
404 8261
00, Q G.W. DEm

OPTIMAL BOUNDED CONTROL OF LINEAR
SAMPLED-DATA SYSTEMS USING QUADRATIC
"PERFORMANCE CRITERIA

tii

THIS WORK WAS PWORD IN ASSOCIATION WITH RIWARCH SPOKOM FY

A P Rt IL THE NATIONAL AMONAMIlCS AO SPACE ACMINISTRATION S U D A E If
It19 UNM SRESARCH GRANT -133-61 NO. 141



Department of Aeronautics and Astronautics
Stanford University
Stanford, California

OPTIMAL BOUNDED CONTROL OF LINEAR SAMPLED-DATA SYSTEMS

USING QUADRATIC PERFORM4ANCE CRITERIA

by

Gary W. Deley

suDAER No. 14i8

April 1963

r
fthi Wv*LV, v p~*orned in association with research sponsored by

i~i ~t1#i* Aoronautics and Space Administration
W~ire Unearch Grant NsG.133-62.



V ~ABSTRACT

This investigation studies optimal control of linear sampled-data
systems where the control is subject to saturation. The system is de-

scribed by the state-space method. The control is considered to be

optimal when it minimizes a performance index which is defined as a sum

over the sampling instants of a quadratic function of the states and

controls.

The ution begins with the Principle of Optimality. A form is

ass for the optimal return function, and recurrence relations are

de ed for the one-input case which are different depending on whether

*e optimal control is or is not saturated. The optimal control is

hown to be a piecewise linear function of the states. A computing

thod that uses the recurrence relations to solve the infinite stage

regulator problem is presented and discussed in detail. This method

equires less computer time and memory than would straight dynamic pro-

e.ng.

Both one- and two-input control are considered. The two-input case

requires a third set of recurrence relations for use when one input is

saturated and the other is not. More inputs can be handled using the

same methods, but the complexity increases rapidly with the number of

inputs. A detailed discussion of a simple method for finding the mini-

mum of a pQsitive definite quadratic function in two variables subject

to the constraint that the minimum be on or within a rectangle is pre-

sented.

Four examples showing the optimal control of second-order systems

determined by the computing method given in this report are presented

and discussed-
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A. OUTLIU OF THE PFOBZU

As an example of the problem investigated in this report, consider

a space vehicle vhose attitude is to be controlled by reaction bAsels

or t'ros. Various disturbances, perhaps impulsive as from collislons

vith microceteorites, produce an error in attitude vhich must be cor-

rected. In applying the control, the integral over time of the attitude

squared-error plus the squared-control is to be minlmized.

Because the control torque is subject to saturation., a nonlinearity

is inherent in the system. Thus it is expected that the optimal control

vill be a nonlinear function of the states of the system--the attitude

error and velocity. This optimal control function is to be stored in a

mall special-purpose digital coputer called a digital controller.

The introduction of a computer makes the system sampled-data. The

computer determines from the states of the system at each sampling in-

stant the correct optimal control to apply over the next sampling

interval.

Since the system is now sampled-data, rather than minimize an Inte-

gral it is logical and convenient to miniize the sun over time of the

attitude squared-error plus the squared-control at the sampling instants.

More generally, this investigation studies optimal control of linear

sampled-data systems vhere the control is subject to saturation. The

system vill be described by the state-space method developed by Kalman

and Bertram (Ref. 1].

At each sampling instant the system is assigmed a performance. nvmber,

vhich is a quadratic function of the state error and control. The sun

of the performance nambers over a given nutber of samples is called the

performance index. Only the transient regulator problem--that of finding

the control sequence vhich, from a given initial condition with no ex-

terial disturbances and no cazmda, minimizes the performance index--
will be ooasiwevd.,

