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 ABSTRACT

This sepont-presents lysesjd numerical results for sgyera
frequency multipliers utilizin.g' lossy®abrupt-junction va.ractorl; The theory
is based on a series model of the varactor -- a constant resistance in series
with a nonlinear elastance. This model proves to be a good characterization
of practical varactors and permits us to perform closed-form solutions for
multipliers of any order. The problem is a nonlinear one and, consequently,
it is not possible to make one solution which is applicable to all multipliers;
rather, we have to solve each multiplier separately by lengthy iterative
numerical calculations. Therefore, only a limited number of the infinity of
possibilities are treated.in-eh-iﬂopoﬂ.!\

The analysis gives formulas for g\neral abrupt-junction-varactor
~frequency multipliers in the sinusoidal steady-state, i.e., we write the
voltage, charge, current, and elastance as terminated Fourier-series. We
derive relations for efficiency, power handling capability, input and load
resistances, and bias voltage as functions of the varactor parameters and the
input frequency. The results of the calculations are presented as design
charts which allow one to determine the expected multiplier performance
once a varactor and an input frequency are specified.

The various multipliers are compared on the basis of efficiency whick
results in the conclusion . t they are all nearly equivalent. Chains (or
cascades) of multipliers are also considered and the same conclusion results,
that is, it doesn't make much difference with respect to efficiency whether
lower-order multipliers are cascaded or whether a single multiplier is

employed to generate a apecific harmonic.
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SOME RESULTS FOR HIGHER-ORDER
VARACTOR FREQUENCY MULTIPLIERS

1. INTRODUCTION

In the past few years the application of the semiconductor capacitor
diode (varactor) to frequency multiplication has received considerable at-
tention. Most of this interest stems from the possibility of conversion
efficiencies which are much higher than those obtainable by other techniques.
Other consideratione. such as power handling capability and high frequency
operation also make the varactor attractive for frequency multiplication
purposes.

Several analyses of varactor frequency multipliers have been presented
in recent y.earsf These treatments have generally failed to give good results,
because they are based upon e:ither a lossless varactor model or small-
signal operation ot the varactor. Varactor frequency multipliers, however,
are large-signal devices, and a loss mechanism -- the series resistance --
is associated with all practical varactors. Therefore, a large-signal analysis
with a lossy varactor model is required for any realistic, theoretical treat-
ment of frequency multipliers

Such an analysis has been presented by Rafuse for the abrupt-junction-
varactor frequency-doubler. I* The techniques used by Rafuse were later
extended by the author to include higher-order, abrupt-junction-varactor
frequency multipliers. 2 A simalar procedure has also been used in the
approximate, but quite accurate. analysis of the graded-junction-varactor
frequency-doubler. 3 These results (and some extensions) have now been
incorporated in a book by Penfield and Rafuse. 5

The lossy varactor model which has been used in the analyses of
Rafuse, ! Greenspan, 3 and the authorZ is shown in Fig. 1 1. In this model
the lead inductance and the case capacitance have been neglected. These

stray elements certainly affect the design of a practical multiplier. However,

*Superscript numerals denote references listed at the end of the report.

R



they do not change the fundamental limits which we seek because, in theory
at least, they can be tuned out at a finite number of frequencies. Shunt con-
ductance has also been neglected, since its impedance is large compared to
that of the varactor at the operating frequencies normally used in multipliers.
At low frequencies the effect of the shunt conductance must be considetred.
This model has been verified by careful measurements of many varactors

over a wide range of frequencies and bias voltages.

‘ R bim
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NONLINEAR P
ELASTANCE SV - -+

Fig. 1.1 The varactor model

The series model shown in Fig. 1.1 is most conveniently treated on
an impedance basis. For this reason we consider the nonlinear element to
be an elastance rather than a capacitance. This model also suggests a cur-
rent- (or charge-), rather than a voltage-, controlled nonlinear characteristic,
since the series resistance "gets in the way" when voltage pumping is
attempted.

