENDIX A

STATIC, ELASTIC SOLUTIONS FOR WEDGE SHAPED REGIONS AND FOR THE HALP-SPACE

WITHOUT SLIP.

As background for Section 3C, the elastic stresses are obtained for
wedge shaped regions,(Fig. A-l ). Using for convenience polar coordinates
and stress components 0.+ Oy and ¥ , the following conditions on the

surfaces are to be satisfied.

On the surface ¢ ~ O:

9y(0)=-p, 1=0, (A-1)
vhile on the surface ¢ = 8, the direction of the major principal stress shall
be in a specified direction, defined by the angle 7(p), (Fig. A-1). (Of interest

will be the angles 7(f) = + 1‘;). Further, at ¢ = p the two principal stresses

% and o, are required to satisfy the slip condition, such that
9 = - (0 +8)
(a-2)
.2 - - k' .

Having obtained solutiongfor these boundary conditions, it is to be investigated

vhich of the solutions, if sny, satisfy the Coulomb rule
- ¢2 > k¢ = - k('l + l) (A°3)

everyvhere.

The equations of equilibrium ,(3-38), in polar coordinates for stresses vhich

are independent of r, become

%-I-+¢r-¢.-0
¢ v er a0 .
o tere



vhile the compatibility equation (3-4O) becomes

62

;:5 [ar +0,]=0 (A-5)

The general solution of the differential equations (4,5) may be written
o = A+ B¢ - Csin2¢ - D cos 2¢
o, = A+ B¢ +Csin2¢ + D cos 2¢ (A-6)

f = - g - Ccos 20 + D sin 2¢

vhere A, B, C and D are arbitrary constants. Determining A and B from the

boundary conditions (1) gives the stresses in terms of C and D:

o, =P - D(1 + cos 2¢) - C(2¢ + sin 2¢)

g9g= =P - D(1 - cos 2¢) - C(2¢ - sin 2¢) (A-7)

t = D sin 2¢ + C(1 - cos 2¢)

It is nov convenient to express the O, 1 9y and t in terms of principal stresses

9, » 0, and of the angle 7 = 7(¢) which the direction of “ makes with the radial,

(Pig. A-1). Purther, the stresses 9 and g, may be expressed by two other functions

e
of ¢, namely o ¢ o(¢) and k u k(¢),

o = - (¢ +8)
(A-8)

o =- ko
Using the conventional expression for the stresses in terms of the principal

stresses, one finds

o, =0y cooey + 0, l1n27 = - [(1-k)o + 8] couar - ke

Gy =0y |1n27 + cacOIar o - [(1-k)o + 8) ninar - ke (A-9)

T - (¢1 - 9,)sin 7 cosy = - ((1-k)o + 8] sin y cos ¥
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Elimination of ¢ from these equations gives two relations between 18y

7, k and ¥
g -0
T - _r_T_: tan 27 =« O
(A-10)
o_+0 = -
r* % 1-:) ks
T\ 8in 27y + — 8in 2y« 0 .
1+ 1+k
a. BSOLUTIONS FOR WEDGE SHAPED REGIONSWHEN y(B) = + ﬁ- .
Applying these relations at the boundary ¢ = B, using the values
E(p) =k , 7(B)=s} (A-11)

one substitutes the values of 9. » Oy and v for ¢ = § from Eqs. (7), and

obtains two simultaneous equations for the constants C and D:

Cain 28 + Dcos 28 =« O

(A-12)

C[(l - cos 25)12#%;—]+D[.1n23:ﬁ]-;[pﬁo-g;] .
The upper and lover sign is to be used in this and subsequent equations as in
Eq. (11). The values of the constant C and D are

Cws= N cos 28

(A-13)

De - Nsin 2

vhere
l-k ks
P + T
Na+ m- 1+k (‘—1‘)

~ 1-cos 28 + -}% (sin 2p - 28 cos 2B)

It 1s noted that the denominator of this expression way vanish for certain
combinations of f and k, if the lower sign sapplies. In such cases, no

solutions exist.