2w suq4n v*t Is often fast enough that a saled-4ata system

~ ~e4ss qputed fo thepuroseof analysis., by a continuous

~~~~~u~~U s~t.im oeeteaempling rate is cowsidere



to be slow enough that the sampling process introduces significant

effects into the performance of the system.

B. STMMEY OF REIATED WORK

There is a considerable body of literature on the subject of optimal

control of sampled-date systems, but almost no mention of the specific

problem presented here.

Using the Principle of Optimality., the problem without constraints

on the control was solved by Kalman and Koepcke (Ref. 2]. They show

that for the infinite stage regulator problem the optimal control takes

the form of stationary. linear feedback gains. Work on this problem

was also done by Henry [Ref. 3).
Several researchers have worked on the problem investigated here,

though using minimum time response as the criterion of optimality.

Among these are Kurzweil (Ref. 4], Desoer and Wing (Ref. 5], and Kalman

(Ref. 6].

Merrian [Refs. 7, 8], using his parametric expansion method, has

studied the problem in the continuous case.

Bellman's computational method of dynamic programming (Ref. 9] solves,

among others, problems of the type studied here when the dimension of

the state vector is small. The special problem of this report, minus

constraints on the control is mentioned by Bellman and Dreyfus (Ref. 10].
Quadratic performance criteria have been used by many researchers in

both the continuous and sampled-data cases.

The state-space method of describing linear sampled-data systems is

discussed in detail by Kalman and Bertram (Ref. 1], Kalman (Ref. 11],

Gunckel [Ref. 12], and Rauch [Ref. 13).

C. OUTLINE OF NEW RESULTS

For the first time in the literature the problem of computing the

optimal feedback coefficients of a sampled-data system with bounded con-
trol using quadratic performence criteria is discussed in detail.

In Chapter II a mathematical description of the system and the per-

formance criterion is gven, and the problam formulation is presented.

Two examples using this fouaulatim we discussed.

SUDA1 8 -2 -



Recurrence relations necessary to the computation method are derived
in Chapter III for the single-control case. The optimal control is

shown to be a piecewise-linear function of the states.

In Chapter IV a general computing method is presented for the single-

input case, and problems connected with the computations are discussed
in detail. The method is also compared with dynamic programming. It is

shown that, because it takes advantage of the information contained in
the recurrence relations, the method developed here requires much less

computer time and memory than would dynamic programming.

Chapter V extends the work to the case where the system has two con-

trolling inputs. Extension to systems with more inputs presents no
formal difficulties but is not discussed due to its complexity.

Results of computer solutions of four examples are presented and
discussed in Chapter VI.

K.
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II. WTATEMENT OF THE PROLU

This investigation considers those sampled-data systems that can be

adequately described by linear-difference equations. These equations

will be written in the state-space form used by Kalman and others. For

conciseness, vector-matrix notation will be used throughout.

A. THE SYSTEM

The plant, or system to be controlled, is described by the linear
vector-difference equation

z(n + 1) = pz(n) + tu(n) (2.1)

and the vector equation

y(n) = Mz(n), (2.2)

where z(n) is an (m x i) state vector,

y(n) is a (p x 1) output vector,

u(n) is a (q x 1) input (control) vector,

f4 is an (m x m) transition matrix,

L is an (m x q) distribution matrix,

M is a (p x m) output matrix.
All vectors are considered to be column vectors. Row vectors will

be written, for example, as z T(n), where T denotes the transpose
operation. y(n) is the measurable output vector. If all the states

are directly measurable, then M is the identity matrix.

Since physically the control variables cannot be unbounded, each
element of the control vector u(n) is bounded from below by the

corresponding element of a vector a " and from above by the vector

* . That is,

The control vector u(n) will have dimension one (i.e., it will be

a scalar) in Chapters III and IV. Chapter V will extend the results to

higher dimensional u(n).

sumZ-1 1 8 4 .



B. THE PERFOMACE CRITERION

If a system is to be optimized, some criterion must be chosen that

determines how well the system is operating. In this investigation a

single number that characterizes overall performance is assigned to the

system at each sampling instant. This number, called the performance

number Yn, is defined to be a quadratic function of the difference

between the actual output of the system, y(n), and the constant desired

output y-d plus a quadratic cost on the control required to achieve

the output. Mathematically this is

Yn = [y(n) - y~d]TQI [y(n) - y ] + 2uT(n - l)pu(n - 1), (2.4)

where Q' and p are positive semidefinite symmetric matrices. With

no further loss in generality let Y 0d = .

Yn can be stated in terms of z(n) by using Eq. (2.2).

Y = z(n)Qz(n) + uT(n - 1)pu(n - 1), (2.5)

where Q is a symmetric positive semidefinite matrix defined by

Q = MTQ'M. (2.6)

Given an initial condition z(O), the control is considered optimal

if it minimizes in N stages the sum of the costs Yn . This sum, called

the performance index, is denoted by JN[Z(O)].

N

JN[Z(O)] = Z [zT(n)Qz(n) + yT(n - l)r'u(n - 1)] (2.7)
n= 1

Although the performance index is limited to quadratic functions,

many useful problems can be formulated using criteria of this type.

Integral-squared-error has been used with continuous systems for some

time, and sum-squared-error is a logical extension to use with sampled-

data systems. The above formulation allows not only squared-error

terms, but also cross-products between the states, to be charged. Often

- 5 - SUDAER- 1 48



the energy used for control must be conserved, and the charge on squared-

control allows for this. Squared terms also provide a simple analytical

approximation to absolute value.

The principal concern of this investigation is the infinite stage

regulator problem; thus the performance index is

_o) - J[_E(o) .(2.8)

J[0.(O)]I = Nl-* m JN[()

C. THE PROBLEM STATEMENT

The problem can now be precisely stated: Given the system defined

by the linear vector-difference Eq. (2.1), and given the bounds on the

control defined by the vector-inequality (2.3), find for all initial

conditions z(O) the control sequences u[z(O)], u[z(1)], u[z(2)],

that minimize the performance index J [z(O)].

Finding the optimal control for all states distinguishes the con-

trol problem from the optimal trajectory problem. In the latter

usually only one or a few initial states are of interest.

D. EXAMPLES

Two examples of the above formulation will be given. The solution
to these examples will be discussed in Chapter VI.

For the first example consider a space vehicle whose attitude is

to be controlled to an inertially fixed reference direction by reaction

wheels. In its simplest formulation the small angular motion of the

vehicle about a-principal axis can be studied by considering the vehicle

as an inertia with moment of inertia I about that axis (Ref. 14].

The state variables are the attitude error e and its derivative

S= de/dt. The sampling interval is T seconds long, and the control

is held constant over the sampling interval by a zero-order hold [Ref.

15]. The system is shown in Fig. 1.
The equations of motion are

=l(t) z2(t)

2(t) - - (2.9)

SUDAER-148 - 6 -



I+

FIG. 1. BLOCK DIAGRAM OF SYSTEM IN FIRST EXAMPLE.

The hold takes the value of u* at the sampling instant and holds it

constant at that value until the next sampling instant. That is,

u(t) = u*(n¶), for nT < t < (n + 1)T. (2.10)

Solving Eqs. (2.9) for z1 r(n + l),r and z 2 [(n + 1)T] in terms

of z 1 (nm), z 2 (nT), and u(n') gives the b and & matrices. A simple

way to determine these matrices is to let, one at a time, an independent

variable z1, z 2 , or u at time nT be unity while the others are

zero and solve for the dependent variables z1  and z2 at time

(n + l)-r. Thus, for example, let the Laplace transform of u(t - n'r)

be U(s) = 1/s and solve for Z (s), which is

Zl(s) i U(s) -- . (2.11)
1 Is 2Is3

The inverse transform is

Z1(t - nt) = (tI- n¶) (2.12)

Letting t = (n + 1)T gives 611(T).

6( . (2.13)

In the same manner the other elements of the V and A matrices

can be found. These are

~ 1 L2121(2.14)
-7 1A 2

T 7 - DmE-14



A performance criterion needs to be chosen. M is the identity

matrix, which means both attitude error and its rate of change can be

measured directly. Assume the performance number is the sum of the

attitude squared-error and the squared-control. Furthermore, assume

the cost of an error in attitude is to be weighted equally with the cost

of control. Thus

The problem then is: For each initial condition z(O) find the

control sequence u(O), u(l), ... that minimizes the performance index

J_[z(O). ] = Z(z2(nT) + u2[(n - l)'r]). (2.16)
n= 1

From here on, to conform with the original problem statement, the

T will be dropped from the arguments, with no implication that T = 1.

As a second example consider an artificial satellite orbiting the

earth. Using small angle approximations and neglecting other terms of

small magnitude, the pitch equations of motion are decoupled from roll

and yaw. The vehicle can be described in pitch as an inertia with

moment of inertia I [Refs. 14, 161. An important external force acting

on the satellite is exerted by the gravity gradient. For small values

of e, this force is proportional to the attitude error e with

constant of proportionality k, as shown in Fig. 2.

HOLD

FIG. 2. BLOCK DIAGRAM OF SYSTEM IN SECOND EXAMPLE.

SuDAER-148 - 8 -



