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ABSTRACT

The elastic displacement field of moving edge dislocations in anisotropic
body-centered-cubic and face-centered-cubic crystals is found. From the
elastic displacements the shear stress on the dislocation slip plane is de-
termined. The anomalous velocity range in which edge dislocations of like
sign attract one another has been calculated for a number of metals and ionic

crystals. It is found that anisotropy does not appreciably expand the anoma-
lous range.

The problem of dislocation moving on the interface separating media of
different elastic properties has been considered. The anomalous velocity
range may or may not exist, depending on the values of the elastic constants
in the two media. The dislocation self-energy is infinite at the slowest
sound velocity. Supersonic dislocation behavior is qualitatively described.
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CHAPTER I, INTRODUCTION

This final report describes the analysis and caloulations
on fast moving dislocations that have been undertaken under
this contract. Chief interest in this field has been to study
the anomalous velocity region in which edge dislocations of
like sign attract rather than repel one another. This velooity
region occurs from the Rayleigh wave velocity (approximately
0.9 times the slowest sound velocity) to the velocity at
which the dislocation self energy is infinite. In the anomalous
velocity region dislocation coalescence can take place. This
coalescence could lead to orack formation and fracture,

Chapter III and Chapter IVdescribe the results found
for fast moving dislocations moving in anisotropic body-centered-
cublc crystals,

Chapters V and VI present similar work on dislocations
moving in face-centered-cubic crystals. Finally, in Chapter VII

the results are given of work dome on the problem of dis-
locations moving on the interface separating material of
different elastic properties.

All of the work described in this final report has been
written for journal articles, and has appeared or will appear
in the literature (Weertman, 1962a, 1962b, 1962c; Cotner and
Weertman 1962a, 1962b; Van Hull and Weertman, 1962). *

* References are listed at the end of this report.




More complete details of the analysis and caloulations are
given in these articles as well as in the Status Reports 1

through 6. **

## Status Reports 1 through 6 are available from AFSWC




CHAPTER II SUMMARY

The main interest in this work was to see 1f the anamelous
velocity region is larger or smaller in anisotropic crystals than
it is in isotropic materials. From the resulis of numerical cal-
culations which were made for a number of metals and lonic crystals
it was found that the anomalous region is usually smaller in
anisotropic crystals than in isotropic materials. The ancmalous
region was never found to be appreciably larger than that of iso-
tropic crystals although (Teutonico, 1962a, 1962b, 1962¢,) it is
known theoretically that it is possible for the region to be very
extended. These results are similar to those reached by Teutonico
(1962a, 1962b, 1962c) through numerical calculations concerning
dislocations different from those considered here.

Since dislocation damping forces are large at ordinary
temperatures, it would not appear likely that dislocations would
move at velocities lying in the anomalous range. It may be
possible to have dislocations moving in the anomalous region at
very low temperatures, where dislocation damping forces become
small, or at very high stresses such as are encountered in shock
loading experiments. If dislocations did move at these velocities,

they could contribute to fracture phenocmena.



CHAPTER III. Fast Moving BEdge Dislocations on the (110)
Plane in Anisotropic Body-centered-cubic
Crystals,

In this section the problem of an edge dislocation moving
uniformly in a b.c.c. lattice is analysed. A dislocation is con-
sidered which lies in a (110) plane parallel to a <112> direction
and has a Burgers vector in a <111> direction. Edge dislocations
of this type are coammon in b.c.c, crystals.

It has been pointed out (Weertman 1960, 1961) that edge
dislocations in an isotropic medium show unusual behavior
vhen they move at high velocity. Above the Rayleigh wave
velocity (approximately 0.9 times the tranaverse sound velocity)
the stress on the slip plane of a moving edge dislocation changes
sign, and edge dislocatiors of like sign actually attract
rather than repel one anothe.'. This anomalous behavior
obviously may have importance in fracture phenomena since a
coalesoence of edge dislocations can lead to crack formation.
Chief interest in this section is to investigate the effect
that anisotropy has in extending or contracting the velocity
range in vhich the anomalous dislocation behavior occurs.

The problem of a moving edge dislocation was first
considered by Eshelby (1949), who found the solution for the
elastic displacements in an isotropic medium. Another method
of obtaining Eshelby's solution was given later by Radok (1956).
Bullough and Bilby (1954) next considered edge dislocations
moving in anisotropic crystals. They found the solution for
the elastic displacements for the case in which the problem



can be cansidered as one of plane strain. The dislocation
ctonot be analyzed as a problem in plane strain, and a more
general solution for the elastic displacements must be found.
Fertunately, it is quite obvious from Bullough and Bilby's
work what the form of the more general solution must be.
THEORY

Since the dislocation under consideration lies parallel
or perpendicular to the crystal directions <111>, <110> and
<112>, it is convenient to introduce a coordinate system whose
axes run along these directions. Therefore, we shall adopt
the right-hand coordinate system in which the positive x axis
is the <110> direction, the y axis is the <112> di-actionm,
and the z axis is the <111> direction.

When the ooordinate axes are chosen parallel to the
three <100> directions, a cubic orystal has three independent

elastic constants: ¢ and ¢,,+ In a coordinate system

11’ 12 4,

rotated from the cube axes the elastic constants are given by
other quantities. Hearmon(1956, 1957) has derived explicit
formulas for obtaining the elastic constants in any rotated
coordinate system. The following ¢ nstants are obtained from
Hearmon's formilas for the coordinate system adopted in the

previous paragraph.

e’ 012' 013' cu' 0 0 ]

c12' °11‘ 013' -cu' 0] 0

°13l 013' c33' 0 0 0

°14' "°11,' 0 °u,' 0 0 {eea(1.2)
0 0 0 0 ¢ 44' c 44‘

_o 0 0 0 oy, ces’




where
é(on tep, 2cM),
33 % (011 + 2012 + 4044),

t-_-.‘c»
]

S = %(on -0, +c“),;

06 = %("11 = e they) = ,;e' (e’ - e32' ) s

i’ T Rlogy + 5oy = 204), | (1.2)
013' = %‘ (cll + 2012 - 2044),

N =—1'-—3J2 ('°11+°12+2°1.4) = ~/-2(033' -c:._l‘)

cu' ‘-‘/2(066' - cM') =»/2(012' - 013').

—
It is the appearance of t'e ~onstant cu' in the m=matrix

(I.1) which makes it impossible to apply Bullough and Billkoy's
solution to the dislocation under study.

The equations of dynamie equilibrium, which must bems
satisfied in any problem in elasticity, are

2
‘;J_ = 0 jc,ijliZl ﬂ + 2‘_‘1 (sunned on J,k, 1’)"‘(I°3)
t ox, \\ ox,  Ox

vhere p is the density of the crystal; t is time; X, stand s for

po

0

X,y or %; wu, stands for the elastic displecements u, v and w in the
x,y and £ directions respectively; and e/ 13k1 are the elaa-tic
constants in the uncontracted notation.

Since the dislocation being considered lies paralle’l to
the y axis, the derivatives with respect to y can be set eequal
to gero; otherwise the elastic displacements would be a fwanction

6



of distance along the dislocation line. Another simplification
in the equilibrium equations can be made for a dislocation

moving at a uniform velocity V in the z direction. The solution
of any of the three elastic displacements u will be of the
formu, = u, (x,3-Vt). Hence in eqns. (1.3) the time derivative
8%/6t% can be replaced by V> (8%/02%). Equations (I.3) are

now reduced to the following set:

2 62u , 6211 , 6211 , 62t , ) 62\1

pV — =cll -—2 +°M _—"2014 -+ (013 + c“ ) _— (I'“)

652 ox 622 0x0z 0xds
2 2 2 2 2

RO

p =°66 +c“ " + °ll. + 2014 R (I.4b)
6:2 6x2 0z ax2 0xdz
62\: ’62\4 , 62w , 62v , , 6211

pv2 -_— =033 _— +°M — —; + (013 + 0“ ) — (I‘A‘o)
82° 83> 82> ox oxBs

In contrast to the case of an edge dislocation moving in en
isotropic medium or to the problem considered by Bullough and
Bilby, it is impossible to eliminate one of these equations.
All three elastic displacements are involved in the displacement
solution.

