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ABSTRACT

Numerical solutions of three-parameter vortex flows over flat

surfaces and of rotating flows of von "hrman's and Bodewadt's types

are presented for a variety of Reynolds numbers. The results have

been obtained on the basis of an extended boundary layer theory, which

allows a reduction of the Navier-Stokes equations to a set of Volterra

integral equations. The new flows are in good agreement with available

physical observations.
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1. Introduction

Rotating flows normal to a flat surface have been studied in riO]

and [11] on the basis of an extension of Prandtl's boundary layer

theory. The investigations in [10] dealt with the vortex motion of a

viscous fluid, which is produced by a very long rod normal to a flat

surface (see Figure 1). In [11] the rotating flows of von KArmnn and

Bodewadt, which are generated by a rotating flat plate In a fluid at

rest or by a fluid in solid-body rotation over a fixed plate, are re-

examined. In all three cases the Navier-Stokes equations have been

reduced to sets of nonlinear ordinary differential equations, which

are connected with appropriate boundary data.

In the present paper the nonlinear boundary value problems are

transformed into equivalent sets of nonlinear Volterra integral

equations, which can be solved by efficient iteration procedures.

Complete numerical results for all three problems have been computed

and are displayed in the following sections for a selected variety

of Reynolds numbers. Characteristic properties of these flows are

pointed out and compared with actually observed phenomena. In

particular, the properties of vortex flows over flat surfaces are

compared with phenomena observed in hurricanes. Although the vortex

models considered are only very rough approximations to real hurricanes,

the qualitative agreement is satisfactory.

1
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It is a distinctive feature of all flows considered, that they

depend on three characteristic parameters. This is a result of the

complete boundary data which have been deduced from physical flow

models in order to specify a unique solution of the elliptic Navier-

Stokes equations. Because of the great importance of this procedure

for the theory of real flows, it seems worthwhile to insert here a

simple example, which displays the fundamental dependence properties

of the solutions of the Navier-Stokes equations.

As is shown, for instance, in [9] the Couette flows between a

fixed plate and a moving parallel plate depend on the kinematic vis-

cosity of the fluid, the speed of the moving plate, the distance of

the parallel plate, and the constant pressure gradient. In addition

to these four characteristic parameters the Couette flows are also

specified by the well-known similarity assumption. While the simi-

larity assumption restricts the type of the singularities which are

permitted at the entrance and the exit of the flow field, the con-

stant pressure gradient specifies their stiengths. If the moving

plate is removed, one obtains similar flows along an infinite plate

which depend on three characteristic parameters.

It is one of the most significant features of the extended

boundary layer theory and the integration procedure developed in

[10] that the correct dependence properties of real flows are pre-

served. The classical boundary layer theory loses this property by

truncating the elliptic Navier-Stokes equations to parabolic

2
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differential equations. This may be demonstrated by a simple example,

which shows the basically different dependence properties of solutions

of elliptic and parabolic partial differential equations.

The elliptic Laplace equation

Uxx + uyY - 0 (*)

yields regular solutions in the unit square [0 -5 x : 1, 0 : y ! 1] for

any boundary data, which are, e.g., piecewise continuous. However, the

parabolic differential equation

Uyy -0 (**)

with the general solution

u - f(x)y + g(x)

does not allow the prescription of boundary values along x - 0 and

x - 1 in addition to data at y - 0 and y - 1. For instance,if the

boundary data u(x,O) - u(xl) * 0, u(O,y) e ei(y), and u(l,y) - 92(y)

are imposed, no solution exists to the parabolic equation (**) no

matter how small (y)I 0 and Ie (y)I 0 may be assumed.

In the problems of von KArman and Bddewadt uniqueness has been

achieved by very restrictive similarity assumptions, which indirectly

determine the well-known sink and source distributions of infinite

initial velocities at large -iatances from the axes of rotation.

Consequently, the physical models of these flows remain unknown.

3
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This has first been pointed out by Stewartson (see [4, 5, 13]) who

questioned the physical meaning of the oscillating Bodewadt flow.

Moore (see [4, 5]) doubted also the usefulness of the BSdevadt

solution, because the flow shown no tendency of boundary layer

separation from the surface at the axis of rotation. This should be

expected as the secondary flow is of wake type (see [12]). indeed,

simple experiments in a tea cup (see [41) display very clearly a

separation of the fluid from the bottom of the cup. When the stirring

of the tea is sufficiently slow, tea leaves move toward the axis of

rotation and heap up at the bottom of the cup. However, when the

stirring is sufficiently fast, the tea leaves settle distinctly on a

ring around the axis of rotation. This interesting phenomenon is a

graphic demonstration of a separated wake flow along the axis of ro-

tation. It is comparable with the settling of dust around corners

of rooms which are not well kept. While the dust settles on rings

around the corners, the corners themselves remain clean. This also

indicates a separated wake in the corner into which no dust particles

can enter.

Another peculiar result, which concerns both the von Kfrmin and

the BEdewadt flows, is the constant "deviation angle" of the spiral

motion from a circular motion at the surface of the plate (see [9]).

Since the secondary radial velocity depends strongly on the primary

tangential velocity (compare [10]), it should be expected that the

4
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deviation angle of the streamlines at the plate would depend on a

Reynolds number. The flows of von Kirmen and Bidewadt do not ful-

fill this expectation, which seems to indicate that these flows are

considerably affected by the strong sinks and sources assumed at

large distances from the axes of rotation.

2. Vortex Flows Normal to a Plate

An axisymetric vortex flow over a flat surface has been defined in

[10] as a solution of the lavier-Stokes equations

uU + wu - 2 Pr + Lurr (r)r +U-J(1)

u r +v•vrr+ r + vgz (2)

uWr + z .. 0P, + wrr + wr + w5 ] (3)

(ru)r+ (w), - 0 (4)

by the boundary data

r > 0} : u 0 0, v 0,W- 0 (5)z = 0( )

z < u - O9 V- O, W = 0 (6)

rm 0 u - 09E -. 41 V-L -

z >0 r u O -*I - "* (7)

ZI A log rTo. (8)

5
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In these equations u, v, and w denote the velocity components of the

vortex flow which correspond to the coaxial cylindrical coordinate

system (r, p, z). The variable pressure and the constant density and

kinematic viscosity of the fluid are designated by p, p, and v. While

the vortex strength F and the radial extension ro of the axial loga-

rithmic sink (see Fig. 1) are at one's disposal, the constant value of

A must be determined simultaneously with the solution.

