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ABSTRACT

Numerical solutions of three-parameter vortex flows over flat
surfaces and of rotating flows of von Kirmdn's and Bodewadt's types

are presented for a variety of Reynolds numbers. The results have

been obtained on the basis of an extended boundary layer theory, which

allows a reduction of the Navier-Stokes equations to a set of Volterra

s b e A

integral equations, The new flows are in good agreement with available

physical observations,
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1, Introduction

Rotating flows normal to a flat surface have been studied in [10]
and [11] on the basis of an extension of Prandtl's boundary layer
theory. The investigations in [10] dealt with the vortex motion of a
viscous fluid, which is produced by a very long rod normal to a flat
surface (see Figure 1). In [1l1] the rotating flows of voﬁ Kérmdn and
Bddewadt, which are generated by a rotating flat plate in a fluid at
rest or by a fluid in solid-body rotation over a fixed plate, are re-
examined. In all three cases the Navier~Stokes equations have been
reduced to sets of nonlinear ordinary differential equations, which
are connected with appropriate boundary data,

In the present paper the nonlinear boundary value problems are
transformed into equivalent sets of nonlinear Volterra integral
equations, which can be solved by efficient iteration procedures,
Complete numerical results for all three problems have been computed
and are displayed in the following sections for a selected variety
of Reynolds numbers, Characteristic properties of these flows are
pointed out and compared with actually observed phenomena. In
particular, the properties of vortex flows over flat surfaces are
cqmpared with phenomena observed in hurricanes. Although the vortex
models considered are only very rough approximations to real hurricanes,

the qualitative agreement 1s satisfactory.
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It is a distinctive feature of all flows considered, that they
depend on three characteristic parameters. This is a result of the
complete boundary data which have been deduced from physical flow
models in order to specify a unique solution of the elliptic Navier-
Stokes equations. Because of the great importance of this procedure
for the theory of real flows, it seems worthwhile to insert here a
simple example, which displays the fundamental dependence properties
of the solutions of the Navier-Stokes equations.

As is shown, for instance, in [9] the Couette flows between a
fixed plate and a moving parallel plate depend on the kinematic vis~
cogity of the fluid, the speed of the moving plate, the distance of
the parallel plate, and the constant pressure gradient. In addition
to these four characteristic parameters the Couette flows are also
specified by the well-known similarity assumption. While the simi-
larity assumption restricts the type of the singularities which are
permitted at the entrance and the exit of the flow field, the con-
stant pressure gradient specifies their strengths. If the moving
plate is removed, one obtains similar flows along an infinite plate
which depend on three characteristic parameters.

It 1is one of the most significant features of the extended
boundary layer theory and the integration procedure developed in
[10] that the correct dependence properties of real flows are pre-
served, The classical boundary layer theory loses this property by

truncating the elliptic Navier-Stokes equations to parabolic
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differential equations. This may be demonstrated by a simple example,

which shows the basically different dependence properties of solutions
of elliptic and parabolic partial differential equations.

The elliptic Laplace equation

Ugx + Uyy = 0 *)
ylelds regular solutions in the unit square [0 <x <1, 0 sy < 1] for

any boundary data, which are, e.g., piecewise continuous. However, the

parabolic differential equation
u =0 (*%)
with the general solution
u = £(x)y + g(x)

does not allow the prescription of boundary values along x = 0 and

x = 1 in addition to data at y = 0 and y = 1, For instance,if the
boundary data u(x,0) = u(x,1) = 0, u(0,y) = ¢, (y), and u(l,y) = e, (y)
are imposed, no solution exists to the parabolic equation (**) no
matter how small |¢, (y)| # 0 and le, (y)|# O may be assumed.

In the problems of von Kérmin and Bdewadt uniqueness has been
achieved by very restrictive similarity assumptions, which indirectly
determine the well-known sink and source distributions of infinite
initial velocities at large -istances from the axes of rotation.

Consequently, the physical models of these flows remain unknown,
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This has first been pointed out by Stewartson (see [4, 5, 13]) who

questioned the physical meaning of the oscillating Bidewadt flow.
Moore (see [4, 5]) doubted also the usefulness of the Bodewadt
solution, because the flow shows no tendency of boundary layer
separation from the surface at the axis of rotation. This should be
expected as the secondary flow is of wake type (see [12]). Indeed,
simple experiments in a tea cup (Qee [4]) display very clearly a
separation of the fluid from the bottom of the cup, When the stirring
of the tea is sufficiently slow, tea leaves move toward the axis of
rotation and heap up at the bottom of the cup. However, when the
stirring is sufficiently fast, the tea leaves qettle distinctly on a
ring around the axis of rotation. This interesting phenomenon is a
graphic demomtratio.n of a separated wake flow along the axis of ro-
tation. It is comparable with the settling of dust around corners
of rooms which are not well kept., While the dust settles on rings
around the corners, the corners themselves remain clean. This also
indicates a separated wake in the corner into which no dust particles
can enter,

Another peculiar re-nul_t:, which concerns both the von Kirmén and
the Bodewadt flows, is the constant ''deviation angle" of the spiral
motion from a circular motion at the surface of the plate (see (9.
Since the secondary radial velocity depends strongly on the primary

tangential velocity (compare [10]), it should be expected that the

-

o e e e he sk R b R 9
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deviation angle of the streamlines at the plate would depend on a
Reynolds number. The flows of von Kérmén and Bodewadt do not ful-
fi1l this expectation, which seems to indicate that these flows are

considerably affected by the strong sinks and sources assumed at

large distances from the axes of rotation.

2, Vortex Flows Normal to a Plate
An axisymmetric vortex flow over a flat surface has been defined im

[10] as a solution of the Navier-Stokes equations

D | [
Uiy + Wi, - 'b'p_r'""“rr*'(%)r"'“uj
uv I
uvy + Wy, + & - "'""rr"’('}):"‘"u
- - [ 1
uwx_-i-wwz 'Epz"'”"n""?"r +w"
(xu)p + (xw), =0
by the boundary data
::8}= u=0,veO,w=0
:::}: u=0,ve 0, w=0
r-0
z>°}: u-‘o'%-’l’ e -1
l"Alog;g
r<w} w
83-‘0. -01. -.1.
Eoe % I"Alog-:’-

5

]

&Y

(2)
3

“)

€))

6

)

(®)
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In these equations u, v, and w denote the velocity components of the
vortex flow which correspond to the coaxial cylindrical coordinate
system (r, ¢, z). The variable pressure and the constant density and
kinematic viscosity of the fluid are designated by p, p, and v. While
the vortex strength I' and the radial extension r, of the axial loga-
rithmic sink (see Fig. 1) are at one's disposal, the constant value of
A must be determined simultaneously with the solution.

Guided by an extension of Prandtl's boundary layer theory a
first order reduction of the Navier-Stokes equations to an ordinary
boundary value problem has been found in [10],which is valid in the
vicinity of the line r = r,, This approximation was achieved with
the aid of the limiting line z = §(r) of the boundary layer along
the surface at z = 0, This limiting line was defined by the ¢ -
condition

v =L o

and remained to be found together with the primary tangential veloc-
1ty Ve

After applying the following similarity transformation

r=r, C-ﬁ;;,k-%(-keynolda number )
weLu), veLv, v=ra108 200, 2 - 57 20

ve-d@,n-d [c<c> - cé<c)]

9

(10)

(11)

(12)

b ameA e oo
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one arrives at the following ordinary differential equations
C+ PGB @+ -
V+Pi=0
6@ - (6) = == P,

202

which must be integrated under the boundary conditions
(=0: G=0,G=0,V=0,

(=@ C=G,,V=1,P=1,

Simultaneously with this reduction one obtains the equation of the
limiting line of the boundary layer in the vicinity of r = r, in the

form (see Fig. 1)
z = 8(r) _o_?_(:_)a(1+2 1og£r°-) .

The constant value A is

A-Z%Gq,,

where the characteristic pnramtér o is determined by the ¢ =~ con-

dition

C-]-: V-l-c.