An idealized model of an nth order frequency multiplier with idler
currents is given in Fig. 1. 2. The various currents flowing through the
varactor are assumed to be completely separated and individually controlled
in this model. In practice the only accessible currents are usually just the
input and output ones (the idler circuits are often an integral part of the input
and output coupling networks). The treatment of the various multipliers in
this report tacitly assumes that a circuit closely approximating an idealized,
lossless one can be constructed in practice (this is nearly the case for very
narrow bandwidths). If the circuit losses are not small, the theoretical
predictions can be corrected by very simple procedures to give a better

estimate of the expected performance of the multiplier.
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THE FILTERS Fk ARE ASSUMED TO BE LOSSLESS
AND TO HAVE THE FOLLOWING PROPERTIES:

Zk . ]X* FOR w = kw,

Zk *©® FOR w#kw,

Fig. 1.2 Model for an nth order multiplier with idler circuits.

In this report we present exact solutions for several higher-order,
abrupt-junction-varactor frequency multipliers as follows: a tripler, two
quadruplers, two quintuplers, two sextuplers, and an octupler. A tripler,
a quadrupler, and a sextupler were treated previously by the author by a
quasi-optimum procedure. 2 The re: 1lts given here are true-optimum
solutions. Only maximum-drive operation is considered in this report, that
is, the power levels are such that the varactor is driven over its entire non-
conducting (or reverse-biased) region. If necessary, the theory can easily
be modified to include the under-driven case (the same numerical results
are still usable).

Only a brief outline of the general multiplier theory will be given,

1,2,4,5

since the derivations have been given elsewhere. The pertinent

equations are given together with some discussion as to how they are obtained.
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11. GENERAL MULTIPLIER ANALYSIS

2.1 Characterization of the Varactor

The varactor model which we use is shown in Fig. 1.1, It includes a
constant resistance in series with a nonlinear elastance. In this report we
are only concerned with the abrupt-junction varactor, which is characterized

by the following incremental, nonlinear elastance:

dv v + 1/2 7
S =g = S, {v-—ﬁ%] : (2.1)

B

where @ is a constant (usually a few tenths of a volt), v is the reverse applied
voltage (considered to be positive), and smax is the maximum elastance
which occurs at the avalanche breakdown voltage VB. Careful measurements
of many varactors have shown that Eq. (2.1) and the model of Fig. 1.1 give

a quite accurate characterization of the varactor behavior. In practice,
however, it is often found that a varactor has a nonzero minimum elastance,

Sm.m, which occurs when v = V We will use this bound rather than the

min’
one implied by Eq. (2.1), S = 0 when v = -¢. For this case, Eq. (2.1) is

written as

V- vmin SZ - sinin '
= . (2.2)
VB~ Vmin S° __ -S°.
max min

Since we are dealing with a charge-~ rather than a voltage-controlled
device, we also need the elastance-charge characteristic of the varactor.

This is found by integrating Eq. (2. 2):

Sta) =5__ [D‘lBLf.c] : (2.3)

where C is a constant of integration and QB is the charge at the breakdown

voltage,



- (VB - vmin)
Qp+C =25 .x =2 2 (2. 4)

the ¢ tant i ion i iri = . = .
1e constant of integration is evaluated by requiring S smm when q Qmm

(also, v = vmin)' Thus, we have

9-Qin - 5 - Smin (2. 5)
QB - Qin smax - Smin
and
2(V, - V_.)
_ B min )
W - Yin " T—75_ (2. 6)
ax min

One final relation is required for the characterization of the varactor

it is the terminal, current-voltage relation,

e(t) = v(t) + R_i(t) , (2.7)
or, when Eq. (2.2) is used,
(SZ - Sin'm)
e(t) - vmin = — 7 (VB - vmin) + Rs i(t) . (2. 8)
(smax - Smin)

In the study of frequency multipliers, we are concerned with the
fundamental frequency and the various harmonics, Therefore, we write the

charge, current, voltage, and elastance in Fourier-series:

) jkwot
al) =5, Q e : (2.9)

jkw_t jkw t
o . o
Zk I'k e = Z'k kao Qk e , (2.19)

i(t)

RS T VRN—
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jkwot

v(t) = Zk Vk e , (2.11)
jkwot

e(t) = Zk Ek e , (2.12)
jkwot

S(t) = Ek Sk e , (2.13)

where Q-k = Q% , I-k = I‘&, V-k = V’T(, E-k = ET{, and S-k = S’f(, since we
are dealing with real time functions. The varactor is assumed to be operated
only in its non-conducting region, so there is no direct current (I0 = 0).

