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FOREWORD

This report was prepared by the High Temperature Section of the Aerodynamics
Division, Aeronautical Systems Division, Wrigix-Patterson Air Force Base, Ohio. The
work was accomplished under Task No. 136607, ‘‘Hypersonic Gasdynamic Heating,’’ of
Project No. 1366, ‘‘Aerodynamics and Flight Mechanics’’ at the request of Richard D.
Neumann of the Flight Dynamics Laboratory of ASD.
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ABSTRACT

A study was made of the aerodynamic characteristics over a flat plate with basic
changes in the flow field imposed by geometric and serodynamic means. Pressure
distributions and schlieren photographs weie used to show the effects of (1) leading edge
bluntness, (2) rearward facing step, (3) rearward facing step withi gas ejected from the
vertical face of the step, and (4) a control surface. Although thre¢ dimensional effects
were large at high angles of attack, the flat plate results correlated well with theory and
other experimental data. The effects of leading edge bluntness, step height, and ejection
angle are small. The effect of gas ejection, in the mamner tested, is not sufficient to pro-
duce the effect of a physical control surface.

This technical documentary report has been reviewed and is approved.
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INTRODUCTION

The purpose of this study was to obtain experimental information on the aerodynamic
characteristics over a flat plate with basic changes in the flow field imposed by geometric
and aerodynamic means. Pressure distributions and schlieren photographs were used to
determine the effects. The effects of (1) leading edge bluntness, (2) rearward facing step,
(3) rearward facing step with gas ejected from the vertical face oi the step, and (4) a con-
trol surface were compared with the basic flat plate data. The data were also compared
with existing theories and other experimental work.

The tests were performed in the High Temperature Hypersonic Gasdynamics Facility
of the Aeronautical Systems Division. Test efforts were initiated on 15 March 1962 and
were completed 22 March 1962. Model pressure distributions were obtained for various
free stream test conditions.

TEST EQUIPMENT

All tests were run in the ASD High Temperature, Hypersonic Gasdynamics Facility
(HTF) which is described in reference 1. Figure 1 is a schematic diagram of the tunnel
and its related systems. The tunnel has a Mach 4 conical nozzle of 5-in. exit diameter and
a 10%-in. long open jet test section. Calibration of the test section was done using two asym-
metric total head rakes and a water-cooled total head probe as described in reference 2.

Operating ranges for the tests were 300 to 600 psia total pressure and 2500° to 4500°R
total temperature, while operating times were on the order of 5 to 10 minutes.

Both “‘still’’ and ‘‘movie’’ schlieren coverage was made of all test conditions through
the windows of the plenum chamber.

The models were supported by means of the rotating hub, figure 2, which for this test,
held three models which could be rotated in and out of the hypersonic stream as desired.
Pressure orifice-to-capsule connections were made from model to model by means of a
pressure switch which connected the capsules to the model entering the stream.

The gas ejection system, employing a Grove pilot operated regulator, is shown
schematically in figure 3. From the gas ejection control panel it was possible to monitcer
the helium supply pressure, the control pressure to the Grove regulator, and the operation
of the open-close solenoid. This system was operable either manually or automatically
in conjunction with the rotating hub.

The pressure capsules were referenced to atmosphere and were enclosed in a tempera-
ture controlled container, which was located outside the facility plenum chamber.

Manuscript released by the author January 1963 for publication as an ASD Technical
Documentary Report.
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MODELS AND TEST PROCEDURE

The test models were of two basic shapes: a fiat plate with a rearward facing step, and
a flat plate with & control surface ramp on the aft end.

Model Nos. 1 through 8 were step models of varying step height and gas ejection angle.
Figure 4 is a rear quarter view of Model No. 1 with 0.1-in. nose radius and 0.375-in. step
height showing the gas ejection slot. The location of the orifices and the helium ejection
slot is shown in figure 5. The models in this series were 2 in. wide and 5 in. long with the
step being 3 in. from the Leading Edge.

Model No. 9 was a full flat plate model and served as the reference for the test.