(13)

(14)

(15)

(16)

17)

(1.8)

(19)

(20)

T e et o IS,
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For an integration of the remaining ordinary boundary value problem i

it is convenient to introduce the following new variables

T=c{ and g = oG, 1)

This substitution leads to the differential equations

g+m=Ba@ev o @
(8 -T8) =% B -
with
L

V() = erf /_;L :/%Lﬁl g‘tadt, 24)

which must be integrated under the boundary conditions
. N=0; g=0, gwoO, (25)
Naw: g=gy Pml, , (26)

The ordinary boundary value prpblem defined by the equations (22)
through (26) has been solved for the Reynolds number R = 10 by the
Runge~Kutta method which started the integration with an assumed set
of initial data that had to be improved successively until the boundary

condition (26) was sufficiently met. The result of this integration
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has been displayed in [10], The inefficiency of this method is obvious

because two initial conditions must be found which correspond to the
two ignored boundary conditions (26).

For an efficient integration of the remaining ordinary boundary
value‘problem it is convenient to transform the differential equations
(22) and (23) with the boundary conditions (25) and (26) into an
equivalent integral equation (see [14]). Assuming that the auxiliary

function

(M) = P(M) - gtM) - ve(M) @7)

is known, then the differential equation (22) reduces to the linear

equation
¥+ M- - F D) (28)

which is integrable by quadrature, Indeed, with the aid of the error

function (24) one finds the general solution of (28) in the form

_ 1
B =av(m +% - B &) [vm) - v(c)] de , (29)
4Jo v(t)

The boundary conditions (25) and (26) lead then to the nonlinear

Volterra integral equation

7

cons o R("D

§M = v - & J' %[vm - v<c)] at (30)
o
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for g(N), vhere

Y IO!
"Th L V(e) [2- Ve ] . €2

The functions g(7) and P(N) are obtained by direct integration of the

equations (30) and (23) under the boundary conditions (25) and (26).

They are
1
s(M 'I é(t)dt (32)
o | ,
and
Ul
PAD) =pn+g°(M - ZJ, t§® (t)de,
A (33)
where
we=P0)=1-g24 zj. t & (t)de, (34)

(4

This concludes the transformation of the boundary value problem under
consideration into a set of Volterra integral equations., It is, vice
versa, not difficult to show that any solution of the integral equations
is a solution of the boundary value problem, Thus the transformation

applied is an identical transformation,

10
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The integral equations .(30), (32), and (33) have been numerically
integrated for a variety of Reynolds numbers, Some selected sclutions
will be discussed in the following section. All solutions have been
constructed by an iteration procedure (see [107), which successively
improved an appropriate first approximation, It was found that the
method 1s very efficient, provided the first approximation is suf-
ficiently close to the correct solutiom.

For small Reynolds numbers the iterations can be started with

g(M=0, P(M) =1 @33)

as adequate first approximations, For larger Reynolds numbers the
iterations may be started by solutions, which are obtained for smaller
Reynolds numbers, In order to improve the rate of convergence of the
iteration procedure, especially in cases where the iteration is
started with a very crude approximation, it is helpful to average the
outcoming solution with the entering approximation of the iteration
by means of appropriate weighting factors.
3. Properties of Vortex Flows

Axisymmetric vortex flows normal to a flat surface have been computed
and tabulated for various Reynolds numbers (see Tables 1, 2 and 3),

Examples have been selected and plotted in the figures3 , 4, and &

11

—-— _—
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The numerical results confirm the phenomena of vortex flows which

were pointed out in [10], It may be emphasized that the numerical cal-
culations of all vortex flows computed indicated no symptoms of in-
stability of the flow near the line r = r, (see Fig. 1 and compare
[12]). Accordingly, vortex flows seem to remain laminar and attached
to the surface for all Reynolds numbers at least in the vicinity of

r = r,. Nevertheless, since the secondary flow is of "wake type"
(see[12]) within the cylinder r = r;, separation of the flow should
be expected to occur in the neighborhood of the vortex axis., However,
outside the cylinder r = r, the secondary flow is of "stagnation

type" and tends to prevent any flow separation. Thus, the instability
in the motion, which is caused by a flow separation at the axis, seems
to fade away when the flow changes its character. This explainll

the fact that the radial velocity U remains free of inflection points
which characterize unstable flows,

As was explained in[10] vortex flows normal to a flat surface repre-~
sent approximate models of hurricanes, provided exterior disturbances
of the vortex flows other than those caused by the surface of the
earth are excluded. Consequently, the numerical results may be com-
pared with phenomena observed outside the cores of hurricanes,
Despite the fact that real hurricanes are highly distorted by the
tremendous rainfall inside the circle r = r,, by the change of the
density and the turbulence of the air, etc., the agresment with

avajilable observations appears to be satisfactory.

12
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Indeed, the observations confirm the wake and stagnation character

of the secondary flow, where the rainfall area coincides roughly with
the circular region r < r,. The rapidly increasing rainfall toward
the core of a hurricane (see [15,p,.130]) is indicated by the log-
arithmic increase of the axial velocity toward the vortex axis. The
strong dependence of the secondary flow upon the Reynolds number R

( see Fig. 3,4, and 5) indicates a radial shear stress at the sur-
face, which is large compared with the tangential shear stress.

This explains the very strong radial ocean waves produced by hurri-
canes which are known as ocean swells (see [7, p.298]). As can be
deduced from figure 3, inside the cylinder r = r, the secondary flow
near the surface converges to the surface before it finally luv‘u the
vicinity of the surface in the normal direction (see Fig. 1). Accord-
ing to Riehl this remarkable phenomenon has &lso been observed in
hurricanes (see (7, p. 320]).

In order to get a rough idea of the boundary layer thickness near
the core of a hurricane, one may consider a hurricane of average size,
which has a rainfall area of about 2ry a 2000 km in diameter (see
[15,p.130]). If the limiting line of the boundary layer z = &(r)

(see Eq. (18)) is determined to a relative accuracy of €& " 1%, then
the characteristic parameter o was found to be o & 2.5 (see [10]),
With these assumptions the boundary layer thickness at the edge of
the hurricane core,which is at r ~ 30 km from the vortex axis (see

[ 7 p.297]), can be computed by equation(18), which yields § ~ 9 km.

13
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This result explains the observed thick boundary layers (see [6]),

which are produced by the friction forces along the surface of the
earth in hurricanes.
4. YVon Rérmén and Bidewadt Flows

The rotating flows of von Rirmén (y = 0) and BYdewadt (y = 1) have
been defined in [11] as solutions of the Navier-Stokes equations (1)

through (4) by the boundary data (see Fig., 2).

el <o

t u=0,ve (leyor,w=20 (36)
z =0 '
|r|$eo
I t u=0,ves yuwr,wsw, 37
Irl"'m .-u_-.o v
z >0.'wr 3 TE" Yo VW o (38)

In both problems the angular velocity w and the constant w,, which
determines the strengths of the singularities at the points (r = t o,

z = 0), are at one's disposal,

After introducing the limiting line of the boundary layer in the

form
z=06(x) =a-brd+ ... , (39)
which is determined by the ¢-condition

Z=- 6(1'): !L:‘.Ez -y + (. l)Y ¢, (40)

14
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the Navier-Stokes equﬁtion. can be reduced around r = 0 to a set of

1853

ordinary differential equations. This first order reduction requires

the following similarity transformation

a 2

u=wr U, veor V), v=vw W(C)

U=-¢ = S0 -1
©, W= e s P —(Gf}

and the following conventions about the constants
R-%%,c'-lb,wm-ZwaGm
The similarity transformation leads to the ordinary differential

equations (see [11])

G + 26° (4C = RG)G + o*R(E® ~ V@ + y - 4oPCH) = 0
V + 20" (4C = RG)V + 20”RAV = 0

G + 20 (2C - RG)G + o°Ri = 0,

which must be integrated under the boundary conditions

(=0: G=0,6=0,V=1-y

g = = G'Gasv'Y'“'G‘”a'

When the solution is found for a specified Reynolds number R, the

e~condition

Cml: Vey+(=-1)Ye

15

(41)

(42)

(43)

(44)

(45)
(46)
47

48)
(49)

(50)
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determines the characteristic parameter ¢. Thus, the unknown coefficients

a and b of the parabolic limiting line of the boundary layer (39) and the .
corresponding w,, can be computed from equations (44), As was shown in

[11], in physical applications the ratio a/b may roughly be computed-

by

ol

0

where B represents the diameter of an appropriate finite flow model
(see Fig. 2). '

The corresponding finite flow models, which were described in
[11] and which are sketched in figure 2, show graphically the dependence
of the von Kirmdn and Bodewadt flows on 3-parameter Reynolds numsers.
Indeed,if the slit between the cylinder and the disk is of negligible
size, the finite flow model depends on four essential parameters:
£he kinematic viscosity v of the fluid, the angular velocity w of the
rotating disk or the rotating cylinder, and the height o and the diam-
eter B of the cylinder containing the fluid, When carrying out the
limits o -~ © and B —» ~, one parameter, for instance, the ratio a/B
emerges as a characteristic parameter for the infinite flow model.
In accordance with the Reynolds number (44) it 1is useful to replace
the ratio o/B by the ratio a/b as a parameter at one's disposal,

Hence, a finite flow model may be considered similar to an infinite

model if they both agree in the ratios a/b, that is, in the products

16 )
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of the boundary layer thickness a and the radius of curvature 1/2b
at the axes of rotation (see equation (39)).