Another convenient parameter is the normalized elastance defined by
_]kwo‘t

m(t) = s.____é.n_m_ = I M, e . M =Mf . (2. 14)
max min

Since S(t) must lie between Sm'

and S , we see that
in max

0=m(t) =1 . (2.15)

For many multipliers (including most of those studied in this report)
the normalized elastance-coefficients, Mk’ are found to be entirely imaginary
for k$0, i.e., M, =|M,]| = m, = -jM¥% . Equation (2. 14) for this important

special case can be rewritten as

m(t) = m + 2 zk>0 my sin kwot . (2.16)
When the above condition is applicable, we observe that m(t) - m is an odd
function of time. Thus, m_ must equal one-half, if both limits in Eq. (2.15)
are to be met. With m set equal to one-half, Condition (2. 15) for this

special case, ij =m, for k > 0, can be written as

2k>0 m; sin kwot = 0.25 . (2.17)



This completes the characterization of the abrupt-junction varactor
for our purposes. Therefore, we now proceed with the formulation of the
frequency multiplier characteristics (input impedance, idler and lvad

impedances, efficiency, power handling capability, bias voltage, etc.).

2.2 Varactor Equations of Motion
An expression for the voltage at each frequency, Ek for k £ 0, is
found by inserting Eqs. (2.10), (2.12), (2.13), and (2. 14) in Eq. (2. 8):

(VB - Vmin)
Ey =R L+ 28 M T—F5 )
max min
(Smax - Smin) 2
o357 VB " Vmin! Zr My My, - (2.18)
max min

The current I can be expressed in terms of Mk by using Eqs. (2.5), (2.6),
(2. 9), and (2. 14) in Eq. (2.10):

o = ko, Qy

jkw M (Qp -Q )
2ike M, o B _min (2.19)
JRO, MK T 3 . ’ '

max min

When we use Eq. (2.17) in Eq. (2.18), we find

Ek =R +smin + stc 2:erMk--r (2. 20)
-1: " Ts Tk Zikw M, ’ )
where
S -S
6 = max min ' (2.21)
]

R .



is the varactor cutoff frequency as defined by Penfield. 6 (When Smin is
negligible_z, w, reduces to the definition of cutoff frequency originally given
by Uhlir. ')

In the summation of Eq. (2.20), the terms for r =0 and r = k com-

bine with Smi.n/jkwo to give a term, (S + mowoRs)/jkwo. It can be shown

min
with the aid of Eq. (2. 14) that this term is the average reactance of the
varactor at the kth harmonic, So/jkwo. Therefore, Eq. (2. 20) can be re-

written as

Ey “R 4 S, +stc Z:ri‘=0,kM“rM‘k-r
Tk_ ] _]Kwo _]kao Mk

(2. 22)

For simplicity in the later analyses, we will assume that this re-
actance will be tuned out by the termination impedance at each frequency,

i. e., we choose

Ek S

_ - ) . o
Zk—--l;—Rk""JEq;k*il B (2-23)

This is not necessarily an optimum choice for the termination impedances,
since improved multiplier performance may actually be obtainable in a
detuned mode of operation. However, this restriction considerably simplifies
the analysis and numerical evaluation of the multipliers and will, therefore,
be applied in all of the following work. For this tuned mode of operation,

Eq. (2. 22) becomes

R +R R v, Zr # 0, k(er) (ij-r)

= > , k 1. 2.24
s "k Zkwg GM,) £ 2 ( )

At the input frequency we define the ratio of E1 to I1 as an "input

impedance":
Z =R + qsl _ stc zr;'=0, l(er) (le-r) (2. 25)
in 8 Jw, Zwo le ) )



1t is important to note that Z.m is not an impedance in the usual sense,
because it depends on drive level (in particular, both So and the Mk change

with the drive level). However, Z.m is a useful quantity and we shall refer

to it as the "input impedance". With the same understanding, we shall call
the real part of Zin’ Re [Zin:| . the "input resistance*. It is
w 2 (M) (M, )
- ) r#0,1 r 1-r
R.m =R - Rs Z“’o Re L le (2. 26)

An abrupt-junction-varactor frequency multiplier with idlers will
have N currents (input output. and N-2 idler currents) flowing through the
varactor. These currents (or the Mk) are related by a system of (N-1) non-
linear equations as found by expanding Eq. (2 24) into its component equations.
(There are actually 2{N-1) equations included in Eq. (2. 24), but those for k
negative are just redundant complex conjugates of those for k positive.) Note
that Eq (2.15) must always be satisfied and, in fact, it provides the Nth
equation in the system of N nonlinear equations in the unknown Mk.