From Fig. 2 the equations of motion can be written down by inspection.

1 (t) = z2 (t)

£2(t) = -(k/I)zl(t) + u(t)/I (2.17)

For this example the method of finding 0ll will be shown in detail.

Conceptually it is easier in this case to consider the transfer function

from Z2(s) to Zl(s) and let z2(n) be the delta function. This has

the effect of making z 1 (n) = 1 as desired. Thus

zps) 2 s Z2 (s); z2(s) 1. (2.18)
s + (k/I)

Therefore

) cos (0r) (2.19)

where
2

= k/I. (2.20)

Similarly the entire @ and • matrices can be found, and the

vector-difference equation is written as

Os( (1/3)sin (P z 1 )[1- cos (PT)un
zI(n + I) a0') os() + ~ i~snJu(n).-L sin (PT) Cos (PTJ• (1/0) sin (PT)

(2.21)

The performance index for this example is chosen as

J0[z(0)] zl(n). (2.22)

n=l

The solutions to both of the preceding examples are discussed in

detail in Chapter VI.

-9 - SuDAE-1i48



III. RECURRENCE RELATIONS

A. SOLUTION WITH UNBOUNDED CONTROL

Before considering the case where the control u(n) is bounded, the

solution to the unbounded control problem will be derived in detail.

Here there is no simplification in having u(n) a scalar. The system

is

z(n + 1) = tz(n) + Au(n) (3.1)

y(n) = Mz(n). (3.2)

Given an initial condition z(O) the control sequence u(O), u(1), ... ,

u(N - 1) is to be found that minimizes the performance index
N

JN[Z(O)2 = T (n)Lz(n) + u (n - l)ru(n - 1)]. (3.3)

n=-i

The solution begins by defining IN[z(O) ], called the optimal return

function, as the minimum value of JN[Z(O) ]. This IN[Z(O)] has a known

and simple form:

IN[z(O)] = zT(o)PA(O), (3.4)

where PN is a synmetric, positive semidefinite matrix. That this form

is correct will be proved by induction later.

By definition

N+l

I N1l[z(O)] = min min min (Z T T - -1)1

Iu(O) u(l) ! u(N) L z + _ (n -1r_(n
n=l

(3.5)

Since z(l) is determined solely by the choice of u(O) and not by the

other u(n), Eq. (3.5) can be factored as

sUDAER-148 - 10 -



min] (Tl)(l),

IN..= =(O) u(O) B u° (o)r

N+l
+mini mini mini T T+ u() u(2) u(N) L 12 (n)fQ(n) + 2 (n - l)rjC(n - 1)

n-2 r'

(3.6)

Noting that the last group of terms is exactly IN[z(l)] gives

1il[1(0o)] n(O)( (l) z(l) + (O)pu(O) + IN[_(l)]-. (3.7)

The above equation could have been arrived at directly using the

Principle of Optimality [Ref. 9]. This principle states that the minimum

cost of an N+l stage process is the minimum of the sum of the cost of

the first stage and the minimum cost of the remaining N stages. (Note

that the arguments of the state and control variables increase with time,

while the subscript on IN decreases with time.)

Substituting Eqs. (3.1) and (3.4) into (3.7) gives

INl[Z(0)1] - mi t[fz(O) +A•u(O) ]T(Q + PN) [z(O) + Au(O)] + HuT(O)u(O).

(3.8)

Completing the square on the right side of (3.8) and defining

u_(O) = AN+,I(O) (3.9)

AN+, = -[AT(Q + PN) lT + r + PN)( (3.10)

transforms Eq. (3.8) into Eq. (3.11):
[.() min) 0 ]T 6(

N+I[Z(O)] = u)[( - u(0 PN)L A ] - u'(O)(

TT
+_ (1)1(Q + PNSA_!(O)

- i~ ((o a (Q,+ PN)a + r IN,_!(o)•. (3.n1)

- 11 -SUDAm-148



The control u(O) occurs in only the first term of (3.11). If the

matrix [AT(Q + PN)A + r] is positive definite the optimal control is

unique. Then the minimum value, zero, of this first term occurs only at

u(o) = u'(0). (3.12)

The matrix will be positive definite if P is positive definite or if

Q is positive definite and the columns of A are linearly independent.

It will not be positive definite if p = 0 and the columns of A are

linearly dependent [Ref. 12]. In other cases this matrix might be singu-

lar, although no such difficulty was encountered in the examples of

Chapter VI.

Equation (3.12), along with Eqs. (3.9) and (3.10), defines the optimal

value of u(O).
The recurrence relation for PN+l is determined by equating Eq. (3.11)

with (3.4) when u(0) = u'(0).

IN+l[z(O)] = z T(o)0 T(Q + PN)aZ(O)

T(O)ATN+T [AT(Q + pN)A + r]AN+IZ(O)

T (o)P z(O). (3.13)
-N+l-=

Since (3.13) must hold for all z(O) the recurrence relation becomes

P+ T(Q + p)( + AN+l (3.14)

where the relation

TAN+[AT(Q + PN)A + P] = *T( + PN)A (3.15)

has been used to simplify (3.14).

Equation (3.13) shows that if the quadratic form for IN is correct,

then IN+l has the same form. The quadratic form is trivially correct

for 10 since

IoLt(O)] 0 (3.16)

suAER-148 - 12 -



for all z(O). To complete the mathematical induction the form for l1

must be shown to be correct. I1 is determined from Eqs. (3.13) and

(3.10) noting that PO - 0. Equation (3.15) is again used to simplify
the result.

1, [.(O)1 [-b),QE - &(JQ + r) l1JCA]!(o). (3.17)

Thus I[z(O)] has the required quadratic form.

The solution proceeds as follows: Since Io[z(O)] = 0, PO= 0. Be-

ginning with PO = 0 calculate A From A1 and P0 calculate PI"

This iteration process is continued until all the AN of interest are

calculated. If the plant is controllable the AN will tend to a limit

as N increases [Refs. 11, 12]. Therefore, for the infinite stageregulator problem the optimal control in the unbounded case takes the

form of a stationary, linear function of the states.

B. RECURRENCE RELATIONS WITH BOUNDED CONTROL

In the first part of this section the control u(n) will be a vector

of any dimension. This will make it possible to use Eqs. (3.18) through

(3.25) in Chapter V, where two-dimensional control is considered in

detail. When the actual minimization over u(O) is done in this section,

u(O) will be considered a scalar.

Limiting the possible range of the control u(n) to

a-" < u(n) < a + (3.18)

complicates the solution greatly. The derivation in this section is the
same as that in Sec. A up to Eq. (3.7). Equation (3.7) becomes

main i+ ([T(1)Q~(I)+T0I•()+IN()INl [Z(°)] _a-<_"(o) <_ - ()+YT(~rU0 Nzl

(3.19)

I[tz(O)] takes the form, as will later be proved by induction,

()]= + (3.20)

! (O)P!(-) + -z(O)RN +. R.E(-) + N

-13 - sUDAm. 1 48



where

PN is an (m x m) positive semidefinite symmetric matrix,

RN is an (m x 1) vector,

CN is a scalar.

Substituting (3.1) and (3.20) into (3.19) gives

N+l O -< u( _<+ E z(O) + Au(O) IT(Q + PN) [( _(O) + Au(O)I

+ T(o)u(o) + [4Z(o) + A(M0 ) RN+ P+ fR_(O) + AU(O)] + C.N)

(3.21)

Again completing the square on u(0) gives

minT

-I ) m_._u(o)_.+([u(o) _u,(o)lTr['(Q + p)n + PI[u(o) - u'(0)oI
T Tzo) + T

+ IT(o)WN( + P )4O(o) + z1(°)OTN R+•4¢(O) + CN

-[A N+l.(o) + BN-l] T I T(Q + P N)A + rn[A 1 z(0) + BN+l])'

(3.22)

where

A+, = "[A(Q + PN)A + r'lAT(Q + PN)o (3.23)

as before, and

BN+l = -[A(Q + PN)A + r]'TA RN (3.24)

_u,(0) =A N+l_2(O) + BN+l "(3.25)

The next step is to choose the u(O) that minimizes Eq. (3.22).

This is easy when u(O) is a scalar or when the distribution matrix A

is an (m x m) diagonal matrix--an unlikely possibility. For the rest of
this chapter and in Chapter IV, u(O) will be considered a scalar, that
is, there is only one controlling input to the system.
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Since [AJ(Q + PN)& + ri is supposedly nonsingular (it is in fact a

positive scalar), the minimum of Eq. (3.22) occurs at

raI if u,(o) >a•
u(o) - u(o) if a- < u'(o) _< a+ (3.26)

if u'(o) <c"

The final step is to derive recurrence relations for PN+I' RN+I'

and C N+. The existence of these relations gives the necessary proof

that the form assumed for IN[Z(O)] is correct. Proof that the form for

Ii[zI(O)] is correct is the same as in Sec. A and will not be repeated.

The recurrence relations are different depending on whether or not

u(O) is saturated. When u(0) is unsaturated, that is, when

a" < u'(O) < a+, the relations car. be obtained by equating (3.20) with

(3.22) along with u(O) u,(o).

z _(o)] ToT(Q + P)Z(O) + zT(°) TR + T () + C

- [AN+z(o) + B +1 ]T[T(Q + PN)A + r][A -N1 (0) + BN~l]

IT(O)pNzcO) + IT(O)RN~ + R+1 ,z(O) + C N~l (3.27)

Thus the recurrence relations when u(O) is unsaturated are

PN+l T TQ + P)C + ON+l) (3.28)

N+l : + N+1)TN (3.29)

C -- CN + R T (3.30)

where the simplifying relations

-Al[A(Q + PI)A + r] = 4T(Q + PN)A (3.31)

and
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+T[AT(Q A+ + ri R;A (3.32)

have been used.

When u(n) is unbounded, these recurrence relations reduce, as they

must, to that given in the unbounded case, Eq. (3.14). The equations fot

AN+I and for PN+l are the same as in the unbounded case. Since R0 = 0,

all RN = 0. Since all RN = 0, all 3N+I = 0. Finally, since CO = 0,

all CN = 0.

The recurrence relations when u(0) is saturated can be determined

by substituting u(O) = a, where a represents either a + or a , into

either Eq. (3.21) or (3.22) and equating the result with (3.20). Equating

(3.21) with (3.20) gives

fT

N[ I '10)] =•z(O) + ']T(Q + PN)E(O) + '8a] + a2r

+ (0 + 6IRN+ Rj4()+ .6]+
-R = PN)+1(0)+I )Nl+ j.EO+ N '

(3.33)

The recurrence relations when control is saturated are thus

PN+l -- 4T(Q + PN)'D (3.34)

T (3.35)

CN+ ` C:N + a2[i:(Q + P:N): + ] + 2aART. (3j36)

By the Eame arguments used in the unsaturated control case, the form
of IN[zE(0)] is shown to be correct by mathematical induction.

The principal equations derived in this section are summarized at

the end of this chapter.
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C. DISCUSSION

Beginning with a zero-stage process and calculating backward in time,

as long as all the stages have optimally unsaturated control, the RN,

CN, and BN+I remain zero. The first stage backward in time ;hat is

saturated causes RN and CN to be nonzero, and they will remain non-
zero for the rest of the stages.

If it were known a priori which terms of the optimal control sequence

u(O), u(l), ... , u(N - 1) were saturated and which were not, the solu-

tion would proceed simply as in the unbounded case. Beginning with a

one-stage process, AI and B could be calculated. This requires no
knowledge of whether or not the optimal control is saturated. Next,

knowing whether the optimal control u(O) equals a +, a-, or is unsatur-
ated, Pl, Rl' and C1 could be calculated. This computational scheme