It is obvious from the results of Bullough and Bilby
that, for the dislocation being considered, the solution of
elastic displacements which will satisfy eqns. (I.4) very probably
has the form:

b
u o= [A:llog(:s’2 + lexz) + Azlog(s’2 + y22x2) + A3log(s'2ﬂ32::2)] (I.5a)



-1 -1 g

b
R b A e - S

v = —:—; [Gltan'l I;S‘, + Gzta.n'l Y’ + c3tan"1 Ii: 1 ceeee(I50)
In this equation 3’ = s - Vt, b 4s the length of the Burgers
vector, and ‘1’ Bl’ 01, Yy etc. are oconstants.

To evaluate eqns. (I.5) which contain 12 unimown oconstants,
it is necessary to find 12 independent equations in these constants.
Nine such equations are obtained py setting eqns. (I.5) into
eqns. (I.4). For example, if eqns. (I.5) are placed in eqn.

(I.4a), the following equation results:

< 2 22

§=1 :_:'_2_:::%2_}2 (c“' - cu'Tiz - sz)A1+ 2014'7131-#71(013'4-0“')01 =0 (1.6)
Since this equation must hold for all values of 3’ and x, the

bracket term containing Ai, B:l’ etc., must equal sero for

each value of 1. Thus from eqn. (1.6) one obtains three

equations in the unknown constants. Similar substitutions

into eqns. (I.4b) and (I.4c) produce six more equations. The

nine equations so obtained are:

(o“' - °11‘Y12 - pvz)Ai + 2014'1'181 + 71(013' + °u.')°1 =0 (I.7a)

I} ] 2 ] 1.2 =
Y:l.(°13 N )Ai + ¥y 0, B, - (033 -pV2 =0Ty )ci 0 (X.7b)

[
201%, - (c“' - 066'712 - ‘ﬂlz)B1 + 712014'01 =0 (1.70)

(where 1 =1, 2 or 3).



Since the right-hand side of each of eqns. (I.7) is
saro, the determinant made up of the coefficients of ‘i’ Bi' (1118
mist equal zero to permit all the equations to be valid
simltaneously. In other words, 712 must be one of the three
roots of the oubic equation
12,2 -

2 =2, 2 =2,2 “2, 1 °u Y 2 4 .2
(Ti -N )(Ti - Y2 )(Yi "Y3 ) = 044 Ceq %1 |-471°13 "'Ti 044

+hogy' = o4 =1, ?) + cn'yi‘*] (1.8)

vhere
-2 o, ~ pv?
Y S—M-——T_
i 66
and
-2 =2 _ 1l ! ' 2 t I}
Yar ¥y = —— A{cn(cx33 —pV)+c“(oM-pV2)
2o“c

-(c“' + c13')2 + {011'("33‘ _ pv2) + cul(c“l - sz) - (0444.}013:)2} 2
- 4044'011’ (033' - pV‘Q)(OM' - PVZ)] 1/2}

(;22 correasponds to the mims sign and :('32 to the plus sign.)
Equation (I.8) determines 3 of the 12 unknown constants.

EVALUATION OF THE CONSTANTS A , and C

1 By 1°

The constants Ai’ Bi’ Gi can be evaluated if all three roots
712 are positive real mumbers or if one of these roots is a positive.
real number and the other two are complex conjugates. Either of
these two possibilities will be met in the velocity range from
V =0 to the velocity at which the dislocation self-energy becomes

infinite.



When two of the roots, say 712 and 722, are complex
conjugates ( and hence Y, and v, are likewise complex conjugates)
it is only necessary that the pairs of comstants A1 and Az, Bl
and 32 and 01 and 02, also be complex conjugate mumbers to
ensure that the elastic displacements given by eqn. (1.5) are
real numbers.

To evaluate the nine other unknown constants appearing in
eqna.(I.5),(1.6) and (I.7), it is necessary to obtain three
additional independent equations containing these constants. So
far the condition that the displacements must describe a dislocation
has not been used. That is, if a cirouit is made around the
dislocation 1line, the net displacement mist equal the Burgers
vector. In eqns. (I.5) the log terms return to their original
values after a complete circuit ‘19 made aroumd the dislocation
line. The arc tan terms, however, change by a factor 2m. The
Burgers vector of the dislocation being considered lies parallel
to the z direction. Hence it can be seen from eqns. (I.5) that
the following two equations must be satisfied
1 & ¢« o o (1.9

¢, + C, + C

1 2 3
'Bl+32+33=o e o o o (1.10)
Only one more equation is needed. It is obtained from the
condition that point forces mmat not exist at the core of the
dislocation. To eliminate the point forceas it is first necessary
to determine the stresses produced by the elastic displacements
of eqns. (I.5). The following set of equations gives the stresses

10



9y in the coordinate system being used if all derivatives with
respect to y are zeros
= 1S9 19y 1O
% “ %1 ox* %ozt %13 083

%)) 1y 1
vy =°ll.az+°666x+°1l.6x’

= 19U Jo. 4 1 QW
Oyq °446:+°14‘ax+°1.46x’

lm lm . . [ ] L
y2 ®y ox ¥ %4 33 ?

(1.11)

a
]

Q
R

o0 1 9
2% ®13 ax + ©33 83’

ST 4 19
vy " C208x " %4 0z " °13 6s°

o
[}

-

To ensure that no point force acts at the core of the dislocation
in a direction perpendicular to the slip plane, it 1s only necessary
that “6. ds = 0 (1-12)

I On g = . . . . . o [y *

-0

If this integral were not equal to zero a point force would have
to be applied to the core of the dislocations. The magnitude of
this force would be equal to the integral. When eqns. (I.5) are
substituted intc eqn. (I.1l), one obtains the following expression

for °xx

0 o 2 - A - oy'By = 0,70, | (113)
xx 20 1=l 2T v 2 %11 1My 1 1 %3 % .
1

Equation (I.14) is the result of substituting this expression into
eqn. (I.12) (and also of using egns. (I.9) and (I.10) )s

©13¢
Ylﬁ + Y2A2 + YBAB = —-—;- . O 3 s ® (1014)
1
1l



We now have a sufficient mumber of equations
Equations (I.7), (I.9),(1.10) and (I.14) can be rearranged into

Ci.

to determine Ai’ Bi and

the following three sets of equations, from whioch it is possible to

determine all the constants Ai

equations is from 1 ltod

I,

Z Bi/\ri2 =
Z 31712 =

Lo,

Z.: c i/Y 12

L o1,
Z AiYi

Z A/vy

Z “1*13

0, o0 [N ]

% i‘(ci ;' + pvz)

(c“I - pV2)2

i

3.

-

!

— e
I_Pv2

°1n
-0

44

{

.2
‘1

33

The solutions of eqns. (I.15), (I.16) and(I.17) are:

12

, B, and ci. The summation in these

. eece see sse (10158.)

