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THE FUNCTION SPACE POINT OF VIEW IN TIME SERIES ANALYSIS*
by
Emanuel Parzeni*

Stanford University

0. Summary
This is an expository paper which seeks to establish and show the

value of the following assertion: the concept of a time series is

equivalent to the idea of a probability measure on a function space.

1. What is a time series?

The general point of view adopted in analyzing a time series or a
auccession of observations {X(t), t ¢ T}, depending on the parameter
t (often representing time), is the following.

A set T of values of t, called the index set of the time series,
is preassigned; these are the times when observations are possible. The
set T may be finite or infinite. It is possible to develop much of
the theory of time series without placing any restriction on the nature

of the index set T. However two important cases are when

T=(0, ¥, 2, ...} or T={0,1, 2, ...},

*To be presented at the 1963 Joint Automatic Control Conference
Workshop on "Stochastic Processes", to be held at the University of
Minnesota during June of 1963. This paper was prepared with the partial
support of the Office of Naval Research (Nonr-225-21). Reproduction in
vhole or in part is permitted for any purpose of the United States
Government. This paper is based on material to appear in a forthcoming
book [Parzen (1964)].

**#]t is with great pleasure that I dedicate this paper to Professor
Charles Ioewner on his TOth birthday.
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in which case the time series is said to be a discrete parsmeter process,
or vwhen

T={t: = <t<w)} or T=(t: t >0},

in which case the time series is said to be a continuous parameter

process.
At each point 't in T, a number X(t) may be cbserved. This

number is a random variable in the sense that its value depends on chance

end enjoys a probability distribution described by the one-dimensional

distribution function

Fx(t) (x) = Probability[X(t) < x] , - < x<w,

or the one-dimensional characteristic function

°X(t) (u) =M/‘-~ exp[iux] dFX(t) (X) ’ -0 < Uu<o®o .,
More generally, for any integer n and n points tl, t2, ooy tn in
T, the n observations x(tl), cee X(tn) vwhich cen be made at these

times are jointly distributed random variables whose Joint probability
law is specified by either (i) the joint distribution function, given

for all real numbers X5 e s Xy by

Tx(e )y X(e) 0 s %)
(1.1)

= Probability[X(t,) < x5 X(ty) S %y «ov 5 X(t) < x]
2




or (11) the Joint characteristic function, given for &il real husbers

O B TR

ul’ e ,un by

‘Px(tl),...,x(tn) (w, coe s up)

= E[exp 1<ulx(tl) + ...+ unx(tn)>]
(1.2)

=f-: ‘/:: exp 1(ulxl+ +unx;l)

dFx(t,l),...,x(t:n) (xl’ 2 xn) )

The distribution function in Equation (1.1) and the characteristic
function in Equation (1.2) are said to be n-dimensional, since they
represent the joint probability law of n random variables.

The point of view embodied in the foregoing discussion may be
sﬁnnnarized as follows.

A time series is a Jjointly distributed family of random variables
{X(t), t € T}, indexed by a perameter t varying in an index set T.
Time series analysis is concerned with the statements that can be made
sbout a time series, knowing only all the finite dimensional distributions
of the form of (1.1).

It should be noted that the phrase "a stochastic process" is often
used to describe a numerical-valued random phenomenon that arises through
a process which is developing in time in a manner controlled by probebilistic
laws [see Parzen (1962)]. Mathematically, a stochastic process is repre-

sented by a collection of random varisbles (X(t), t € T}J. Thus, in a

[



sense, the notions of a time series and of a stochastic process are
equivalent; every time series is a stochastic process and vice versa.

What Aistinguishes the theory of time series from the theory of
stochastic processes is a certain difference in emphasis.

One approach to the problem of developing mathematical models for
empirical phenomena evolving in accord with probabilistic laws is to
characterize such phenomena in terms of the behavior of their first and
second moments. This approach has found importent applications in statis-
tical commnications and control theory end in time series analysis.
When a stochastic process is being studied in terms of its moments it is
often called a time series. Consequently one would meke the following
definition.

A time series (X(t), t € T} is a family of random variables (stochas-

tic process) with finite second moments.

It is to be emphasized that it should not be assumed that a stochastic
process which arises in practice necessarily has finite second moments
and 1s therefore a time series. In particular, recent research [by Mandel-
brot] has raised the question of whether certein series of economic
observations involving price chunges of stocks and commodities possess
finite second moments.

Two importent characteristics of a time series (X(t), t € T} are

its meen value function m(:), defined for all t in T by

m(t) = E[X(t)] ,

and its covariance kernel Kg -,'2 , defined for all s eand t in T
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by*
K(s,t) = Cov[X(s),Xx(t)] .

