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ABSTRACT

The elastic displacement field of moving edge dislocations in anisotropic
body-centered-cubic and face-centered-cubic crystals is found. From the
elastic displacements the shear stress on the dislocation slip plane is de-
termined. The anomalous velocity range in which edge dislocations of like
sign attract one another has been calculated for a number of metals and ionic
crystals. It is found that anisotropy does not appreciably expand the anoma-
lous range.

The problem of dislocation moving on the interface separating media of
different elastic properties has been considered. The anomalous velocity
range may or may not exist, depending on the values of the elastic constants
in the two media. The dislocation self-energy is infinite at the slowest
sound velocity. Supersonic dislocation behavior is qualitatively described.
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CHAFRR 1. INTRODU~CTION

This final report describes the analysis and calculations

on fast moving dislocations that have been undertaken under

this contract. Chief interest in this field has been to study

the anomalous velocity region in which edge dislocations of

like sign attract rather than repel one another. This velocity

region occurs from the Rayleigh wave velocity (approximately

0.9 times the slowest sound velocity) to the velocity at

which the dislocation self energy is infinite. In the anomalous

velocity region dislocation coalescence can take place. This

coalescence could lead to crack formation and fracture.

Chapter III and Chapter IV describe the results found

for fast moving dislocations moving in anisotropio body-centered-

cubic crystals.

Chapters V and VI present similar work on dislocations

moving in face-centered-cubic crystals. Finally, in Chapter VII

the results are given of work done on the problem of dis-

locations moving on the interface separating material of

different elastic properties.

All of the work described in this final report has been

written for Journal articles, and has appeared or will appear

in the literature (Weertman, 1962a, 1962b, 1962c; Cotner and

Weertman 1962a, 1962b; Van Hull and Weertmuan, 1962). *

* References are listed at the end of this report.
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More complete details of the an•lysi and calculations are

given in these articles as well as in the Status Reports I

through 6. *

SStatus Reports 1 through 6 are available from A?=
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CHAPTER II SUMMARY

The main interest in this work was to see if the ancmalous

velocity region is larger or smller in anisotropic crystals than

it is in isotropic materials. From the results of numerical cal-

culations which were made for a number of metals and ionic crystals

it was found that the anomalous region is usually smaller in

anisotropic crystals than in isotropic materials. The ancmalous

region was never found to be appreciably larger than that of iso-

tropic crystals although (Teutonico, 1962a, 1962b, 196 2c,) it is

known theoretically that it is possible for the region to be very

extended. These results are similar to those reached by Teutonico

(1962a, 1962b, 1962c) through numerical calculations concerning

dislocations different from those considered here.

Since dislocation damping forces are large at ordinary

tenmeratures, it would not appear likely that dislocations would

move at velocities lying in the anomalous range. It may be

possible to have dislocations moving in the anomalous region at

very low temperatures, where dislocation damping forces become

small6, or at very high stresses such as are encountered in shock

loading experiments. If dislocations did move at these velocities,

they could contribute to fracture phenomena.
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CHAPTE In. Fast Moving Edge Dislocations on the (110)
Plane in Anisotropic Body-centered-cubic
Crystals.

In this section the problem of an edge dislocation moving

uniformly in a b.c.c, lattice is analysed. A dislocation is con-

sidered which lies in a (110) plane parallel to a <112> direction

and has a Burgers vector in a <1i1> direction. Emge dislocations

of this type are ccmon in b.c.c, crystals.

It has been pointed out (Weertman 1960, 1961) that edge

dislocations in an isotropic medium show unusual behavior

when they move at high velocity. Above the Rayleigh wave

velocity (approximately 0.9 times the transverse sound velocity)

the stress on the slip plane of a moving edge dislocation changes

sign, and edge dislocations of like sign actually attract

rather then repel one anothei-. This anomalous behavior

obviously may have importance in fracture phenomena since a

coalescence of edge dislocations can lead to crack formation.

Chief interest in this section is to investigate the effect

that anisotropy has in extending or contracting the velocity

range in which the anomalous dislocation behavior occurs.

The problem of a moving edge dislocation was first

considered by Eshelby (1949), who found the solution for the

elastic displacements in an isotropic medium. Another method

of obtaining Eshelby's solution was given later by Radok (1956).

Bullough and Bilby (1954) next considered edge dislocations

moving in anisotropic crystals. They found the solution for

the elastic displacements for the case in which the problem

4I



can be considered as one of plane strain. The dislocation

cannot be analyzed as a problem in plane strain, and a more

general solution for the elastic displacements must be found.

Fortunately, it is quite obvious from Bullough and Bilby's

work what the form of the more general solution must be.

THEORY

Since the dislocation under consideration lies parallel

or perpendicular to the crystal directions <1/1>, <110> and

<112>, it is convenient to introduce a coordinate system whose

axes run along these directions. Therefore, we shall adopt

the right-hand coordinate system in which the positive x axis

is the <110> direction, the y axis is the <112> di-i ctiou,

and the z axis is the <111> direction.

When the coordinate axes are chosen parallel to the

three <100> directions, a cubic crystal has three independent

elastic constants: cll, c1 2 and c . In a coordinate system

rotated from the cube axes the elastic constants are given by

other quantities. Hearmon(1956, 1957) has derived explicit

formulas for obtaining the elastic constants in any rotated

coordinate system. The following c ustants are obtained from

Hearmon's formulas for the coordinate system adopted in the

previous paragraph.
* II

Cll o. 121 C131 014 0 0

012 2 ell' Cl31 -Cl4c 0 0
01' 1 013 ~01 0 0

c13 013' 033 0 0
I I

O14 -0 o 0 a 44 0 0

0 0 0 0 0444

0 0 0 0 a0141 o66
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where

o.'= oll + a + 2c"),

212 4,

4334 3 . 1 12 + 4'044)

C' -13 (anz - 012 + 0"),1;

066 6 11 -c12+ ) 2= . 02

c12' = +(Ol * 5012 -2c4)t (1.2)
6

c I (o +2,2 24,)
1 f

a = 14 1 (-c3+ c2+ 2o") = 12(o3 3 ' - c-j' )

0 4 2( ' - =44 4 1 13).

It in the appearance of t '. "onstant cl41 in the zaitrix

(I.1) which makes it impossible to apply &L•lough and Bilk~y's

solution to the dislocation under study.

The equations of dynamic equilibrium, which must bes

satisfied in any problem in elasticity, are

2
2 0 2 + (su=ed on jk, l,),..(I.3)

at 2 axi xj

where p is the density of the crystal; t is time; x, etazdLe for

x,y or z; ui stands for the elastic displacements u, v an&L w in the

x,y and z directions respectively; and c' ijkl are the elastic

constants in the uncontraoted notation.

Since the dislocation being considered lies parallei to

the y axis, the derivatives with respect to y can be set ecaual

to bero; otherwise the elastic displacements would be a ftmu tion

6



of distance along the dislocation line. Another simplification

in the equilibrium equations can be made for a dislocation

moving at a uniform velocity V in the s direction. The solution

of any of the three elastic displacements ui will be of the

form ui = u, (x,s-Vt). Hence in eqns. (1.3) the time derivative

a2At2can be replaced by V (02/ 0 2)2 Equations (1.3) are

now reduced to the following set:

22 2 2 2

pV 2 = + --- +21' -+ (01' + c44') - (I.,,)

Os Ox O2 Ox8sz fds
32V 2 2 2 2

av v Ov a OuPV -- = -- +c - +c' - + 2o, -, (I.4b)

2- 2- 2o - "- ++ ) - (u

2 33 2 44' 2+ 014- + (c 13 ' + 0' ) -

8S2 Ox Ozaaxon

In contrast to the case of an edge dislocation moving in an

isotropic medium or to the problem considered by Bullough and

Bilby, it is impossible to eliminate one of these equations.

