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I.

TIM FUNCTION SPACE -POINT OF VIEW IN TIME SZ=t ANALYSIS*

by

Emanuel Parzen**

Stanford University

0 . Summary

This is an expository paper which seeks to establish and show the

value of the following assertion: the concept of a time series is

equivalent to the idea of a probability measure on a function space.

1. What is a time series?

The general point of view adopted in analyzing a time series or a

succession of observations (X(t), t e T), depending on the parameter

t (often representing time), is the following.

A set T of values of t, called the index set of the time series,

is preassigned; these are the times when observations are possible. The

set T may be finite or infinite. It is possible to develop much of

the theory of time series without placing any restriction on the nature

of the index set T. However two important cases are when

T = (0, +l,+2, ... I or T = t0, 1, 2, ... ),

*To be presented at the 1963 Joint Automatic Control Conference
Workshop on "Stochastic Processes", to be held at the University of
Minnesota during June of 1963. This paper was prepared with the partial
support of the Office of Naval Research (Nonr-225-21). Reproduction in
whole oz in part is permitted for any purpose of the United States
Government. This paper is based on material to appear in a forthcoming
book [Parzen (l964)].

**It is with great pleasure that I dedicate this paper to Professor
Charles Loewner on his 70th birthday.



in vhich case the time serles is said to be a discrete process#

or when

T a (t: -w < t < -) or T = (t: t O> 0)

in which case the tim series is said to be a continuous paramter

process.

At each point "t in T, a number X(t) may be observed. This

number is a random variable in the sense that its value depends on chance

and enjoys a probability distribution described by the one-dimensional

distribution function

FX(t) (x) = Probability[X(t) x] , -x < x < , ,

or the one-dimensional characteristic function

(X(t) (u) exp[iux] dFX(t) Wx) , - U <u < .

More generally, for any integer n and n points t., t 2 , ... , tn in

T, the n observations X(t l ), ... I X(tn) which can be made at these

times are jointly distributed random variables whose joint probability

law is specified by either (i) the joint distribution function, given

for all real numbers X,... n by

Fx(t 1),...,X(tn) (xl' .. ,Xn)

(1.1)

= Probability[X(t 1 ) _<x,, X(t 2 ) < x2, ... I X(tn) _5 xhl
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or (ii) the joint characteristic function, given for 41 w~elý,.war

,.., un by

C. X(t l),...,Xtn) (ul., ... , U)

= E[exp i(X(tl) + ... + UnX(tn))]

I 
(1.2)

-~exp i(uixi +..+ un xn

dF{ ) . tn) (X1, .. , • n

The distribution function in Equation (1.1) and the characteristic

function in Equation (1.2) are said to be n-dimensional, since they

represent the Joint probability law of n random variables.

The point of view embodied in the foregoing discussion may be

Ssunmiarized as follows.

A time series is a Jointly distributed family of random variables

(X(t), t e T), indexed by a parameter t varying in an index set T.

j Time series analysis is concerned with the statements that can be made

about a time series, knowing only all the finite dimensional distributions

I+ of the form of (1.1).

It should be noted that the phrase "a stochastic process" is often

used to describe a numerical-valued random phenomenon that arises through

a process which is developing in time in a manner controlled by probabilistic

laws [see Parzen (1962)]. Mathematically, a stochastic process is repre-

sented by a collection of random variables (X(t), t e T). Thus, in a
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sense, the notions of a time series and of a stochastic process are

equivalentj every time series is a stochastic process and vice veroa.

What distinguishes the theory of time series from the theory of

stochastic processes is a certain difference in emphasis.

One approach to the problem of developing mathematical models for I
empirical phenomena evolving in accord with probabilistic laws is to

characterize such phenomena in terms of the behavior of their first and

second moments. This approach has found important applications in statis-

tical communications and control theory and in time series analysis.

When a stochastic process is being studied in terms of its moments it is

often called a time series. Consequently one would make the following

definition. I
A time series (X(t), t e T) is a family of random variables (stochas-

tic process) with finite second moments. i
It is to be emphasized that it should not be assumed that a stochastic

process which arises in practice necessarily has finite second moments

and is therefore a time series. In particular, recent research [by Mandel-

brot) has raised the question of whether certain series of economic

observations involving price changes of stocks and commodities possess

finite second moments.

