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ABSTRACT

Exact solutions for the reflection and transmission coefficients are

obtained for two general electron density distributions: kinked-trapezoid

(Fig. 1) and exponential-homogeneous-exponential (Fig. 5). Normal

incidence into a stratified plasma slab is assumed so that the electromagnetic

waves are propagating parallel to the free electron density gradients. A

constant magnetic field is applied in the propagation direction. The solutions

derived on this basis are used to evaluate the effect of the more realistic

inhomogeneous plasma model, parametrically. Specific consideration is

given to the analysis of transmission from a re-entry cone. The asymptotic

expansion of the exact solution for the kinked-trapezoid profile provides a

simplified expression for calculation purposes when L/A0 is larger than one.

The analysis of problems in which LA 0 is much smaller than one is con-

sidered in some detail in the final section.
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SECTION I

IN TR ODUC TION

The general problem of the propagation of harmonic plane electro-

magnetic waves in magnetoactive* plasmas was considered in Refs. I and 2.
A brief review of the fundamental equations and a discussion of the problem

of finding specific analytical solutions were presented. Detailed conclusions

as to the effect of the applied magnetic field on transmission were based,
primarily, on the parametric analysis of a homogeneous plasma slab.

Preliminary consideration was also given to the more realistic inhomogeneous

plasma model.

In a number of applications of current interest, the plasma contains

free electron density gradients. For example, in microwave diagnostics of

ionized gas flows in shock tubes, plasma tunnels, and fusion machines, the

electromagnetic wave is caused to propagate from a dielectric into a dissipa-

tive medium through thermal boundary layers having such gradients. A

similar situation is encountered by radar signals propagating to or from
re-entry bodies. In this case, the radar signals may intercept ionized wakes

also which are themselves inhomogeneous. The same problem exists in the

now classical consideration of long radio waves entering the ionosphere.

In each case, if the electron density is slowly varying, a WKB approxi-

mation can be used to represent the propagation in the inhomogeneous

region. If the transition distance between the dielectric and the homogeneous

region is small compared to the plasma slab thickness, as is very often the

case in the aforementioned laboratory work, then it is reasonable to assume

complete homogeneity. In general, however, it will be necessary to examine

the complete inhomogeneous plasma problem.

*This term is used to conveniently indicate the presence of an applied

magnetic field.
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The purpose of this report is to obtain the reflection and transmission

coefficients for several exemplary transition zones between dielectric and

dissipative gases. A number of formal solutions have been obtained2 particu-

larly in radio ionospheric research. However, relatively few boundary value

problems have been treated in detail. We will restrict our attention to the

case of normal incidence into a stratified medium such that the electro-

magnetic waves are propagating parallel to the free electron density gradients.

The magnetic field is constant and is applied in the propagation direction.

The solutions derived on this basis are used to evaluate the effect of the

more realistic inhomogeneous plasma model, parametrically, both with and

without an applied magnetic field. At the same time, previously2 obtained

homogeneous plasma calculations for typical flight conditions can be refined

accordingly. It should be noted that although the present problem is formu-

lated in terms of ionized gas parameters, the equations and results are

formally applicable to a variety of problems in other areas of interest -

for example in the study of certain electromagnetic properties of solids.

-2-



SECTION Th

FUNDAMENTAL EOUATIONS

S~The electromagnetic properties of a slightly ionized gas may be

characterised by means of a conductivity function which linearly relates the
i current density and electric field strength. This function can be determined

from the equation of motion for an average electron in some region of space

in which is established, in generav, a steady spatially dependent biasing

magnetic field of inductiont

ma + mw c V = e(r+ v 0X (0)

where m is the ele,!tron mass, w.c is the average electron collision frequency,

v" is the electron drift velocity, e the charge, and f is the electric field

Sintensity. The force exerted by the magnetic fil ftewave is neglected,

harmonic time dependence of the form exp(iwt) for all time-varying vectors

is assumed, and rationalized mks units are used.

A right-handed Cartesian coordinate system with the positive z-axis

vertical is chosen, and the planes z = 0 and z = L constitute abrupt bound-

aries between free space in the regions z < 0 and z > L and the plasma in

the region 0 < z < L. The plasma is assumed to be stratified so that its

properties are functions only of z. We consider a plane wave from free

space to be incident normally at the abrupt free space-plasma boundary z = 0,

propagating into the medium with its wave-normal along the positive z-axis.

Further, we assume that the applied magnetic field is in the direction of

propagation and that the induction 10 is constant. Under the conditions noted

above and using the relation

T Ne•' , (2)

-3-
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where Niethenuimber densityofelectrons, we can solve Zq. (1) for the curreat

density 1. Substituting this expression into Maxwel' s equations, we obtain

the following governing equations for the propagation of the right- and left-

handed circularly polarized waves1

F~ +n( .J~yF0 F" +n 2(l i4)Fi =0 (3)
G ._I" G, Gt(4

r no0 r no-

where no = W/c 0 = 2w/0 is the free space wave propagation constant, X is

the free space wavelength, and

Fr = Ex +iE ' Fi =Ex- iE , Ez =0 , (5)

Gr = X x + iXy G,= -x + iy ,Xz =0 (6)

Use is made of a modified magnetic field intensity N= (iL0/e0)1I121, where

(IO/E0)"/ = c 0 1 0 is the free space impedance and co is the velocity of light

in vacuo. The angular plasma frequency and the angular cyclotron fre-

quency at which the electrons gyrate due to the externally applied magnetic

field B are given by

2 ~No 0 (7So
"lp o0 m B= m

The following nondimensional notation is introduced:

X, Z =- U= -iZ , (7b)

-4-



sMd tbe voeto, fact* s dw oh pposite direction to fro (Sims.. (<0)
where Y a [lV- 1150 /mu,

In the following sections, solutions are obtained to Eqs. (3) amd (4) for

several bowndary value problems of interest in which the electron density

distribution and, therefore X, is a known function of a. The collision

frequency is assumed constant in all cases.?' The general procedure for

deriving these solutions and the specification of appropriate boundary

conditions will be brought out in the separate analyses; note, however, that

if we let

In (U - Y)' M, = (U + Y-)-I 8

then the equations for both the right- and the left-hand waves can be written
in the form

F" + nf[ I- mX(a)]F 0 , (9)

G n IF ' (10)
no

-5-



SECTION iI

PROPAGATION IN INHOMOGENEOUS PLASMAS

A. Kinked- Trapezoid Electron Density Distribution

In order to evaluate the influence of an inhomopneous plasma region

on propagation, it is clearly desirable to be able to vary the character of the

assumed profile while holding the remaining physical parameters fixed.