As in the vortex problem (Section 2) it 1is helpful to transform
the remaining boundary value problem into equivalent Volterra integral
equations. This transformation may be carried out after introducing

the following new scales for all variables concerned:

T]-CC, 8-060 h-o’ﬂ [ (52)
In the new variables the equations (45), (46), and (47) assume the

following form

g+ 80g =~ RA(M, AN = v+ § = 2§ -~ V - 4Th (53)
V + 80 = = RB(T), B(M) = 2(3V - gV) (54)
he2gg -2 @+4N0) . (55)

These equations must be integrated under the boundary conditions

N=0; g=0, §=0,Vmlay (56)
M=o g=g,= finite, V= vy, h = g2 (57)

With the aid of the error function

' 27
E(N) = erf(2N) = «/—12'1-:]‘ et (58)
[+

the solutions of the boundary value problem obtained are exactly the

solutions of the following set of Volterra integral equations:

17
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1
§C) = M ECT) - nj :—% [ECD) = ECt)] de
[}

(59)
1 l B(t
V(M) =1 = A - : -
(M = 1=y + AE(T) RL el USRI ©0)
8 &4 K
h(M) = A; + g2 - R - ij. tg(t)de (61)
[o]
with
AL =R J. Ae) l1-E
o E(0) [ (t)ldt (62)
Ae=2y-1+RrR| BB .
2 Y + J; E(t) [1 -~ E(t)]dt (63)
A 4 ‘wt.
s =3 g(t)dt . (64)
[¢]

The solutions of the integral equations (59) through (61) may be
obtained by an iteration procedure which successively improves suit-
able first approximations, Numerical calculations have shown that
for small Reynolds numbers R the iterations can be started with

8=0,h=0,V=1-y+ (2y- DE. (65)
For larger Reynolds numbers R the iterations may be initiated by
solutions, which are obtained for smaller Reynolds numbers,

5. Properties of von Karman and Bodewadt Flows

Rotating flows of von Kirmdn and Bodewadt have been computed and

are presented in the tables 4 through 11 and in the figures 6 through 12,

18
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The numerical caléulations of von Kirmdn's flows indicated no
tendency of flow separation near the axis of rotation for any Reynolds
number. Since the secondary flow'is of stagnation type (see [12])all
velocity profiles are free of inflection points which characterize
unstable flows (see [9, 12]). Accordingly, the boundary layers of
von Kirmdn's type are considerably decreasing in thickness as the
Reynolds number increases (see Fig, 7).

In contrast to the von Kirmin flows the fluid motions of
Bodewadt's type remain stable only below a certain critical Reynolds

number , which has been computed to be

R, ~ 8, . (67)
For Reynolds numbers R < 8 the Bodewadt flows are not oscillating
and indicate no tendency of boundary layer separation at the axis of
rotation. For Reynolds numbers R = 9 no proper nonoscillating flows
exist, which indicates the existence of a separated flow around the
axis of symmetry (compare [12]). It may be mentioned that this phenom-
enon has been carefully checked by changing the input data which
determine the accuracy of the numerical method applied. In additionm,
the results have been rechecked by the Runge-Kutta method which has
been applied to solve the equivalent system of differential equations.
The high accuracy of both numerical methods and the stability of the
solutions may be displayed by presenting the corresponding results of
both methods in table form (see Tables 12 and 13) for the Reynolds
number R = 1, In this connection it may be mentioned that the

19
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Runge-Kutta method used only five digit initial values, which were
obtained by the integral equation method. It can be seen that even

the higher order derivatives of the velocity profiles show no symptoms
of Inflection points or even oscillations, The same has been found for
the Reynolds numbers 5 through 8. However, for the Reynolds number

R = 9 the remarkable stability of Bodewadt's flows is clearly dis-
continued., As explained in [12] this result was anticipated, because
the Bodewadt flows are of wake type, for which boundary layer separation
should be expected. It is, indeed, a justification of the doubts which
were raised by Stewartson and Moore against the solution of Bodewadt
(see Section 1), Furthermore, this significant phenomenon can easily
be confirmed by the tea-cup experiment described in Section 1.

Due to the wake character of the Bodewadt flows, the boundary layer
thickness is roughly constant with respect to increasing Reynolds numbers
(see Fig, 11). As was shown in [10], this property is also shared by the
vortex motions over flat surfaces (see Fig., 4). Furthermore, almost
invariant dimensionless tangential velocities V can be observed in both
the solid-body rotation and the vortex motion along flat surfaces.

Special attention may be given to the secondary radial velocities
of the flows of von Kdrmin (Fig. 6) and Bodewadt (Fig. 10) and the
vortex flows over flat surfaces (Fig. 3). In all three cases agreement
can be seen in the property that the dimensionless radial velocities
U are very rapidly increasing with growing Reynolds numbers. Thus,

while the tangential shear stress at the surface increases relatively

20




NWL _REPORT NO, 1853

The numerical caléulations of von Kirman's flows indicated no
tendency of flow separation near the axis of rotation for any Reynolds
number. Since the secondary flow‘is of stagnation type (see [12])all
velocity profiles are free of inflection points which characterize
unstable flows (see [9, 12]). Accordingly, the boundary layers of
von Kdrmdn's type are considerably decreasing in thickness as the
Reynolds number increases (see Fig. 7).

In contrast to the von Kirmin flows the fluid motions of
Bodewadt's type remain stable only below a certain critical Reynolds

number , which has been computed to be

R, ~ 8. . (67)
For Reynolds numbers R < 8 the Bodewadt flows are not osciliating
and indicate no tendency of boundary layer separation at the axis of
rotation. For Reynolds numbers R 2 9 no proper nonoscillating flows
exist, which indicates the existence of a separated flow around the
axis of symmetry (compare [12]). It may be mentioned that this phenom-
enon has been carefully checked by changing the input data which
determine the accuracy of the numerical method applied. 1In addition,
the results have been rechecked by the Runge-Kutta method which has
been applied to solve the equivalent system of differential equations.
The high accuracy of both numerical methods and the stability of the
solutions may be displayed by presenting the corresponding results of
both methods in table form (see Tables 12 and 13) for the Reynolds
number R = 1, In this connection it may be mentioned that the

19
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slowly, the radial shear stress grows relatively fast., Figure 13 shows
the "angle of deviation X" between the spiral motions and an undisturbed
circular motion at the surface, which is defined by

tan x = - lim 8(.2) _ _ u’(0)
Z 0 V(n,Z) v’(o)

(68)

In all three cases the absolute value of X starts at zero as the Reynolds
number increases from zero, which is in contradiction with von Karman's
and Bodewadt's solutions. However, the new results are physically
plausible.

