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ABSTRACT

Exact solutions for the reflection and transmission coefficients are
obtained for two general electron density distributions: kinked-trapesoid
(Fig. 1) and exponential-homogeneous-exponential (Fig. 5). Neormal
incidence into a atratified plasma slab is assumed so that the electromagnetic
waves are propagating parallel to the free electron density gradients. A
constant magnetic field is applied in the propagation direction. The solutions
derived on this basis are used to evaluate the effect of the more realistic
inhomogeneous plasma model, parametrically. Specific consideration is
given to the analysis of transmission from a re-entry cone. The asymptotic
expansion of the exact solution for the kinked-trapezoid profile provides a
simplified expression for calculation purposes when L/k0 is larger than one.
The analysis of problems in which L/)‘O is much smaller than one is con-

sidered in some detail in the final section.
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SECTION I
INTRODUC TION

The general problem of the propagation of harmonic plane electro-
magnetic waves in magnetoactive* plasmas was considered in Refs. 1 and 2.
A brief review of the fundamental equations and a discussion of the problem
of finding specific analytical solutions were presented. Detailed conclusions
as to the effect of the applied magnetic field on transmission were based,
primarily, on the parametric analysis of a homogeneous plasma slab.
Preliminary consideration was also given to the more realistic inhomogeneous

plasma model.

In a number of applications of current interest, the plasma contains
free electron density gradients. For example, in microwave diagnostics of
ionized gas flows in shock tubes, plasma tunnels, and fusion machines, the
electromagnetic wave is caused to propagate from a dielectric into a dissipa-
tive medium through thermal boundary layers having such gradients. A
similar situation is encountered by radar signals propagating to or from
re-entry bodies. In this case, the radar signals may intercept ionized wakes
also which are themselves inhomogeneous. The same problem exists in the

now classical consideration of long radio waves entering the ionosphere.

In each case, if the electron density is slowly varying, a WKB approxi-
mation can be used to represent the propagation in the inhomogeneous
region. If the transition distance between the dielectric and the homogeneous
region is small compared to the plasma slab thickness, as is very often the
case in the aforementioned laboratory work, then it is reasonable to assume
complete homogeneity. In general, however, it will be necessary to examine

the complete inhomogeneous plasma problem.

*This term is used to conveniently indicate the presence of an applied
magnetic field.
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The purpose of this report is to obtain the reflection and transmission
coefficients for several exemplary transition zones between dielectric and
dissipative gases. A number of formal solutions have been obtainen:lZ particu-
larly in radio ionospheric research. However, relatively few boundary value
problems have been treated in detail. We will restrict our attention to the
case of normal incidence into a stratified medium such that the electro-
magnetic waves are propagating parallel to the free electron density gradients.

The magnetic field is constant and is applied in the propagation direction.

The solutions derived on this basis are used to evaluate the effect of the §
more realistic inhomogeneous plasma model, parametrically, both with and :
without an applied magnetic field. At the same time, previounlyZ obtained :
homogeneous plasma calculations for typical flight conditions can be refined
accordingly. It should be noted that although the present problem is formu-
lated in terms of ionized gas pé.rameters, the equations and results are
formally applicable to a variety of problems in other areas of interest —

i for example in the study of certain electromagnetic properties of solids.
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SECTION II
FUNDAMENTAL EQUATIONS |

The electromagnetic properties of a slightly ionised gas may be
characterized by means of a conductivity function which linearly relates the
current density and electric field strength. This function can be determined
from the equation of motion for an average electron in some region of space |
in which is established, in general, a steady spatially dependent biasing f
magnetic field of induction 30: 1

m3r +me V= e(E+TxB) (1)

where m is the ele~tron mass, w, is the average electron collision frequency,

vV is the electron drift velocity, e the charge, and E is the electric field

intensity. The force exerted by the magnetic field of the wave is neglected,

harmonic time dependence of the form exp{iwt) for all time-varying vectors Y

is assumed, and rationalized mks units are used. S

A right-handed Cartesian coordinate system with the positive z-axis
vertical is chosen, and the planes z = 0 and z = L constitute abrupt bound-
aries between free space in the regions z <0 and z > L. and the plasma in
the region 0 <z < L. The plasma is assumed to be stratified so that its i
properties are functions only of z. We consider a plane wave from free ’
space to be incident normally at the abrupt free space-plasma boundary z = 0,
propagating into the medium with its wave-normal along the positive z-axis.

Further, we assume that the applied magnetic field is in the direction of
propagation and that the induction EO is constant. Under the conditions noted

above and using the relation

T=Nev ., (2)
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where Nisthe number density of slectrons, we can solve Eq. (1) for the curreat
density 1. Substituting this expression into Maxwell's equations, we obtain
the following governing equations for the propagation of the right- and left-
handed circularly polarized waves )

2 X _ " 2 X =
F; +no( Uy )rr-o , Fj +n°( “U+Y )F‘ =0 , (3)
ooy . oeedn "
0 0

where n, = w/co = Zw/)\o is the free space wave propagation constant, )‘0 is
the free space wavelength, and

Fr = Ex + iEy ’ li" = Ex - iEy , Ez =0 , (5)
Gr=)(x+i.ly ’ G‘ = -Kx*i)(y ’ ‘)(z= o . {6)

Use is made of a modified magnetic field intensity ;: (polto)llzﬁ, where
(,.\0/50)1/z = Coitg is the free space impedance and o is the velocity of light
in vacuo. The angular plasma frequency wp and the angular cyclotron fre-
quency at which the electrons gyrate due to the externally applied magnetic

field ;?B are given by

2 eB
2 Ne » - = 0 s (7.)
m

W, T -mewes

P € “B
The following nondimensional notation is introduced:

2 -
w, W w
(3 2 2 owie o om




and the vector ¥ acts in the opposite direction to fo (since o <0)
where Y= |¥| = lolboluw.

In the following sections, solutions are obtained to Eqs. (3) and (4) for
several boundary value problems of interest in which the electron density
distribution and, therefore X, is a known function of s. The collision
frequency is assumed constant in all cases. 2 The general procedure for
deriving these solutions and the specification of appropriate boundary
conditions will be brought out in the separate analyses; note, however, that
if we let

mrz(u-v)" . omy =yt (8)

then the equations for both the right- and the left-hand waves can be written
in the form

F" + né[ 1 -mX(z)]F =0 . (9)
G=-L1pm . (10)
Bo




SECTION III
PROPAGATION IN INHOMOGENEOUS PLASMAS

A. Kinked-Trapezoid Electron Density Distribution

In order to evaluate the influence of an inhomogeneous plasma region
on propagation, it is clearly desirable to be able to vary the charactsr of the
assumed profile while holding the remaining physical parameters fixed.
Perhaps the simplest way of accomplishing this is shown in Fig. 1. * The
transition regions 0< z< z,, z, < z < L connecting free space (z< 0, z > L)
with a homogeneous plasma (2 1 $%< zz) are represented by two straight-line
segments. For simplicity the profile is assumed to be symmetric, i.e.,
z4 = L - z, and z, = L - zZ). By varying the normalized transition dimension
zll,L. the location of the kink zolzl. and the value of X at the kink xo/xl.
while holding Xl, Z, Y, and L/ko fixed, we can isolate the effect of the in-
homogeneous plasma regions on reflection and transmission, parametrically.

