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ABSTRACT

This investigetion studies optimal control of linear sampled-data
systems where the control 1s subject to saturation. The system is de-
scribed by the state-space method. The control is considered to be
optimal when it minimizes a performance index which is defined as a sum
over the sampling instants of a quadratic function of the states and
controls.

ution begins with the Principle of Optimelity. A form is
for the optimal return function, and recurrence relations are
ed for the one-input case which are different depending on whether
e optimal control 1s or 1s not ssturated. The optimal control is
hown to be a piecewise linear function of the states. A computing
thod that uses the recurrence relations to solve the infinite stage
regulator problem is presented and discussed in detail. This method
equires less computer time and memory than would straight dynamic pro-
ng.
Both one- and two-input control are considered. The two-input case
requires a third set of recurrence relations for use when one input is
saturated and the other is not. More inputs can be handied using the
same methods, but the complexity increases rapidly with the number of
inputs. A detailed discussion of a simple method for finding the mini-
mum of a positive definite quadratic function in two variables subject
to the constraint that the minimum be on or within a rectangle is pre-
sented.

Four examples showing the optimal control of second-order systems
determined by the computing method given in this report are presented
and discussed.
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I, INTRODUCTION

A. OUTLINE OF THE PROBLEM

As an example of the problem investigated in this report, consider
& space vehicle whose attitude is to be controlled by reaction vheels
or gyros. Various disturbances, perhaps impulsive as from collisions
vwith micrometeorites, produce an error in attitude which must be cor-
rected. In applying the control, the integral over time of the attitude
squared-error plus the squared-control is to be minimized,

Because the control torgue is subject to saturation, a nonlinearity
is inherent in the system, Thus it is expected that the optimal control
will be a nonlinear function of the states of the system--the attitude
error and velocity. This optimal control function is to be stored in a
small special-purpose digital computer called a digital controller,

The introduction of a computer makes the system sampled-data, The
computer determines fram the states of the system at each sampling in-
stant the correct optimal control to apply over the next sampling
interval,

8ince the system 1s now sempled-data, rather than minimize an inte-
gral it is logical and convenient to minimize the sum over time of the
attitude squared-error plus the squared-control at the sampling instants.

More generally, this investigation studies optimal control of linear
sampled-data systems where the control is subject to saturation, The
system will be described by the state-space method developed by Kalman
end Bertram [Ref. 1].

At each sampling instant the system is assigned a performance number,
which is a quadratic function of the state error and control, The sum
of the performance numbers over & given number of samples is called the
performance index., Only the transient regulator problem..that of finding
the control sequance which, from a given initial condition with no ex-
ternal disturbances and no comsands, minimizes the performance index--
will be considered,

e sampling rate is often fast enough that a sampled-data system

oo be closely 59 , for the purpose of analysis, by & continuous
e s , however, the ssapling rate is considered

o
-1- SUDAER-148
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to be slov enough that the sampling procees introduces significant
effects into the performance of the systenm,

B. SUMMARY OF RELATED WORK

There is a considerable body of literature on the subject of optimal
control of sampled-date systems, but almost no mention of the specific
problem presented here,

Using the Principle of Optimality, the problem without constraints
on the control was solved by Kalman and Koepcke [Ref. 2], They show
that for the infinite stage regulator problem the optimal control takes
the form of stationary, linear feedback gains., Work on this problem
was also done by Henry [Ref. 3].

Several researchers have worked on the problem investigated here,
though using minimum time response as the criterion of optimality.

Among these are Kurzweil [Ref. 4], Desoer and Wing [Ref. 5], and Kalman
[Ret. 6].

Merrian [Refs. 7, 8], using his parametric expansion method, has
studied the problem in the continuous case.

Bellman's computational method of dynamic programming [Ref. 9] solves,
anong others, problems of the type studied here when the dimension of
the state vector is small. The special problem of this report, minus
constraints on the control is mentioned by Bellman and Dreyfus [Ref, 10].

Quadratic performance criteria have been used by many researchers in
both the continuous and sampled-data cases.

The state-space method of describing linear sampled-data systems is
discussed in detail by Kalman and Bertram [Ref. 1], Kalman [Ref. 11],
Gunckel [Ref. 12], and Rauch [Ref. 13].

C. OUTLINE OF NEW RESULTS

For the first time in the literature the problem of computing the
optimal feedback coefficientes of a sampled-data system with bounded con-
trol using quadratic performance criteria 1s discussed in detail.,

In Chapter II a maethematical description of the system and the per-
formance criterion is given, end the problem formulation is presented.
Two exsmples using this formulation are discussed,

SUDAER-148 .2 -



Recurrence relations necessary to the computation method are derived
in Chapter III for the single-.control case., The optimal control is
shown to be a plecewise-linear function of the states.

In Chapter IV a general computing method is presented for the single-
input case, and problems connected with the computations are discussed
in detail. The method is also compared with dynamic programming. It is
shown that, because it takes advantage of the information contained in
the recurrence relations, the method developed here requires much less
computer time and memory than would dynamic programming.

Chapter V extends the work to the case where the system has two con-
trolling inputs. Extension to systems with more inputs presents no
formal difficulties but is not discussed due to its complexity.

Results of computer solutions of four examples are presented and
discussed in Chapter VI.

-3- SUDAER.148



II. STATEMENT OF THE PROBLEM

This investigation considers thogse sampled-data systems that can be
adequately described by linear.difference equations. These equations
will be written in the state-space form used by Kalman and others. For
conciseness, vector.matrix notation will be used throughout.

A, THE SYSTEM

The plant, or system to be controlled, is described by the linear
vector-difference equation

z(n + 1) = ¢z(n) + su(n) (2.1)
and the vector equation
Z(n) = ME(H), (2.2)

where z(n) 1s an (m x 1) state vector,
y(n) 1is a (p x 1) output vector,
u(n) is a (q x 1) input (control) vector,
® is an (m x m) transition matrix,
& 1s an (m x q) distribution matrix,
M is a (p x m) output matrix.

All vectors are considered to be column vectors. Row vectors will
be written, for example, as ET(n), where T denotes the transpose
operation. 31[_(n) is the measurable output vector. If all the states
are directly measurable, then M 1is the identity matrix.

Since physically the control variables cannot be unbounded, each
element of the control vector E(n) is bounded from below by the
corresponding element of a vector c_x_' and from above by the vector
a'. That is,

¢ Sum) <o (2.3)

The control vector u(n) will have dimension one (i.e., it will be
a scalar) in Chapters III and IV. Chapter V will extend the results to
higher dimensional w(n).
SUDAER-148 - b



B. THE PERFORMANCE CRITERION

If a system is to be optimized, some criterion must be chosen that
determines how well the system 1s operating. In this investigation a
single number that characterizes overall performance is assigned to the
system at each sampling instant. This number, called the performance
number Yn’ is defined to be a quadratic function of the difference
between the actual output of the system, y(n), and the constant desired
output Y3 plus a quadratic cost on the control required to achieve
the output. Mathematically this is

Y = [y(n) -y, Qr[y(n) - y 1+ ¥(n - Uru(n - 1),  (2.)

where Q' and o are positive semidefinite symmetric matrices. With
no further loss in generality let Y3 = 0.
Y, can be stated in terms of z(n) by using Eq. (2.2).

Y = ET(n)Qg(n) + ET(n - ru(n - 1), : (2.5)

where @ 1is a symmetric positive semidefinite matrix defined by
T
Q= M QM. (2.6)

Given an initial condition 3(0), the control is considered optimal
if it minimizes in N stages the sum of the costs Yn. This sum, called
the performance index, is denoted by JN[E(O)]'

N
T T
3[2(0)] =) [z '(n)az(n) + ¥ (n - L)ru(n - 1)) (2.7)

n=1

Although the performance index is limited to quadratic functions,
many useful problems can be formulated using criteria of this type.
Integral-squared-error has been used with continuous systems for some
time, and sum-squared.error is a logical extension to use with sampled-
date systems. The above formulation allows not only squared-error
terms, but also cross-products between the states, to be charged. Often

-5 SUDAER-148
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the energy used for control must be conserved, and the charge on squared-
control allows for this. Squared terms also provide a simple analytical
approximation to absolute value.

The prineipal concern of this investigation is the infinite stage
regulator problem; thus the performance index is

lim

J [2(0)) = oo

3,(2(0) 1. (2.8)

C. THE PROBLEM STATEMENT

The problem can now be precisely stated: Given the system defined
by the linear vector-difference Eq. (2.1), and given the bounds on the
control defined by the vector-inequality (2.3), find for all initial
conditions 2z(0) the control sequences u[z(0)], u[z(1)], u[z(2)], ...
that minimize the performance index Jw[_z_(o) 1.

Finding the optimal control for all states distinguishes the con-
trol problem from the optimal trajectory problem. In the latter
usually only one or a few initial states are of interest.

D. EXAMPLES

Two examples of the above formulation will be given. The solution
to these examples will be discussed in Chapter VI.

For the first example consider a space vehicle whose attitude is
to be controlled to an inertially fixed reference direction by reaction
wheels. In its simplest formulstion the small angular motion of the
vehicle about a-principal axis can be studied by considering the vehicle
as an inertia with moment of inertia I about that axis [Ref. 1lhj.
The state variables are the attitude error 6 and its derivative
§ = d6/dt. The sampling interval is T seconds long, and the control
is held constant over the sampling interval by a zero-order hold [Ref.
15]. The system is shown in Fig. 1.