All three elastic displacements are involved in the displacement

solution.

It is obvious from the results of Bullough and Bilby

that, for the dislocation being considered, the solution of

elastic displacements which will satisfy eqns. (1.4) very probably

has the form:

U [AllOg(s2 + 2 + A+2og(,, + 7222) + A31og(s,2+y 232)] (I.5a)

7



b -1-1 -1

b
V =-- cc;tan' 1 y x +B 2 tan + B tan-i.+-1...* .

w b c1 tai1 2 Ce tan 11-1...(5)

In this equation s1 = s - Vt, b is the length of the Burgers

vector, and A.1, "l # lyI etc. are constants.

To evaluate eqns. (1.5) whioh contain 12 un wn oonstants,

it is necessary to find 12 independent equations in these oonstants.

Nine such equations are obtained )i setting ens. (1.5) into

eqns. (1.4). For example, if eqns. (1.5) are placed in eqn.

(I.•4a), the following equation results:

3r
: (,12Y.i22) I 4o - l'"/ 2 _pV2)A+ 2o14' YB-'-(c '+0" i)l 0o(1.6)

i 12 (/ 2 x 22 )2 1i

Since this equation must hold for all values of s' and x, the

bracket term containing Ai, Bip etc., must equal sero for

each value of i. Thus from eqn. (1.6) one obtains three

equations in the unknown constants. Similar substitutions

into eqns. (I.4b) and (I.4c) produce six more equations. The

mine equations so obtained are:

(o°4' " ° 'TU i - pV)Ai + 2 oU4''iBi + ypi(c3' + c4')oCi 0 o (.7a)

Y:L(0' + 0c')Ai + Ti" 2  c1'Bi - (033' -PV2 - *"'ri 2)Ci 0 (1.7)

2 ,YicL . (0"' 1- 6'yi2 2 pv2)Bi +i 24'Ci = 0 (I.7c)

(where i = 1, 2 or 3).
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Since the right-hand side of each of eqns. (1.7) is

sero, the determinant made up of the coefficients of A1, Bit etc.

muiit equal zero to permit all the equations to be valid

simultaneously. In other words, yi 2 must be one of the three

roots of the cubic equation

1 o 2 2)

- 2 2- 2 2
3 a " 66 on' "1 Y, a"•

w4her' - pV2 (4 -Y2) + on, y,4] (1.8)

- 2 OA4. -

Y , 066 #

- 2 -2 -2 (;2c 4 o'c(033' -1v 2) + o•' (oa' - PV2)\2o0

40"1+ 0.3 s2 :t ± 01'(o33' - PV2) + o,4 (e4 ' - PV2) - 1o'+-,-121 2

- 40 44' CU' (033'1 - 9JV) (0"4 1- Pv2)] 1/21

(ý2 2oresp s to the mn ,,ign , 3 2 to the plus sign.)

Equation (1.8) determines 3 of the 12 unknown constants.

EVALUATION OF THE CONSTANTS Ai, Bi, and Ci.

The constants Ai, Bi, Ci can be evaluated if all three roots
2

yl are positive real numbers or if one of these roots is a positivec

real number and the other two are complex oonjugates. Either of

these two possibilities will be met in the velocity range from

V = 0 to the velocity at which the dislocation self-energ becomes

infinite.

9



2 2
When two of the roots, say Y1  and Y2 , are complex

conjugates ( and hence y, and y2 are likewise complex conjugates)

it is only necessay., that the pairs of constants A1 and A2 , B,

and B2 and C1 and C2) also be complex conjugate mmbers to

ensure that the elastic displacements given by eqn. (1.5) are

real =nmbers.

To evaluate the nine other unknown constants appearing in

eqna.(I.5),(I.6) and (1.7), it is necessary to obtain three

additional independent equations containing these constants. So

far the condition that the disjlacements must describe a dislocation

has not been used. That is, if a circuit is made around the

dislocation line, the not displacement must equal the Burgers

vector. In eqns. (1.5) the log terms return to their original

values after a complete circuit is made arowui the dislocation

line. The arc tan terms, however, change by a factor 2fw. The

Burgers vector of the dislocation being considered lies parallel

to the s direction. Hence it can be seen from eqns. (1.5) that

the following two equations must be satisfied

C1  + C2 + C3 = 1 . • • • (1.9)

and

"B1 + B2 + B3 0 . . . . (I.lO)

Only one more equation is needed. It is obtained from the

condition that point forces must not exist at the core of the

dislocation. To eliminate the point forces it is first necessary

to determine the stresses produced by the elastic displacements

of eqns. (1.5). The following set of equations gives the stresses

10



1ij in the coordinate system being used if all derivatives with

respect to y are zero:

X~ 014 t+0. A +60 0131A'
u as - + Jj ONa

oXY oll M + on' 1 .O'

,M + c s't aI0x C44' +0140 + 4 '

•y a =e -U+ c4 ID
YZ 14 ax a.0.

zs 13 ax 33 6.'

0 C ID .x+ c INyy 12 ax" 14 a 13 z"

To ensure that no point force acts at the core of the dislocation

in a direction perpendicular to the slip plane, it is only necessary

that o dS ( =12)

If this integral were not equal to zero a point force would have

to be applied to the core of the dislocations. The magnitude of

this force would be equal to the integral. 14hen equn. (1.5) are

substituted into eqn. (1.11), one obtains the following expression

for axx

d 4 r = (9 L ~ 2>2 Lu0~ 1 4 
1Bi - c13 1C ] (1.13)

Equation (1.14) is the result of substituting this expression into

eqn. (1.12) (and also of using eqns. (1.9) and (I.10)),

Yl_ + YA2 + *3A3 - .... (1.14)
ol

3. 1
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We nov have a sufficient nmber of equations to determine Aip Di and

Ci. Equations (I.7), (I.9),(I.1o) and (1.14) can be rearranged into

the following three sets of equations, from which It is possible to

determine all the constants Ai, Bi and Ci- The summation in these

equations is fromi = 1 to i = 3.
SBi = 0, to ..o ... .. 0 .. .0 o.0 ... ... 0 (I.15a)

B i2 =c14'( ' + PV2 )

Bi/7 = (c14 2 033 -pV 2 13 (o 44 " - 01.1). (I.150)

044'066 1 - 01 $ 3.

i = 1, a.s* a... . Go* ... ..... .. (I.16a)

" 1'( 13'+ pV2 ) 2' * * 0* * (LI16b)

(0 33'1 - V2 )(c 4' -•V2

,,52 =.....0 o f* too o o oo (Io)

~~:~ i/i-P.V2 .(I1)

= 2 .c ..- PV2) + 0 332 -13' P4+. 2

1 2,1 (44 1 + C4 Cy (1.17o)
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B1  a c(y 2 
2 _ r 2 )(bjy1 

2 + b 2y1l
2y ,2 

2y 3
2), 00.........Ila

B2= ac(y 32 _- y2 )(bjyr32 + b r2yl 2 2Y3 2), ..*s.......(l)

whore = (y 12 _Y 2 2 )(Y32 - Y2 2)(Y32 _-Y i2 ,

b 2  = Biy

b3= Bjj

C1  -=Tcy 3
2)(g3T1

2 + g~y1
2y 2

2 Y32 - y2 22- y1 
2 Y3 

2 ) (I.19a)

0 2 = c(y3 2 _-1)g~ + girl2Y2 2 Y32 - Y2 2yl2 - Y, Y (I.i9b)

c c(y1 
2 - Y22)gy ~l2 Y22 3 2- Y3 2 1 - 1T3 

2y 2 ), (1I019c)

where

g2 = Ciyi

A,1 = cy'r1 (Y2 2 _ Y3 
2)(ajy 1 2+ a"91 2 Y2 3 2- alyl 2 (Y22 + 3,2 ))v (I.2Da)

A 2  = cy2 1(y3 
2 _ Y1

2) (a3 r2 2 + a2yl
2y2 

2Y2 
2  - alY 2(y 2 + 2)), (I20b)

A3 = 'cY3 1 (Y1
2 _ Y2 

2)(a 373
2 + a2 1 

2 Y2
2 Y3 2 - ýl32 y + y 2 

2))# (I.20c)

where

a.1 = '13' Clion

a 2 = Ai y9

a 3 QAiyi3 .
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A consideration of these equations will show that it is indeed true

that when y1 and y2 are complex conjugates, the constants A, ad A2 ,

etc., also are complex conjugates. Equations (1.18), (1.19) and (1.20),

along with eqn. (1.8), give the general solution of our problem in the

velocity range from V = 0 to the velocity at which the dislocation

self-energy becomes infinite.

