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A Class of Energy Levels for the Heisenberg Linear Chain. I.

Robert B. Griffiths*

Abstract

The highest and lowest energies as a function of the

total spin are computed for the class of "unbound" states

in the Bethe formalism for the linear chain of spin j atoms

with a Heisenberg exchange interaction between nearest

neighbors. In addition, the nmagnetization as a function

of magnetic field is calculated in the limit of zero tempera-

ture for an infinite antiferromagnetic chain.

*National Science Foauation Postdoctoral Fellow.
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I. Introduction

The properties of antiferronagnetic insulators are often discussed

on the basis of the Heisenberg model of exchange between neighboring

atoms. Calculations for two and three dimensional lattices invariably

proceed by means of approximations whose validity is difficult to judge.

Hence there is still some interest in examining the one dimensional case,

for which a certain amount of progress has been made toward an exact

solution.

BetheI showed that the eigenvalue problem for a chain of N spin ½

atoms with Hamiltonian

where SI is the spin operator for the i 'th atom and J the "exchange

integral," could be reduced to that of finding the solutions to a set of

coupled transcendental algebraic e(pations. Using this procedure, Hultbdn2

calculated the exact ground state energy for an infinite antiferronagnetic

(J > 0) chain; and des Cloizeaux and Pearson3 have recently calculated

the energies of the lowest-lying excitations or "spin waves."

A certain subset of the eigenstates in the Bethe formalism are

"unbound"; this nomenclature is nade more precise in Section II below.

The unbound states are of particular importance in discussing the proper-

ties of the antiferrominetic chain, since they include the antiferro-

magnetic ground state and the des Cloizeau and Pearson "spin waves."
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The present report is concerned entirely with the unbound states. In

particular we compute in Sections III B, C, and D the minimum and maximum

energies for unbound states having a given total spin 8, as a function of

S. The minimum energies are of particular interest since there is good

reason to believe that they also represent the minimum energies of all

states in the chain (for a given S). This permits a calculation (in

Section IV) of the magnetization of the antiferromagnetic chain as a func-

tion of magnetic field at zero temperature.

The Bethe formalism for treating the eigenvalue problem is summarized

and discussed in Section II. A small contribution towards the formidable

task of making the formalism fully rigorous is contained in an existence

proof in Appendix A. The derivation of the Hulthdn integral equation,

upon which the work in Section III B, C, and D depends, is summarized in

Section III A.

The results of our computations do not agree with a previous calcula-

tion by Ledinegg and Urban.4 The reason for the discrepancy, which we

believe to be an error in their computations, is discussed in Appendix B.

By considering the detailed energy level structure of the class of

"unbound" states, one can also say something about the free energy of the

antiferromagnetic chain at low temperatures. This discussion will be

deferred to another report.



II. The Betha Equations

Consider a linear chain of N spin • atoms, closed upon itself, with

Hamiltonian (1). Assume that J is positive, that is, the interaction is

antiferromagnetic. The largest eigenvalue of N, corresponding to the

ferromagnetic ground state, is

At (2)

while the lowest eigenvalue, the energy of the antiferromagnetic ground

state, is 2

S " -) (3)

in the limit of very large N.

Choose as basis vectors states for which all spins in the chain are

either "up" or "down" with respect to the z axis. Let Ynln2"n •2 .nr

be a state for which the spins nl, n 2 , . . ., nr are down and all other

spins are up. Any state with z component of spin equal to N/2 - r

may be written as a linear combination of such states:

e ( ,i a.*1"1 "

where the summation extends over all sets of r (distinct) indices n

The eigenfunctions discussed by Betha' are of the form:

r'.r

iP
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where the suimmtion extends over all r! permutations of the integers

1, 2, . .. , r among themselves; Pj is the image of j under the P'th

permutation. The "wavevectors" kj satisfy the epaations:

Nk* =2•A' ; + Oil, (6)

where the Aj's are integers between 0 and N-1, and the V's are defined by:

(T)

Let E be the energy of the eigenstate, and define the "normalized

energy" e by:

E.. (E, - E )/ 2TAI), (8)

a quantity which is obviously non-negative. 5 Similarly define eI by:

The energy of the state (5) is given by

r

Wo 1 (

With each eigenstate of the form (5) there i's associated a set of
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integers •j through (6). The order of the is obviously unimportant.