The equations of motion are

il(t) = za(t)

2y(t) = E&'ﬂ (2.9)

SUDAER-148 -6 -
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FIG. 1. BLOCK DIAGRAM OF SYSTEM IN FIRST EXAMPLE.

The hold takes the value of u* at the sampling instant and holds it
constant at that value until the next sampling instant. That is,

u(t) = uw*(nt), for nT < t < (n+ 1)1, (2.10)

Solving Egs. (2.9) for zlf(n + 1)t] and ze[(n + 1)1] in terms
of zl(nT), ze(nt), and u(nt) gives the & and A matrices. A simple
way to determine these matrices is to let, one at a time, an independent
variable zy) 2o or u at time nt be unity while the others are
zero and solve fcr the dependent variables z; and z, at time
(n + 1)t. Thus, for example, let the Laplace transform of u(t - nt)

be U(s) = 1/s and solve for zl(s), which is

1 1
Z2,(s) = —= U(s) = —==. (2.11)
1 Is® 1s3
The inverse transform is
2
_ (¢t - 1)
z,(t - n7) = 2op—n. (2.12)
Letting t = (n + 1)7 gives 611(1).
12
611(1) - (2'13)

In the same manner the other elements of the ® and A matrices
can be found. These are
1 1 1 12/2
D = ’ AB-I- .
0 1l T

(2.14)

-T- SUDAER-148



A performance criterion needs to be chosen. M is the identity
matrix, which means both attitude error and its rate of change can be
measured directly. Assume the performence number is the sum of the
attitude squared-error and the squared-control. Furthermore, assume
the cost of an error in attitude is to be weighted equally with the cost
of control. Thus

1 o

O
[}
-
[}
—

(2.15)

)

0 0

The problem then is: For each initial condition E(O) find the

control sequence u(0), u(l), ... that minimizes the performance index
00
2 2
Jw[E(O)] =Z [zl(m) +u [(n-1)1]}. (2.16)
n=1

From here on, to conform with the original problem statement, the
T will be dropped from the arguments, with no implication that 71 = 1.

As a second example consider an artificial satellite orbiting the
earth. Using small angle approximations and neglecting other terms of
small magnitude, the pitch equations of motion are decoupled from roll
and yaw. The vehicle can be described in pitch as an inertia with
moment of inertia I [Refs. 1k, 16]. An important external force acting
on the satellite is exerted by the gravity gradient. For small values
of 6, this force is proportional to the attitude error 6 with
constant of proportionality k, as shown in Fig. 2.

+ »
iy 2 _.0_4__- HOLD

FIG. 2. BLOCK DIAGRAM OF SYSTEM IN SECOND EXAMPLE.

SUDAER-148 -8 -
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From Fig. 2 the equations of motion can be written down by inspection.

£(t) = z,(t)

2(t) = -(k/I)z,(t) + u(t)/1 (2.17)

For this example the method of finding ”11 will be shown in detail.
Conceptually it is easier in this case to consider the transfer function
from Zz(s) to Zl(s) and let ze(n) be the delta function. This has
the effect of making zl(n) = 1 as desired. Thus

= S s vA = 1. 2.18
Zl(s) ;gr:—z;7;;§ ZE(S) 2(5) ( )
Therefore
g,(%) = cos (p1) (2.19)
where
8% = k/I. (2.20)

Similarly the entire ¢ and A matrices can be found, and the

vector-difference equation is written as

cos (87)  (1/8) stn (5%) L e - eos (80
z(n + 1) = z(n) + I u(n).
- -g sin (pv) cos (Br) |~ (1/8) sin (pr)

The performance index for this example is chosen as

o0

3_[2(0)] =Z 2(n). (2.22)

n=1

The solutions to noth of the preceding examples are discussed in
detail in Chapter VI,

-9- SUDAER-148
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IIT. RECURRENCE RELATIONS

A. SOLUTION WITH UNBOUNDED CONTROL

Before considering the case where the control u(n) is bounded, the

“solution to the unbounded control problem will be derived in detail.

Here there is no simplification in having B(n) a scalar. The system
is

z(n + 1) = oz(n) + mu(n) (3.1)

¥(n) = Mz(n). (3.2)

Given an initial condition 2(0) the control sequence u(0), u( 1), «.uy
u(N - 1) is to be found that minimizes the performance index

N
LEO) =) (Fmez(n) + f(n - Dratn - 1) (3.3)

n=1

The solution begins by defining IN [5(0) ], called the optimal return
function, as the minimum value of JN[E(O)]’ This IN[E(O)] has a known
and simple form:

I,(2(0)] = Z'(0)By2(0), (3.4)

where PN is a symmetric, positive semidefinite matrix. That this form
is correct will be proved by induction later.
By definition

IN+1[3(0)] = "E%g) ;ﬁ‘) u(N) X (2 (n)Qz(n) +u (n - Vru(n - 1)].

(3.9)

Since 2z(1) is determined solely by the choice of u(0) and not by the
other u(n), Eq. (3.5) can be factored as

SUDAER-148 « 10 -



Ty [200)] = 22 {fmagm + P(0)ru(o)

N+l
R N CRT LR
- = T n=2

(3.6)

Noting that the last group of terms is exactly IN[E('l)] glves
Iy, (2(0)] = “B‘fg)(_z_“’(l)eg(l) + u(0)ru(0) + I (z(1))).  (3.7)

The above equation could have been arrived at directly using the
Principle of Optimality [Ref. 9]. This principle states that the minimum
cost of an N+1 stage process is the minimum of the sum of the cost of
the first stage and the minimum cost of the remaining N stages. (Note
that the arguments of the state and control variables increase with time,
while the subzeript on Iy decreases with time.)

Substituting Egs. (3.1) and (3.4) into (3.7) gives

I, (201 = 33 (®2(0) + au(0) 1"(Q + B @2(0) + &u(0)] + ¥'(O)ru(0)) .

(3.8)

Completing the square on the right side of (3.8) and defining
u'(0) = Ay, ,2(0) (3.9)
Ag = -a7(a + Pyla + r1iat(e + Py)® (3.10)

transforms Eq. (3.8) into Eq. (3.11):
Ty (200)] = 55y (1(0) - w(0)17187(Q + BY)a + TI(u(0) - w'(0)]
+ 2'(0)#(Q + 2y )0z(0)
T, T T :
- 2 (0)Ay, [87(Q + Pp)a + TIAL ,2(0)). (3.11)

-1l - SUDAER-148



The control u(0) occurs in only the first term of (3.11). If the
matrix [AF(Q + PN)A + I'] is positive definite the optimal control is
unique. Then the minimum value, zero, of this first term occurs only at

u(0) = u'(0). (3.12)

The matrix will be positive definite if I 1is positive definite or if
Q@ 1is positive definite and the columns of 4 are linearly independent.
It will not be positive definite if I = O and the columns of A are
linearly dependent [Ref. 12]. In other cases this matrix might be singu-
lar, although no such difficulty was encountered in the examples of
Chapter VI.

Equation (3.12), along with Egs. (3.9) and (3.10), defines the optimal
value of u(0).

The recurrence relation for P, +

Nep 1S determined by equating Eq. (3.11)
with (3.14) when u(0) = u'(0).

IN+1[.Z.(O)] ET(O)QT(Q + PN)¢_z_(O)

. ET(O)A§+1 a'(q + Py)A + THAy,,2(0)

T
2 (0)Py, ,2(0). (3.13)
Since (3.13) must hold for all 2z(0) the recurrence relation becomes
- T i
Pug = ¥(Q+ P)(@+ ML ), (3.1%)

where the relation
T T T
Agp (B7(Q+ PPA +T] = 97(Q + PO (3.15)

has been used to simplify (3.14).
Equation (3.13) shows that if the quadratic form for IN is correct,

then IN+1 has the same form. The quadratic form is trivially correct
for Io since

I,(z(0)] = 0 (3.16)
SUDAER-143 -12 -



for all _z_(O). To complete the mathematical induction the form for Il
must be shown to be correct. I, is determined from Egs. (3.13) and
(3.10) noting that Py = 0. Equation (3.15) is again used to simplify
the result.
-1,T
I, (2(0)] = Z'(0)a"qlo - A(4TA + ) "aTae]z(0). (3.27)
Thus Il[_z_(o)] has the required quadratic form.
The solution proceeds as follows: Since Io[_z_(O)] =0, P. = 0. Be-

0
ginning with P, = O calculate A . From A, and P, calculate P..

This iteration grocess is continueé until a.lllthe AN Oof interest a.r:'
calculated. If the plant is controllable the AN will tend to a limit
as N increases [Refs. 11, 12]. Therefore, for the infinite stage
regulator problem the optimal control in the unbounded case takes the

form of a stationary, linear function of the states.

B. RECURRENCE RELATIONS WITH BOUNDED CONTROL

In the first part of this section the control B(n) will be a vector
of any dimension. This will make it possible to use Egs. (3.18) through
(3.25) in Chapter V, where two-dimensional control is considered in A
detail. When the actual minimization over u(O) is done in this section,
w(0) will be considered a scalar.