. ese tee (XY} (Iolsb)

13 (o,,' = 0720, (1.150)

-_— 44 13 1° *

¢ [

11

cese  ees  eee os (I.16a)

e XX ese XXl (Iol6b)

' -pV2+ °11' (c“'—ola') (I°160
see X see 000(10178.)
e XX (XX 00(101%)

o 20,,' _ (o, +0,,')
-3 (ou" - sz) + -;l-llf" 2_'3:'_712 + -u——l-M“—Zci‘fiz (1.17¢)



where

where

where

G(Yzz - 732) (bBle + b2T12Y22Y32) ) ®ceoesescee (I.lBa)

= “(732 - le)(b3722 + b2712¥22732), eseevescee(I.18b)

G(le ~ 722) (b3732 + bzflz’(zzYBz) 9 sccsessone (10180)

2. Y22) (732 - 722) (732 - 712)

(v,
=), Byt 12’
=) By,

2__2 2 2,2,2_.2.2__22
2(vy” = 3 )8y, + 811 Y75 = 1Yy = 1Y)y (1.19)

’

2 _ 2, 2 222 _22__22 o
=0ry" -1y ) egr)" + gy Y vy = vy =¥ g0, (1.15D)

2 2
“(Yl = 72 )(83732 + 82712Y22732 - Y32Y]_2 - 732722)0 (10193)

), S/ *12

= L 01712,

= wpy My, - 732) (a31‘12 + a21'12722732 - ar,20r,7 + 732)). (1,208)
= «*rz'l(wrf - le) (a.}rzz + az‘rlzvzzvz-z - al*rzz(flz + 732)). (I.20b)
= «=‘f3'1(1r12 - 722)(a3732 + a2712722732 - a1732(112 + 722)). (1.200)
=03’ /e

=) A/ ¥y

=), Aty

13



A consideration of these equations will show that it is indeed true
that when 101 and Y, are complex conjugates, the constants Al apd .\2,
etc., also are complex conjugates. Equations (I.18), (I.19) end (I.20),
along with eqn. (I.8), gﬁe the general solution of our problem in the
velocity range from V = 0 to the velooity at which the dislocation
self-energy becomes infinits,
SHEAR STRESS ON THE DISLOCATION SLIP PLANE

Of all the stresses around an edge dislocation, the stress
vhich is of primary interest is that stress which produces a force
on another edge dislocation with a parallel Burgers vector. This
force is °xzb’ where b is the Burgers vector. Hence L is the shear
stress of greatest interest to us., This stress can be found by
substituting eqns. (I.5) into equ* (I.11). One obtains

b 3 2’

= em—- ! ! !

¢ = = Z (044 A+ 0B + e Cy ) (I.21a)

=1 12 2.2 14 bhe
2 4y x

The shear stress on the slip plane of the dislocations itself (x=0) is

(0 I =_2';L._ Yo by +yy o B + 30,0y ) (1.21b)
3

In the case of a stationary or slowly moving dislocation this atress
can be expected to be positive for a positive edge dislocation.

Slowly moving dislocations of like sign and on the same slip plane
repel one another. It is known (Weertman 1961) that an edge
dislocation moving in an isotropic medium experiences a shear stress
on its slip plane which decreases with inoreasing dislocation velocity,
and which actually can change sign. In the velocity region where the

L)



sign of the shear stress has been reversed, dislocations of like

sign attract rather than repel one another. The velocity separating
this region of abnormal behavior from the normal region is that velocity
at which the shear stress is exactly equal to zero. This velocity
tums out to be the Rayleigh wave velocity.

To ensure the existence of an abnormal region in which
dislocations of like sign attract one another it is necessary only
that eqn.(I.2lb) goes to zero at a velocity lower than the velocity
at which one of the roots 712 i1s equal to gzero or at which two of
the roots become negative. The velocity at which eqn. (I.21b) is
equal to zero is the velocity for which

;(c“'ﬁi + Yicll,'Bi + Yicl..l.'ci 7 20 ¢ « « o (I.22a)
The velocity satisfying this equation is the velocity at which a
generalized Rayl.igh wave would travel on a (110) plane in a <111>
direstion. Since tho shear atress dv, in general, is not equal
to zero in the dislocation slip plane, an actual surface wave camnnot
propagate on a (110) plane in a <111> direction in an anisotropic
crystal,

Equation (I.21a) can be simplified somewhat through the use
of eqn. (I.7b). If the latter equation is divided through by Yi and
then sumed from 1 =1 to 4 = 3 and the result substituted into
eqn. (1.21a), one obtains

' ' =1|_
Z [013 Ai - (033 - pV2) ciYi ]“ 0 o X . (I.22b)
This equation has the advantage that all the Bi constants have been

eliminated. If eqns. (I.19) and(I.20) are substituted into eqmn. (I.22b)
the following equation results:

15



2 2 2
fl(Yl + 72 + 73 + Y].Yz + 7273 + 7371)

+ sz’YzYB(Yl + Y2 + Y3) - f3 = 0 [ XN (XX [ X X ) (10220) )

where ,2
[+
= ‘ - ¢ _ =_n___ - ' _
£ = o358 - (og ) o (cg5 ),
1
= o e =T
£, = o358, = (eg' = pV)g, =— 2
‘W " P
0112
- / : - 3 ‘ ) 2
£y = ap'ay - (ogf' - pV)g, =- — (cy, + 203" + oV,
[
11

(035" - V) + (ey5' / 03/ Mey' = op5')
12

1

c
+ 2(033' - pv) .1.3.’.,.
°n L °u.l°66l - oy
'°66’(°331 - sz) .

The principal goal of this section was the drivation of egn.
(I.220). With this equation, one can investigate the effect of
anisotropy on the extent of the velocity region in which anomalous
dislocetion behaviour occurs. For an anomalous velocity region
to exist it is necessary, of course, that the velocity - which
satisfies eqn. (I.22) is smaller than the velocity at which the
roots ?12 first become zero or negative. The dislocation energy
is infinite at this latter velocity and hence it is the limiting
velocity of dislocation motion in normal cirocumstances. In Chapter
IV results of mmerical caloulations using Eqn. (I.22) ere

presented.
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CHAPTER IV, Calculations for Body-Centered~Cubic Crystals

This section presents the results of & mumerical calculation
of the shear stress on the slip plane of an edge dislocation
moving uniformly in a body-centered cubic lattice. The dislocation
considered is moving on a (110) plane in a <111> direction.
The primary concern is to investigate the extent of the anomalous
velocity region in which the shear stress reverses sign and
dislocations of like sign attract one another. This anomalous
behavior of the dislocations., which leads to a coalescence of
fast moving dislocations, may be expected to be of importance in
fracture phenomena., Iron, therefore, 1s loglcally the metal to
study.

In the previous section, formilas were developed which
permit the calculation of the shear stress on the slip plane
of an edge dislocation moving on a (110) plene. It was found
that the shear stress ¢ acting on the slip plane at a distance

z' from the center of a dislocation moving with the velocity V
b 2 2 2, .
20"+ vy F vy Tyt rrs trgn )
2“5’ (II-l)

+E0p1ar3(ry + vy +vg) = £ Hlryptro) (ratrg) (e )

is g = -

vwhere b 1s the Burgers vector and

0112

AL I ORI o B ¢ &
o’

f2 = o“'pvz/(c“' -sz) .e . . . . ' (II.Zb)
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! '
= B2 ' 2093 ¢ 4
£, = : (c“ + 20, +pV2) + __’(033 -pvz)
) 2 ¢y
{
! c13 ‘ !
| P ey -y
11
[ ! [
013l

>

— (c66'c13l + 066'04/..’ - 2611:2) _ 066’(°33"pv2) (11.20)

cu'
and v,%, v, and v,° are the three roots of the cublo equation
given by Eqn. (1.8).
RESULTS FOR IRON

In Teble I.1 are listed values of these elastic constants
for iron calculated from data of Seits and Read given in Hearmon's
review article (1946).

These values were used to calculate these roots of equation
(I.3), which are tabulated in Table II.2.

The limiting dislocation velocity is found to be 0.94lc,
where ¢ = »/(;“'/p) = the velocity of shear waves in a <111>
direction in a cubic crystal.

The limiting velocity of dislocation motion in iron is
smaller than the shear wave velocity in the direction of
dislocation motion. The possibility that the dislocation motion
may be limited to a velocity smaller than the shear wave velocity
first was pointed out by L. J. Teutonico (1962a, 1962b, 1962¢).

The shear stress on the slip plane, plotted in Fig.lI.l
was calculated from equation (I.1) by using the values of the

18
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TARLE 1.1

Elsstic constants of iron (in wnits of 107 dyn/in2.)