It is nov necessary to investigate if any of the solutions cbtained satisfy
the Coulomdb rule Eq. (3). It is easy to see that for the special values
B = f and p = % %,Eq. (3) 18 satisfied everywhere. In these cases C = O R

and the state of stress defined by Eqs. (7) is uniform, °x and ¢ being

y
constant, while ¢ vanishes. Having prescribed that the slip condition (2)
is satisfied at ¢ « B, 1t is obvious that Eq. (3) is satisfied everywvhere.
This gives the following simple solutions
4
Bel , 2B) =+

P-4, 7() = - 3 Oy = =P, 0, =-kips) v=0

(A-15)

Bed2, 7(B)=sg
%‘. 5 ay--p.ox--(ﬁ+l)n-0

Bag » 7(8)=-7
The discussion of the solutions for other angles B becomes much more involved.
As a first step, the angle 7 can be determined from Eq. (10) by substitution
of Eqs. (7) and (13):

cot (27) = cos ';n-eco;’ B- * (A-26)

The fact that the denominstor vanishes for ¢ = O and ¢ = 2 - x (if p > 3)
presents no difficulty. One can now determine the derivative 7' & g—‘ e As
will be seen shortly, the behavior of the quantity 1+y' is of interest, and
one finds

cos 28 [cos 2B - cos 2(p-¢)]
1+ coua(aa) - 2 cos (28) cos 2(p-¢)

ley (A-1T)

Applying this equation for the boundary ¢ = § one finds

14yt (p) = - 2820 (A-18)
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In the range 0 < B < x the right hand side has the sign of (- cos 28) and one

finds the inequalities

0<p< ﬁ

1+7'(B) <O (A-19)
e:<p<x
§<p<¥ ,  14'(8) >0 . (A-20)

As a next step, am expression for the derivative k' & g—% vill be obtained.

For this purpose, Eqs. (9) are substituted into Eqs. (4) glving after manipulations
(147" )o(1-k) + 8) 8in y + ke* cos ¥ + ¢k* cos 7 = 0 (A-21)
(147 Mo(1l-k) + 8) cos y + ¢' sin 7 = O . (A-22)

Excluding locations where sin 2y = O, one can eliminate ¢' and obtain a relation

o (06) (001-) + 0) (1oy) [co, 2y - ﬁ] (A-23)

Applying this result to the determination of the sign of k' at ¢ = §, one has,

in addition to Egs. (19,20),the following information

E(B) =k , 2p) =2y

L4k >0 , o(d-k)+8s>0 , >0 (A-2h)
con27-}—°—ﬁ---}:-‘-‘- <0 .
1+k 1+k

Using Eqs. (19), (20), (23) and (2k) one finds that k' < O provided;
7(p) o § ana F<p<qt

or (A-25)
7(9)--5 and o<p<§ or {!<p<: .



For the complementary ranges of B one finds k' > 0. The important point is
that the material at the boundary ¢ = § is Just at the verge of the slip,

k = k, such that the condition k' < O must be satisfied, othervise the Coulomb
rule is violated at small distances from ¢ = f. This restricts the ranges to

be studied further to those defined in Eq. (25).

In the geometries defined by Eq. (25), the Coulomb rule is satisfied near
¢ = §; to investigate other locations, Eq. (16) is used to obtain the range of
y as ¢ varies from O to B. Equation (A-16) is simple enough to draw gensral,
qualitative conclusions. The three cases in Eq. (25) separate into a total of
four situations, listed in the following table depending on the prescribed valus
of 7(B) = _+_'E and on the vedge angle . The function ¥(¢) decreases in all

cases monotonically from ¥(0) to 7(p):

7{8) 7(0)
o<p<y -3 0
§<P<3 +3 3
A-26
g <p< %} + ﬁ x (A-26)
TP

To proceed, A general expression for k(¢) is required, and may be obtained from
Eqs. (10). One could solve the second of these equations for k, but the result
vould break down vwhenever sin 27 = 0, i.e., according to Eq. (26) on the surface
¢ « 0. To circumvent this difficulty, one forms the difference of the two equa-

tions (10) and finds the alternative relation

-9 g _+6
:_!'____.__}:_E -L——-Lcol27+§-.— cos 27 « O (A‘n)
2 1+k 2 1+k
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Using Eqs. (7) and {13), one obtains

p+N [2123215231 - #in 2B + 2 cos 25]
£(e) = Y (A-28)

p-8-N [Eigasigézl + 8in 28 - 2¢ cos 23]