Model Nos. 10 through 13 were the ramp models, with ramps of 5, 10, 20, and 30 degrees,
respectively. Figure 6 shows the 5-degree ramp model. The position of the pressure
orifices on the ramp models is shown in figure 7. These models were 2 in. wide and
5 in. long with the ramp beginning 3 in. from the L E.

Table 1 lists the various models and the physical characteristics of each.

The gas ejection models, Nos. 1 through 7, had a plenum chamber inside the model
which was instrumented to determine pressure and temperature of the gas before ejection.
The ejection slot measured .0312 in. wide by 1.25 in. long.

The two gas ejection models and one ramp model were mounted on the rotating hub for
each run. Surface pressures were measured at 0, 5, 9.5, and 13.5-degree angles of attack.
In addition, models 8, 9, and 10 were tested at both 300 and 600 psi total pressure.

Maximum Reynolds number variation was obtained by testing at minimum pressure-
maximum temperature and maximum pressure-minimum temperature. Three different
gas ejection pressures were used to determine the effect of this parameter.

RESULTS AND DISCUSSIONS
General

The thirteen models described in table 1 were tested over the range of parameters
listed in table 3. The final reduced data for all test conditions has previously been made
available to the initiator and are also available from the test project engineer. This re-
port includes sufficient pressure distributions in graphical form to show how the flow
field was affected by the various test conditions.

Reference Pressure

Since the HTF conical nozzle was used for this study, there existed a pressure gradient
along the nozzle axis due to the diverging flow. Therefore, it was necessary to establish
some method of normalizing the surface pressures. The method used consisted of plotting
the flat plate pressure distribution (Model No. 9) and fairing it until the distribution indi-
cated it had reached free stream pressure. This pressure was chosen as the numerical
value of the free stream pressure for the measured P, and T, at that instant. Now the
measured P, and the extrapolated P_ were substituted into the isentropic flow equation

2
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for M = M(P_/P,) and corrected for real gas effects. This gave a Mach number related
to the T, at the instant under consideration. Then using figure 6 of ASTEA ETR 62-4R,
‘“‘Calibration of the HTF 5-Inch Conical Nozzle'' (ref 2), it was possible to arrive at a
relationship between Mach No. and T, for all the test runs. Thus P_ was indirectly
established as a function of the measured T,. This method allowed a rapid means of
normalizing the surface pressures and did not require an extensive change in the data
reduction programs. The results have been compared with experimental results of
Creager (ref S) in figure 35; the agreement is considered good.

Surface Pressures

The surface pressures were measured over the angle of attack range of 0 to -13.5
degrees with 3 gas ejection pressures at each angle of attack.

The effect on the pressure distribution of step height, gas ejection angle, and leading
edge bluntness will be shown.

One of the principle areas of interest in this test lay in the feasibility of using an
ejecting gas to produce control forces similar to those produced by a physical control
surface. It may be seen from figures 10 through 16, gas ejection parallel to the step
and at an angle of 10 degrees up and 10 degrees down, produces a sharp pressure rise
immediately behind the step. As the ejection gas fully expands this pressure rise falls
off almost as sharply as it rose. This rise and fall of pressure is of too short a duration
to produce a distribution similar to those of the control surface models of figures 19
through 22. The schlieren photographs of figure 8 show the shock wave produced by
ejecting helium over model No. 3. These are typical of all the step models. While this
wave is fairly strong it is much weaker than the shock wave from the control surface
models, figure 9. This indicates that gas ejection in the manner tested would not produce
the desired control forces.

The flow field over the step was very complex during gas ejection and an understanding
of the pressure distributions is difficult even when compared with the schlieren photographs.
This flow field was further complicated by three dimensional effects and Mach wave inter-
action. Figures 10 through 22 show how severe the three dimensional losses are at the
higher angles of attack.

At the highest angle of attack (13.5 degrees) the pressure distributions for models 1
and 7 indicate erratic flow over the step. This is substantiated by the schlieren motion
picture film which shows a boundary layer instability. There is some evidence that this
effect is due to a particular combination of leading edge radius and angle of gas ejection;
however, the evidence is insufficient to draw a positive conclusion at this time.