Limiting the possible range of the control wu(n) tc

¢ < un) <o (3.18)

complicates the solution greatly. The derivation in this section is the
same as that in Sec. A up to Eq. (3.7). Equation (3.7) becomes

Ina [20)] = ¢ Ho)c ot (2 (18(2) + &' (0)ru(0) + Ty(a(1)])-

(3.19)
IN[E(O)] takes the form, as will later be proved by induction,

I,(2(0)] = ' (0)R2(0) + Z'(O)Ry + Koz(0) + C (3.20)

-13 - SUDAER.148



wvhere
Py is en (m x m) positive semidefinite symmetric matrix,
Ry 1s en (m x 1) vector,

c
N
Substituting (3.1) and (3.20) into (3.19) gives

is a scalar.

I 1 [M0)] = ¢ (o) <o (B2(0) + Au(0)J'(@ + ) (32(0) + Au(0)]
+ ' (0)ru(0) + [92(0) + Au(0) 'Ry + Ry(@2(0) + &u(0)] + Cy).

(3.21)
Again completing the square on u(0) gives

Lo [H0)] = = B0y <t [8(0) - u'(@) 1T 14%(@ + A + r1(u(0) - u(0)]
+ _ET(O)tDT(Q + PN)tb_z_(O) + ET(OMTRN + er{;tbg(o) + Cy

-[Ag,,2(0) + B P 1a7(@ + P& + TI(AL, 2(0) + B T},

(3.22)
where
T -1,T
Ay, = -[67(Q+ PJA+ T]I7A(Q + PO (3.23)
as before, and
By, = -[AT(Q + PN)A + r‘]-lATRN (3.24)
u'(0) = Ay 2(0) + By, - (3.25)

The next step is to choose the u(0) that minimizes Eq. (3.22).
This is easy when u(0) is a scalar or when the distribution matrix A
is an (m x m) diagonal matrix.-an unlikely possibility. For the rest of
this chapter and in Chapter IV, u(0) will be considered a scalar, that
is, there is only one controlling input to the system.
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Since [AF(Q + PN)A + I'] is supposedly nonsingular (it is in fact a
positive scalar), the minimum of Eq. (3.22) occurs at

ot 1f u'(0) >a
u(0) ={ u'(0) if a” < u'(0) <a’ (3.26)
o if u'(0) < a”

The final step is to derive recurrence relstions for PN+1’ RN+1’
and CN+1' The existence of these relations gives the necessary proof
that the form assumed for IN[E(O)] is correct. Proof that the form for
Ing(O)] is correct is the same as in Sec. A and will not be repeated.

The recurrence relations are different depending on whether or not
u(0) is saturated. When u(0) is unsaturated, that is, when
a” < u'(0) S<i+, the relations can be obtained by equating (3.20) with
(3.22) along with u(0) = u'(0).

]

I, [2(0)] = Z(0)87(Q + B)ez(0) + 27 (0)0'Ry + Rz(0) + C

- (Ayg12(0) + By TR + P+ T)(Ay, 12(0) + By T

i

21(0)Py, 2(0) + 2 ()R, + Ry 2(0) + Cp . (3.27)

Thus the recurrence relations when u(0) is unsaturated are

Py, =@ (Q+P(®+ M ) (3.28)
Rye = (®+ AAN+1)TRN (3.29)
Cyy = Oy + R%ABNH, (3.30)

vhere the simplifying relations
-A]Tv+ [67(Q + B)A + D] = #7(Q + PL)A (3.31)
1 N N
and
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-B§+1[AT(Q +Pg)b+ )= R,T‘A (3.32)

have been used.
When u(n) is unbounded, these recurrence relations reduce, as they
must, to thet given in the unbounded case, Eq. (3.14). The equations for

AN+1 and for PN+]. are the same as in the unbounded case. Since R0 =0,
= S A, = = . =

all RN 0. Since =211 RN 0, all BN+1 0. Finally, since CO o,

all CN = 0,

The recurrence relations when u(0) is saturated can be determined
by substituting u(0) = a, where « represents either a+ or a, into
either Eq. (3.21) or (3.22) and equating the result with (3.20). Equating
(3.21) with (3.20) gives

I, (20001 = 2(0) + &u17(Q + B @2(0) + &) + oPr

+ ©2(0) + La 'Ry + Ki[¢2(0) + Ax] + Cp

= 2/ (0)Py,,2(0) + 2 (O)Ry, + Ry, 12(0) + Cyyy.

(3.33)
The recurrence relations when control is saturated are thus
P, = 0(Q+P)b (3.34)
N+l N ‘
Rgr = "’Tl*‘u + (Q + Pp)o] (3.35)
Cpoy = Cp * IAT(Q + PJA + 1) + 208'R . (3.36)

By the came arguments used in the unsaturated control case, the form
of IN[_z_(O)] is shown to be correct by mathematical induction.

The principel equations derived in this section are summarized at
the end of this chapter.
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C. DISCUSSION

Beginning with a zero.stage process and calculating backward in time,
as long as all the stages have optimally unsaturated control, the RN,

CN’ and BN+1 remain zeroc. The first stage backward in time ‘hat is
saturated causes RN and CN to be nonzero, and they will remain non-
zero for the rest of the stages.

If it were known & priori which terms of the optimal control sequence
u(0), u(1l), ..., u(N - 1) were saturated and which were not, the solu-
tion would proceed simply as in the unbounded cese. Beginning with a
one-stage process, Al and Bl could be calculated. This regquires no
knowledge of whether or not the optimal control is saturated. Next,
knowing whether the optimal control u(0) equals o', a”, or is unsatur-
ated, Pl’ Rl, and Cl could be celculated. This computational scheme
could be continued for as many stages as desired.

Unfortunately, nothing is known about the control sequence before-
hand; thus the above computational scheme cannot be used. At each stage
it is not known whether to use the recurrence relations for unsaturated
or for saturated control. A computational method that does not require
this a priori information is needed. Such a method will be discussed in
Chapter IV.

The method described in the second paragraph of this section is still
useful, however, and it has the advantage that it is exact. It cen be
used to perfect estimates of the optimal control obtained by other methods.
For example, suppose the optimal control sequence was determined by a
method requiring a discrete state space such as dynamic programming or
the method described in the next chapter. Errors due to quantizing the
state space will build up, and thus the true minimum and the true optimal
unsaturated control will only be approximeted. Now, however, it is known
whether th2 control at each stage is saturated or not, and the simple
computational scheme above can be applied to obtain the exact optimal
control. Boundaries of all control regions of the examples in Chapter

VI were checked in this manner.
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SUMMARY OF PRINCIPAL EQUATIONS FOR SINGLE.INPUT CONTROL

Optimal return function
1,12(0)] = 27 (0)PL2(0) + 2" (0)R, + Kyz(0) + Cy

Optimal control

a 1f u'(0) >a' (saturated)
u(0) =4 u'(0) ir a” < u'(0) < o' (unsaturated)
o if u'(0) <a” (saturated)

Definitions ‘
u'(0) = Ay,,2(0) + By,

Ay, = -[87(Q + A + 11T

(Q + Py
By, = -[85(Q + PL)O + r‘]"]'ATRN

Recurrence relations:

Unsaturated control

7 ®(Q + PY)® + My )
Ryy = (0 + 2 YRy

7
1 = Oy * R

Saturated control

P

T
ey =¥ (Q+ Py)?

Ryyy = OT[RN + (Q + PN)Aa]

2 1T, T
Chep = Cp + @ [A7(Q + Pg)A + ] + 2087Ry

Start 1ng__conditions

Fo

= o’ Ro = 0, C. = 0.
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(3.20)

(3.26)

(3.25)

(3.23)

(3.24)

(3.26)

(3.29)

(3.30)

(3.34)
(3.35)

(3.36) .



IV. COMPUTATIONAL ASPECTS

This chapter descrives a method of using the equations derived in
Chapter III to determine the optimal control of any system described by
Egs. (2.1) and (2.2). This method, which requires a digital computer,
calculates the optimai control from any point within a bounded region of
state space for the infinite stage regulator problem. Useful facts per-
taining to the actual computations are discussed.

Before describing the computing method recommended in this report,
the straight dynamic programming approach will be briefly discussed for
comparison.

‘A. DYNAMIC PROGRAMMING APPROACH

The basic dynemic programming approach to the problem is straight-
forward but requires a very large and very fast digital computer to
solve for the optimal control of even small systems. This method repeat-
edly uses the fundamental functional equation of dynamic programming
[Ref. 9] which, put into the form required for this problem, is

B ot (9,11 + L], (4.1)

1 2O = o"¢ w0y o

vhere
3 (1)1 = 2'(1)az(1) + " (0)ru(o), (h.2)

and IN[E(l)] is the minimm cost mssociated with initial condition
z(1). Equation (%.1) 4is recognized as being the same as Eq. (3.19).

Although only the single-input case is being considered in this
chapter, functions of the control E(n) will be written in vector-matrix
form for use later in this report and for future work. Of course in
the single-input case the last term of Eq. (4.2) is simply u2(0)1".

In words, Eq. (L4.1) states that the minimum cost IMI[E(O)] from
initiel state z(0) is the minimm over the allowable values of the
control u(0) of the sum of the cost of the first step, which takes
the state to 2(1), plus the minimm cost of being in state z(1).
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Before computing, both the state space and the control space must
be quantized; that is, a discrete set of values is chosen over which
the calculations are to be made. This set must be dense enough to pre-
vent errors from accumulating during the calculations as the result of
interpolation.