Furthermore, a state with some of the A; equal to zero has the identical

energy and total spin (though not the sam z component of spin) as the

corresponding state for which all the zero A's have been eliminated. 2

Thus without loss of generality we can restrict the discussion to sets

of integers such that

o < -A . A . , (.)

Since the chain is closed upon itself, each eigenstate may be charac-

terized by a wave number q given by:

J J

(Note that Je = - .

Although the sum of all the kj is real, individual k values my

be real or complex. This fact, among others, makes the discussion of the

existence of roots of Eq. (6) rather difficult. The following questions

have not been discussed (to the best of our knowledge) in any adequate

sense: For what choices of sets of integers Ai does (6) possess a solu-

tion? If there is a solution, is it unique? Given a solution to (6),

what are the conditions such that the wave function (5) does not vanish?

Are the wave functions corresponding to different sets of Ai linearly

independent? Can all, or at least almost all, the eigenfunctions of the

chain be written in the form (5)?6



7

It is convenient to divide the eigenstates of the form (5) into

two categories, the "bound" states and the "unbound" states. The latter

category contains the states for which all the k are real, the former

the states for which at least some of the k are complex. There is a

corresponding division of the sets of integers f A, . The reason for

the terminology "bound" and "unbound" is to be found in Bethe's discussion7

of the case r = 2. He shows that complex k values correspond to a state

n h a(nl,n2)2 decrease,-s exponentially as I 2-nlI increases; i.e.,

two spin waves interact with each other to form a bound state.

In particular Bethe's calculations indicate that the class C8 con-

sisting of those sets of integers for which

A÷, 4 1Z 4- (13)

is satisfied are unbound. We shall denote by B the class of all states

for which (13) is not satisfied. Class B also contains some unbound

states, although Bethe's computations suggest that the relative number

of such states is small.

In our calculations below we shall be concerned entirely with states

of class C. We shall assume that each set of integers satisfying (1U) and

(13) gives rise to a single state (or, rather, a multiplet of degeneracy

2S+l, where S is the total spin of the state) for which all the k values

are real, and that states corresponding to different sets of integers in

class C are linearly independent. A certain (but kar from complete!)

Justification for these assumptions is to be found in the calculations of

I



• ~~des Cloize~u an er 3 and the author9 on finite chains,- and in a

proof of the existence of solutions to 9q. (6) which will be found in

Appendix A.

The importance of the states in class C for the problem of the anti-

ferromagnetic chain comes from the following "theorem": For a given

total spin S, the state with the lowest energy (for antiferromagaetic

coupling) belongs to class C. The "theorem" has not been proved, although

it is supported by the aforementioned calculations in references 1 and 3,

and also by the results of this paper (see Section III D and Fig. 1).

Some insight into the structure of Eq. (6), at least for real values

of the ki, is provided by regarding it as a non-linear transformation

of the vector (kl, . . ., kr) into another vector with components:

Si) (14)

where for +JA we have written *(kj,kI). A solution to (6) is a fixed point

of the transformation (14). Suppose that we attempt to solve (14) by

iteration. A sensible starting value for kj is:

k,. 2- ,'A (15)

which lies within the interval (0, 2n). If k and k are both in the

interval (0, 2a) and k1 is greater than k t, • pten q(k 3,kl) is positive.

Hence the second term on the right hand side of (14) represents an "attrac-

tive force" between pairs of wavevectors. Thus if, for example, the initial
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values kjo are distributed uniformly over the interval (0, 2rr), suC-
cessive iterations of (14) will lead to an increase in the density of

Sthe kits near rr and a decrease at the end points of the interval, 0 and

If the starting values for k and k+ are too close together,

successive iterates or (14) may eventually lead to a "collision" in which

kj+I = k . But a solution of (6) for which two of the k 's coincide is

trivial in the sense that the corresponding wavefunction (5) vanishes

identically. A possible remedy for this situation is to make the two

ki's complex, with imaginary parts of opposite sign, resulting in a

"bound state." Condition (13) for Atates in class C insures that the

initial values of adjacent kj are far enough apart so that no "colli-

sions" will occur. These considerations are further developed in

Appendix A.