Two important characteristics of a time series (X(t), t e T) are I
its mean value function m(.), defined for all t in T by

MW = EX(t),

and its covariance kernel K(...), defined for all s and t in T

I



I

by*

K(s,t) . Cov[X(s),X(t)]

The importance of the mean value function and the covariance kernel

derives from several facts:

(i) it is usually much easier to find the mean value function and

the covariance kernel of a stochastic process than it is to find its

complete probability law;

(ii) nevertheless, many important questions about a stochastic

process can be answered on a basis of a knowledge only of its mean value

function and covariance kernel;

(iii) for example, the continuity, differentiability and integrability

properties of the covariance kernel lead to corresponding properties for

the time series;

(iv) further, there exists an important class of time series, the

normal stochastic processes, whose complete probability law is known once

one knows its mean value function and covariance kernel.

Normal processes: A stochastic process (X(t), t e T) is said to

be a normal process if for any integer n and any subset (tlt 2 *... ,t )

of T the n random variables X(tl), ... I X(tn) are Jointly normally

*In studying the general theory of time series, it is often convenient
to admit complex valued random variables. The covariance kernel is then

I defined by
K(s,t) = EfX(s)x(t)] - m(s)i(t)

where X(t) denotes the complex conjugate of X(t) and i(t) denotes
the complex conjugate of m(t).



I

distributed in the sense that their Joint characteristic function is

given by, for any real numbers ul, u2, ... ) %$ I

"•X(tl),X(t2) ,.'.,)X(tn) (Ul,U2, ... ,Un) E[exp i[UlX(tl)+...+UnX(t n)}

= exp {i ~uj E[x(tj)) - ujuk Cov[X(tj)DX(tk)}
JlJ , k=l

= exp f uj m(t 3 ) - Z ujuk K(t 3 ,tk)}

Normal processes play a basic role ".n time series analysis for a

number of reasons: i
(i) Because of the central limit theorem, many random variables i

which arise in applications of probability theory may be considered to be

approximately normally distributed; similarly, many stochastic processes

can be approximated by normal processes;

(ii) Because of the mathematical tractibility of normal random -

variables, many questions can be more simply treated for normal processes

than for other kinds of time series;

(iii) Normal processes have the useful closure property that any time

t
series [such as f X(s) ds, X'(t), X(t + 1) - X(t)] derived by means

0

of linear operations on a normal process, is itself a normal process;

(iv) For a normal process, one obtains a knowledge of the complete

probability law of the process from a knowledge of the mean value function

m() and the covariance kernel K(.,.). Conversely it may be shown

that if m(.) and K(-,.) are the mean value function and covariance

kernel of some time series, then there is a (unique) normal process with

this mean value function and covariance kernel.
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2. A tim series as a pobability manare on tm ott Noce.

A time series (X(t), t e T) is for man purposes beat rogsr4M as

ran observation on a random phenomenon each of whose possible outooms is

a real valued function with domain T. In other words, a time series

MX(t), t e T) is a collection of real valued functions with domain T,

one of which is observed whenever a sample is taken. The observed func-

tion is therefore called a sample function, or realization, of the time

series.

Given an index set T, we let aT denote the space of all real

valued functions with domain T. A point w belonging to OT is a

function on T whose value at a point t in T we denote by w(t);

$ consequently, we may write w = (w(t), t e TI.

The problem of analyzing a time series (X(t), t e T) can be

expressed as the problem of finding the probability function P[.],

defined on suitable subsets of aT called the measurable subsets,

which describes the probability distribution of possible values of the

time series (in the intuitive sense that for any measurable subset A

of nT' P[A] is approximately the relative frequency of observations

in a very long sequence of independent observations of the time series

which are members of A.)

In this section we show how given the finite dimensional probability

laws of a time series one can construct a probability measure on a

suitable family of subsets of the function space nT. This probability

measure will enable us to define the notion of the probability density

functional of a time series which plays a central role in modern time

series analysis [see Parzen (1962, 1963)].

7
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Let 12 be a collection of subsets of a hiT h Ad a AT a

member. A function P, with domain a is said to be a pobability

measure if it possesses the following properties:

Axiom 1. For every A e J2, P[A] is well defined and is a non-

negative real number; in symbols, 3

P[A] > 0;

Axiom 2. P[AT] - 1;

Axiom 3. For any sequence of disjoint sets AA 2, ... belonging

to whose union An belongs to-I

P[U An] Z P[An] I;
n-1n n- n

the sets (An) are said to be disjoint (or non-overlapping) if for any

two distinct indices j and k the intersection of Aj and A is

empty,

where 0 denotes the eupty 'set.