The calculation is divided into two parts: First the InLE(O)]:
called the optimal return functions, are calculated backward in time for
all N and all E(O). Second, if actual optimal trajectories are
desired, these are calculated forward in time using the optimal control
calculated in the first part.

The first part of the calculation is the time-consuming part. Be-
ginning with -IO[_Z_(l)] = 0 for all z(1), Il[E(O)] is calculated from
Egs. (4.1) and (L4.2) and the state-transition equation

2(1) = 0z(0) + Au(0). (4.3)

For a given value of 2(0) and for each value of u(0), Jl[g(l)] is
calculated and the minimum is stored as IlLE(l)]' The optimsl value of
u(0) 1is also stored. This calculation is performed for each 2(0).

Now that the values of 11[5(1)] are known for all 2z(1), the
12[5(0)] can be calculated, again using Eqs. (4.1) and (4.2) along
with the state-transition equation (4.3). Since the z(1l) calculated
from E(O) by the state-transition equation will probably not be one
of the discrete values for which the I, [2(1)] were calculated, the
correct value of IlLE(l)] to use in Eq. (4.1) must be found by inter-
polation. It is the interpolation that causes the most significant
errors to arise in the computation. Higher order than linear interpola-
tion can be used, but since the interpolation must be done a very great
number of times the computing time is increased significantly. ,

The process described in the last paragraph is continued until the
optimal return functions and the optimal control for the desired N
stages are calculated., In the case of the infinite stage regulator
problem, stages must be calculated until the optimal control for eaéh
z(0) at stage M1 is the same as the optimal control for each z(0)
at stage N. This may require very many stages of calculation.
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The fast memofy requirements at each stage are three words for each
value of 2(0): IN+1[E(°)]! INLi(O)]’ and the optimal u(0) for stage
N+1. Thus, for example, a two-dimensional problem with 100 values of
z, and 100 values of Z, would require 30,000 words of fast memory
storage. This is approaching the limit of present-day computers. A
three-.dimensional problem with 100 points to each dimension would require
3,000,000 words of storage, thus exceeding the limit of present computers--
a difficulty often referred to as the "curse of dimensionality."

The method discussed next for computing the special problem considered
in this report requires far less computing storage and computing time

than does straight dynamic programming.

B. A COMPUTING METHOD

The basic dynamic programming algorism makes no use of the recurrence
relations derived in Chapter III. By taking advantage of this additional
knowledge about the solution, considerable savings can be made in both
computer time and memory, masking it possible to solve much larger prob-
lems. '

To facilitate the discussion of the computing method, which involves
calculating regions of optimal control, several definitions will be
made:

1. Region of linear control. In the infinite stage regulator problem
there exists a region about the origin in state space where the
control for the first and all future stages is unsaturated. Such
a region will always exist if the plant is controllable, since in
the unbounded control case the control is a linear function of

the states and is zero at the origin. This region will be called
the region of linear control, or simply the linear region.

2. Region of first saturation. If 2z(0) 1is not in the region of
inear control, at least one stage before the state-space trajec-
tory reaches the linear region will have saturated control. The
first stage backward in time (or the last stage forward in time)
that is saturated will be called the region of first saturation.

3. Unsaturated region. Any region where the control u(0) is given
by the equation u(0) = u'(0) = Ap,12(0) + By, will be called an
unsaturated region. The region of linear control is an unsaturated
region, but there will be others. Although the control in any
unsaturated region is linear, the term "linear region" will refer
only to the region of linear control.
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L, Saturated region. This is a region where the control is either
u(0) = of or u(0) = a~. Throughout, the term « will be used
to denote either a* or a-. Saturated regions will also be
referred to as alpha-plus regions or alpha-minus regions.

5. z(1) region. This refers to a region that has already been calcu-
lated, and from which new regions will be calculated.

6. 2(0) region. A 2(0) region is one which is being presently
calculated from a z(1l) region. Regions are calculated backward
in time as in dynamic progremming; thus a 2z(0) region is calcu-
lated from a z(l) region. (The actual trajectories are, of
course, from a z(0) region to the z(1) region fromw which it
was calculated.)” - -

The method to be described in detail is basically as follows: First
the optimal feedback coefficients AN+l for the infinite stage regulator
problem with unbounded control are calculated. Once AN+1 is known,
the region of linear control cen be computed. Using the same AN+l
the two regions of first saturation are calculated. From each of these
regions of first saturation are calculated an alpha-plus region, an
unsaturated region, and an alpha-minus region. Further regions are
calculated from each of these last regions, and the process is continued
until all the state space of interest is covered with regions.

In essence, assuming N stages are being calculated backward from
the linear region, this method considers all possible control sequences
u(0), u(1), ..., u(N-1), and determines the optimal sequence for each
point in state space. Since at each stage the control can take one of
three values-<', u'(0), or a --it might be thought that this method
requires considering 3N ‘possible control sequences, a staggering
possibility. In practice, the number of control sequences considered
is far less. Most of the sequences will be found to be optimal for no
points in state space, and these sequences can be dropped from further
consideration as soon as they are discovered. The method described here
determines these nonoptimal sequences at the earliest possible time
during the computing.

As in dynamic programming, the state space must be quantized. How-
ever, the control is determined by the formulas of Chapter III and is

not quantized.
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A flow diagram of the computing is given in Fig. 3. First the
optimal control feedback coefficients AN+1 for the linear region are
calculated slong with the corresponding PN matrix, using the recurrence
relations for unsaturated control. Beginning with % = 0, Al is cal-
culated. From Al’ Pl is calculated. From Pl’ A2 is calculated.
This iterative procedure is continued until the AN+1 converge to a
limit. That these Am-l will converge is discussed by Kalman [Ref.
11] and Gunckel [Ref. 12]. The unsaturated control recurrence
relations for RN+1’ CN+1’ and the equation for BN+1’ show these to
be zero for all N, since Ro =0 and C0 = 0.

Second, the region of linear control is calculated. The optimal
control formulas for thls region are

u(n) = u'(n) = Ay ,2(n) (4.1)
a” <u'(n) ot (k4.5)

for all n, where the AN+1 is that calculated in the first step. Two
bounds on this region can be found immediately by setting u(n) in
Eq. (4.4) equal to a' and q°. Thus two bounds are

a = AN+lg(n). (4.6)
For each 2(0) on and within the boundaries (4.6) calculate
2(1) = (@ + tAy, .)z(0). (&.7)

Only those 2z(0) which determine E(l) that are on and within the
boundaries (L4.6) can be in the region of linear control. From each

2z(0) within the boundaries (4.6), enough points forward in time must

be calculated to ensure that the 2(0) is actually in the linear region.
In the two-dimensional examples of Chapter VI, where o = -o”, only
z(0) and z(1) both needed to be within the boundaries (4.6). 1In

- general more stages must be calculated.

-23- SUDAER. 148



SUDAER-148

v

CALCULATE Ao Py
FOR LINEAR REQION

L ]

CALCULATE REGIOM
OF LINEAR CONTROL

¥

CALCULATE REGIONS OF FIRST
SATURATION AND CORRESPONDING

Pur Be Gy

!

CALCULATE Ays o By " ‘
FROM A z(1) REGION

Y

CALCULATE ALPHA-PLUS REGION,
UNSATURATED REGION,
ALPHA-MINUS REGION,

FROM THE z()) REGION

¥

CALCULATE Py, Ry, Cy FOR THE NEW
2(0) REQIONS THAT CONTAIN POINTS

|

STORE NEW z(0) REQIONS
AS z(1) REGIONS

z(1) REQIONS
IN STORAGE?

FIG. 3. FLOY DIAGRAM OF COMPUTING METHOD,

- 24 -



RPN

The third step is to calculate the two regions of first saturation.
These are the z(0) regions that go optimally into the linear region
with u = a. Thus the alpha-plus region is defined by inequality (4.8)
and Eq. (4.9):

u'(0) = Ay,,2(0) >a’ (4.8)
2(0) = 07 (z(1) - &), (4.9)
where 2(1) 1is in the linear region. The Ag,, 18 the same as that

used in calculating the linear region, since it is derived from the same

PN' The alpha-minus region is defined in a similar manner. If a+ =

<", the alpha-minus region (and all regions derived from it) needlnot
be calculated, since it is symmetric with respect to the origin to the
alpha-plues region (and those derived from it). Finally, the PN’ RN’

and CN
saturated control recurrence relations.

are calculated for the regions of first saturation, using the

The above steps are essentially initializing; the vrincipal calcu-
lations now begin. There are now two E(l) regions from which to A
calculate.-the two regions of first saturation. Consider the calcu-
lations from one of these. First the AN+1 and BN+1 are calculated
using the Py and Ry from the 2z(1) region. The optimal control
for three EKO) regions--an alpha-plus region, an unsaturated region,
and an alpha-minus region--is deterﬁined from these AN+l and BN+1'

Each of these three regions must satisfy two relations as follows:

1. Alpha-plus region.
2(0) = o7 [z(1) - &) (4.10)
u'(0) = Ay 2(0) + By . > ot (4.11)

2. Unsaturated reg}on.

2(0) = (@ + My )7 (2(1) - M ] (h.12)
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a” < u'(0) = Ay, ,2(0) + By, <o (4.13)

3. Alpha-minus region.

2(0) = ¢ T [2(1) - A7) (k.14)

u'(0) = Ay, ,2(0) + By, <o’ (4.15)

In each of these equations 2z(1l) is in the z(1l) region, and for a
z(0) to be in the new 2z(O) region, both the equation and the ine-
quality for that region must be satisfied. Most of the regions calculated
will be found to contain no states z(0). It is for this reason that
there are considerably less than 3 regions to consider.

