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A Class of Energy Levels for the Heisenberg Linear Chain. I.

Robert B. Griffiths*

Abstract

The highest and lowest energles as a function of the
total spin are computed for the class of "unbound" states
in the Bethe formalism for the linear chain of spin % atoms
with a Heisenberg exchange interaction between nearest
neighbors. In addition, the magnetization as a function
of magnetic field is calculated in the limit of zero tempera-

ture for an infinite antiferromagnetic chain.

¥National Science Foundation Postdoctoral Fellow.




I. Introduction A

The properties of antiferromagnetic insulators are oftgn discussed
on the basis of the Heisenberg model of excha__nge between neighboring
atoms. Calculations for two and three dimensional lattices invariably
proceed by means of approximations whose validity is difficult to judge.
Hence there is still some interest in examining the one dimensional case,
for which a certain amount of progress has been made toward an exact
solution.

Bethel showed that the eigenvalue problem for a chain of N spin %

atoms with Hamiltonian

M= 172 Si*Ji

(=i

z

,§N+l = Sl (1)

where §1 is the spin operator for the i'th atom and J the "exchange
integral," could be reduced to that of finding the solutions to a set of
coupled transcendental algebraic equations. Using this procedure, Hulthén2
calculated the exact ground state energy for an infinite antiferromagnetic
(7 > 0) chain; and des Cloizeaux and Pearson> have recently calculated
the energies of the lowest-lying excitations or "spin waves."

A certain subset of the eigenstates in the Bethe formelism are
"unbound"; this nomenclature is made more precise in Section II below.
The unbound states are of particular importance in discussing the proper-
ties of the antiferromagnetic chain, since they includs the aatiferro-

magnetic ground state and the dss Cloizeaux and Pearson "spin waves."




The present report is concerned entirely with the unbound states. 1In
particular we compute in Sections III B, C, and D the minimum and maximun
energies for unbound states having a given total spin S, as a function of
S. The minimum energies are of particular interest since there is good
rela.son to believe that they also represent the minimum energies of all
states in the chain (for a given S). This permits a calculation (in
Section IV) of the magnetization of the antiferromagnetic chain as & func-
tion of magnetic field at zerd temperature.

The Bethe formalism for treating thé eigenvalue problem is summarized
and discussed in Section II. A small contribution towards the formidable
task of making the formalism fully rigorous 1s contained in an existence
proof in Appendix A. The derivation of the Hulthén integral equatiom,
upon which the work in Section III B, C, and D depends, is summarized in
Section III A. '

The results of our computations do not agree with a previous calcula-
tion by Ledinegg and Urban.h The reason for the discrepancy, which we
believe to be an error in their computations, is discussed in Appendix B.

By considering the detailed energy level structure of the class of
"unbound" states, one can also say something about the free energy of the
antiferromagnetic chain at iow tempera.turés. This discussion will be

deferred to another report.
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II. The Bethe Equations

Consider a linear chain of N spin % atoms, closed upon itself, with
Hamiltonian (1). Assume that J is positive, that is, the interaction is
antiferromagnetic. The largest eigenvalue of H', corresponding to the

ferromagnetic ground state, is

= L
E. = 1t NT, (2)
while the lowest eigenvalue, the energy of the antiferromagnetic ground
state, 1s°

E~F=N7l‘;:-1h,2) (3)

in the limit of very large N.
Choose as basis vectors states for which all spins in the chain are

either "up" or "down" with respect to the 2z axis., Let Ynln n
2... r
be a state for which the spins oy, n2, . « .y D are down and all other

spins are up. Any state with 2z component of spin equal to N/2 - r

may be written as a linear combination of such states:

= » b
‘? Za(”“"z'.--, ”r) ?". ”t ___nr ( )
where the summation extends over all sets of r (distinct) indices Dy

. X '

The eigenfunctions discussed by Bethe™ are of the form:

) v '_ - _ :
a(n., ", ceney) Ny )= 2 exp ;(J_Z"hpj "; 4-.&5‘ ’ﬂ,, y ) (5)