The effect of step height on the model pressure distribution is shown in Figures 23
through 26. At small angles of attack, the effect of step height is nearly nonexistent. How-
ever, with increasing angle of attack, this effect becomes more apparent. At a 13.5-
degree angle of attack, there is an unexplained pressure increase over the front part of
the models with decreasing step height. This may be due to a boundary layer feedback,
from the ejecting gas, over the forward surface of the model. A pressure increase with
decreasing step height is similarly shown over the step and this can be directly attributed
to the increased weight flow over the step.
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However, figures 23 through 26 are somewhat deceiving since they do not show the full
significance of the pressure in the area immediately behind the step. In this ares as seen
in figure 27 the angle of attack has virtually no bearing on the model pressure. The smaller
step is much less efticient in producing a high pressure area immediately behind the step.
In the first 10 to 15 percent of the step length from the gas ejection nozzle, the pressure
distribution is directly a function of the gas ejection pressure. Beyond this distance from
the nozzle, the pressure distribution is relatively independent of the gas ejection pressure,
and is more dependent upon the angle of attack.

The effect of leading edge bluntness is shown in figures 28 through 31. As would be
expected, the pressure distribution on the forward part of the models has a more negative
slope for the blunter model, Model No. 1, than for the sharp L E model, Model No. 2.
This holds true for the 0.0, 5.0, 9.5, and 13.5-degree angles of attack tested. The ejecting
gas increases the pressure over the step.

The effect of gas ejection angle on the pressure distribution over the step models is
shown in figures 32 and 33. Gas ejection parallel to the step gives somewhat higher sur-
face pressures immediately behind the step than does either ejection 10 degrees up or
10degrees down. This applies for both the larger and smaller step heights; however, the
decrease in surface pressure caused by ejecting gas at an angle (rather than parallel) to
the step surface is greater for the amaller step heights. Beyond the 10 to 15 percent
step length from the gas ejection nozzle, there is little or no effect of gas ejection angle
on the pressure distribution over any of the models.

Flat Plate Results

The pressure distribution of the flat plate, Model No. 9, was compared with both theory
and experimental data.

The various hypersonic interaction theories compared are:
(1) inviscid theory ( ref 3)

s
(§p!, " 1 +oes3myt ()
(2) linear addition of inviscid theory and viscous theory (ref 3)

(Folv * 0-92 %p-!

(12

or
('t * Bl " 0293 M (1™ + 0.92 X

(3) Lee's Interaction theory (ref 4)
P * P (1 +0.38Rep)

{4) Leo's strong interaction theory (ref 4)

P * Py (0.92 + 052 xo )
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These theories are compared with the HTF test data on figure 34. The correlation is
congidered good.

The experimental results of Creager, reference 5, for a flat plate aimilar to the HTF
flat plate are shown on figure 35. Test conditions were practically identical to those of
the HTF flat plate. Creager’s plate, which was 10 times blunter than the HTF plate,
showed a pressure distribution very similar in shape and magnitude to the HTF flat plate.

CONCLUSIONS

From the results of this test, the following conclusions are drawn:

1. The flat plate pressure distributions correlate well with established theories and
other experimental data.

2. The effects of leading edge bluntness, step height, and ejection angle are small.

3. While the effect of gas ejection is pronounced in the region close to the ejection
nozzle it is not sufficient to produce the effect of a physical control surface.