Guided by an extension of Prandtl's boundary layer theory a

first order reduction of the Navier-Stokes equations to an ordinary

boundary value problem has been found in [lO],which is valid in the

vicinity of the line r - ro e This approximation was achieved with

the aid of the limiting line z - 6(r) of the boundary layer along

the surface at z - 0. This limiting line was defined by the e -

condition

v(rz) (9)

and remained to be found together with the primary tangential veloc-

ity v.

After applying the following similarity transformation

r-r, C=6- R =- ( = Reynolds number) (10)

u - U(C), v - V(C), w - rA lo(1) - P(

U-- C). W - C([ ) - C) C) (12)

6
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one arrives at the following ordinary differential equations

G + . 109 (1? + Va - P) (.13)

+ -0 (14)

6(G - CG) -- (15)
2a2~

which must be integrated under the boundary conditions

0": G O, - 0, V 0, (16)

C-=: G =G V - 1, P - 1. (17)

Simultaneously with this reduction one obtains the equation of the

limiting line of the boundary layer in the vicinity of r - ro in the

form (see Fig. 1)

SM 6(r) -a -a L1+2 log-r
2 r/*(18

The constant value A is

A - 2 S- G., , (19)

where the characteristic parameter a is determined by the e - con-

dition

C = . v -l . (20)

7
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For an integration of the remaining ordinary boundary value problem

it is convenient to introduce the following new variables

i1-aC and S oGe. (21)

This substitution leads to the differential equations

+ TI- n (*2 + Vs . P) (22)

•5 - Il) -½
P S(23)

with

V(Q) - erf 2 - e-t dt, (24)

which must be integrated under the boundary conditions

01=O: g- 00 O, (25)

T1m : g=gP- 1 (26)

The ordinary boundary value prpblem defined by the equations (22)

through (26) has been solved for the Reynolds number R - 10 by the

Runge-Kutta method which started the integration with an assumed set

of initial data that had to be improved successively until the boundary

condition (26) was sufficiently met. The result of this integration

8
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has been displayed in [10]. The inefficiency of this method is obvious

because two initial conditions must be found which correspond to the

two ignored boundary conditions (26).

For an efficient integration of the remaining ordinary boundary

value problem it is convenient to transform the differential equations

(22) and (23) with the boundary conditions (25) and (26) into an

equivalent integral equation (see [14]). Assuming that the auxiliary

function

D P() VsT)- 1(l (27)

is known, then the differential equation (22) reduces to the linear

equation

R
A+ 1 - - • D() (28)

which is integrable by quadrature. Indeed, with the aid of the error

function (24) one finds the general solution of (28) in the form

) f x1 V 1 - v(t)l dt *(29)

0ov(t) I I

The boundary conditions (25) and (26) lead then to the nonlinear

Volterra integral equation

woV(1 - t)[vM] - V(t)] dt (0
0 

30

9
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for •(1), where

t v() dt. (31)

The functions g(l) and P(J) are obtained by direct integration of the

equations (30) and (23) under the boundary conditions (25) and (26).

They are

gS)"J j(t)dt (32)

0

and tI
P( M) - P + e2( m) - 2f t e(t)dt,

Jo (33)

where
CO

P(O) - 1 - g: + 2 J t e(t)dt. (34)

This concludes the transformation of the boundary value problem under

consideration into a set of Volterra integral equations. It is, vice

versa, not difficult to show that any solution of the integral equations

is a solution of the boundary value problem. Thus the transformation

applied is an identical transformation.

10
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The integral equations (30), (32), and (33) have been numerically

integrated for a variety of Reynolds numbers. Some selected solutions

will be discussed in the following section. All solutions have been

constructed by an iteration procedure (see [10),which successively

improved an appropriate first approximation. It was found that the

method is very efficient, provided the first approximation is suf-

ficiently close to the correct solution.

For small Reynolds numbers the iterations can be started with

s(W) 0, P() a 1 (35)

as adequate first approximations. For larger Reynolds numbers the

iterations may be started by solutions, which are obtained for smaller

Reynolds numbers. In order to improve the rate of convergence of the

iteration procedure, especially in cases where the iteration is

started with a very crude approximation, it is helpful to average the

outcoming solution with the entering approximation of the iteration

by means of appropriate weighting factors.

3. Properties of Vortex Flows

Axisyuuetric vortex flows normal to a flat surface have been computed

and tabulated for various Reynolds numbers (see Tables 1, 2 and 3).

Examples have been selected and plotted in the figures 3 , 4, and 5.

11
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The numerical results confirm the phenomena of vortex flows which

were pointed out in [101. It may be emphasized that the numerical cal-

culations of all vortex flows computed indicated no symptoms of in-

stability of the flow near the line r - ro (see Fig. 1 and compare

r12]). Accordingly, vortex flows seem to remain laminar and attached

to the surface for all Reynolds numbers at least in the vicinity of

r w r.. Nevertheless, since the secondary flow is of "wake type"

(see[12j) within the cylinder r - r 0 , separation of the flow should

be expected to occur in the neighborhood of the vortex axis. However,

outside the cylinder r - ro the secondary flow is of "stagnation

type" and tends to prevent any flow separation. Thus, the instability

in the motion, which is caused by a flow separation at the axis, seems

to fade away when the flow changes its character. This explains

the fact that the radial velocity U remains free of inflection points

which characterize unstable flows.

As was explained in lOl vortex flows normal to a flat surface repre-

sent approximate models of hurricanes, provided exterior disturbances

of the vortex flows other than those caused by the surface of the

earth are excluded. Consequently, the numerical results may be com-

pared with phenomena observed outside the cores of hurricanes.

Despite the fact that real hurricanes are highly distorted by the

tremendous rainfall inside the circle r - ro, by the change of the

density and the turbulence of the air, etc., the agreement with

available observations appears to be satisfactory.