P
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vhere the summtion extends over all r! permutations of the integers
1, 2, . . ., r among themselves; PJ is the image of J under the P'th

permutation. The "wavevectors" k 3 satisfy the equations:

Nk, =2a): + = ¢ 2 1,2, " (6)
J J 1‘+‘) 4 J it } !

where the )}'s are integers between O and N-1, and the ¢'s are defined by:
cot § §;y= % (cot 3 ky - cot k)

- < .. < 7
RS 4y (1)

Let E be the energy of the eigenstate, and define the "normalized

energy" ¢ by:

€= (€, -E)/(2TN), (8)

5

a quantity which is obviously non-negative. Similarly define € by:

€ =log2-€ =(€-Epr)/ (27W), (9)

The energy of the state (5) is given by

G.N"Z (l—(.as k,) . ) (1c)

FE]

With each eigenstate of the form (5) there is assoclated a set of
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integers A ;j ‘through (6). The order of the Aj is obviously unimportant.
Furthermore, a state with some of the A; equal to zero has the identical
energy and total spin (though not the same 2z component of spin) as the
corresponding state for which all the zero A 's have been eli.mina.'laecl.2
Thus without loss of generality we can restrict the discussion to sets

of integers such that
0<A €A, £... £A_ KN . (11)

Since the chain is closed upon itself, each eigenstate may be charac-

terized by a wave number q given by:

q=2aN"Z ) (md N) =3 k (mod 27), (12)
4 /

(Note that g, = - ¢,,-)

Although the sum of all the k, is real, individual k values may

J
be real or complex. This fact, among others, makes the discussion of the
existence of roots of Eq. (6) rather difficult. The following questions
have not been discussed (to the best of our knowledge) in any adeguate
sense: For what choices of sets of integers /"- does (6) possess a solu-
tion? 1If there is a solution, is it uniéue? Given a solution to (6),
what are the conditions Quch that the wave function (5) does not vanish?
Are the wave functions corresponding to different sets of A i llinear]y
independent? Can all, or at least almost all, the elgenfunctions of the

chain be written in the form (5)?6




It is convenient to divide the eigenstates of the iorm (5) into
two categories, the "bound" states and the "unbound" states. The latter
category containe the states for which all the kJ are real, the former
the states for which at least some of the k‘j are complex. There ig a
corresponding division of the sets of integers { Aj} . The reason for
the terminology "bound" and "unbound" is to be found in Bethe's discuss:lon7
of the case r = 2, He shows that complex k values correspond to & state
in which Ia(nl,n2)|2 decrens?s exponentially as |n2-n'l| increases; i.e.,
two spin waves interact with each other to form a bound state.

In particular Bethe's calculations indicate that the class 08 con-

sisting of those sets of integers for which
Aiss 22X #2 | (13)

is satisfied are unbound. We shall denote by B the class of all states
for wrich (13) is not satisfied. Class B also contains some unbound
states, although Bethe's computations suggest that the relative number
of such states is small.

In our calculations below we shall be concerned entirely with states |
of class C. We shall assume that each set of integers satisfying (11) and
(13) gives rise to a single state (or, rafher, a multiplet of degeneracy
26+1, vhere S 1s the total spin of the state) for which all the k values
are real, and that etates corresponding to different sets of integers in

- class C are linearly independent. A certain (but far from complete!)

Justification for these assumptions is to be found in the calculations of
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des Cloizeaux and Pearson> and the author’ on finite chains; and in &
proof of the existence of solutions tc Eq. (6) which will be found in
Appendix A.

The importence of the states in class C for the problem of the anti-
ferromagnetic chain comes from the following "theorem"”: For a given
total spin S, the state with the lowest energy (for antiferromagnetic
coupling) belongs to class C. The "theorem" has not been proved, although
it is supported by the aforementioned calculations in references 1 and 3,
and also by the results of this paper (see Section III D and Pig. 1).