SHEAR STRESS ON THE DISLOCATION SLIP PLANE

Of all the stresses around an edge dislocation, the stress

whiuh is of primary interest is that stress which produces a force

on another edge dislocation with a parallel Burgers vector. This

force is d Xzb, where b is the Burgers vector. Hence 6Xz is the shear

stress of greatest interest to us. This stress can be found by

substituting eqns. (1.5) into eqn" (I.11). One obtains

b 3  a,

x1 - - - 2 + Ti 2 x (c 'Ai + yic,4'Bi + yic"'Ci ) (I.21a)

The shear stress on the slip plane of the dislocations itself (X=O) is

-d )u- b (c 'Ai + yio'Bi + y c CI ;) (I.21b)('z ~X--°: 2fs" 1

In the case of a stationary or slowly moving dislocation this stress

can be expected to be positive for a positive edge dislocation.

Slowly moving dislocations of like sign and on the same slip plane

repel one another. It is known (Weertman 1961) that an edge

dislocation moving in an isotropic medium experiences a shear stress

on its slip plane which decreases with increasing dislocation velocity,

and which actually can change sign. In the velocity region where the

14



sign of the shear stress has been reversed, dislocations of like

sign attract rather than repel one another. The velocity separating

this region of abnormal behavior from the normal region is that velocity

at which the shear stress is exactly equal to zero. This velocity

turns out to be the Rayleigh wave velocity.

To ensure the existence of an abnormal region in which

dislocations of like sign attract one another it is necessary only

that eqn.(I.21b) goes to zero at a velocity lower than the velocity
2

at which one of the roots yi is equal to sero or at which two of

the roots become negative. The velocity at which eqn. (L.2b) is

equal to zero is the velocity for which

0 ý'cjAi + yic'4Bi + yic''Ci ) : 0 .. . . (I.22a)

The velocity satisfying this equation is the velocity at which a

generalized Rayl igh wave would travel on a (n1O) plane in a <11D

direstion. Since the shear stress d in general, is not equal

to zero in the dislocation slip plane, an actual surface wave cannot

propagate on a (110) plane in a <111 direction in an anisotropic

crystal.

Equation (I.21a) can be simplified somewhat through the use

of eqn. (I.7b). If the latter equation is divided through by yi and

then sunned from i = 1 to i = 3 and the result substituted into

eqn. (I.21a), one obtains

[ [l3eAi - (0 3 3 - pV2) CIYi-1i= 0 . ... . (.-2b)

This equation has the advantage that all the Bi constants have been

eliminated. If eqns. (1.19) and(I.20) are substituted into eqn. (I.22b)

the following equation results,

15



f1(y1 2+ 2 2 + y32 + Y1Y2 + ¥2Y3 + Y3 T1 )

+ f 2Y",Y2Y3 (Y1 + + Y3 ) - f3  0 o ... *.. ... (I.o22c)

where 2

fl= 01 3 
1a1 -( 3 3 ' 332 

--- (

1 a (a V2Oh !aPV2

f2 = a 1 3 a2 -1c - pV3g 2  = - pVT2  '

12

f3  = 13
1a (3 - pV2)g3  ,2 131 + pV2)

_ (33' - pV ) + (c131 / 01)("1 - 013)•

+2( 033' -' pV2) Z12166' I2j

I"• o°6 ]•il 0,06 C1412,• • ..L + 66'4' - 2-c4'2  
- c661(c 33 ' - pv2) ]

The principal goal of this section was the drivation of eqn.

(I.22o). With this equation, one can investigate the effect of

anisotropy on the extent of the velocity region in which anomalous

dislocation behaviour occurs. For an anomalous velocity region

to exist it is necessary, of course, that the velocity which

satisfies eqn. (1.22) is smaller than the velocity at which the
2

roots Y2 first become sero or negative. The dislocation energy

is infinite at this latter velocity and hence it is the limiting

velocity of dislocation motion in normal circumstances. In Chapter

WYresults of numerical calculations using Eqn. (1.22) are

presented.

16



CHAPTER IV. Calculations for Body-Centered:-Pubic Crystals

This section presents the results of a numerical calculation

of the shear stress on the slip plane of an edge dislocation

moving uniformly in a body-centered cubic lattice. The dislocation

considered is moving on a (110) plane in a <111> direction.

The primary concern is to investigate the extent of the anomalous

velocity region in which the shear stress reverses sign and

dislocations of like sign attract one another. This anomalous

behavior of the dislocations, which leads to a coalescence of

fast moving dislocations, may be expected to be of importance in

fracture phenomena. Iron, therefore, is logically the metal to

study.

In the previous section, formulas were developed which

permit the calculation of the shear stress on the slip plane

of an edge dislocation moving on a (10) plane. It was found

that the shear stress d acting on the slip plane at a distance
zI from the center of a dislocation moving with the velocity V

b fl(Yl2 + Y +2 2 + 4rl 2 + T2Y3 h' )

is l 2 +--3
2w.' (II.l)

+ f2Y1Y2Y3 (Y1 + Y2 + Y3) - f 3 +(yl+y2)(y2+y3)%(3+r 1 )

where b is the Burgers vector and
,2

f 013 "(o33' - PV2) . . . . . . . (II.2&)
011

f2 0,4 -P2( 44.. (11.2b)

17



ci o,.'2 (+'2z.' p2 2o1i,'

f K ' + 2c' -+ (C:33: " PV2)
Oll $2 O11'

+7 , 4/0C3

a -: (c1'313' + 1'4' - 2014s2) - I '(CV3 '.V 2 ) (I1.2c)

and y1 -' 2 and y2 are the three roots of the cubic equation

given by Eqn. (1.8).

RESULTS FOR IRON

In Table I.1 are listed values of these elastic constants

for iron calculated from data of Seitz and Read given in Hearmon's

review article (1946).

These values were used to calculate these roots of equation

(1.3), which are tabulated in Table 11.2.

The limiting dislocation velocity is found to be 0.941e,

where c = .(o41p/) = the velocity of shear waves in a <111>

direction in a cubic crystal.

The limiting velocity of dislocation motion in iron is

maller than the shear wave velocity in the direction of

dislocation motion. The possibility that the dislocation motion

may be limited to a velocity smaller than the shear wave velocity

first was pointed out by L. J. Teutonico (1962a, 1962b, 1962c).

The shear stress on the slip plane, plotted in Fig.II.l

was calculated from equation (I.1) by using the values of the

18



TABUE 1.1

Elastic constants of iron (in units of l01dyq/in2 .)