12
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Indeed, the observations confirm the wake and stagnation character

of the secondary flow, where the rainfall area coincides roughly with

the circular region r S ro. The rapidly increasing rainfall toward

the core of a hurricane (see [15,p..130]) is indicated by the log-

arithmic increase of the axial velocity toward the vortex axis. The

strong dependence of the secondary flow upon the Reynolds number R

( see Fig. 3, 4, and 5 ) Indicates a -radial shear stress at the sur-

face, which is large compared with the tangential shear stress.

This explains the very strong radial ocean waves produced by hurri-

canes which are known as ocean swells (see D7, p.298]). As can be

deduced from figure 3, inside the cylinder r - ro the secondary flow

near the surface converges to the surface before it finally leaves the

vicinity of the surface in the normal direction (see Fig. 1). Accord-

ing to Riehl this remarkable phenomenon has also been observed in

hurricanes (see [7, p. 320]).

In order to get a rough idea of the boundary layer thickness near

the core of a hurricane, one may consider a hurricane of average size,

which has a rainfall area of about 2ro s 2000 km in diameter (see

[15,p.130). If the limiting line of the boundary layer z - 6(r)

(see Eq. (18)) is determined to a relative accuracy of er = 1%, then

the characteristic parameter a was found to be a f 2.5 (see [10]).

With these assumptions the boundary layer thickness at the edge of

the hurricane core,which is at r s 30 km from the vortex axis (see

[ 7 p.297)), can be computed by equation(18), which yields 6 f 9 km.

13
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This result explains the observed thick boundary layers (see (6]),

which are produced by the friction forces along the surface of the

earth in hurricanes.

4. Von K~rmin and Bldewadt Flows

The rotating flows of von KArmn (y - 0) and Bddewadt (y - 1) have

been defined in [11] as solutions of the Navier-Stokes equations (1)

through (4) by the boundary data (see Fig. 2).

,: u 0, v- (- y)wr,.w" 0 (36)

Z 0 o1

C: - 0, V

z >T Yo V -' w . (38)

In both problems the angular velocity w and the constant w,, which

determines the strengths of the singularities at the points (r C ± O,

z - 0), are at one's disposal.

After introducing the limiting line of the boundary layer in the

form

z -6(r)a - br•- ... , (39)

which in determined by the c-condition

Z- 6(r): vrz) ( 1)Y (40)
w1r

14
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the Xavier-Stokes equations can be reduced around r - 0 to a set of

ordinary differential equations. This first order reduction requires

the following similarity transformation

Z P k . W_2  ( (41)
rrr,) P p 2

u wrU( , v- wrV(C), w-v.W(C) (42)

Go ' (43)

and the following conventions about the constants

R-0 abW-ab,'W =2w aGo,. (4R = . a, , ( ? - a s V o ý 2 G ,( 4 4 )

The similarity transformation lea4s to the ordinary differential

equations (see [11])

G + 2&(4C - RG)G + o2R(2 - V9 + y - 4a(0H) - 0 (45)

V+ 2a*(4C - RG)V + 2oOR&V = 0 (46)

G+ 2a*(2C - RG)6 + 9 R.H . 0, (47)

which must be integrated under the boundary conditions

C 0: G - 0, - 0, V=- 1 -lY (48)

G =: GGo, V y, H - GM. (49)

When the solution is found for a specified Reynolds number R, the

c-condition

C = . y v + (- l)Y e (50)

15
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determines the characteristic parameter a. Thus, the unknown coefficients

a and b of the parabolic limiting line of the boundary layer (39) and the

corresponding ,, can be computed from equations (44). As was shown in

[i1, in physical applications the ratio a/b may roughly be computed-

by

a (51)

where 0 represents the diameter of an appropriate finite flow model

(see Fig. 2).

The corresponding finite flow modelb, which were described in

[11] and which are sketched in figure 2, show graphically the dependence

of the von Khrmin and B~dewadt flows on 3-parameter Reynolds numbers.

Indeedif the slit between the cylinder and the disk is of negligible

size, the finite flow model depends on four essential parameters:
0

the kinematic viscosity v of the fluid, the angular velocity w of the

rotating disk or the rotating cylinder, and the height a and the diam-

eter 0 of the cylinder containing the fluid. When carrying out the

limits a - - and 0 - -, one parameter, for instance, the ratio cr/s

emerges as a characteristic parameter for the infinite flow model.

In accordance with the Reynolds number (44) it is useful to replace

the ratio a/O by the ratio a/b as a parameter at one's disposal.

Hence, a finite flow model may be considered similar to an infinite

model if they both agree in the ratios a/b, that is, in the products

16
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of the boundary layer thickness a and the radius of curvature 1/2b

at the axes of rotation (see equation (39)).

As in the vortex problem (Section 2) it is helpful to transform

the remaining boundary value problem into equivalent Volterra integral

equations. This transformation may be carried out after introducing

the following new scales for all variables concerned:

I - c, g OG, h - ?H . (52)

In the new variables the equations (45), (46), and (47) assume the

following form

g'+ 8s - - RA(l), A(1) - y + ? - 2gj - V2 - 4TIh (53)

S+ 81 - - PB(q), B(11) - 2(AV - gi) (54)

i -2gj -.1(g +41 j) (5
R (5

These equations must be integrated under the boundary conditions

0: O: g- 0, - 0, Va 1 -l Y (56)

-= : g - g. finite, V - y, h g go (57)

With the aid of the error function
21

E(M) erf(21) - 2 a et2dt (58)

0

the solutions of the boundary value problem obtained are exactly the

solutions of the following set of Volterra integral equations:

17
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%I• E k.(J) - R ý [E(I) - E(t)] dt
fo E(t) (59)

V() y- + XE(I) - Ro [E(1) E(t)]dt1f E(t) (60)

h(fl) -f X3 + g2 
- - g tA(t)dt (61)

with

Ac [1i E(t)]dt
Jo E(t) (62)

h E (t)dt
•t t R (64)

R E:tt (tdd

Xs " R "~d (64)

The solutions of the integral equations (59) through (61) may be

obtained by an iteration procedure which successively improves suit-

able first approximations. Numerical calculations have shown that

for small Reynolds numbers R the iterations can be started with
g 0, h 0, V - 1 - y + ( 2 y - l)E(']). (65)

For larger Reynolds numbers R the iterations may be initiated by

solutions, which are obtained for smaller Reynolds numbers.