This result can be used to check on the values of k(0). Taking the value of 7(0)

from Eq. (26), and considering values p permitted by Eq. (25) one finds:
It0Kp< f , or if % < B < %F , the value of the cosins is
cos [27(0)] » + 1, and

k(0) = s ete 28 (A-29)

If, however, ﬁ <p< % , or if i; < p<=x, then cos [27(0)] = - 1, and
(o) o B- 2N sin 2p )
k(o) p-s (A-30)
Before evaluating Eqs. (29,30) knowledge of the permissible range of kK is required.
From the definition, Eq. (8), for the principal stresses it is clear that £ > k

is a sufficient condition for tne satisfaction of the Coulomb rule if ¢, is the

1
major stress. DBut there will be locations where % is the major stress, and in
such locations k must not exceed an upper limit, which can be easily computed.

If 8 « 0, the upper limit is simply % , but in general

x5i5%+ﬂﬁﬂ (A-31)

Figure (A-2) gives the typical sppearance of the plot of the four branches of k(0).

Regardless of the values of s, the value of E(o) is alvays at the limit of slip
if P = ﬁ or %; , because the solution Eq. (15), (a constant state of stress) applies
there. For p < ﬁ or g > %; (Fig. A-2) shows that the Coulomb rule is always vio-

lated, and no solutions exist for such angles.
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In the rn.ngo-E< p<}|‘! the value k(0) has & maximum for p-g +« To
verify thet Eq. (31) is satisfied at this point, Eqs. (13) are substituted in
Eqs. (7) and one finds for ¢ = O, 0.,=04g="-DP, Te O, a state of stress vhich
certainly satisfies the Coulomb rule and therefore Eq. (31). If s = O, the

peak value of k at § = g is unity.

We have nov arrived at the conclusion that in addition to Egs. (15)
suitable solutions may exist only if y(p)= + 1'; and ,'; <p< {5- o It is still not
known i{f the solutions in this range satisfy the Coulomb rule expressed by Eq. (31)
everyvhere or not. To confirm that (31) is satisfied it is necessary to consider
the situations for B -<>- -;- separately. For simplicity, the argument will be demon-
strated for s = O only.
For the case 1';< p< % the value of y ranges from 1‘; to ; (for ¢ = 0), such that,

vith the exclusion of ¢ =« O,
sin 2y > 0 and cos 27 <0 .

In the above range for p the sign of 1 + 7' given by Eq. (17) does not change,
and for ¢ 4% 0
l+9>0 .
The ratio
%ﬁ-gl, > 0
is therefore positive; this statement holds even in the limit ¢ = 0.
Equation (23) gives the sign of k' for s « 0

sign (k') = sign [(1-i> (col 2y - i—i-g ] . (A-32)

It is known already from Fig. (A-2) that 1 > £(0) > k(8) 3 k, and the avove

equation indicates that, beginning at ¢ = O, the valus of k' is negative.
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As ¢ increases this could only change if k became equal to unity, vhich is
impossible as k(0) < 1. The value of k vill therefore, decrease smoothly from

¢ =0 to¢s=f, such that the Coulomb rule for E <p< % is satisfied everyvheres.

For values %< B < %5 the proof is a little more complicated, because
k(¢) increases from ¢ « O to a maximum value, and subsequently decreases to

k() = k.

According to Eq. (26), 7 ranges from 7(0) « x to ¥y(p) = f . Equation (16)

yields easily the locations vhere 7y = %5 or % , respectively:
® % <
7(ﬂ - -2-) - %— and 7(2ﬂ - l) - § .

Using this knowledge one can shov again that

1+
sin 2y

>0
for the entire range 0 < ¢ < § , and the sign of k' 1s therefore again given by
Eq. (32). Substituting the appropriate values of y at ¢ « 0 , B and noting that
in these locations k < 1 , one finds

k'(0)>0 , k'(p)<o
indicating & meximum of k in the interior. To locate the maximum, exsaine the

valuootistO-p--g,vherer-%’smdconzy-o,l1n27--1.