4. Three dimensional losses were pronounced at high angles of attack.
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TABLE 1
MODELS TESTED
GO O )
t 0.378 - 0.1 Yes 0
2 0.378 — 0.01 Yes 0
3 0.28! — 0.01 Yes 0
4 0.281 — 0.01 Yes +10
S 0.28| - 0.01 Yos -10
6 o.187 - 0.01 Yes 0
7 0.187 — 0.0¢ Yes + 10
8 0.093 _— 0.01 No -
9 0.000 ) 0.01 No -
10 —_— ] 0.01 No —
" — to 0.01 No —
12 -— 20 0.0l No —_
13 -_ 30 0.0t No —
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TABLE 2

LOCATION OF PRESSURE ORIFICES

ORIFICE NR X DISTANGCE FROM LE

o—— — —
1 1.2%0
2 1.628
3 2.000
4 2.378
] 3.250
6 3.500
7 3.7%0
8 4.000
9 4.250
10 4.500

n 4.75%0
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TABLE

SUMMARY OF TEST CONDITIONS

NODEL ANGLE OF GAS EJECTION STAGNATION STAGNATION
NUMBER ATTACK PRESSURE, PSIG PRESSURE, PSIG  TEMPERATURE, °R
IN degrees

| -2.0 to 13.5 0 to 122 300£ 600 3610 - 4350
2 -2.0 1013.5 0 o 130 300 ¢ 600 2270 - 4590
3 0 to13.8 0 10130 300 3050 - 3847
4 0 1013.5 0 10130 300 3920 - 4480
5 0 to138 0 b 134 300 3070 - 4435
6 0 to 135 0 %130 300 3040 - 3820
7 0 to13.8 0 % 130 300 3645 - 4350
8 0 to13.5 0 300 3120 — 4640
9 0 10135 0 300€600 3190 — 4580
10 ~2.0t0 135 o 300£600 2465 - 4310
" 0 1o 13.8 o 300 ¢ 600 3130 -4800
2 0 to 135 o 300 3000 — 3840
13 Ofto 9.4 (] 300 3995 —4310

11
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Figure 2, Test Section Arrangement Showing Model Placement
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Figure 3. Schematic Layout of the Helium Gas Ejection System
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Figure 4. Rear Quarter View of Model No. 1, 0.375 in. Step, 0.1 in. L E Radius
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Figure 5. Top View of Model No. 1, Showing Position of Orifices and Gas Ejection Slot
on Step Models
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Figure 6, Front Quarter View of Model No. 10, 5-degree Ramp, 0,01 in, L E Radius
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Figure 7. Top View of Model No. 10, Showing Position of Orifices on Ramp Models
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@= 0.0°, P/Po=0

R
]

0.0°, P/Pw= 34 a

Figure 8a. Schlieren Photographs of Model No. 3, P, =313 psia, T, = 3,300°R,
Re = 1.42 x 108
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a:=-50°, P/Paz0O a:-50° P /Pu: I8
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Figure 8b. Schlieren Photographs of Model No. 3, P, = 313 psia, T, = 3,300°R,
Re = 1.42 x 10°
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Figure 8c,
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@a:=-94°, P/Pe:I8

@a:-94, PB/Pa:5I

Schlieren Photographs of Model No,
Re = 1.42 x 10°

3, P, =313 psia, T, = 3,300°R,
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a=13.6°*, P)/Pe = 34 a=-13.6°, P,/Pe =5

Figure 8d. Schlieren Photographs of Model No. 3, P, = 313 psia, T, = 3, 300°R,
Re = 1,42 x 10°
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a =-0.0° a:=4.9°