Consider the following boundary value problem consistent with the

description of Section II:

F" +n§[l -mX(z)]F =0

mr=(l-Y-iZ)'l , » (11)

mls(l'kY-iZ)-l , J

*®
This approach was suggested by Dr. R. Jahn in the course of several
discussions of the general problem.

b




X{s) = 0 . £<0 '

=Xoz/zg ., 0<z<s,

=Xy 4 (X, - XMz - 3)/(s, - %)) , my<s<s®

=X, . g <s<s, (12)
=Xg - (X) - XMz - 2)/(z) - 29) ., Ey<zlEy

'xo(z - L)/zo ’

=0 ' z> L

The solutions in the several regions are as follows. Forz <0

m R @) o

F(z) = ¢ (13)
For 0<z< 24 Eq. (11) becomes
mX,”
F"+ng(- °)F=o
%o
Introducing the change of independent variables
: noz, )2/3( mX,z )
= 1l - ’ (14)
mX, z,

we obtain Stokes' equation

2

("2, ]
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and, therefore, a solution in terms of Airy functions

Fig) = Ve + M)

(15)
1f we denote the index of refraction at the point z = z by
KZ =n#?(s) = 1 - mX(z;) = 1 - mX, (16)

then in a similar manner, the substitution

2/ 2
n= -[“°K°('1 i ’0’] )[1 -(1 )= ,0)] amn
il - Kzl/xozi K, &1 %o

results in the solution, for zp<z<2

ll

Fin) = <Fgim) + @i

(18)
For the remaining regions: 2) <252, 2,S222,,23<2% L,z2L,
respectively, the following solutions are obtained:
-in K,z in K,z
F(s) = c(7) e 0™ + c(s, e "o , (19)
Fo) = Py + 1V111) (20)

2/ 2
Cs- nol(o(zl - :o) W K Y:- z3) @
‘1 - le/xozf Eg F1 ™ %




riv) = M) + 3@y, (22)

2/ 3¢
mX,(z - L)
ve ("E",'r'!) Tn +_—9-;_—-] : (23
0 0 .
F(z) = c(u) e-"xoz

Continuity of F(z) and G(z) [or, equivalently, F'(z), in view of
Eq. (10)) at 2 =0, 2, 2, 3,, 2, and L gives rise to 12 equations for the
13 amplitudes and, hence, the two ratios of interest (for each wave),
R = c(z)/c(l) and T = c“”/c“).

PIRIR ¢

=_ %
. R = -Q Q A ’ (zs)
{ (Q’t)2 - vz Q"

T 16KlywzQZ exp(ingL) ﬁ L1 23 (26)
= ¥ » Y = exp no 1 ( - ’
a2 - v (o) ]
A*(e) P, P,
)
Qs*’ =] o AY(WK /Ky BYRWK /Kg)|
B*(e) P, P,

(24)




where the upper sign on Q identifies the sign on both terms in the first

column while th~ lower asign fixes the sign on both terms in the second row,

and
At
P, =
1 A"(oxo)
Bt (%)
P, =
3 A+(0K0)

AT(W) At

- ’ Po= ]+
AT(8K ) BY (oK)
B (¥) BY(w)

= T P I
AT(8K,) B (®K,)

AT(w)

B'(oxo)

B (W)

B'(QKO)

The basic composite functions in the solution are, for any argument

A%(p) = @i' (8% = pai(pd

BE(8) = #i' (8%) + pMiBD) .

and the arguments are of the form,

Y
- T\mX,

energy,

0

1/3 1/3
R L)
S e e 9

The ratios of the reflected and transmitted energy to the incident

‘R =%(erlz + IR, ,z) ’

ep=z(IT 2o 2)

-10-
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(28)

(29)

(30)
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were computed in a parametric fashion from the solutions (25) and (26). The

. incident wave (3 < 0) is now assumed to be linearly polarized, say along the

‘X-axis (l' and Hy componsents only), so that the amplitude e“) is the same
for the left- and right-hand waves. The principal effect of interest is that of
the inhomogeneity which manifests itsslf through two independent quantities,
namely, the transition distance and the profile details. The ratio of tranei-
tion distance to slab thickness has the values 0< z,/L < 0.5, in the present
problem, while 16 separate profiles are assumed as determined by the loca-
tion of the kink and its ordinate, i.e., zo/zl =0.2,0.4,0.6,0.8, and

)(OIXl =0.2,0.4,0.6,0.8. This effect is demonstrated by plotting the deg-
radation in transmitted energy db.r = 10 log 10 €17 pormaliud with respect
to the corresponding homogeneous plasma slab value (:l/L = 0), versus zl/L
for the extreme cases Xo/)(l = 0.2, '0/'1 = 0.8 and )(0/)(l =0.8, nolzl =0.2,
as well as for the straight trapezoidal profile x‘,/)(l = zolz |» Only numerical

results for transmission are presented in this report.

It is immediately apparent that the transmission through an inhomo-
geneous plasma slab can be substantially greater than the corresponding
value for the homogeneous slab. Both the transition distance and the profile
details can significantly reflect this effect. Thus, in Fig.2a(Z = 1), for
example, when zl/L = 0.5, transmission is increased by 21 percent over the
corresponding homogeneous plasma result for x(,/)(l =0.8, z:olzl = 0.2 and
by 83 percent for Xo/)(l =0.2, '0/'1 = 0. 8. In the latter case, a 10 percent
increase is shown for an order of magnitude smaller value of zllL = 0. 05.

A qualitative appreciation for what is involved can be obtained from the as-
sumed distribution of X(2) shown in Fig. 1. In particular, one would expect
to improve transmission, in general, when the plasma is made less dense
relative to the homogeneous case. This is essentially what is done when =, /L
is increased (for fixed values of Xl. Z, and L/Xo) or when the assumed
profile is altered by decreasing xolxl or increasing zol 5. The accuracy of
a homogeneous plasma slab analysis will improve as the distribution of X(s)
approaches the constant value X,

«lle
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Clearly, transmission also depends on the refersnce parameters Xl.
2, Y, and L/XO. For the same conditions noted above, for example, a
value of Z = 0. 01 results in increases in transmission of 31 percent and 9%
percent, respectively. The influence of Z in this figure is even more sub-
stantial for the trapeszoidal profile. Parametric calculations were made for
L/ Ao = 0.5 and 1.0 including moderately overdense conditions (i. e.,
1<X, < 4), comparable values of 0 < Y < 3 required to improve transmission
to the level of practical interest, and 0.01 € Z < 1. Illustrative results are
shown in Figs. 2a through 2k. Estimates can be made in any particular
application with this series of graphs. Additional calculations would be re-
quired if the conditions of interest are too far removed from these values.
This situation will be considered further in the analyses of Sections III. B and
IV as noted in the following paragraph.

Several curves in Figs. 2f and 2g are incomplete in that the results
are not shown for the larger values of slIL, which calls attention to the
fact that the computations using Eq. (26) met with numerical difficulties when
the magnitude of any of the arguments &, ¥, QKO. or Wl(l/ Ko became large.
This difficulty not only precluded the aforementioned calculations at
zl/L = 0. 5 but also prevented the desirable extension of our parametric
analysis to larger values of Xl and Y, as well as L/Xo. Since highly over-
dense plasmas are encountered in a number of applications, in which case
values of Y of comparable size would be required to make the applied mag-
netic field effective, it is desirable to consider the range Xl, Y >> 1. This
information is derived from the analysis of the next section.