Some insight into the structure of Eq. (6), at least for real values
of the k 5 is provided by regarding it as a non-linear transformation

of the vector (kl, o o ey kr) into another vector with components:

kj = 2VN.' AJ. + N-‘4€J)4[k"lk‘) , (lll-)

where for 035 we have written *‘ka’kz)'- A solution to (6) is a fixed point
of the transformation (14). Suppose that we attempt to solve (1) by

is:

iteration. A sensible starting value for k 3

8 = 2ry 1A (15)

vwhich lies within the interval (o, 2n). It kd and lL_L are both in the

interval (0, 2n) and k, is greater than I;J, then_q;(ka,kl) is positive.

Hence the second term on the right hand side of (14) represents an "attrac-

tive force" between pairs of wavevectors. Thus if, for example, the initial

i - o e« R U oY QO VR P
it s b o o S 8 1 PRSI ST AT 95 AR 7 18 S——
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values k 30 are distributed uniformly over the interval (0, 2n), suc-
cessive iterations of (1l4) will lead to an increase in the density of -
the k J's near n and a decrease at the end pointe of the interval, O and
2n.

If the starting values for k 3 and kJ+l are too close together, -
successive iterates of (14) may eventually lead to a "collision" in which
kj+l = kJ' But a solution of (6) for which two of the kj's coincide is
trivial in the sense that the corresponding wavefunction (5) vanishes
identically. A possible remedy for this situation is to make the two
kJ's complex, with imaginary parts of opposite sign, resulting in a
"bound state.” Condition (13) for states in class C insures that the

initial values of adjacent k, are far enough apart so that no "ecolli-

J
sions" will occur. These considerations are further developed in
Appendix A.

As a first step in examining the energy level structure of class C
we shall investigate the highest and lowest energies for a given value
of S, the total spin. If the value of r (and thus S) is fixed, Eq. (10)
indicates that ¢ Will be & maximm when the k, are near the center of |
the interval (0, 2n) and a minimm when they are distributed at the two
ends of the interval. On the basis of (15) and the discussion following
that equation, it is reaabmble to assume (although we have no proof)
that the former condition 1s achieved when the ),’ are near the center of
the interval (0,N) and the latter when they are distributed a£ the two

ends of the interval. Further recall that ¢ measures the energy
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from the ferromagnetic ground state, vhereas we are interested in ma.dmum

and minimum energies for antiferromagnetic coupling. The foregoing argu-
ment leads to the following choices for a given value of S = 3N-r:

Minimum energy:

!
A. ‘.{N-r.‘-l, A_“-' A. +2) l\,‘-' A,"") et ) AV = '%N{'r-, . (16)

In particular, the antiferromagnetic ground state (S=0) corresponds to:

>
n
D
»

"
W
U)—
1}

S-/ Ty ’\N/; = N-| . (17)

Maximum energy:
A'g‘JA“ 3,,,. A

Ao = N=Cr=1), Aepnea=N-(r-2), ... A, =N-] . (8

We have tacitly assumed in writing (16), (17), and (18) that N and

r are even; minor modifications are required if one or the other is odd.




III. The Hulthén Integral Equation

A. The Antiferrom@etié Ground State

Consider the antiferromagnetic ground state which corresponds to
the set of integers (17). For large N it is reasonable to replace Eq. (6)
by an integral equation in the following manner:2 Let x be a continuous
variable on the interval (0,1). Replace A; by Mx, k; by k(x), and

Eq. (6) by

- .
Nkt =2zNx + 4 ] dluy)dy (29)
where
ot § Hlay) » 4 Lokt - et § k)]

- e
Rfdew, : (20)

The normalized energy ¢ (see Eq. (10)) is given by:

f _
€, = %'jo [1-cos k(x)]dx- (22),

In place of the non-linear Eq. (19), Hulthén obtained a linear equa-
tion by first differentiating both sides of (19) with respect to x and
then introducing dx/dk @&s the new unknown function and k as the new
ind.epend.exlat variable, resulting in the equation: ‘

w
[= 7dx ¢ - (dx/dn’) dk’
dh S'in‘ik. ) 110
4 +(cAih -cotih’)