a =-9.5° a=13.6°

Figure 9. Schlieren Photographs of Model No. 11, B =315 psia, T, = 4,446°R,
Re = 0,97 x 108
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Figure 10a. Pressure Distribution Over Model No. 1 at 0. O-degree Angle of
Attack, with Various Gas Ejection Pressures. L E Radius = 0. 10 in,
Step Height = 0,375 in, P, = 312 psia, T, = 4, 100°R,
Re =1,10x10°
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Figure 10b, Pressure Distribution Over Model No. 1 at -4, 9-degree Angle of
Attack, with Various Gas Ejection Pressures. L E Radius = 0,10 in,
Step Height = 0.375 in, P, = 312 psia, Ty = 4,100°R, Re = 1. 10 x 10‘
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Figure 10c. Pressure Distribution Over Model No. 1 at -9, 4-degree Angle of
Attack, with Various Gas Ejection Pressures. L E Radius = 0,10 in,,
Step Height = 0,375 in. P, = 312 psia, T, = 4, 100°R, Re = 1,10 x 10*
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Figure 10d. Pressure Distribution Over Model No. } at =13, 5-degree Angle of
Attack, with Various Gas Ejection Pressures. L E Radius =0, 10 in,,
Step Height = 0,375 in,, P, = 312 psia, T, = 4, 100'R, Re = 0.10 x 10°
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Pressure Distribution Over Model No. 2 at 0. 0-degree Angle of Attack,
with Variocus Gas Ejection Pressures. L E Radius = 0,01 in,, Step
Height = 0,375 in. P, = 312 psia, T, = 4,100°R, Re = 1,09 x 10°
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Figure 11b. Pressure Distribution Over Model No. 2 at -5, 0-degree Angle oi
Attack with Various Gas Ejection Pressures. L E Radius = 0,01, in,
Step Height = 0,375 in, P, = 312 psia, T, = 4, 100°R, Re = 1. 09 & 108
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Figure llc. Pressure Distribution Over Model 2 at -9, 5-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0,01 in.,
Step Height = 0,375 in., P, = 312 peia, T, = 4,100°R, Re = 1,09 x 10*
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Figure 11d. Pressure Distribution Over Model 2 at -13, 6-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0,01 in.,
Step Height = 0,375, P, = 312 psia, T, = 4, 100°R, Re = 1.09 x 10°
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Figure 12a, Pressure Distribution Over Model No. 3 at 0. 0-degres Angle of Attack
with Various Gas Ejection Pressures. L K Radius = 0, 01 in., Step
Height = 0, 281 in, P, = 313 psia, Ty = 3,300°R, Re = 1,42 x 10*
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Figure 12b, Pressure Distribution Over Model No. 3 at -5, O-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0,01 in,, Step
Height = 0, 281 in., P, = 313 psia, T, = 3,300'R, Re = 1,42 x 10°
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Figure 12c. Pressure Distribution Over Model No. 3 at -9, 4-degree Angle of Attack
with Various Gas Ejection Pressures. L K Radius = 0, 0] in., Step
Height = 0, 281 in., P, = 313 psia, T, = 3,300°R, Re = 1,42 x 10*
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Figure 12d. Pressure Distribution Over Model No. 3 at -13. 6-degree Angle of Attack
with Variouz Gas Ejection Pressures. L E Radius = 0.01 in., Step
Height = 0, 281 in,, P, = 313 psia, Ty = 3,300°R, Re = 1.42 x 10°
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Figure 13a. Pressure Distribution Over Model No. 4 at 0, O-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0,01 in., Step

Height = 0, 28] in. Ejection 10 degrees Up. P, = 313 psia, Ty = 4, 200°R,
Re=1,09 x10°
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Figure 13b,
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Py

Pressure Distribution Over Model No, 4 at =5, 0-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0, 01 in,, Step
Height = 0, 28] in, Ejection 10 degrees Up. P, = 313 psia, T, = 4, 200°R,

Re = 1,09 x 10°
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Figure 13c. Pressure Distribution Over Model No, 4 at -9, 5-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0, 01 in.,
Height = 0, 28‘1’ in, Ejection 10 degrees Up. P, = 313 psia, T, = 4, 200°R,
Re=1,09x1
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Pressure Distribution Over Model No. 4 at «13. 6-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0,01 in., Step
Height = 0, 281 in, Ejection 10 degrees Up. P, = 313 psia, T, = 4, 200'R,
Re=1,09 x 10°
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Pressure Distribution Over Model No. 5 at 0, 0-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0,01 in., Step
Height = 0, 281 in., Ejection 10 degrees Down. P, = 313 psia,