In general, the value of k(®) is given by Eq. (28), but this equation

breaks down if cos 2y = O. However, using Eq. (16) one finds

sin 2(p-¢ cos 28 - cos 2(p-¢)
con%y 1. sin 2y (A-33)

Substituting this expression in Eq. (28), one obtains a valid expression for

¢ap - 5 . Forming the combination l-'-:- , one obtains (for a = 0)
1+
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1k

(1L + cos 28)
1k . e >0 . (A-38)
1+k ._’_% 1 - cos 2§ - x {7 cos 2p

The inequality is easily proved, because in the range considered we have

0>cos 28> -1.

The sbove inequality implies k < 1, and Eq. (32), vith cos 27 « 0, gives

k' <0

®up- s

indicating that the maximum value of k occurs between ¢ « O and ¢ « § - s e In
this range the angle 7 1s limited by 3= < 7 < x or 0 < cos 27 < 1.

For the maximum value of k the derivative (32) must vanish. Approaching from

¢ = 0, having started vith k < 1, and noting the above inequality on cos 27, 1t
is clear that the second factor in Eq. (32) will be the one to vanish whea

K «max. k; or

cc.ay..l—_._.;-.;x_g a0 .

l emaxk

In this equaiion cos 2y > 0, such that max k <1 completing the proof.

In the final stage, only the case s = O has been considered. Hovever, the
values of k being & continuous function of s, one reasons that the coaclusions
must also hold for small velues of the ratio ; (small vs. unity), This region
suffices for the present purpose, as values of p compareble to s are not of

»
interest anywvay ) .

#) It is demonstratcd in subsection b that elastic solutions exist up to some
value % > 1, the critical ratio being a function of k. If solutions for
vedges without slip, satisfying the Coulaomb rule everywhere 4id exist for all
values of -E <p< 3;' , even for values where % is not small vs. unity, they
would ultimately lead to solutions (for the half-space) of the steady-state
problem with slip, for values p vhers elastic solutions also exist. In such
a case solutions vith slip would not be expected to have physical significance,

even if they 4o exist. 51



Summarizing, it bas been found that for y(B) = ;- solutions exist only
for vedges -E <p< %! » vhile for 7(p) = - ; solutions (Eq. 15) exist only
for f = i orfpe %’5 .

For the case 7(p) = f » the folloving expression for the valus of the

stress parameter ¢ on the inclined face ¢ = § can bes obtained:

(A-35)
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b. SOLUTIONS WITHOUT SLIP FOR THE HALF-8PACE.

In order to determine up to what level of the load p, the elastic stresses
satisfy the Coulomb rule for a half-space, the left side of vhich is loadeq,
(Fig. A-3), the solution is obtained from Bq. (6). Burprisingly, the four
boundary conditions, ¢,(0) = O, 64(x) =< p,7(0) = 7(x) « O permit the deter-
mination of only three of the four constants. The last ou,-b, remains open,
such that the stresses become, vith b = - ;- D

%0
-91--0-§-in20+ﬂ(1+c0020)

il
- - ) 4:& sin 20 + D(1 ~ cos 2¢) (A-36)

1;- « #4(1 - cos20) + Detn 20 ,

A restriction on the constant D follows immedistely by considering the stresses
at the free surface ¢ = 0; Gg=t = 0 and o " g? « Requiring one principal

stress to be compressive, the Coulomb rule gives
0 2 B Z - g . ("37)
The free constant is physically equivalent to an additional uniform horiszontal

state of stress L g;& s ly = ¢t = 0. The lack of uniqueness of the solution

is a consequence of the lack of a prescribed state of stress at infinity,

To determine if slip occurs at any point, the valus of

is required. Using the usual expressions for the principal stresses ons cbtains

¢-D-\a N
o B (a-38)
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vhere
b=otn® ¢+ .25 ain ¢ cos ¢ (A-39)
If the value of D is given, one could find the minimum value of & for any
ratio E » and the solution would satisfy the Coulomb rule vhen k < min k .
A .change of D vill, of course, effect min £ ; 1t 4s of interest to knov the
most beneficial value of U vhich raises min k to its hicl;olt valus, becsuse it

defines values E above vhich elastic solutions wvithout slip cannot exist.