5. Properties of von Karmnn and Bodewadt Flows

Rotating flows of von Karman and B&dewadt have been computed and

are presented in the tables 4 through 11 and in the figures 6 through 12.

18
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The numerical calculations ot von Karman's flows indicated no

tendency of flow separation near the axis of rotation for any Reynolds

number. Since the secondary flow is of stagnation type (see [121)all

velocity profiles are free of inflection points which characterize

unstable flows (see [9, 121). Accordingly, the boundary layers of

von KArman's type are considerably decreasing in thickness as the

Reynolds number increases (see Fig. 7).

In contrast to the von K"rman flows the fluid motions of

B~dewadt's type remain stable only below a certain critical Reynolds

number, which has been computed to be

Rc 8. (67)

For Reynolds numbers R : 8 the B~dewadt flows are not oscillating

and indicate no tendency of boundary layer separation at the axis of

rotation. For Reynolds numbers R 2 9 no proper nonoscillating flows

exist, which indicates the existence of a separated flow around the

axis of symmetry (compare [121). It may be mentioned that this phenom-

enon has been carefully checked by changing the input data which

determine the accuracy of the numerical method applied. In addition,

the results have been rechecked by the Runge-Kutta method which has

been applied to solve the equivalent system of differential equations.

The high accuracy of both numerical methods and the stability of the

solutions may be displayed by presenting the corresponding results of

both methods in table form (see Tables 12 and 13) for the Reynolds

number R - 1. In this connection it may be mentioned that the

19
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Runge-Kutta method used only five digit initial values, which were

obtained by the integral equation method. It can be seen that even

the higher order derivatives of the velocity profiles show no symptoms

of inflection points or even oscillations. The same has been found for

the Reynolds numbers 5 through 8. However, for the Reynolds number

R - 9 the remarkable stability of B&dewadt's flows is clearly dis-

continued. As explained in [12] this result was anticipated, because

the B~dewadt flows are of wake type, for which boundary layer separation

should be expected. It is, indeed, a justification of the doubts which

were raised by Stewartson and Moore against the solution of Bodewadt

(see Section 1). Furthermore, this significant phenomenon can easily

be confirmed by the tea-cup experiment described in Section 1.

Due to the wake character of the Bodewadt flows, the boundary layer

thickness is roughly constant with respect to increasing Reynolds numbers

(see Fig. 11). As was shown in [10], this property is also shared by the

vortex motions over flat surfaces (see Fig. 4). Furthermore, almost

invariant dimensionless tan~ential velocities V can be observed in both

the solid-body rotation and the vortex motion along flat mirfaces.

Special attention may be given to the secondary radial velocities

of the flows of von K~rman (Fig. 6) and B~dewadt (Fig. 10) and the

vortex flows over flat surfaces (Fig. 3). In all three cases agreement

can be seen in the property that the dimensionless radial velocities

U are very rapidly increasing with growing Reynolds numbers. Thus,

while the tangential shear stress at the surface increases relatively

20
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The numerical calculations ot von KArman's flows indicated no

tendency of flow separation near the axis of rotation for any Reynolds

number. Since the secondary flow is of stagnation type (see [121)all

velocity profiles are free of inflection points which characterize

unstable flows (see [9, 12]). Accordingly, the boundary layers of

von K~rmnn's type are considerably decreasing in thickness as the

Reynolds number increases (see Fig. 7).

In contrast to the von K"rman flows the fluid motions of

B~dewadt's type remain stable only below a certain critical Reynolds

number, which has been computed to be

Rc - 8. (67)

For Reynolds numbers R •- 8 the B~dewadt flows are not oscillating

and indicate no tendency of boundary layer separation at the axis of

rotation. For Reynolds numbers R > 9 no proper nonoscillating flows

exist, which indicates the existence of a separated flow around the

axis of symmetry (compare [121). It may be mentioned that this phenom-

enon has been carefully checked by changing the input data which

determine the accuracy of the numerical method applied. In addition,

the results have been rechecked by the Runge-Kutta method which has

been applied to solve the equivalent system of differential equations.

The high accuracy of both numerical methods and the stability of the

solutions may be displayed by presenting the corresponding results of

both methods in table form (see Tables 12 and 13) for the Reynolds

number R - 1. In this connection it may be mentioned that the

19
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slowly, the radial shear stress grows relatively fast. Figure 13 shows

the "angle of deviation X" between the spiral motions and an undisturbed

circular motion at the surface, which is defined by

tan x = -tlu u(r,z) = . U'(O)

z - 0 v(,z) V'(O)

In all three cases the absolute value of X starts at zero as the Reynolds

number increases from zero, which is in contradiction with von germgn' s

and Bodewadt's solutions. However, the new results are physically

plausible.

Finally, an interesting pressure distribution across the flow field

can be seen in both the von K1rmsn (Fig. 9) and the Bodewadt flows

(Fig. 12). In a pure stagnation flow without rotation (see E12]) the

pressure is monotonically increasing toward a pressure high at the surface.

The same is true for von Karman's flows, except that near the surface the

pressure is rapidly decreasing in order to attain a pressure low at the

surface. Similarly, in pure wake flows (see [121) the pressure is

monotonically falling toward a low at the surface. Bodewadt's flows

follow the same pattern up to a point near the surface, from which

point on the pressure is rapidly rising toward a high at the surface.

These phenomena appear also in von KArman's solution (see [91) and in

vortex flows over flat surfaces (see Fig. 5).
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slowly, the radial shear stress grows relatively fast. Figure 13 shows

the "angle of deviation X" between the spiral motions and an undisturbed

circular motion at the surface, which is defined by

tan -- lim u(rz) (68)
z -. o v(rz) v'(O)

In all three cases the absolute value of X starts at zero as the Reynolds

number increases from zero, which is in contradiction with von Karman's

and Bidewadt's solutions. However, the new results are physically

plausible.