01.1 C32 014

23.7 14.1 11.6

IIII I I I

~~01, 0 31 *21 C31 "1 C6 1

30.5 32.8 11.8 9.56 7.06 9."3 3.40

19



TABLE 11.2

PV2  Y32 T 2 a

I

044

o 4.77 0.359 t 0.2781

0.1 4.61 0.325 t 0.2681

0.2 4.46 0.277 t 0.2501

0.3 4.33 0.226 t 0.231i

0.4 4.18 0.180 ± 0.2131

0.5 4.04 0.133 + 0.1911

0.6 .390 0.086 t 0.1691

0.7 3.76 0.038 t 0.1351

0.8 3.62 -0.008 ± 0.09251

0.82 3.59 -0.020 + 0.07971

0.84 3.57 -0.029 ± 0.071Oi

0.86 3.54 -0.038 ± 0.05201

0.88 3.53 -0.048 ± 0.03229
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TABLE 11.3

C4 4 i 044'1

o 0.269

0.1 0.259

0.2 0.251

0.3 0.241

0.4 0.229

0.5 0.214

0.6 0.190

0.7 0.160

0.8 0.0814

0.82 0.0568

0.84 0.00925

0.86 -0.0795

0.88 -0.315
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TABLE 11.4

Calculated Characteristic Dislocation Velocities. *

Material ci 0r AO o14

044

Body-oentered-cubio crystals

Li 0.809 0.803 0.006 1.042

p Brass 0.824 0.815 0.009 1.010

Na 0.869 0.855 0.014 0.965

K 0.853 0.842 0.011 0.905

ape 0.941 0.918 0.023 0.485

W 1.000 0.913 0.087 0

Mo 1.000 0.903 0.097 -0.115

GOl 1.000 0.835 0.165 -•OL56

CsBr 1.000 0.895 0.105 -0.167

RbBr 0.754 0.710 0.044 -0.439

RbI 0.726 0.693 0.033 -0.464

are(a) 0.952 0.927 0.026 0.439

aFe(b) 0.949 0.923 0.024 0.433

Li 0.809 0.804 0.005 1.042

*Velocities are expressed in units of (e 44 '1p)1/2 = transverse

sound velocity in the<(ll> direction. Elastic data used in

calculations are those listed in Huntington's review article (1958)
for Li, K, Na (data of Bender), W, Mo, and 0 brass. (data of Artman

and Thompson); in Reints',s paper (1961) for CsI, CsBr, RbBr , and
RbI; and in Hearmon's review article (1946) for aFe (data of Seitz and Read).

(a) Calculated by LJ.Teutonico (private communication) using elastic
data listed in Hearmon (1946) (data of Kimura & Ohno)
(b) Calculated by L.J.Teutonico (private communication)using
elastic data of Rayne and Chandrasekhar (1961) (footnote cont. on next page)
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roots of equation (1.8). The actual calculated values of the

shear stress are listed in Table II.3. It can be seen that the

stress is positive at low velocities, goes through zero and then

becomes negative at high velocities. The velocity at which the

stress is zero is the Rayleigh wave velocity. Its value in 0.918o.

The result that the anomalous velocity region extends from

only 0.918c to 0.941c is in qualitative agreement with calculations

(Weertman, 1962a) made for dislocations moving in slightly

anisotropio lattices. From these calculations it was flound that

a slight anisotropy (with c14' taken to be a positive number)

decreases the extent of the anomalous velocity region. An

isotropic crystal with the same c4
1 /c 3 3 ' ratio as iron has a

Rayleigh wave velocity of the order of 0.94c. The limiting velocity

of dislocation motion for an isotropic crystal is always o.

Hence the extent of the anomalous velocity range for edge dislocations

moving on the (110) plane in iron is 3 times smaller than that

of an isotropic crystal with comparable values of o.' and o3310

Thus it is more difficult in iron to bring dislocations moving

on a (110) plane into a velocity range where dislocation coalescence

can take place.

REsULTS ON OTHER BODY-CENTERED-CUBIC CRYSTALS

Table 11.4 indicates the principal results on calculation on

other b.c.e. crystals. This table lists the velocity oI at which

tne self-energy of a moving dislocation is infinite, the velocity Or

(footnote continued from previous page)

To) Calculated by L.J. Teutonico with elastLo data listed in

Hmtingtan (1958).
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(the generalized Rayleigh wave velocity) at which the shear stress

on the dislocation slip plane is zero, the difference between

these velocities Ac = Ci - Cr, and tho ratio of the elastic constant

c14/0• " 1nd where c14 and c are elastic constants in the rotated

coordinate system. The ratio c1 4
1 /c 4 is a measure of the degree

of anisotropy of the elastic constants. The quantity C14
1 is equal

to zero for an isotropic material. Listed in Table 11.4 are the

results of calculations by Teutonico on alpha iron and lithium.

In the velocity range from cr to ci dislocations on the

same slip plane of like sign attract rather than repel one another.

In this velocity range dislocation behavior is anomalous.

From calculations of the effect of a slight anisotropy

(Weertman, 1964a) on the extent of the anomalous velocity range

it was predicted that when c14 ' is positive, an increase in the

anisotropy decreases the anomalous velocity range ,whereas if c14

is negative, the anomalous range increases. An inspection of

Table -1.4 reveals that crystals with a positive cl 4 ' do have a

smaller Ac than tungsten, which is an almost isotropic material.

The crystals CsI and CsBr,which have a negative c l1' have a larger

Ac than tungsten. However, RbBr and RbI, which are more anisotropio

than Csl and CsBr and which also have a negative c1 4
1 , have a smaller

Ac than tungsten. It is clear that the results of the slightly

anisotropic calculations cannot be extrapolated to large values

of anisotropy and that there is a limit to the extent to which

anisotropy can widen the anomalous velocity range.
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CHAPTER V. Fast Moving Edge Dislocation on the (111) Plane in

Anisotropic Face-Centered-Cubic Crystals

This section considers the problem of edge dislocations

moving uniformly in anisotropic face-centered-cubic crystals.

Considered is the ordinary edge dislocation of face-centered-cubic

crystals which lie in a (ii) plane parallel to a <112> direction

and have a Burgers vector in a <110> direction. In the following

section the elastic displacement field of this type of dislocation

will be determined and also the shear stress on the dislocation

slip plane. The anomalous velocity range can then be determined

from this shear stress.

ELASTIC DISPLACWNT FIELD

The coordinate system is adopted in which the x axis is parallel

to the <110> direction, the y axis is parallel to the <112> direction,

and the z axis is parallel to the <131> direction. The elastic

constants in this coordinate system are the same as those given in

Chapter Ill.

Since the dislocation being considered lies parallel to the

y axis, the elastic displacements about the dislocation must be

independent of y. Since a dislocation moving uniformly with a

velocity V in the x direction is also being considered, the elastic

displacements will be a function of x - Vt, where t is the time.

If u, v, and w represent the elastic displacements in the x, y,

and z directions respectively, the equations of dynamic equilibrium

reduce to the following:
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;-2 01 2 x 44 2 14 + (213' + 24')

-- = + s 44a xaz 8XIS

PV2 = c6' + c04 + o14 + 2cl43' (III.lb)
2 2 2 ;2

ax as 8 x 8ZXAs

02 w a2 w a2 w a2 v82u
= 33 + 04'-_ + + (c13'+ 4') -(ic)

ax Os2 'x. Ox xas

It is obvious from the results of Bullough and Bilby (1954)

that the solution of the elastic displacements which satisfies Eqns.