To find extremal values of kK with respect to ¢ and D, the somewhat simpler

oxpx:onion 1+ K 1s formed,

2(D-0) + 22
1+k » - ) - (A-h0)
-® - V-A_‘+ 7
and adifferentiation with respect to ¢ and D uvu. tvo equations
Pa(b") *ﬂ] -- 1 -L g%]- «-2(D-¢ -V-A-'Oﬂ)
b P e 2vz‘ ’
(A-W1)
[ s, . L aA] c25-0-yEs
| 2(D-9) + ’] 1 2{:35 2(5-0-\a'+ 2K
Addition of these equations indicates that either
2(D-¢) + !p! -0 (A-k2)
or
%,%8.0. (A-43)
If Eq. (42) applies, the right hand side of (k1) must also venish, giving
¢ - Daya’, and according to Bq. (38), £ = 0. This situstion 1s trivial,
The alternative, Eq. (43), becomes after substitution
L Batn 00 (A-bb)
yielding the conditions
DeoO,0orteo0,ortesx . (A-AS)
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The last two possibilities, ¢ = O or x, lead again to trivial cases.

This leaves the root D = 0. Bubstitution of this value in either of

Eqs. (41) gives a relation between -:; and ¢ ;

(1- *)
%' 2(:::: ’ -c:.cm ¢) (A-46)

It can be shown that the solution minimizes k with respect to ¢ , and that
D = O gives the highest values of the minimum as desired. Computing min £

and equating it to the value k of the material to be considered, one finds

k-uni-%—;—%%% . (A-4T)

This is a parametric representation of E as function of k. It defines the

values of p above which no elastic solution vithout slip exist. Pigure (A-k)

showa a plot of l.’- versus k. It is noted that the location ¢ at which the
minimum occurs varies with k; for small values of k the angle ¢ is also quite

small; ¢ increases vith k, and reaches the value ¢ =« % for k = 1.
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APPENDIX B

ON THE DISINTEGRATION OF BODIES OF MATERIALS GOVERNED BY THE COULOMB RULE,

In the materials considered the premissible states of stress are limited
by the inequality (2-3)

- @ Zk.o

2
If one subjects a body to loads where this condition cannot be satisfied,

the body being unable to support the loads must disintegrate entirely or at
least in part. To establish the manner in vhich the disintegration occurs
requires a physical description of the behavior of the elements of the body
beyond the mathematical statements in Section I. In the following a simple
situation will be considered in vhich the material can be represented by a
mechanical model which has properties in agreement with relations Eq. (2-2 to
2.8) vhen the cohesion s vanishes. (An alternative model with cohesion can also

be formed).

Consider the plane structure covering a rectangular area, (Pig. Bl); the
structure is built of identical square elements and carries loacs ’1 , in one
direction,and P2 in the other. Each element consists of four masses connescted
by inextensible linkage bars under 45 degrees to the vertical, (Fig. B2). Lat
the elements be small and of vidth 2a and height 2a. The hinges are assumed to
have friction, the friction moments being proportional to the load transferred
to the hinge by the bar. If the unit is to be in equilibrium under forces
P, > P, acting on the element, (Fig. nz)z the forces must satisfy the inequality

Ph2P,> kP, (p-1)
If however

P, = kP, (8-2)

the unit can be in steady motion or at rest. The coefficient k can be obtained
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by equilibrium considerations from the friction in the hinges, vhere by reason

of symmetry the forces in one link only need be considered.

The friction in a hinge may be defined by the maximum normal distance f
at vhich the resultant force 8 in the linkage bar vill bypass the ceanter of the
hinge. This applies to the hinges at both ends of the link and dus to the type
of linkage motion, the resultant must pass through the mid.-point of the linkage,

(rig. B-3). The resultent will therefore mske an angle a with the link, such that

f_soinc.