The importance of the mean value function and the covariance kernel
derives from several facts:

(1) 1t is usually much easier to find the mean value function and
the covariance kernel .of a stochastic process than it is to find its
complete probability law;

(i1) nevertheless, many important questions sbout a stochastic
process can be answered on a basis of a knowledge only of its mean value
function and covarilance kernel;

(ii1) for exsmple, the continuity, differentisbility end integrability
properties of the covarilance kernel lead to corresponding properties for
the time series;

(iv) further, there exists an important class of time series, the
normal stochastic processes, whose complete probability law is known once

one knows its mean value function and covariance kernel.

Normal processes: A stochastic process ({X(t), t € T} 4is said to

be a normal process if for any integer n and any subset [tl,ta, ...,tn]

of T the n rendom variables x(tl) s vee x(tn) are jointly normelly

¥In studying the general theory of time series, it is often convenient
to admit complex velued random veriables. The covariance kernel is then
defined by

K(s,t) = E[X(s)X(t)] - m(s)m(t)

where X(t) denotes the complex conjugate of X(t) and m(t) denotes
the complex conjugate of m(t).



distributed in the sense that their joint characteristic function is

given by, for any real numbers Yy Usy vee s By

qJX(tl),X(te),---,X(tn) (ul,ua, ...,un) = E[exp i{u1X(tl)+...+unX(tn)]]

2 1 2
= exp 41 3§1 u, E[x(td)] -3 J,§=1 U Cov{x(tJ),x(tk)]}

n n
= exp {1 JZ_‘i uy m(t,) - % 3,§=1 ugy K(td,tk)} X

Normal processes play a basic role in time series analysis for a
number of reasons:

(1) Beceuse of the central limit theorem, many random variables
which arise in applications of probsebility theory may be considered to be
approximately normally distributed; similarly, many stochastic processes
can be approximated by normel processes;

(11) Because of the mathematical tractibility of normal random
variables, many questions can be more simply treated for normel processes
than for other kinds of time series;

(111) Normel processes have the useful closure property that any time

series [such as ft X(s) ds, X'(t), X(t +1) - X(t)] derived by meens
of linear operatigns on a normal process, is itself a normsl process;

(1iv) For a normal process, one obtains a knowledge of the complete
probability law of the process from a knowledge of the mean value function
m(+) and the covariance kernel K(:,-). Conversely it mey be shown
that if m(:) and K(:,:) are the mean value function and covariance
kernel of some time series, then there is a (unique) normal process with

this mean value function and covariance kernel.

6
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2. A time series as s probability measure on functinn spece.

A time series (X(t), t € T} is for many purposes 4but‘rowdivd/ s
an observation on a rendom phenomenon each of whose possible outoomes is
a real valued function with domain T. In other words, a time series
(X(t), t € T} 4is a collection of real valued functions with domain T,
one of which is observed whenever a sample is taken. The observed func-

tion is therefore called a sample function, or realization, of the time

gseries.
Given an index set T, we let Q’I‘ denote the space of all real

valued functions with domein T. A point w bYelonging to Q, is a

T
function on T whose value at a point t in T we denote by w(t);
consequently, we may write w = {w(t), t e T}.

The problem of analyzing a time series (X(t), t € T} can be

expressed as the problem of finding the probability function P[:],

defined on suitable subsets of QT ‘called the measurable subsets,

which describes the probability distribution of possible values of the

time series (in the intuitive sense that for any measurable subset A

of 0 P[A] 1is approximately the relative frequency of observations

T,
in a very long sequence of independent observations of the time seriles
which are members of A.)

In this section we show how given the finite dimensional probability
laws of a time series one can construct a probability measure on a
suitable family of subsets of the function space QT This probability
measure will enable us to define the notlon of the probability density

functional of a time series which plays & central role in modern time

series analysis [see Parzen (1962, 1963)].
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Let (1 be a collection of subsets of Qn which contains @, as a
member. A function P, with domain &, 1s said to be a probsbility
measure if it possessss the following properties:

Axiom 1. For every Ac (, P[A] is well defined end is a non-
negative reel number; in symbols,
4

\

P[A] >0 ;

Axiom 2. P[n,r] =1;

Axiom 3. For any sequence of disjoint sets Al, AE’ .++ belonging
0
to Q, whose union U An belongs to Q,
n=l

pil ) A0 = Z PlA )

n=l n=1

the sets {An} are said to be disjoint (or non-overlapping) if for any

two distinct indices J and k the intersection of A‘1 and Ak is

empty,

AJAk=¢

vhere @ denotes the empty set.

Axiom 3 is referred to as the countable additivity or sigme-additivity

property of the probability function P.

The sets belonging to Q are called measurable sets or events. An

event A 1is said to occur if the function representing the actual time

series observed belongs to A.