Perhaps the simplest way of accomplishing this is shown in Fig. 1. The

transition regions 0< z< z zZ < z < L connecting free space (z < 0, z > L)

with a homogeneous plasma (zI < z < z.) are represented by two straight-line

segments. For simplicity the profile is assumed to be symmetric, i. e. ,
z3 = L•- z0 and z. = L - z 1 . By varying the normalized transition dimension

z /L, the location of the kink z0 /zI, and the value of X at the kink X0/X1,

while holding X1 , Z, Y, and L/X 0 fixed, we can isolate the effect of the in-

homogeneous plasma regions on reflection and transmission, parametrically.

Consider the following boundary value problem consistent with the

description of Section II:

F" + no[l - mX(z))F =0

m r ( - Y -iz)

m= (I + Y i ,

*This approach was suggested by Dr. R. Jahn in the course of several

discussions of the general problem.

-6-
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X(S) a 0 , X10

a X~sl 0  , 0 < <s .o

0X+ (X -Xo)(- So)/(I - -o) sOs<s

S- I _.< a(1)

=X 0 - (X 1 - X 0 )(s - s3) I - s0) 2z' s 3

S-X 0(z - L)/z 0  , s 3  z < L

=0 , z>L

The solutions in the several regions are as follows. For z < 0

F(z) = c(1) +c e (13)

For 0< z< z 0. Eq. (11) becomes

2"*n - /xe = 0

Introducing the change of independent variables

/no o/31 r0)

we obtain Stokes' equation

d2 F

-7-



and, therefore, a solution in terms of Airy functions

F(V) = c(3)0iV + c"4 )*i(g) (15)

If we denote the index of refraction at the point z = zi by

K1 = n*z(zi) = - = - mXi (16)

then in a similar manner, the substitution

K0  .. , 
o) Z/I (17)

noKo("K0)1a f¶( K " . ' zo.

results in the solution, for z0 : z z,

F(•) = c( )&i(q) + c (6)i(n) (18)

For the remaining regions: zliS<_ a ' z, -z <-z 3 , z 3 <_z<_L, z> L,

respectively, the following solutions are obtained:

"(7 in0K s €(8) in0KlI
F(S) a c e + c • (19)

F(V ) c(9)&i(w) + c(lO)4i() , (20)

n 0 K(a 1 - Z) Z/ Z z 13(1/K+ - (1)

Cl7" I i)J +( K0



TOv) €(ll1),ti(V) + c(l &*(V) ,(32)

F(¶) = cD(13) i(Za)

Continuity of F(z) and G(z) [or, equivalently, F'(z), in view of

Eq. (10)] at s = 0, so, z 1 , 1z z 3, and L gives rise to 12 equations for the

13 amplitudes and, hence, the two ratios of interest (for each wave).

R = c()/cM} and T = c(13)/c(l).

R Q= *z , zeo] (25)

16KjyT 2 0 2 exp(in0 L) -

T 2[(Q*i9 _ VZ(Q*+) 'x n L ( (6

A (0) P1  P3

0 A'*(#K I/K0) B (*K I/K0)

B (0) P 2 P4

.9-



where the upper sign on Q identifies the sign on both terms in the first

column while thp lower sign fixes the sign on both terms in the second row,

and

A+(*) A-(*) A+(*) A'lA) *

1 A+(OK K 0) B+(OK0 ) B'(OK0 )

B +() B'(?) B + M)

3 A+(OK 0 ) A'(K 0 ) 4 B+(*K 0 ) B'(*K0 )

The basic composite functions in the solution are, for any argument J,

A A, z 2A(•) = ti' (•z). P4ilP)

2 2 (27)

and the arguments are of the form,

0 0z0 /3 T -i [nO(zlzo)1/3 (28)o= "%m--X;/ =-•oxI ,X Io '

The ratios of the reflected and transmitted energy to the incident

energy,

ER Z(IRrI +IR,) (29)

'(IT I'+ IT, 12 ) (30)

-10-



were eow@ewd in a parametric fashios from the eelatime 495) and 4N. The

incidet wave i(s ) is now assumed to be linearly pelelm,4. say aleg 6he
n-axis (Z and Hy components only), so that the amplitmo c( is the same

X 7
for the left- mad rioht-hand waves. The principal effset of interest is that of

the inhomnogeeity which manifests itself lhroueh two independent quanttaies,

namely, the transition distance and the profile details. The ratio of transi-

tion distance to slab thickness has the values 0 < s I/L <. 0. S, In the present

problem, while 16 separate profiles are assumed as determined by the loca-

tion of the kink and its ordinate. i.0 . , 0/ZI = 0. 2,0. 4,0. 6,0. 8, and

X0 /X 1 = 0. Z. 0.4,0.6,0.8. This effect is demonstrated by plotting the deg-

radation in transmitted energy dbT = 10 1o010 g T' normalized with respect

to the corresponding homogeneous plasma slab value (Sz/L = 0), versus zI/L

for the extreme cases X =/XI - 0.2, a 0 /ZI = 0.8 and X0I/X1 30.8, 0. /ZI=0.2,

as well as for the straight trapezoidal profile X0 /X 1 = s 01/I. Only numerical

results for transmission are presented in this report.

It is immediately apparent that the transmission through an inhomo-

geneous plasma slab can be substantially greater than the corresponding

value for the homogeneous slab. Both the transition distance and the profile

details can significantly reflect this effect. Thus, in Fig. Za(Z = 1), for

example, when zI/L = 0. 5, transmission is increased by 21 percent over the

corresponding homogeneous plasma result for X0/XI = 0. 8, z 0 /zI = 0. 2 and

by 83 percent for X0 /X 1 = 0. 2, z0/Z1 = 0. 8. In the latter case, a 10 percent

increase is shown for an order of magnitude smaller value of z I/L = 0.05.

A qualitative appreciation for what is involved can be obtained from the as-

sumed distribution of X(z) shown in Fig. 1. In particular, one would expect

to improve transmission, in general, when the plasma is made less dense

relative to the homogeneous case. This is essentially what is done when asI/L

is increased (for fixed values of X 1 , Z, and L/X 0 ) or when the assumed

profile is altered by decreasing X0 /XI or increasing z0/I.I The accuracy of

a homogeneous plasma slab analysis will improve as the distribution of X(s)

approaches the constant value XI.

-I(
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Clearly, transmission also depends on the reference parameters X 1.

Z, Y, and L/X0 . For the same conditions noted above, for example, a

value of Z = 0. 01 results in increases in transmission of 31 percent and 96

percent, respectively. The influence of Z in this figure is even more sub-

stantial for the trapezoidal profile. Parametric calculations were made for

L/) 0 = 0. 5 and 1.0 including moderately overdense conditions (i. e. ,

1 < X1 < 4), comparable values of 0 < Y < 3 required to improve transmission

to the level of practical interest, and 0. 01 <_ Z < 1. Illustrative results are

shown in Figs. Za through 2k. Estimates can be made in any particular

application with this series of graphs. Additional calculations would be re-

quired if the conditions of interest are too far removed from these values.