7z (8-3)

Later, it wvill be convenient to know the connsction between a and k. Equilibrium
at the four hinges requires the following two relations betveen the compressive

resultant 8 and the forces P, and P, = 1 ? acting on the element in the limiting

1l 2
state,
P, = 28 cos (; -a)
ra.ul-asun(,‘}-u)
or
k = tan(f - o) . (B-4)

The changes in vertical and horizontal "strain" % » (Mg. B-2), will be of
equal magnitude in similarity vith Eq. (2-8). It 1s further sasumed that the
angular motion of the links is restricted to a small angle, such that the
motion ¢ cannot exceed a set value ¢ . When this situation 1s reached, the

unit vill be deemed tO become rigid.

The element described behaves like the material considered under A in
Bection 2, provided the vertical axis of the element, (Fig. B-2), 1s in the
direction of the major principal stress. The only difference lies in the

limitation on the strain resulting from the condition ¢ < <.
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A number (2N) of such elements arranged in a horizontal lins, (Fig. B-h),
will be in incipient motion if each element is vertically locaded by the force
P, vhile horizontal forces kP are applied at the ends and transmitted from
element to element. The arrangement simulates a rectangular region of a Coulosbd
material at the verge of slip. Let us determine the response of the model if
the forces kP on the sides are suddenly removed. The behavior of the model ought

t0o give an insight on vhat will happen in case of a granular material.

It has already been stated that the linkage bars are inextensible; for
simplicity it is further assumed that they are massless, vhile each of the four
masses at the hinges has one quarter of the total mass N of each unit. Also,
for simplicity, it is assumed that rotation of the masses is prevented (e.g. oz
top and bottom by the stiffness of plates in a testing machine by means of which

the loads P are applied, vhile the other masses will not rotate by reason of

symmetry).

Consider the motion of the i-th element, (Fig. B-5). It 1is acted on by
the external forces P on top and bottom; by as yet unknown horisontal fcrces

P and P1 from the two adjoining elements; in addition, at each end of each

1-1
linkage bar there will be friction moments acting on these bars, fa& and “R »
vhere BL and BR are the resultants transferred by the left and right linkage,
respectively. At the top and bottom hinges, the friction moments do not balance,

the difference being supplied by the external support preventing rotation,

The motion of the element is fully described by two generalized coordinates:

the horizontal displacement X, of the center 01 of the unit, and the relative

motiona ¢ horizontal and vertical, respectively, of the mass points with

respect to the center O For reasons of symmetry in the arrangement, (Fig. B-h),

1 L]

no vertical motion of the center 0z need be considered. For small motions, the
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rotation of the linkages is % + To write Lagrange's equations, one obtains the
kinetic energy

2T« M (i + &) (8-5)
vhile the potential energy vanishes. @o genaralized forces Qx and Q‘ due to the

i i
physical forces shown in (Fig. B-5) are

U, =P - Fy
(8-6)
Q =2r-P,_, -P - (s 48)
< 1.1 " P - a (B +B) .
Noting Eq. (3), the equations of motion become
'&1 - Qxi - ’1-1 - P1 (3-7)

lh'" - Q‘i “=2P-P , -P - 2{?-1: o (8, + sn) {p-8)

The second equation atill contains the resultants .L and Bn in the linkage
bars, which can be expressed in terms of 'x'1 and '«'1 « The forces acting on

the tvo lateral masses are shown in (Fig. B-6); their accelerations are

X 'c'i , respectively, such tnat
T, -¢)=r -2 (f-a)8
%(i’i+'¢")-2un (~E--c:v.)8a--r1

or

2 sin (f - a)(8y + 8;) = %‘ Qe oer ) (29)

Bubstitution into Bq. (8) gives

lek oo 1
ey =2P-p(r R ). (»-20)
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vhere the relation

sin o 1=k
/2 -m(;_ - 2k (B-11)

vas obtained from Eq. (b).