It should be remarked that in the cases where at least one argument
becomes too large for our calculation procedure, the conditions of interest
at I.:/).0 = 0.5 and 1.0 are such that one or more of the rémaining arguments
may still be relatively small, thereby forestalling any general asymptotic
analysis. An alymptot{c expansion of the exact solution is derived below,
however, to provide information for larger values of L./ A\o: In this regard,
note that expansions of any solution for iarge (or small) values of more than

wl2-
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one independent quantity in any problem are meaningful only when proper
consideration is given to their order of magnitude relative to each other as
well as relative to the number one. This formal observation becomes of
practical interest in the proper use of the resultant simplified expressions

for computational purposes. The small L/ xo limit will be examined sep-
arately in Section IV.

Using the asymptotic representation of the Airy function, we obtain
.. 1 .1/2 2.3\ .+, %£,-3, *.,-6  %,-9
AT(B) = mﬂ exp(--;p )(ao +a B T +a,p +asp+ ) ,

B*(B) = Ul-;ﬂllz exp(§p3)(b: + bfp'3 + b;:p}'6 + b’;p"’ + ) ,

for -w < argP < m, where

+
a.o = 'l E 3 l )
af=-(72£5)/48 - bf .
aj = (455  385)/4608 = -b;

a3 = -(95095 + 85085)/663552 = by
+
b0 =121

-13.




- o ST AT O

The expansion ceases to be valid when

_ 3w 2 3w =
O-T-ka or 9+31rgKo--z—-Zk1r , k=0,1,2, .

where 6 = -tan'l

Z/M; and convergence will be poor in the vicinity of these
conditions. The general asymptotic expansion of (25) and (26) for arbitrary,

large values of the parameters becomes

yz(8153 - 5,50 s4§3 + “’6‘”5251] +(5,5, - 5452)[5354 + (1/64)51521

R 8[S.S, + (1/64)8,5,]° - (y2/8)(S.5, - 5,8,)°
3”4 1924 -\ 1°3 ~ 239 (31)
Y exp(inoL)
1 [s3s4 + (1/64)Slsz] - (Y°/64)(8,5, - s3§1)
where
- +
S; = V_(R)V (2K ) €™ - V_(8K )V, (2) € ,

(]
!

= W_(8K)W (0)€7 - W ()W (8K)€E™

= W_(eKV, (@) et + 3V (W (eKpe ™

w
]

Sg=W_(B)V (8K )€™ + gV _(aK W ()&%

R R

-l4-
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the Hi functions are obtained upon replacing & by iKl/KO. replacing
.Ko by ¥ (for each i =1,2,3,4), and, for any argument §,

Ve ,(;9-3 +11_g_;p-6~;45045p-9+ ) .
w,:(;n R a6 _ 5005 p-9+,,_)

This result may be used for calculation purposes, keeping track of the
relative magnitudes of all four arguments and the correct number of terms
which therefore must be included. Retaining only the leading terms in the
expansion, we obtain the following limiting expression for the transmission

coefficient:

3
K

T ~ y explinyL) exp(-s}) O3<l - Kg) +w¥]1 - —%- ) (33)
5

which, for the special case of a straight trapezoidal profile

1/3
f0%1
v - QKO N [ R -I(EXT) N

reduces to the simplified, useful expression

T~y exp(inoL) exp (‘;‘) ['»3 - (°K1)3]

4inozl K?
=y exp(inOL) exp|- —x— 1+ TTK-I) . (34)

-15-
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The convergence of (32) is such that Eqs. (33) and {34) can be used to compute
transmission when the magnitude of the arguments is greater than two. The
corresponding values of L/ )‘0 would depend on the conditions involved and

may be as small as one in a number of cases of interest. Although (34) is
particularly useful for this purpose because of its relative simplicity, it is
limited to profiles which are approximately trapezoidal. Additional flexi- .
bility is provided by (33) which includes an arbitrary kink in the linear

representation of the inhomogeneous region. In both cases, the accuracy

of the calculation can be improved, or a smaller value of L/Xo can be con-

sidered for a given set of conditions, by including additional terms from the

general expansion (32).

A homogeneous plasma slab geometry was used in Ref. 2 to estimate
the increase in transmissicn resulting from an applied magnetic field for
several exemplary re-entry situations. One case considered was that of a
10 degree cone at zero angle of attack for a variety of flight conditions. In

‘the present work, calculations have been made for the same conditions using
the inhomogeneous profile shown in Fig. 3. This is a special case of the
general problem that is treated in this section, which can be shown to be a
reasonable approximation to the present flight application. A comparison
between the more realistic inhomogeneous plasma values and the previously
obtained results for a homogeneous plasma is shown in Figs. 4a through 4c.
To discuss the effect of a magnetic field in eliminating ''blackout,' we must
establish a reference level of acceptable transmission. Since this value is
often difficult to ascertain, even for current applications which are well
along in the development phase, it will be necessary to base our remarks on

several possible assumed values.

Consider first the telemetry frequency (f = 240 Mc) and lower re-entry
velocity given in Fig. 4b. If 10-db degradation in transmitted energy is ac-
ceptable, no magnetic field is required because the possibly marginal max-
imum homogeneous value of 9. 75 db at 150,000 ft (B0 = 0) is now replaced

by the corresponding inhomogeneous value of 6.1 db. If, however, a

e16-
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maximum of 5 db is allowed, then blackout should occur at 150,000 ft.
Moreover, although a magnetic field strength of 250 gauss would have to be
applied to reduce the homogeneous prediction to 5 db, only 50 gauss is re-
quired to attain this figure using the more realistic inhomogeneous plasma
calculations. The more severe re-entry condition with u = 26,000 fps is
shown in Fig. 4a (f = 240 Mc). Although the 150,000-ft condition is still

more critical than 100,000 ft with no magnetic field, we should note the
particularly strong dependence of db.r on the applied magnetic field in the
former case. Referring now to inhomogeneous plasma results alone, we

see that there is no transmission problefn at 100,000 ft if 15 db is acceptable
250 gauss is needed to eliminate blackout at 150,000 ft. For 10 db, 650 gaus
would be required at 150,000 ft, while 1350 gauss would be needed at 100, 00« i
ft. At the 5 db-level, the sharply reduced effect of Bo for 100,000 ft makes

this condition even more critical. Indeed 4200 gauss would be needed to

avoid blackout in the former, while 1300 gauss would be enough in the latter
case. A qualitatively similar situation is shown in Fig. 4c when
f=3%107 cps (u = 26,000 fps).

The assumption of a homogeneous plasma slab is severely pessimistic
for the re-entry cone application. It is of interest that transmission is due
primarily to a skin depth effect. In particular, for f = 240 Mc and
u = 26,000 fps, the fact that the plasma is highly overdense (Fig. 3) is offset
by the correspondingly small values of L/)\0 involved. The determination of
transmission for each flight condition is greatly dependent on this effect2 !
whether the plasma is homogeneous or inhomogeneous. The influence of the 4
magnetic field on transmission is also dependent on this situation since it is
generally more pronounced when the level of X is lower. ! This accounts for
the abrupt variation of de with B0 at 150,000 ft (Fig. 4a)in contrast with the
sharply reduced effect at 50,000 ft where X, is an order of magnitude larger.
The combined effect of all of these quantities is shownin Figs. 4a through 4c
and the results are discussed in the preceding paragraph for both the homo-

geneous and more realistic inhomogeneous plasma models.

e i s

o e s bt
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B. Exgonential-l-lomolenoouo-Eggnential Electron Density Distribution

The analysis of the preceding boundary value problem provided a clear
indication of the significant influence of plasma inhomogeneities on propaga-
tion for a range of conditions of interest. Detailed numerical results can be
obtained for specific problems also, approximating the actual electron density
distribution by the assumed profile (Fig. 1), as was done in the evaluation of

a re-entering cone. It is desirable for several reasons to consider yet

irother formal inhomogeneous plasma slab problem. The need to extend the
range of conditions previously considered to include larger values of x1 and

1as already been noted. The present results are also of importance in the
small L/xo analysis of Section IV. Therefore, let us examine the formal
solution of Eq. (11) for the following assumed profile (see Fig. 5):

X(z) =0 , z<0 s ]
| =X°o(l-e'a'z) , a>o0 . 0czgz, ,
-az;
=X°o(l -e ) , z,£25 2, ' (zz=L- zl) }  (35)
- -a(L-z)
-Xoo[1~e ] . z2,<z<L ,
=0 R z>L . J

The solutions in the several regions are as follows.