[P—— e, .

[r——

In order to guarantee that the usual pperstions of anslysis will
lead to measurable sets, it is necessary to reqguire that the femily of
measurable sets be a sigma-field.

A collection 4 or subsets of Q'I' is called a sigma-field 1if it
has the following properties:

Axiom 1. 0, belongs to Q (written symbolically: fp € a);

¢

Axiom 2. If A Yelongs to 0, then the complement A~ belongs

to ( (written symbolically: Ae (L implies A e & );

Axiom 3. For any sequence Ai’ A2, .+« belonging to d, the
2
union U An belongs to a (written symbolically: [An} ca

n=1
N . N 20
implies | A e Q).
n=1
In words, a sigma-field is & family of sets which contains the entire
space QT and is closed under the operations of forming complements and
countable unions. It then follows that it is closed under the operaf.ion

of forming countable intersections:

Property 4. For any sequence Al’ fyy ... belonging to @ the

intersection /w, An € Q
n=1

An important example of a sigma-field is the family of all subsets
of QT'
The question naturally arises: cannot all subsets of nT be made
events so that it is never necessary to consider a sigma-field 4
smeller than the family of all subsets of n,r? Unfortunately the general

answer to this question is in the negative; if we desire the probability
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function P to be countably edditive, it is usually the case that the
family 0. of events cannot contain all subsets of 0. For exmmple,
even in the simple case that T consists of a single point so that “'.l‘
is just the real line (the set of &ll real numbers w satisfying
-x < W <w), there is no probability function P defined on all subsets
of “'1* that agrees with the ordinary notion of length on the subintervals
of (see Halmos (1950), p. 70). Usually, when Qp 1is the resl line,
one adopts as the femlly of events the family & of Borel sets, where
8 is defined as the smallest sigma-field contalning as members all
intervals.

The idea that, for each t, X(t) is a random variable can now be
made precise by the following definition: for each t in T, X(t) is
a function on Q'I‘ vhose value at a point w in nT, denoted by X(t,w),

is given by the value at t of the function w:
(2.1) X(t,w) = w(t) .

In order to regard X(t) as a random varisble, there must exist
(1) a family Q of subsets of nT, called the measurable sets,

such that for all t in T and all real numbers x
(2.2) (w: X(t,w) <x)e &,

and (ii) a probability measure P with domain &.
A function X with domain 0. is said to be d-measursble if for

every real number x

10
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fw: X(w) <x}e @ .

The problem at hand is to find a sigma-field of subsets of 0,1. such that
each random variable X(t) is Q-reesurevle.

In the function space there is a smallest sigma-field of

T)
events which should belong to the sigma-field of measurable sets.  let
QT denote the smallest sigma-field of subsets of nT vhich contains

all sets of the form
(w: w(t) < x}

where t 1s apoint in T and x is & real number. It is clear that,
for every t in T, X(t) is aT-measurable.
Consequently, given a probability measure P on QI" one can
define by (2.1) a time series (X(t), t € T} consisting of rendom varisbles

with domain Q,, and the finite dimensional probebility distributions of

T
the time series would be given by the formula

FX(tl),-.-,X(tn) (xl,...,xn) = Probability[x(tl) < x.l."""x(tn) < xn]
(2.3)
= P[{we fpp: u»(‘l;J)_<_x‘j for §=1,2, ... , n}] .

Basic to the theory of time series analysis is the fact that the converse
holds (which follows from a celebrated theorem proved by Kolmogorov (1933).

Kolmogorov's celebrated existence theorem regarding the probability

measure on function space 0 induced by a stochastic process (X(t), t ¢ T).

11



Let (X(t), t € T} be a stochastic process with preassigned finite
dimensional probability distributions. Then there exists a unique
probebility measure P, on the sigma-field d,r utinfy:lné (2.3).

To prove Kolmogorov's theorem, one considers a somevwhat more general
problem.

Let T be an index set. Given a family of finite dimensional

characteristic functions,

(wtl"“’tn (ul’ ver un) »
(2.4)

n en integer and t,, ... , t points in T},

l,

vwhat conditions need this famlly satisfy in order that there exist a
stochestic process {X(t), t € T} whose true finite dimensional charac-

teristic functions coincide with the given set (2.4):

(2.5) cPx(*cl),...,x(tn) (uy, oevyup) = q’tl,...,tn CTITTI W Iy

In view of (2.5), it is obvious that the given set (2.4) must be mutually

consistent in the sense that (i) if @, -++ » @ 1s a permitation of
l, ... , n, then for any points tl, ey tn and real numbers
ul, ves un’

2.6 ) ese = 3 v ’
(2.6) wtal’.“,tan (“"1 uun) q)tl"""tn (. u)

since the order in which the random varisbles are listed is irrelevant,

12



and (1i) 4if m<n,

(2.7) vt]_""’tm (ul)---,um)" = °t]_’°“’tm’tm-0-l’.“’tn

The content of Kolmogorov's theorem is that these consistency conditions
are the only conditions that need be imposed.