Finally, an interesting pressure distribution across the flow field
can be seen in both the von Kdrmdn (Fig. 9) and the Bodewadt flows
(Fig. 12). 1In a pure stagnation flow without rotation (see [12]) the
pressure is monotonically increasing toward a pressure high at the surface.
The same is true for von Kirmin's flows, except that near the surface the
pressure is rapidly decreasing in order to attain a pressure low at the
surface. Similarly, in pure wake flows (see (12]) the pressure is
monotonically falling toward a lew at the surface., Bodewadt's flows
follow the same pattern up to a point near the surface, from which
point on the pressure is rapidlylrising toward a high at the surface.
These phenomena appear also in von Kiarmin's solution (see [9]) and in

vortex flows over flat surfaces (see Fig. 5).
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slowly, the radial shear stress grows relatively fast, Figure 13 shows
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can be seen in both the von Kirmin (Fig. 9) and the Bodewadt flows
(Fig. 12). 1In a pure stagnation flow without rotation (see [12]) the
pressure is monotonically increasing toward a pressure high at the surface.
The same is true for von Kirman's flows, except that near the surface the
pressure is rapidly decreasing in order to attain a pressure low at the
surface. Similarly, in pure wake flows (see [12]) the pressure is
monotonically falling toward a low at the surface, Bodewadt's flows
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TABLE 1

RADIAL VELOCITY ~ U OF VORTEX FLOWS

1 10 20 50 100 500

0 .0000 .0000 .0000 .0000 .0000 .0000
.1 ,0172 .1273 .1985 .2880 3779 .6384
o2 .0317 +2302 3474 4802 .5910 .7783
.3 0436 .3093 4513 «5963 .6935 7791
b .0528 +3663 .5082 .6568 +7293 «7565
.5 l0594 04034 '.5468 ‘.6779 o7263 .7277
6 .0636 4232 <5590 .6719 .7008 .6919
o7 0657 4283 «3546 6474 .6622 .6489
.8 .0659 4215 «5346 .6106 .6160 .6009
9 .0645 4052 «5034 .3660 +5656 +5499
1,0 .0618 .3818 4648 «5170 «5133 4981
1,1 .0581 +3534 4291 4660 4610 4467
1.2 .0537 »3220 3843 4149 4097 .3969
1,3 0488 .2890 <3466 +3652 «3604 <3495
1.4 .0437 +2559 «3025 .3180 3140 .3049
1.5 .0386 #2236 .2604 <2739 .2708 «2637
1.6 ,0337 .1930 <2277 «2335 .2313 .2260
1.7 .0290 +1645 1917 .1970 .1956 .1919
1.8 .0246 .1386 «159% +1646 .1638 .1614
1.9 .0207 «1155 .1310 .1361 .1358 1344
2,0 0172 .0952 »1103 .1114 .1115 .1108
2.1 0141 0776 .0889 »0903 .0906 .0903
2,2 0114 .0626 .0708 0724 .0729 .0728
2.3 .0092 .0500 .0582 0575 .0580 .0580
2.4 .0073 .0395 .0455 .0452 .0457 .0457
2.5 .0057 .0310 .0353 ,0351 .0355 .0356
2,6 .0045 .0240 .0271 ,0270 .0273 .0273
2.7 ,0035 ,0185 .0217 .0206 .0208 .0208
2.8 .0027 ,0142 0165 0156 .0156 .0156
2.9 .0020 .0108 .0125 .0117 .0116 .0115
3.0 .0015 .0082 .0099 .0087 .0085 .0084
3.1 .0012 .0062 .0074 +0065 .0062 .0061
3.2 ,0009 .0047 .0056 .0049 ,0046 .0045
3.3 .0007 ,0036 .0043 ,0037 .0034 .0034
3.4 .0005 .0028 .0034 .0029 .0027 .0029
3.5 .0004 .0022 .0026 .0024 .0022 .0027
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TABLE 2

AXTAL VELOCITY W OF VORTEX FLOWS

.1923 1,204 1,523 1,767 1,857 1,951

1 10 20 50 100 500

.0000 .0000 .0000 .0000 .0000 .0000

-.0087 -,0102 -.0131 -.0153 -,0187 -.0263

-00312 -00355 'um33 -.0471 ‘.0519 -.m56

-.0618 -.0681 -.0787 -.079 -.0787 -.0454

-.0950 -.1009 -.1053 ~,1029 -.0917 -.0372

-,1258 ~.1284 -.1280 -.1134 -.0900 -.0238

-01499 -c1463 -.1366 -01094 "n0748 -10035

-.1638 -.1516 -.1327 -.0912 -.0476 +.0252

-.1651 -.1429 -.1128 -.0599 -.0102 .0623

-.1525 -.1197 -.0776 -.0169 +.0360 .1067

1,0 -.1256 -.0827 -.0287 +.0358 .0894 «1573
1,1 -.0851 -.0332 +,0209 .0965 . 1487 2126
1,2 -,0322 +,0269 .0889 .1629 2122 2714
1,3 +.0311 .0952 .1508 .2332 2784 .3323
1.4 .1024 .1695 2290 «3054 .3460 .3940
1.5 .1793 2472 «3091 3777 4133 4554
1.6 #2592 3261 .3756 4486 4793 +5154
1,7 3398 4040 4535 «5167 5427 5731
1.8 4190 4792 5276 »5809 .6026 .6278
1.9 4949 «5502 +5966 .6406 .6584 .6791
2,0 «5661 .6160 .6496 .6950 .7095 + 7264
2,1 .6317 <6759 «7073 7440 .7556 7696
2,2 .6910 07294 .7583 «7875 .7966 .8082
2.3 . 7436 +7765 <7957 .8255 .8326 .8424
2.4 .7896 .8173 .8346 «8582 .8639 .8721
2,5 .8291 .8522 .8675 .8861 .8905 .8975
2,6 .8626 .8814 .8948 .9094 .9130 .9190
2,7 .8906 .9057 .9138 «9287 .9317 .9369
2.8 .9136 «9256 .9325 9444 . 9471 9516
2,9 .9323 9416 «9476 .9570 +95% .9635
3.0 . 9474 <9543 «9576 +9668 »9692 .9729
3.1 .9593 +9643 .9673 .9744 . 9767 .9801
3.2 +9686 9721 .9748 .9802 .9823 .9853
3.3 .9758 .9780 .9806 . 9844 .9863 .9887
3.4 .9813 «9825 . 9845 .9875 .9890 .9906
3.5 .9854 .9859 .9882 +9896 .9908 .9913
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TABLE 3

PRESSURE DISTRIBUTION P OF VORTEX FLOWS

1 10 20 50 100 500

o «9992 «9585 W9172 «8528 .8027 .7141
ol <9992 «9585 9170 .8526 .8023 +7130
2 «9992 .9580 .9158 »8504 +7989 .7075
3 .9992 +9563 9118 <8442 +7909 + 7004
Wb «9991 .9528 .9058 +8340 779 .6942
o5 +9990 #9474 «8959 .8210 .7669 .6897
o6 .9988 «9405 .8860 .8076 .7558 +6877
o7 «9986 .9328 .8739 <7957 .7480 .6890
.8 +9984 »9252 .8631 .7872 J444 .6942
9 .9982 .9186 .8550 .7830 +7457 »7036
1.0 +9980 «9137 .8508 .7838 .7519 «7170
1.1 .9979 9111 .8505 .7895 «7626 .7339
1,2 .9979 .9109 .8540 «7995 7771 .7538
1.3 <9979 .9131 .8598 .8131 «7945 #7756
1.4 .9979 9174 .8696 .8293 .8140 . 7987
1.5 .9980 29234 .8816 8471 .8346 .8222
1,6 «9982 .9305 .8927 «8655 .8553 «8453
1.7 .9984 <9384 .9066 .8838 +8755 +8674
1.8 »9985 <9464 »9203 .9013 .8946 .8880
1.9 .9987 .9543 .9333 9175 .9120 «9068
2,0 .9989 .9616 29433 .9320 .9277 «9235
2,1 <9991 +9683 .9541 . 9448 <9414 .9381
2,2 «9993 «9742 .9634 +9558 +9531 .9506
2,3 .9994 «9793 .9701 «9650 .9630 .9611
2.4 +9995 .9836 .9768 .9726 .9711 .9697
2.5 »9996 .9871 .9823 .9787 9777 «9767
2.6 «9997 +9900 «9866 .9836 .9829 .9823
2.7 .9998 .9923 «9896 .9875 .9870 +9866
2.8 +9998 +9940 «9924 .9905 .9902 . 9899
2,9 «9999 +9954 #9945 »9927 +9926 +9924
3.0 +9999 +9965 .9959 <994 . 9944 .9943
3.1 «9999 .9973 <9973 +9957 +9957 «9957
3.2 1,0000 .9980 +9983 «9967 .9967 »9967
3.3 +9985 »9990 +9975 .9974 +9974
3.4 .9988 . .999 <9980 «9979 .9980
3.5 .9991 1,0000 +9985 .9984 «9985
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RADIAL VELOCITY U OF VON KARMAN FLOWS