As a first step in examining the energy level structure of class C

we shall investigate the highest and lowest energies for a given value

of S, the total spin. If the value of r (and thus S) is fixed, Eq. (10)

indicates that e will be a maximum when the k are near the center of

the interval (0, 217) and a minimum when they are distributed at the two

ends of the interval. On the basis of (15) and the discussion following

that equation, it is reasonable to assume (although we have no proof)

that the former condition is achieved when the Aj are near the center of

the interval (0,N) and the latter when they are distributed at the two

ends of the interval. Further recall that c measures the energy
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from the ferromagnetic ground state, vhereas we are interested in m&,Cmum

and minimum energies for antiferromagnetic coupling. The foregoing argu-

ment leads to the following choices for a given value of S =i-r:

Minimum energy:

~ ' w-~i A=A4~) )3 *114 J Ar~ (16)

In particular, the antiferromagnetic ground state (S=O) corresponds to:

A1  I k ~, ~ *.. Il r/I . (17)

Md.xmum energy:

)I',At 3j ... J Ar 4 =r-I,

•,&, V•-(r-) A r& A-(r-j) ... Ar =W- . (-8)

We have tacitly assumed in writing (16), (17), and (18) that N

r are even; minor modifications are required if one or the other is odd.
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III. The Hulthdn Integral EZqation

A. The Antiferroaugnetic Ground State

Consider the antiferronsgnetic ground state which corresponds to

the set of integers (17). For large N it is reasonable to replace Eq. (6)

by an integral equation in the following manner:2 Let x be a continuous

variable on the interval (0,1). Replace A by Nx, k- by k(x), and

Eq. (6) by

N k)'2'1 Af + J N ) (19)

where

Cotf Okyb') j j1X() C-+ ke 10]y

-(20)

The normlized energy e (see Eq. (10)) is given by:

Le . .L o0 if [I- [-os 14)0 Ax. (21)

In place of the non-linear 2q. (19), Hulthdn obtained a linear equa-

tion by first differentiating both sides of (19) with respect to x and

then introducing dx/dk as the new unknown function and k as the new

independent variable, resulting in the equation:

s l+-, (22)Io 4 + (aojA .~t~ k
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SStill another change of varlaoles:

M OT (23)

permits (22) to be rewritten in the form:

where

S(•-) = a/=)[,•+ Ly ,)] (25)

(26)

and., furthermore,

E-0 +(VIL) (27)

Hulthdn solved (24) by successive iteration. For our purposes it is

convenient to write the solution in the form

i .as)= .(r) J RC•('i ) •.¢ )17 (28)

where the resolvent kernel R(x) msy be written as an infinite sum:
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~( )~j 2 () .4 (29)

or as an integral:

Rc �..jSeC'lrY/2) (30)

4• 1+ Y+ yX)"

The following is an iiportant relationship between the kernel K and its

resolvent R:

f ~ -7,R~i,;)d~ ky-;) R(-;) (31)
- ul

The solution to (24) is:

irg (32)

and the corresponding energy is:

0 2. (33)



14

B. States of Ninimum Energy

Hulthin's procedure outlined above (with some changes in notation)

may be applied with only minor modifications to the more general problem

of finding the energies associated with states corresponding to the sets

of A values in (16) and (18). Consider first the states of minimum

energy, (16). Equations (19) and (21) must be replaced by:

. +'t

2~ ~?J #xii (34)

=L-Coss (35)

with a determined by the requirement that

S- S = r = Na . (36)

In place of r and S it is convenient to introduce the abbreviations:

e= t -•. (37)

Equation (34J) may be transformed by the same procedure used with (19).

Define

(38)

I
S{
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The resulting linear integeral eqiation is2

= 0 In(•-•) •) d',P (39)

with limits of integration determined by the requirement:

e~ -An4 f-J~d~=.j()T (40)
2 ,-g, -d

The normalized energy e is equal to:

E•-f -'i') (' + )' a . (41)

The quantity of interest is, of course, e regarded as a function of p

The most convenient procedure to follow in deducing this function,

however, is to choose a value of a , solve (39), and then obtain p

and e by means of (40) and (41).

In Eqs. (39)-(41), only the values of f(Q) for Itl . a are employed.