(III.1) is very likely to have the form:

b (= + •t + A.tan7 "_

u = -A t.•n-1 A (III.2a)
S\ x1 x/ x1

V i o. BllOg(x' 2 + y12z2) + B2 log(x' 2  T2 2 z2) + B3 og(x' 2 + a32 2 )j (III.2b)

2 + +2'+

w = b 1 log(x'2 + Y12 2) + C~o8(x'2  2 + Clo(x' 2  T3
2 2  (III.2o)

4.f

where x' = x - Vt, b is the length of the Burgers vector, and A,

B1, T1s etc., are constants. These equations contain 12 unknown

constants which must be determined. Equations (111.2) are similar

to a set whi,.4 give the elastic displacements about an edge

dislocation moving on a (110) plane in a body-centered-cubic crystal.

The 12 unknown constants can be evaluated in a manner similar to that
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carried out in the body-centered-cubic case. This evaluation has

been carried out by Weertman (1962b).

SIHAR STRESS ON THE DISLOCATION SLIP PLANE

The stress which produces a force on another parallel edge

dislocation with a parallel Burgers vector is the shear stress d xs

d = o ,+- + w ( 1 1 1 .3 )

xs = 044 -+ 014 3-+C4 x

which with appropriate substitutions, becomes

b 3 x'

d,2 = 2 2. (c44'y Ai + 2 41B + o44 'Ci) (111.4)

2 1 x'2+ y,22

On the slip plane of the dislocation itself (s = 0) this equation

reduces to

b 3

dxz = - E (c4'yi~i + cI4'Bi + c14 'C) (III.5a)

which also can be written as

d = : - V- 2B Ol 3' 1  (III,5b)
X2 ~cu Ai c14'B e-3

If the values of Ai, Bi and Ci (Weertaan 1962b) are substituted in

Eq.(III.5b) one findst

d b hl((y1 2+ 273 *r 1 2 +r 2r3+43r 1)+h2 +h3y1y2 Y3 (Tl+ 2 4T3) (III.5o)
21rx' (yl+y2) 172+73) (3+y1)

where
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S= 

01 - P V2  a1 4  23_.

e 44 a33

h2 = - (c3l1 - pV2 )a 2 + 014"2 +'1392

-pV 2  _,I n) -0121

h3 -

(c4' - PV2)(c' - pV2) - 2

At the Rayleigh wave velocity the shear stress dxz equals zero.

At velocities below the Rayleigh wave velocity JxZ will be positive

and above it this stress will be negative. In the velocity range

where ci is negative, dislocations of like sign attract rather than

repel one another. Thus, the velocity at which d x is zero is of great

interest; the behavior of dislocations moving slower than this

velocity is normal whereas dislocations moving faster than this velocity

exhibit abnormal behavior.

LIMITING VELOCITY OF DISLOCATION MOTION

As the velocity of a dislocation increases, its self-energy

also increases. At some velocity the self-energy will become

infinite, and this velocity, therefore, sets an upper limit to

dislocation motion. It was previously noted (Weertman 1962a) that

the limiting dislocation velocity is the smallest velocity at which

one of the roots, 12 , first become2 zero (if all roots are

numbers) or becomes a real hut negative number (if two of the roots

are complex conjugates). The velocities at which the roots become
2

zero can be found by setting y2 equatl to ze3D. Thus one can

obtain the following equation;

(c66' - PV2 V)2(04 - PV2 Xc 1 1  pV2 ) = c1412 (ell$ - pY2 ). (111.6)

The smallest velocity satisfying this equation is the velocity at
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which one of the roots yi2 first becomes zero. The wmalest velocity

satisfying Eqn.(III.6) is given by the quadratic equation

(pV 2 ) 2 
- pV2(66' + oa') + 044 066 - 0142 = 0 (III.7a)

whose solution is

1 3
pv2  = - (C' + 6')- - IC' (1I M

2 1r

If c241 is positive (c6 6
1 > c4') this equation can be written as

PV2 c= 4' - /C 1 = C661 - j2o.' (III.7c)

If c14' is negative (cu4 > c66')

= +f2 C1' (III.7d)

The velocities aI and a2V of the two shear waves in <110>

direction are (Waterman 1959)

81 = (c4p)4/2 (III.Va)

a2= 1 1 - 0 12)!;] 1/2

In terms of c4 I 066' and 41 these equations become

81 C44 +f2 c14 d)/Pj /2 = 1(c66  + 04 1 )/112(,*o

'2 4 4 - l14 /42)/P1ll 1 = 066- / 014 )/p 1 i/2 (III.8d)

If c14 is positive, a2 is the slower shear wave velocity, and if

o,4 is negative, sa is the slower. From Eqns. (III.7c) and

(III.7d), it can be seen that a root y12 first becomes zero at the

slower of the two shear wave velocities in the <110> direction. In
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2

the slightly anisotropic case the roots yi are always positive mmbers

when the dislocation velocity is less than either a1 or a2 but is

not too close to zero. Hence, for this case the slower of the two

shear wave velocities is the limiting velocity of dislocation motion.

In the general anisotropic case, two of the roots can be Oomplex

conjugates and the dislocation limiting velocity will be the smallest

velocity at which either complex conjugate roots turn into a

negative number, or a root becomes equal to sero.
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CHAPTER VI. Calculations for Face-Centered-Cubic Crystals

In Chapter V an equation was derived which gave the shear

stress acting on the slip plane of a moving edge dislocation in an

anisotropic face-centeredwoubio lattice. This section presents the

results of numerical calculations of the shear stress on the

slip plane using that equation. The metals which have been

investigated are aluminum, copper, gold, silver, lead, and nickel.

These calculations are complementary to those on body-centered-cubic

crystals. (Chapter IV.)

Table IV.l, lists the elastic constant data used in the

calculations. These data are taken from Huntington's review

article. (1958).

In Table IV.2 are listed calculated values of the shear

stress on the slip plane at various velocities. These shear stresses

are plotted as a function of dislocation velocity in Figs. IV.l and

IV.2. The most striking result contained in these figures and the

table is the extreme narrowness of the velocity range in wLich the

shear stress is negative. (It is in this range that dislocations

of like sign attract one another, and thus dislocation coalescence

can take place). Aluminum, however, is an exception; here there is

an appreciable velocity region in which the shear stress is negative.

Aluminum has such an extended anomalous region simply because it

is an almost isotropic material.* It is known (Weertman, 1961) that

*Huntington lists another set of elastic constants for aluminum which
are slightly more anisotropic than those used in the present paper.
We carried out calculations using this more anisotropic data and
concluded that the anomalous region is not appreciably reduced in se. 1/2
It was found that c = 0.944 and vr = 0.919(in velocity units of (044/p)
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TABLE IV.1

Elastic constants of metalsa (In units of 10 2.dyes/=)

Al Cu AU Pb Ni Ag

¢31 10.8 16.8 18.6 4.66 24.7 12.4

012 6.13 12.1 15.7 3.97 14.7 9.34

044 2.85 7.54 4.20 1.44 12.5 4.61

Ol1 11.3 22.0 21.4 5.73 32.2 15.5

033 11.5 23.8 22.3 6.09 34.7 16.5

c44 2.51 4.08 2.37 0.73 7.46 2.56

0661 2.68 5.81 3.28 1.08 9.97 3.58

c12' 5.96 1o.4 14.8 3.56 12.2 8.31

c13 5.79 8.68 13.9 3.21 9.72 7.29

o14' 0.24 2.45 1.30 0.50 3.54 1.45

a Data taken from Huntington (1958)
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TABLE IV.2

Calculated values of the shear stress on the slip plane at
various velocities.