TABLE 4

100

.1l 1 10 50
0 .0000 .0000 .0000 »0000 .0000
.05 +5114-3 +5105-2 4469-1 . 1147 . 1464
.10 .8142-3 «8125-2 «6940-1 .1512 .1657
.15 .9527-3 .9504-2 «7916-1 «1456 .1360
.20 .9710-3 .9683-2 ,7860-1 .1218 .0962
23 .9088-3 «9060-2 «7166-1 .0935 0618
.30 .7998-3 79712 +6143-1 .0676 0366
o35 .6702-3 +6678-2 +5015-1 .0467 .0199
.40 «5388-3 +5366-~2 «3929-1 .0311 .0098
W45 4175-3 4157-2 +2968-1 .0200 .0043
.50 «3129-3 .3114-2 «2169-1 »0125 .0015
o355 .2272-3 «2261-2 «1537-1 .0076
.60 .1603-3 «1594-2 .1059-1 ,0045
«65 .1099-3 +1093-2 .0709-1 .0026
.70 .0733-3 0729-2 .0462-1 .0015
75 .0477-3 «0474-2 .0294-1 .0008
.80 .0302-3 .0300-2 .1082-1 .0004
«85 .0186-3 .0185-2 .0110-1 .0002
.90 .0112-3 .0112-2 .0065-1 .0001
<95 .0066-3 .0066-2 .0037-1 .0001
1,00 .0038-3 .0038-2 .0021~1
1.05 .0021-3 .0021-2 .0012-1
1.10 .0012-3 .0012-2 .0006-1
1.15 .0006+3 .0006-2 .0003-1
1,20 .0003-3 .0003-2 .0002-1
1,25 .0002-3 .0002-2 .0001-1
1.30 .0001-3 .0001-2 .0001~1
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TANGENTIAL VELOCITY V OF VON KARMAN FLOWS

TABLE 5

EN

.1 1 10 50 160
0 1.0000 1,0000 1.0000 1,0000 1,0000
.05 .8875 .8873 .8713 .7776 . 7006
.10 7773 .7769 «7470 .3833 4647
.15 6714 .6708 «6306 4263 +2990
«20 .5716 .5710 «5243 .3050 .1889
+25 4795 4788 4291 2143 .1177
.30 .3961 +3955 .3458 1479 0719
o35 3222 .3215 »2743 .1003 0425
40 +2579 22573 2141 .0668 .0235
W45 .2031 .2025 + 1644 .0438 .0112
«50 1573 .1568 1241 .0281 .0035
«55 .1198 .1194 .0921 .0178
.60 .0897 .089%4 0672 .0110
«65 .0660 «0657 .0481 .0067
.70 0477 0475 .0339 .0040
o75 .0339 .0337 0234 .0023
.80 .0237 .0235 .0159 0014
+85 .0162 .0161 .0106 .0008
.90 .0109 .0108 .0070 .0004
«95 .0072 .0072 .0045 .0002
1.00 .0047 0046 .0028 .0001
1,05 .0030 .0030 .0018 .0001
1,10 ,0019 .0018 .0011
1,15 .0011 .0011 .0006
1.20 .0007 .0007 .0004
1,25 .0004 .0004 .0002
1,30 .0002 .0002 .0001
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AXTAL VELOCITY W OF VON KARMAN FLOWS

TABLE 6

W,
;5 -.7643-3 -.7618-2 «.5954=1 -.8366-1 -.6987-1
R
\ .1 1 10 50 100
L
0 .0000 .0000 .0000 .0000 .0000
.05 .0360 .0360 0407 .0785 .1264
.10 1247 1249 .1389 26432 3592
.15 2419 2421 2654 4234 .5780
.20 .3688 3692 .3990 .5842 7442
.25 46924 4929 5259 7129 .8562
.30 6045 6050 .6379 .8088 .9255
.35 .7008 .7012 .7316 .8766 .9650
.40 .7799 .7802 .8066 .9226 .9856
45 .8423 8426 .8643 .9527 .9953
.50 .8898 .8901 .9072 .9718 .9992
.55 .9250 .9251 .9381 .9836
.60 .9501 .9503 .9597 .9907
.65 .9676 9677 9744 .9948
.70 .9795 ,9795 .9841 9972
.75 .9873 .9873 9903 .9985
.80 .9923 .9923 .9943 9992
.85 .9954 .9955 .9967 .9996
.90 .9974 9974 .9981 .9998
.95 .9985 .9985 .9990 .9999
1.00 .9992 .9992 .9994 1,0000
1,05 .9996 .9996 .9997
1,10 .9998 .9998 .9998
1.15 .9999 .9999 .9999
1,20 .9999 9999 1.,0000
1.25 1.0000 1,0000

L




TABLE 7

’ )
PRESSURE DISTRIBUTION P OF VON KARMAN FLOWS

a -
7\ .1 1 10 50 100

0 - 0294645 ~.2954+3 -3.59 -.,3793 -.1768
.05 +.5683+4 +45773+2 +1,468 +,9429 +1.043
.10 271H5 273043 4,375 1,437 1,335
.15 «3815+5 +3836+3 5.740 1,537 1,328
«20 4173+5 #4194+3 6,080 1,480 1,255
25 4038+5 405743 5.797 1,379 1.180
.30 361445 .3631+3 5.186 1,279 1,118
35 .3053+5 +3069+3 4,450 1,196 1,071
40 246345 247643 3.716 1,133 1,038
W45 .1909+5 «192143 3.057 1,087 1.016
+30 «1429+5 .1440+3 2,505 1,056 1.003
o55 +1035+5 «1046+3 2,067 1,034

.60 7275+ J7377+2 1,734 1.021

«65 4969+ .5068+2 1.491 1,012

.70 «3301+4 +3395+2 1,320 1,007

75 2135+ 0223242 1,203 1.004

.80 »1344+4 « 144242 1,125 1,002

«85 .8244+43 .9226+1 1,075 1,001

.90 492443 .5908+1 1,044 1,001

«95 .2862+3 +3848+1 1,025 1,000

1,00 .1616+3 «2603+1 1,014

1,05 .8830+2 .1872+1 1,007

1,10 464 6+2 «1453+1 1,004

1.15 «2318+2 122141 1,002

1.20 .1065+2 .1096+1 1,001

1.25 A42168+1 .1032+1 1,000

1,30 «1000+1 .1000+1
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RADIAL VELOCITY

TABLE 8

U OF BODEWADT FLOWS

RR

.l 1 5 8
0 .0000 .0000 .0000 .0000
.05 «1165-2 .1165-1 .0582 .0907
.10 «2054-2 .2054-1 .1025 159
.15 «2662-2 +2663-1 .1329 «2059
20 «3004-2 .3004~1 «1500 +2316
e25 »3111-2 «3112-1 «1554 .2391
.30 .3028-2 +3029-1 .1514 «2320
o35 .2804-2 .2806-1 .1403 2141
40 «2490-2 .2491-1 #1247 .1895
45 «2129-2 .2130-1 .1068 1615
«50 «1759-2 .1760-1 .0884 .1329
55 .1407-2 .1409-1 .0709 .1059
.60 .1092-2 .1094-1 .0551 .0818
«65 +0824-2 .0825-1 0417 .0613
.70 «0604-2 .0605-1 .0306 0447
o75 «0431-2 .0432-1 0219 .0317
.80 .0300-2 .0300-1 .0153 0218
«85 .0203-2 .0204-1 .0104 L0147
.90 «0134-2 .0135-1 .0069 .0095
.95 00087"2 00087-1 00045 ’ .0061
1.00 00055'2 00055'1 00028 00037
1.05 00034-2 00034'1 00017 00023
1.10 00020'2 .0020-1 00011 00013
1,15 .0012-2 .0012-1 +0006 .0008
1.20 .0007-2 .0007-1 .0004 .0004
1.25 +0004-2 .0004-1 .0002 .0002
1.30 .0002-2 .0002-1 .0001 .0001




TANGENTIAL VELOCITY V OF BODEWADT FLOWS

TABLE 9

. .1 1 5 8

0 .0000 " .0000 .0000 .0000
.05 .1125 .1126 .1173 .1261
.10 $2227 .2230 2321 2496
.15 .3286 .3291 »3422 «3674
.20 4284 .4290 L4453 4770
25 .5205 .5212 .5399 .5763
.30 .6039 .6046 «6246 .6639
.35 .6778 .6785 .6987 .7390
.40 7421 .7428 .7623 .8017
45 .7969 <7975 .8156 .8527
.50 8427 .8433 +8593 .8930
»55 .8802 .8807 .8944 .9241
.60 .9103 .9107 .9221 .9473
.65 .9340 .9343 <9435 .9643
.70 .9523 .9525 +9596 .9764
.75 .9661 .9663 .9716 .9847
.80 .9763 +9765 . 9804 . 9904
.85 .9838 .9839 .9867 .99%1
.90 .9891 .9891 .9911 +9965
«95 .9928 +9928 .9941 .9979
1,00 .9953 .9953 . 9962 .9988
1.05 .9970 .9970 .9976 .9994
1.10 .9981 .9981 «9985 . 9997
1.15 .9989 .9989 .9991 .9998
1.20 .9993 +9993 «999% «9999
1.25 .9996 .9996 .9997 1.0000
1.30 .9998 .9998 .9998