This situation will be considered further in the analyses of Sections III. B and

IV as noted in the following paragraph.

Several curves in Figs. Zf and Zg are incomplete in that the results

are not shown for the larger values of s1 /L, which calls attention to the

fact that the computations using Eq. (26) met with numerical difficulties when

the magnitude of any of the arguments *, I, OK 0 , or *KI/K0 became large.

This difficulty not only precluded the aforementioned calculations at

Z1 /L = 0. 5 but also prevented the desirable extension of our parametric

analysis to larger values of XI and Y, as well as L/XO. Since highly over-

dense plasmas are encountered in a number of applications, in which case

values of Y of comparable size would be required to make the applied masg-

netic field effective, it is desirable to consider the range X 1 , Y >> 1. This

information is' derived from the analysis of the next section.

It should be remarked that in the cases where at least one argument

becomes too large for our calculation procedure, the conditions of interest

at L/k 0 = 0. 5 and 1.0 are such that one or more of the remaining arguments

may still be relatively small, thereby forestalling any general asymptotic

analysis. An asymptotic expansion of the exact solution is derived below,

however, to provide information for larger values of L/X.0 . In this regard,

note that expansions of any solution for large (or small) values of more than

-12-.
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one independent quantity in any problem are meaingiaul only when proper

consideration is given to their order of magnitude relative to each other as

well as relative to the number one. This formal observation becomes of

practical interest in the proper use of the resultant simplified expressions

for computational purposes. The small LAO limit will be examined sep-

arately in Section IV.

Using the asymptotic representation of the Airy function, we obtain

AP1/2 eP(' (Z3)(a*+ a*l3 +a*P-6 + a3[ +"
1ip 1/ exp(2 3)(b* -3 -6 "-9

B (P) = P• ex + bl P + b*P + b P
77r 0 1~ 2o'- + 3~

for -w < argP < Tr, where

a

a - (7 5)/48 = b1

a= (455 * 385)/4608 =-b:
22

a= -(95095 85085)/663552 b
3-3

-13-
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The expansion ceases to be valid when

3w 3w

=-37-- Zkw or 0+ 3argK 0 =-r 2kw , k= 0,1,Z,...

where e = -tan"I Z/M; and convergence will be poor in the vicinity of these

conditions. The general asymptotic expansion of (25) and (26) for arbitrary,

large values of the parameters becomes

Y2 (Si 1 - S3 -S (S 4J 3 + (l/64)SzSi] + (S2S 4 - S 4 2 )(S3 ' 4 + (1/64)S 1zI

8[S 3 54 + (2/64 1 52 ]2 
- (y 2 /8)(S 1 S3 - S39 1 )2

y exp(in0 L)
[S 3 S 4 + (1/64)Slg 1 2] - (3y2 /64)(S 15 3 - S 3 1)

2

where

S1 V_(O)V+I(OKO)e- - V.(OKO)V+(*)(+

s2 W.(OKO)W+(O)e+ - W_(-)W+(-K 0 )e"

s3 = W(OKo)V+(o)+ + I-V_()W+(OK0 )•e
-0 ++

S4 = W.(O)V+ (K 0 ) C + -V_(Ko)W+(*) C+

:k exp{2•[ 3- (OK 0 )3]}

-14-
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the i functions are obtained upon replacing 0 by *KI/K 0 , replacing

#K 0 by f (for each i = 1,2,3,4), and, for any argument P.

3 1(0+4 6P 45045 9

(,5005 A9 +...)

This result may be used for calculation purposes, keeping track of the

relative magnitudes of all four arguments and the correct number of terms

which therefore must be included. Retaining only the leading terms in the

expansion, we obtain the following limiting expression for the transmission

coefficient:

T • y exp(in 0 L) exp(4 0 3) ( - K3) + ) (33)

which, for the special case of a straight trapezoidal profile

OK.no 0I1/3

reduces to the simplified, useful expression

T•y exp(in 0 L) exp (-4[ 3 _ (OKI) 3 1

0 3

= yexp(inoL) exp 4in + -- i) ( (34)

-15-
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The convergence of (32) is such that Eqs. (33) and (34) can be used to compute

transmission when the magnitude of the arguments is greater than two. The

corresponding values of L/k 0 would depend on the conditions involved and

may be as small as one in a number of cases of interest. Although (34) is

particularly useful for this purpose because of its relative simplicity, it is

limited to profiles which are approximately trapezoidal. Additional flexi-

bility is provided by (33) which includes an arbitrary kink in the linear

representation of the inhomogeneous region. In both cases, the accuracy

of the calculation can be improved, or a smaller value of L/X 0 can be con-

sidered for a given set of conditions, by including additional terms from the

general expansion (32).

A homogeneous plasma slab geometry was used in Ref. 2 to estimate

the increase in transmission resulting from an applied magnetic field for

several exemplary re-entry situations. One case considered was that of a

10 degree cone at zero angle of attack for a variety of flight conditions. In

'the present work, calculations have been made for the same conditions using

the inhomogeneous profile shown in Fig. 3. This is a special case of the

general problem that is treated in this section, which can be shown to be a

reasonable approximation to the present flight application. A comparison

between the more realistic inhomogeneous plasma values and the previously

obtained results for a homogeneous plasma is shown in Figs. 4a through 4c.

To discuss the effect of a magnetic field in eliminating "blackout," we must

establish a reference level of acceptable transmission. Since this value is

often difficult to ascertain, even for current applications which are well

along in the development phase, it will be necessary to base our remarks on

several possible assumed values.

Consider first the telemetry frequency (f = 240 Mc) and lower re-entry

velocity given in Fig. 4b. If 10-db degradation in transmitted energy is ac-

ceptable, no magnetic field is required because the possibly marginal max-

imum homogeneous value of 9.75 db at 150,000 ft (B 0 = 0) is now replaced

by the corresponding inhomogeneous value of 6. 1 db. If, however, a

-16-



maximum of 5 db is allowed, then blackout should occur at 150,000 ft.
Moreover, although a magnetic field strength of 250 gauss would have to be
applied to reduce the homogeneous prediction to 5 db, only 50 gauss is re-

quired to attain this figure using the more realistic inhomogeneous plasma

calculations. The more severe re-entry condition with u = 26,000 fps is

shown in Fig. 4a(f = 240 Mc). Although the 150,000-ft condition is still

more critical than 100,000 ft with no magnetic field, we should note the

particularly strong dependence of dbT on the applied magnetic field in the

former case. Referring now to inhomogeneous plasma results alone, we

see that there is no transmission problem at 100,000 ft if 15 db is acceptable

250 gauss is needed to eliminate blackout at 150,000 ft. For 10 db, 650 gaus

would be required at 150,000 ft, while 1350 gauss would be needed at 100,00(

ft. At the 5 db-level, the sharply reduced effect of B 0 for 100,000 ft makes

this condition even more critical. Indeed 4200 gauss would be needed to

avoid blackout in the former, while 1300 gauss would be enough in the latter

) case. A qualitatively similar situation is shown in Fig. 4c when

f = 3x 109 cps (u = 26,000 fps).