Axiom 3 is referred to as the countable additivity or sigma-additivity

property of the probability function P.

The sets belonging to a are called measurable sets or events. An

event A is said to occur if the function representing the actual time

series observed belongs to A.

8
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In order to guarantee that the usual operations of antlsis 1411

lead to masurable sets, it is necessary to require that the family of

measurable sets be a sigma-field.

A collection 01 of subsets of O is called a sigma-field if it

has the following properties:

Axiom 1. fT belongs to a. (written symbolically: 0T 4a);

Axiom 2. If A belongs to (. then the complement AC belongs

to a (written symbolically: A e a implies Ac e )

Axiom 3. For any sequence A, A , ... belonging to 2 the
union -A belongs to . (written symbolically: (An] C

implies LI An e
n=l

In words, a sigma-field is a family of sets which contains the entire

space UT and is closed under the operations of forming complements and

countable unions. It then follows that it is closed under the operation

of forming countable intersections:

Property 4. For any sequence All 2' ... belonging to a the

intersection /) A e
n=l

An important example of a sigma-field is the family of all subsets

of 1T.

The question naturally arises: cannot all subsets of 0,, be made

events so that it is never necessary to consider a sigma-field a
smaller than the family of all subsets of A? Unfortunately the general

answer to this question is in the negative; if we desire the probability

9



function P to be oountably additive, it in usually the case that the i
family events cannot contain subsets of

even in the simple case that T consists of a single point so that

is Just the real line (the set of all real numbers w satisfying

-0 < W < W), there is no probability ,function P defined on all subsets

of OT that agrees with the ordinary notion of length on the subintervals

of OT (see Halmos (1950), p. 70). Usually, when OT is the real line, 3
one adopts as the family of events the family e of Borel sets, where

is defined as the smallest sigma-field containing as members all I
intervals.

The idea that, for each t, X(t) is a random variable can now be

made precise by the following definition: for each t in T, X(t) is

a function on whose value at a point w in al, denoted by X(t,w),

is given by the value at t of the function w:

(2.1) x(t,W) = W(t) . I

In order to regard X(t) as a random variable, there must exist

(i) a family 0- of subsets of nT, called the measurable sets, I
such that for all t in T and all real numbers x I
(2.2) (W: X(tW) < x) e 0, I

and (ii) a probability measure P with domain 4.

A function X with domain R, is said to be a.rmasurable If for

every real number x i

10
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(W, x(W) < x) 4 .,

The problem at hand is to find a sigma-field of subsets of QT such that

each random variable X(t) is a-measurable.

In the function space n T' there is a smallest sigma-field of

events which should belong to the sigma-field of measurable sets. Let

OT denote the smallest sigma-field of subsets of nT which contains

all sets of the form

(W: W(t) < x)

where t is a point in T and x is a real number. It is clear that,

for every t in T, X(t) is 0.,-measurable.

Consequently, given a probability measure P on a., one can

I define by (2.1) a time series (X(t), t e T) consisting of random variables

with domain aT and the finite dimensional probability distributions of

I the time series would be given by the formxula

- FX(t 1 ),...,X(tn) (Xl',*"xn) = Probability( X(tl) < x, ,...,X(tn< x.]

}. (2.5)
( P[(W flT: W(t3) < x3  for j = 1, 2, ... , n)]

Basic to the theory of time series analysis is the fact that the converse

holds (which follows from a celebrated theorem proved by Kolmogorov (1933).

Kolmogorov' s celebrated existence theorem regarding the probability

measure on function space nT induced by a stochastic process (X(t), t e T).

I 11



Let (X(t), t c T) be a stoohastic process with preassigned finite

dimensional probability distributions. Then there exists a unique

probability meuure PX on the sigma-field OV satisfying (2.3).

To prove Xolmogorov's theorem, one considers a somewhat more general

problem.

Let T be an index set. Given a family of finite dimensional

characteristic functions,

(Ctl$...,tn (Ul' ... ,Un)

(2.4) n an integer and tj, ... tn points in T) ,

what conditions need this family satisfy in order that there exist a

stochastic process (X(t),-t e T) whose true finite dimensional charac-

teristic functions coincide with the given set (2.4):

(2.5) pX(t 1 ),...,X(tn) (ul, ... , un) = 9t],...,tn (u3 , ... , un) 3
In view of (2.5), it is obvious that the given set (2.4) mast be mutually

consistent in the sense that (i) if C1'... , a n is a permutation of

1,... , n, then for any points tl, t n and real numbers

u,.., In

(2.6) gt l'....tn (u, . , n tl' jtn (Ul , Un),

since the order in which the random variables are listed is irrelevant,

12
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and (ii) if m<n,

(2.7) 't V tm (Ul, ... ,u) .=• tl." .,t., tn".. (•' " " uMO". ,0).
I

The content of IColmogorov's theorem is that these consistency conditions

are the only conditions that need be imposed.