1 12 %14
23,7 14.1 11.6

] ] I [ { ] [
‘n 33 %12 13 44 66 °L
30.5 32.8 11.8 9.56  7.06 9.33 3.40

19



TABLE II.2

OM'

0 4.T7 0.359 t 0.27841
0.1 4,61 0.325 t 0,2681
0.2 YA 0.277 £ 0.,2501
0.3 4433 0.226 t 0,2311
0.4 4.18 0,180 = 0,2131
0.5 4.04 0.133 £ 0.1914
0.6 3490 0.086 ¢ 0.1691
0.7 3.76 0.038 £ 0.1354
0.8 3.62 -0,008 £ 0.09251
0.82 3.59 -0.020 £ 0,07971
0.84 3.57 -0.029 £ 0.07101
0.86 3.54 -0.,038 £ 0.05201
0.88 3.53 -0.048 £ 0.032291




TABLE 1I1.3

oV o3’
;;' o“'b
0 0.269
0.1l 0.259
0.2 0.251
0.3 0.241
0.4 0.229
0.5 0.214
0.6 0.190
0.7 0.160
0.8 0.081%
0.82 0.0568
0.84 0.00925
0.86 -0.0795
0.88 -0.315
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FIG. II.1. Plot of shear stress s on slip plane versus sz/c 1.4’
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TABLE II./
Calculated Characteristic Dislocation Velooities., *

[}

Material oy c, Ao ili
GM‘
Body-centered-cubic crystals
L4 0.809 0.803 0.006 1.042
p Prass 0.824 0.815 0.009 1.010
Na 0.869 0.855 0.014 0,965
K 0.853 0.842 0.011 0.905
aFe 0.941 0.918 0.023 0.485
W 1.000 0.913 0.087 0
Mo 1.000 0.903 0.097 -0.115
Csl 1.000 0.835 0.165 0,156
CsBr 1.000 0.895 0.105 -0.167
RbBr 04754 0.710 0.044 0.439
RbI 0.726 0.693 0.033 ~0.464
aFe(®) 0.952 0.927 0,026 0.439
aFe(P) 0.949 0.923 0,024 0.433
11(¢) 0.809 0.804 0.005 1.042

*Velocities are expressed in units of (c 44' /p)l/ 2 = transverse

sound velocity in the<111l> direction. Elastic data used in

calculations are thoge listed in Huntington's review article (1958)

for Li, K, Na (data of Bender), W, Mo, and p brasss (data of Artman

and Thompson); in Reintz's paper (1961) for CsI, CeBr, RbBr , and

RbI; and in Hearmon's review article (1946) for aFe (data of Seitz and Read).
(a) Calculated by L,J.Teutonico (private commnication) using elastic

data listed in Hearmon (1946) (data of Kimura & Ohno)

(b) Calculated by L.J.Teutonico (private communication)using

elastic data of Rayne and Chanirasekhar (1961) (footnote cont. on next page)
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roots of equation (I.8). The actual calculated values of the
shear stress are listed in Table II.,3. It can be seen that the
stress 1s positive at low velocities, goes through gero and then
becomes negative at Bigh velocities. The velocity at which the
stress is gzero is the Rayleigh wave velocity. Its value is 0.918c.
The result that the anomalous velocity region extends from
only 0.918¢ to 0.941c is in qualitative agreement with calculations
(Weertman, 1962a) made for dislocations moving in slightly
anisotropic lattices. From these calculations it was found that

a slight anisotropy (with c,,’ taken to be a positive mmber)

1
decreases the extent of the anomalous velocity region. An
isotropic crystal with the same c“'/c”’ ratio as iron has a
Rayleigh wave velocity of the order of 0.94c. The limiting velocity
of dislocation motion for an isotropic orystal is aelways o.
Hence the extent of the anomalous velocity range for edge dislocations
moving on the (110) plane in iron is 3 times smaller than that
of an 1sotropic orystal with comparable values of o “' and 033'.
Thus it is more difficult in iron to bring dislocations moving
on a (110) plane into a velocity range where dislocation coalescence
oan take place.
RESULTS ON OTHER BODY~-CENTERED~CUBIC CRYSTALS

Table II.4 indicates the principal results on calculation on
other b.c.c. orystals. This table listas the velocity o at which

tne self-energy of a moving dislocation is infinite, the velooity °,

(footnote continued from previous page)
To) Calculated by L.J. Teutonico with elastic data listed in

Huntingtan (1958).
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(the generalized Rayleigh wave velocity) at which the shear stress
on the dislocation slip plane is zero, the difference between

these velocities Ac = 0y = Cu» and the ratio of the elastic conatant

[} ]
cyy /e m
coordinate system. The ratio ¢y 4' /c 44' is a measure of the degree

where ¢y 4' and ¢ 44' are elastic constants in the rotated

of anisotropy of the elastic constants. The quantity cu' is equal
to zero for an isotropic material. Listed in Table II.4 are the
results of calculations by Teutonico on alpha iron and lithium.

In the velocity range from c. to cy dislocations on the
same slip plane of like sign attract rather than repel one another.
In this velocity range dislocation behavior is anomalous.

From calculatlions of the effect of a slight anisotropy
(Weertman, 1962a) on the extent of the anomalous velocity range
it was predicted that when cll,l is positive, an increase in the
anisotropy decreases the anomalous velocity range,whereas if cu"
1s negative, the anomalous runge increases. An inspection of
Table 11.4 reveals that crystals with a positive cu' do have a
smaller Ac than tungsten, which is an almost isotropic material.
The crystals CsI and CsBr,which have a negative cu' ,have a larger
Ac than tungsten. However, RbBr and Rbl, which are more anisotropic
than CsI and CsBr and which algo have a negative 014' , have a smaller
Ac than tungsten. It 1is clear that the results of the slightly
anlgotropic calculations cannot be extrapolated to large values
of anisotropy and that there is a 1limit to the extent to which

anisotropy can widen the anomalous veloclity range.
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CHAPTER V. Fest Moving Edge Dislocation on the (111) Plane in
Anisotropic Face-Centered-Cubic Crystals

This section considers the problem of edge dislocatiomns
moving uniformly in anisotropic face-centered-cubic crystels.
Considered is the ordinary edge dislocation of face-centered-cubic
crystals which lie in a (111) plane parallel to a <112> direction
and have a Burgers vector in a <110> direction. In the following
section the elastic displacement field of this type of dislocation
will be determined and also the shear stress on the dislocation
8lip plane. The anomalous velocity range can then be determined
from this shear stress.

ELASTIC DISPLACEMENT FIELD

The coordinate system is adopted in which the x axis is parallel
to the <110> direction, the y axis is parallel to the a1 direction,
and the g axis is parallel to the <i11> direction. The elastic
constante in this coordinate system are the same as those given in
Chapter III.

Since the dislocation being considered lies parallel to the
y axis, the elastic displacements about the dislocation must be
independent of y. Since a dislocation moving uniformly with a
velocity V in the x direction is also being considered, the elastic
displacements will be a function of x - Vt, where t is the time.