Finally, an interesting pressure distribution across the flow field

can be seen in both the von K"rmun (Fig. 9) and the B6dewadt flows

(Fig. 12). In a pure stagnation flow without rotation (see E12]) the

pressure is monotonically increasing toward a pressure high at the surface.

The same is true for von K"rman's flows, except that near the surface the

pressure is rapidly decreasing in order to attain a pressure low at the

surface. Similarly, in pure wake flows (see [12]) the pressure is

monotonically falling toward a low at the surface. B6dewadt's flows

follow the same pattern up to a point near the surface, from which

point on the pressure is rapidly rising toward a high at the surface.

These phenomena appear also in von K"rman's solution (see [9]) and in

vortex flows over flat surfaces (see Fig. 5).
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APPENDIX A



TABLE 1

RADIAL VZLOCITY - U OF VORTEX FLOWS

S1 10 20 50 100 500

0 .0000 .0000 .0000 .0000 .0000 .0000

.1 .0172 .1273 .1985 .2880 .3779 .6384

.2 .0317 .2302 .3474 .4802 .5910 .7783

.3 .0436 .3093 .4513 .5963 .6935 .7791

.4 .0528 .3663 .5082 .6568 .7293 .7565

.5 .0594 .4034 '5468 '.6779 .7263 .7277

.6 .0636 .4232 .5590 .6719 .7008 .6919

.7 .0657 .4283 .5546 .6474 .6622 .6489

.8 .0659 .4215 .5346 .6106 .6160 .6009

.9 .0645 .4052 .5034 .5660 .5656 .5499
1.0 .0618 .3818 .4648 .5170 .5133 .4981

1.1 .0581 .3534 .4291 .4660 .4610 .4467

1.2 .0537 .3220 .3843 .4149 .4097 .3969

1.3 .0488 .2890 .3466 .3652 .3604 .3495
1.4 .0437 .2559 .3025 .3180 .3140 .3049

1.5 .0386 .2236 .2604 .2739 .2708 .2637
1.6 .0337 .1930 .2277 .2335 .2313 .2260

1.7 .0290 .1645 .1917 .1970 .1956 .1919

1.8 .0246 .1386 .1594 .1646 .1638 .1614

1.9 .0207 .1155 .1310 .1361 .1358 .1344

2.0 .0172 .0952 .1103 .1114 .1115 .1108

2.1 .0141 .0776 .0889 .0903 .0906 .0903

2.2 .0114 .0626 .0708 .0724 .0729 .0728

2.3 .0092 .0500 .0582 .0575 .0580 .0580

2.4 .0073 .0395 .0455 .0452 .0457 .0457

2.5 .0057 .0310 .0353 .0351 .0355 .0356
2.6 .0045 .0240 .0271 .0270 .0273 .0273

2.7 .0035 .0185 .0217 .0206 .0208 .0208

2.8 .0027 .0142 .0165 .0156 .0156 .0156

2.9 .0020 .0108 .0125 .0117 .0116 .0115

3.0 .0015 .0082 .0099 .0087 .0085 .0084

3.1 .0012 .0062 .0074 .0065 .0062 .0061

3.2 .0009 .0047 .0056 .0049 .0046 .0045

3.3 .0007 .0036 .0043 .0037 .0034 .0034

3.4 .0005 .0028 .0034 .0029 .0027 .0029

3.5 .0004 .0022 .0026 .0024 .0022 .0027



TABLE 2

AXIAL VELOCITY W OF VORTEX FLOWS

rA .1923 1.204 1.523 1.767 1.857 1.951
a

Si10 20 50 100 500

0 .0000 .0000 .0000 .0000 .0000 .0000
.1 -. 0087 -. 0102 -. 0131 -. 0153 -. 0187 -. 0263
.2 -. 0312 -. 0355 -. 0433 -. 0471 -. 0519 -. 0456
.3 -. 0618 -. 0681 -. 0787 -. 0794 -. 0787 -. 0454
.4 -. 0950 -. 1009 -. 1053 -. 1029 -. 0917 -. 0372
.5 -. 1258 -. 1284 -. 1280 -. 1134 -. 0900 -. 0238
.6 -. 1499 -. 1463 -. 1366 -. 1094 -. 0748 -. 0035
.7 -. 1638 -. 1516 -. 1327 -. 0912 -. 0476 +.0252
.8 -. 1651 -. 1429 -. 1128 -. 0599 -. 0102 .0623
.9 -. 1525 -. 1197 -. 0776 -. 0169 +.0360 .1067

1,0 -. 1256 -. 0827 -. 0287 +.0358 .0894 .1573
1.1 -. 0851 -. 0332 +.0209 .0965 .1487 .2126
1.2 -. 0322 +.0269 .0889 .1629 .2122 .2714
1.3 +.0311 .0952 .1508 .2332 .2784 .3323
1.4 .1024 .1695 .2290 .3054 .3460 .3940
1.5 .1793 .2472 .3091 .3777 .4133 .4554
1.6 .2592 .3261 .3756 .4486 .4793 .5154
1.7 .3398 .4040 .4535 .5167 .5427 .5731
1.8 .4190 .4792 .5276 .5809 .6026 .6278
1.9 .4949 .5502 .5966 .6406 .6584 .6791
2.0 .5661 .6160 .6496 .6950 .7095 .7264
2.1 .6317 .6759 .7073 .7440 .7556 .7696
2.2 .6910 .7294 .7583 .7875 .7966 .8082
2.3 .7436 .7765 .7957 .8255 .8326 .8424
2.4 .7896 .8173 .8346 .8582 .8639 .8721
2.5 .8291 .8522 .8675 .8861 .8905 .8975
2.6 .8626 .8814 .8948 .9094 .9130 .9190
2.7 .8906 .9057 .9138 .9287 .9317 .9369
2.8 .9136 .9256 .9325 .9444 .9471 .9516
2.9 .9323 .9416 .9476 .9570 .9594 .9635
3.0 .9474 .9543 .9576 .9668 .9692 .9729
3.1 .9593 .9643 .9673 .9744 .9767 .9801
3.2 .9686 .9721 .9748 .9802 .9823 .9853
3.3 .9758 .9780 .9806 .9844 .9863 .9887
3.4 .9813 .9825 .9845 .9875 .9890 .9906
3.5 .9854 .9859 .9882 .9896 .9908 .9913