In order to give a precise statement of Kolmogorov's theorem we

introduce the notion of a semi-infinite interval.

A subset C of nT is called a semi-infinite interval if it is of

the form

(2.8) C = •W e fT: W(t 1) <S x .", W(tn) -< x)n

I for some integer n, points tl, ... n tn belonging to T, and real

numbers Xl, ... , xn. Note that to specify a semi-infinite rectangle

one must specify an integer n, n points tl, ... , tn in the index

set T, and n real numbers X1 , ... I xn

Example 2A.

A semi-infinite interval. Let T = [0,1] so that nT consists of

1 all functions on the interval 0 to 1. Let n - 11, t3 = J/10 for

S-= 0, 1, ... ,0, and x, = J/2 for j = 0, 1, ... ,p 0. Then

C = w e f0(O,1): w(3/l0) < J/2 for 3 - 0, 1, ... , 10] .

Consider the following functions defined on the interval 0 to 1:



fr(t), t + I
f2C(t) t2P =I
f3(t) - sin 5t

It may be shown that fl(.) does not belong to C, while f2 (.) and

f( d) do belongto C.

Let P be a function defined on semi-infinJ.te intervals in as

follows: for C given by (2.8)

(2.9) P[C) = Ftl,..*,tn (X, ... Xn)

where F ... , xh) is the distribution function corresponding

to the characteristic function 9t ..***,tn (x1, ... , xn).

Kolmogorov's theorem: There exists a unique probability measure P

on IT whose values on semi-infinite intervals satisfies (2.9). Further,

define a family of functions (X(t), t e T) on 0T as follows: for

each w e nT' the value of X(t) at w, denoted X(t,w), is given by

X(tW) = W(t) , the value at t of the function w .

Then (X(t), t e T) is a stochastic process, defined on the probability

space (a T'Q ,P) whose finite dimensional characteristic functions

satisfy (2.5).

The proof of Kolmogorov's theorem requires a background in measure

theory which is beyond the scope of thispaper [for a proof, see Kolmogorov

(1933), p. 29, or Loive (1960), p. 93].

14



Examle 2.

An a1lication of I.oltaosra's theorem. Comsidar a time SoL.

(x(t), t e T) defined by the formula

S(2.10) x(t) . • (t)., t, eT

where Tj is a random variable (with finite second moment) and go(.) is

a non-random function (for example, ((t) = t).

The statement that Yj is a random variable is not completely explicit;

we also want to know the space a on which q is defined as a function.

The random variables X(t) defined by (2.10) are functions on the

fsame space n as is 1. Since this space may be unknown, it is sometimes

useful to redefine X(t) as follows.

Given the probability distribution of q, the family of random

variables (X(t), t c TI induces a probability measure P on a by

means of the formula

P[f•( 6 n: W(tY) <x!, ... (t) < x}]

(2.11) = Prob[X(t 1 ) < x1 , ... X(t) < x]

! - Prob[q (p(tl) < xl_, I. , •(tn) < xn].

I Next, the random variables {X(t), t e T} can be redefined to be functions

Son OT by the formula



(2.12) x(t,W), W(t).

The new family of random variables (X(t), t c T1 obtained from the

definition (2.12) can be identified with the old family obtained from

definition (2.10) since they have the same finite dimensional distribu-

tions. •

By the procedure just described, a time series (X(t), t e T)

defined by an explicit formula such as (2.10) can be regarded as being

equivalent to a probability measure P on the function space nT"I

In particular, suppose that the random variable q is normal with

mean 4 and variance a2. Then X(.), defined by (2.10) is a normal i
process with mean value function I

(2.13) re(t) = E[X(t)] = • (t),I

and covariance kernel I

(2.14) K(s,t) = a2 q(s) CP(t)

Any normal process (X(t), t e T) with the foregoing mean value function

and covariance kernel induces the same probability measure P on function I
space aT"

Using the representation theory of time series (Parzen (1961), p. 962),

it may be shown that a time series (X(t), t e T) with mean value function I
and covariance kernel given by (2.13) and (2.14) respectively may be

represented in the form of (2.10), where I is now a random variable 1

161
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3. Probability density functionals ~a Vrhuxa.Usws