In order to give a precise statement of Kolmogorov's theorem we
introduce the notion of a semi-infinite interval.

A subset C of @, 1s called a semi-infinite interval if it is of

T

the form
(2.8) C=(we ay u(tl) SXy ey w(tn) < xnl

for some integer n, points t ooy tn belonging to T, and real

l’
numbers Xy ovee s Ko Note that to specify a semi-infinite rectangle
one must specify an integer n, n points tl, N tn in the index
set T, and n real numbers Xy vee s Xoe
Example 2A.

A semi-infinite interval. Let T = [0,1] 8o that QT consists of
all functions on the interval O to 1. Let n =11, t 5" 3/10 for
J=0,1, ... , 10, end Xy = J2 for 3=0,1, ..., 10. Then

C = (we a(0,1): w(3/10) < J/2 for J=0,1, ..., 10} .

Consider the following functions defined on the interval O to 1:

(“l,u.,um,ﬂ,-..,O) .

B s T ———
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rl(t) =t +1
£,(t) = 2,
fj(t) = gin 5t .
It may be shown that fl(o) does not belong to C, while fa(-) and
fj(-) do belong to C.
Iet P be a function defined on seml-infinite intervals in QT as

follows: for C given by (2.8)

(2.9) P[C] = Ft R (X_L) sev xn)
1 n
where F (:&, .« 5 X ) 1is the distribution function corresponding
tl, oo .,tn n
to the characteristic function ¢tl""’tn (xl, vee xn).

Kolmogorov's theorem: There exists a unique probability measure P

on a.T whose values on semi-infinite intervals satisfies (2.9). Further,
define a family of functions (X(t), te€ T} on QT as follows: for

each we Qp, the value of X(t) at w, denoted X(t,w), is given by
X(t,w) = w(t) , the value at t of the function w .

Then {X(t), t ¢ T} is a stochastic process, defined on the probability
space (QT, QT,P) whose finite dimensional characteristic functions
satisfy (2.5).

The proof of Kolmogorov's theorem requires a background in measure
theory which is beyond the scope of thispaper [for a proof, see Kolmogorov
(193), p. 29, or Lodve (1960), p. 93]

14
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Example 2B.
An_spplication of Kolmogorov's theorem. Consider a time series

(X(t), t ¢ T} defined by the formila
(2.10) X(t) = q0(t), teT,

vhere 1n is & random variable (with finite second moment) and ¢(-) is
a non-random function (for example, o¢(t) = t). '

The statement that n is a random varieble is not completely explicit;
we also want to know the space Q on which 1 is defined as a function.

The random varisbles X(t) defined by (2.10) are functions on the
seme space I as is 1. Since this space may be unknown, it is sometimes
useful to redefine X(t) as follows.

Given the probability distribution of 1, the family of rendom
variables {X(t), t € T} induces & probebility measure P on ﬁl‘ by

means of the formila
Pl{we ap: w(t)) <x, vooy w(t) < x )]
(2.11) = Prob(X(t,) <x, ««r , X(t) <x]
= Prob[n q:(tl) <X, eee s v(tn) < xn] .

Next, the random veriebles (X(t), t € T] can be redefined to be functions

on ﬂT by the formla

15



(2.12) X(t,w) = w(t) .

The new family of random verisbles ({X(t), t € T} ocbtained from the
definition (2.12) can be identified with the old family obtained from
definition (2.10) since they have the same finite dimensional distribu-
tions.

By the procedure just described, a time series (X(t), t ¢ T)
defined by ean explicit formula such as (2.10) cen be regarded as being
equivalent to a probebility measure P on the function space QT.

In particular, suppose that the random varisble 1 1is normal with
mean u and variance 02- Then X(-), defined by (2.10) is a normal

process with mean value function

(2.13) m(t) = E[X(t)] = u o(t) ,
and covariance kernel

(2.18) K(s,t) = o 9(s) o(t) .