R e,



AXTAL VELOCITY W OF BODEWADT FLOWS

TABLE 10

Voo
— «2953-2 «2955-1 1,480 .2251
aw
R
.1 1 5 8
0
.00 .0000 .0000 .0000 .0000
.05 .0205 .0205 .0204 .0209
.10 .0758 .0758 .0755 .0773
.15 .1564 «1564 +1558 +1592
.20 .2531 «2530 +2520 .2571
«25 .3572 <3571 «3558 »3622
.30 4616 4615 4599 4673
.35 .5607 +5605 +5587 .5667
.40 .6505 +6504 +6485 .6565
45 .7288 .7286 .7268 «7346
.50 .7946 «7945 .7927 .7999
«53 .8481 .8480 »8464 .8528
.60 .8903 .8902 .8889 .8944
.63 .9226 .9226 +9214 .9260
.70 +9467 +9466 .9457 .9495
o753 <9641 «9640 .9633 +9663
.80 +9763 .9763 .9758 .9780
.85 .9848 .9848 . 9844 .9861
.90 .9904 »9904 . 9902 .9914
<95 .99%1 .99%1 +9939 .9948
1.00 .9965 .9965 +9964 .9969
1.05 .9980 «9979 «9979 +9982
1.10 .9989 .9988 .9988 .9990
1.15 «9994 <9994 +999% «999%
1.20 +9997 +9997 .9997 .9997
1,25 .9999 +9999 <9999 .9998
1.30 1.0000 1,0000 1,0000 «9999
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TABLE 11

PRESSURE DISTRIBUTION P OF BE)'DEWADT FLOWS

A

.l 1 5 8
0 +.9398+4 +.9396+2 3,762 +1,525
.05 +.4034+4 +.4038+2 1,631 + .6278
010 -01593+3 . -01522+1 - 00300 - 00648
.15 -.3222+4 ~321142 -1,229 - .5501
.20 =.5248+4 ~-.5231+2 -1,996 - ,8388
25 -.6376+4 -.6352+2 -2.383 - .9529
»30 «.6773+4 -.6741+2 ~2,.461 - .9239
«35 -.6619+4 -.657942 -2.304 - .7886
40 -.6087+4 -.6037+2 -1,990 - .3849
45 -.5331+4 -.5272+42 -1,587 - .3469
+50 =4478+4 . ~ 441242 -1.152 - L1025
«55 -.3626+4 -.35514+2 - 7269 + .1290
.60 ~.2838+4 -.275742 - 3435 + .3333
«65 -.2151+4 -.2066+2 - ,0127 + .5050
.70 ~.1583+4 -.1493+2 + ,2588 + .6431
«75 -.1131+4 -,1038+2 + .4726 + ,7498
.80 -.7854+3 -.6902+1 + .6350 + .8294
.85 -.5262+3 -.4337+1 + 7542 + .8868
.90 ~.3482+3 -.2504+1 + .8390 + .9269
«95 -.222143 =-.1234+1 + .8974 + .9540
1,00 -.1362+3 -.3809 + ,9367 + .9718
1.05 -¢8073+2 +.1762 + .9622 + .9831
1.10 =.4569+2 +.5304 + .,9785 + ,9903
1.15 ~.2395+2 +,7489 + .9885 + .99%4
1,20 -.1093+2 +.,8804 + .9945 + .9969
1.25 -.3312+1 +.9569 + .9980 + .9984
1.30 +,1000+1 +,1000+1 +1,000 + ,9991



TABLE 11

PRESSURE DISTRIBUTION P OF BBDEWADT FLOWS

)

N

o1 1 5 8
0 +,9398+4 +.9396+2 3,762 +1,525
.05 +.4034+4 +,4038+2 1,631 + .6278
.10 -.1593+3 -.1522+1 - .0300 - .0648
.15 -a322244 -.321142 -1.,229 - .5501
«20 =.5248+4 -.523142 -1.996 - .8388
25 -.6376+4 -.6352+2 -2,383 - 9529
.30 =.6773+4 ~.6741+2 -2.461 - .9239
o35 ~.6619+4 =.657%2 -2.304 - .7886
40 -,6087+4 -,6037+2 -1,990 - 5849
.45 '05331+4 '¢5272+2 '1.587 - .3469
+50 -4478+4 . -.4412+2 -1,152 - .1025
055 "036264'4 -.3551+2 - 07269 + 01290
.60 -.2838+4 -.275742 =~ 3435 + .3333
+65 -.2151+4 -,2066+2 - ,0127 + .5050
.70 -.1583+4 -,1493+42 + .2588 + .6431
o75 -.11314+4 -,1038+2 + 4726 + .7498
.80 -.7854+3 -.6902+1 + ,6350 + .829%
85 -.5262+3 -.4337+1 + ,7542 + .8868
.90 -.348243 =,2504+1 + .8390 + .9269
«95 -.222143 -.1234+1 + .8974 + .9540
1,00 -.1362+3 -.3809 + .9367 + .9718
1.05 -.80734+2 +.1762 + .9622 + .9831
1,10 -.4569+2 +.5304 + ,9785 + .9903
1.15 -.2395+2 +,.7489 + .9885 + .9944
1.20 ~,1093+2 +,8804 + .9945 + .9969
1.25 -.3312+1 +.9569 + .9980 + .9984
1.30 +,1000+1 +,1000+1 +1,000 + .9991
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FIGURE 3: The dimensionless velocity components V and W vs. the

dimensionless variable T for vortex flows.



-08

FIGURE 4:
U vs,. the

3.5

3.0

e —

2.0p o]

=
!
|
r— _—
i h
I S E,
#—.—--——--——»-«

L

.

'06

The dimensionless velocity component
dimensionless variable T for vortex

6 8 p 1.0

FIGURE 5: The dimensionless
pressure P vs. the dimensionless
variable T for vortex flows.



1.0 - e e e e

]
R ;
|
.6 AR — S S
&\\ £ 10 =
\\\ R = 100
AN
VB 7
\ N~
Ve
T

' U
FIGURE 6: The di.mnc’:lox’xleu velocity component U vs. the dimensionless variable T
for von Karman flews. '



1 . 0 ’ o o— - o———

il
.8 —
.6
A
IR = 1

-R = 10

R = 50

R = 100
2 \\\\X\\\\ N\

0o 2 .

-

.6 8 1.0

FIGURE 7: The dimensionless ve}oc;ty component V vs, the dimensionless
variable T for von Karman flows.



1.0

M
.8
.6
4
. R - 13:\\\
= 0\
g '130\7
.2 /// //
0 .2 b .6 .8 W 1.0

FIGURE 8 : The dimensionless ve}ocil.ty component W vs., the dimensionless
' variable T for von Karman flows.



1.0

M
.8
.6 \\
1
04
LR = 1\
R= 10—
R = 50
R = 100

T
6 /

-4 -2 0 +1 +2 oo, 46

FIGURE 9: The dimenaionleu pressure P vs, the d:l.mensionleu variable
M for von Karmdn flows. ‘



1.0

1
)
n e N
oou-n-'-

/
‘2 N\

Y
B g

=24 -.20 -.16 -.12 -.08 -.04 0
U
FIGURE 10 ; The dimensionless velocity component U vs, the dimensionless
variable T for Bodewadt flows.

/
il
\




1.0

.8

6

. /
/

W v
R = 1\ LR = 1
R= 5 FR = 5
R= 8 FR = 8
/ )/
0 o2 N N .8 W 1.0
v

FIGURE1l: The dimensionless velocity components V and W vs. the
dimensionless variable 7 for Bodewadt flows.



1.0

/m/u- —
\4%

\\\

N
t:::::::g\\\N\\H
0 N N’\
-3 -2 -1 0 +1 +2 +3 +4

FIGURE 12: The d;l:mena:lonleu pressure P vs, the dimensionless variable T
for Bodewadt flows.