could be continued for as many stages as desired.

Unfortunately, nothing is known about the control sequence before-

hand; thus the above computational scheme cannot be used. At each stage

it is not known whether to use the recurrence relations for unsaturated

or for saturated control. A computational method that does riot require

this a priori information is needed. Such a method will be discussed in

Chapter IV.

The method described in the second paragraph of this section is still

useful, however, and it has the advantage that it is exact. It can be

used to perfect estimates of the optimal control obtained by other methods.

For example, suppose the optimal control sequence was determined by a

method requiring a discrete state space such as dynamic programming or

the method described in the next chapter. Errors due to quantizing the

state space will build up, and thus the true minimum and the true optimal

unsaturated control will only be approximated. Now, however, it is known

whether tha control at each stage is saturated or not, and the simple

computational scheme above can be applied to obtain the exact optimal

control. Boundaries of all control regions of the examples in Chapter

VI were checked in this manner.
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SUMAY C CIIPAL EQUATZIONS FOR S .I-n.m CONEROL

Optimal return function

INIz(O)OI mpem) +-zT(o)• - (o) + CN (3.20)

Optimal control

if u'(O) >+ (saturated)

uI() O) if < u'(O) < a+ (unsaturated) (3.26)

a- if u'(O) < (saturated)

Definitions

u,(o) = AN+lz(O) + BN+l (3.25)

AN+, -- -[(Q + PN)A + r]'fA(Q + PN)t (3.23)

BN+l = -[(Q + p)A + l' (3.24)

Recurrence relations:

Unsaturated control

T + PN)( + AN+l) (3.2&)

T

• = , + •)•%(3.29)

C N.l = CN + R;&N+ 1  (3.30)

Saturated control

PN+l = *T(Q + PN)t (3.34)

RN+J. O 1 + (Q + PN)&xJ (3.35)

C Nl C +a2[, (Q + PNA+ ri + 2M6F RN ( 6

Starting conditions

P 0 Oa, R 0 -, C0 -0.
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IV. COIM~fATIONAL ASPECTS

This chapter describes a method of using the equations derived in
Chapter III to determine the optimal control of any system described by

Eqs. (2.1) and (2.2). This method, which requires a digital computer,

calculates the optimal control from any point within a bounded region of
state space for the infinite stage regulator problem. Useful facts per-

taining to the actual computations are discussed.

Before describing the computing method recommended in this report,
Sthe straight dynamic programming approach will be briefly discussed for

comparison.

A. DYNAMIC PROGPAIOING APPROACH

The basic dynamic programing approach to the problem is straight-

forward but requires a very large and very fast digital computer to
solve for the optimal control of even small systems. This method repeat-

edly uses the fundamental functional equation of dynamic programming

[Ref. 9) which, put into the form required for this problem, is

m[n uJ,[Z(l)] + IN[z()1), (4.1)

where

J1 = z- (L)Qz(1) + 2 (O)pu(O), (4.2)

and IN[()] is the minimum cost associated with initial condition

z(l). Equation (4.1) is recognized as beig the same as Eq. (3.19).

Although only the single-input case is being considered in this

chapter, functions of the control u(n) will be written in vector-matrix

form for use later in this report and for future work. Of course in

the single-input case the last term of Eq. (4.2) is simply u (O)r.
In words, Eq. (4.1) states that the minimum cost ,+l[.(O)] from

initial state z(O) is the minimum over the allowable values of the

control u(0) of the sum of the cost of the first step, which takes
the state to z(1), plus the minimum cost of being in state !(l).
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Before computing, both the state space and the control space must

be quantized; that is, a discrete set of values is chosen over which

the calculations are to be made. This set must be dense enough to pre-

vent errors from accumulating during the calculations as the result of

interpolation.

The calculation is divided into two parts: First the INIZ(O)],

called the optimal return functions, are calculated backward in time for

all N and all z(O). Second, if actual optimal trajectories are

desired, these are calculated forward in time using the optimal control

calculated in the first part.

The first part of the calculation is the time-consuming part. Be-

ginning with o[_z(1)] = 0 for all z(l), Il[z(O)] is calculated from

Eqs. (4.1) and (4.2) and the state-transition equation

z(l) = t)Z(0) + Au(o). (4.3)

For a given value of z(O) and for each value of u(O), J [Z(E)] is

calculated and the minimum is stored as I, Lz(1)]. The optimal value of

u(O) is also stored. This calculation is performed for each z(O).

Now that the values of I,[z(l)] are known for all z(l), the

I2[z(O)] can be calculated, again using Eqs. (4.1) and (4.2) along

with the state-transition equation (4.3). Since the z(l) calculated

from z(O) by the state-transition equation will probably not be one

of the discrete values for which the 11 [z(l)] were calculated, the

correct value of Iifz(l) to use in Eq. (4.1) must be found by inter-

polation. It is the interpolation that causes the most significant

errors to arise in the computation. Higher order than linear interpola-

tion can be used, but since the interpolation must be done a very great

number of times the computing time is increased significantly.

The process described in the last paragraph is continued until the

optimal return functions and the optimal control for the desired N

stages are calculated. In the case of the infinite stage regulator

problem, stages must be calculated until the optimal control for each

z(O) at stage N+I is the same as the optimal control for each z(O)

at stage N. This may require very many stages of calculation.
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The fast memory requirements at each stage are three words for each

value of z(O): IN41 [Z(0) ], IN[z(0) ], and the optimal u(0) for stage

N+l. Thus, for example, a two-dimensional problem with 100 values of
zI1 and 100 values of z2 would require 30,000 words of fast memory
storage. This is approaching the limit of present-day computers. A

three-dimensional problem with 100 points to each dimension would require

3,000,000 words of storage, thus exceeding the limit of present computers--
a difficulty often referred to as the "curse of dimensionality."

The method discussed next for computing the special problem considered
in this report requires far less computing storage and computing time
than does straight dynamic programming.

B. A COMUT7ING METHOD

The basic dynamic programming algorism makes no use of the recurrenne

relations derived in Chapter III. By taking advantage of this additional

knowledge about the solution, considerable savings can be made in both

computer time and memory, making it possible to solve much larger prob-

lems.

To facilitate the discussion of the computing method, which involves

calculating regions of optimal control, several definitions will be

made:

1. Region of linear control. In the-infinite stage regulator problem

there exists a region about the origin in state space where the
control for the first and all future stages is unsaturated. Such
a region will always exist if the plant is controllable, since in
the unbounded control case the control is a linear function of
the states and is zero at the origin. This region will be called
the region of linear control, or simply the linear region.

2. Region of first saturation. If z(O) is not in the region of
linear control, at least one stagi before the state-space trajec-
tory reaches the linear region will have saturated control. The
first stage backward in time (or the last stage forward in time)
that is saturated will be called the region of first saturation.

3. Unsaturated region. Any region where the control u(0) is given
by the equation u() = u'(O) = AKN+z(0) + B N+I will be called an
unsaturated region. The region of linear control is an unsaturated
region, but there will be others. Although the control in any
unsaturated region is linear, the term "linear region" will refer
only to the region of linear control.
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4. Saturated region. This is a region where the control is either
u(O) = a or u(O) = a-. Throughout, the term a will be used
to denote either a+ or, a-. Saturated regions will also be
referred to as alpha-plus regions or alpha-minus regions.

5. &(1) region. This refers to a region that has already been calcu-
lated, and from which new regions will be calculated.

6. _&(O) region. A z(O) region is one which is being presently
calculated from a- z(l) region. Regions are calculated backward
in time as in dynamic programming; thus a z(O) region is calcu-
lated from a z(l) region. (The actual trajectories are, of
course,--om a- z(O) region to the z(1) region from which it
was calculated. gw

The method to be described in detail is basically as follows: First

the optimal feedback coefficients AN+I for the infinite stage regulator

problem with unbounded control are calculated. Once AN+1 is known,

the region of linear control can be computed. Using the same AN+,

the two regions of first saturation are calculated. From each of these

regions of first saturation are calculated an alpha-plus region, an

unsaturated region, and an alpha-minus region. Further regions are

calculated from each of these last regions, and the process is continued

until all the state space of interest is covered with regions.

In essence, assuming N stages are being calculated backward from

the linear region, this method considers all possible control sequences

u(O), u(1), ... , u(N-1), and determines the optimal sequence for each

point in state space. Since at each stage the control can take one of