The probability theory of time series is concerned with Im stigti I
the structure of a tim series (X(t), t e T) whose corresponding

probability measure P on the function space a is assumaed known. The

statistical theory of time series is concerned with a time series j
[X(t), t e T) whose probability measure P is not known exactly but is

only known to belong to a class of probability measures (Pe, ea on I
OT; the class of possible probability measures P. can be assumed to

be indexed by a parameter 6 varying in a parameter set 0. Consequently

an important step in developing a theory of time series analysis is to

examine the relations that can exist between two probability measures

PI and P2 with a comon domain a0 1

Absolutely continuous and orthogonal probability measures. Let a

be a set (the sample description space) and let a be a sigma-field of

subsets of il. Let P1  and P2 be probability measures with domain I

We say that P1  is absolutely continuous with respect to P2  if for

every set A in a.

(3.1) P2 (A) = 0 implies PI(A) = 0 • I

We write PI < < P2 if P is absolutely continuous with respect to I
P2; the motivation for this notation is the idea that P1  is small

whenever P2 is small. I

I
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We 44W that P, an P2 ars eqj'%16a' Mote

each i• absolutely continuous vith respet, to the othe)j in QW*As,

P1 a 2 if and only if P1 << P2 an .< 1

In order that P1  not be absolutely continuous with respect to P2

it is necessary and sufficient that there exist a not A In a such

that

(3.2) P2 (A) = 0 and P1 (A) > 0

We say that P1 and P2 are orthogonal (or perpendicular), denoted

P1 i P2' if there exists a set A in a such that

(3.3), P2 (A) = 0 d Pn(A)d - 1

One can regard (3.2) as the extreme case of not being absolutely con-

tinuous.

It may be shown that if P1 < < P2' then probability statements in

terms of P1  can be expressed in terms of P2 ; more precisely, if

P1 < < P2' then there exists a function p, called the probability

density function of P1  with respect to P2, such that for any A in

S) P

SP1 (A) pJA 02! A

In words, (3.4) says that to evaluate PI(A) one integrates the function

p with respect to the measure P2  over the set A. MIr6 generally,

19



for a .- meaurable fumntion g vhich to integable with repect tI

is finite, then there holds the transformation formula I
I

(3.6) %~[g)~ g pdP2.

Three problems preliminary to time series analysis. To develop a

general theory of time series analysis, one must begin with an under-

standing of the relations that can exist between two probability measures

P1 and P2 on a function space. Consequently, we may speak of three

problems preliminary to time series analysis:

(i) determine whether two given probability measures P 1  and P 2

are orthogonal,

(ii) determine whether one is absolutely continuous with respect to

the other,

(iii) if P 2 < < P1 , determine the probability density functional or

Radon-Nikodym derivative, denoted

dP2e2
P2,1 = l

One aim of modern time series analysis is to develop ways of deter-

mining answers to these questions.

20



4 I. Sianal detection and. libslihood ratioar.

In this section ve examine the probl.em of detect"og a signlIJn

noise, and show how the proper formalation of this problem requires a

consideration of the relations that exist between probability masures.

i

I 21



Many observed time series can be represented as the sum of a signal -

process and a noise process. Mbre precisely, let T be a set of points, #

called the index set, such that at each t in T one has made (or one

can make) an observation, denoted X(t). The set of observations

(X(t), t e T) is a function on T which is assumed to be the sum of tvo

other functions (S(t), t e T) and (N(t), t e TI: I

X(t) = S(t) +N(t) , teT .

We call (S(t), t e TI the signal since it is supposed to represent the

true value of the quantity being measured, while [N(t), t e T) is

called the noise since it represents "errors", "fluctuations", or "residuals"

by which the observed function (X(t), t e T) differs from the desired

function (S(t), t c T).

The aim of time series analysis is to infer, from the observations,

information about one or more features of the signal. The aspects of the

signal in which one is interested depends on the assumptions one makes

about the structure of the signal and noise processes. In this section

we consider the important problem of detecting a signal in the presence

of noise.

Let (S(t), t e T) and LN(t), t e T) be time series, called

respectively the signal process and the noise process. Given an observed

time series (X(t), t e TI, one desires to test the hypothesis

H0 : X(-) = N(.) , noise alone is present ,

22
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I

against the alternative hypothesis

Hl: V(.) - S(.) + i(.) , signal plus noise to present ,

by choosing a subset R, of the sample space ', of possible realiza-

tions of the time series (X(t), t e T), which will be the rejection

region for H0 ; that is, one says signal plus noise is present if the

observed time series (X(t), t e T) belongs to R1 , and one says that

noise alone is present if (X(t), t e T) does not belong to R.