To = 4,200°R, Re = 1,02 x 10°
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Figure 14b. Pressure Distribution Over Model No, 5 at -4, 9-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0, 01 in,, Step
Height = 0, 281 in., Ejection 10 degrees Down. P, = 313 psia,
Ty = 4, 200°R, Re = 1,02 x 10*
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Figure 14c. Pressure Distribution Over Model No. 5 at -9, 5.degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0,01 in,, Step
lnki'ht =0, n‘l’ in,, Ejection 10 degrees Down. P, = 313 psia, T, = 4, 200R,
e=x102x1l
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Figure 14d. Pressure Distribution Over Model No. 5 at -13, 6-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0.0l in,, Step
Height = 0, 281 in., Ejection 10 degrees Down. P, = 313 psia, T, = 4, 200°R,
Re = 1,02 x 10°
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Pressure Distributio. Over Model No. 6 at 0, 0-degree Angle of Attack
with Various Gas Ejection Pressures, L E Radius = 0,01 in., Step
Height = 0, 187 in, P, = 313 psia, T, = 3,300°R, Re = 1. 42 x 10°

47



ASD-TDR-63-131

¢ L4 PJ/P. = 80.7

(a] = 346

g -—

o] s 00
8
4

o I
3
1
2
) \

|
0
o ! ] 3 4 8 ¢

X, DISTANCE FROM L E — INCHES

Figure 15b, Pressure Distribution Over Model No. 6 at -5, 0-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0, 01 in,, Step
Height = 0, 187 in., P, = 313 psia, T, = 3,300°R, Re = 1,42 x 10°®
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Figure 15c. Pressure Distribution Over Model No. 6 at -9. 4-degree Angle of Attack

with Various Gas Ejection Pressures. L E Radius = 0, 0] in., Step
Height » 0, 187 in., Py = 313 psia, T, = 3,300°R, Re = 1,42 x 10*
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Figure 15d. Pressure Distribution Over Model No. 6 at -13, 6-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0, 0l in,, Step
Height = 0, 187 in,, P, = 313 psia, T = 3,300°R, Re = 1.42 x 10°
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Pressure Distribution Over Model No. 7 at 0, 0-degree Angle of Attack

with Various Gas Ejection Pressures. L E Radius = 0, 01 in,, Step

Height = 0, llz.in. Gas Ejection 10 degrees Up, P, = 312 psis, T, = 4, 100°R,
Re=1,10x1
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Figure 16b, Pressure Distribution Over Model No. 7 at -4, 9-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0,01 in., Step
Height = 0, laz.in. Gas Ejection 10 degrees Up, P, = 312 psia, T, =4, 100°R,
Re=1,10x1

52



ASD-TDR-68-181

© "/’.'—
(] s 33.2
- R —
o] s 00

8

4

Re/Pe

3

]

o

] ' ] 3 4 -8 L

X, DISTANGE FROM L E — mNCHES

Figure 16c. Pressure Distribution Over Model No. 7 at -9, 4-degree Angle of Attack
with Various Gas Ljection Pressures, L E Radius = 0, 01 in,, Step
Height -l:' ll;.h. Gas Ejection 10 degrees Up. P, =312 psia, T, =4, 100°R,
Re=1]1,10x1
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Figure 16d. Pressure Distribution Over Model No, 7 at =13, 5-degree Angle of Attack
with Various Gas Ejection Pressures. L E Radius = 0,01 in., Step
Height = 0, llz'in. Gas ELjection 10 degrees Up, P, =312 psia, T, =4, 100°R,
Re=1,10x1
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Figure 17, Pressure Distribution Over Model No. 8 at 0,0, -4.9, -9.5, and
=13, 6-degree Angles of Attack. L E Radius = 0,01 in,, Step Height = 0, 093 in,
No Gas Ejection, P, = 314 psia, T, = 4, 300'R, Re = 0,97 x 10*
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Figure 18, Pressure Distribution Over Model No, 9 at 0.0, -4.9, -9.5, and
-13,6-degree Angles of Attack, L E Radius = 0,01, No Step.
po = 3‘4 p'i.' To = 4' 300%. R‘ = o. 91 x 10'
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Figure 19. Pressure Distribution Over Model No. 10 at 0,0, -5,0, -9.5, and
«13, 6-degree Angles of Attack. L E Radius = 0,01 in,,
Ramp Angle = 5 degrees, P, = 312 psia, T, = 4, 100'R, Re = 1,09 x 10°
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Figure 20, Pressure Distribution Over Model No, 11 at 0.0, -4.9, -9.5, and’
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=13, 6-degree Angles of Attack. L E Radius = 0,01 in,,
Ramp Angle = 10 degrees. P, = 314 psia, T, = 4,300°R, Re = 0,97 x 10°
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Figure 21, Pressure Distribution Over Model No. 12 at 0.0, -5.0, and -9, 5-degree
Angles of Attack., L E Radius = 0,01 in., Ramp Angle = 20 degrees,
P, = 313 psia, Ty = 3,300°R, Re = 1,42 x 10°
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Figure 22, Pressure Distribution Over Model No. 13 at 0.0, and -4, 9-degree
Angles of Attack. L E Radius = 0.01 in., Ramp Angle = 30 degrees,
Py =312 psia, T, = 4, 100°R, Re = 1,10 x }10°