If u, v, and w represent the elastic displacements in the x, ¥y,
and z directions respectively, the equations of dynamic equilibrium

reduce to the following:
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2 2 2 2 2

vza u 'a u la u ” ,a v ' , v
= + + + +
p — ¢)q — N — C4 — (013 N ) (III.1a)
ax ax 0z 0x0z axA%
a*v ,azv ,azv ,azw ’82\1
P —5=°66-—2-+°1.4—3+°14-—2+2°14— (111I.1b)
ox ox 0s ox AxAZ
2
Vzazv 62\4 " w 'azv (o " 62\1 ( )
PV ___=¢Cyq _+e,, ___+ .t (e, + o IIl.1c
5 B— W— T U—5 T 137 %
ox 0z fix ax AXDz

It 1s obvious from the results of Bullough and Bilby (1954)
that the solution of the elastic displacements which satisfies Eqns.
(II1.1) is very likely to have the form:

b 1712 Yo7 _1Y,%
__Qltan 114 atan 2+ Atan 13- (II1.2a)

c
n

/ [}
Pa x/ x x

b ]

_ Bllog(x'2 + 71232) + leog(x'2 + 722z2) + 33103(::'2 + 73232) J (I11.2b)
A g

<
n

b

4n

=
|

12 22 12 22 12 22
%1103(:: +y,s ) + Czlog(x +v,"3 ) + 03103(x tvys ] (1III.20)

vhere x' = x - Vt, b is the length of the Burgers vector, and Al’

Bl, Yy etc,, are constants. These equations contain 12 unknown
constants which must be determined. Equations (III.2) are similar
to a set which give the elastic displacements about an edge
dislocation moving on a (110) plane in a body-centered-cubic crystal.
The 12 unknown constants cen be evaluated in a manner similar to that
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carried out in the body-centered-cubic case. This evalustion has
been carried out by Weertman (1962b).
SHEAR STRESS ON THE DISLOCATION SLIP PLANE

The stress which produces a force on another parallel edge
dislocation with a parallel Burgers vector is the shear stress L

lau ov ow

6. =90, _+0o,'__+¢,,'_ (I11.3)
4 014 ox

which with eppropriate substitutions, becomes

b 3 x'
- [
Oy = L . — (c oy, Bi *+ oy c,) (I11.4)
2 1 x'“+ Y, 3

On the slip plane of the dislocation itself (z = 0) this equation

reduces to
- ?
Og = _Z (c Y 14 Bi +o, Ci) (111.5a)
2mx’ 1
which also can be written as
= U oleyy' = oV, M8, - ¢,'B c..'c (III.5b)
— 11 Y3 % 14 1 13 4

If the values of Ai

Eq.(II1.5b) one finds:

» B, and C, (Weertman 1962b) are substituted in

22 2
_® By (ry "4y T4 RY 37Ty oYy VoY 1y Yt )
Xz —

] (II1.5¢)

where
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12 ry
[} C.
L pvz - 14 - 13

b T eop - -
Cid ®33
h, =- (cu' - pvz)a.2 + 014'b2 + 013'32
-pV2 [cM'(c“‘ - V) - cu'zl
h3 =

(e = V) egg! = pV°) = oy, '

At the Rayleigh wave velocity the shear stress LI equals zero.
At velocities below the Rayleigh wave velocity L. will be positive
and above it this stress willl be negative. In the velocity range
where Oz is negative, dislocations of like sign attract rather than
repel one another. Thus, the velocity at which Oz is zero is of great
interest; the behavior of dislocations moving slower than this
velocity is normal whereas dislocations moving faster than this velocity
exhibit abnormal behavior.
LIMITING VELOCITY OF DISLOCATION MOTION

As the velocity of a dislocation increases, its self-energy
also increassa. At some velocity the self-enesrgy will become
infinite, and this velocity, therefore, sets an upper limit to
dislocation motion. It was previously noted (Weertman 1962a) that
the limiting dislocation velocity is the smallest velocity at which
one of the roots, le, first becomes zero (if all roots are real
numbers) or becomes a real but negative number (if two of the roots
are complex conjugates)., The velocities at which the roots become
zero can be found by setting Yiz equatl to zem . Thus one can
obtain the following equation:

(cge’ - sz)(cM’ - sz)(cn’ - ov®) = cu’z(cn' - V). (1IL.6)

The smallest velocity satisfying this equation is the velocity at
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which one of the roots y 12 first becomes zero. The =mallest velocity
satisfying Eqn.(III.6) is given by the quadratic equation
22 ' | 1, ¢ 12
(pV°) sz(c66 + o, ) + 4 %6 =y = o (III.7a)
whose solution is
2 2 2oy 4o - — eyl (11z.75)
= (o) +ogg) = oy, -
ah
'

if N 1s positive (°66' >ec “') this equation can be written as

sz = c“' - cu' - 14’ /f= °66' -/2014' (I11.7¢)

pV

If c),’ is negative (o, > cy/')

sz = °66' + cu' ~/:’2 = c“' +ﬁ cu' (111,7d)
The velocities 8 and s,, of the two shear waves in Q10>
direction are (Waterman 1959)

(c,“‘/p)l/2 (1I11.8a)
Eon - 012)/;] 1/2 (111.8b)

In terms of ¢ “' , °66' , and cu' these equations become
1/2
Ec“' +ﬁ c]-4‘ )/p}

-] 1/2
kc“l - cul/ﬁ)/p]1/2 E°66' _/—2 014')/P / (III.Bd)

1f cu' is positive, s, is the slower shear wave velocity, and if

%

)

8 ‘_(c66' + 014'//—2)/& 1/2 (111.80)

82

014' is negative, s, is the slower. From Eqns. (III,7¢c) and
(IIL.7), 4t can be seen that a root y,° first becomes gero at the

slower of the two shear weve velocities in the <110> direction. In
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the slightly anisotropic case the roots 1'12 are always positive mmbers
when the dislocation velocity 1s less than either 8, or s, but is

not too close to zero. Hence, for this case the slower of the two
shear wave velocities is the limiting velocity of dislocation motion.
In the general anisotropic case, two of the roots can be ocomplex
conjugates and the dislocation limiting velocity will be the smallest
velocity at which either complex conjugate roots turn into a

negative mumber, or a root becomes equal to zero.



CHAPTER VI. Calculations for Face-Centered-Cubic Crystals

In Chapter V an equation was derived which gave the shear
stress acting on the slip plane of a moving edge dislocation in an
anisotropic face~centeredecubic lattice. This section presents the
results of numerical calculations of the shear stress on the
slip plane using that equation. The metals which have been
investigated are aluminum, copper, gold, silver, lead, and nickel.
These calculations are complementary to those on body-centered-cubic
crystals,(Chapter IV)

Table IV.1l, 1lists the elastic constant data used in the
calculations. These data are taken from Huntington's review
article.(1958).

In Table IV.2 are listed caloulated values of the shear
stress on the slip plane at various velocities. These shear stresses
are plotted as a function of dislocation velocity in Figs. IV,1 and
IV.2. The most striking result contained in these figures and the
table 1s the extreme narrowness of the velocity range in wiich the
shear stress is negative. (It is in this range that dislocations
of like sign attract ome another, and thus dislocation coalescence
can take place). Alumimum, however, is an exception; here there is
an appreciable velocity region in which the shear stress is negative,
Aluminum has such an extended anomalous region simply because it
is an almost isotropic material.* It is known (Weertmen, 1961) that

*Huntington 1lists another set of elastic constants for aluminum which

are slightly more anisotropic than those used in the present paper.

We carried out calculations using this more anisotropic data and

concluded that the anomalous region is not appreciably reduced in aifu. 1/2
It was found that ¢ = 0.944 and Ve = 0.919(in velocity units of (o“ /p) *
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TABLE IV,1
Elastic constants of metals® (In units of londynes/alz)

n Cu A Pb Ni Ag
ep  10.8 16,8 18,6 466 2.7 124

o, 6.13 12,1 157 3,97 LT 9.3
W 2.85  T.54 420 luh 125 4.&

! 11,3 22,0 2.4 5.73  32.2 15.5
' 11,5 23.8 22,3 6.09 3447 16,5
e, 2.50  4.08 2,37 0.73 Tobb 2,56
°66' 2,68 5.81 3.28 1.08 9.97 3.58
e, 5,96 10.4 148 3.56 12.2 8.3
¢4 5,79 8.68 13.9 3.2 9.72  7.29
! 0.24 2.45 1.30 0.50 3.5 1.45

(2]

a Data teken from Huntington (1958)
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TABLE 1IV,2

Caloulated values of the shear stress on the slip plane at
various velocities.