X - ®)
4
-+ —_— —_ —— — — —
50.6°T ]L ')
40° /
o°( ,
- 20° \

(X)
39.6° \a._.
S N S

(X")

- 60°

(=]

20 40 60 80 R 100

FIGURE13 : The angle of deviation X vs. the Reynolds numbers R,
‘ (H): Vortex flows
(B): Bodewadt flows
(B'): Bodewadt's solution
(K): Von Karmdn flows
(K'): Von Kdrmén's solution



APPENDIX C



NWL _REPORT NO. 1853

DISTRIBUTION

Bureau of Naval Weapons

DLI-3
R-14
R-12
RREN
RRE
RT
RM

Special Projects Office
Department of the Navy
Washington 25, D. C.

SP-20
SP-43

Commander
Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia
Attn: TIPDR

Commanding General
Aberdeen Proving Ground
Aberdeen, Maryland
Attn: Technical Information Section
Deve lopment and Proof Services

Commander, Operational and Development iorce
U. S. Atlantic Fleet, U. S. Naval Base
Norfolk 11, Virginia

Chief of Naval Research
Department of the Navy
Washington 25 9 D. C.
Attn: Code 438
Attn: Mathematical Sciences Division
Attn: Dr, F. J. Weyl
Attn: Mathematics Branch
Attn: Fluid Dynamics Branch

[ N ]

10

= e N



NWL_REPORT NO, 1853

DISTRIBUTION (Continued)

Director
Naval Research Laboratory
Washington 25, D, C. 3

Commander

Naval Ordnance Laboratory

White Oak, Maryland
Attn: Dr. R. Roberts
Attn: Dr. R. E, Wilson
Attn: Dr, A. VanTuyl
Attn: Technical Library

N

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C, 2

Director
David Taylor Model Basin
Washington 7, D. C.
Attn: Dr. Daniel Shanks
Attn: Dr. John W. Wrench, Jr.
Attn: Dr., F, Frenkiel
Attn: Dr. H. Polachek
Attn: Dr. Elizabeth Cuthill
Attn: T.ibrary

N =

Commander
U, S. Naval Ordnance Test Station
China Lake, California

Attn: Dr. D. E. Zilmer

Attn: Library 2

-

Superintendent
U. S. Naval Postgraduate School
Monterey, California
Attn: Library, Technical Reports Section 1

Director of the Institute of Naval Studies
185 Alewife Brook Parkway
Cambridge 38, Massachusetts 1



NWL REPORT NO, 1853

DISTRIBUTION (Continued)

Commanding General
White Sands Proving Ground
La Cruces, New Mexico
Attn: Flight Determinaiion Laboratory 1

Commander, 3206th Test Group
Building 100
Eglin Air Force Base, Florida
Attn: Mr, H. L, Adams 1

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Dayton, Ohio

Attn: WCRRN-4

Attn: Dr. K. G. Guderley 1

(o

U. S. Atomic Energy Commission
Washington, D. €.
Attn: Technical Library 1

Los Alamos Scientific Laboratory
Los Alamos, New Mexico

~

Superintendent

U. S. Naval Academy

Annapolis, Maryland - \
Attn: Dept., of Mathematics 1
Attn: Library 1

U. S. Naval Observatory
Washing> n 25, D. C..
Attn: ‘Dr. G. M. Clemence 1

U, S. Weather Bureau
Washington 25, D. C.
Attn: Dr. J. Smagorinsky 1

Commander

Naval Ordnance Test Station

Pasadena Annex

3202 Foothill Boulevard

Pasadena, California 1



NWL_REPORT NO, 1853

DISTRIBUTION (Continued)

Army Rocket and Guided Missile Agency
U. S. Army Ordnance Missile Command
Redstone Arsenal, Alabama
Attn: Capt. Robert H. C. Au 1

National Aeronautics and Space Administration
1520 H Street, N. W,
Washington 25, D. C. 6

Commander
Ballistic Missile Division
ARDC P. O. Box 262
Inglewood, California
Attn: Col, Ebelke (WDTVR) 2

Commanding General
Army Ballistic Missile Agency
Redstone Arsenal
Huntsville, Alabama
Attn: Mr. H, G. Paul (ORDAB =- DS)
Attn: Dr. W. Lucas (ORDAB - DS)
Attn: Mr. Dale L. Burrows (ORDAB -~ DSDA)
Attn: Technical Library

e

National Science Foundation

1520 H, Street, N. W.

Washington, D. C.
Attn: Engineering Sciences Division 1
Attn: Mathematical Sciences Division 1

Director

National Bureau of Standards

Washington 25, D. C.
Attn: Fluid Mechanics Division
Attn: Dr. G. B. Schubauer
Attn: Dr. G. H. Keulegan
Attn: Mr. J. H. Wegstein, Computation Laboratory
Attn: Dr. Phillip Davis
Attn: Dr, E. W. Cannon, Applied Mathematics Division
Attn: Dr, S. N. Alexander, Data Processing Division
Attn: Dr. R. J. Arms
Attn: Technical Library

Pt Pt bt e ek e b b et



- NWL_REPORT NO. 1853

DISTRIBUTION (Continued)

Office of Technical Services
Department of Commerce
Washington 25, D. C. 1

Guggenheim Aeronautical Laboratory

California Institute of Technology

Pasadena 4, California
Attn: Prof, Lester Lees 1
Attn: Prof. J. D. Cole 1

California Institute of Technology
Pasadena 4, California .
Attn: Prof. John Todd 1

University of California

Berkeley 4, California
Attn:; Prof. P, Lieber 1
Attn: Department of Mathematics 1

Institute of Mathematical Sciences
New York University

25 Waverly Place

New York 3, New York

Attn: Prof, J. J. Stoker 1
Attn: Prof, K. O, Friedrichs 1
Attn: Dr. Max Goldstein 1
Attn: Prof. B. Haurwitz 1
Attn: AEC Computing Facility 1
Harvard University
Cambridge 38, Massachusetts
Attn: Prof. G. Birkhoff 1
Attn: Division of Applied Sciences 1
Attn: Computation Laboratory 1
Attn: Prof. G. F. Carrier 1
Attn: Prof, H. M. Stommel 1
University of Maryland
College Park, Maryland
Attn: Prof, J. M. Burgers 1
Attn: Prof. J. Weske 1
Attn: Department of Mathematics 1
Attn: Institute for Fluid Dynamics and Applied
Mathematics 1



NWL_REPORT NO. 1853

DISTRIBUTION (Continued)

Massachusetts Institute of Technology
Cambridge, Mass,

Attn: Prof., C. C. Lin

Attn: Prof, A. H. Shapiro

Attn: Prof. J. G. Charney

The Johns Hopkins University
Baltimore 18, Maryland
Attn: Prof. R. R. Long

Applied Physics Laboratory

Johns Hopkins University

Silver Spring, Maryland
Attn: Librarian

University of California
San Diego, California
Attn: Prof. W, H. Munk

University of Chicago
Chicago, Illinois
Attn: Prof. H. Riehl

AVCO Manufacturing Corporation

Research and Advanced Development Division

201 Lowell Street
Wilmington, Massachusetts
Attn: J. P, Wamser

Via: INSMAT, Boston, Massachusetts

General Electric Co.
Missile and Space Vehicle Department
3198 Chestnut Street
Philadelphia 4, Pennsylvania
Attn: Mr. R, J. Kirby

-

Via: INSMAT, Philadelphia, Upper Darby, Pa. 2

Lewis Flight Propulsion Laboratory

National Aeronautics and Space Administration

Cleveland, Ohio
Attn: F. K. Moore
Attn: S, H. Maslen
Attn: W. E. Moeckel

—



NWL REFORT NO, 1853

DISTRIBUTION (Continued)

Lockheed Aircraft Corporation
Palo Alto, California
Attn: Dr. W, C. Griffith 1

Prof. M. Van Dyke

Department of Aeronautical Engineering

Stanford University

Stanford, California 1

Dr. Bernd Zondek

Computer Usage Company, Inc,

655 Madison Avenue

New York, New York 1

Prof. J. Siekmann
University of Florida
Gainesville, Florida 1

Dr, L. M. Mack

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California 1

Prof. W. D. Hayes

Department of Aeronautical Engineering

Princeton University

Princeton, N. J. 1

Prof. R. F, Probstein

Division of Engineering

Brown University

Providence 12, R. I. 1

Dr. C. C. Bramble
145 Monticello
Annapolis, Maryland 1

Dr. M. J. Lighthtll

Royal Aircraft Establishment

Farnborough, Hampshire, England

via: BUWEPS (DSC=-3) 1

Prof, G. K. Batchelor

University of Cambridge

Cambridge, England

via: BUWEPS (DSC-3) 1



NWL REPORT NO. 1853

DISTRIBUTION (Continued)