The Egs. (4.10), (4.12), and (4.1%) are written as though 2z(0)
will always be calculated from E(l) through an inverse relation. It
is of course equally possible to calculate z(1) from 2z(0) by

z(1) = @2z(0) + A&u(0) (4.16)

for all z(0) in the quantized state space and keep only those 2(0)
for which the corresponding 2z(1) is in the desired z(l) region.
There are advantages and disadvantages for both methods of computing.
Calculating z(1l) from 2(0) is easier because no "holes" can develop
in the 2(0) region. (Holes are points that belong within a region
but are not calculated as being in the region.) However, because a
very large percentage of the states 2z(0) will not be in the 2z(0)
region, considerable computing time is consumed by computing 5(1)
from 2(0).
Computing z(0) from 2z(l) consumes less computing time because
less points are considered. Only those g(o) calculated from the
z(1) 1in a particular z(1l) region are considered. However, if the
2(0) region contains more points than the 2z(1) region, holes will
develop, and care must be taken to eliminate them. This is particularly
a problem when calculating unsaturated regions. Also the points E(O)
calculated from 2(1) will be in a somewhat random order in the computer
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memory and time muet be teken to put them in some orderly and useful
sequence.

Equations (4.10), (4.12), and (4.1L4) assume that the inverses of
certain matrices exist. If the state variebles have been chosen so that
the minimum number necessary to completely characterize the system is
used, the matrix ¢ wiil be nonsingular; thus its inverse will exist.
The other matrix assumed to be nonsingular is (¥ + M‘NH.)' This matrix
is nonsingular if o 1is not zero. However, if I = O this matrix will
always be singular. The following proof will show an even stronger
result: If r=0 and (® + MN+1) has dimension (m x m), and A has
rark q, (m is the dimension of 2z and q is ordinarily the dimension
of u,) then (& + AAT\H-l) has rank no greater then m - q.

The proof is as follows. Consider a square matrix M of dimension m.
If a nontrivial vector ¢ can be found such that STM = 0, then by defi-
nition M 1is singular. If there exist q nontrivial linearly independent
vectors ¢ such that there are q linearly indepencent vector equations
ETM = 0, then q of the columns of M are linear combinations of the
other m - q columns. The kernal of M 1is at least q and its rank is
no greater than m - q.

The q nontrivial linearly independent vectors that show the matrix
(@ + NLN+1) has rank no greater than m - q are the colums of (Q + PN)A.

Thus

s+ (0 + My, ) = 8T(Q + B (@ - A1aT(Q + AT AT(Q + O)

0. (4.17)

This singularity can therefore be predicted in advance and the computer
program written accordingly.

The next step is to calculate the Py, Rp end Cp for the z(0)
regions just calculated that actually contain points. Regions that are
found to contain no points are ignored entirely. The new 2z(0) regions
are now stored in the fast memory as new 2z(1) regions. The old z(l)
region can now be discarded.

The output can include a description of the points in the region,
the type of region (alpha-plus, unsaturated, or alpha-minus), and the
AN+1’ Bm-l’ PN’ RN’ and CN' The optimal cost can also be calculated and

written. .
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This process of calculating 2z(0) regions is continued until the
entire state space of interest is covered with regions.

C. DISCUSSION

This new program runs much more quickly than straight dynamic progrem-
ming because the optimal control for each point is known from the recurrence
relations. The memory requirements are also much smaller since only the
z(0) regions and a single 2z(1l) region need be in the fast memory at one
time. It is convenient, however, to store all unused 5(1) regions in
the fast memory. Because of greater speed and less storage requirements,
this new program can handle problems of larger dimension than can be run
with straight dynamic programming. There is still, however, a limit to
the size problem that can be run. A comparison of memory requirements
is givei for a specific exsmple in Chapter VI. The restriction that the
control be a scalar is removed in the next chapter.

The question of whether regions computed in this menner will overlap
is still open. Such an overlap did not occur in any of the examples of
Chepter VI. If, after computing, some regions do overlap, a compsrison
of the optimel costs from these regions can be made using their respec-
tive PN's, RN's, and C

be chosen. .

N's, thus enabling the true optimal control to
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V. TWO-INPUT CONTROL

So far, only the solution to the single-input case has been completed
in detail. This chapter extends these results to the case in which the
control u(n) is a two-dimensional vector. The solution is considersbly
complicated by the fact that one of the inputs may be saturated while the
other is not. Although they are not discussed here, this chapter indi-
cates the extensions and changes that must be made when the contrcl has
dimension higher than two.

A. THE PROBLEM

The description of the system and performance criterion is the same
as given in Chepter II. The control u(n) and its bounds g+ and Q
are now two.dimensional vectors.

+ -
ul(n) . a ) o
}_1(!1) = ’ a = + |2 a = 1l (5.1)
up(n) % %
Control is limited by the vector inequality
- +
a” <uln) <o (5.2)

The problem is: Given any initial condition 5_(0) » Tind the optimal
control-vector sequence u(0), u(1), u(2), ... that minimizes the perform-
ance index Jm[g(o)].

B. THE SOLUTION

The equations for I ' [_z_(o)] derived in Chepter III up through Eq.

N
(3.25) were written in vector notation so that they could be used in
this chapter. Equation (3.21) is written here as the starting point of

the solution:

Ty 1 [200)] = ¢ (o) <o 1102(0) + Au(0) 1'(Q + By) [2(0) + bu(0)]

+ u'(0)ru(0) + (#2(0) + Bu(0) 'Ry + RL(®2(0) + &u(0)] + Cp -

(5.3)
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As in Chapter III the square is completed on the control vector E(O).
The result is Eq. (3.22):

In (201 = o= ¢ y(0)¢ o[ [HO) - w'(0) I (87(Q + Bg)A + T(u(0) - u'(0))

+ 2(0)0"(Q + Py)ez(0) + Z'(OR"Ry + Kiez(0) + ¢
- Ay, ,2(0) + By 7T (AT(Q + LA + TI[AL, 12(0) + By L 1),
(5.4)

vhere Ay ., By ., and u'(0) are given by Egs. (3.23) through (3.25).
The minimum without regard to bounds occurs at u(0) = u'(0). If
the resulting u(0) satisfies the vector inequality (5.2), then u(0) =
3'(0) is the optimal control. However, if one or both of the elements
of B'(O) are out of bounds, the situation is much complicated.
Before presenting a careful algebraic discussion of a method for
finding the minimum of Eq. (5.4), a more intuitive geometrical discussion
will be given.

C. GEOMETRICAL DISCUSSION OF THE MINIMUM

Figures ba through if show the two-dimensional control space. Each
point represents a particular control (ul, uz) The rectangle, whose

sides are given by u, = aI, u, = o

L= 0 W = ;, and u, = @, bounds the

region of allowable c]éntrol.

Geometrically, a positive definite quadratic function in two variables
is an ellipse. In each figure are drawn concentric ellipses, which are
loci of constant Jy . [z(0)]. The value of Jm_l[_z_(o)] decreases as
the ellipse size decreases. The absolute minimum occurs at the center
of the ellipses, which has coordinates (u;, ué).

The geometrical problem then is to find the point in the control
space that is both on the smallest possible ellipse and in or on the
rectangle, Algebraically this is the same problem as expressed by the

nov-familiar equation
T2 (20)] = 5= < 1(0) g o U OV D (5.5)
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If the center of the ellipses is in the rectangle, as shown in Fig.
Lg, then the minimum occurs at (ui, ué). If the center is outside the
rectangle, as shown in Figs. Ub through 4f, then it is clear that the
minimum occurs on the boundary, since any control within the rectangle
is on a larger ellipse than one either tangent to the boundary or touch-
ing a corner.

Figures 4b and ke show the case where one uj, in this case u!, is

2
greater than its bound, while the other ui is within its bounds. In
both cases the optimal control of Uy is a;, but the optimal value of
u, can be anything. To determine U, ; the optimal value of u, = a;

is substituted into Eq. (5.3) or (5.4), and by completing the square
on uy the value of ul that minimizes the function is found. This
value, called u!, may or may not be in bounds. The optimal wu, is

1’ 1
then

+ " +
a if ul >o (Fig. kb)
" 3 - " + N
u = oy it alLwa (Fig. bc) (5.6)
al if uy < al

Note that the value of u!

1 does not irn any way indicate the optimal

value of ul.