For z < 0:

-in. 2 in,.z
F(z) = c“) e 0 + c(z) e 0 (36)
For0< zg zl,‘ Eq. (11) becomes:

2 -
F" + no[l - mX_ (1 - e ¢"‘z)]F =0
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Introducing the change of independent variables

2n
0 1/2 -az/2
E=ptmx ) '“e . (37)
where mllz is chosen so that its imaginary part is positive, we obtain

Bessel's equation

2 2 2in
dF L 1d4dF a 0 1/2
— - = , = 1 - 3
o +'E_Ed + (1 ?_ )r 0 a=—(1-mX_) (38a)

and, therefore, a general solution (a ¥ integer) in terms of Bessel functions
rO = @M @ (38b)

For z; £ 222,

- 1/2
F(z) = (3 exp{in,) [l - mxm(l -e ul)]

- 1/2
+ (0 exp(-ino)[l - me(l -e a’zl)] (39)

while for z2,<2 < I. and z > L, respectively,

rm = s m o+ By @ (40)
2n
7= —2(mx )/ exp[-3L - 2] . (41)
-in.z
F(z) = N e o . (42)
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Continuity of F(z) and F'(z) at z = 0, Z), 2 and L gives rise to eight
equations for the nine amplitudes and, hence, the two ratios of interest (for

cach wave)

oM - o nhetnt - ptmh) - YA TMT - oNO)etNT - pPmD)

(0°M* - c'NH? - y4(D ™M™ - CTNT)¢ » W
-4y (azlwan(z))exp(inoL) ain® an
T oM - c N - yED M - e NP )
c* = itmx ) 2rii) 23 00
p* = imx_)' /25 _(9) 23 _(9) .

az az az
M* (mxm)l/z exp(-7—l)J&[¢ exp(-—zl)] + 1¢Ju[¢ EXP(—TL)] »

az az az
N* = (mXoo)l/Z exp(-—z—l)J'_a[¢ exp(-—z-l-)] + i\'yJ_u[qb exp(- _Zl)] ,

2n 2in
o= 2mx )2 wea-mxpt? e R mxt? o,

oo
) Zzl -az,
Y = exp[mo\pl..(l - T)] , Xl = Xoo(l -e )

In the limit as a - oo, Eqs. (43) and (44) reduce to the well-known homogene-

ous plasma slab results. !

The quantities ‘R and € [see Eqs. (29) and (30)] were computed,
parametrically, from the solutions (43) and (44). In a similar manner to

the presentation of the kinked-trapezoid results, the ratio db,I./(db,I.)o is
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plotted versus zl/L in Figs. 6éa through 6g for a range of conditions. Four
values of ;xo (characterizing the profile shape) were assumed, namely,

ak, = 2,4,6,12, and the range of X, and Y was extended to include the values
400 and 100, respectively. Although it was not the purpose of this calcula-
tion to compare the two general distributions which have been assumed, such
a comparison was made for several typical cases. As expected, the results
are the same when the profiles are mas~ approximately coincident. It is
also of interest that the results for the exponential geometry approach the
trapezoid values when a is sufficiently small, as is illustrated graphically in
Fig. 6a.

A wide range of detailed profiles (exponential and kinked-trapezoidal
in character) and values of Xl ,» Z, and Y has now been examined, parametri-
cally, for L/)\o = 0.5 and, to a lesser extent, L/)\o = 1. The resultant
series of illustrative graphs which are included in this report can be used to
effectively estimate transmission for particular problems of interest, the
principal restriction in coverage being the two values of L/Xo assumed.
Approximate calculations can be made readily, however, for larger values
of L/\O using the simplified Eq. (34) or, if necessary, (33) or (32). In the
next section, abasic and particularly useful resultis established for the small
L/)‘O regime. The present consideration of a second class of profiles pro-
vided the additional numerical foundation of an exact analysis which was

essential in the verification of this result.
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SECTION IV

PROPAGATION ACROSS THIN INHOMOGENEOQUS
PLASMA SLABS:* SMALL L/).

One of the more apparent deficiencies in the extent of quantitative infor-
mation presented in Section III lies in the limited consideration given to small
values of leo. In the present section, we will examine in detail the propa-
gation problem when L/ko << 1. The desire to merely extend the coverage in
numerical information which could be partially accomplished using a small ar-
gument expansion of the exact solutions led to the verification of a rather basic
and particularly useful result. In this regard, it is of interest to recall our
previously mentioned treatment of the re-entry cone problem. All of the con-
ditions shown in Fig. 3 are in the small L/\ range, even for the higher fre-
quency of £ = 3 X 109 cps. Indeed, it has been observed that this so-called
skin depth effect is what makes transmission possible even when the plasma

is highly overdense.

The present discussion will be based primarily upon the use of the exact
solutions derived in the preceding section. The following limiting situation is
offered to advance the necessary initial insight. It should be emphasized that
this calculation is intended to serve as a guide in the proper use of our exact
solutions of the full wave equations; no formal investigation of the problem is

intended along these lines.

Consider propagation across a vanishingly thin plasma sheath separating
two free space regions as described in Section II. In the free space regions,

z <0 and z > L, respectively,

-in.z in. 2
F, =cu)e 07 4 (B 0 , (45)

* The author would like to acknowledge his appreciation to Dr. Melvin
Epstein for many fruitful discussions concerning this subject.
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-in. 2z
F =c(3)e 0

3 (46)

The two waves propagating in the plasma (0 < z < L) satisfy the equation

2
Fj+ no[l - mX(z)] F,=0 . (47)
We would like to consider the limiting case of L~0, X <~ oo (i.e., the
maximum value in the layer). Let us, therefore, represent the function
X(z) by a Dirac delta function at z = 0, 8(z),

L
X(z) = (RL)s(z) , XL-= f X(z)dz . (48)
0

Substituting this into (47), we obtain

F! + nzF

3 +nlF, - ngmxus(z)rz =0 . (49)

Integrating from zero to z, we see that

F), = (Fy)g + ng mXL(F,), - (50)

where the contribution of n(z) FZ in (49) is zero in the present limit since FZ is
assumed to be continuous, and the subscript zero denotes the value at z = 0.
For LL -0, therefore, F'Z {or the magnetic field) has a simple discontinuity,

and when the boundary conditions are applied we obtain the following results:

-mYnOL
Rz ————— , (51
2i ¢+ anoL )
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1
T=1+R= » L
1 - (inoL/Z)mX (52)

(Falo (Fp)p, (Fpdy, (Fply
c(l) = C(I) =T ’ -—c(rr = -moT » tn-r = -mo(l - R) . (53)

Evaluating the Poynting vector, we obtain

‘r=z (!Tr|2+ T, 12)

(54)

M2 + 22 M2 + z2
- 1 r + [4

ZIME 4 [z + (rL/AGRIE My +[2 + (nL/A )R]

r

where Mr =1-%, Ml =1 +Y. (Two related problems of considerable

interest are briefly analyzed in the Appendix using a similar approach.)