The assumption of a homogeneous plasma slab is severely pessimistic

for the re-entry cone application. It is of interest that transmission is due

primarily to a skin depth effect. In particular, for f = 240 Mc and

u = 26,000 fps, the fact that the plasma is highly overdense (Fig. 3) is offset

by the correspondingly small values of L/k 0 involved. The determination of

transmission for each flight condition is greatly dependent on this effect 2

whether the plasma is homogeneous or inhomogeneous. The influence of the

magnetic field on transmission is also dependent on this situation since it is
1 I

generally more pronounced when the level of X is lower. This accounts for

the abrupt variation of dbT with B 0 at 150, 000 ft (Fig. 4a) in contrast with the

sharply reduced effect at S0,000 ft where XI is an order of magnitude larger.

The combined effect of all of these quantities is shown in Figs. 4athrough 4c

and the results are discussed in the preceding paragraph for both the homo-.

geneous and more realistic inhomogeneous plasma models.

-1?-



B. Exponential-Homogeneous-Exponential Electron Density Distribution

The analysis of the preceding boundary value problem provided a clear

indication of the significant influence of plasma inhomogeneities on propaga-

tion for a range of conditions of interest. Detailed numerical results can be

obtained for specific problems also, approximating the actual electron density

distribution by the assumed profile (Fig. I), as was done in the evaluation of

a re-entering cone. It is desirable for several reasons to consider yet

•trother formal inhomogeneous plasma slab problem. The nood to extend the

range of conditions previously considered to include larger values of X and
.as already been noted. The present results are also of importance in the

small L/X0 analysis of Section IV. Therefore, let us examine the formal

solution of Eq. (11) for the following assumed profile (see Fig. 5):

X (Z) 0 z < 0_0

Seaz) a ><

-0( 1 e -aZl z , (z2  L z1 ) (35)

=Xo C(I e-(- z e zZ< z < L

=0 , z>L

The solutions in the several regions are as follows.

For z < 0:

"(i)nolp c(2) inoz

F(z) = C e +c (e (36)

For 0< z< zz, Eq. (11) becomes:

F" + n02[l - mX((l -az)] 0-0 C-

-18-
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Introducing the change of independent variables

ZnO~ m 1/2 -az/2

a O D-- -(az) (37)

where m1/2 is chosen so that its imaginary part is positive, we obtain

Bessel's equation

2-~ Fd (Z Q• ==Zino( "/

dF + a z 0 i (-mXo ) / (38a)
dIT

and, therefore, a general solution (Co * integer) in terms of Bessel functions

F(T) =( 3)j 3() + c(4) ) (38b)

For z, < z < z2 :

F(z) = c15) exp(ino)1 - mXo(l - e'azi)]I/Z

+c(6) exp(.in 0 )[1 - mX(l eaZ)] I (39)

while for z2 < z < L and z > L, respectively,

(7) (8)
F(Tf) = c(T Y) + c J(OT) (40)

=o) exp[- (L z)] (41)

-inoZ

F(z) = c(9) e (42)

-19-



Continuity of F(z) and F'(z) at z = 0, zit z 2 , and L gives rise to eight

equations for the nine amplitudes and, hence, the two ratios of interest (for

each wave)

R = (D-M+ - CN+)(C+N+ - D +M+) 2 y(DM -"CN')(C+N " D+M') (43)
(D-M+ - C'N+)Z - yZlD-M" - C-N-)Z

T= -44• a /Wr n0exp(inOL) sin 2a

(D-M+ - C-N+)z Z(D -M- -- ' (44)

C = i(mX a)l/Zji() Ja(O) ,

= (MX )I/ZJi'() 1 J W()

M M xp J, 0az exp(.)]* Lex i]

1/z az, [0 exp az IIN (mXOD) exp- o expZ-)J + i L exp a)]

Zn 0  1/2 1/2 Zin 0  1)/2
a=--(mXV' , = (1 - mX1 ) , a =a (I - mX O

y = expin0 PL(l-v)] = I - eazl)

In the limit as a - co, Eqs. (43) and (44) reduce to the well-known homogene-
I

ous plasma slab results.

The quantities eR and cT [see Eqs. (29) and (30)] were computed,

parametrically, from the solutions (43) and (44). In a similar manner to

the presentation of the kinked-trapezoid results, the ratio dbT/(dbT)0 is
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plotted versus z /L in Figs. 6a through 6g for a range of conditions. Four

values of aX0 (characterizing the profile shape) were assumed, namely,

ak0 = 2,4,6, 1Z, and the range of X and Y was extended to include the values
400 and 100, respectively. Although it was not the purpose of this calcula-

tion to compare the two general distributions which have been assumed, such

a comparison was made for several typical cases. As expected, the results

are the same when the profiles are mar- approximately coincident. It is

also of interest that the results for the exponential geometry approach the

trapezoid values when a is sufficiently small, as is illustrated graphically in
Fig. 6a.

A wide range of detailed profiles (exponential and kinked-trapezoidal

in character) and values of X1 , Z, and Y has now been examined, parametri-

cally, for L/X0 = 0. 5 and, to a lesser extent, L/k 0 = 1. The resultant

series of illustrative graphs which are included in this report can be used to

effectively estimate transmission for particular problems of interest, the

principal restriction in coverage being the two values of LA 0 assumed.

Approximate calculations can be made readily, however, for larger values

of L/X 0 using the simplified Eq. (34) or, if necessary, (33) or (32). In the

next section, abasic and particularly useful result is established for the small

LI 0 regime. The present consideration of a second class of profiles pro-

:vided the additional numerical foundation of an exact analysis which was

essential in the verification of this result.
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SECTION IV

PROPAGATION ACROSS THIN INHOMOGENEOUSPLASMA SLABS:* SMALL L/X 0

One of the more apparent deficiencies in the extent of quantitative infor-

mation presented in Section III lies in the limited consideration given to small
values of L/% O' In the present section, we will examine in detail the propa-

gation problem when L/k 0 << 1. The desire to merely extend the coverage in

numerical information which could be partially accomplished using a small ar-
gument expansion of the exact solutions led to the verification of a rather basic

and particularly useful result. In this regard, it is of interest to recall our

previously mentioned treatment of the re-entry cone problem. All of the con-

ditions shown in Fig. 3 are in the small L/) 0 range, even for the higher fre-

quency of f = 3 X 109 cps. Indeed, it has been observed that this so-called

skin depth effect is what makes transmission possible even when the plasma

is highly overdense.