Any normal process ({X(t), t € T} with the foregoing mean value function
and covariance kernel induces the same probability measure P on function
space QT

Using the representation theory of time series (Parzen (1961), p. 962),
it may be shown that a time series ({X(t), t € T} with mean value function
and covarience kernel given by (2.13) and (2.1%4) respectively m be

represented in the form of (2.10), where 1 is now a random varisble

16



. wHose domain 13 the function space Qe _Consequently when Wﬂ“ﬁﬂ .
time series of the form of (2.10) one may sssume that all random vari risbles

are functions on nT

17




3. Probability density functionals L

The probability theory of time series is concerned with imvestigating
the structure of a time series (X(t), t € T} whose corresponding |
probability measure P on the function space 0'1‘ is assumed known. The
statistical theory of time series is concerned with a time series
{X(t), t € T} whose probability measure P is not known exactly but is
only known to belong to a class of probability measures {Pe, 6¢ ¢} on
nT; the class of possible probability measures Pe can be assumed to
be indexed by a parameter 6 varying in a parameter set ¢. Consequently
an important step in developing a theory of time series anelysis 1s to
examine the relations that can exist between two probebility measures

Pl and P2 with a common domain &

Absolutely continuous and orthogonal probebility measures. Let @

be a set (the sample description space) and let 2 ve a sigma-field of

subsets of Q. Let P

1
Q.

and P,

> be probability measures with domain

1
every set A in 0.

We say that P, 1s absolutely continuous with respect to P2 if for

(3.1) PQ(A) =0 implies Pl(A) =0 .

We write Pl << P2 ir Pl is ebsolutely continuocus with respect to

P2 ; the motivation for this notation is the idea that Pl is small

vhenever P2 is small.

18
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Ve say that P, and P, are equivalent, 'denoted !‘1 -'!2".' e

each 1s sbsolutely continuous with respect to the other; in sywbals,

1’]_'1?2 if and only if Pl<<P2 and 1’2<<P1.

In order that P]. not be absolutely continuous with respect to ‘22

it is necessary and sufficient that there exist a set A in @ such

that
(3.2) P2(A) =0 and Pl(A) >0.

We say that P, and P, are orthogonal (or perpendicular), denoted

2
P, | By, 1if there exists a set A in A such that

(3.3). Py(8) =0 and Pi(A) = 1.

One cen regard (3.2) as the extreme case of not being absolutely con-
tinuous.

It may be shown that if Pl << P2, then probability statements in

terms of P, can be expressed in terms of P2; more precisely, if

1

Pl << P2 > then there exists a function p, called the probability

density function of Pl with respect to 1"‘2 » 8uch that for any A in

/5

(3.4) P (A) =fA D e, .

In words, (3.4) says that to evaluate Pl(A) one integrates the function

P with respect to the measure P2 over the set A. Mre generally,

19



for any a-muuruble function g which is integrable with respect to

Pl’

(3.5) L=/ se

is finite, then there holds the trensformation formula

(3.6) EPl[s] -j; gpdp, .

Three blems prelimin to time series analysis. To develop a
general theory of time series analysis, one must begin with an under-
standing of the relations that can exist between two probebility measures
Pl and P2 on a function space. Consequently, we may speak of three

problems preliminary to time series analysis:

(1) determine whether two given probability measures Pl and P2

are orthogonal,

(11) determine whether one is absolutely continuous with respect to

the other,

(111) if P2 << Pl’ determine the probabllity density functional or
Radon-Nikodym derivative, denoted

2,1 dPl
One aim of modern time series analysis is to develop ways of deter-

mining answers to these questions.

20
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4. Signal detection and likelihood ratios. = ~ ' o

Il

In this section we examine the problem of detecting a lunll in
noise, and show how the proper formulation of this problem requires a

consideration of the relations that exist between probability measures.

a2l



Many observed time series can be represented as the sum of a signal’
process and a noise process. More precisely, let T be a set of points,
called the index set, such that at each t in T one has made (or one
can make) an observation, denoted X(t). The set of observations
{X(t), t € T} is a function on T which is assumed to be the sum of two

other functions {S8(t), t € T} end (N(t), t € T):

x(t) = s(t) + N(t) , teT.

We call (S(t), t € T} the signal since it is supposed to represent the
true value of the quantity being measured, while (N(t), t e T} is
called the noise since it represents "errors", "fluctuations", or "residuals"
by which the observed function (X(t), t € T} differs from the desired
function (8(t), t ¢ T}.

The aim of time series analysis is to infer, from the observations,
information about one or more features of the signal. The aspects of the
signal in which one is interested depends on the assumptions one makes
gbout the structure of the signel end noise processes. In this section
we consider the important problem of detecting a signael in the presence
of noise.