We should like now tc suggest that the problem of propagation across a
plasma slab in which the ratio L/Xo is small, X(z) is arbitrary, and the
maximum value of X is large, is not dependent upon the details of the electron
density distribution but only on the integrated value across the slab. Although
this assumption is made in the analysis of radio waves from meteor trails,
for example, 3 and in a number of related problems in classical physics, it
is our intention to verify it using the exact solutions previously obtained in
Section 1II. As a consequence, a considerable simplification in the analysis

of specific propagation problems of this type is obtained.

An obvious deduction from the preceding remarks is that an approximate
solution to the aforernentioned problem can be obtained from the consideration
of a homogeneous slab having the same width L and an equivalent value of X

determined from the relation

L
XL :/o- X(z) dz , (55)
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where X(z) is the known distribution. For the exponentisl profile treated in
Section IIl. B, therefore,

X Z) 1 1
XI =l-2r [1 T exp(-az,) +“l] ' (56)

and, for the kinked-trapezoid,

X . 2 Xo . %
Yi_l-l-(l-xT+;) . (57)

Therefore, the transmission coefficient can be determined using the corre-

sponding equivalent index of refraction, f* = (1 - mx)l/?'

4n* exp(inoL)
T= 3 3
(% + 1) exp(ino'ﬁ*l..) - (@* - 1) exp(-inoﬁ*L)

(58)

It is interesting to note that Eq. (52) follows from (58) when tlie magnitude of
inoﬁ*L is small (retaining only the leading term in the expansion and using the
assumption of small L/)\o, large X, to further simplify). The basic premise
that propagation is principally dependent on the integrated value of X(z) when
L/ )‘0 << 1 will now be examined by comparing the results of the approximate
and the exact solutions. This conclusion is of considerable importance in
many propagation studies. The practical value of usﬂing {52) or even {58) to
compute transmission (or reflection, from the related expressions) for an
arbitrary X{(z) in the present problem is evident. The following correlation
will also be used, therefore, to determine the range of conditions for which

approximate calculations can be made on this basis.
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The transmission coefficient has been computed from the exact
solution (44) for the three typical exponential profiles shown in Fig. 7,
covering the following range of conditions:

L/ )‘0 X

9 L z Y
0.001 100, 1000, 10000 10, 100 0, 100
0.0l 25, 100, 1000 1, 10, 100 0, 10
0.1 2. 25, 25, 100, 400 0.01, i, 10 0, 5, 100

An equivalent homogeneous plasma was determined using Eq. (56) and T was
computed from (58). The equivalent homogeneous plasma results for

L/ )‘0 = 0.001 and 0.01 are virtually identical to the exact values, indeed
(de)exact/(de)'x = 1.00, for all cases considered. Complete agreement
gives way to more than acceptable correlation for most applications when
L/ )‘0 is increased to 0.1. All three profiles and a wide¢ range of conditions
were included in these calculations in order to examine the applicability of
our approximate analysis. Less than three-percent error was found in the
computations involving profile I. Although the homogeneous plasma values
of de for X = Xl are already close to the exact results (within 10 percent),
as would be expected for this profile, the additional accuracy obtained using
X = X is noteworthy in many applications. The discrepancy increased in
general, to a maximum of five percent, for profile II which differs even
further from the constant X = Xl distribution. The maximum discfepanc’y
noted in the 36 cases considered for profile III {(which is now substantially
different than X = Xl) was only seven percent. In general, even greater
accuracy is obtained, for each assumed profile, as Xl is decreased, for

fixed Z, or as Z is increased, for fixed Xl.

In the preceding correlation, we established the basic premise that the
propagation is dependent on X and began to determine limiting conditions
under which the resultant convenient calculatién procedure can be used.

Consistent with the approach outlined at the outset of this section, we will
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not attempt to derive a formal limiting criterion. Although this would be
desirable and may be examined using several different expansion procedures
suggested by the problem, the present purpose is best accomplished by con-
tinuing to use the same procedure. The exact solutions, therefore, will now
be used to provide the required empirical limiting information.

Only a relatively few calculations were made for L/Xo = 0. 5 using the
exponential profile, in particular X1 =1.21, 2.25, 25; Z=0.01, 1; and
Y =0. Itis first apparent (for the extreme profile III) that agreement is
poor, in percentage, when Z = 0.01, Xl = 1.21. In addition, although a
comparison with the corresponding L/ )‘0 = 0.1 results shows an expected
decrease in accuracy, the maximum error for the remaining conditions of

interest is still only seven percent. It will be convenient to use the analysis

of Section IIl. A to examine these two points further. Transmission coefficients

were obtained fromthe exact solution (26) for the range of kinked-trapezoid

profiles shown in Fig. 8 and the conditions

X1 =1.44, 2.25, 4; Z2=0.0},1]; Y=0, 0.5,1.5, 3

Using Eq. (57), we obtain for the equivalent homogeneous plasma slab,
X/X; =0.5(1 + Xy/X| - z3/z)). The results are tabulated in Fig. 9. For
Y =0, Z =1 less than three-percent error was obtained (for all profiles) at
Xl = 1.44 and 2. 25, and less than seven percent at Xl = 4. By contrast, the
correlation experiences some difficulties for Z = 0. 01. The accuracy is
generally improved as Xl is increased (depending on the profile), particularly
for Z = 0.01; indeed the error obtained at Xl =4, Z =0.01, now ranges from
one to 13 percent for all cases (except one). At the same time, note also that
for a fixed value of X1 there is a marked improvement in the correlation when
either XOIX1 is increased with zo/zl held fixed or zolzl is decreased with
XO/Xl fixed. The principal factor involved appears to be the abrupt depend-
ence of ¢ T °n X near the resonant condition when Z is small. Part of the

plasma is always overdense because we have assumed Xl >1. A smaller
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value of X, /X, and/or a larger value of 5,/z, will reduce the ratio X/X,,
the minimum value being 0. 2 for the profiles considered. In this case, for
xl = 1.44, X = 0. 288 and the equivalent homogeneous plasma will not include
any resonant effect. Although the percentage error is large in this case, it
is interesting to observe that the magnitude of de is quite small which

therefore may be more of academic than practical concern.

At the other extreme, X = 1.152, the resonant condition is more
accurately taken into account, and an error of only 12 percent is obtained.
Note the magnitude of de involved. As X, is inc reased, the region in which
X is of order one represents a smaller portion of the total distribution. Its
effect on transmission will be reduced, and a qualitatively similar but
substantially improved correlation is shown for Xl = 2.25. As was previously
noted, the over-all agreement is quite good when X, = 4. The major effect
described above is still evident since for the extreme profile when X = 0. 8 the
percentage error is sizable, whereas good agreement is obtained in all of the
remaining cases since the equivalent value of X is further from the resonant
value. The maximum discrepancy is less than seven percent at Z =1 for all
cases including a magnetic field. The way in which X1 and Y combine to
effect the correlation may be seen from the detailed results given in Fig. 9..
The presence of a magnetic field modifies the preceding discussion for
Z = 0.0 in certain instances. Although the qualitative conclusions often apply,
it is best to refer to the detailed correlation to evaluate the prospective
accuracy of the approximate procedure for a specific combination of X1 and Y

of interest.