(22)
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St111 another oh.ngo of varisoles:
€= cot —;_ k
f.(5) = -dx/ds (23)
permits (22) to be rewritten in the form:
£.(3) = 9. (%) -J_“k(?-n};.("l)d’l (@)
where
9,(5)= (2/z)(1t%*)"
(25)
K(s-%) = =) 4 _ant - .
) = (2/=) [4+(3-%)*] , (=)
and, furthermore,
€ 'L. £.(s) 0+ %) ag, (27)

Hulthén solved (24) by successive iteration. For our purposes it is

convenient to write the solution in the form

L= 000 -[_RO-mgmim

where the resolvent kernel R(x) may be written as an infinite sum:
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Rin= L § 20 ()"

n ns | @n)t + x‘]_ ’ (29)
or as an integral:
R(X) - _:__j Sech (77/3) JY ' (30)
17 J 1+ (yix)?

The following is an important relationship between the kernel K and its

resolvent R:
f_:K(t-n)R(ﬁ-r)M= k(s-3)-R(%-%) (31)

The solution to (24) 1s:
£,(5) = 4 sech L ()

and the corresponding energy is:

€, = IOJ 2, (33)
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B. States of Minimum Energy

Hulthén's procedure outlined above (with some changes in notation)
may be applied with only minor modifications to the more general problem
of finding the energies associated with states corresponding to the sets
of A values in (16) and (18). Consider first the states of minimum

energy, (16). Egquations (19) and (21) must be replaced by:

{ +a
R = 2xx+ | Blay)dy

(34)
b
144
€= —'.;_f [1- cos R(x)] dx ) (35)
3 -
with a determined by the requirement that
W-s=r=N . (36)

In place of r and S5 1t is convenient to inmtroduce the abbreviations:
g= r/Nn
e\

"
“n
3
’
{~
|
D

(37)
Equation (34) may be transformed by the same procedure used with (19).
¥ = cot 3"‘_

fls) = -dx/d3 . (38)




;
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The resulting linear integeral equation 152:

9= ol [" k(s-m)fm)dy, (39

with limits of integration determined by the requirement:

{44
p=a= l,fi Ay = -1 J(ung)d; =4 j $(3)d% - (40)

>

The normalized energy ¢ is equal to:

5‘]‘”’5) U+rsy)7ds (k1)
-‘ *

The quantity of interest is, of course, ¢ regarded as a function of p .
The most convenient procedure to follow in deducing this function,
however, is to choose a value of o , solve (39), and then obtain p

and ¢ by means of (40) and (L1).

In Egs. (39)-(41), only the values of £(£) for |g| < o are employed.
However, f(g) may be defined for values of |€| > a by means of (39) and
thus extended to a function on the entire real axis. This extended func-
tion also satisfies a different integral 'eq,xation. Multiply the right
and left hand side of (39) by R(¢ - €£) and integrate with respect to €
from - » to + ». By interchanging the order of integration on the right
band side and utilizing the relations (31), (28), and (39), éhe obtains the

equation:

P =at) 4 ([ ¢ [[) RG-m fomiin,

,,,,, et L e e paesres o et e iy o
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Similarly, 1.n'puce of (40) and (41) one has:
€= €,-€ = @ L f(5)4(5)d% . (k1a)

Equation (40a) is obtained by integrating both sides of (39) from - « to
+ «, noting that

j 9o (3)dy = 2 | j "(’s)d'f . (42)

To obtain (4la), multiply the right and left hand sides of (39a) by

(1+¥2)7 = {79, (¥)

and integrate from - o to + ». By interchanging the order of integration
on the right hand side and utilizing (27), (28), and (41), ome arrives at
the result (4la).

The equations (39a)-(4la) are particularly useful in the problem of
obtaining the asymptotic bebavior of € and Py wvhen o« 18 large; i.e.,
vhen ¢, and p, are small. This asymptotic behavior is of particular
interest since it determines the magnetic susceptibility in small magnetic
fields vhen the tempersture is zero, as shown belov in Section IV. An
investigation of this problem by I.eamcgg and Urban" utilizing Eqs. (39)-
(41) appears to be in error due to some un.mauned approximations. We

'IMJ.' discuss their calculation further in Appendix B.