ASD-TDR-63-131

Figure 23,

6
MODEL STEP A/Pe
o 2 03m" 8.7
0D 3 osg8" 17.9
vV 6 o.ler 7.7
5
4
3
2
\M
i 7
(1]
0 | 2

X,

DISTANCE FROM L E — INCHES

Effect of Step Height on Pressure Distribution Over 0, 01 in, L E Radius

Models at 0, 0-degree Angle of Attack. PJ/ P_~17
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Figure 24. Effect of Step Height on Pressure Distribution Over 0, 01 in,
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Figure 25, Effect of Step Height on Pressure Distribution Over 0,01 in. L E Radius
Models at -13, 6-degree Angle of Attack, PJ/P.~ 19
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Figure 26, Effect of Step Height on Pressure Distribution Over 0,01 in, L E Radius
Models at -13, 6-degree Angle of Attack. Pj/ P_~53
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Figure 27. Effect of Step Height on Pressure at Orifice No. 5 (X = 3,25 in,),
Immediately Behind Step, Model No. 2 - 0. 375 in, Step, Model No. 3 - 0, 281 in.
Step. Model No. 6 - 0, 187 in, Step.
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Figure 28, Effect of L. E Blunting on Pressure Distribution Over 0.375 in, Step Models
at 0, 0-degree Angle of Attack. P’/P.~ 0. P, = 311 psia, T, = 4, 100°R,
Re=1,09 x10°
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Figure 29. Effect of L E Blunting on Pressure Distribution Over 0,375 in. Step Models
at 0, o-dogruo'Anglo of Attack. P,/P -~ 45. P, = 311 peia, T, = 4, 100,
Re=1,09x1
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Figure 30. Effect of-L E Blunting on Pressure Distribution Over 0.375 in, Step Models
at =13, 6-degree Angle of Attack. Pj/P_~ 0. P, =311 psia, T, = 4, 100°R,
Re = 1,09 x 10°
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Figure 3], Effect of L L Blunting on Pressure Distribution Over 0.375 in. Step Models
at =13, 6-degree Angle of Attack, P’/P.~48. Py = 311 psia, T, = 4,100R,
Re = lo o’ = lm
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Figure 32,
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Effect of Gas Ejection Angle on the Pressure at Orifice No. 5 (X = 3. 25 in. ),
Immediately Behind the Step, 0.281 in. Step Height, Model No, 3 - Ejection
Parallel to Surface, Model No, 4 - Ejection 10 degrees Up, Model No. 5 -
Ejection 10 degrees Down,
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Figure 33, Effect of Gas Ejection Angle on the Pressure at Orifice No. 5 (X = 3. 25 in. ),
Immediately Behind the Step. 0, 187 in. Step Height Model No. 6 - Ejection
Parallel to Surface, Model No. 7 - Ejection 10 degrees Up.
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Figure 34. Comparison of HTF Flat Plate Results with Theory
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Figure 35. Comparison of HTF Flat Plate Results with Experimental Data
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