I.
I



XABLE 3

PRESSURE DISTRIBUTION P OF VORTEX FLOWS

19 .0 20 50 800 500

0 .9992 .9585 .9172 .8528 .8027 .7141.1 .9992 .9585 .9170 .8526 .8023 .7130
.2 .9992 .9580 .9158 .8504 .7989 .7075
.3 .9992 .9563 .9118 .8442 .7909 .7004
.4 .9991 .9528 .9058 .8340 .7794 .6942
.5 .9990 .9474 .8959 .8210 .7669 .6897
.6 .9988 .9405 .8860 .8076 .7558 .6877
.7 .9986 .9328 .8739 .7957 .7480 .6890
.8 .9984 .9252 .8631 .7872 .7444 .6942
.9 .9982 .9186 .8550 .7830 .7457 .7036

1.0 .9980 .9137 .8508 .7838 .7519 .7170
1.1 .9979 .9111 .8505 .7895 .7626 .7339
1.2 .9979 .9109 .8540 .7995 .7771 .7538
1.3 .9979 .9131 .8598 .8131 .7945 .7756
1.4 .9979 .9174 .8696 .8293 .8140 .7987
1.5 .9980 .9234 .8816 .8471 .8346 .8222
1.6 .9982 .9305 .8927 .8655 .8553 .8453
1.7 .9984 .9384 .9066 .8838 .8755 .8674
1.8 .9985 .9464 .9203 .9013 .8946 .8880
1.9 .9987 .9543 .9333 .9175 .9120 .9068
2.0 .9989 .9616 ,9433 .9320 .9277 .9235
2.1 .9991 .9683 .9541 .9448 .9414 .9381
2.2 .9993 .9742 .9634 .9558 .9531 .9506
2.3 .9994 .9793 .9701 .9650 .9630 .9611
2.4 .9995 .9836 .9768 .9726 .9711 .9697
2.5 .9996 .9871 .9823 .9787 .9777 .9767

2.6 .9997 .9900 .9866 .9836 .9829 .9823
2.7 .9998 .9923 .9896 .9875 .9870 .9866
2.8 .9998 .9940 .9924 .9905 .9902 .9899
2.9 .9999 .9954 .9945 .9927 .9926 .9924
3.0 .9999 .9965 .9959 .9944 .9944 .9943
3.1 .9999 .9973 .9973 .9957 .9957 .9957
3.2 1.0000 .9980 .9983 .9967 .9967 .9967
3.3 .9985 .9990 .9975 .9974 .9974
3.4 .9988 .9995 .9980 .9979 .9980
3.5 .9991 1.0000 .9985 .9984 .9985



TABLE 4
, I

RADIAL VELOCITY U OF VON KARMAN FLOWS

\R ,1 1 10 50 100

0 .0000 .0000 .0000 .0000 .0000
.05 .5114-3 .5105-2 .4469-1 .1147 .1464
.10 .8142-3 .8125-2 .6940-1 .1512 .1657
.15 .9527-3 .9504-2 .7916-1 .1456 .1360
.20 .9710-3 .9683-2 .7860-1 .1218 .0962
.25 .9088-3 .9060-2 .7166-1 .0935 .0618
.30 .7998-3 .7971-2 .6143-1 .0676 .0366
.35 .6702-3 .6678-2 .5015-1 .0467 .0199
.40 .5388-3 .5366-2 .3929-1 .0311 .0098
.45 .4175-3 .4157-2 .2968-1 .0200 .0043
.50 .3129-3 .3114-2 .2169-1 .0125 .0015
.55 .2272-3 .2261-2 .1537-1 .0076
.60 .1603-3 .1594-2 .1059-1 .0045
.65 .1099-3 .1093-2 .0709-1 .0026
.70 .0733-3 .0729-2 .0462-1 .0015
.75 .0477-3 .0474-2 .0294-1 .0008
.80 .0302-3 .0300-2 .1082-1 .0004
.85 .0186-3 .0185-2 .0110-1 .0002
.90 .0112-3 .0112-2 .0065-1 .0001
.95 .0066-3 .0066-2 .0037-1 .0001

1.00 .0038-3 .0038-2 .0021-1
1.05 .0021-3 .0021-2 .0012-1
1.10 .0012-3 .0012-2 .0006-1
1.15 .0006-3 .0006-2 .0003-1
1.20 .0003-3 .0003-2 .0002-1
1.25 .0002-3 .0002-2 .0001-1
1.30 .0001-3 .0001-2 .0001-1



TABLE 5
I I

TANGENTIAL VELOCITY V OF VON KARMAN FLOWS

.1 1 10 50 100

0 1.0000 1.0000 1.0000 1.0000 1.0000
.05 .8875 .8873 .8713 .7776 .7006
.10 .7773 .7769 .7470 .5833 .4647
.15 .6714 .6708 .6306 .4263 .2990
.20 .5716 .5710 .5243 .3050 .1889
.25 •4795 .4788 .4291 .2143 .1177

.30 .3961 .3955 .3458 .1479 .0719

.35 .3222 .3215 .2743 .1003 .0425

.40 .2579 .2573 .2141 .0668 .0235

.45 .2031 .2025 .1644 .0438 .0112

.50 .1573 .1568 .1241 .0281 .0035

.55 .1198 .1194 .0921 .0178

.60 .0897 .0894 .0672 .0110

.65 .0660 .0657 .0481 .0067

.70 .0477 .0475 .0339 .0040

.75 .0339 .0337 .0234 .0023

.80 .0237 .0235 .0159 .0014

.85 .0162 .0161 .0106 .0008

.90 .0109 .0108 .0070 .0004

.95 .0072 .0072 .0045 .0002
1.00 .0047 .0046 .0028 .0001
1.05 .0030 .0030 .0018 .0001
1.10 .0019 .0018 .0011
1.15 .0011 .0011 .0006
1.20 .0007 .0007 .0004
1.25 .0004 .0004 .0002
1.30 .0002 .0002 .0001