. RR— 3 e St S A A o o TR M1 4 s L2 S et ot ot SO IO
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Since £(£)=f(-£), (39a) may be rewritten as:

f(s) =4.(g)+ f:[ R(?—ﬁ)m(wﬂ)]f-lﬁ)ln. (43)

Furthermore, since

-ire -3y

. .-J
e -e <f(v) <e 273 , ()

we are clearly justified in replacing fo(g) by exp(-ing) in (43) and
(41a) in order to obtain an asymptotic solution for large o. Note that
only values of & and 17 greater than o come into consideration in

solving the integral equation and evaluating and Py For large

€1
values of 3z,

= )~}
R(#)= R(-2) ~ (2% 2%) ; (45)

therefore, provided o 1is very large, it should be possible to neglect
R(E + 1) relative to R(Z - 1) in (43).

Next define;
p(3) = eA™ £(v+4) (16)

and rewrite (43), using the approximations introduced in the preceding

paragraph, in the form:

_4 - | :
'p(x) -e 37" +f,"(""’?41."7)47 .. (1)




The quantities € and p, ore glven by:

3 T

o = e (‘{ Lnrfx)d¥)= ae” (48)

T [*. - ‘
€% e “(u].c “pdx) = Le Ft . (19)

Numerical solutions of (39) confirm the exponential variation of
p, and ¢, predicted by (48) and (49), with coefficients which are
slowly varying functions of «. A numerical solution of (4T), though

not to a very high accuracy, yields the following values for a and b:

a = om + -0005
(50)
b = 1.156 + oWl
On the basis of & model we plan to discuss in a subsequent report, we
expect the ratio b/ea.2 to be equal to %na, and this is in agreement with

(50) within the precision of our calculations. Hence we write:

(51)

for very small Py ‘
It is also useful to consider the states of minimum energy for the

case vhere o 1s smll, and hence p and ¢ are both small. Equations

" (39)-(41) yield immediately the a-yngtotic'linath
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P~ 2a/%
€ ~ ZP . (52)

provided p or o 1is very small.
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C. States of Maximum Energy

For a given value of total spin 8, we expect the states with the
maximum energy in class ¢ to be assoclated with sets of integers of the
form (18). The calculation of energy as a function of S may be carried
out in complete analogy with the procedure in Section III B above. Thus
Eq. (34) must be replaced by:

kix)= 22x + .”'(f: +j‘ ) 4’()‘;1)’1)4 (53)

1-b
and Egs. (39)-(41) by:

F)=at5) - ([7+[7) kts-n) $0m) (sh)

e=] f(3)d4s (59
€ = 1[‘;(3) (r+82)"dy . (56)

In analogy with (39a)-(4la), it is possible to derive an equivalent set of

equations where the integrals run from - to o :

FO) 2 09+ SR Sdn

4
i
b4
3

P = '%.j:;(!) Ay | ‘ (558) |

DI o VSR TEI EGE ' Eha A ! & S e A Tt W RN R b e N S A oL 2 B e S £ oAU TSI
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. « ‘
€ =x) L(¥)#(3) 45, (s60)
When o 1is small, we have, approximately,
b~ 1" o
‘ (57)
€ ~ -z'- ne
or
€~ e (8)

provided Py is smwall.:
The asymptotic values of ¢ and p when o 1is large may be

obtained as follows using (54)-(56). First rewrite (54) in the form:

f(%)- 9.(1;)-j:[k(s-'n) k(3 +) ] §(m)dy, (59)

Since K(z) decreases as 1/z2 for large values of 2z, it is reasonable to
neglect K(g + 1) relative to K(g - 1) on the right hand side of (59),
provided o 1s large and we are only interested in values of £ greater .