three values--a+, u'(O), or a'--it might be thought that this method
Nrequires considering 3 possible control sequences, a staggering

possibility. In practice, the number of control sequences considered

is far less. Most of the sequences will be found to be optimal for no

points in state space, and these sequences can be dropped from further

consideration as soon as they are discovered. The method described here

determines these nonoptimal sequences at the earliest possible time

during the computing.

As in dynamic programming, the state space must be quantized. How-

ever, the control is determined by the formulas of Chapter III and is

not quantized.
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A flow diagram of the computing is given in Fig. 3. First the

optimal control feedback coefficients AN,+ for the linear region are

calculated along with the corresponding PN matrix, using the recurrence

relations for unsaturated control. Beginning with 0 = 0, A1  is cal-

culated. From A,, P1 is calculated. From Pl, A2  is calculated.

This iterative procedure is continued until the AN+, converge to a

limit. That these A.• 1  will converge is discussed by Kalman [Ref.

11] and Gunckel [Ref. 12]. The unsaturated control recurrence

relations for RN14, CN+1 , and the equation for BN+l, show these to
be zero for all N, since R0 = 0 and C = 0.

Second, the region of linear control is calculated. The optimal
control formulas for this region are

u(n) = u'(n) = AN+lz(n) (4.4)

a- •u(n) < a + (4.5)

for all n, where the AN+I is that calculated in the first step. Two

bounds on this region can be found immediately by setting u(n) in

Eq. (4.4) equal to a and a-. Thus two bounds are

+ , )

a AN=,;kn

a = AN+lz(n). (4.6)

For each z(O) on and within the boundaries (4.6) calculate

1(l) = (, + AN+l).(o). (4.7)

Only those z(O) which determine z(l) that are on and within the

boundaries (4.6) can be in the region of linear control. From each

z(O) within the boundaries (4.6), enough points forward in time must

be calculated to ensure that the z(O) is actually in the linear region.

In the two-dimensional examples of Chapter VI, where a+ = -a', only

z(O) and z(l) both needed to be within the boundaries (4.6). In

general more stages must be calculated.
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CALCULATE 
Am+,, 

PH
FOR LINEAR REIOGN

CALCULATE REGION
OF LINEAR CONTROL

CALCULATE NREGIONS OF FIRST
SATURATION AND CORRESPONDING

PH, RN, CN

CALCULATE AN+i, %N+I .

FROM A E(l) REGION

CALCULATE ALPHA-PLUS REGION,
UNSATURATED REGION,
ALPNA-MI NUS REGlONl,

FROM THE l(I) REGION

CALCULATE PNp RN, CN FOR THE NEW

z(O) REGIONS THAT CONTAIN POINTS

STORE NEW I(O) RESIGNS

AS ._(I) REGONS

FIG. 3. FLOW DIAGRAM OF COMPUTING METHOD.
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I
The third step is to calculate the two regions of first saturation.

These are the z(O) regions that go optimally into the linear region

with u = a. Thus the alpha-plus region is defined by inequality (4.8)

and Eq. (4.9):

u,(o) = A 1 z-(O) >cx+ (4.8)

z(o) = ®'l[z(1) - (4.9)

where z(l) is in the linear region. The A N+ is the same as that

used in calculating the linear region, since it is derived from the same

P The alpha-minus region is defined in a similar manner. If e =

N', the alpha-minus region (and all regions derived from it) need not

be calculated, since it is symmetric with respect to the origin to the

alpha-plus region (and those derived from it). Finally, the PN' %'

and CN are calculated for the regions of first saturation, using the

saturated control recurrence relations.

The above steps are essentially initializing; the principal calcu-

lations now begin. There are now two z(l) regions from which to

calculate--the two regions of first saturation. Consider the calcu-

lations from one of these. First the AN+, and B are calculated

using the PN and RN from the z(1) region. The optimal control

for three z(O) regions--an alpha-plus region, an unsaturated region,

and an alpha-minus region--is determined from these A,,1  and BN+I.

Each of these three regions must satisfy two relations as follows:

1. Alpha-plus 
region.

_z(O) = *-l [_(1) - •+ (4.10)

u,(o) A .N+.12() + o) l, > a+ (4.11)

2. Unsaturated region.

_(o).- ( , )-lr(,). L A .] (4.12)
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a- < u'(o) = AN1_(o) + B+l - a+ (4.13)

3. Alpha-minus region.

_z(O) = 0'fz(1) - (4.14)

u,(o) = A N1 20(o) + BN+l < a- (4.15)

In each of these equations z(l) is in the z(l) region, and for a

z(O) to be in the new z(O) region, both the equation and the ine-

quality for that region must be satisfied. Most of the regions calculated

will be found to contain no states z(O). It is for this reason that

there are considerably less than 3 regions to consider.

The Eqs. (4.10), (4.12), and (4.14) are written as though z(O)
will always be calculated from z(l) through an inverse relation. It

is of course equally possible to calculate z(l) from z(O) by

zMl) = 'Dz(O) + Au(o) (4.16)

for all z(O) in the quantized state space and keep only those z(O)

for which the corresponding z(l) is in the desired z(l) region.

There are advantages and disadvantages for both methods of computing.

Calculating z(l) from z(O) is easier because no "holes" can develop

in the z(O) region. (Holes are points that belong within a region

but are not calculated as being in the region.) However, because a

very large percentage of the states z(O) will not be in the z(O)

region, considerable computing time is consumed by computing z(i)

from z(O).

Computing z(O) from z(l) consumes less computing time because

less points are considered. Only those z(O) calculated from the

z(l) in a particular z(l) region are considered. However, if the

z(O) region contains more points than the z(1) region, holes will

develop, and care must be taken to eliminate them. This is particularly

a problem when calculating unsaturated regions. Also the points z(O)

calculated from z(l) will be in a somewhat random order in the computer
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memory and time must be taken to put them in some orderly and useful

sequence.

Equations (4.10), (4.12), and (4.14) assume that the inverses of

certain matrices exist. If the state variables have been chosen so that
the minimum number necessary to completely characterize the system is

used, the matrix ib will be nonsingular; thus its inverse will exist.

The other matrix assumed to be nonsingular is (lb + 1AA.l). This matrix

is nonsingular if r is not zero. However, if r = 0 this matrix will

always be singular. The foll'wing proof will show an even stronger
result: If r = 0 and (4 + 1A.• 1 ) has dimension (mx m), and A has

rank q, (m is the dimension of z and q is ordinarily the dimension
of a then (,b + A ) has rank no greater than m - q.

The proof is as follows. Consider a square matrix M of dimension m.
If a nontrivial vector c can be found such that c TM = 0, then by defi-

nition M is singular. If there exist q nontrivial linearly independent
vectors c such that there are q linearly independent vector equations

c M = 0, then q of the columns of M are linear combinations of the
other m - q columns. The kernal of M is at least q and its rank is

no greater than m - q.
The q nontrivial linearly independent vectors that show the matrix

(0 + AA,+) has rank no greater than m - q are the columns of (Q + PN)A.

Thus

AT(Q + PN)(0 + AAN+i) = AT(Q + PN) - A[AT(Q + PN)AV'IAT (Q + PN)O)

- 0. (4.17)

This singularity can therefore be predicted in advance and the computer

program written accordingly.

The next step is to calculate the PyN RN, and C, for the 1(.)

regions Just calculated that actually contain points. Regions that are

found to contain no points are ignored entirely. The new z(O) regions

are now stored in the fast memory as new z(l) regions. The old z(l)

region can now be discarded.

The output can include a description of the points in the region,

the type of region (alpha-plus, unsaturated, or alpha-minus), and the

AN Nl' B N+1, PN' RN and CN. The optimal cost can also be calculated and

written.
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This process of calculating z(O) regions is continued until the

entire state space of interest is covered with regions.

C. DISCUSSION

This new program runs much more quickly than straight dynamic program-

ming because the optimal control for each point is known from the recurrence
relations. The memory requirements are also much smaller since only the

z(O) regions and a single z(1) region need be in the fast memory at one

time. It is convenient, however, to store all unused z(l) regions in

the fast memory. Because of greater speed and less storage requirements,

this new program can handle problems of larger dimension than can be run

with straight dynamic programming. There is still, however, a limit to

the size problem that can be run. A comparison of memory requirements

is give,, for a specific example in Chapter VI. The restriction that the

control be a scalar is removed in the next chapter.

The question of whether regions computed in this manner will overlap
is still open. Such an overlap did not occur in any of the examples of
Chapter VI. If, after computing, some regions do overlap, a comparison

of the optimal costs from these regions can be made using their respec-

tive PN's, RN's, and CN's, thus enabling the true optimal control to

be chosen.
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V. TWf-INM CONTROL

So far., only the solution to the single-input case has been completed
in detail. This chapter extends these results to the case in which the

control u(n) is a two-dimensional vector. The solutiou is considerably

complicated by the fact that one of the inputs may be saturated while the

other is not. Although they are not discussed here, this chapter indi-

cates the extensions and changes that must be made when the control has