In this section, we suppose that the probability distribution of

(X(t), t E T) under the hypotheses H0  and El are well defined; in

this case we say that H0 and H1  are simple hypotheses. We riny then

introduce probability measures PN and PS+N defined on the measurable

subsets B of the sample space Q T by

PN[B] : Prob [(N(t), t e T) e B]

(J4..l)

- Prob [(x(t), t e T) e BIH0 ] ,

( J+.2) 
PS+N[B] = Prob [[S(t) + N(t), t e T) e B]

= Prob [(X(t), t e TI e BIH1 ]

Examle 4A.

A specified signal in normal noise. One important case in which

H0 and H are simple hypotheses is when the following assumptions hold.
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Assumption on the index set: The index set T is a finite set I
(tV' t2 t" tn'

Assumption on the noise process: The noise process (N(t), t e T)

is assumed to possess finite second moments, to have zero means:

I
(4.3) •.[(t)] 0 o

I
and known covariance kernel K: I

(4.4) E[N(s) N(t)] a K(s,t) I

Further, (N(t), t e T) is a normal process; that is, the n raiAom I
variables N(t 1 ), ... I N(tn) are jointly normally distributed so that

their joint characteristic function is given by

"" J=n
(**.Nt)(L'u) )X I~u aJ

= exp - • uj K(tjItk)
ilk=l

Assumption on the signal process: The signal (B(t), t e T) is a 1
known non-random function. The signal plus noise process

(X(t) = S(t) + N(t), t e T) is then a normal process with mean value

function

(4.6) E[X(t)] = S(t)
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and covarlance kernel

(4.7) Cov1X(s),X(t)1 K(S-t)

Under the assumptions of this example, PN is the probability

measure on function space induced by a normal process with man value

function identically zero and covariance kernel K, while P is the
8S+N

probability measure induced by a normal process with mean value function

equal to the signal function S(t) and covariance kernel K.

Perfect detectability and the singular detection problem: We say

that the hypotheses H0 and HI are perfectly detectable. or that the

problem of detecting the signal process S(.) in the presence of the

noise process N(.) is singular, if there exists a set A in the sample

space IaT such that

(4.8) PN[A] = 0, PS+N[A = 1.

By choosing A as the rejection region R, for H0 one has probability

zero of incorrectly identifying noise as signal plus noise or signal plus

noise as noise. Note that the probability measures P and P are
PN 8S+1

orthogonal if (4.8) holds. By definition, then, the hypotheses HO

and H, are perfectly detectable if and only if PN and PS*N are

orthogonal.

The regular detection problem: The problem of detecting the signal

process in the presence of the noise process N(.) is called reagular if
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PN and PS+N are not orthogonal. In this cae$ now principles *t b I
introduced in order to optimally choose the rejection region R.. F-irst,

one distinguishes two types of errors that can occur:

(i) a false alarm (or error of type I) occurs when one says that I
a signal plus noise is present when in fact noise alone is present;

(ii) a detection failure (or error of type II) occurs when one says

that noise alone is present when in fact signal plus noise is present.

A rejection region R is then characterized by two numbers a and

•, defined by

a= Prob [false alarm]

('.9)I
= Prob [WX(t), t g T) e RIHO]

1= Prob (detection failure) I

- - Prob [(X(t), t E T) e RIH1)

In certain cases it may be possible to assign a numerical measure

to the seriousness of a false alarm and of a detection failure; one denotes

these costs by* L and L2 respectively. Further it may be possible

to determine the fraction 3t of experimental situations in which signal

plus noise is present; one calls AS the prior probability that signal

*In the general theory of hypothesis testing, a false alarm is called
a type I error, and L, is the cost of a type I error, while a detection

failure is called a type II error and L2  is the cost of a type fI error.
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is present. To each critical region one am asign a risk p# a L

the Bayes risk rand defincd as the expected cost of an lnoorrect 4%eAsUlq

P p g (l '() Ll+ "'SL

The Bayes rejection region R (or optimm rejection region according to

the Bayes criterion) is defined as the region which minimizes p, the

expected cost of an incorrect decision.**

It may be difficult to use a Bayes rejection region for one or both

of the following reasons:

(i) because of difficulty in assigning the losses L and L,

(ii) because of difficulty in assigning the prior probability xBS

In these circumstances one may use the Neyman-Pearson rejection region

(or optimum rejection region according to the Neyman-Pearson criterion)

which is defined as the rejection region R minimizing 0, the detection

failure probability, subject to the restriction that a, the false alarm

probability, is less than or equal to some desired level (X

We next show how one may determine the Bayes rejection region and

the Neyman-Pearson rejection region by introducing probability density

functionals.