Nickel

pV2  dxt

C44 bo I

0 0.263

0.1 0.255

0.2 o.246

0.3 0.236

0.4 0.223

0.5 0.204

0.6 0.161

0.64 0.0883

0.65 0.0368

0.66 -0.123

0.665 -
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TABLE 17.2 (Continued)

Lead

pV2  
Oxf

---- ,bo 4 4

0 0.324

0.1 0.317

0.2 0.310

0.3 0.301

0.4 0.2$6

0.5 0.186

00505 0.119

0.507 0.0418

0.5075 -0.00348

0.508 -0.0721

0.50928 " 4
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TABUE IV.2 (Continued)

Gold

pV2  a

04ý be 4

0 0.330

0.1 0.325

0.2 0.315

0.3 0.305

0.4 0.301

0.5 0.271

0.6 0.147

0.608 0.0225

0.61275 - so
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TABU IV.2 (Continued)

Aluminm

pV2  dxZ

04 bc4

0 0.255

0.1 00247

0.2 0.237

0.3 0.226

0.4 0.213

0.5 0.197

0.6 0.176

0.7 0.144

0.8 0.099

0.87 -0.0103

0.9 -0.156

0.93303 
-_

3?



TABLE IV.2 (Continud)

Copper

pV2  dx'

0 0.313

0.1 o.312

0.2 0.306

0.3 0.300

0.4 0.291

0.5 0.261

0.56 0.161

0.57 0.093

0.572 -0.00370

0.574 -o.119

0.57591 "
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TABLE IV.2 (Contined)

Silver

0 0.316

0.1 0.310

0.2 0o304

0.3 0.296

0.4 0.286

0.5 0.268

0.58 0.212

0.59 0.133

0.595 0.0134

0.59839 - G
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an extensive anomalous velocity region exists in isotropic materials.

A slight anisotropy usually decreases (Weertman, 19E&, 1962b)

the anomalous velocity region. Therefore, it is not surprising

that the anomalous region is decreased in extent by a large anisotropy.

A reduction was found in the case of alpha iron (Cotner & Weertman,

1962a, 1962b) which is a strongly anisotropic body-centered-cubic

metal. However, the degree of decrease in the strongly anisotropic

fcc metals is much larger than it is in alpha iron. To illustrate

this point, Table I7.3 lists the velocity at which the anomalous

region starts (vr = the Rayleigh wave velocity) and ends (c = the

velocity at which the dislocation energy is infinite).

From Table IV.3 it is clear that to bring an edge dislocation

into the velocity region in which dislocation coalescence occurs

would be more difficult in the case of strongly anisotropic fcc

metals than of strongly anivotropic bcc metals. It would be

tempting to ascribe the greater ease of fracture of bce metals

to this difference. However, the fact that aluminum has a large

anomalous region and yet appears to be ductile down to low

temperatures, presents a serious difficulty to such a theory.
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TABLE IV 3a

metal o Vr

CzFe 0.94 0.92

Al 0.966 0.933

Cu 0.759 0.756

Au 0.783 0.780

Pb 0.714 0.712

Ni 0.815 0.8o6

Ag 0.774 0.771

a Velocities are expressed in units of (O "/p)12
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CHAPTER VII: Dislocations Moving Uniformly on the Interface
Between Two Isotropic Media of Different

Elastic Properties.

The problem of a dislocation moving on the interface separating

two media of different elastic properties is interesting both from

the theoretical as well as the practical viewpoint. Diffusionless

transformations in crystals probably involve dislocations running

on the interfaces between transformed and untransformed material.

Since the amount of energy released in such transformations may be

large, high dislocation velocities are to be expected. In fact,

Eshelby (1956) has proposed that dislocations may run at supersonic

velocities in diffusionless transformations.

A dislocation running on a transformation interface is moving

on an interfacd which separates two materials of differing elastic

properties and densities. It seems worthwhile to bbtain the solution

of the stress field about such moving dislocations. This section

will attempt to solve the problem for the simplest case: that in

which the two elastic media are isotropic. (The assumption of

isotropy precludes a treatment of the twinning dislocation. In

isotropic materials a twinning dislocation is merely an ordinary

dislocation. However, the analysis may have some qualitative

application to twinning dislocations in anisotropic material.)

Because the supersonic velocity range may be of practical importance

the dislocation behavior in this velocity region will be considered

qualitatively. Consideration is based on the elucidating analyses
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of supersonic dislocations by Eshelby (1956) and Stroh (1962).

THEORY

The soluqtion of the problem being considered can be obtained

by exbending the known solutions of dislocations moving in isotropic

material (Eshelby, 1949; Frank, 1949; Leibfried and Diets, 1949 ).

Consider a coordinate system in which a dislocation line lies

parallel to the x axis and moves on its slip plane in the x direction.

Let 1, X.l, and p1 represent the Lame' constants and the density

of the material above the slip plane (y > O), and R2' X2' and P2

the same constants for materials below the slip plane (y < 0). In

a moving screw dislocation the following equations of dynamic

equilibrium have to be satisfied:

2 20 2Wi 2wi 1 02wi Vl
x2 y2 c 2 8t2

oy ci

where i = 1 or 2, wI and w2 are the elastic displacements in the z

direction above and below the slip plane, ci = (iti/Pi)I/ 2 = the

transverse sound velocity in each of the two media, and t stands

for time.

A moving edge dislocation involves the following equations

of dynamic equilibrium:

ax2 d2 axOv t
(8u 1•i + ui 2 x+ i 2- (v.2)

0 +P" + OxOy it-

(% 2L 2V i + IL 2V i + 2u i = o6v(•i 2 -- i ) -- 2

x2 OxOy it
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wheie ui and vi are the elastic displacements in the x and y
2

directions respectively. The time differential ! can be replaced

at
2

by V 8 for the dislocations moving with a uniform velocity V in..

the x direction.

From the results of analyses of dislocations moving in

isotropic material we anticipate that the solution of Eqns. (V.1)

and (V.2) for moving dislocations will be:

(a) Screw Dislocation

b [G tan-i Piy +E(V3

w = - - - (V.3)
2a x'

(b) Edge Dislocation

Ui = b Ai tan- - + Bi tan- + Fi (V.4a)
2,f x° I° X1

Vi = b Ci log Wx 2 + Y'i2 y2 ) + Di log(x' 2 + pi2Y2) + Hi (V-4b)
4 9

In these equations b is the length of the Burgers vector, Ai, Bi,

etc., are constants, i = (l_V2 /ci 2 ) 1/2, Yi = (l'V 2 /cl, 2 ) where

c = (ki+2•t)/P] 1/2 = the longitudinal sound velocity, and

x = x-Vt where V is the velocity of the dislocation. (The constant

H is added merely to make Eqn. (V.4b) dimensionally correct. The

constants Ei and Fi are added in order to match suitably the

elastic displacements wi and ui across the interface y = O. Since

only the differentials of the displacements are important the
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constants Ei,Fi and Hi can be ignored).

One should note that at velocities such that Pi (or yi) is

an imaginary number the arc tan of ýiY/x (or yiy/x ) can also be

written as Jf-l log|(x'+ Ifily)/(x' - IPily)l + a constant.
2

The evaluation of the constants for the screw and for the edge

dislocations are considered separately in the following sections.

SCREW DISLOCATIONS

The constants Gi of equation (V.3) are simple to evaluate.

If a complete circuit is made around a dislocation the elastic

displacement must change by an amount equal to the Bargers vector.

Thus from the properties of the arc tan function it is evident that

GI + G2 = 2 when the dislocatiun velocity V is less than either

01 or 02. Another equation in G1 and "2 can be obtained from the

condition that the value of the stress must be continuous across

the slip plane. Thus at z = 0 the stress dy2 must satisfy the

condition (dy 2 )I = (ay2)2* Now

(a )S = i i _L__ ---i ix (V.6)
ysx + J Pi.y

Therefore

=1ýk IP0 (V.7)

The only other stress which exists around the screw, namely dxs, is

given by:

(, / XZi-A
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and is equal to zero on the slip plane regardless of the values of

G1 and G2.