dimension higher than two.

A. THE PROBLTE

The description of the system and performance criterion is the same

as given in Chapter II. The control u(n) and its bounds a + and a

are now two-dimensional vectors.

ru1 (n) a1] Fail
u(n) = , a+ = + ,"= [J. (5.1)- u2(n)J a 2 a 2

Control is limited by the vector inequality

a- < u(n) < a+. (5.2)

The problem is: Given any initial condition z(O), find the optimal

control-vector sequence u(O), ... that minimizes the perform-

ance index J[z(o)].

B. THE SOLUTION

The equations for IN+l [Z(O)] derived in Chapter III up through Eq.

(3.25) were written in vector notation so that they could be used in

this chapter. Equation (3.21) is written here as the starting point of

the solution:

min[((o)) = T- m + T( o q]( + o+ (o) I

T T T+ (2Oru(o) + [.1!(o) + AU(O)1 RN• + RNt(o) + N(o)1 + CNI.

(5.3)
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As in Chapter III the square is completed on the control vector u(0).

The result is Eq. (3.22):

IN+l[ a(O i a ( [u(O) - u'(O) ]T[A (Q + PN)A 6+ rI][u(O) - u,(O)]

+ T(0)0(Q + P)OZ(O) + !T(O>0 TN + Rj1z(O) + CN

+ TT
(A N.z 1R 0+ BNJ [A (Q + P N )6A 1AN1E + N ),

(5.4)

where A,+, B,+I, and u'(O) are given by Eqs. (3.23) through (3.25).

The minimum without regard to bounds occurs at u(O) = u'(O). If

the resulting u(O) satisfies the vector inequality (5.2), then u(O) =

u'(O) is the optimal control. However, if one or both of the elements

of u'(O) are out of bounds, the situation is much complicated.

Before presenting a careful algebraic discussion of a method for

finding the minimum of Eq. (5.4), a more intuitive geometrical discussion

will be given.

C. GEOMETRICAL DISCUSSION OF THE MINIMUM

Figures 4a through 4f show the two-dimensional control space. Each

point represents a particular control (ul, u2 ). The rectangle, whose
+ -. +-

sides are given by ul = ai' Ul = i' u2 = a,,, and u2 = a-, bounds the

region of allowable control.

Geometrically, a positive definite quadratic function in two variables

is an ellipse. In each figure are drawn concentric ellipses, which are

loci of constant J+l[iz(O)]. The value of JN+l[Z(O)] decreases as

the ellipse size decreases. The absolute minimum occurs at the center

of the ellipses, which has coordinates (uj, U).

The geometrical problem then is to find the point in the control

space that is both on the smallest possible ellipse and in or on the

rectangle. Algebraically this is the same problem as expressed by the

now-familiar equation

S- '(-)• ! - (JN3 -1
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If the center of the ellipses is in the rectangle, as shown in Fig.
4a, then the minimum occurs at (ui, ul). If the center is outside the

rectangle, as shown in Figs. 4b through 4f, then it is clear that the

minimum occurs on the boundary, since any control within the rectangle

is on a larger ellipse than one either tangent to the boundary or touch-

ing a corner.

Figures 4b and 4 c show the case where one up, in this case uý, is

greater than its bound, while the other u' is within its bounds. In

both cases the optimal control of u2  is aý2, but the optimal value of

can be inything. To determine uI, the optimal value of u 2 = +2
is substituted into Eq. (5.3) or (5.4), and by completing the square

on u1  the value of u1  that minimizes the function is found. This

value, called ul, may or may not be in bounds. The optimal u1  is

then

fa+ if Ulf> a+ (Fig. 4b)

ul U if a< uI (Fig. 4c) (5.6)

- if u < a

Note that the value of ul does not in any way indicate the optimal
1

value of u1 .

Figures 4d through 4f show cases where both ui and u' are outside12
the bounds. In these cases all that can be said without further calcula-

tion is that at least one of the ul gives the optimal control.

Geometrically this means that the optimal control is on one of the two

boundaries nearest the center of the ellipse, a fact that will be proved

algebraically in the next section. Since it is not known which ul gives

the correct result, both u I and u2 must be calculated. Assume u'

and uý are greater than 1, and 2  respectively as in the figures.

Then u" is calculated as the optimal value of u, (neglecting satura-

tion of ul) with u2 = at and u2 is likewise calculated. Since only

one of the assumptions made in calculating the ui" was necessarily cor-
i

rect, only one of the ul" is necessarily correct. However, as shown in

the next section, both u" calculated determine correctly their respective

optimal ui.
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If the correct optimal value of +s as shown in Figs. 4d
through 4f, then the value of uI calrulated is correct. The optimal

U1 is thus

a+[ ifUf>a4 (Fig. 4d)
uif ua >•

U Ul fa l + (Fig. 4e) (5.7)

lat if F< i (Fig. 4f)

Note that even though the value of ui suggests that the optimal value

of U1  is a,, the real optimal value can be far different, even a-'
The next section algebraically proves that the ui, where calculated,

give the optimal values of ui in all cases.

D. ALGEBRAIC DETERMIIATION OF THE MINIMUM

To simplify the notation in this section, consider only the part of
J 1 [_z(O)] that is quadratic in u. This is

S=(U- u') T Ku - ul) C••

"where

(u - u') = (5.9)-~ - u2'u)]

and
k ik

11 12
K= T + P) + r (5.10)

L k 1 2 k 2 2 _

K is a positive definite symmetric matrix, and hence the smallest

value • can have is zero, which occurs only at u = u'. If

the optimum value of u is clearly u = u'.
The quantities ui" have a somewhat more general meaning in this

section than in the last section. For example ul', is the optimum value
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of uI (ignoring saturation) for any given value of u2 , not just a2.

It is derived by completing the square on 9 with respect to u1. Thus

= (u1 - u') 2 kll + 2(ul - u{)(u 2 - uý)k 1 2 + (u 2 - u•) 2k22

( u1  ) 2 kl 11  k + terms not involving uI. (5.12)

By equating (5.12) with (5.11) an equation for u" is determined:

1

(u2 - u 5)k2.

u1 1 1

Likewise, (u1 - u{)kl 2
U( 2 .12 )

The optimal control is determined when four equations are simultane-

ously satisfied. These are Eqs. (5.13) and (5.14) along with

+I
a if u > a'

+Su I u • if a -< u " _< a 5 -5
if U" <a 1a 1 (.5

a2 if u" > a+
22

if a•( 
.< 

u1 
6< 

a

Sa2 if uý < a2

These four equations can be solved on an analog computer very simply,

but this is not much help here. The following proofs show a simple way

to determine the optimal values of u1  and u2 . In the following dis-

cussion u• will be called not admissible when either u, > ai or

uj < a-. Otherwise it will be called admissible.
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Two cases need to be considered: (1) only one uj is not admissible,

and (2) neither u' is admissible. Before beginning two inequality

relations involving the elements of a symmetric positive definite matrix

must be stated. These can be found in nearly any book on matrix theory

[Ref. 17].

k 11 > 0, (and k22 > 0), (5.17)
2kllk2 2 - k2 > 0.

1. Case 1

The first case occurs when one u! is admissible while the

other is not. For definiteness let

• • i -<•I+(5.19)

u >ao,. (.5.20)
+

It will now be shown that the optimal value of u2  is a 2  regardless

of the optimal value of u.. From (5.13)

[-(u - uI)]k
S- u' 2 X _ __ 12 (5.21)

11

The quantity in brackets is positive regardless of the choice of u 2

because of inequality (5.20). Thus (uq - u{) has the same sign as k 12 .

If kl is negative or zero, then u" < u, and either u =Ulf

or u1 =a 1. Thus

ul _< u, • ui. (5.22)

Therefore

o > u - ui Ul - u. (5.23)
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When k is negative, multiplying inequality (5.23) through by
12

k1 2 /k 2 2  reverses the inequality signs. The result is of course trivial

when k12 is zero.

(u 1 - u{)k12  (u" - ul)k 1 2  (u2 - uýlk10= 1 (5.24)
k22 k22 llk22

The right side of (5.24) is determined by using Eq. (5.21).

If k1 2  is positive or zero, the same steps outlined in the last

paragraph can be taken, and the result is again (5.24).

Equation (5.24) shows that the last term in Eq. (5.14) is positive

or zero, regardless of the sign of k1 2 . Using (5.24), Eq. (5.14) can

be written as the following inequality:
W,) 2

(u2 - 12
S • > u2 + k11 22  (5.25)

2 2k 12 k k12
Su _ u•. -k J u2 k (5.26)

2

Since k12/k 1 1 k2 2 < 1 as shown by (5.18), the term in parentheses in

(5.26) is positive. Substituting (5.20) into (5.26) makes the inequality

even stronger.

2 k2

uý > k (l - )2 u2 . (5.27)

The only u, that satisfies both (5.27) and (5.16) is u2 = a2"+ Sub-

stituting u2 = u2 into (5.27) leads to a contradiction.

The conclusion is that if u' is not admissible and u' (j # i)

is admissible, the optimal value of ui equals the nearest bound to

up, while u3  is determined from u"

2. Case 2

The secund case occurs when neither ui nor uý is admissible.

For definiteness let
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ui > ei (5.28)

Lý u>e2 (5.29)

Equations (5.13) and (5.14) written in the form of (5.21) show that

both (u• - uj) and (uý - uj) have the same sign as k12

If k12 is positive or zero then

> > + (5.30)
uý _>uý > C'

Thus the optimal control is ul = a,, u2 = a2a

If k12 is negative the situation is much more complicated. The

Svalues of ui and u5 given by (5.28) and (5.29) determine that either
+ P

Ul = a2 a + or both. This will be proved next.
1 u=a2 +
The proof assumes that both the optimal u2 < <nd U a I

occur simultaneously, and arrives at a contradiction. Since both condi-

tions cannot occur simultaneously, at least one ui must equal +i.

If u; aK 1 then either uI Ul or u Thus

ul > 1>Ulful (5.32)

Combining (5.32) with (5.13) gives

0 > U, U (u 2 ku)kx3i o • -u•_> - n .(5.33)

11

The direction of the inequality is changed when (5.33) is multiplied

through by the negative quantity kl2 /k 22 .

(ui - u.)k1 2  (-u2 up2k

0 < ,k22 - X322 "4)