Nickel

sz ox’

°—1.:' by, !
0 0.263

0.1 0.255

0.2 0.246

0.3 0.236

0.4 0.223

0.5 0.204

0.6 0.161

0.64 0.0883
0.65 0.0368
0,66 -0.123

04665 -®



TABLE IV.2 (Contimued)

Lead

PV2 _f_'_r_
% i)

o 0.324
0.1 04317
0.2 0.310
0.3 0,301
0ud 0.286
0.5 0.186
0,505 0.119
0.507 0.0418
0.5075 =0.00348
0.508 -0.0724
0.50928 -
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TABLE IV.2 (Continued)

Gold
V2 _f_x_:__
4 by
0 0.3%0
0.1 0.325
0.2 0.315
0.3 0,205
0.4 0.301
0.5 0.271
0.6 0.147
0.608 ' 0.0225
0.61275 - @



TABLE IV.2 (Contimued)

Alumimm

0.1

0.2

0.3

0.4

0.5

0.6

G.7

0.8

0.87

0.9

0.93303

3

0.255

0,247

0.237

0,226

0.213

0,197

0.176

0.144

0.099

~0,0103

=0,156



TABLE IV.2 (Continued)

Copper
oV _t_’::_
D s,
0 0.313
0.1 0.312
0.2 0.306
0.3 0.300
0.4 0.291
0.5 0.261
0.56 0.161
0.57 0.093
0.572 ~0.00370
0.574 -0,119
0.57591 - @



TABLE IV.2 (Continued)

Silver

V2 dx'
O BT

44 44
0] 0.316
0.1 0,310
0.2 0.304
0.3 0.296
0.4 0.286
0.5 0.268
0.58 0.212
0.59 0.133
0.595 0.0134
0.59839 -®
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an extensive anomalous velocity region exists in isotropic materials.

A slight anisotropy usually decreases (Weertmen, 196%a,1962b)
the anomalous velocity region. Therefore, it is not surprising
that the anomalous region is decreased in extent by a large anisotropy.
A reduction was found in the case of alpha iron (Cotner & Weertman,
1962a, 1962b) which is a strongly anisotropic body-centered-cubic
metal. However, the degree of decrease in the strongly anisotropic
fce metals is much larger than it is in elpha iron, To illustrate
this point, Table IV.3 lists the velocity at which the anomalous
reglon starts (vr = the Rayleigh wave velocity) and ends (¢ = the
velocity at which the dislocation energy is infinite).

From Table IV.3 it is clear that to bring an edge dislocation
into the velocity region in which dislocation coalescence occurs
would be more difficult in the case of strongly anisotropic foc
metals than of strongly anisotropic becc metals. It would be
tempting to ascribe the greater case of fracture of bec metals
to this difference. However, the fact that alumimum has a large
anomalous region and yet appears to be ductile down to low

temperatures, presents a serious difficulty to such a theory.
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TABLE IV.3%

Metal c Ve
aFe 0.94 0.92
A 0,966 0.933
Cu 0.759 0.756
Au 0.783 0.780
Pb 0.714 0.712
Ni 0.815 0,806
Ag 0.774 0.771

a Velocities are expressed in units of (o “'/p)l/z
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CHAPTER VII: Dislocations Moving Uniformly on the Interface
Botween Two Isotropic Media of Different
Elastic Properties.

The problem of a dislocation moving on the interface separating
two media of different elastlic properties is interesting both from
the theoretical as well as the practical viewpoint. Diffusionless
transformations in crystals probably involve dislocations running
on the interfaces between transformed and untransformed material.
Since the amount of enesrgy released in such transformations may be
large, high dislocation velocities are to be expected. In fact,
Eshelby (1956) has proposed that dislocations may run at supersonic
velocities in diffusionless transformations.

A dislocation running on a transformation interface is moving
on an interfacd which separates two materials of differimg elastic
properties and densities. It seems worthwhile to bbtain the solution
of the stress field about such moving dislocations. This section
will attempt to solve the problem for the simplest case: that in
which the two elastic media are isotropic. (The assumption of
isotropy precludes a treatment of the twinning dislocation. In
isotropic materials a twinning dislocation is merely an ordinary
dislocation. However, the analysis may have some qualitative
application to twinning dislocations in anisotropic material,)
Because the supersonic velocity range may be of practical importance
the dislocation behavior in this velocity region will be considered

qualitatively., Consideration is based on the elucidating analyses
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of supersonic dislocations by Eshelby (1956) and Stroh (1962).
THEORY

The solue¢tion of the problem being considered can be obtained
by exbending the known solutions of dislocations moving in isotropio
material (Eshelby, 1949; Frank, 1949; Leibfried and Diets, 1949 ).
Consider a coordinate system in which a dislocation line lies
parallel to the x axis and moves on its slip plane in the x direction,
Lot ), Ay, and p) represent the Lame” constants and the density
of the material above the slip plane (y > 0), and tos Ny and p,
the same constants for materials below the slip plane (y < 0). In
a moving screw dislocation the following equations of dynamio
equilibrium have to be satisfied:
2 azw 1 62w

+ = i (v.1)

o oyt ¢y ot?

vhere 1 =1 or 2, vy and W, are the elastic displacements in the gz
direction above and below the slip plane, ey = (p.i/pi)l/ 2 = the
transverse sound velocity in each of the two media, and t stands
for time.

A moving edge dislocation involves the following equations
of dynamic equilibrium:

6211 62u 62v 6211
i i i_ i
(ki + 2"1) — + P'i — ()‘1+ P'i) — Pi——-— (v02)
ax" oy> axdy ot
2 2 2 2
ov v o v
( +20) 24 e\ ) _t=p—
i i 5 ) i1 i 2
ay x oxdy at
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where uy and v, are the elastic displacements in the x and y
2
directions respectively. The time differential O_ can be replaced
2
ot

2

by V2 _a_ for the dislocations moving with a uniform velocity V in..
axz

the x direction.

From the results of analyses of dislocations moving in
isotropic material we anticipate that the solution of Equns. {V.l)
and (V.2) for moving dislocations will be:

(a) Screw Dislocation

b Byy
= =1 i
v, = _ |G tan — |+ E (v.3)
2 x!
(b) Bdge Dislocation
b Yy %4
- -1 "1 -1 "4
w = A tan™ __+B, tan ___ | +F (V.4a)
2 x' x'
b
2 22 2 22
v, F [Ci log (x'“ + TR ) + D, log(x’'“+ By )| + H, (Ve4b)
A ]

In these equations b is the length of the Burgers vector, A:I.’ Bi’

etc., are constants, j§, = (l—Vz/c 2) 1/2, Y, = (1-V2/c)' 2) where
i i i i

& = [()-i*'%li)/Pi] YVa _ the longitudinal sound velooity, and

x’ = x-Vt where V is the velocity of the dislocation. (The constant

H, is edded merely to make Eqn. (V.4b) dimensionally correct. The

constants Ei and F, are added in order to match suitably the

i
elastic displacements wy and u, across the interface y = 0, Since

only the differentials of the displacements are important the
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constants Ei’Fi and Hi can be ignored).

One should note thet at velocities such that p, (or v,) is
en imaginary number the arc tan of B iy/x (or Y1Y/x ) can also be
written as _I_ <1 logh(x"+ Ipily)/(x' - lpily)l + a constant.