However, f(Q) my be defined for values of Itl > & by means of (39) and

thus extended to a function on the entire real axis. This extended func-

tion also satisfies a different integral eqpation. MLxltiply the right

and left hand side of (39) by R(C - t) and integrate with respect to

from - m to + w. By interchanging the order of integration on the right

hand side and utilizing the relations (31), (28>, and (39), one obtains the

equation:

+Id 01
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Similarly, in place of (40) and (Ii1) one has:

(40a

S(41a)

Equation (4oa) is obtained by integmting both sides of (39) from - to

+ O, noting that

f f (4i2)

To obtain (41a), multiply the right and left hand sides of (39) by

and integrate from - a to + .. By interchanging the order of integation

on the right hand side and utilizing (27), (28), and (41), me arrives at

the result (4ela).

The eWations (39a)-(41a) are particularly useful in the problem of

obtaining the asymptotic behavior of eI and p1  when a is large; i.e.,

when an p, are small. This asymptotic behavior is of particular

interest since it determines the magnetic susceptibility in small magnetic

fields when the temperature is zero, as shown below in Section IV. An

investigation of this problem by Ledinegg and Urban4 utilizing E3P. (39)-

(41) appears to be in error due to some unjustified approximations. We

shall discuss their calculation further in Appendix B.

I
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Since f)=-f(-0), (390) my be rewritten as:

+ a v ) (43)

Furthermore, since

e4 i -(e (44)

we are clearly Justified in replacing fo(C) by exp(-4ir) in (43) and

(41a) in order to obtain an asymptotic solution for large a. Note that

only values of C and q greater than o come into consideration in

solving the integral equation and evaluating el and pl. For large

values of z,

R 00 = R (-E) ,v (2• 7,-IL (45)

therefore, provided a is very large, it should be possible to neglect

R( + 71) relative to R(C - q) in (43).

Next define:

,,( - el'(6)

and rewrite (43), using the approximations introduced in the preceding

paragraph, in the form:

40 (X) f~x )(y (47)
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The quantities eI and p, are given by:

et~ ~ ~~~~O pe-~(. ~6d)i '8

*e O - (49)

Numerical solutions of (39) confirm the exponential variation of

P. and c1 predicted by (48) and (49), with coefficients which are

slowly varying functions of c. A numerical solution of (47), though

not to a very high accuracy, yields the following values for a and b:

a = .484 * .0005

(50)b - 1.156 *.ool

On the basis of a nodel we plan to discuss in a subsequent report, we

expect the ratio b/a 2 to be equal to j2 and this is in agreement with

(50) within the precision of our calculations. Hence we write:

1g (51)

for very small

It is also useful to consider the states of minimum energy for the

case where a is anal, and hence p and e are both snsll. Equations

(39)-(41.) Yield inndiat.1oy the as•mPtotic limits:
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2. ,(52)

provided p or o is very small.
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C. States of Maximum Energy

For a given value of total spin B,. we expect the states with the

maximum energy in class C to be associated with sets of integers of the

form (18). The calculation of energy as a function of S may be carried

out in complete analogy with the procedure in Section III B above. Thus

Eq. (34~) must be replaced by:

kbijw~ 2x+{f +f 0) #( Y)-dy (53)
I-b

and Eqs. (39)-(41) by:

e~ (55)

6- 2. f If (Ig Y d~ (56)

In analogy with (39&)-(4&a), it is possible to derive an equivalent set of

equations where the integrals run from -a to of:

0 +.( ) f (54_a)

e. (55.)



When a is small, we have, approximately,

(57)

or

(58)

provided p, is small.

The asymptotic values of e and p when a is large may be

obtained as follow using (54)-(56). First rewrite (54) in the form:

t - )-,) to I ,(59)

Since K(z) decreases as 1/z2 for large values of z, it is reasonable to

neglect K(C + 1T) relative to K(Q - Ti) on the right hand side of (59),

provided a is large and we are only interested in values of C greater

than o. Thus for large Y we have, approximately,

Hi) ('-t-e~t,4 (60)

Let a = ax, 1 a = ay, and f(61x) - p(x). EWation (60) becomes:

i1 z'x rz 41:• ' "- dy. (61)-.
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Nov as o becomes very large, the kernel &K(atx - cy) approaches

a Dirac delta function, 6(x - y). If we replace it with a delta function

inside the integral, the solution of (61) is:

10 W ,i (62)

Thus p(x) is a function of t, but only through a multiplicative constant;

otherwise it is a smoothly varying function of x. This provides an a

posteriori justification for replacing the kernel in (61) with a delta

function. Finally we obtain for p and e the results:

)o (63)

and

en ssl(64)

when p is small.
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D. Numerical Solutions of the Integral Eqtations

The integral equations (39) and (54a) were approximated by a set of

41 coupled linear algebraic equations, and these were solved on a high

speed digital computer. The results are shown in Fig. 1. The normalized

energies e , measured from the ferromagnetic ground state, and el ,

measured from the antiferromagnetic ground state, are plotted as a function

of P1 = S/N, where S is the total spin of the state, and p = i - Pl "

Note that eI = .693 - e. The lower curve, computed by means of (39)-(41),

represents not only the lowest energy for a given p, for states in

class C, but should also, according to the discussion in Section II, be

the lowest energy for all states in the antiferromagnetic chain. The

open circles in Fig. 1 are the lowest energies for an antiferromagnetic

chain containing 9 spins, while the solid circles are the corresponding

energies for a chain containing 10 spins. These energies, computed

directly from the Hamiltonian (1)9 and therefore independently of the

Bethe formalism, fall surprisingly close to the solid curve--which should

represent the limit as N becomes infinite--and thus provide additional

support for the "theorem" of Section II.

The numerical calculations provide some confirmation for the asymptotic

estimates contained in (48), (49), (50), and (51). For o = 3.0, the

numerical results are:

d.s• xio- 3  . So+

I e ,(65)

I-
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Equation (52) is also borne out by numerical calculations. For instance,

at t = .2:

(66)
e= .2333 1.51 To

The upper curve in Fig. 1 represents the maxinmu energy for states

in class C and was computed by means of (54a)-(56a). The calculations

were supplemented by the use of (54)-(56) for larger values of a. It

must be emphasized that this curve has significance only for the class C

and not for the entire energy level spectrum, as in general (except,

perhaps, for p very close to 0 or J) there will be states in class B

lying both above and below the curve. Once again, the numerical calcu-

lations confirm the asymptotic behavior for small and large a values

given by (57), (58), (63), and (64). Thus for a = .2

el0= -- oI' 1.02.9 (a,/)
Le, IL .Iss S ,9 1 • • , (67)

and for C = 10.

(68)

Y2X16 0 2 ; 3
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IV. Magnetic Ibuent and Susceptibility at Zero Teiperatue

In the presence of a mivaetto field • along the positive z axisp

there is, in addItion to the exchange energy (1), a Zeeman energ:

where , is the Bohr magneton, g the elect n g factorand S the z
iz

component of spin for the i'th atom. The lowest energy level of the chain

for a given value of total spin S in the -presence of a magnetic field will

be:

E...(E E(S) - 3A4 S (TO)

where B(S) is the lowest energy in the absence of a uagnetic field, and

thus equal to:

E(s).M 2m d, (s/w) .4+ EF (71)

By c1(S/N) - ,l(pl) we mean the function corresponding to the lower

curve in Fig. 1 and determined by Eqs. (39&)-(41&). Next, let us choose

among all the values of S the value S for vhich (70) is a minim=. This0

can be done by differentiating the right had side of (70) with respect

to S and setting the derivative equal to zero, with the result:

zTE,'( s./o)m MH (72)
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At zero temperature the free energy of the chain, F, is equal to

Emin (S ). From this one can calculate the average magnetization per

spin:

M= -' F/d14 = A So/N. (73)

The magnetization as a function of applied field is plotted in Fig. 2.

At fields in excess of 4J/gp, the magnetization is completely saturated.

There is a well defined susceptibility for values of H much less than J/gp:

The numerical constant appearing on the right side of (74) is determined

by the asymptotic expression (51), and is only known to a precision of.

about one-half percent, as indicated in the discussion preceding (51).

Strictly speaking, the result (74) holds only for the infinite anti-

ferromagnetic chain. For chains containing a finite number of atoms the

susceptibility at zero temperature in the limit of zero magnetic field is

either zero (for N even) or infinite (for N odd). Calculations at finite

temperatures for short chains containing up to 31 spins10 indicate that

(74) is probably not an unreasonable limit for the infinite chain.