A solution of equations (V.5) and (V.7) results ins

I = __ (V.9a)

and

G2  = , • (V.9b)

IiiPx + Y2

Equations (V.9) and (V.3) give the solution of the elastic

displacement field about the moving screw dislocation. From this

field both the stresses (eqns. (V.6) and (V.8))and the displacement

velocities can be found. Once these quantities are known the

.train energy and the kinetic energy can be calculated in the usual

manner (Eshelby, 1949; Frank, 1949; Leibfried and Diets, 1949;

Weertman, 1961). This calculation given for the total Oelf-energy

E of a screw dislocation moving on the interface between two media

each of width R in the y direction and extending to I - in the x direction

b' R I11'2 )Ii 2 P2 2 1pip 2

E og + (V.10)b I 2 \~

AS would be expected this expression becomes infinite at the slowest

of the two transverse sound velocities (i.e. when Pi or P2 is equal

to zero.)
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SUPERSONIC SCREW DISLOCATION

Two-dimensional supersonic dislocation were treated first

by Eshelby (1956)". Stroh (1962) later more generally treated

supersonic dislocations moving in anisotropic media. The main

difficulty encountered in analyzing supersonic dislocations is

the occurrence, when linear elasticity theory is used, of infinities

in the equations. This problem occurs, for example, in eqns. (V.6)

and (V.8) at a velocity so large that P1 is an imaginary number.

According to these equations the stresses are infinite along the

planes x12 = p1
2y 2 . Stroh (as well as Thomson (1961)) points

out that these infinities actually do not occur. Because of the

discrete atomic nature of a crystal lattice, only finite stresses

and finite energies can exist. It could be assumed that linear

elasticity theory holds only for those stresses whose "effective

shear stress" T ( defined, for example, by Nye (1957) as the square

root of I X di where od = - is the Kroneker
2ii ii ii 3i

delta, and dii is the usual stress component) does not exceed the

value ro' Screw dislocations when only the stresses ayz and dX2

are present may be expressed

S2z + 0 (V.u)
y x

The breakdown in linear elasticity theory in supersonic situations

occurs along the planes x1 = ± I Pi I y when Pi becomes imaginary.

These discontinuities in the displacements and stresses are the

plane waves which Eshelby and Stroh have shown mast exist in order

to maintain a supersonic dislocation.

Figure V.1 shows schematically the behavior of the Eshelby-Stroh

*One-dimensional supersonic dislocations were studied earlier by
Frank and van der Merwe (1950)
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discontinuity planes as the velocity of a screw dislocation is

increased. The lines in this figure represent the region where the

stress equals the maximum stress ro" For velocities less than c1

the stress is equal to ro only in the core region. At the velocity

I the Eshelby-Stroh discontinuity appears. The normal to this

discontinuity, which moves with the velocity cl, is in the direction

of the dislocation and hence the discontinuity dissipates no

energy to the crystal surface. At a somewhat greater velocity

two E-S discontinuities appear. The directions of their normals

are different from the direction of dislocation motion and hence

surface tractions are required to maintain the discontinuities.

If suitable surface tractions are not applied, the dislocation

still can run but the slip plane must be able to give up energy.

It could do so either if an external shear stress is applied to

the crystal or if the slip plane is also a transformation plane

which gives up energy as the dislocation runs along it. When no

surface tractions are applied the E-S discontinuities which are

ahead of the discontinuity behind the dislocations will occur.

This E-S discontinuity sends energy out to the crystal surface

and an equal amount of energy must be supplied at the dislocation

core if the dislocation is to continue to run.

It is simple to obtain an estimate of this energy

dissipation. The E-S discontinuity, which is expected to leave

a width of the order of the atomic spacing, has associated with

it an energy per unit area of the order of T 0b. The discontinuity makes an
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angle with the surface of the order of tan-' i1/pil. When a

unit length of dislocation moves a unit distanoe.,an amount of

energy equal to -o0 bjPi1 is dissipated and thus the E-S discontinuity

produces a retarding stress dr equal to

.-C opil (V.12)

Since r0 is the theoretical shear stress, it seems to be impossible

to get to stresses much above /2 ci. At greater velocities the

retarding stress is greater than the stress which the slip plane

can support.

Because of the retarding stress dr# it may not be possible

to bring a dislocation from zero velocity gradually up to and

beyond the velocity c 2 , if the velocity c 1 is much smaller than

c2* Equation (V.6) shows, however, that if the dislocatilon is

set running at the velocity c2, the displacements above the slip

plane can be set equal to zero. An E-S discontinuity thus exists

only below the slip plane, as shown in Fig.V.l. Since the normal

of this discontinuity is in the drection of dislocation motion,

no energy dissipation is involved and the dislocation can run

without energy dissipation. (Other energy dissipation mechanisms,

such as that due to dispersion (Eshelby, 1956,) will still operate.)

The velocity c2 thus is singular in that the dislocation again acts

like a subsonic dislocation. This type of singular dislocation

velocity in the supersonic region was first noticed by Eshelby (19,9)

for edge dislocation. This type will be considered again in

the next section on edge dislocations. Eshelbyls singular
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dislocation velocity probably approximates the velocity at which

diffusionless transformations take place. It represents a fast

dislocation velocity at which energy dissipative processes from

the E-S discontinuities are minimized. (Of course other dissipative

processes still can occur.)

Above the velocity c 2 the E-S discontinuities reappear above

the slip plane, as shown in Fig. V.1.

EDGE DISLOCATION

The problem of an edge dislocation moving on an interface

separating two different elastic media is more complicated but

more interesting than that of the moving screw dislocation. The

constants appearing in Eqns. (V.4) for the elastic displacements

are simply evaluated. If Eqns. (V.4) are placed into Eqns. (V.2)

one finds that Ci = YiAi (V.13a)

S= Pi-lBi (V.13b)

The condition that the displacements describe an edge dislocation

gives the equation

A + B + A2 + B2 = 2 (V.-1a)

The condition that no line forces act at the dislocation core results

in

Ill (A,•2 + B.) + V2 (A2 , 2 + B2) 0 (V.34b)

where i2 = i-V 2/2ci 2

The requirement that the stresses be continuous across the slip

plane produces the equation
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Il(YA + a,21-l) - 0Ay(f2A + 2 P2• - 1 B2) = 0 (v.-L4)

Finally, the condition that the elastic displacements be continuous

across the slip plane gives

yl'_ + Pll' 3. " "1 2 - 02A 2 -3-B2 = 0 (V.14d)

When Eqns. (V.14) are solved for A, etc., one obtains

B 2 " 2 2 2 P2)
- 1 " 2 ("l2 1  -P2•21 '22 1l) 11

P t (V.15a)

+ Y2ý2 - a -2

2 A 2 2B1 = T 1 ,.,2,a2 (G,2a2 
- ,,)+ "lT"9 2 ('f - i2

A 21 22 1a,(a -(¥. 15b)

where

S(F± 2r(2
2 - al2)2 - i1I2(T1 + Y2 ) pa 2

2 +P21

2Y2

+ (Yl+ 112Y2 ) (ftft + Ph)~ - YrY201P2(i1 - d2

- 1'1 ' 2 (• 1 + P 2 )(Y 1 a2 2 + T2 '12) + al 12 (12 2(PlT2 + P2yi)

+ PrlY1P.22 o( 4 +2",' l 4.

To obtain A2 and B2 one merely interchanges the subscripts

1 and 2 in these equations.

STRESS ON THE DISLOCATION SLIP PLANE AND THRESHOLD DISLOCATIONS VELOCITY

With these values of the constants A1, etc., one obtAins the
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following expression for the shear stress d X acting on the slip

plane.