Let {S(t), te T} and (N(t), t € T} be time series, called
respectively the signal process and the noise process. Given an observed

time series (X(t), t € T}, one desires to test the hypothesis

Hy: X(+) = N(-) , noise alone is present ,

22
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sgainst the alternative hypothesis e -
H: X(+) =8(.) +8(-), signal plus noise is present ,

by choosing a subset Rl of the sample space n,r, of possible realiza-
tions of the time series (X(t), t € T}, which will be the rejection
region for Ho; that is, one says signal plus noise is present if the
observed time series (X(t), t € T} belongs to R,, and one says that
noise alone is present if (X(t), t € T} does not belong to Rl

In this section, we suppose that the probebility distribution of
{X(t), t € T) under the hypotheses H, end H are well defined; in
this case we say that Ko and Hl are gimple hypotheses. We may then
introduce probability measures PN and PS +N defined on the measurable
subsets B of the sample space QT by

PN[B] = Prob [(N(t), t € T} € B]

(4.1)
= Prob [(X(t), t e T) ¢ BlHo] ,
P8+N[B] = Prob [(8(t) + N(t), t € T) € B)
(%.2)
= Prob [(X(t), t € T} € Blul] .
Example 4A.

A specified signal in normal noise. One lmportant case in which

Ho and Hl are simple hypotheses is when the following assumptions hold.
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Assumption on the index set: The index set T 13 a finite set

[tl’ ta, ree tn]o

Assumption on the noise process: The noise process (N(t), t'e T}

is essumed to possess finite second moments, to have zero means:
(4.3) | E(N(t)] =0,

and known covariance kernel K:

(4.4) E[N(s) N(t)] = K(s,t) .

Further, (N(t), t € T} is e normal process; that is, the n ra:dom

variebles N(tl) s see N(tn) are jointly normally distributed so that

thelr jJoint characteristic function is given by

"’N(tl),--.,N(tn) (ay veesuy) = E[GXP{ E uy x(t )}]
(4.5)

Assumption on the signal process: The signal (8(t), t € T} is a
known non-random function. The signal plus nolse process

(X(t) = 8(t) + N(t), t € T} 1is then a normal process with mean value

function

(4.6) E[x(t)] = 8(t)
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and éovi.rinnce kernel e Vv
(4.7) CoviX(s),X(t)] = X(s,t) .

Under the assumptions of this example, PR is the probability

measure on function space induced by a normal process with mean value

function identically zero and covariance kernel K, vwhile PB +N

probability measure induced by a normal process with mean value function

is the

equal to the signal function 8(t) and covariance kernel K.

Perfect detectebility and the singular detection problem: We say

that the hypotheses Ho and Hl are perfectly detectable, or that the

problem of detecting the signal process S(+) in the presence of the

noise process N(.) is singular, if there exists a set A in the sample

space 0’1‘ such that

(4.8) PN[A] =0, [A) =1 .

PS+N

By choosing A as the rejection region Rl for H, one has probability

(o]
zero of incorrectly identifying nolse as signal plus noise or signal plus
noise as noise. Note that the probability measures PN and PS+N are
orthogonal if (4.8) holds. By definition, then, the hypotheses HO

and Hl are perfectly detectable if end only if PN and Ps Ny axe

orthogonal .

The regular detection problem: The problem of detecting the signal
process in the presence of the noise process N(:) is called regular if
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PN and PSHN are not orthogonal. In this case, new principles in;t be
introduced in order to optimally choose the rejection region Rl. Mrst,
one distinguishes two types of errors that can occur:

(1) a false slarm (or error of type I) occurs when one says that

a signal plus noise is present vwhen in fact noise alone is present;

(11) a detection failure (or error of type II) occurs when one says
that noise alone is present when in fact signal plus noise is present.
A rejection region R 1s then characterized by two numbers Q eand

B, defined by

O = Prob {[false alarm]
(4.9)
= Prob [{X(t), t e T} ¢ R|Ho] s
B = Prob [detection failure]
(4.10)

1 - Prob [(X(t), t € T) ¢ R|I-11] .

In certain cases 1t may be possible to assign a numerical measure
to the seriousness of a false alarm and of a detection failure; one denotes
these costs by* Ll and L? respectively. Further it mey be possible
to determine the fraction g of experimental situations in which signal

plus noise is present; one calls g the prior probebility that signel

*In the general theory of hypothesis testing, a felse alarm is called
a type I error, and L1 is the cost of a type I error, while a detection

failure is called a type II error and Lé is the cost of a type II error.
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is present. To each criticeal region.one cln assign a risk p, 0111!4

the Bayes risk snd defincd as the expected cost of sn incorrect Mshm
(&.11) p=al - us) L + ﬁns L, .

The Bayes rejection region R (or optimum rejection region according to
the Bayes criterion) is defined as the region which minimizes p, the
'expected cost of an incorrect decision.¥#

If may be difficult to use a Bayes rejection region for one or both
of the following reasons:

(1) because of difficulty in assigning the losses Ll and 1‘..2,

(11) Ybecause of difficulty in assigning the prior probability “8'
In these circumstances one may use the Neyman-Pearson rejection region
(or optimum rejection region according to the Neyman-Pearson eriterion)
which is defined as the rejection region R minimizing B, the defection
failure probebility, subject to the restriction that &, the false alarm
probability, is less than or equal to some desired le_vel ao.