The present discussion will be based primarily upon the use of the exact

solutions derived in the preceding section. The following limiting situation is

offered to advance the necessary initial insight. It should be emphasized that

this calculation is intended to serve as a guide in the proper use of our exact

solutions of the full wave equations; no formal investigation of the problem is

intended along these lines.

Consider propagation across a vanishingly thin plasma sheath separating

two free space regions as described in Section II. In the free space regions,

z < 0 and z > L, respectively,

F =Cl) -in + c Mei 0 (45)

*The author would like to acknowledge his appreciation to Dr. Melvin

Epstein for many fruitful discussions concerning this subject.
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IF3 C(3)e-in z (6
F=c 3 (46)

The two waves propagating in the plasma (0 < z < L) satisfy the equation

F" + n02[1 - rnX(Z)] F = 0 (47)

We would like to consider the limiting case of L -* 0, X - co (i.e., the

maximum value in the layer). Let us, therefore, represent the function

X(z) by a Dirac delta function at z = 0, 6 (z),

.L

X(z) = (XL)6(z) , 4L X(z)dz (48)

Substituting this into (47), we obtain

- Z

F" + n0F - no m7L6(z)F 2 = 0 (49)

Integrating from zero to z, we see that

F'- = (Fj)0 + n02mXL(F) 0  , (50)

where the contribution of n2 F2 in (49) is zero in the present limit since F2 is

assumed to be continuous, and the subscript zero denotes the value at z = 0.

For L -. 0, therefore, Fj (or the magnetic field) has a simple discontinuity,

and when the boundary conditions are applied we obtain the following results:

-mXn 0 LR 0 (51)
2i + mn oL

-23-



1
T = I + R= ,(S2)1 - (in 0 L/l2)rnX

! !

(F 2 ) 0  (F2)L (F2)L (F 2 ) 0S- - T aT = ,-in 0T , = -in01(1- R)(3)
TC _CT C C

Evaluating the Poynting vector, we obtain

= 1 (IT 12 + 2IT 12

(54)
M2 +2 2 2

r + M+

MZ + [Z + (YrL/),0)XI2 M; +[Z + (wL/X 0 )i]

where M = 1 - Y, M 1 = I + Y. (Two related problems of considerable

interest are briefly analyzed in the Appendix using a similar approach.)

We should like now to suggest that the problem of propagation across a

plasma slab in which the ratio L/A 0 is small, X(z) is arbitrary, and the

maximum value of X is large, is not dependent upon the details of the electron

density distribution but only on the integrated value across the slab. Although

this assumption is made in the analysis of radio waves from meteor trails,
3

for example, and in a number of related problems in classical physics, it

is our intention to verify it using the exact solutions pre-viously obtained in

Section III. As a consequence, a considerable simplification in the analysis

of specific propagation problems of this type is obtained.

An obvious deduction from the preceding remarks is that an approximate

solution to the aforementioned problem can be obtained from the consideration

of a homogeneous slab having the same width L and an equivalent value of

determined from the relation
.L

YL fL X(z) dz (SS)

-24-



where X(z) is the known distribution. For the exponential profile treated in

Section III. B, therefore,

1 . I - 2L- 1 + (56)

and, for the kinked-trapezoid,

X l- z1 XO+Z (57)

Therefore, the transmission coefficient can be determined using the corre-

sponding equivalent index of refraction, W* = (1 - mX)

4W* exp(in 0 L)T2-2). (58)

(W* + 1) exp(in 0o*L) - (-* - 1)' exp(-in 0W*L)

It is interesting to note that Eq. (52) follows from (58) when the magnitude of

in 01PYL is small (retaining only the leading term in the expansion and using the

assumption of small L/X0 , large X, to further simplify). The basic premise

that propagation is principally dependent on the integrated value of X(z) when

L/k 0 << 1 will now be examined by comparing the results of the approximate

and the exact solutions. This conclusion is of considerable importance in

many propagation studies. The practical value of using (52) or even (58) to

compute transmission (or reflection, from the related expressions) for an

arbitrary X(z) in the present problem is evident. The following correlation

will also be used, therefore, to determine the range of conditions for which

approximate calculations can be made on this basis.
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The transmission coefficient has been computed from the exact

solution (44) for the three typical exponential profiles shown in Fig. 7,

covering the following range of conditions:

L/X 0  XI Z Y

0.001 100, 1000, 10000 10, 100 0, 100

0.01 25, 100, 1000 1, 10, 100 0, 10

0.1 2.25, 25, 100, 400 0.01, 1, 10 0, 5, 100

An equivalent homogeneous plasma was determined using Eq. (56) and T was

computed from (58). The equivalent homogeneous plasma results for

L/X0 = 0. 001 and 0. 01 are virtually identical to the exact values, indeed

(dbT)at/(dbT}• 1. 00, for all cases considered. Complete agreement

gives way to more than acceptable correlation for most applications when

L/)X0 is increased to 0. 1. All three profiles and a wide range of conditions

were included in these calculations in order to examine the applicability of

our approximate analysis. Less than three-percent error was found in the

computations involving profile I. Although the homogeneous plasma values

'of dbT for X = X1 are already close to the exact results (within 10 percent),

as would be expected for this profile, the additional accuracy obtained using

X = X is noteworthy in many applications. The discrepancy increased in

general, to a maximum of five percent, for profile II which differs even

further from the constant X = X1 distribution. The maximum discrepancy

noted in the 36 cases considered for profile III (which is now substantially

different than X = Xl) was only seven percent. In general, even greater

accuracy is obtained, for each assumed profile, as XI is decreased, for

fixed Z, or as Z is increased, for fixed X V

In the preceding correlation, we established the basic premise that the

propagation is dependent on X and began to determine limiting conditions

under which the resultant convenient calculatidn procedure can be used.

Consistent with the approach outlined at the outset of this section, we will
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not attempt to derive a formal limiting criterion. Although this would be

desirable and may be examined using several different expansion procedures

suggested by the problem, the present purpose is best accomplished by con-

tinuing to use the same procedure. The exact solutions, therefore, will now

be used to provide the required empirical limiting information.