Figures Ud through Uf show cases where both ui and ué are outside

the bounds. In these cases all that can be said without further calcula-

tion is that at least one of the ui

Geometrically this means that the optimal control is on one of the two

gives the optimal control.

boundaries nearest the center of the ellipse, a fact that will be proved

algebraically in the next section. Since it is not known which ui glives
the correct result, both ui and ug must be calculated. Assume ui

and ué are greater than a; and a; respectively as in the figures.
Then ui is calculated as the optimal value of uy (neglecting satura-
tion of ul) with u, = ;, and uj 1s likewise calculated. Since only
one of the assumptions made in calculating the u; was necessarily cor-
rect, only one of the ug is necessarily correct. However, as shown in
the next section, both uz calculated determine correctly their respective
optimal u

.
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If the correct optimal velue of u, is a; as shown in Figs. 4d

through Lf, then the value of u:']'. ecaloulated is correct, The optimal
uy is thus

a;'_ i w > a; (Fig. L)
wo={ul  if atguwgar  (Fig. le) (5.7)
°‘i it ui'. < ai (Fig. uf)

Note that even though the value of ui suggests that the optimal value

of u is a{, the real optimal value can be far different, even o

1

The next section algebraically proves that the uz, vhere calculated,
give the optimal values of uy in all cases.

D. ALGEBRAIC DETERMINATION OF THE MINIMUM

To simplify the notation in this section, consider only the part of
JMl[E(o)] that is quedratic in u. This is

£=(u-u)Ku-u) (5.8)
where
(ul - ui
(u-u')-= ’ (5.9)
(u, - u3)
and
ki1 K
K= [A%(Q + Py)A + ] = (5.10)
ko Ky

K 1is a positive definite symmetric matrix, and hence the smallest
value & can have is zero, which occurs only at u=u'. If

- +
a <u' Sg_ s the optimum value of u is clearly u= u'.

The quantities u;: have a somewhat more general meaning in this

section than in the last section. For example u'l', is the optimum value
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of ul (ignoring saturation) for any given value of u2, 5
It is derived by completing the square on & with respect to u, . Thus

not Just ¢

£= (v - ui)aku + 20wy - upduy - uk), + (u, - ué)2k22

(5.11)
- " 2 n2 =
£ = (ul - ul) kj; - Wk, + terms not involving u,. (5.12)
By equating (5.12) with (5.11) an equation for u] 1is determined:
(u, - uk
ui:ui-——-———zk 2 l2. (513)
11
Likewise, (u, - w)k
. e R —
u2 - u2 - k . (b'l )

22

The optimal control is determined when four equaticns are simultane-
ously satisfied. These are Egs. (5.13) and (5.14) along with

+ o
al if hl > al
w = ¢ u if as<cu <a (5.15)
1 1 13% 3% .
- L.
al if ul < al
+ " +
a2 if u2 > a2
w= {uy if ag<up<a) (5.16)
- ..
Q if u2 < a2

These four equations can be solved on an analog computer very simply,
but this is not much help here., The following proofs show a simple way
to determine the optimal values of yy and Uy In the following dis-
cussion ui will be called not admissible when either ui > a; or

u < a;. Otherwise it will be called admissible.
SUDAER.148 - 34 .



Two cases need to be considered: (1) only one ui is not admissible,

and (2) neither u; is admissible. Before beginning two inequality
relations involving the elements of e symmetric positive definite matrix

must be stated. These can be found in nearly any book on matrix theory

[Ref. 17].

l. Case 1l

The first case occurs when one u!

other is not.

k > o, (a'nd k22 > 0)’

2
ki Kpp - K55 > 0.

1
For definiteress let

(5.17)

(5.18)

is admissible while the

a

[ VAN

- , +
18989 (5.19)

' +
> . (5.20)

It will now be shown that the optimal value of Uy is a; regardless
of the optimal value of u,. From (5.13)

- - 1]
! (v, - uwj)lk, ,

1 1 kll

z—
'
[
)

(5.21)

The quantity in brackets is positive regardless of the choice of U,
because of inequality (5.20). Thus (u{ - ui) has the same sign as k

12’
" - "
If k12 is negative or zero, then u) < ui, and either u = uf
or u, = al. Thus
uy Uy < ui. (5.22)
Therefore
O>wu -u > ul - u). (5.23)
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When k., 1is negative, multiplying inequality (5.23) through by

klz/k22 reverses the inequality signs. The result is of course triviel

is zero.
when k12 s Z

2
(w) -updky,  (up -k, (u, - uli,

0 = - . (5.2%)
S‘ ks $ kyn Kyy%00

The right side of (5.24) is determined by using Eq. (5.21).
If k12
paragraph can be taken, and the result is again (5.24).
Equation (5.24) shows that the last term in Eq. (5.14) is positive
or zero, regardless of the sign of k ,. Using (5.24%), Eq. (5.14) can
be written as the following inequality:

(w, - “'é)k;aLz

” ] .2
2% e (5:29)

is positive or zero, the same steps outlined in the last

K° x°
P R o R o el (5.26)
11 22 1122

Since kiz/kllkea < 1 as shown by (5.18), the term in parentheses in
(5.26) is positive. Substituting (5.20) into (5.26) makes the inequality

even stronger.

2 2
+ K)o k1o
ns ot f1- +u . (5.27)
27 k 1%z 2 k3500
The only u, that satisfies both (5.27) end (5.16) is u, = ag. Sub-
stituting u, = us into (5.27) leads to a contradiction.
The conclusion is that if uj is not admissible and u3 (3 #1)

is admissible, the optimel value of uy equals the nearest bound to

ui, vhile uJ is determined from u3.

2. Case 2

The secund case occurs when neither ui nor ué is asdmissible.
For definiteness let
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, +
u > oa; (5.28)
, +
w >a, (5.29)
Equations (5.13) and (5.14) written in the form of (5.21) show that

both (u']'_ - ui) and (u" - ua') have the same sign as k
If k is positive or zero then

12°

12

wl > ul > ay (5.30)

1< 71 1

+

"
ug > uy > a, (5.31)
Thus the optimal control is u = a;_, u, = a;.

If k12 is negative the situation is much more complicated. The

values of uy and uj given by (5.28) and (5.29) determine that either
u, = ai or u, = a; or both. This will be proved next.
o+

The proof assumes that both the optimal u, < a; and u']'_ < al
occur similtaneously, and arrives at & contradiction. Since both condi-
tions cannot occur simultaneously, at least one uy must equal a;.

"n + — " = -
If ul < al, then either ul = u1 or ul al. Thus
' ]

Combining (5.32) with (5.13) gives
(u, - u)k
0>ul-ui2-_2E_2_l—2. (5.33)
11

The direction of the inequality is changed when (5.33) is multiplied
through by the negative quantity k12/k22.

(w - upk (uy - w3
ocx 12 e " %l

. (5.34)
Ko = k1150
Using (5.34), Eq. (5.14) becomes inequality (5.35):
(v, - )5,
">u+ (5.35)
22 % 1122
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5 5
" 1 - 2 - .36
u2_>_112( 1152).'-1‘12 11722 (5.36)

Since u} > u, by (5.29), inequality (5.36) becomes

% K
5 > l- - -3
E u2< 122)+u21122 2 (5.3

which contradicts the original assumption that wu, < a; (and thus
uy < u2) Thus the proof is complete.

Since it is not known which u e a:, calculate u{ on the
assumption that u, = a;, and calculate ug on the assumption that
u, = aI. If both u; 2 aI then both assumptions were correct and the
optimal control is determined.

At least one assumption was correct, thus at least one u'i' was
computed correctly. Assume u = aI is correct but u, = a; is in-
correct; then ué' is correct but not u{ The last step is to prove
that ui‘_ > a;'_ even though it was computed using an incorrect assumption.

Thus

(o - udkeyp
"o L. (5'38)
WY K,
and
wy >0l > ul. (5.39)
Again since k12 is negative,
(af - u)k (u" - u')k
o< 2k11“2 12 21:112 12 (5.40)
Substituting (5.40) into (5.38) gives
2
(u - wy)ieyp (o] - udky,
ul > uj - = U 4 ———— . (5.41)
170 ky3 1 ky1kon 1

To sum up, the above proofs show a simple way to calculate the
control that minimizes the quadratic function given by Eq. (5.11):
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1. Case 1. If ui is not admissible but u"j is admissible, then

u, equals the bound nearest to ui, and uJ is determined from

ug. The value of+ ug is calculated using the known optimal value

of u,, nsmely a, or a;.

2. Cese 2. If neither ui nor ué is admissible, then u{ is come
puted using the bound nearest to ué for Uy, and ug 1s likewise
computed. The optimal control is then determined from Egs. (5.15)

and (5.16).

E. OPTIMAL CONTROL FORMULAS AND RECURRENCE RELATIONS

The recurrence relations when neither control is saturated are the
same as the unsaturated control recurrence relations given in Chapter
III. When both controls are saturated, the relations are the same as
the saturated control recurrence relations in Chapter III, though written
in vector notation. Thus the only new recurrence relations are for the
case in which one control is saturated and the other is not.

Assume the optimal control is given by ul(O) = u{(O) and u2(0) =

o,. The derivation of u{(o) and the recurrence relations begins by

X
completing the square on ul(O), assuming u2(0) = o,
o, represents either a; or aé). Note that completing the square

on ul(O) is not at all the same as completing the square on the vector
u(0).