EqQ. (10) vas derived on the tacit understanding that g, > 0, indicating

i
that the element deforms in the manner shown in (Fig. B=5), An alternative
relation valid if 21 < 0 could easily be derived, but is not required for the
present purpose. Further, it is possible that the external and inertial forces
are such that the friction is sufficient to prevent any deformation of the unit,
such that ;‘ - :1 = 0, If, in this case the unit is not subject to acceleration,

§1 = 0, the forces P, and P, , vill be equal,

and must satisfy the Coulombeinequality
LP>P >kP (B-13)
k

Equivalent relations for ;‘ ¥ 0 could be derived, but will not be required for

the present purpose,

The differential equations (7) and (10) and the relations (12, 13) permit
determination of the response of the group of elements shown in (Fig. B-4) when
the lateral loads kP are suddenly removed at a time t = 0, Considering Xg, 8§

and Pi as functions of t, the forces Py and P_y must vanish for t > O3

Pu ] P_N -0 (B-1k)

Further, vhen adjoining elements are in contact, the geometric relation

. B-1
e " K "ty (3-15)
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must be satisfied. At ¢ = 0, Eq. (15) vill apply for all values Nl > { > N,
but thereafter separation might occur if l’1 £ 0, or due to the limitation on
the motion of the linkages, ¢, < ¥. These possibilities, and the question
vhether the strain rate ;1 is positive, negative or zero, must bs carefully

considered.

To start, the simple case of tvo elements, Nl ®» 1, vill be solved, (Mg. B-7),
vhere for reasons of symmetry only unit (1) need be studied. Bubject to

later check, it is assumed that ;1 » 0, such that Eqs. (7) and (10) apply.

M xl . Po

lek oy 1

o Mg 2P - | 4

% Ko (B-16)
EQ. (15) becomes

ll - (1 (3'11)
and elimination of ;1 and :l gives the simple relation
hk
P,® 5 P (B-18)

Po is positive as required. TFurther, using the initial conditions

[ ] ]
cl-cl-xl-xl-o.onoﬂndl

‘l>0.il>0.¢1>0.lt>0

For sufficiently small values of ¢ all conditiocns for the validity of

Eqs. (16) are therefore satisfied. The centroids O, of the elements move avay

1
from each other, while the "strain rate" ;1 is positive, Hovever, at an
instant t = ¥, the strain s, resches the liamit €, and the elements freese,

31-0.
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At this instant, the centroids of both elements still have outvard velocities,

il > 0, such that the elements will separate and fly apart.

The value of the pressure between the tvo elements prior to separation
is given by Eq. (18). It is noted that the value Po' regardless of the exact
valus of k, is always slightly larger than the value kP required to prevent
111p under static conditions., This means that the solution for s larger nunmber
of elements, N » 1, can be stated without further analysis. For t « {: the
outside elements N, =N, in Fig. (B-4) behave exactly as the element Jjust
analyzed in the case N = 1, The interior elements, N-1 to ~(N-1) do not move
or change shape, because the force, Eq. (18), exerted by the outside elements
does not produce slip, At ¢ = F, the outside elements separate, and a nevw
situation arises. The elements (N-1) and =(N-1l) begin to move, while no motion

occurs in the other elements, until separation occurs esgain, etc,

We find, therefore, that in case of a large number of slements, the dis=-
integration of the model atructure occurs in a layer of elements at the boundary,
The accelerationa of the elementa in the boundary layer produce a reactive pressure

which produces in the interior a state of stress satisfying the Coulomberule?

In the above derivations, linearity vas assumed, and enforced by permitting
only a finite small deformation ¢ of the elements. If the restriction hed ﬁoon
dropped, the element, after experiencing large strains, could still not exceed a

cortain finite strain vhere the linkage is fully extended; separation would

therefore ocour, and is not Just dus to the assumption c‘ < 6.

Visualizing the mechanisnm of acceleration and subsequent separation in a

granular medium, one can see,(Fig. B-8), how a grain 3 might be expelled by
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sppropriate wedge-like surfaces of two other grains, 1 and 2, {f the latter

are pressed together,

In analogy to the model, ve expect that on & free surface in a Coulombe
type granular material, disintegration will occur if the problem has no
solution for which the pressurs acting on the surface vanishes. The process
of disintegration and acceleration will occur in a thin boundary layer, and
will restore a pressure sufficient to satisfy the Coulomb inequality below

the surface.

One might be tempted to critisze the use of the mechanical modsl because
it cannot represent a Coulomb material if the principal stresses should change
direction during loading., Howevar, this criticism {s not pertinent because
the process of disintegration occurs in the immediate vicinity of a surface

vhere such directions necessarily cannot change.