Only a relatively few calculations were made for L/k 0 = 0. 5 using the

exponential profile, in particular X 1 1= . 21, 2.25, 25; Z = 0.01, 1; and

Y = 0. It is first apparent (for the extreme profile III) that agreement is

poor, in percentage, when Z = 0. 01, X = 1. 21. In addition, although a

comparison with the corresponding L/>.0 = 0. 1 results shows an expected

decrease in accuracy, the maximum error for the remaining conditions of

interest is still only seven percent. It will be convenient to use the analysis

of Section III. A to examine these two points further. Transmission coefficients

were obtained from the exact solution (26) for the range of kinked-trapezoid

profiles shown in Fig. 8 and the conditions

X -1.44, 2.25, 4; Z =0.01, 1; Y= 0, 0.5, 1.5, 3

Using Eq. (57), we obtain for the equivalent homogeneous plasma slab,

/X 0. 5(1 + XD/X - z 0 /z1). The results are tabulated in Fig. 9. For

Y = 0, Z = 1 less than three-percent error was obtained (for all profiles) at

X -1.44 and 2. 25, and less than seven percent at X1 = 4. By contrast, the

correlation experiences some difficulties for Z = 0. 01. The accuracy is

generally improved as X is increased (depending on the profile), particularly

for Z = 0. 01; indeed the error obtained at X= 4, Z = 0. 01, now ranges from

one to 13 percent for all cases (except one). At the same time, note also that

for a fixed value of X there is a marked improvement in the correlation when

either Xo/X is increased with zo/Z held fixed or zo/Z is decreased with

Xo0/XI fixed. The principal factor involved appears to be the abrupt depend-

ence of 4 T on X near the resonant condition when Z is small. Part of the

plasma is always overdense because we have assumed X1 > 1. A smaller
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value of Xo/X 1 and/or a larger value of z0 /Z1 will reduce the ratio X1

the minimum value being 0. 2 for the profiles considered. In this case, for

X = 1. 44, X = 0. 288 and the equivalent homogeneous plasma will not include

any resonant effect. Although the percentage error is large in this case, it

is interesting to observe that the magnitude of dbT is quite small which

therefore may be more of academic than practical concern.

At the other extreme, Y = 1. 1 52, the resonant condition is more

accurately taken into account, and an error of only 12 percent is obtained.

Note the magnitude of dbT involved. As X is increased, the region in which

X is of order one represents a smaller portion of the total distribution. Its

effect on transmission will be reduced, and a qualitatively similar but

substantially improved correlation is shown for X1 = Z. 25. As was previously

noted, the over-all agreement is quite good when Xl = 4. The major effect

described above is still evident since for the extreme profile when R = 0. 8 the

percentage error is sizable, whereas good agreement is obtained in all of the

remaining cases since the equivalent value of X is further from the resonant

value. The maximum discrepancy is less than seven percent at Z = 1 for all

cases including a magnetic field. The way in which X, and Y combine to

effect the correlation may be seen from the detailed results given in Fig. 9.

The presence of a magnetic field modifies the preceding discussion for

Z = 0. 01 in certain instances. Although the qualitative conclusions often apply,

it is best to refer to the detailed correlation to evaluate the prospective

accuracy of the approximate procedure for a specific combination of X and Y

of interest.

The following conclusions can be made in summary. Using the exact

solutions derived earlier in this report, we have shown that the transmission

across a thin (L/o 0 << 1) inhomogeneous plasma sheath depends on the total

integrated value of electron density, not on the detailed distribution. Such an

assumption is often the essential starting point for investigations of propagation

in this limit and is of particular value in the present analysis. Accurate

transmission calculations can be made on this basis for L/. 0 < 0. 1 using the
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considerably simplified homogeneous plasma slab expression (SO) and an

equivalent constant value of X determined from (55). Indeed for the broad

range of conditions considered in establishing this fact, there is virtually

complete agreement between the exact and the approximate results for

L/X0 = 0.001 and 0.01. When L/X 0 was increased to O. 1, the maximum

discrepancy found in the computations for 108 different cases (including

three profiles), covering the full spectrum of transmission levels of possible

interest, was only seven percent. In general, even greater accuracy is

obtained when the profile approaches the constant X = X distribution or, for

an assumed profile, when either X is decreased or Z is increased. For

L/X0 = 0. 5, smaller values of X 1, Z, and Y were used, along with a number

of profiles, and a maximum error of seven percent was obtained when Z 1.

The correlation at Z = 0. 01 was substantially affected by the values of X

and Y and by the profile. Although the previous discussion for Y = 0 is

informative, it is best to refer to the detailed results of Fig. 9 to evaluate

a particular condition of interest.

It should be remarked that we have not attempted rigorously to determine

a formal limiting condition for the approximate calculation procedure. Although

its accuracy (better than 93 percent) was established in detail, in an empirical

manner for virtually any condition of practical interest, even when L/k0= 0. 1,

only limited calculations were made for larger values of L/k0 where the

procedure will begin to fail. However, for L/X0 = 0. 5 (and, to a lesser extent,

L./X0 = 1) transmission can be adequately determined from the detailed con-

siderations of Section III which includes a large measure of arbitrariness in

the assumed distribution of X(z) and a broad parametric treatment of the

remaining quantities. The evaluation of our appproximate procedure at

L/k0 = 0. 5 is intended to complement these results when calculations are

required for intermediate values of the parameters or for transitional values

of L/ 0 , say between 0. 1 and 1.0. We shall now illustrate the way in which

the two procedures can be used to complement one another. Recall that accu- I
rate results (less than seven-percent error) were obtained from the approxi-

mate calculations at L/X 0 = 0.5 when Z = 1. Thus, transmission results canbe
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computed at Z = 1 for the intermediate values of X which are not included

in the graphs obtained in Section III. A. Estimates also can be made on this

basis for values of Z which are close to one, covering the entire range of X

considered. On the other hand, the dependence on Z shown in these graphs

can be used to estimate transmission when Z is small, aided to some extent

by an approximate calculation whose accuracy can be evaluated from Fig. 9.

A vivid demonstration of the obvious utility of the simplified small

L/k 0 expressions follows. A triangular distribution of X(z) was previously

assumed to represent the plasma about a re-entry cone (Fig. 3). With the

aid of a high-speed computer, the exact solution derived in Section HI. A was
used, therefore, to calculate transmission. The results obtained when

f = 240 Mc can be easily reproduced (within several percent) using the

limiting algebraic expression (54). Satisfactory agreement was not obtained

at f = 3, 000 Mc when (54) was no longer appropriate, i. e., for conditions

where the magnitude of in0 L is not small. Excellent agreement with the

exact calculations was obtained in all cases using Eq. (58). It follows from

the general correlation of (58) with the exact solutions of Section III that (54)

may be used to simplify computations even further, when applicable. It is

perhaps redundant to add that homogeneous plasma slab calculations can be

obtained, in general, from (54) rather than from the more complicated (58)

when Iin 0 n*Lj is small. The result may still be substantially less than

perfect transmission in this situation since a small value of n0 L may be

offset by a correspondingly large value of JR* with the product still remaining

less than one.
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SECTION V

CONCLUSIONS

Exact solutions for the reflection and transmission coefficients have

been obtained for several exemplary transition zones between dielectric

and dissipative gases. Normal incidence into a stratified plasma slab is

assumed so that the electromagnetic waves are propagating parallel to the

free electron density gradients. The magnetic field is constant and is applied

in the propagation direction. Two general electron density distributions are

considered in which both the shape and the extent of the inhomogeneous profile

may be varied.