The following conclusions can be made in summary. Using the exact
solutions derived earlier in this report, we have shown that the transmission
across a thin (L/ )‘0 << 1) inhomogeneous plasma sheath depends on the total
integrated value of electron density, not on the detailed distribution. Such an
assumption is often the essential starting point for investigations of propagation
in this limit and is of particular value in the present analysis. Accurate

transmission calculations can be made on this basis for L/ )‘0 < 0.1 using the
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considerably simplified homogeneous plasma slab expression (58) and an
equivalent constant value of X determined from (55). Indeed for the broad
range of conditions considered in establishing this fact, there is virtually
complete agreement between the exact and the approximate results for

L/\o = 0.001 and 0.01. When I../)\0 was increased to 0.1, the maximum
discrepancy found in the computations for 108 different cases (including
three profiles), covering the full spectrum of transmission levels of possible
interest, was only seven percent. In general, even greater accuracy is
obtained when the profile approaches the constant X = Xl distribution or, for
an assumed profile, when either Xl is decreased or Z is increased. For
L/XO = 0.5, smaller values of Xl, Z, and Y were used, along with 3 number
of profiles, and a maximum error of seven percent was obtained when Z = 1.
The correlation at Z = 0. 01 was subatantially affected by the values of )(l
and Y and by the profile. Although the previous discussion for Y = 0 is
informative, it is best to refer to the detailed results of Fig. 9 to evaluate

a particular condition of interest.

It should be remarked that we have not attempted rigorously to determine
a formal limiting condition for the approximate calculation procedure. Although
its accuracy (better than 93 percent) was established in detail, in an empirical
manner for virtually any condition of practical interest, even when L/)\o =0.1,
only limited calculations were made for larger values of L/ )‘0 where the
procedure will begin to fail. However, for L/ )‘0 = 0.5 (and, to a lesser extent,
L/ )\0 = 1) transmission can be adequately determined from the detailed con-
siderations of Section III which includes a large measure of arbitrariness in
the assumed distribution of X(z) and » broad parametric treatment of the
remaining quantities. The evaluation of our appproximate procedure at
L/)\o = 0.5 is intended to complement these results when calculations are
required for intermediate values of the parameters or for transitional values
of L/ )‘0’ say between 0.1 and 1.0. We shall now illustrate the way in which
the two procedures can be used to complement one another. Recall that accu-
rate results {less than seven-percent error) were obtained from the approxi-

mate calculations at I"/)‘O = 0.5 when Z = 1. Thus, transmission results canbe

-29-




o e A AT ST PRI R

- B ——» s om

* computed at Z = 1 for the intermediate values of Xl which are not included

in the graphs obtained in Section III. A. Estimates also can be made on this
basis for values of Z which are close to one, covering the entire range of Xl
considered. On the other hand, the dependence on Z shown in these graphs

can be used to estimate transmission when Z is small, aided to some extent

by an approximate calculation whose accuracy can be evaluated from Fig. 9.

A vivid demonstration of the obvious utility of the simplified small
v/ )‘0 expressions follows. A triangular distribution of X(z) was previously
assumed to represent the plasma about a re-entry cone (Fig. 3). With the
aid of a high-speed computer, the exact solution derived in Section III. A was

used, therefore, to calculate transmission. The results obtained when

f = 240 Mc can be easily r'eproduced (within several percent) using the
limiting algebraic expression (54). Satisfactory agreement was not obtained
at f = 3,000 Mc when (54) was no longer appropriate, i.e., for conditions
where the magnitude of inOH*L is not small. Excellent agreement with the
exact calculations was obtained in all cases using Eq. (58). It follows from
the general correlation of (58) with the exact solutions of Section III that (54)
may be used to simplify computations even further, when applicable. It is
perhaps redundant to add that homogeneous plasma slab calculations can be
obtained, in general, from (54) rather than from the more complicated (58)
when linon*LI is small. The result may still be substantially less than
perfect transmission in this situation since a small value of noL may be
offset by a correspondingly large value of |T%| with the product still remaining

less than one.

[P
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SECTION V
CONCLUSIONS

Exact solutions for the reflection and transmission coefficients have
been obtained for several exemplary transition zones between dielectric
and dissipative gases. Normal incidence into a stratified plasma slab is
assumed so that the electromagnetic waves are propagating parallel to the
free electron density gradients. The magnetic field is constant and is applied
in the propagation direction. Two general electron density distributions are
considered in which both the shape and the extent of the inhomogeneous profile

may be varied.

{i) Kinked-trapezoid (Fig. 1),

(ii) Exponential-homogeneous-exponential (Fig. 5).

The solutions derived on this basis are used to evaluate the effect of an

inhomogeneous plasma on electromagnetic wave propagation, parametrically,
both with and without an applied magnetic field. At the same time, previoully2
obtained homogeneous plasma calculations for a re-entry cone are refined

using the analysis of problem (i).

The kinked-trapezoid geometry is considered in Section IIl. A, and the
resultant expressions for the reflection and transmission coefficients are
given by Eqs. (25) and (26), respectively. Parametric calculations were
made for L/)\0 = 0.5, 1.0 including moderately overdense plasmas, i.e.,

1 <Xl
to the level of practical interest, and 0.01 < Z < 1. Illustrative results for

< 4, comparable values of 0 < Y < 3 required to improve transmission

de’ normalized by the corresponding homogeneous value are shown in

Figs. 2a through 2k varying the details of the assumed profile.

The second general profile was examined in Section IIl. B with the
solutions given by Eqs. (43) and (44). The resultant calculations for
L/)\0 = 0.5, 1.0, including larger values of X, and Y, are illustrated in a
similar manner in Figs. 6a through 6g. The wide range of detailed profiles
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(exponential and kinked-trapezoidal in character) and values of Xl, Z, Y
covered in the two sets of graphs can be used to estimate transmission, the
principal restriction being the two values of L/k0 assumed.

Transmission calculations for larger values of L/ XO can be directly
obtained from the asymptotic expansion of Eq. (26). The resultant limiting
expressions (34) and (33) are applicable for values of L/ )‘0 as small as one,
depending on the conditions involved, due to the rapid convergence of (32) when
the magnitude of the arguments is of the order of two. Although (34) is
particularly useful for this purpose because of its relative simplicity, it is
limited to profiles which are approximately trapezoidal; additional flexibility
is provided by (33) which includes a kink in the profile. In both cases the
accuracy of the calculation can be improved, or a smaller value of L/ ko can
be considered for a given set of conditions, by including additional terms

from the general expansion (32).

The detailed exact solutions of problems (i) and (ii) were used for yet
another purpose in the analysis of Section IV. In that section the problem
of propagation across thin inhornogeneous plasma slabs w s treated.
Numerical calculations using these exact solutions were the principal means
.of verifying the resultant small L,’ko analysis. A brief consideration of the
limiting problem of a vanishingly thin plasma sheath (L -0, X - o) resulted
in the solutions (51) and (52) for the reflection and transmission coefficients
and (54) for the transmitted energy. (Two related problems of interest are
considered in the Appendix.) On this basis, it was assumed that when L/Xo
is small and X(z) is arbitrary, propagation is not dependent upon the details
of the electron density distribution but only on the integrated value across the
slab. A considerable simplification in the analysis of problems of this type
should be obtained therefore from the solution of an equivalent homogeneous
slab problem, Eq. (58), with X = X = constant defined in (55). The validity
of these assertions was examined by comparing the appropriate exact and
approximate expressions for a wide range of conditions. The virtually
identical results obtained for L/ko << 1 (in particular, L/)‘O = 0.001 and 0.01)
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.established the basic premise regarding the dependence on X which, it may

be noted, can be used in a wide class of problems apart from the present
general boundary value problem outlined in Section II.