The evaluat:igon of the congtants for the screw and for the edge
dislocations are considered separately in the following sections.
SCHEEW DISLOCATIONS

The constants G, of equation (V.3) are simple to evaluate.
If a complete circuit is made around a dislocation the elastic
displacement must change by an amount equal to the Burgers vector.
Thus from the properties of the arc tan function it is evident that
G, + G2 = 2 when the disleeution velocity V is less than either

1

cl Or C,e Another equation in Gl and 62 can be obtained from the

condition that the value of the stress must be contimious across

the slip plane. Thus at z = 0 the stress o_, must satisfy the

2
condition (°y2)1 = (dyz)z. Now ’
'
oy = wyl byu 0 00 (v.6)
oy 21 x'% 4 ] 12y2
Therefore
1yGyf) = wloby (v.7)

The only other stress which exists around the screw, mamely Oy’ is

given by:

v, pb  GB.Y
(dxz)i = "Li 1 - - i ... -i i (V.B)
ox 2 x4
e

b1



and is equal to zero on the slip plane regardless of the values of

Gl and 02.
A solution of equations (V.5) and (V.7) results ini
%P
Gl = (VQ93)
PPy + 8Py
and
%18y
G, = . (V.9b)
b1Py B

Equations (V.9) and (V.3) give the solution of the elastic

displacement field about the moving screw dislocation. From this

field both the stresses (eqns. (V.6) and (V.8))and the displacament
velocities can be found. Once these quantities are lkmown the

strain ensrgy end the kinetic energy can be calculated in the usual

manner (Eshelby, 1949; Frank, 1949; Leibfried end Diets, 1949;

Weertman, 1961)., This calculation gives for the total self-energy

E of a screw dislocation moving on the interface between two media

each of width R in the y direction and extending to t ® in the x direction

v? R\ 1 *‘2522 mby?
E J.Og - 5 + (V.].O)
2 b (plﬁl + }‘252) pl pz

As would be expeoted this expression becomes infinite at the slowest
of the two transverse sound velocities (i.e. when pl or 92 is equal
to gero,)



SUPERSONIC SCREW DISLOCATION

Two~dimensional supersonic dislocation were treated first
by Eshelby (1956)*. Stroh (1962) later more generally treated
supersonic dislocations moving in anisotropic media., The main
difficulty encountered in analyzing supersonic dislocations is
the occurrence, when linsar elasticity theory is used, of infinities
in the equations. This problem occurs, for example, in eqns. (V.6)
and (V.8) at a velocity so large that P, is an imaginary mumber,
According to these equations the stresses are infinite along the
planes x'? = ﬂizyz. Stroh (as well as Thomson (1961)) points
out that these infinities actually do not occur. Because of the
discrete atomic nature of a crystal lattice, only finite stresses
and finite energles can exist, It could be assumed that linear
elasticity theory holds only for those stresses whose "effective
shear stress" T ( defined, for example, by Nye (1957) as the square

1) ()2 |
root of 2%.1 (dij) where ¢ 13 dij Bbijokk’ bi.‘i is the Kroneker

delta, and ¢ 13 is the usual stress component) does not exceed the
value Ty Screw dislocations when only the stresses °yz and O

are present may be expressed

2
g 22 + ¢ 2z + % (v.11)
y x

The breakdown in linear elasticity theory in supersonic situations
occurs along the planes x' = % | ﬂi | y when pi becomes imaginary,.
These discontinuities in the displacements and stresses are the
plene waves which Eshelby and Stroh have shown must exist in order
to maintain a supersonic dislocation.

Figure V.1 showa schematically the behavior of the Eshelby=Stroh

*One-dimensional supersonic dislocations were studied earlier by
Frank and van der Merwe (1950)
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discontimuity planes as the velocity of a screw dislocation is
increased. The lines in this figure represent the region where the
stress equals the maximum stress T For velocities less than %
the stress 1s equal to L only in the core region. At the velocity
cy the Eshelby-Stroh discontimuity appears. The normal to this
discontimity, which moves with the velocity ¢y is in the direction
of the dislocation and hence the discontimiity dissipates no
energy to the crystal surface. At a somewhat greater velocity
two E-S discontimuities appear. The directions of their normals
are different from the direction of dislocation motion and hence
surface tractions are required to maintain the discontimuities.
If suitable surface tractions are not applied, the dislocation
still can run but the slip plane must be able to give up energy.
It could do so either if an external shear stress is applied to
the crystal or if the slip plane is slso a transformation plane
which gives up energy as the dislocation rums along it. When no
surface tractions are applied the E-S discontimuities which are
ahead of the discontimuity behind the dislocations will ocour.
This E-S discontimuity sends energy out to the orystal surface
and an equal amount of energy must be supplied at the dislocation
core if the dislocation ie to contimue to run.

It is simple to obtain an estimate of this energy
dissipation, The E-S discontimuity, which is expected to leave
a width of the order of the atomic spacing, has assoclated with

1t an energy per unit area of the order of 'rob. The discontimuity makes an
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angle with the surface of the order of ten > |1/p,|. When s
unit length of dislocation moves a unit distance,an amount of
energy equal to 16b|pi| is dissipated and thus the E-S discontimuity
produces a retarding stress L equal to

o,s.yo|p1] (v.12)
Since r, is the theoretical shear stress, it seems to be impossible
to get to stresses much above f 2 ey At greater velocities the
retarding stress is greater than the stress which the slip plane
can support.

Because of the retarding stress 9.0 it may not be possible
to bring a dialocation from zero velocity gradually up to and

beyond the velocity Y if the velocity c, 1s much smaller than

1

c Equation (V.6) shows, however, that if the dislocatiion is

X
set running at the velocity Co» the displacements above the slip
plane can be set equal to zero. An E-S discontimuity thus exists
only below the slip plane, as shown in Fig.V.l., Since the normal

of this discontimuity is in the direction of dislocation motion,

no energy dissipation is involved and the dislocation can run
without energy diseipation. (Other energy dissipation mechanisms,
such as that due to dispersion (Eshelby, 1956,) will still operate.)
The velocity ¢, thus is singular in that the dislocation again acts
like a subsonic dislocation. This type of singular dislocation
velocity in the supersonic region was first noticed by Eshelby (1949)
for edge dislocation. This type will be considered again in

the next section on edge dislocations, Eshelby's singular

52



dislocation velocity probably approximates the velocity at which
diffusionless transformations take place. It represents a fast
dislocation velocity at which energy dissipative processes from

the E-S discentimuities are minimized, (Of course other dissipative
processes still can occur.)

Above the velocity c, the E-S discontimiities reappear above

2
the slip plane, as shown in Fig. V.l.
EDGE DISLOCATION

The problem of an edge dislocation moving on an interface
separating two different elastic media is more complicated but
more interesting than that of the moving screw dislocation. The
constants appearing in Eqns. (V.4) for the elastic displacements
are simply evaluated. If Eqns. (V.4) are placed into Eqns. (V.2)
one finds that C, = vyb (V.13a)

D, = B, B (V.13b)
The condition that the displacements describe an edge dislocation
gives the equation

A +B + A +B, = 2 (V.14a)
The condition that no line forces act at the dislocation core results
in

2 2 -
p.l(Alo.l + Bl) + ,;2(112a2 + Bz) = 0 (V.14b)
2 _ 2

vhere a,” = 1-V2/2ci
The requirement that the stresses be contimious across the aslip

plane produces the equation
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b0y + o8 7B = lrhy + 0B, 71B) =0 (Valko)

Finally, the condition that the elastic displacements be continuous
across the slip plane gives

At 51_151 -k, - ﬁ:2-113:2 =0 (V.124d)
When Eqns. (V.14) are solved for A, etc., one obtains
2 2 2 2
h= B a3 halBy%" = ka007) + 1oy (B
1¥2
(V.l5a)

2 2
M PR L b B S LR ) )}

2
- 2, 2
B = —-—{*1"2“2 (k2™ = 1) 4 ¥y¥aoBoluy = up)

8B, (V.15b)
20,2 _ 1
* Yooty M ey -

where
1

R . & L R A LT W)
Prf2
+ gy * ugrd (gBy + ) = 1yYohyBoliy = wg)

2 2 2 2
= iaig(By + B (¥0" + v5917) + 0y s (Byr, + Bory)

+ 51*1“22“24 + "2*2“12“14}

To obtain A2 and 82 one merely interchanges the subsoripts

1l and 2 in these equations.