(i) Kinked-trapezoid (Fig. 1),

(ii) Exponential-homogeneous -exponential (Fig. 5).

The solutions derived on this basis are used to evaluate the effect of an

inhornogeneous plasma on electromagnetic wave propagation, parametrically,

both with and without an applied magnetic field. At the same time, previously

obtained homogeneous plasma calculations for a re-entry cone are refined

using the analysis of problem (i).

The kinked-trapezoid geometry is considered in Section III. A, and the

resultant expressions for the reflection and transmission coefficients are

given by Eqs. (25) and (26), respectively. Parametric calculations were

made for L/A0 = 0. 5, 1. 0 including moderately overdense plasmas, i. e.,

1 <X• 14, comparable values of 0 < Y S 3 required to improve transmi'ssion

to the level of practical interest, and 0.01 < Z < I. Illustrative results for

db T normalized by the corresponding homogeneous value are shown in

Figs. Za through 2k varying the details of the assumed profile.

The second general profile was examined in Section III. B with the

solutions given by Eqs. (43) and (44). The resultant calculations for

L/A0 = 0. 5, 1. 0, including larger values of XI and Y, are illustrated in a

similar manner in Figs. 6a through 6 g. The wide range of detailed profiles

(
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(exponential and kinked- trapezoidal in character) and values of X1, Z, Y

covered in the two sets of graphs can be used to estimate transmission, the

principal restriction being the two values of L/X0 assumed.

Transmission calculations for larger values of L/i,0 can be directly

obtained from the asymptotic expansi.on of Eq. (26). The resultant limiting

expressions (34) and (33) are applicable for values of L/I. 0 as small as one,

depending on the conditions involved, due to the rapid convergence of (32) when

the magnitude of the arguments is of the order of two. Although (34) is

particularly useful for this purpose because of its relative simplicity, it is

limited to profiles which are approximately trapezoidal; additional flexibility

is provided by (33) which includes a kink in the profile. In both cases the

accuracy of the calculation can be improved, or a smaller value of L/X 0 can

be considered for a given set of conditions, by including additional terms

from the general expansion (32).

The detailed exact solutions of problems (i) and (ii) were used for yet

another purpose in the analysis of Section IV. In that section the problem

of propagation across thin inhornogeneous plasma slabs v, is treated.

Numerical calculations using these exact solutions were the principal means

of verifying the resultant small L!X0 analysis. A brief consideration of the

limiting problem of a vanishingly thin plasma sheath (L -. 0, X -- co) resulted

in the solutions (51) and (5Z) for the reflection and transmission coefficients

and (54) for the transmitted energy. (Two related problems of interest are

considered in the Appendix. ) On this basis, it was assumed that when L/k 0

is small and X(z) is arbitrary, propagation is not dependent upon the details

of the electron density distribution but only on the integrated value across the

slab. A considerable simplification in the analysis of problems of this type

should be obtained therefore from the solution of an equivalent homogeneous

slab problem, Eq. (58), with X = = constant defined in (55). The validity

of these assertions was examined by comparing the appropriate exact and

approximate expressions for a wide range of conditions. The virtually

identical results obtained for L/) 0 << I (in particular, LA.0 = 0. 001 and 0. 01)

-32-

f



I

established the basic premise regarding the dependence on X which, it may

be noted, can be used in a wide class of problems apart from the present

general boundary value problem outlined in Section II.

Complete agreement became more than acceptable correlation when

L/A0 was increased to 0. 1. Indeed, a maximum discrepancy of seven

percent was found in the calculations covering the full range of transmission

levels of possible interest corresponding to the conditions, Xl = 2. Z5, 25,

100, 400; Z = 0.01, 1, 10; Y = 0, 5, 100. A further correlation at

L/X0 = 0. 5 was derived in which the degree of accuracy depended on the

values of these parameters. This information is of value as a complement

to the extensive results given in Section III for L/X = 0. 5 (and, to a lesser

extent, L/X0 = 1) when calculations are required at other values of Xl, Z, Y,

or in the transitional region of 0.1 to 1.0.

The problem of a re-entry cone which was previously treated2 assuming

a homogeneous plasma is c'.nsidered once again in Section III. A, using a

triangular distribution of X(z). The geometry and cases are specified in

Fig. 3 and the results are shown in Figs.4a through 4c. The increa~se in

transmission predicted by the more realistic inhomogeneous plasma formu-

lation is quite pronounced. Further, the magnetic field required to provide

a specified acceptable level of transmission can be substantially larger

assuming a homogeneous plasma. In Fig. 4a, for example (f = 240 Mc,

u = 26, 000 fps), at 100, 000 ft, 1200 gauss, 3600 gauss, and 7800 gauss would

be required to obtain 15 db, 10 db, and 5 db, respectively, for a homogeneous

plasma. The corresponding values specified by the inhomogeneous plasma

calculalations are 0, 1400, and 4200 gauss, a significant decrease of practical

interest. The detailed values for this typical re-entry application are shown

in the aforementioned graphs. The obvious utility of the results of the small

L/X0 analysis is clearly demonstrated by its application to the re-entry cone

problem. Good agreement was obtained between the exact values shown in

Figs.4a and 4b and the corresponding limiting algebraic expression results

(Eq. (54)]. Excellent agreement was obtained in all cases when the more

general approximate expression, (58), is used, including the conditions in

Fig. 4c at which Iin -K*LI is no longer small.
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SECTION VI

MIrURES

X(z)

X,

i /I

0 Zo ZZ Z Z3 L Z

Fig. 1. Kinked-trapezoid distribution of X(z); Eq. (12).
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Fig. 2a. Transmitted energy, kinked trapezoid X(s).
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Fig. Zg. Transmitted energy, kinked trapezoid X(z) (continued).
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Fig. Zh. Transmitted energy, kinked trapezoid X(z) (continued).
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Fig. 2i. Transmitted energy, kinked trapezoid X(z) (continued).
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Fig. 2j. Transmitted energy, kinked trapezoid X(z) (continued).
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Fig. Zk. Transmitted energy, kinked trapezoid X(z) (continued).
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I

Fig. 3. Re-entry 100 cone at zero angle of attack.
Inhomogeneous plasma profile, flight conditions.