Using (5.34), Eq. (5.14) becomes inequality (5.35):

(u2 _-p

q k u + =.1 12(5.35)
11 22
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2 2

ýŽ'- 2) 122 (5.36)
uý > uý k. 12 + U2 = . (.26

Since u• > u2 by (5.29), inequality (5.36) becomes

212, > u2 1 - -]+ U2 - 1-2 (5.37)

which contradicts the original assumption that u2 <+0 (and thus

i• < u2 ). Thus the proof is complete.

Since it is not known which u, = a•c calculate u1 on the+

assumption that u2 = a 2  and calculate u2  on the assumption that
+ +
a = . If both u> > then both assumptions were correct and the

optimal control is determined.

At least one assumption was correct, thus at least one u" was
*+ P+

computed correctly. Assume ul = a 1  is correct but u2 = a 2+ is in-

correct; then • is correct but not u". The last step is to prove

that u" > ai even though it was computed using an incorrect assumption.
1 3'.

* Thus

(a+ - uý)k,2u 2u k 11 (5.38)

and
u 2> > uý. (5.39)

Again since k12 is negative,

(12 - uý)k• (u" -ul)0 < < k •(5.40)
kll

Substituting (5.4o) into (5.38) gives

(uý - uj)k1 (a . ua)k(Ulf >, 12 . i+ 1 11 +. (5.41)

11 llk22

To sum up, the above proofs show a simple way to calculate the

control that minimizes the quadratic function given by Eq. (5.11):
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1. Case 1. If uli is not admissible but uý is admissible, then

ui equals the bound nearest to uj, and uj is determined from

ul. The value of ulf is calculated using the known optimal value
j + a -

of u,, namely a~, or a,.

2. Case 2. If neither u{ nor u' is admissible, then uI1 is com-

puted using the bound nearest to uý for u2 , and uý is likewise

computed. The optimal control is then determined from Eqs. (5.15)

and (5.16).

E. OPTIMAL CONTROL FORMULAS AND RECURRENCE RELATIONS

The recurrence relations when neither control is saturated are the

same as the unsaturated control recurrence relations given in Chapter

III. When both controls are saturated, the relations are the same as

the saturated control recurrence relations in Chapter III, though written

in vector notation. Thus the only new recurrence relations are for the

case in which one control is saturated and the other is not.

Assume the optimal control is given by ul(0) = u"(0) and u2(0) =

SThe derivation of u"(O) and the recurrence relations begins by

completing the square on u (0), assuming u2 (O) = a2  (where as usual

a represents either or a-). Note that completing the square

on u1 (O) is not at all the same as completing the square on the vector

u(O).

The elements of the control vector u(O) are separated in Eq. (5.3)

by partitioning the A matrix as follows:

A =(A, A2), (5.42)

where the A (i = 1,2) are (m x 1) column matrices. With this

partitioning, Eq. (5.3) is written as

- 39 - SuDAER-)48



IN+, .(O) l a u- 11 + 2u1(o)a 2 yl, + 2Y22

+ [*z(O) + ýAUl(0) + Y2 + PN) [@z(o) + A1 ul(O) + Y2]

+ [Pz(O) + ,%u1 (o) + Aýo2]T

T
+ N ([42(O) + Alul (O) + Y2a2 ] + cN)

Completing the square on ul(O) gives

rain + [Ul(O) _ u,,(O)] 2 [AT(Q + PN)A1 + 1j [a'<[-(°)] u (OX a1N 1

[A• Rz() + B' J]T[6 (Q + pN)A + y11 ][ E( + B) +
N+1 PN)1 1+ N+1

+ [z() ia JT(Q + 2

+ [4•z(O) + ½) - T,(o) + A2 ct2] + ON),)'

where

u"(O) A I z(O) + B'I (5.45)
1 N+17 IN+l

A(Q + P)AI N (5.46)

B' ALRN 1 ( PN 2 2 12(47

- Al(Q +PN)Al + ll

Equations for u and its associated A' and B' are deter-

mined in the same manner.

The recurrence relations for the case where u = u' andu 2 =a 2

are determined by equating the assumed form of IN+[1r(O)] given by
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" ~ Eq. (3.20) with Eq. (5.44). These recurrence relations are

PN+1" -•5 0;(q + Pj,)(-*•÷ + AaaAl N5.

RN+l a (+( + PN)(AlB + 62a2 (.

C C + + Aa B T
N1+1 = N + '3 2 2 l~ "

+ 2 p )A + Y22' (5.o0)

IAs shown in Chapter III, the existence or these recurrence relations
shows that the form assumed for IN+l[Z(0)] is correct.

The equations and recurrence relations for the two-input control
case are sunnymrized at the end of this chapter.

F. COMPUTING METHOD

Computing proceeds as in Chapter IV with only a few changes. The
first step is to calculate the region of linear control. Next the eight

regions of first saturation are calculated. These are the regions com-

puted from the linear region that have one or both controls saturated.

From each of these regions are calculated nine more regions, regions
with the nine possible combinations of the controls. Regions are computed

in this manner until all the state space of interest is covered.

Certainly the two-dimensional control case will take much more com-
puting time and storage than the one-dimensional case. The method

outlined here could conceivably be extended to higher-dimensional control,

but the complexity increases rapidly.
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SW1O4JY OF PRINCIPAL EQUATIONS FOR TWO-INPUT CONTROL

Optimal return function

1I _(o)! =_ 1(o)Pz(O) + Z(o)R + R(o) + CN (3.20)

Optimal control

u(M) = u'(0) if, a- < u'(O) _< a+ (unsaturated)

u(O) =•a if u(0) >a•I or u"(0)<a and

uý(O) > +x or uý(O) < a- (saturated)

u (0) =a if f u"(0) > a+ or u"(0) <ci a-- nd

u (0)o= u1(o)J a•-< u(0) <•c (mixed)

Definitions

u'(O) A+l() + BN+ (3.25)

A+l = [T(Q + PN)A + r]- L(Q + P (3.23)

%+ [IAT(Q + PN)n' + r]lATRN (3.24)

A=(&1  A2) (5.42)

u'3(0) =A3 .1(0) + Bý j =1, 2 (5.45)
U AN+ N+l

J(Q + P) ,

AT

AN~ R'( + P5TAQ + P)

j N j N i 1 12 1(5.47)
J (Q + P- - N•), 'ATQ+ NA + (5.47
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SRecurrence relations:I.UUnatur ated control

-P .- (Q + PN)(0 + AA ) (3.28)

CN+1 -- CN + N+J (3.30)

Saturated 

control

PN+1 * T (Q + PN)'V (3.34)

%+1 [IN + (Q + PN)tI (3.35)

CN+1 =CN + TT[LT(Q + PN)A + r )a + 2TAT (3.36)

Mixed control (ui saturated; u unsaturted)

PN+I = 4T (Q + pN )(* + AA ) (5.48)

N41 = 4T RN + (Q + PN)(Aj3% ~,l + Ai,)] (5.49)

C1.'. CN + [A T + jJ(Q + PN)A a + y- 7la]B, + 2iT

j + N~[,J(Q + P )A, + Y (5.50)

Starting conditions

PO- 0, RO= 0, C0 - 0.
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VI. EXAMPLZ8

In this chapter four examples of optimal control systems computed

using the method described in Chapter IV are presented. Some optimal

trajectories in state space are also shown. In the final section the

synthesis of the systems is discussed.

A. EXAMPLE A

For the first example consider the space vehicle described in Chapter

II. The optimal control that minimizes the attitude sum-squared-error
from sany initial attitude error and its rate of change is to be found.

Since power consumption is an important design consideration, the total

energy used in controlling the vehicle is charged by including sum-

squared-control in the performance criterion.

All parameters are normalized to unity, and the sampling interval

is arbitrarily set at T = 1. The resulting system is shown in Fig. 5.

I FIG. 5. BLOCK DIAGRAM OF SYSTEM FOR EXAMPLES A-C.

The state-transition equations, as derived in Chapter II, are

z(n + 1) = [ n.0 + [1 u(n) (6.1)

where control is limited by

-1.0 ý u(n) < +1.0. (6.2)
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The performance index is

[[z(O)] -- [z (n) + u2(n -(63)

n-i

ars thu 1 , r = .(6.4)

The optimal control for this example is shown in Fig. 6. This figure

shows the state space divided into three main parts. In the upper area

of the figure the optimal control is u = -1. This area is composed of

all the alpha-minus regions that were calculated using the method

described in Chapter IV. The boundaries of these regions are not shown

in the figure, since they represent information that is unnecessary to

the synthesis of the system.

* 22

U -

N IN
0?

ofo

-t-12 -10 -* - -4 -2 2 1 1 IQ 10

FIG. 6. OPTIMAL CONTROL FOR EXAMPLE A.

Gi
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Through the middle of Fig. 6 are the regions in which the control

is optimally unsaturated, with the region of linear control in the very

center. The feedback parameters for these regions are given in Table L,

and the optimal control for each of these regions is given by

u(o) = AN+1 _(o) + B = a z1 (0) + a2 z2 (O) + b. (6.5)

TABLE 1. FEEDBACK COEFFICIENTS FOR EXAMPLE A

A NlB l
Region N+1 N+I

No.
a1  a 2  b

01 -0.50000 -1.00000 0.00000

02 -. 43902 -1.12195 -o.148780

03 -. 35556 -1.13333 -0.92222

04 -. 2924o -1.12281 -1.32749
05 -. 24658 -1.10959 -1.71918

06 -. 43902 -1.12195 o.148780
07 -. 35556 -1.13333 0.92222

08 -. 29240 -1.12281 1.32749

09 -. 24658 -1.10959 1.71918

The alpha-plus regions, where the optimal control is u = +1, are

t shown as the lower part of Fig. 6. Thus the optimal control is determined

for every point in the state space shown.

Figure 6 also shows an optimal trajectory starting from initial con-

dition zT(6) = [11 -4]. The cost for this initial z(O) can be

computed either by using Eq. (6.3) or by using

IN[1(O)] 1 T(o)PN(O) + 2(0)RN + R(0) + CN, (6.6)

where for the region containing the particular z(O) used here,
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l.56161' l.o274o

1.0274 10 ,.62329J

S. [-o.213]. CN 28.74317. (6.7)

Calculated either way the optimal cost is 68.1497.

[Note that the number N--the number of steps to go--is always in-
* finitely large, 3ince in this problem there are always an infinite number

of steps to go. However, since it is necessary to be able to distinguish
between the N-stage process and the (N+1)-stage process, the symbol for

infinity will not be used to replace N in PN, RN, CN, AN+l, BN+l, or
Eq. (6.6M.

In Chapter IV it is stated that the matrix ($ + kN+l ) is nonsingular

when r j 0. For the region of linear control in this example (the 01

region in Fig. 6) this matrix is

(b + Z+l J(6.8)
-0.50 0.00

The determinant of this matrix is 0.25, and thus the matrix is nonsingular

as predicted.

Example A might have been solved using dynamic programming, a general

computing method that is able to solve a wide variety of problems, many