We next show how one may determine the Beyes reJéction region and
the Neyman-Pearson rejection region by introducing probability density
functionals.

Let us assume that there exists a measure Q on the measurable

subsets of the sample space Q'I" and functions PN and Pgn with

domain 0;1,, with the property that, for every measurable subset B of

Qs

*Note that a rejection region vhich minimizes the average probu'bility

of error =x, =, = = ol - us) + Py, 1is the same as the Bayes rejection

region with unit costs, Ll L2 = 1
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(4.12) B[] .j; By 4

(23) By y(B] = J; Py 48 -

In order to emphasize that its argument is a function (X(t), t € T},

we call p, & functional, and sometimes denote it by pN(X(t), teT).

It is called the probability density functional of PN with respect to

Q. The function Py may be written symbolically as a derivative,
(4.14) - =3,

and is then called the Radon-Nlkodym derivative of PN with respect to

Q. Similarly, is called the probability density functionel, or

P4y

Redon-Nikodym derivative, of PS +N with respect to Q.

In order for the probabllity density functionals Py and Pg+n to

exist, there must eﬁst a measure Q with respect to which both PN and

are absolutely continuous; recall that P, 1is absolutely continuous

d N

S+N
with respect to Q 1if

(+.15) Q(a) =0 implies PN(O) forall ACa.
Such a measure is given by

(h-l6) Q= PN + PS+N .

28
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Consequently there is no loss of generality in assuiing that there exist
functions pu and pg.. satisfying (k.12) ana (4.13) respectively.
In terms of probebility density functionals, the false alarn proba-

bility @ end detection failure probebility P of a rejection region are

given by
(4.27) o .fn By 49
(%.18) . B=1 -L Pguy W -

Consequentliy, the Bayes risk p of & rejection region R 1is given by

(.19) o»p =j; (@ - ng) L pg - 7y Ly Pge) 4Q + 7 L, .

To minimize p, one should choose R as the set of observations
{X(t), t € T} for which the integrand in (4.19) is negative, so that the

Bayes rejection region R 1s given by

(4.20) R = {(x(t), te T>: -1 S - Ll} .

Py s

The ratio

(4.21) Posx

Py

of probability density functionals is called in classical statistical
litersture the likelihood ratio since pn(x(t) s t € T) is defined to be

29



the likelihood thet noise alone is present given that the observed time
geries vas (X(t), t ¢ T}, and ps+N(x(t), t e T) is the likelihood
that signal plus noise is present given that the cbserved time series
vas (X(t), t € T).

The likelihood ratio (4.21) has a probabilistic meaning which shows
that the measure Q used in defining the likelihood ratio plays no role.

Let

(4.22) A= {(x(t), te T>: Pgiy > O amd  py = } .

If [Al] =0, then P is ebsolutely continuous with respect to

Poun SHN

PN, and the Radon-Nikodym derivative of Ps N

given by the likelihood ratio:

with respect to PN is

ap, he)
S+N _ s+
(l" '23 ) dP -

N Py

The Radon-Nikodym derivative of with respect to P, 1s called

Paen N

the probability density functional of signel plus noise with respect to

noise; where no asmbiguity cen arise it is denoted by p. To summarize,

the probebility density functional p of signal plus noise with respect

to noise is a function on the sample space QT satisfying
(k.24) Pg .y (B) =L p Py , BC2,

and exists if and only if PS +N

to PN’ which holds if and only if

is absolutely continuous with respect

Pg,[Al = 0, where A 1s defined
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by (4.22); 1t then follows that p is given by the 1likelihood ratio

)
(4.25) p= -.gﬂ .
N
If Py +N[A] > 0, instead of (4.24), one has for every measursble

subset B of 0,

(4.26) Pgn(B] =fB P AP + P [AB] ,

where p is still given by (4.25); (4.26) is an example of the Lebesgue

decomposition theorem which states that to the probebility measures PN

and PS +N

PN[A] =0 end (4.26) holds. We have made this assertion concrete by

there exists a function p on 1 and set A such that

showing how one may find p eand A.

Optimum detectors: A random veariable U (that is, a function on

the sample space ) which has the property that the rejection region
vhich is optimum according to a certain criterion may be expressed in

terms of the values of U is called an optimum detector according to

that criterion.