HulthdnII derived, by means of a "statistical model," an approximate

value for X , identical with (74) except that the constant (2"2 1 2 - 0506

is replaced by .0593. The "self consistent" proce•"u•eused by lin" yields

in place of (22)- the constant .0556, only. o% larger than the exact vaue.

i
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Appendix A. Existence of Solutions of Zqpation (6) for States in Clao C

We shall prove that the transformation (14), under suitable restrictions,

possesses a fixed point, and hence Eq. (6) a solution. Let V be the real

r-dimensional space of vectors of the form (, . , kr) and let K

be the subset of V consisting of those vectors whose components satisfy

the inequalities:

- hi Z 1 ,t ,' -1

The function +(kJ,k,) (see (7)) is positive for kt > kj, negative

for k t < kj and continuous for all kj,kA in the interval (0,2vr) except

at the points k, - k . Hence the transformation (1) restricted to the

subset K is continuous. Furthermore the function #(kj,k.,) in either

the region k < k or the region k > i" is monotone increasing in the

first argument and monotone decreasing in the second. Utilizing this fact

one obtains the inequality:

j+ I IV-' (Aj#.- A-) (A2)'

For states in class C we have the inmpal~ty (13) which together with the

fact that 141 nImplies that

The aforezentioned properties of * together• with condition (11) .avautee

I
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the inequalities:

A comparison of (A3) and (Ai) with (Al) shows that the trensformation

(14) carries the set K into itself. The set K is closed, convex, and

bounded; this together with the continuity of (14) on the set K implies

the existence of at least one fixed point by Brouver's theorem. 1 3

I
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Appendix B. The Ledinegg-Urban Calculation

For convenience, we shall enclose eqation numbers from the paper

by Ledinegg and Urban4 in square brackets, and transcribe the equations

in our notation. Their paper is concerned with the problem of obtaining

asymptotic values for p and € (or p, and el) as a function of a in

the limit of large ot, using (39)-(41). Their results are:

•j ~ •311 e Iz•./x .t37

The result [38d] is not much different from our calculations--see (48)

and (50)--except we obtain a smaller value for the numerical constant.

However, a comparison of [37) with (49) shows a very important difference:

The exponent which appears in the latter is twice the value in the former,

and the factor -2 is missing. The numerical solutions to Eqs. (39)-(41)

support (49) rather than [37].

Ledinegg and Urban obtain their asymptotic estimate as follows. The

function f(C) in (39) (their Eq. [23]) is set equal to:

(24&a

where fo(1) is the solution of (214) given by (32). Next they assume that

4< 1 I24c)
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stating that this inequality will be Justified through an explicit calcu-

lation of the function # It is not stated whether the inequality [24c]

is to hold for ICj< a or for ICI > a. They make explicit use of [24c]

for ICI> • in deducing the approximate integral equation for 4:

[26b]

-CS

Their Justification for [24c], however, is contained in the equation:

-=(4~r [ 33&]

where p is a relatively slowly varying function of its arg ments.

This shows, indeed, that the inequality [2 4 c] is justified--but o

for JCJ < y . It is easy to prove, using their expression [33d] for 4,

that for ICa a •, [24c] is not only incorrect, but the reverse ine(amlity

holds, since for large ,

However, it is for the region >I c that the inequality [24c] most

be invoked in order to Justify (26b]. Thus we infer that their treatment

is not internally consistent.

It is, in fact, very difficult to attack (39) by a straightforward

perturbation approach, since el, which is of the order of exp(-WC), turns
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out to be the difference between two much larger terms, both of order

exp(-+la). The advantage of (39&)-(41l) over (39)-(41) for the case of

large t consists precisely in the fact that no such near cancellation

occurs in calculating either gI or 01. Even the zeroeth order approxi-

nation to (39a)--replacing f(C) by f0 ())-leads to the correct functional

forw for the asymptotic values (48) and (49), although not to the correct

numerical coefficients.

I



Figure Captions

Fig. 1. Highest and lowest energies for states in class C as a function

of the total spin S. The circles represent the lowest energies for

finite chains containing 9 and 10 atoms.

Fig. 2. The magnetization as a function of field for the antiferro-

magnetic linear chain at zero temperature.
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