Complete agreement became more than acceptable correlation when
L/)‘O was increased to 0.1. Indeed, a maximum discrepancy of seven
percent was found in the calculations covering the full range of transmission
levels of possible interest corresponding to the conditions, Xl = 2. 25, 25,
100, 400; Z =0.01, 1, 10; Y=0, 5 100. A further correlation at

L/ )‘0 = 0.5 was derived in which the degree of accuracy depended on the

values of these parameters. This information is of value as a complement

to the extensive results given in Section III for L/)\0 = 0.5 (and, to a lesser
extent, L/ )‘0 = 1) when calculations are required at other values of Xl' 2, Y,

or in the transitional region of 0.1 to 1.0.

The problem of a re-entry cone which was previously treated2 assuming
a homogeneous plasma is considered once again in Section III. A, using a
triangular distribution of X(z). The geometry and cases are specified in
Fig. 3 and the results are shown in Figs.4a through 4c. The increase in
transmission predicted by the more realistic inhomogeneous plasma formu-
lation is quite pronounced. Further, the magnetic field required to provide
a specified acceptable level of transmission can be substantially larger
assuming a homogeneous plasma. In Fig. 4a, for example ({f = 240 Mc,
u = 26, 000 fps), at 100, 000 ft, 1200 gauss, 3600 gauss, and 7800 gauss would
be required to obtain 15 db, 10 db, and 5 db, respectively, for a homogeneous
plasma. The corresponding values specified by the inhomogeneous plasma
calculalations are 0, 1400, and 4200 gauss, a significant decrease of practical
interest. The detailed values for this typical re-entry application are shown
in the aforementioned graphs. The obvious utility of the results of the small
L/ )‘0 analysis is clearly demonstrated by its application to the re-entry cone 5
problem. Good agreement was obtained between the exact values shown in
Figs.4a and 4b and the corresponding limiting algebraic expression results
(Eq. (54)]. Excellent agreement was obtained in all cases when the more i
general approximate expression, (58), is used, including the conditions in

Fig. 4c at which |inoﬁ*L| is no longer small.
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SECTION VI
FIGURES

* X(2)
x, F
X b

L 3 - n .
o Zo Z, 2y Zs L
Fig. 1. Kinked-trapezoid distribution of X(z); Eq. (12).
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Fig. 2d. Transmitted energy, kinked trapezoid X(z) (continued).
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Fig. 2h. Transmitted energy, kinked trapezoid X(z) (continued).
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Fig. 2i. Transmitted energy, kinked trapezoid X(z) (continued).
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Fig. 2k. Transmitted energy, kinked trapezoid X(z) (continued).

-45.

o o et e =i



gy

Fig. 3. Re-entry 10° cone at zero angle of attack.

Inhomogeneocus plasma profile, flight conditions.
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Fig. 6b. Transmitted energy; exponential X(z) (continued).
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Fig. 6d. Transmitted energy; exponential X(z) (continued).

-54-

03




R

dby /({dby)e

09

0e

07

0.6

08

04

/~ohgti2

b_——

0lg26 -/

Y310, 221, L/Xo: 0.8

X100 i (dby)ge -11.80
v = X 2400 ; idb 1) o -19.98
o 0109 (0721|047, 12 )]

0.1

0.2 0.3

2, /L

0.4 0%

Fig. 6e. Transmitted energy; exponential X(z) (continued).

=55

5P S AP NPT L e I st = 1



ot SR RN NI

R e

os

o8

Q7

Q3

a2

ot

\§
\J
\
\
akgei2
3 oro*6
Y=100, X=100, L/Ag*QS
— 22Q.01; (dbylgs —2.25
=== 201;  (ddyig=-2.36
dbye10 log[(1/2NIT, 1241712)]
0 + 4] 02 Q3 0.4 0.5 0.6
l‘/L
Fig. 6f. Transmitted energy; exponential X(z) (continued).

56~

0.7



dby/(dby)g
s

04

03 T
Y 50, L/Agl,  ehoe2
X 5121, 200 (¢ ylg® ~21.90

0.2 | X, =121, Zei; (Gbylye=21.60
X°2.28, Z°0.01(dhylgr 55,12
dby+10 logo|(/2X(T, |2+ | 7,1

0.

(4] -1} ot 03 04 (1) os 07
/L
{ Fig. 6g. Transmitted energy; exponential X(z) (continued).

-57.




R i R ]

TR TTRIN Y L, S

Fig. 7.

— ASSUMEC PROFILE

wenem  EOANVALENT

HOMOSENEOUS PLASMA SLAD

[}
pr o= G GED GED GNP GUD WED GND GND GIR GEG GG GIN SIS MMy GWD SN Gl GND -1
0.0
Z osf
X
L] CABE
% oe}
2,/L*0., 01,20.6
[+ % ]
° ' L A s
1
08 e - — e G s D IR S P SED G G G S
T oel
] cASR
bt -3
x 0.4 -
2,/L*0.2, 02,10.2
o.e |
0 1. i Y
VF
0.8 r
3
2 |
x 04} \
CASE W ]
o2} 2,/L10.5, e2,:1.8 =
{
° 4 L. i -
0 0.2 o4 +X ] os 1
/L

Exponential profiles used for correlation of equivalent homogeneous

plasma transmission calculations with exact values.

~-58-

e s




SR Y A YN TR

NI I R na N comgao L

ASSUMED PROFILE
emamee EQUIVALENT HOMOGENEOUS PLASMA SLAD

x
3
-
®
~
Il
| 4
- Ol
> -t - - - -
N
S osaf

02p

o P A

0 o2 04 O6 OB ! 0 0.? 04 O O8 |

/L s/l

Fig. 8. Kinked-trapezoid profiles used for correlation of equivalent
homogeneous plasma transmission calculations with exact values.

-59.