The elements of the control vector u(0) are separated in Eq. (5.3)
by partitioning the A matrix as follows:

(where as usual

A= (b

-

a), (5.1)

1

vhere the A4, (1 = 1,2) are (m x 1) column matrices. With this
partitioning, Eq. (5.3) is written as
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g (2001 = o < ul?ti)? < a‘i {“§(°)711 + 2u) (O, + °‘§722

+ [@2(0) + Alul(o) + A20t2 ]T(Q + PN) (@z(0) + Alul(o) +80,]
+ @2(0) + Au (0) + A 'R,
+ R?qLoE(O) +0,u,(0) + A, ]+ Cp) . (5.43)

Completing the square on ul(O) gives

Iy, [2(0)] = @< “1?3?3 o {13,(0) - W) F(A)(a + BIA + 7))

- [Ar z(0) + B! TP [AT(Q + P)A. + 7. ][A!  2(0) + B!
[1N+l_ Iy 1 NI o lN+l]

+ [02(0) + A, 17(@ + By)[02(0) + ] + by,

2
+ [0z(0) + A2a2]TRN + RITqu_z_,(O) + A2a2] + CN), (5.44)
vhere
uj(0) = A} z(0) + B (5.45)
N+1 +1
T
O5(Q + P)®
Moo L N (5.46)
f1 o AR+ PYA 4y
T T
' _ AlR.N + Al(Q + PN)A2a2 + 70
Bl‘N =" T (5-’4‘7)
1 8,(Q + BYA + 7y,
Equations for ug and its associated AE' end 132' are deter-
N+l N+l

mined in the same manner.
The recurrence relations for the case where w = u{ and u, = a2
are determined by equating the assumed form of IN+1 [5(0)] given by
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BEq. (3.20) with Eq. (5.44). These recurrence relations are

Py = 03 + B0 + AA (5.48)
Ry,, = ¢T[RN +(Q+ 1=N)(Alla]'_m1 + 8,0.)] (5.49)
Cupy = O+ BBy + 8(Q + PIMQ, + 7,0 L 20,858,

N ag[Ag(q + BB, + 7,,] (5.50)

As shown in Chapter III, the existence of these recurrence relations
shows that the form assumed for IN+1[E(0)] is correct.

The equations and recurrence relations for the two-input control
case are summarized at the end of this chapter.

F. COMPUTING METHOD

Computing proceeds as in Chapter IV with only a few changes. The
first step iIs to calculate the region of linear control. Next the eight
regions of first saturation are calculated. These are the regions com-
puted from the linear region that have one or both controls saturated.
From each of these regions are calculated nine more regions, regions
with the nine possible combinations of the controls. Regions are computed
in this manner until all the state space of interest is covered.

Certainly the two-dimensional control case will take much more com-
puting time and storage than the one-dimensional case., The method
outlined here could conceivably be extended to higher-dimensional control,
but the complexity increases rapidly.
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SUMMARY OF PRINCIPAL EQUATIONS FOR TWO-INPUT CONTROL

Optimal return function

L,[2(0)] = 27(0)R2(0) + 2 (O)Ry + Kyz(0) + ¢y (3.20)

Optimal control

<+

u(0) = u'(0) it a <u'(0) <a (unsaturated)
u(0) = a if uf(0) >o] or wj(0) <o and
u.’é(O) > a; or ué'(o) < aé (saturated)

(o]
L2

u,(0) = a, ui(0) >a] or ul0) <o and
if
uJ(O) = u‘J'(O) a3 < uS(O) < ot (mixed)

J
Definitions
u'(0) = Ay, 2(0) + By ) (3.25)
Ay = -8R+ 2A + 117AT(Q + B0 (3.23)
By, = -[87(Q+ P)a + 117 aRy (3.24)
A= (Alg 8,) (5.42)
uj(0) = A} z(0) + By i=12 (5.%)
N+ N+l .
T
A P, )®
A = - 3(Q+ v (5.46)
M1 AJ(Q + PN)AJ * 74y
T T
5 i AJRNT:AQ(Q + PN)Aiczi + 1% (5.47)
! . .
N+1 AJ(Q + PN)AJ + 7JJ
SUDAER-148 - k.



Recurrence relations:

Unsaturated control

Pryy ™ o7(Q + Pl + Mg ) (3.28)
Ry = (0 Shy, )Ry (3.29)
Cper=Cy ¥ %1 (3.30)

Saturated control

Py, =@ (Q+P)o (3.34)
Ry, = @ [Ry + (Q + P)oa] (3.35)
cN-l-l = CN + ET[AT(Q + PN)A +rk+ EQTATRN (3.36)

Mixed control (u, saturated; u, unsaturated)
- J

- al '
T '
Ry, = (Ry + (Q+ PN)(AJBJMI +80,)] (5.49)
C. .=0C.+ [AR, +4(Q+P)AQ, + 7.0, JB" + 2o AT
m1= St By * 5 W% Y g By 181 By
+ az[AT(Q +P)A +79,..] (5.50)
115 ) AT
Startini conditions
P. = O, R. = O, C. = 0.

0 0
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VI. EXAMPLES

In this chapter four examples of optimal control systems computed
using the method described in Chapter IV are presented. Some optimal
trajectories in state space are also shown. In the final section the
synthesis of the systems 1is discussed.

A. EXAMPIE A

For the first example consider the space vehicle described in Chapter
II. The optimal control that minimizes the attitude sum-squared-error
from any initial ettitude error and its rate of change is to be found.
Since power consumption is an importent design consideration, the total
energy used in controlling the vehicle is charged by including sum-
squared-control in the performance criterion.

All parameters are normalized to unity, and the sampling interval
is arbitrarily set at T = 1. The resulting system is shown in Fig. 5.

DIGITAL CONTROLLER o

AL —/r—n HOLD i

FIG. 5. BLOCK DIAGRAM OF SYSTEM FOR EXAMPLES A-C.

The state-transition equations, as derived in Chapter II, are

1.0 1.0 0.5
z(n + 1) = z(n) + u(n), (6.1)
0.0 1.0 1.0
where control is limited by
-1.0 < u(n) < +1.0. (6.2)
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. The performance index is

- 10201 = ) () + n - 1)) (6.3)
n=1
and thus 1 0
Q= , r=1 (6.4)
0O O

The optimal control for this example is shown in Fig. 6. This figure
shows the state space divided into three main parts. In the upper areea
of the figure the optimal control is u = -1. This area is composed of
all the alpha-minus regions that were calculated using the method
described in Chapter IV. The boundaries of these regions are not shown

in the figure, since they represent information that is unnecessary to

the synthesis of the systen.

s et T -

e SAMPL I8 INSTANT

LI ]

-8 J~[5(0)1 - ? [zi(n) + ua(n - 1))

1=l

11
I _(2(0)] = 68.197 for 2z(0) = [ ]

FIG. 6. OPTIMAL CONTROL FOR EXAMPLE A.
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Through the middle of Fig. 6 are the regions in which the control
is optimally unsaturated, with the region of linear control in the very
center. The feedback parameters for these regions are given in Table 1,

and the optimal control for each of these regions is given by

u(0) = AN+1-Z-(0) *+ By = alzl(o) + aezz(o) + b. (6.5)

TABLE 1. FEEDBACK COEFFICIENTS FOR EXAMPLE A

Region AN+l BN+1

No. a]_ 8, b

ol -0.50000 -1.00000 0.00000
02 -. 3902 -1.12195 -0.48780
03 -.35556 -1.13333 -0.92222
ok -.29240 -1.12281 -1.32749
05 -.24658 -1.10959 -1.71918
06 -. 43902 -1.12195 0. 48780
o7 -.35556 -1.13333 0.92222
08 -.29240 -1.12281 1.32749
09 -.24658 -1.10959 1.71918

The alpha-plus regions, where the optimal control is u = +1, are
shown as the lower part of Fig. 6. Thus the optimal control is determined
for every point in the state space shown.

Figure 6 also shows an optimal trajectory starting from initial con-
dition g?(d) = [11 -4]. The cost for this initial 2(0) can be
computed either by using Eq. (6.3) or by using

1,(2(0)] = 2'(0)7g2(0) + 2" (O)Ry + Kyz(0) + ¢y (6.6)

where for the region containing the particular E(O) used here,
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[1.56164  1.0274%0

PN =
1.027h0 1.62329
-39 ¢, = 28.74317 (6.7)
* -0.253%2 | N ) ' .

Calculated either way the optimal cost is 68.497.

[Note that the number N--the number of steps to go--is always in-
finitely large, since in this problem there are always an infinite number
of steps to go. However, since it is necessary to be sble to distinguish
between the N-stage process and the (MN+1)-stage process, the symbol for
infinity will not be used to replace N in PN’ RN, CN’ AN+1’ BN+1’ or
Eq. (6.6).]

In Chapter IV it is stated that the matrix (¢ + MN+1) is nonsingular
when T ;l 0. For the region of linear control in this example (the Ol
region in Fig. 6) this matrix is

0.75 0.50

) - (6.8)
&+ Sy -0.50 0.00

The determinant of this matrix is 0.25, and thus the matrix is nonsingular
as predicted.

Example A might have been solved using dynamic programming, a general
computing method that is able to solve a wide variety of problems, many
of which can be solved in no other way. However, the special method
used to compute this example needed much less memory storage than dynamic
programming would have required., The state-space grid over which this
example was computed contained about 30,000 points. A careful use of
symmetry might have reduced this to about 20,000 points; even so, dynsmic
programming would have required at least 60,000 words of storage.

The number of words used by the method of Chapter IV cannot be stated
as a function of the size of the state-space grid, since this number
depends on whether all unused 5(1) regions are stored in the fast mem-
ory or on tape, on whether z(1) is calculated from 2(0) or vice versa,
and on how the regions are stored. In computing this example, only the
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boundaries of the regions were stored..a technique that cannot be used
in dynamic programming--and all the information about even the largest
region, the region of linear control, was stored in less than 200 words.
The entire program used only a few thousand words of memory, about one-

tenth as many as would have been required by dynamic programming.