STRESS ON THE DISLOCATION SLIP PLANE AND THRESHOLD DISLOCATIONS VELOCITY
With these values of the constants Ai, stc., one obtdins the
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following expression for the shear stress dxy acting on the slip

plane,
by 2 4
"W = Tz(l ) )P-l(Ylpl -4 )
px BlﬂzA

(v.16)
+ Yl(l'alz)Pz(szz - 0-24)}

It has been found from a study of edge dislocations moving in

an isotropic material (Weertman, 1961) that as the dislocation
velocity is increased the shear stress on the slip plane decreases
until it becomes zero at the Rayleigh wave velocity. At greater
velooities it increases with increasing velocity but has a
negative value. For the type of dislocation under considerations
the velocity at which the shear stress on the slip plane goes

to zero can be found by setting Eqn. (V.16) equal to zero. The

following equation is obtained:

2 2
$ p
— (vy8, = a9+ 2 (vs8, - e =0 (v.17)
"1°1 Y22

The veloeity which satisfies that equatlon is the threshold

velocity (Teutonico's term (1962b)) sepurating the region of

normal dislocation behawior (in which dislocations of like sign

on the same slip plane repel one another) from the region of

anomalous behavior (dislocations of like sign attract one amother).
The equation 1,8, - ail' =0 (v.18)

determines the Rayleigh surface wave velooity in the lsotropic

medium above or below the slip plane. Henoe one can see from
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Eqn. (V,17) that the threshold velocity lies between the Rayleigh
wave velocitles of each mediums The threshold velocity defined
by Eqn. (V.17) is pot equal to the Stoneley wave velocity*, contrary
to what one might have assumed from the fact that the threshold
velocity is equal to the Rayleigh wave velocity when the elastic
properties and densities. of the two media are identieal,

It 18 not always possible to find a velocity which sabisfies
Eqn. (V.17). Figure V.2 illustrates this situation for the simple
case in which the longitudinal sound velocity in each medium is
very much larger than both & and ¢, 80 that both Y, and Y, are
equal to 1 for velocities near S and Coe The densitiés in the
two medla are assumed to be equal. One can see from the figure
that the occurrence of a threshold velocity is limited to a narrow
range in the variables p, and p, ((pz/pl)l/z varying from 1 to
1.193). If uz/hl is outside this range the anomalous velocity
reglon cannot exist.
SUPERSONIC EDGE DISLOCATION

Above the slower of the two transverse sound veloclities the
edge dislocation is in a supersonic region. As in the case of a
ascrew dislocation Eshelby-Stroh discontinuities will arise along
the planes x' = #| Yy |y when Yy also ie an imaginary quantity.
The behavior to be expected is shown in Fig. V.3 for the case #&n

which ch2>°k1>°2°1’ There are no discontinuities below the

#Stonely waves (Ewing, Jardetzky, and Presa, 1957) are the surface

waves which propagate along an interface separating two semi-infinite
media of differing elestic properites. They are simply a generalisaiion
of the Rayleigh wave which propagates along a free surface,
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velocity cy except at the dislocation core. At the velocity )
and E=»S discontinuity occurs whose nmormal is the direction of
dislocation motion. In contrast to the case of the screw
dislocation, the stresses about an edge dislocation in the upper
plane are (when linear elasticity is applied) infinite every-
where rather than in a region limited to the plane x' = 0.
This infinity in energy is thus of a different kind from that
of a serew dislocation., Stroh has pointed out that the difference
is due to a resonance phenomenon. At wvelocities between ¢, and ¢ 2
the normals of E-S discontimuities make an angle with the direction
of dislocation motion. The dislocation experiences a retarding
force given sgain by Eqn. (V.12). At higher velocities other E-S
discontimiities appear, as shown in the figure.
ESHELBY'S SINGULAR DISLOCATION VELOCITY

Eshelby (1949) showéd that an edge dislocation in an
isotropic medium can move at a velocity J —éc without eny E-8
discontimiity appearing in its displacement field. This velocity
is in a supersonic range and yet the dislocation will not radiate
energy. The reason why the dislocation can exhibit behavior can
be seen from Eqns, (V.1.) for the cases of By = Bosdy =My, and
Py = Poe In this situation Equs. (V.1l4c) and (V.14d) are identically
zero since A, = A, and B; = B,. Now B, and B, of Equs. (V.lia) and
(V.14b) could be set equal to zero (and thus eliminate the terms
of Eqn. (V.4) which contain the E-S discontimuity when ¢ < V< e)')
and still these equations may be satisfied provided the velocity
‘46 such that &) =8, = 0. Thise velocity is ﬁc. At this velooity
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no discontinuities appear in the stress and displacement field
and all of Eqn. (V.14) are satisfied.

Consider now.what happens to Eshelby's singular dislocation
veloeity in the edge dislocation being discussed. For this
singular velocity to exist, it must be possible to set any of the
Ay end B, of Equs. (V.14) equal to zero when the terms multiplied
by A, and B, of Eqns. (V.4) contain E-S discontimuities. If the

dislocation velocity lies between ¢y and Css and B., therefore,

1
is set equal to zero, Eqns. (V. 4) camnot, in general, hold

for any value of V since we have four equations in three unknown
quantities. However, it is possible for all equations to hold
if the deierminate of the coefficients of Eqns. (V.14b) through
(Vel4d) 18 zero. Thus the following equation for Eshelby's

singular dislocation velocity is:

L2 (ep,m 0t -y - e 2 aPl-aD =0 (V.19)

M 1

For the case in which Py =Py and Sy is very much larger
than both ¢ and ¢, 80 that as I e 1 for the veloocities
of interest, it is found that as p.z/pl is varied from 1 to infinity
the Eshelby singular velocity c o varies as shown in Fig. V.4.
The singular velocity can exist when p; = k.. When [ is slightly
larger than By DO singular velocity ooccurs. In the range
2 < p/2) < 4 a singular velocity does exist. Its value is almost
equal to the velocity e In ocontrast with the case &f the
Eshelby singularity in the screw dislocation, this singular velocity
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has no infinite stresses associated with it,

If il it is not possible to have a singular velocity
which is larger than both ¢y and Cye However, if By T By (but
Py is not necessarily equal to ~°2) it is possible to have a singular
velocity greater them ¢, and c,. In Eqns. (v.14) B, and B, can

be set equal to zero., When this is done, one obtains

TlAl = 72A2 (v.20)
For Eqn. (V.14b) to hold the velocity must be such that

012+ (wrl/vz)ctz2 =0 (v.21)

This equation defines the singular velocity. When Y3 5 Yy < 1

2
this velocity is given by

2 2

4e.Te bp
gt = =% = (v.22)
2 2

SUMMARY

The behavior of dislocations moving on the interface between
two different elastic media generally is found to be what one
would expect from the studies of dislocations moving in isotropic
material. The slowest sound velocity sets an upper limit (apart
from the Eshelby singular velocity) to the speed of the dislocation
since, acoording to linear elasticity theory, the energy becomes
infinite at this point. If it is assumd that a crystalline material
can support only a finite stress, it can be shown that supersonic
solutions exist. Eshelby and Stroh have polnted out this fact.
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Because of damping caused by the generation of sound waves, the
supersonic dislocation velocitles probably are limited to velocities
not much beyond /?2 times a sound velocity.

The Eshelby singular dislocation velocity may or may not
exist. Its existence depends on the values of the elastic constants
and the density in each medium. Because energy dissipation prcesses
are minimized at ths Eshelby singular velocity, this velocity could
be that at which transformation dislocations run on diffusionless
transformation interfaces. It would be interesting, therefore, to
see if fast diffusionless transformations take place in materials
whose elastic constants do not permit the existence of an Eshelby
singular velocity.

The threshold velocity separating a normal from an enomalous
velocity region also may or may not exist. It will exist only
if the two transverse sound velocities in the two isotropic medie
above and below the slip plane lie close to each other.
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