» art v

s SR

Xy = Lad X, =28 X, =4
4 Xo/ X, sls, | Xix dby LU Wbr) ot b dhy 8By vact do db.p
exact homog. X _TB-.:% exact homog. R —m# exact homog. X
1 0.2 0.2 0.5 -6. 007 -5 885 1. 020 -9.678 -9.767 6. 990 -16.93 -17.92 0 94
0.4 0.4 -4. 662 4. 564 1.022 “7.5. 7,592 0.991 -13.31 -14.30 0.932
0.6 0.3 -3.370 -3.308 1.019 -5.419 -5.476 0.992 -9.809 -10.50 0. 9%
0.8 0.2 -2.166 - - -3.501 -3.458 1. 012 -6. 488 -6.637 0.973
0.4 0.2 0.6 -7.366 -7.247 1.018 -11.84 -11.94 0.992 -20.43 -21.30 0.960
0.6 0.4 -4.674 -4.564 1.02% -7.567 -7.592 0.997 -13.49 -14,30 0.943
0.8 0.3 -3.401 -3.308 1.028 -5.538 -5.476 1. 010 -10.13 -10.50 0. 967
0.6 0.2 0.7 -8.129 -8.688 1. 008 -13.94 -14.07 0.993 -23.66 -24.45 0,968
0.4 0.6 -7.361 -7.247 1.018 -10.79 -11.94 0.986 -20.27 -21.30 2 952
0.8 0.4 -4.688 -4.564 i.029 -7.614 -7.892 1.003 -13, 68 -14.30 0 955
0.8 0.2 0.8 -10.09 -10.01 1.008 -15.96 <1614 0.988 -26.65 -27.42 0.973
0.4 0.7 -8.719 -8.688 1.008 -13.84 -14.07 0.986 -23.38 -24.45 0. 954
0.6 0.6 -7.352 -7.247 1.013 “11.74 -11.94 0.983 -20.12 -21.30 0. 944
0.01 0.2 0.2 0.5 -3.712 -1.797 2.068 9,244 -7.665 1.205 -20.32 -21,37 6.9%0
0.4 0.4 -2.500 -0. 7474 3.35 ~6. 366 -4.013 1.59 -15.19 -15.56 0.977
0.6 0.3 -1.406 -0.2835 .54 -3.69) -1.407 2.62 -10.04 -8.955 o121
0.8 0.2 -0.5542 - - -1.%02 -0.2928 5.13 -4.998 2,668 1.87
0.4 0.2 0.6 -5.166 -3.500 1.473 -12.32 -11.8) 1.07 28,20 -26. 46 0.956
0.6 0.4 -2.343 -0.7474 3.14 -6.212 -4.013 1.55 <15 30 -15,56 0. 984
0.8 0.3 -1.178 -0.2535 4.6% ~3.394 -1.407 2.415 -10.15 -8.955 1.133
0.6 0.2 0.7 -6.987 -5.730 1.22 -18.51 -15.17 1.023 -29.88 -31.02 0.963
0.4 0.6 -5.333 -3.500 1.523 -12.39 -11.51 1.077 -25. 11 -26. 46 0.948
0.8 0.4 -2.226 -0.7474 2.98 -6.128 -4.013 1,95 -15.46 -15.56 0.993
0.8 0.2 0.8 -9.041 -8.094 1.118 -18.62 -18.56 1.004 -34.08 35,17 0.970
0.4 0.7 -7.254 -5.730 1.268 -15.83 -15.17 1,023 -29.48 -31,02 0.95)
0.6 0.6 -5.488 -3.500 1.%6 -12.40 -11.51 1.078 -24.91 -26. 46 0.941
z 0.01 1 0.0 1 0.01 )
db (homog. X} | -13.01 -12.80 -24.43 -20.06 -42.54 -32.81

Fig. 9a.

Correlation of equivalent homogeneous plasma transmission
calculations with exact values for a kinked-trapeszoid profile.
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Fig. 9b. Correlation of equivalent homogeneous plasma transmission

calculations with exact values for a kinked -trapesoid profile (continued).
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Fig. 9c. Correlation of equivalent homogenecus plasma transmission

calculations with exact values for a kinked -trapesoid profile (continued).
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0.4 0.4 -0.9%20  -0.9426 1.020 -1.498 -l.eae 1.0% 2.7 -2.871 1.062
0.6 0.3 -2.0% 1,904 1oms
0.8 0.2 1307 T 1.ese
0.4 0.2 0.6 -4.268 -4 008 1.002
0.6 0.4  -0.9850  -0.942 1012 -1.em2 144 1.021 .10 <2.8m 1.083
0.8 0.3 ’ -1.997 -1.914 1.043
0.6 0.2 .7 -5.141 4,958 1.038
0.4 0.6 -4.290 -4.088 1,080
0.8 0.4 -0.948)  -0.9%42¢ 1.007 1411 Slase 1.019 -2.692 .51 1.068
0.8 0.2 0.8 - - -
0.4 0.7 T 4,988 1.048
0.6 0.6 -4.297 4,088 1.081
0.01 0.2 0.2 0.5  -0.0917  -0.02% 338 <-0.2 -0.6778  -0.4388 1.348
0.4 0.4 -0, 6063 -0.2328 2.40
0.6 0.3 -0.5222 -0. 1046 5.00
0.8 0.2 -0.2798 -0. 0362 .7
0.4 0.2 0.6 <.0.1 -0.9518 -0. 7443 128
0.6 0.4 -0.5252 -0.2328 2,258
0.8 0.3 -0.3367  -0.1046 .22
0.6 0.2 0.7 -1.430 -1.189 1234
0.4 0.6 -0.9991 -0.7443 L2
0.8 0.4 -0.4542 -0.2328 1,952
0.8 0.2 0.8 - - -
0.4 0.7 - 1,189 -
0.6 0.6 -1.021 -0, 7443 1A
z .01 1 0.01 1 0.0 1
o themag. X,)| 0. 172 2302 | o-0.6168 | -3.778 .2.837 1.4

*Numbers are net given below \.hen the magnitude of db.r is too small to be of practical interest.

Fig. 9d. Correlation of equivalent homogeneous plasma transmission
calculations with exact values for a kinked -trapezoid profile (continued).
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APPENDIX

We shall consider first the propagation of a horizontally polarized wave
which is obliquely incident on a vanishingly thin isotropic plasma sheath. The

governing equation for the electric field intensity is now given byZ

202 X _ )
E;+nO(G--U)Ey-0 , C=cos@ (A-1)

where OI is the angle of incidence, i.e., the angle formed by the wave normal
of the incident wave and the positive z-axis. A similar procedure to the one

employed at the outset of Section IV leads quite readily to the following results:

-XnoL/U
R=3cT R, L/T (A-2)
T = 1 . (A-3)
1 - (inoL/ZC)Y/U
2
¢T=!le= 1+2 (A-4)

1 +[2Z + (n/CHL/NGR]

These expressions reduce to the corresponding ones for the case of normal

incidence (OI = 0) derived in Section IV.

The function ‘T(el) is a maximum at GI = 0, decreasing monotonically
to zero at SI = #90 degrees. Since ¢ T depends only on X, we are led again to

the assumption of an equivalent homogeneous plasma slab, in which case,

2,1/2

(#/Cyim? - 53! /2 exp(ingcL

T z

&\17¢

=[xzf(rr:nz-S) /C]zexp[inoL(ﬁ*z-Sz)”z]-[l-(K* 17e

- Sz) /C} exp [—inoL(ﬂ*z - Sz)l IZ]

(A-5)
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where S = gin el and 'ﬁ*z = (1 - X/U). This expression will reduce to (A-3)

in the present problem when the magnitude of inOK*L is small. The extensive
correlation made in Section IV for GI = 0 between the values obtained from

the approximate expression (58) [or (52), if applicable] and the appropriate
exact results can now be .sed to justify the use of (A-5) [or (A-3)] in the
following way: For given X, Z, and L/ Ao (Y = 0), Eq. (A-3)is the same as
(52) if we consider a new value of L/)‘O which is modified by the factor 1/C.

It might be anticipated that the excellent agreement obtained in this correlation
for L/)\0 £ 0.1 and the subsequent discussion for LIXO = 0.5 are an indication
of the accuracy afforded by (A-5) in the present problem for the corresponding

conditions

<0.1 cos OI , =0.5cos @ {A-6)

I

e
o>1 =

The preceding extension to the case of oblique incidence (Y = 0) is
certainly tentative in many respects. It is felt, however, that (A-3) or (A-5)
can be used to give approximate results in many applications, with qualitative
limitatio'ns provided by the correlation of Section IV along with the modifica-
tion (A-6). As a final footnote, we shall consider the following even more

tentative, but possibly useful, reasoning when Z = Z(z). In general
2,.2
w" + ng(C” - mX)w =0 (A-7)

where w = F and C =1 (normal incidence) when there is an applied magnetic
field; w=E for Y=0; andm = (U ¥ Y)-l is now a function of z. The

previous limiting calculations can be altered accordingly and we obtain

-Ino

Remerm, (A-8)
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T = , (A-9)

where

L
I-= f m(z}X(z)dz . (A-10)
0

It seems reasonable to suggest that these limiting results may be used to make
approximate calculations including a variable Z(z) when L/ )\0 << 1 and

]inOL(mX) | is less than one.
max
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