than o. Thus for large o we have, approximately,

HY) = 2029) - [k-n) ody. )

Let ¢ - ax, 1 =oy, and f(ax) = p(x). Equation (60) becomes :

pl) = 2(7atx)"'- j& K (4x-dy') ply)dy. | (61)
'
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Now as o becomes very large, the kernel oK(ox - ay) approaches
a Dirac delta function, &(x - y). If we replace it with a delta function

inside the integral, the solution of (61) is:

p(x) = (7atx)” . (62)

Thus p(x) is a function of «, but only through a multiplicative constant;
otherwise it is a smoothly varying function of x. This provides an a
posteriori justification for replAcing the kernel in (61) with a delta

function. Finally we obtain for p and ¢ the results:

e~ /(70 (63)
€ ~ 2/(37a?)

and
€~ % 7:‘6,3 (64)

vhen p 1is small.

[Rp— e FolR SN TUIRGTR e n S o MO — o 2 R LR Bt wn e 3 RGP e g - o
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D. Numerical Sol;ltiom of the Integral Equations

The integral equations (39) and (Slya) were approximated by a set of
41 coupled linear algebraic equations, and these were solved on a high
speed digital computer. The results are shown in Fig. 1. The normalized
energies ¢ , measured from the ferromagnetic ground state, and € »
measured from the antiferromagnetic ground state, are plotted as a function
of p, = 8/N, vhere S is the total spin of the state, and p = 3-p, -
Note that ¢, = .693 - ¢. The lower curve, computed by means of (39)-(kl1),
represents not only the lowest energy for a given Py for states in
class C, but should also, according to the discussion in Section II, be
the lowest energy for all states in the antiferromegnetic chain. The
open circles in Fig. 1 are the lowest energies for an antiferromagnetic
chain containing 9 spins, while the solid circles are the corresponding
energies for a chain containing 10 spins. These energles, computed
directly from the Hamiltonian (1)9 and therefore independently of the
Bethe formalism, fall surprisingly close to the solid curve--which should
represent the limit as N becomes infinite--and thus provide additional
support for the "theorem" of Section II.

The numerical calculations provide some confirmation for the asymptotic
estimates contained in (48), (49), (50), and (51). For « = 3.0, the

numerical results are:

b= As31x10°3 = 504 @ FT

€, = 3.3 %00°F 2 1.063 é"""

(65)
€| = 4.57(,‘1 = .926 ({7‘-1‘0‘&)

Lo | RSN, 3
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Equation (52) is also borme out by numerical calculations. For instance,

at o = .2:

p=.1g2 =.92% (2a/7)
(66)
€= .2333 = |, 97
F
The upper curve in Fig. 1 represents the maximum energy for states
in class C and was computed by means of (54a)-(56a). The calculations
were supplemented by the use of (54)-(56) for larger values of o«. It
must be emphasized that_ this curve has significarce only for the clases C
and not for the entire energy level spectrum, as in general (except,
perhaps, for p very close to O or %) there will be states in class B
lying both above and below the curve. Once again, the numerical calcu-
lations confirm the asymptotic behavior for small and large « values.
given by (57), (58), (63), and (64). Thus for o = .2
p=-05I45 =1.029 (a/#)

€ = .159] =.984 (7 p,) ()

and for o = 10.
p=03369=losF (z4)"
(68)
€= 252110021002 (2 R*0%/3),

T T P 2 i AR 5 S T R RS St SRS M TR o e RS A N AR & A Bres W bl WO SO AT T
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IV. Magnetic Moment and Susceptidility at Zero Temperature
In the presence of a magnetic field H along the positive 2z ud.l,
there is, in addition to the exchange emrgy (1), & Zeeman energy:

Hg = 9«H Zsie @

vhere . 1s the Bohr magneton, g the eleqtmn -4 facto_r,a.nd S1z the =z
component of spin for the i'th atom. The lowest energy level of the chain
for a given value of total spin S in the presence of a magnetic field will
be:

Enin (5) = E(S) ~quHS - (10)

vhere B(S) is the lowest energy in the absence of a magnetic field, and
thus equal to: |