Prof. C. R. Illingworth
University of Manchester
Manchester, England
Via: BUWEPS (DSC-3)

Prof. Dr. H. Goertler
University of Freiburg
Freiburg, Germany

Via: BUWEPS (DSC-3)

Prof. Dr. H. Schlichting
Technische Hochschule
Braunschweig, Germany
Via: BUWEPS (DSC-3)

Prof. Dr. W. Tollmien
Max Planck Institute
Goettingen, Germany
Via: BUWEPS (DSC-3)

Prof. Dr. A. Naumann
Technische Hochschule Aachen
Aachen, Germany

via: BUWEPS (DSC-3)

Prof. Dr. J. Ackeret
Eidgenoessische Technische Hochschule
Zurich, Switzeriand
Via: BUWEPS (DSC-3)

Local:
D
K
K-1
K-3
K=4
KXK
KXF
KXH
KYD
KXL
KYS
ACL
File

w N
UV O W N P e b e s e



3414 Ter3uaIazyra
JINI (S3T3ewdyleN) [eldd

ST0A BIISI[OA

VY sx039edy JAVN (oweN) S9)03S-I9TAEN

HLVA SOTIBeWIYIBN AdHL K109yl

Vivd siajswered 1nod XaAey Akepunog
dodd sat3aadoxg NXTd SYSQUNU SPYOuXIy

INON XeauT [UON a3lod 1pemapod

ivid saleld ANOA (oweN) uemrey uoA

N4 SpINT4 LHOA X33I0A

DSIA £31509STA wVins sadeying

LLOW UOTION VT4 1814

NVid (ameN) T13puelg MO14 mor4

vndd suotienby viod Suriesoy

~300) 8014183530 3000 ¥O0L1d 183530 3002 ¥40Lld 143530
1H0438 40 SISATVNY 103rdns
(*232 *~Jos ‘~Jddng) 31u4v8901I918

€910 €961 1trIady
JIHIVESDITISIE HO KOSLVLINED NOSLVINOEID 3.¥0C LN043H

€38t oYY
NOJAVALINITY MOILVINDEID '}

SconN GII4ISSVIONN V9dN Alojeroqe] Suodeap TeABN
ANN03 3000 GNY ROJLYISIESSYID ALIBAIIS uDC:IOm

3000 - 8014183530 3000 Nold1d553d

NO1LWRIO4IN] DiHJVHO0iT81d

{29-L) S1/0L0S-IMN-DNUJ

1ndN1 ONISOTYLYD A¥V¥EIT



QIIJISSVIONO

100101108
/1012/£01949¢€¥ :dsel

‘C 'H ‘I%e7 11

‘M 3 ‘Tisaspyaysg I
suoyienba
19F3Ua1333Tp IRIIIRY "9
1035831 X33307 °C
Lfo7-a0833y '

Lroayy

~ X3ker A spunoy i

‘poIndwod s1 Buyjwyiioso

-uou pue ‘paydelIe ‘IPUTWR] IIE SMOIJ IpPBA
-9p0ofg YOTUm MOT3q Idqunu Spioukay eSFITAD
aYy] -SuOIIPAIISqO [BITSAyd y3rm jJuow
-9218% poo8 uj a1 suojinios mau ayy *813q
-unu spioukay jo £391iIwA B 103 pojudsaid aie
sad43 s,1pemdpog pue s,usmiEy UOA JO SMOTJ
Burl®lol JO pue $39eJINS IB[J I9A0 IMOTJ X33
-I0A 1933weawd-29IYy3 JO SI[NSa1 [EOFIawNy

QaLAISSVIONN
‘sa1qel €1 ‘°s313 €1 ‘°d ¢z -g961 ady
"aa1 £ "H pue Iysaepimyds ‘M "3 £q
‘HOVAILS IVId V 07 Tw{dON SMOTd ONIIVIOW
{€S8T "ON 3110day TMN)

cerurdary ‘uaafiyen ‘44ojeioqe suodeay TeaeN

QITIISSVIONN

T100TOT1CYH
/101Z/€0T849€d 4S8l

‘L ‘H ‘3807 "33

‘M "F ‘TASIBPIMYDS ‘1
suorjenba
TBTIUaI33ITp [eTIIRd 'Y
103083X X92I07 €
£8ot1o302399 ‘7

Lxoayg

- 13fey Lxepunog ‘|

L ]

‘p93ndmo> 81 BurieIrroso
-uou pue ‘paydoev3I® ‘igurme] IIv SMOJ IpeA
-9pog YOTym moyaq laqunu sploudIy TYITITID
3yl °suojIwalasqo (edysfyd yia Juawm
-2213e poo8 u} aie SUOTINTOS MU BYL ‘S19q
-unu spiouday jo L3ataea v 103 pajuaesid aie
sad£3 s,3pemdpog pue 5,usmiEy UOA JO SMOTJ
8urie3l01 JO pue saowyans IBTJ 13A0 SMOTI X))

-10a 1333ueiwd-221y3 Jo sI[NSax [EITImny

AATIISSVIONN
‘831qe3 €1 ‘°8813 ¢1 ‘'d ¢z ‘€961 ady
‘380 ‘L °H pue PysIaprayds ‘M ‘3 £q
‘4OVNNS 1VId V OL TYWHON SMOT ONILVIOW
(€681 "oN 3x0d3y TMN)
"erurBarA ‘uaiBgeq ‘Aioleioqe] suodeop TeABy

Q4131SSVIONA

1001011048
/1012/€01449¢€d :AsBL

‘T °H ‘387 f11

"M '3 ‘IASIdPIAYIS T
suotrlenba
Te13U3233Fp 12¥318d "%
1030831 X3310A "€
KBoyoioazay -2

K103y

- 13Kke1 Kaepunog ‘|

‘peIndwod s1 Buyleyyioso
-uou pue ‘paydE3Ile ‘IPUTWE] 2IF SMOTJ IPEM
-apog Yd1ym mOT3q 13qunu spjoudkay eIYITID
9y -suorjeAlIsqo (eo1sdyd YA jJusw
-3213e poo8 ul aie suorInios mou ay] -siaq
-unu spjoukay Jo £3a1iea B 103J pajuasaid aie
$3d43 s,3peMapog pu® S,UBNAEY UOA JO SMOTJ
8ur38301 3O puUB $IVeJIns I[J 19An SMOTJ X3
-10A 1333weapd-291y3 Jo s3Insal {EOTISuUMY

qATIISSVIONA
831983 g1 ‘°s313 ¢1 ‘'d g2 -g961 ady
"a8nT L H pue pisIpIMYdS "M ‘T 4q
‘HIVANS 1V1d V OL TVWHON SMOTd ONILVIOYW
(€581 "OoN 3roday IMN)
‘eturdatp ‘uai8iyeq ‘K103810qE] Suodeam [waey

QA 1AISSYIONA

100101108
/101Z/€0TH309¢y :)sel

‘L °H *I8n7 '

‘M3 ‘piszapIAyds -1
suotjenba
TeTIUDIBIITP [eIIIRd 'Y
1039891 X33a0p "¢
£Botox0339K ' 7

JSLETN

- 12fey Kaepunog -1

‘paindwod s1 Buyileyrysso

-uou pue ‘payoe3lle ‘ieuywe] aie sMOJ ipea

-2pog YI1ysm Mo1aq 1aqunu sploudady [BOFIFIAD

. 94yl -suor3zeAzasqo [eo1sdyd yirm Juasm

-9218e poo8 ul aie suorInjos meu ayL *8313q

-wnu sploudsy 3o A33raea e 103 pa3juasaad aaw

s2d£3 s, ipemapog pue S,uswiey uoA 30 smoj3

Builejoa jo pue sasejans 1813 13A0 sm0(J xa3
-10A 1333wered-93143l Jo sI[nsax [eoTIIWNY

QAIJISSVIONA
‘#a1qe3 €1 ‘-8813 €1 ‘d gz ‘g9671 2dy
3807 ‘L °H pue iS13pIayds ‘M g £q
‘AIVUNS IVId V OL TVWION SMOTd ONIIVION

(€581 -"oN 310oday TMN)
~efurBata ‘uaaBiyeq ‘K103vioqE] suodeaym [eAeN