=------ y 2 (l - 2 ) -2 4)
XY -lp (v.1plyll 1

+ r1 (l-a 1 2) 2 (y2P2 - a24 M16)

It has been found from a study of edge dislocations moving in

an isotropic material (Weertman, 1961) that as the dislocation

velocity is increased the shear stress on the slip plans decreases

until it becomes zero at the Rayleigh wave velocity. At greater

velocities it increases with increasing velocity but has a

negative value. For the type of dislocation under considerations

the velocity at which the shear stress on the slip plane goes

to zero can be found by setting Eqn. (V.16) equal to zero. The

following equation is obtained:

2 2
"_(.l -l a14) +, (r 3 P2  a a24) = 0 (V.17)

TlP1 T2 P2

The velocity which satisfies that equation is the threshold

velocity (Teutonio'ls term (1962b)) separating the region of

normal dislocation behavior (in which dislocations of like sign

on the same slip plane repel one another) from the region of

anomalous behavior (dislocations of like sign attract one another).

The equation yip - a14 = 0 (V.18)

determines the Rayleigh surface wave velocity in the isotropic

medium above or below the slip plane. Hence one can see from
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Eqn. (V.17) that the threshold velocity lies between the Rayleigh

wave velocities of each medium. The threshold velocity defined

by Eqn. (V.171 in M& equal to the Stoneley wave velocity*, contrary

to what one might have assumed from the fact that the threshold

velocity is equal to the Rayleigh wave velocity when the elastic

properties and densities. of the two media are identisal.

It is not always possible to find a velocity which sakisfies

Eqn. (V.17). Figure V.2 illustrates this situation for the simple

case in which the longitudinal sound velocity in each medium is

very much larger than both c and c 2 so that both Tl and Y2 are

equal to 1 for velocities near cI and c2 . The densities in the

two media are assumed to be equal. One can see from the figure

that the occurrence of a threshold velocity is limited to a narrow

range in the variables I and I2 ((R1i)I2 varying from 1 to

1-193). If t i is outside this range the anomalous velocity

region cannot exist.

SUPERSONIC EDGE DISLOCATION

Above the slower of the two transverse sound velocities the

edge dislocation is in a supersonic region. As in the case of a

screw dislocation Eshelby-Stroh discontinuities will arise along

the planes x' = +I yi ly when yi also is an imaginary quantity.

The behavior to be expected is shown in Fig. V.3 for the case in

which c,.?c,1 >?c 2 ,CO. There are no discontinuities below the

*Stonely waves (Ewing, Jardetzky, and Press, 1957) are the surface
waves which propagate along an interface separating two semi-infinite
media of differing elastic properites. They are simply a generalisation
of the Rayleigh wave which propagates along a free surface.
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velocity ca except at the dislocation core. At the velocity co

and E-S discontinuity occurs whose normal is the direction of

dislocation motion. In contrast to the case of the screw

dislocation, the stresses about an edge dislocation in the upper

plane are (when linear elasticity is applied) infinite every-

where rather than in a region limited to the plane x' = 0.

This infinity in energy is thus of a different kind from that

of a screw dislocation. Stroh has pointed out that the difference

is due to a resonance phenomenon. At velocities between c, and c 2

the normals of E-S discontinuities make an angle with the direction

of dislocation motion. The dislocation experiences a retarding

force given again by Eqn. (V.12). At higher velocities other E-S

discontinuities appear, as shown in the figure.

ESHELBY'S SINGULAR DISLOCATION VELOCITY

Eshelby (1949) showdd that an edge dislocation in an

isotropic medium can move at a velocity 12c without any E-8

discontinuity appearing in its displacement field. This velocity

is in a supersonic range and yet the dislocation will not radiate

energy. The reason why the dislocation can exhibit behavior can

be seen from Eqns. (V.1.4) for the case of V1 = V21kl = )2' and

Pl = P2" In this situation Eqns. (V.14c) and (V.14d) are identically

zero sinceA = and B B2. Now BandB2 of Eqns. (V-l/a) and

(V.14b) could be set equal to zero (and thus eliminate the terms

of Eqn. (V.4) which contain the E-S discontinuity when c < V < cý)

and still these equations may be satisfied provided the velocity

'it such that al = a2 = 0. This velocity is ,/2c. At this velocity
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no discontinuities appear in the stress and displacement field

and all of Eqn. (V.14) are satisfied.

Consider now what happens to Eshelby's singular dislocation

velocity in the edge dislocation being discussed. For this

singular velocity to exist, it must be possible to set any of the

Ai and B. of Eqns. (V.14) equal to zero when the terms multiplied

by Ai and Bi of Eqns. (V.4) contain E-S discontinuities. If the

dislocation velocity lies between cI and c2 , and B1 , therefore,

is set equal to zero, Eqns. (V. 4) cannot, in general, hold

for any value of V since we have four equations in three unknown

quantities. However, it is possible for all equations to hold

if the determinate of the coefficients of Eqns. (V.14b) through

(V.14d) is zero. Thus the following equation for Eshelby's

singular dislocation velocity is:

22 2) Y2  2 ~ 2
2 (Y202 _ a24) - (Y2P 2 _ 2l - a( a2)= 0 (V.19)

For the case in which p1 = P2 and ci is very much larger

than both c1 and c2 so that as Y1 = Y2 = 1 for the velocities

of interest, it is found that as 0/il is varied from 1 to infinity

the Eshelby singular velocity ce varies as shown in Fig. V.4.

The singular velocity can exist when IL = 12" When P2 is slightly

larger than Ol no singular velocity occurs. In the range

2 < 1L2/2 1 • 4 a singular velocity does exist. Its value is almost

equal to the velocity o2* In contrast with the case df the

Eshelby singularity in the screw dislocation, this singular velocity
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has no infinite stresses associated with it.

If I1 = P2 it is not possible to have a singular velocity

which is larger than both c1 and c2. However, if 01 = P2 (but

P1 is not necessarily equal to P2) it is possible to have a singular

velocity greater than cI and c 2 . In Eqns. (V.O4) B1 and B2 can

be set equal to zero. When this is done, one obtains

,rl = Y2A2  
(v.2o)

For Eqn. (V.1 4 b) to hold the velocity must be such that

S+ = o (V.21)

This equation defines the singular velocity. When yl = Y2 = 1

this velocity is given by
2 2

2 4ci c2 2 4p (V.22)c = = - (V22

e 2 2
C1  + c2  Pi + P2

The behavior of dislocations moving on the interface between

two different elastic media generally is found to be what one

would expect from the studies of dislocations moving in isotropic

material. The slowest sound velocity sets an upper limit (apart

from the Eshelby singular velocity) to the speed of the dislocation

since, acoording to linear elasticity theory, the energy becomes

infinite at this point. If it is assurud that a crystalline material

can support only a finite stress, it can be shown that supersonic

solutions exist. Eshelby and Stroh have pointed out this fact.
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Because of damping caused by the generation of sound wves, the

supersonic dislocation velocities probably are limited to velocities

not much beyond [2 times a sound velocity.

The Eshelby singular dislocation velocity may or may not

exist. Its existence depends on the values of the elastic constants

and the density in each medium. Because energy dissipation processes

are minimized at thi Eshelby singular velocity, this velocity could

be that at which transformation dislocations run on diffusionless

transformation interfaces. It would be interesting, therefore, to

see if fast diffusionless transformations take place in materials

whose elastic constants do not permit the existence of an Eshelby

singular velocity.

The threshold velocity separating a normal from an anomalous

velocity region also may or may not exist. It will exist only

if the two transverse sound velocities in the two isotropic media

above and below the slip plane lie close to each other.
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