E(S)= 2NT €,(s/N) + €4, (1)

By cl(S/l!) = el(pl) ve mean the function corresponding to the lower
curve in Fig. 1 and determined by Eqs. (39a)-(lla). Next, let us choose
among all the values ofstheva.l@ Soforuhich (70) 1is & minimum. This
can be done by differentiating the right hand side of (70) with respect
to O and setting the derivative equal to zero, with the result:

2T € (S./N) =quH .‘ .- ()

oo b,
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At zero temperature the free energy of the chain, F, is equal to
Emin(so)' From this one can calculate the average magnetization per
spin:

M= =N" dFfiH = 9quSe/N, (13)

The magnetization as a function of applied field is plotted in Fig. 2.
At fields in excess of loJ/gp,, the magnetization is completely saturated.

There is a well defined susceptibility for values of H much less than J/gy:
%= g?ur/ (24 T) . (74)

The numerical constant appearing on the right side of (74) is determined
by the asymptotic expression (51), and is only known to a precision of.
about one-half percent, as indicated in the discussion preceding (51).
Strictly speaking, the result (T74) holds only for the infinite a.nfi-
ferromagnetic chain. For chains containing a finite number of atoms the
susceptibility at zero temperature in the limit of zero magnetic ﬁeld is
either zero (for N even) or infinite (for N odd). Calculations at finite
temperatures for short chains containing up to 11 spinsi® indicate that |
(74) s probably not an unreasonable limit for the infinite chain.
Hulthe‘nn derived, by means of a "nﬁtistictl model, " an tpproxlh.te
value for X , identical with (7h) except that the constant (2n2)™t = 0506
1s replaced by .0593. The "self consistent” procedure used by Fainl’ yields

" 1in place of (2n°)"! the constant .0556, cnly 10% larger than the exact valus.’
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Appendix A. Existence of Solutions of Equation (6) for States in Class C
We shall prove that the transformation (1l4), under suitable restrictionms,
possesses a fixed point, and hence Eq. (6) a solution. Let V be the real '
r-dimensional space of vectors of the form (kl, ké, e, kr) and et K '
be the subset of V consisting of those vectors whose components satisfy -
the inequalities:
k, 227 ¥
Ry ¢ 25 (1-n~7) S (A1)
;- k; Z27 V)
The function ’(kJ,,k!’) (see (7)) ie positive for k > k,, negative

)
for kz < kJ and continuous for all kJ,k‘ in the interval (0,2r) except
at the points kJ = kz. Hence the transformation (14) restricted to the

subset K 1s continuous. Furthermore the function «kd’k z) in either
the region k.1 < k‘ or the region kJ > k‘ is monotone increasing in' the
first argument and monotone decreasing irn the second. Utilizing this fact

one obtains the inequality:

/ V4 - ' .
kih - k)' L “)’h" AJ') 2N ¢("a', h)‘ﬂ) . (a2)

For states in class C we have the inequality (13) vhich together with the

fact that |¢|< n implies that
/- .
kip, ~kj 2 27N (a3)

The aforementioned properties of ¢ together with condition (11) guarantee

ot s U P LA R R T T Tt e i aenn
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the inequalities:
R 227w
k' €27 (1-~") : (Ak)

A comparison of (A3) and (A4) with (Al) shows that the transformation
(14) carries the set K into itself. The set K 1is closed, convex, and
bounded; this together with the continuity of (14) on the set K implies

the existence of at least one fixed point by Brouwer's theorem.l3

© s b—




Appendix B. The Ledinegg-Urban Calculation

For convenience, we shall enclose equation numbers from the paper
by Ledinegg and Urbe.nu in square brackets, and transcribe the equations
in our notation. Their paper is concerned with the problem of obtaining
asymptotic values for p and ¢ (or p, and ¢)) as & function of o in '

the 1limit of large o, using (39)-(41). Their results are:
ol "~ ‘
e, ~.518e " [384)

R L

The result [38d] is not much different from our calculations--see (48)
and (50)--except we obtain a smaller value for the numerical constant.
However, a comparison of [37] with (49) shows a very important difference:
The exponent which appears in the latter is twice the value in the forﬁer,
and the factor a-2 is mssing. The numerical solutions to Egs. (39)-(41)
support (49) rather than [37].