Altitude u f L/0 x
MSt (fps) (C'Ps) 01Z

50,000 26,000 2.4 X 10 8  0.000952 47,000 175

3 X 10 9  0.0119 301 14

23,600 2.4 X 10 8  0.000952 26,400 158

100,000 26,000 2.4 X 10 8  0.00325 11,700 20.4

3 X 10 9  0.0406 74.8 1.63

23,600 2.4 X 10 8  0.00325 1,740 17.5

150,000 26,000 2.4 X 108  0.01 1,285 2.38

3 X 10 9  0. 125 8.22 0.19

23,600 2.4 X 10 8  0.01 146 1.96
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Fig. 4a. Transmitted energy, re-entry 100 cone at zero angle of attack.
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Fig. 4b. Transmitted energy, re -entry 10° cone at zero angle of attack.

(continued)
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Fig. 4c. Transmitted energy, re-entry 100 cone at zero angle of attack.
(continued)
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Fig. 5. Exponential -hornogeneous -exponential distribution of X(z); Eq. (35).
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Fig. 6a. Transmitted energy; exponential X(s).
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Fig. 6b. Transmitted energy; exponential X(z) (continued).
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Fig. 6c. Transmitted energy; exponential X(z) (continued).
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Fig. 6d. Transmitted energy; exponential X(z) (continued).
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Fig. 6e. Transmitted energy; exponential X(s) (continued).
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Fig. 6f. Transmitted energy; exponential X(z) (continued).
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Fig. 6g. Transmitted energy; exponential X(s) (continuaed).
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Fig. 7. Exponential profiles used for correlation of equivalent homogeneous
plasma transmission calculations with exact values.
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Fig. 8. Kinked -trapezoid profiles used for correlation of equivalent
homogeneous plasma, transmission calculations with exact values.
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Fig. 9a. Correlation of equivalent homogeneous plasma transmission
calculations with exact values for a kinked-trapezoid profile.
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Fig. 9b. Correlation of equivalent homogeneous plasma transmission
calculations with exact values for a kinked-trapesoid profile (continued).
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Fig. 9c. Correlation of equivalent homogeneous plasma transmission
calculations with exact values for a kinked-trapesoid profile (continued).
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Fig. 9d. Correlation of equivalent homogeneous plasma transmission
calculations with exact values for a kinked-trapesoid profile (continued).
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APPENDIX

We shall consider first the propagation of a horizontally polarized wave

which is obliquely incident on a vanishingly thin isotropic plasma sheath. The

governing equation for the electric field intensity is now given by2

E" +n0Z(cZ-)E = 0 C=cosO1  , (A-l)

where 01 is the angle of incidence, i. e., the angle formed by the wave normal

of the incident wave and the positive z-axis. A similar procedure to the one

employed at the outset of Section IV leads quite readily to the following results:

R -Yn0 L/U2iC +4 RnoL/U (A-2)

1 - (in 0 L/ZC)R/U ' (A3)

SITZ 1 + Z 2

fT TI = 1 (A- 4)1 + [Z + (rIC)(L/IXo)mI 2

These expressions reduce to the corresponding ones for the case of normal

incidence (81 = 0) derived in Section IV.

The function ' T(Si) is a maximum at eI = 0, decreasing monotonically

to zero at e 1 = *90 degrees. Since * T depends only on R, we are led again to

the assumption of an equivalent homogeneous plasma slab, in which case,

T(4/C)(1T* - S 2)1/2 exp(in 0 CL)

T ( [ + -Tr S )IZ 1ZC] Z exp [inOL(W*Z - SZ ) UZ 3 - (I - (W*Z - S ) 1/2/ C1 exp I- in L(T* Z - Z ) IIZ]1

(A-5)
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where S = sin eI and W* = (I - XIU). This expression will reduce to (A-3)
in the present problem when the magnitude of in o0 *L is small. The extensive

correlation made in Section IV for 8I = 0 between the values obtained from

the approximate expression (58) [or (52), if applicable] and the appropriate

exact results can now be _sed to justify the use of (A-5) [or (A-3)] in the

following way: For given X, Z, and L/ X0 (Y = 0), Eq. (A-3) is the same as
(52) if we consider a new value of L/k 0 which is modi'ie~i by the factor 1/C.
It might be anticipated that the excellent agreement obtained in this correlation

for LA 0 < 0. 1 and the subsequent discussion for L/AO = 0. 5 are an indication

of the accuracy afforded by (A-5) in the present problem for the corresponding

conditions

0. 1 con L 0. 5 cos 0 (A-6)

The preceding extension to the case of oblique incidence (Y = 0) is

certainly tentative in many respects. It is felt, however, that (A-3) or (A-5)
can be used to give approximate results in many applications, with qualitative

limitations provided by the correlation of Section IV along with the modifica-

tion (A-6). As a final footnote, we shall consider the following even more

tentative, but possibly useful, reasoning when Z = Z(z). In general

wit + n2(C2 - mX)w = 0 , (A-7)

where w = F and C 1 (normal incidence) when there is an applied magnetic

field; w = E for Y 0; and m = (U T Y)' is now a function of z. The
previous limiting calculations can be altered accordingly and we obtain

- In0
R = In (A-)
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T 1- (in0IT-ZC (A-9)

whe re

Ij m(z)X(z)dz L (A- 10)

It seems reasonable to suggest that these limiting results may be used to make

approximate calculations including a variable Z(z) when L/k0 << 1 and

jinoL(mX)maxI is less than one.

-66-



RZFERENCES

1. R. Mason and R. R. Gold. "Electromagnetic Wave Propagation

Through Inhomogeneous Plasmas in the Presence of Applied Magnetic Fields."

Presented at the Third Symposium on the Engineering Aspects of Magneto-

hydrodynamics, Univerity of Rochester, 28-29 March 1962.

2. R. Mason and R. R. Gold. "Electromagnetic Wave Propagation

Through Magnetoactive Plasmas. "' Aerospace Corporation, Report No.

TDR-69(2119)TR-3, 1962.

3. R. H. Brown and A. C. B. Lovell. The Exploration of Space by

Radio. New York: John Wiley and Sons, Inc., 1958, p. 144.

-67-



zu

.-. 1 .0 -1 , - 0 , - -1

.3 0 ,

.~ 0 'a',

,.0 d 0)0w w 0.-.

U, 14 o '.C

0 zo oz 0

0, Q~ 0 .~
V 0' j'. 0 d0r .0v,- >.U-. ..a

o- To z 0
F4~04 < , P1

0~ 0. -4)u

Z m ~4 0

z . . 
WýN> 0.. 00 - .I

40 <~ ýý o r.0. 0 C o <p EQ

z . 0 'd 'dZýu

0 <u 0 0Z< u 0 to I



z

U U8

(R 0 o &0."

CL Ir 0 am v0
C3 Z

r0 0

-~ 00
o 0 10.

r. CL -8

~0 uv . k 4

d k. UI

lu2 v

U U U)U

A A

-u .0 r U

010

0>.. 0~~

oo0aA 0 ~
100

m~ 0 0 Id 0 :5 M

-0 o 0 ox..

0 E 2,

A~0 vc 11 4,0