Let us assume that there exists a measure Q on the measurable

subsetb of the sample space AT, and functions PN and PS+N with

domain with the property that, for every measurable subset B of

**Note that a rejection region which minimizes the average probability
of error e , ve = aI( - A S) + PtS, is the same as the Bayes rejection

region with unit costs, Ll = L2 = 1.
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(4.1) PS+N (B]" PS+N Q

In order to emphasize that its argument is a function (x(t), t e T), 3
we call PN a functional, and sometimes denote it by pN(X(t), t e T).

It is called the probability density functional of PN with respect to I
Q. The function pN may be written symbolically as a derivative,

(4-14l) dON

and is then called the Radon-Nikodym derivative of PN with respect to I
Q. Similarly, pS+N is called the probability density functional, or u
Radon-Nikodym derivative, of PS+N with respect to Q.

In order for the probability density functionals PN and pS+N to I
exist, there mast exist a measure Q with respect to which both P. and

PS+N are absolutely continuous; recall that P N is absolutely continuous I
with respect to Q if I

(4.15) Q(A) = 0 implies PN(O) for all A C . I

Such a measure is given by I

(4.16) Q = PN + PS+N' I

283
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Consequently there is no loss of generality in asudift'tbAt tre- r Ait

functions p1 and p satisfying (ii.12) a*4 Qi4.13) rsseotw

In term of probability den3ity functionals, the false alaiM *oba.

bility C1 and detection failure probability P of a rejection region awe

given by

(4.17) a = / SN dQ .
(4.18 1 Rp dQ

Consequently, the Bayes risk p of a rejection region R is given by

(4.19) p =fR ( (1 ) - As) L s " "s L2 Ps÷. )dQ + "S L2 "

To minimize p, one should choose R as the set of observations

(X(t), t E T) for which the integrand in (4.19) is negative, so that the

Bayes rejection region R is given by

S(4.20) R = X(t), t e : PN " S L2

The ratio

(4.21) p8+N

of probability density functionals is called in classical statistical

Sliterature the likelihood ratio since pN(X(t), t e T) is defined to be
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the likelihood that noise alone is present given that the observed tlmI

series was (X(t), t e T), and pS+N(X(t), t e T) is the likelihood

that signal plus noise is present given that the observed time series

was (X(t), t e T).

The likelihood ratio (4 .21) has a probabilistic meaning which shows

that the measure Q used in defining the likelihood ratio plays no role.

Let

(4.22) A ={(X(t), t 6 T): PS+N> 0 and PN =O}.

If PS+N [A] = 0, then PS+N is absolutely continuous with respect to

PN) and the Radon-Nikodym derivative of PS+N with respect to PN is

given by the likelihood ratio:

(4.23) dPN -

The Radon-Nikodym derivative of PS+N with respect to PN is called

the probability density functional of signal plus noise with respect to

noise; where no ambiguity can arise it is denoted by p. To summarize,

the probability density functional p of signal plus noise with respect

to noise is a function on the sample space Q satisfying

(4.24) PS+N[B) f p d% BC(: a

and exists if and only if PS+N is absolutely continuous with respect

to PN' which holds if and only if PS+N(A] - 0, where A is defined
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by (4.22); it then follows that p i given by the likelihood ratio

(4.27) p. p- --

If [S+N(A) > 0, instead of (4.24), one has for every measurable

subset B of a,

(4.26) PS+N[B p +P [A

where p is still given by (4.25); (4.26) is an example of the Lebesgue

decomposition theorem which states that to the probability measures PN

and PS+N there exists a function p on A and set A such that

PN[A] = 0 and (4.26) holds. We have made this assertion concrete by

showing how one may find p and A.

Optimum detectors: A random variable U (that is, a function on

the sample space Q) which has the property that the rejection region

which is optimum according to a certain criterion may be expressed in

terms of the values of U is called an optimum detector according to

that criterion.