,I



TABLE 6
, ,

AXIAL VELOCITY W OF VON KAMAN FLOWS

WCO
-. 7643-3 -. 7618-2 -. 5954-1 -. 8366-1 -. 6987-1

aw
.1 1 10 50 100

0 .0000 .0000 .0000 .0000 .0000
.05 .0360 .0360 .0407 .0785 .1264
.10 .1247 .1249 .1389 .2432 .3592
.15 .2419 .2421 .2654 .4234 .5780
.20 .3688 .3692 .3990 .5842 .7442
.25 .4924 .4929 .5259 .7129 .8562
.30 .6045 .6050 .6379 .8088 .9255
.35 .7008 .7012 .7316 .8766 .9650
.40 .7799 .7802 .8066 .9226 .9856
.45 .8423 .8426 .8643 .9527 .9953
.50 .8898 .8901 .9072 .9718 .9992
.55 .9250 .9251 .9381 .9836
.60 .9501 .9503 .9597 .9907
.65 .9676 .9677 .9744 .9948
.70 .9795 .9795 .9841 .9972
.75 .9873 .9873 .9903 .9985
.80 .9923 .9923 .9943 .9992
.85 .9954 .9955 .9967 .9996
.90 .9974 .9974 .9981 .9998
.95 .9985 .9985 .9990 .9999

1.00 .9992 .9992 .9994 1.0000
1.05 .9996 .9996 .9997
1.10 .9998 .9998 .9998
1.15 .9999 .9999 .9999
1.20 .9999 .9999 1.0000
1.25 1.0000 1.0000

Il



TABLE 7

PRESSURE DISTRIBUTION P OF VON KARMAN FLOWS

JR.1 1 10 50 100

0 -. 2946+5 -. 2954+3 -3.594 -. 3793 -. 1768
.05 +.5683+4 +.5773+2 +1.468 +.9429 +1.043
.10 .2713+5 .2730+3 4.375 1.437 1.335
.15 .3815+5 .3836+3 5.740 1.537 1.328
.20 .4173+5 .4194+3 6.080 1.480 1.255
.25 .4038+5 .4057+3 5.797 1.379 1.180
.30 .3614+5 .3631+3 5.186 1.279 1.118
.35 .3053+5 .3069+3 4.450 1.196 1.071
.40 .2463+5 .2476+3 3.716 1.133 1.038
.45 .1909+5 .1921+3 3.057 1.087 1.016
.50 .1429+5 .1440+3 2.505 1.056 1.003
.55 .1035+5 .1046+3 2.067 1.034
.60 .7275+4 .7377+2 1.734 1.021
.65 .4969+4 .5068+2 1.491 1.012
.70 .3301+4 .3395+2 1.320 1.007
.75 .2135+4 .2232+2 1.203 1.004
.80 .1344+4 .1442+2 1.125 1.002
.85 .8244+3 .9226+1 1.075 1.001
.90 .4924+3 .5908+1 1.044 1.001
.95 .2862+3 .3848+1 1.025 1.000

1.00 .1616+3 .2603+1 1.014
1.05 .8830+2 .1872+1 1.007
1.10 .4646+2 .1453+1 1.004
1.15 .2318+2 .1221+1 1.002
1.20 .1065+2 .1096+1 1.001
1.25 .4218+1 .1032+1 1.000
1.30 .1000+1 .1000+1



TABLE 8

RADIAL VELOCITY U OF BODEWADT FLOWS

• it i i5 8

0 .0000 .0000 ..0000 .0000
.05 .1165-2 .1165-1 .0582 .0907
.10 .2054-2 .2054-1 .1025 .1594

.15 .2662-2 .2663-1 .1329 .2059

.20 .3004-2 .3004-1 .1500 .2316

.25 .3111-2 .3112-1 .1554 .2391

.30 .3028-2 .3029-1 .1514 .2320

.35 .2804-2 .2806-1 .1403 .2141

.40 .2490-2 .2491-1 .1247 .1895

.45 .2129-2 .2130-1 .1068 .1615

.50 .1759-2 .1760-1 .0884 .1329

.55 .1407-2 .1409-1 .0709 .1059

.60 .1092-2 .1094-1 .0551 .0818

.65 .0824-2 .0825-1 .0417 .0613

.70 .0604-2 .0605-1 .0306 .0447

.75 .0431-2 .0432-1 .0219 .0317

.80 .0300-2 .0300-1 .0153 .0218

.85 .0203-2 .0204-1 .0104 .0147

.90 .0134-2 .0135-1 .0069 .0095

.95 .0087-2 .0087-1 .0045 .0061
1.00 .0055-2 .0055-1 .0028 .0037
1.05 .0034-2 .0034-1 .0017 .0023
1.10 .0020-2 .0020-1 .0011 .0013
1.15 .0012-2 .0012-1 .0006 .0008

1.20 .0007-2 .0007-1 .0004 .0004
1.25 .0004-2 .0004-1 .0002 .0002
1.30 .0002-2 .0002-1 .0001 .0001

i



TANGENTIAL VELOCITY V OF B0DEWADT FLOWS I
R8'I .1 1 5 8

0 .0000 .0000 .0000 .0000
.05 .1125 .1126 .1173 .1261
.10 .2227 .2230 .2321 .2496
.15 .3286 .3291 .3422 .3674
.20 .4284 .4290 .4453 .4770
.25 .5205 .5212 .5399 .5763
.30 .6039 .6046 .6246 .6639
.35 .6778 .6785 .6987 .7390
.40 .7421 .7428 .7623 .8017
.45 .7969 .7975 .8156 .8527
.50 .8427 .8433 .8593 .8930
.55 .8802 .8807 .8944 .9241
.60 .9103 .9107 .9221 .9473
.65 .9340 .9343 .9435 .9643
.70 .9523 .9525 .9596 .9764
.75 .9661 .9663 .9716 .9847
.80 .9763 .9765 .9804 .9904
.85 .9838 .9839 .9867 .9941
.90 .9891 .9891 .9911 .9965
.95 .9928 .9928 .9941 .9979