Ledinegg and Urban obtain their aaymptot:l.é estimate as follows. The

function £(€) in (39) (their Eq. [23]) is set equal to:
£(3) =4, (s) + ¢l%) [24a)

where ro(;) is the solution of (24) given by (32). Next they usmie that

'4""'/;0(‘) 108 l')' | : [2ke]
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stating that this inequality will be justified through an explicit calcu-
lation of the function ¢ It is not stated whether the inequality [2ke]
18 to hold for |g|< o or for |Z] > a. They make explicit use of [2lc]

for |g€|> a in deducing the approximate integral equation for ¢:

é(x) = J_: *f:) K(3-7) 4, () dv

[26b]
(]
- [ K(s-7) $tz) .
- O0 ,
Their Justification for [24c], however, is contained in the equation:
A=
¢(%) = (4z)”" e? “[&(« t5) +&(a-3)] [33a]

vhere § 1s a relatively slowly varying function of its arghments.

This shows, indeed, that the inequality [2kc] is justified--but only

for |g| <a . It is easy to prove, using their expression [33d] for 3,
that for |;| > a, [24c] 15 not only incorrect,'but the reverse inequality

holds, since for large € ,

(%) ~ e 175 . )

ol

However, it is for the region |g| > o that the inequality [24c] must
be invoked in order to Justify [26b]. Thus we infer that their treatment
is not internally consistent.

It is, in fact, very difficult to attack (39) by a streightforward

.perturbation approach, since 6 which 18 of the order of exp(-nma), turns
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out to be the.difrerence between two much larger terms, both of order

exp(-dna). The advantage of (39a)-(Lla) over (39)-(41) for the case of
large o consists precisely in the fact that no such near cancellation
occurs in calculating either

or Even the zeroeth order approxi- .

¢ 0q+
1 1
mation to (39a)--replacing £(£) by fo(g)--leéds to the correct functional
forw for the asymptotic values (48) and (49), although not to the correct

numerical coefficients.
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Figure Captions

Fig. 1. Highest and lowest energies for states in class C as a function
of the total spin S. The circles represent the lowest energies for

finite chains containing 9 and 10 atoms.

Fig. 2. The magnetization as a function of field for the antiferro-

magnetic linear chain at zero temperature.

b s e P R TR SR e L S AR AT b s L PR s 2 7 VR RS VR 3 RSN G A, AN s ol 8 e



mmv NNy s o s+

© ks

Footnotes

1.
2.

13.

H. Bethe, Z. Physik T1, 205 (1931)..

L. Hulthén, Arkiv Mat. Astron. Fysik 26A, No. 11 (1938).

J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131 (1962).

E. Ledinegg and P. Urban, Acta Physica Austriaca 6, 257 (1953).

Our definition of ¢ is smaller than that given in references 1, 2,
and 3 by a factor i

It is known that there are certain eigenstates of (1) which cannot
be expressed in the form (5) except, 'perha.ps, as limiting cases,

See reference 1, p. 214, and reference 3.

Reference 1, p. 21k,

Notation of reference 3.

R. B. Griffiths {unpublished).

J. C. Bouner and M. E. Fisher (to be published).

Reference 2, p. 7T8.

Reported in V. L. Ginzburg and V. M. Fain, J. Exptl. Theoret. Phys.
(U.S.8.R.) k2, 183 (1962) [Soviet Phys. JETP 15, 131 (1962)].

G. T. Whyburn, Avalytic Topology, Amer. Math. Soc. Colloguium Publi-
cations, Vol. XXVIII (A-a'iéln'lhthontioll Society, New York,1942),
p. 243, |

T T R i S



o e s e oA AR I

N/S="d

—
.
—

“!r"'_