of which can be solved in no other way. However, the special method

used to compute this example needed much less memory storage than dynamic
programming would have required. The state-space grid over which this

example was computed contained about 30,000 points. A careful use of

symmetry might have reduced this to about 20,000 points; even so, dynamic
programming would have required at least 60,000 words of storage.

The number of words used by the method of Chapter IV cannot be stated
as a function of the size of the state-space grid, since this number

depends on whether all unused z(l) regions are stored in the fast mem-

ory or on tape, on whether z(l) is calculated from z(O) or vice versa,

and on how the regions are stored. In computing this example, only the
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boundaries of the regions were stored--a technique that cannot be used

in dynamic programming--and all the information about even the largest

region, the region of linear control, was stored in less than 200 words.

The entire program used only a few thousand words of memory, about one-

tenth as many as would have been required by dynamic programming.

B. EXAMPLE B

Consider the same system as used in Example A. The sampling interval

is still ' = 1, but the performance index is now

00

J [z(0)] = 2 (n) + z2(n)]. (6.9)
S1 2

n~l

Thus

Q= [1 0] =.(6.10)

U'-+i

, 
r 

0 
o. 

)

-1.0

F I G .
7. O P T I M A L C O N T RO L F O R E X A M P L E B .
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i

The optimal control is shown in Fig. 7 along with an optimal

trajectory. An extended picture of the optimal control is given in Fig.

8. Because the bounds on the control are symnetrical, the regions

-

10I I s 
20 

li s I

I:-

S~FIG. 

8. EXTENDED 
REGION 

OF OPTIMAL 
CONTROL 

FO 
B EXAMPLE 

B.

I.,

saturated 
regions are shown in Fig. 8. The feedback 

parameters 
AN+I

of sy mmetric regions have the same value and sign, while the B+

have the opposite 
sigji. The feedback 

parameters 
for both Figs. 7' and 8

are 
given 

in 
Table 

2.

The cost associated 
with this initial condition 

can be computed by using

either Eq. (6.6) or (6.9). In either case the cost is 445.454, where

for the alpha-minus 
region containing 

z(O),

S9.28916 
46.95783l

P= [•.95783 305.14152]'

-149.32529,

L"1° .•6 "2649 ], CN = 136.7 404. (6. 13)

-
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TAE 2. * FD ACK CoEF'ICIEWS FOR EXAMME B

Region AN+I BN+l

No. bia1  a2

01 -o.66667 -1.33333 0.00000

02 -.147058 -1.23529 -O.44118
03 -. 36145 -1.18072 -0.85542
04 -. 29268 -1.14634 -1.2561o

05 -. 2456l -1.12281 -1.64912
06 -. 21145 -1.10573 -2.03744

07 -. 18557 -1.09278 -2.42268

08 -. 16528 -1.08264 -2.80578
09 -. 14898 -1.07449 -3.-8735
10 -. 14792 -1.07396 -3.21698
11 -. 13559 -1.06779 -3.56779

It is proved in Chapter IV that if r = 0 the matrix (0 + MAN+l)

is singular. For this example the matrix for the region of linear con-

trol is

F2/3 1/31
(,+ A l) = -23 _I/ (6.12)

which is certainly singular. Direct calculation shows that for any of

the A calculated in this example this matrix is singular.

Computing the minimum cost from Eq. (6.9) requires summing an infinite

series. This is particularly easy in this case where the matrix (6.12)

is singular. If z(O) is in the region of linear control, then the

z(n) (n = 1, 2, ... ) always lie on a line through the origin, in this

case the line with slope -1 shown dashed in Fig. 7. Since z1 (n) =

-z2(n), using (6.12) with (6.1) shows that each z(n + 1) is given by

the geometrical progression

!(n + 1) n - , 2, ... (6.13)
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Thus the optimal cost is given by

OD z 2(1) + z (l) 00l) 9z (31)
I [z(O)] 2 2z21) 3- (6.14)

In=l nr-- 1

I C. EXA .nZ C

I; C This example shows the effect of increasing the sampling rate. The

system is the same as in Example B, but the sampling interval ¶ = 0.1

is one-tenth as long.

As shown in Fig. 9, the band of regions of unsaturated control is

much narrower than in Fig. 7 of Example B. Since the regions are much
I smaller, there are many, many more of them. There are over 50 regions

I of unsaturated control on each side of the region of linear control in

the state space shown in Fig. 9. The boundaries separating these regions

are not shown because they are so close together.

The optimal control for the region of linear control is given by

u = (-9.52382)z 1 + (-l0.47619)z 2. (6.15)

The A,+, for the region of linear control was calculated, beginning

with PO : 0, by the iteration method discussed in Chapter IV. A141

in Example B took eight iterations to converge to six significant figures;

in Example C it took about 80 iterations to converge to the same number

I of figures.

D. EXAMPLE D

This example, perhaps the most interesting presented here, considers

the artificial earth satellite, including the external force due to the

gravity gradient, discussed in Chapter II. All parameters are normalized

and the sampling interval is arbitrarily and somewhat unrealistically set

at T = 1. Thus the state-vector-transition equation is

r 54030 o.8414] 4 o5970
zn + 1) = 1R(n) i -. I u(n) (6.A6)

o.84147 o.54o3o; LO .847147J un
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where the control is limited by Eq. (6.2). This system is shown in

Fig. 10.

It

I FIG. 10. BLOCK DIAGRAM OF SYSTEM FOR EXAMPLE D.

It is desired to make the attitude integral-squared-error a minimum,

and as an approximation the attitude sum-squared-error will be minimized.

(This approximation will unfortunately cause a phenomenon known as inter-

sample ripple, as will be shown later.) There is no cost on the control,

thus the performance index is

00J [Z(0)1 z (n) (6.17)

n=l

Therefore

[ 1 r 0. (6.1.8)

For the purpose of comparison, a simple nonoptimal system is shown

in Fig. 11. This system uses the optimal feedback gains a1 and a2

of the region of linear control, and thus is optimal for initial condi-

tions close to the origin in state space. If the total output of these

feedback blocks causes saturation of the input, then this is simply

allowed to happen. Thus Fig. 11 shows a system that is extremely simple

to build and is optimal for small initial conditions.

The optimal control regions are shown in Fig. 12; the optimal feed-

back coefficients for the unsaturated regions are given in Table 3.
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FIG. 11. NONOPTIMAL SYSTEM OF EXAMPLE D.
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TABLE 3. FED)IACK COEFFICIERTS FOR EXAMWLE D

RegionANB4
NO.

as2  b

01 -1.17534 -1.83049 0.00000
02 0.13289 -1.11580 -0.39044

03 0.35351 -0.99526 -0.62492
04 0.31743 -l.oJ0198 -0.56883
05 0.49316 -0.91898 -0.86046

06 0.53957 -0.89363 -0.95780
07 0.55971 -o.88262 -1.01570
08 o.66825 -0.82333 -1.38211
09 o.60572 -0.85749 -1.16421

10 o.64942 -0.83362 -1.33612
11 0.66819 -0.82336 -1.425o8
12 0.76747 -0.76912 -1.94701
13 0.71067 -o.8oo16 -1.64189

14 0.75047 -0.77841 -1.87443
15 0.63394 -0.84207 -1.17957
16 o.1•9844 -0.91610 1.96661

These feedback coefficients are used in Eq. (6.5) to determine the

optimal control.
An optimal trajectory from initial condition z (0) = [-5.0 3.0]

is shown in Fig. 12. This initial condition is in alpha-minus region 16
as shown in the figure. When the state vector reaches the region of

linear control, it enters a limit cycle rather than going to the origin.
The value of zl(n) at the sampling instants is zero in this limit

cycle, thus no cost is charged to the performance index (6.17). However,
the attitude error z (t) is zero o at the sampling instants, and

thus there exists a phenomenon known as intersample ripple [Ref. 15].
This ripple can be eliminated during the design of the system by adding
a charge on either z2 (n) or u(n - 1).
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The cost of the trajectory shown in Fig. 12, as determined either

by (6.17) or by (6.6), is 32.702. This cost is most easily determined

by (6.6), where

[ 2.947579 -0.831075SI I,

N .83105 4.033
[9.3897361,

RN,= [ c = 4.8.085W4 (6.19)

for the region containing z(O)--alpha-minus region 16 in Fig. 12.

The control for the nonoptimal system of Fig. 11 is given in Fig. 13.

Between the two parallel lines the control is given by

u = (-i.1753 43)zI + (-1. 8 30488)z 2  (6.20)

where the two lines are determined by setting u = ±I in (6.20). The

trajectory shown in Fig. 13 from initial condition E (0) = [-5.0 3.0]
has a cost determined from Eq. (6.17) of 73.154, an increase of 1214 per-

cent over the optimal system. Thus, though considerably more complicated

to mechanize, the optimal system is a substantial improvement over the

simple system of Fig. 11.

E. THE TSIS

The optimal design of a system is often used only as a standard of
compariaon for the system that is actually built. However, if the truly

optimal system is to be synthesized, the feedback coefficients of the

unsaturated regions can be stored in a special-purpose digital computer.

The computer takes the value of the state vector at the sampling instant
and decides whether the control u is optimally ag+, a-, or unsaturated.
If u is optimaliy unsaturated, the computer determines which unsatu-

rated region the state vector is in, and computes the control using Eq.

Approximations to the optimal system can "be made with varying degrees

of accuracy. For example, som of the unsaturated regions can be com-

"bined into one region with little deviation from the optimal cost; or all
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FIG. 13. CONTROL FOR SYSTEM OF FIG. II.

of the unsaturated regions can be eliminated, using their location as

a guide to the placement of a piecewise linear switching curve. Around

the origin in state space, however, the control must be linear if the

system is to return to equilibrium.
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