The model could be adapted to permit representation of a material
with dilatancy, or with cohesion. In the former case, linkages making angles
other than 90° vould be used, A model for the second case is obtained by
specifying the friction in the hinges to be a constant plus f8. Buch a model
could aluo be given tensile strength by providing attraction between the
elements. The basic conclusions are not affected by the use of the

above modifications,
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o

1

0, Ny, n3
N

LIST OF SYMBOLS')

In Appendix A: arbitrary constants of differential
equation.

Acceleration in radial, x- and y- direction, respectively.
In Appendix B: one half of height of elements.
Velocities of compressive and shear waves, respectively,
in an elastic material.

In Section 1: a constant in Eq. (1-1).

Basis of natural logarithms.

Positive quantity, defining the principal strain rates.
Young's modulus.

In Bection l: yield function, plastic potential, respectively.
In Bection 3: any function.

In Appendix B: distance shown in (Pig. B-3).

In Section 1: an arbitrary function.

Modulus of rigidity.

Subscripts, 1,) = 1,2, ...

Invariants of strain deviator.

Constant defining the stress at which slip occurs in
Coulomb material, Eg. (2-6).

In Appendix A: a parameter expressing the principal
stresses in a non-slip elastic region, Eq. (A-8).

Length of load in Mg. 3.

Exponents in Eq. (3-7).

In Appendix A: expression defined by Eq. (A-1k).

*)

Other symbols which are locally used are defined where they occur.
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P, P1 ’ P2 ’ P1

In Appendix B: centroids of elements.

In Appendix B: forces acting on the elements.

Intensity of applied step pressure.

Surface pressure at ¢ = O (ahead of applied load).
Limiting value of p, Eq. {4-6).

Maximum static pressure according to Prandtl (Ref. 2].
Limiting value of p below which solutions without slip exist.
Generalized forces.

Parameter defining cohesion.

In Appendix B: force in links.

Time.

Kinetic energy.

Components of velocity, horizontal, tangential, radial
and vertical, respectively.

Velocity of applied pressure pulse.

Cartesian coordinates, (Fig. 1).

In Appendix B: displacement of 1-th elemsnts.
Derivative with respect to t, §, respectively.

In Section 1l: Coefficient in Drucker and Prager's

(Eq. 1-1), slso inclination of pressure froat, (Fig. k4).

In 8ection 2: Angle defining position of slip plane,

(Fig. 5).

In Appendix B: angle between resultant force and link,

Opening angles of wedge shaped regions in which no slip
occurs,

Angle, cos 27y = %i% .
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5 Dirac's Delta Function.

A In Appendix A: expression defined by Eq. (A-39).

€, Strain and strain rate, respectively, with appropriate

subscripts,'iiJ , etc.

< In Appendix B: Deformation of element.

él s 62 Principal strain rates in direction of principal
stresses, 9,9 95, respectively.

e Angle defining direction of major principal stress,
{rig. 5).

A Location dependent gquantity when deriving strain rates
from potential functions, Eqs. (1-2), (1-3), (2-9).

v Poisson's ratio.

- 5—§—XE Non-dimensional variable,

7« 3.1k15...
o Mass density of material.
g Independent, necessarily positive variable, defining

the principal stresses, Eqs. (3-2).

6L » 9% Major and minor principal stresses, respectively.
9, dy » 9.0 94 61J Stress components.

T Shear stress,

¢ Position angle of an element, (Fig. 6), measured

clockwise from horizontal.

Note re Numbering of Equations.

Throughout this report, equations are numbered by hyphenated numbers, such as

Eq. (2-7), (3-18), or (B-1k). The first number, 2, 3, B, respectively, indicates
that the equation occurs in Section 2, 3, or in Appendix B.

When an equation is referred to, the full number, say (2-7), 1s quoted if the
reference occurs in a different section. However, 1if an equation is mentioned

in the section in which 1t originally appears, only the second half of the number
18 quoted: In Section 2, Eq. (2-7) would therefore, be quoted simply as Eq. (7),
etc.
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