1.00 .9953 .9953 .9962 .9988
1.05 .9970 .9970 .9976 .9994
1.10 .9981 .9981 .9985 .9997
1.15 .9989 .9989 .9991 .9998
1.20 .9993 .9993 .9994 .9999
1.25 .9996 .9996 .9997 1.0000
1.30 .9998 .9998 .9998



TABLE 10

AXIAL VELOCITY W OF BODEWADT FLOWS

Wco .2953-2 .2955-1 1.480 .2251

.00 .0000 .0000 .0000 .0000

.05 .0205 .0205 .0204 .0209

.10 .0758 .0758 .0755 .0773

.15 .1564 .1564 .1558 .1592
.20 .2531 .2530 .2520 .2571
.25 .3572 .3571 .3558 .3622
.30 .4616 .4615 .4599 .4673
.35 .5607 .5605 .5587 .5667
.40 .6505 .6504 .6485 .6565
.45 .7288 .7286 .7268 .7346
.50 .7946 .7945 .7927 .7999
.55 .8481 .8480 .8464 .8528
.60 .8903 .8902 .8889 .8944
.65 .9226 .9226 .9214 .9260
.70 .9467 .9466 .9457 .9495
.75 .9641 .9640 .9633 .9663
.80 .9763 .9763 .9758 .9780
.85 .9848 .9848 .9844 .9861
.90 .9904 .9904 .9902 .9914
.95 .9941 .9941 .9939 .9948

1.00 .9965 .9965 .9964 .9969
1.05 .9980 .9979 .9979 .9982
1.10 .9989 .9988 .9988 .9990
1.15 .9994 .9994 .9994 .9994
1.20 .9997 .9997 .9997 .9997
1.25 .9999 .9999 .9999 .9998
1.30 1.0000 1.0000 1.0000 .9999



TABLE 11

PRESSURE DISTRIBUTION P OF BODEWADT FLOWS

\R
1.1 1 5 8

0 +.9398+4 +.9396+2 3.762 +1.525
.05 +.4034+4 +.4038+2 1.631 + .6278
.10 -. 1593+3 -. 1522+1 - .0300 - .0648
.15 -. 3222+4 -. 3211+2 -1.229 - .5501
.20 -. 5248+4 -. 5231+2 -1.996 - .8388
.25 -. 6376+4 -. 6352+2 -2.383 - .9529
.30 -. 6773+4 -. 6741+2 -2.461 - .9239
.35 -. 6619+4 -. 6579+2 -2.304 - .7886
.40 -. 6087+4 -. 6037+2 -1.990 - .5849
.45 -. 5331+4 -. 5272+2 -1.587 - .3469
.50 -. 4478+4 -. 4412+2 -1.152 - .1025
.55 -. 3626+4 -. 3551+2 - .7269 + .1290
.60 -. 2838+4 -. 2757+2 - .3435 + .3333
.65 -. 215144 -. 2066+2 - .0127 + .5050
.70 -. 1583+4 -. 1493+2 + .2588 + .6431
.75 -. 1131+4 -. 1038+2 + .4726 + .7498
.80 -. 7854+3 -. 6902+1 + .6350 + .8294
.85 -. 5262+3 -. 4337+1 + .7542 + .8868
.90 -. 3482+3 -. 2504+1 + .8390 + .9269
.95 -. 2221+3 -. 1234+1 + .8974 + .9540

1.00 -. 1362+3 -. 3809 + .9367 + .9718
1.05 -. 8073+2 +.1762 + .9622 + .9831
1.10 -. 4569+2 +.5304 + .9785 + .9903
1.15 -. 2395+2 +.7489 + .9885 + .9944
1.20 -. 1093+2 +.8804 + .9945 + .9969
1.25 -. 3312+1 +.9569 + .9980 + .9984
1.30 +.1000+i +.1000+1 +1.000 + .9991



TABLE 11

PRESSURE DISTRIBUTION P OF BODEWADT FLOWS

1 11 1 ---- -5 8

0 +.9398+4 +.9396+2 3.762 +1.525
.05 +.4034+4 +.4038+2 1.631 + .6278
.10 -. 1593+3 -. 1522+1 - .0300 - .0648
.15 -. 3222+4 -. 3211+2 -1.229 - .5501
.20 -. 5248+4 -. 5231+2 -1.996 - .8388
.25 -. 6376+4 -. 6352+2 -2.383 - .9529
.30 -. 6773+4 -. 6741+2 -2.461 - .9239
.35 -. 6619+4 -. 6579+2 -2.304 - .7886
.40 -. 6087+4 -. 6037+2 -1.990 - .5849
.45 -. 5331+4 -. 5272+2 -1.587 - .3469
950 -. 4478+4 -. 4412+2 -1.152 - .1025

.55 -. 3626+4 -. 3551+2 - .7269 + .1290

.60 -. 2838+4 -. 2757+2 - .3435 + .3333

.65 -. 2151+4 -. 2066+2 - .0127 + .5050

.70 -. 1583+4 -. 1493+2 + .2588 + .6431

.75 -. 1131+4 -. 1038+2 + .4726 + .7498

.80 -. 7854+3 -. 6902+1 + .6350 + .8294

.85 -. 5262+3 -. 4337+1 + .7542 + .8868

.90 -. 3482+3 -. 2504+1 + .8390 + .9269

.95 -. 2221+3 -. 1234+1 + .8974 + .9540
1.00 -. 1362+3 -. 3809 + .9367 + .9718
1.05 -. 8073+2 +.1762 + .9622 + .9831
1.10 -. 4569+2 +.5304 + .9785 + .9903
1.15 -. 2395+2 +.7489 + .9885 + .9944
1.20 -. 1093+2 +.8804 + .9945 + .9969
1.25 -. 3312+1 +.9569 + .9980 + .9984
1.30 +.1000+1 +.1000+1 +1.000 + .9991
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FIGURE 3: The dimensionless velocity components V and W vs. the
dimensionless variable I for vortex flows.
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FIGURE 7: The dimensionless velocity component V vs. the dimensionless
variable TI for von K"rman flows.
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FIGURE 8: The dimensionless velocity component W vs. the dimenslonless
variable I for von Karman flows.
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