B. EXAMPIE B

Consider the same system as used in Example A.
is still T = 1, but the performance index is now

3001 = ) 1Bn) + ).

n=1

cm@rass  SAMPLING INSTANT

The sampling interval

(6.9)

(6.10)

J_(3(0)) = z (3(n) + 23(n))
n=1

-6,
I“[E(O)] = b5, 454 for z(0) = [ 0]
5.5

T=1.0

FIG, 7. OPTIMAL CONTROL FOR EXAMPLE B.
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The optimal control is shown in Fig. T along with en optimal
trajectory. An extended picture of the optimal control is given in PFig.
8. Because the bounds on the control are symmetrical, the regions

F1G. 8. EXTENDED REGION OF OPTIMAL CONTROL FOR EXAMPLE B.

are symmetric with respect to the origin, and thus only half the un-
saturated regions are shown in Fig. 8. The feedback parameters A‘N+1
of symmetric regions have the same value and sign, while the BN+1
have the opposite sigu. The feedback parameters for both Figs. 7 and 8
are given in Table 2.

The optimal trajectory shown in Fig. 7 begins at ET(O) = [-6.0 5.5].
The cost associated with this initial condition can be computed by using
either Eq. (6.6) or (6.9). 1In either case the cost is 45,45k, where
for the alphe-minus region containing z(0),

[ 9.28016  46.95783
P, =
N 4695783 305.14152 ’
.
-149.32529
Ry = , Cy = 4136, 7LOk, (6.11)
_-1086.26&9
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TABLE 2. FEEDBACK COEFFICIENTS FOR EXAMPLE B

Region Ay Byl
No. al 32 b
o1 -0.66667 -1.33333 0.00000
02 -. 47058 -1.23529 -0. 44118
03 -.36145 -1.18072 -0.85542
ok -.29268 -1.14634 -1.25610
05 -.24561 -1.12281 -1.64912
06 -.21145 -1.10573 -2.037h44
o7 -.18557 -1.09278 -2.,42268
08 -.16528 -1.08264 -2.80578
09 -.14898 -1.07kug -3.18735
10 -.14792 -1.07396 -3.21698
11 -.13559 -1.06TT9 -3.56T79

It is proved in Chapter IV that if I'= 0 the matrix (® + AAN+1)
is singular. For this example the matrix for the region of linear con-
trol is

2/3 1/3

) = (6.12)
(o + AAN+1 2/ 13

which is certainly singular. Direct calculation shows that for any of
the AN+1 calculated in this example this matrix is singular.

Computing the minimum cost from Eq. (6.9) requires summing an infinite
series, This is particularly easy in this case where the matrix (6.12)
is singular. If E&O) is in the region of linear control, then the
z(n) (n=1, 2, ...) alvays lie on a line through the origin, in this
case the line with slope -1 shown dashed in Fig. 7. Since zl(n) =
-zz(n), using (6.12) with (6.1) shows that each z(n + 1) 1is given by
the geometrical progression

z(n+1) = Eéﬂl n=1, 2, ... (6.13)
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Thus the optimal cost is given by

o 2
1,[2(0)] = 1(1) r2 (1)2 ( 2 6y
B

n=1

C. EXAMPLE C

This example shows the effect of increasing the sampling rate. The
system is the same as in Example B, but the sampling interval T = 0.1
is one-tenth as long.

As shown in Fig. 9, the band of regions of unsaturated control is
much narrower than in Fig. 7 of Example B. Since the regions are much
smaller, there are many, many more of them. There are over 50 regions
of unsaturated control on each side of the region of linear control in
the state space shown in Fig. 9. The boundaries separating these regions
are not shown because they are so close together.

The optimal control for the region of linear control is given by
u= (.9.52382)zl + (-10.1+76l9)z2. (6.15)

The AN+1 for the region of linear control was calculated, beginning
with PO = 0, by the iteration method discussed in Chapter IV. AN+l
in Exemple B took eight iterations to converge to six significant figures;
in Example C it took about 80 iterations to converge to the same number

of figures.

D. EXAMPLE D

This example, perhaps the most interesting presented here, considers
the artificial earth satellite, including the external force due to the
gravity gradient, discussed in Chapter II. All parameters are normalized
and the sampling interval is arbitrarily and somewhat unrealistically set
at T = 1. Thus the state-vector-transition equation is

0.54030 0.841h7 0.145970

z(n+ 1) = z(n) v | u(n) (6.16)
- -0.84147  0.54030 0.8L1k7
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vhere the control is limited by Eq. (6.2). This system is shown in
Fig. 10.

DIQITAL CONTROLLER w Y

H h—J’L. NOLD

T
ol

Ofe
L

FIG. 10. BLOCK DIAGRAM OF SYSTEM FOR EXAMPLE D.

It is desired to make the attitude integral-squared-error o minimum,
and as an approximation the attitude sum-squared-error will be minimized.
(This approximation will unfortunately cause a phenomenon known as inter-
sample ripple, as will be shown later.) There is no cost on the control,

thus the performance index is

I 120)1 =) 2(n) (6.17)
n=1
Therefore
1 0
Q= , r=0. (6.18)
0 o

For the purpose of comparison, a simple nonoptimal system is shown
in Fig. 11. This system uses the optimal feedback gains 8 and a2
of the region of lineer control, and thus is optimal for initial condi-
tions close to the origin in state space. If the total output of these
feedback blocks causes saturation of the input, then this is simply
allowed to happen. Thus Fig. 11 shows a system that is extremely simple
to build and is optimal for small initial conditions.

The optimal control regions are shown in Fig. 12; the optimal feed.

back coefficients for the unsaturated regions are given in Teble 3.
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TABLE 3. FEEDBACK COEFFICIENTS FOR EXAMPLE D

.

Region AN+1 Bm'l
No. 5 a2 b
ol -1.17534 -1.830u49 0.00000
02 0.13289 -1.11580 -0.390k4
03 0.35351 -0.99526 -0.62492
ok 0.31743 -1.01498 -0.56883
05 0.49316 -0.91898 -0.86046
06 0.53957 -0.89363 -0.95780
o7 0.5597L -0.88262 -1.01570
08 0.66825 -0.82333 -1.38211
09 0.605T2 -0.85749 -1.16421
10 0.6L4gk2 -0.83362 -1.33612
11 0.66819 -0.82336 -1.42508
12 0.T76747 -0.76912 -1.94701
13 0.71067 -0.80016 -1.64189
1k 0. 75047 -0. 77841 -1.87443
15 0.63394 -0.84207 -1.17957
16 0. oBll -0.91610 1.96661 ‘

These feedback coefficients are used in Eq. (6.5) to determine the
optimal control.

An optimal trajectory from initial condition _z_T(o) = [-5.0 3.0}
is shown in Fig. 12. This initial condition is in alpha-minus region 16
as shown in the figure. When the state vector reaches the region of
linear control, it enters a limit cycle rather than going to the origin.
The value of zl(n) at the sampling instants is zero in this limit
cycle, thus no cost is charged to the performance index (6.17). However,
the attitude error z,(t) 1is zero only at the sampling instents, and
thus there exists a phenomenon known as intersample ripple [Ref. 15].
This ripple can be eliminated during the design of the system by adding
a charge on either za(n) or u(n - 1).

-5 = SUDAER-148



The cost of the tra.je;:tory shown in Fig. 12, as determined either
by (6.17) or by (6.6), is 32.702. This cost is most easily determined
by (6.6), where

2.947579  -0.831075

By =
-0.831075 4,033005
9.389736

RN = ) CN = 1‘8.085091" (6'19)
-9. 400775

for the region containing 2z(0)--alpha.minus region 16 in Fig. 12.
The control for the nonoptimal system of Fig. 11 is given in Fig. 13.
Between the two parallel lines the control is given by

u= (-1.1753&3)zl + (-1.830488)22 (6.20)

where the two lines are determined by setting u=*1 in (6.20). The
trajectory shown in Fig. 13 from initial condition ET(O) = [-5.0 3.0]
has a cost determined from Eq. (6.17) of 73.15L4, an increase of 124 per-
cent over the optimal system. Thus, though considerably more complicated
to mechanize, the optimal system is a substantial improvement over the
simple system of Fig. 1l.

E., THE SYNTHESIS

The optimal design of a system is often used only as & standard of
compariscn for the system that is actually built, However, if the truly
optimal syctom is to be synthesized, the feedback coefficients of the
unsaturated reglons can be stcred in a special-purpose digital computer.
The computer takes the value of the state vector at the sampling instant
and decides whether the control u 1is optimally a+, o, or unsaturated.
If u is optimaliy unsaturated, the computer determines which unsatu-
rated region the state vector is in, and computes the control using Eq.
(6.5).

Approximations to the optimal system can be made with varying degrees
of accuracy. For examples, some of the unsaturnted regions can be com-
bined into one region with little deviation from the optimal cost; or all

SUDAER-148 .56 -
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FIG. 13. CONTROL FOR SYSTEM OF FIG. 11.

of the unsaturated regions can be eliminated, using their location as
a gulde to the placement of a piecewise linear switching curve. Around
the origin in state space, however, the control must be linear if the
system is to return to equilibrium.
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