From (4.20) it follows that the likelihood ratio is en optimum
Bayes detector. Indeed the optimum rejection region according to the
Bayes criterion consists of all observations (X(t), t € T} for which

the likelihood ratio is above a certain threshold velue Ao glven by

1 -
(h.g-{) A = .(._._ﬂ.S_)._Il .

o] ﬂsLa
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Similarly, it may be shown that the likelihood ratio is an optimum
Neyman-Pearson detector. Indeed the optimum Neyman-Pearson rejection
region according to the Neyman-Pearson criterion consists of all observa-

tions (X(t), t € T} for which the likelihood ratio is above a certain

threshold A,., determined by the condition that the false alerm probability

0

be equal to ao:

P
(4.28) p |2 saAl-a .

To prove this assertion, one uses the fact that the Neyman-Pearson rejec-

tion region R 1s that region which subject to the condition

(4.29) f R
R

maximizes

(4.50) T

Intuitively, one sees that the optimum rejection region R should contain
those sample points which have the highest value of the likelihood ratio
(4.21) since for a given contribution to the integral in (4.29) these
points make a meximum contribution to the integrel in (4.30). A formal

proof of this assertion is easily given, using the fundemental lemma of

Neyman and Pearson.

32

Nl SN SN BN I SEND NN NN WM N M a0



Example 4B.
Detection of & specified signal in normal noise. Consider the signal

and noise processes described in example LA. Assume that the covariance

matrix

'_K(tl,tl) e K(tl,tn)—

f( tn,tl) R ({ tn’tn)_L

is non-singular with inverse denoted

-
-1 -1
K (tl,tl) ... K (tl,tn)
E'l - .
-1 -1 ?
K (tn,tl) ... K (tn,tn)
e

In words, K'l(ti,tj)‘ does not denote the reciprocel of K(ti’tj)’ but
rather denotes the (i,))-th element of the inverse matrix K-l. The
signal and noise process and the noise process then both possess probability

density functionals PS+N and PN with respect to Lebesgue measure Q:

L n
p“<X(t), te 'I'> = {(2x)n Igl} 2 exp -%- 1,%2-1 X(t,) K'l(ti,td) x(tJ) ’

-

Py X(t), ¢ e'T> - {(2u)“ Igl}

n
exp |2 1,§>=1 (X(t,)-8(8)) K7 (8, 8,) (X(8,)-8(¢,))
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vhere |K| 1s the determinent of the matrix K.

The likelihood ratio is given by

P n
—S_.".N-Bexp D

-1
A X(ti) K (ti,td) S(tJ)

1
VR [

5(t;) K (t,t,) 8(t,)| -

D
J=

In order to write this expression more compactly, let us introduce the

notation (which will play an important role in the sequel)

n
()= 3 #ey) K e0t,) 8(ty)

defined for any two functions f and g on T. Then

Ps+N

1
B exp[(X,S)K -5 (S,S)K] -

Since the likelihood ratic is a monotone increasing function of (X,S)K,

it follows that (X,S)K is en optimum (Bayes or Neyman-Pearson) detector.
Indeed, the rejection region for testing HO against Hl can be expressed
as the set of observations (X(t), t € T} for which ()(,S)K is gbove a

certain threshold 1&, say. A detector of the form

n n
(x,s)K = 121 x(ti) {ng x'l(ti,tJ) s(tJ)}

is said to be a "correlation detector" or a "matched filter" since it is
obtained by "correlating" or "matching” the specified signal shape S(t)
with the observed time series X(t).
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Exercises

In the notation defined in Example 2A, show that rl(-) does not
belong to C, while fe(‘) end rj(') do belong to C.

Let Ho and 1-11 be simple hypotheses about a time series

{X(t), 0 <t <1). Under both hypotheses, (X(t), 0<t <1} isa

normel process with covariance kernel

K(s,t) = o(s) o(t)

and mean value function respectively given by

H.: E[{X(t)]

0 0,

s(t) .

H : B(x(t)]
Assume that S(-) and ¢(.) are orthogonal,
1
f S(t) o(t) at =0 .
0
Stow that Ho and Hl are perfectly detectable.
1 -

Hint: U =/ 8S(t) X(t) dt 4s a perfect detector, since
0

1
P[U=0]=1, BJu=[ $(t) at 4 0] = 1.
0
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Let HO and Hi be simple hypotheses sbout a time series
(X(t), 0 <t <1). Under both hypotheses, (X(t), 0<t <7¥ 4
of the form o

x(t) = n0(t)

where @(t) is a non-random function and n 1s a normal random
varieble,
Under Hg: E[q)l =0, Var(n] =1

Under Hl: E{n] =m, Var{n] = 1 .

Show that an optimum detector for testing Ho against I-ll is

o 4o - - en -1}

and therefore is given by 7. A possible formula for 1n is

given by

x(tl)
for any point t; in 0<t, <1 such that Q)(tl) £ 0.
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