From (4.20) it follows that the likelihood ratio is an optimum

Bayes detector. Indeed the optimum rejection region according to the

Bayes criterion consists of all observations (X(t), t e T) for wtich

the likelihood ratio is above a certain threshold value A0 given by

(1 - ns) L_
(4.27) AO - ( s '
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Similarly, it may be shown that the likelihood ratio is an optiui I-
Neyman-Pearson detector. Indeed the optizmm Neyman-Pearson rejection j
region according to the Neymmn-Pearson criterion consists of all observa-

tions MX(t), t e T) for which the likelihood ratio is above a certain I
threshold A0 , determined by the condition that the false alarm probability I
be equal to a0:

(4.28) PN[. ± > AOI %= "
1

To prove this assertion, one uses the fact that the Neyman-Pearson rejec-

tion region R is that region which subject to the condition I

(4.29) 4 pN IQ <

II
maximizes

(4.30) s+N dQ, Q

Intuitively, one sees that the optimum rejection region R should contain

those sample points which have the highest value of the likelihood ratio

(4.21) since for a given contribution to the integral in (4.29) these

points make a maximum contribution to the integral in (4.30). A formal

proof of this assertion is easily given, using the fundamental lemma of

Neyman and Pearson.
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Exaple .

Detection of a specified signal in normal noise. Consider the signal

and noise processes described in example 4A. Assume that the covariance

matrix

[K(t1 ti) ... K(tl,tn

K0

LK(tn'ti) "" K(tn 'tn

is non-singular with inverse denoted

Kl(tltl) ... K l(tltn)

K--_
K-1l(tn t)..K'l(tnltn)

In words, K1l(ti tj) does not denote the reciprocal of K(ti,t 3 ), but

-1
rather denotes the (i,j)-th element of the inverse matrix K"I. The

signal and noise process and the noise process then both possess probability

density functionals pS+N and pN with respect to Lebesgue measure Q:

1 n

P1 J(t), t E T)={(2v)n KJ}2 'exp X(t ) K'1(tiitj) X(t

p ps+X(t), t e T) =f(2n)n ]K]
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where III is the determinant of the matrix K. I
The likelihood ratio is given by

PS+N . exp F X(ti) Kl(tit 4 ) 8(t 4 )

D1 s(ti)

""ij=ltit 3 ) S(tj

In order to write this expression more compactly, let us introduce the

notation (which will play an important role in the sequel)

n3-11
(f.g)K = f(t i) K l(ti't) g(t),

defined for any two functions f and g on T. Then

PS+N = exT X,S)K (S,S)K .
PN ( K 2 K

Since the likelihood ratio is a monotone increasing function of (X,S)K,

it follows that (X,S)K is an optimun (Bayes or Neyman-Pearson) detector.

Indeed, the rejection region for testing H0  against H1  can be expressed

as the set of observations (X(t), t e T) for which (X,S)K is above a

certain threshold A,, say. A detector of the form

(X,S)K= X(ti) { 1 K 1(ti,t) S(th)}

is said to be a "correlation detector" or a "matched filter" since it is

obtained by "correlating" or "matching" the specified signal shape S(t)

with the observed time series X(t).
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1. In the notation defined in Exaule 2A, show that fl(-) does not

belong to C, while f 2 (.) and. f3(-) d obel•• to C.

2. Let H0 and RI be simple hypotheses about a time series

(X(t), 0 < t < 1). Under both hypotheses, (X(t), 0 < t < 1) is a

normal process with covariance kernel

K(st) = (p(s) qp(t)

and mean value function respectively given by

H O : E [ X ( t ) ] 0=,0 ,

HI: E[X(t)] = S(t) .

Assume that S(.) and q(.-) are orthogonal,

oI S(t) p(t) dt = I
Show that H0  and H, are perfectly detectable.

1 -

Hint: U = f S(t) X(t) dt is a perfect detector, since
0

PI[U = O] =1, P2 [U =f S2 (t) dt ý 0) = 1.
0
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3. Let o and 1i be sirole bhpotheses about a tinm series

(x(t), o < t < 1). Under both bmtheses, (X(t),o 0< t < TYp

of the form

x(t) = q )(t)

where 9(t) is a non-random function and n is a normal random

I variable,

Under HO: E[n] = 0 , Var[I] = 1

Under HI: E[n] = m , Var[(3 q 1

Show that an optimum detector for testing H0 against H1 in

given by

xp {(2 - Mn) 12 
f- =( exp { mll- l ~

and therefore is given by TI. A possible formula for ij is

X(t )

for any point t in 0 < t, < 1 such that r(tl) 0.
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