The set of equations described above give expressions for the resist-
ances at the various harmonics in terms of the Mk' Unfortunately the
problem we must solve is usually just the inverse of this one. That is, we
are given values for the idler resistances (circuit constraints) and the
normalized input frequency wo/wc (varactor constraint); then we are asked
to find a load resistance which will maximize either the efficiency or the
power output. This requires that we "invert" the equations of motion to
obtain a system of equations for the M, in terms of the Rk and the input
frequency. Since the (N-1) equations for the Ry Eq. (2. 24), are quadratic
in the Mk it is quite clear that solutions for the Mk will result in higher-
order polynomials in the general case. Therefore, our problem will involve
finding the roots of higher-order polynomials. This can be done in closed
form only for quadratic, cubic, and quartic equations. Thus, in the general
case, we will have to resort to numerical techniques in order to find the

desired roots (solutions for the Mk)A
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A further complication in effecting a solution for a multiplier is that
Condition (2. 15) contains an additional unknown, the time t, at which m(t)
is a maximum (or minimum). Thus, Condition (2.15) in the general case is
a transcendental equation which must also be solved by iterative numerical
techniques.

The above considerations point out the difficulties involved in the
solution of abrupt-junction-varactor frequency multipliers. Except in the
simplest cases, there is obviously little hope of finding a solution for higher-
order multipliers in closed form. It is clear, therefore, that we will have
to resort to iterative numerical procedures in order to find the desired
solutions. These calculations are long and tedious and are best done by
machine computation.

A general approach to the problem of performing the calculations on
a digital computer is available. However, we will defer a description of the
method until we have formulated the tripler equations, because the process
can best be described with reference to a particular multiplier.

Once we have found (by a suitable numerical process) the values of
the Mk and the load resistance which maximize efficiency or power output,
it is a simple matter to calculate the remaining parameters of the multiplier
(efficiency, "input resistance", power handling capability, bias voltage, etc.).
The "input resistance" equation has already been derived, Therefore, we
turn now to the formulation of power relations, bias voltage formulas, and

an efficiency equation.

2.3 Power Handling Capability
The input power can be computed in terms of the input current and

the input resistance as follows:
P. =2|1,|°R (2. 27)
in 1 in °’ ’

or, with the use of Eqs. (2.19) and (2. 21},

10



sma,x " “"min 2 2 2 Rin
Pin = 8( ax T min) Pnorm(c.n—) m) 'K: ’ (2.28)
where m; = |M1| (in general m, = |Mk|) and
2
(Vg -V __. )
_ B min
Pnorm - R.s (2.29)

is the varactor normalization power. Alternatively, P.ln is equal to the
power dissipated in all idler resistances, in the load resistance, and in the

varactor series resistance. Thus,

Sma.x - smin 2 “o 2 2 2 (Rk + Rs)
Pin - S(S S . ) norm('w_) zk>0 k my R » (2.30)
max @~ min c R. =0 s

1

where in the summation for k =1 we let Rl be zero (no power dissipation in

the "input resistance"). Equation (2. 28) is easier to evaluate, but Eq. (2.39)

shows clearly how the input power is divided up among the various frequencies
The output power is easily seen to be that portion of the input power

which is dissipated in the load resistance Rn' It is given by the term in

Eq. (2. 30) which contains Rn:

max min “ 2 2 2 Rn
1:’out = 8( ¥ ) ) Pnorm ('&3_) nm, 1 (2.31)
max = ~min c s

The dissipated power is simply the difference between Eq. (2.30) and
Eq. (2.31). Itis

P (Smax- min) (“o)2 o
diss ~ ¥ . norm 'w
max min
R
2 2 2 2 7k
Z‘k>0 k my + Ek>0 k my Ks- . (2. 32)
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Of this dissipated power, a portion

-8 . 2 w 2
min ()
) (—)
+ . norm' w
max min c

2

s
2
P = 8( g Zy o kmy (2.33)

diss, v

is dissipated in the series resistance of the varactor. The remainder is the

power dissipated in the idler terminations.

2.4 Efficiency
The conversion efficiency € is the ratio of output power to input
power. Thus, from Eqs. (2.28), (2.30), and (2.31),

= n_ o , (2. 34)

where in the last expression we set R1 equal to zero, since the input power

is not dissipated in the "input resistance"”.

2.5 Bias Voltage
The bias voltage is found by taking the time average of Eq. (2. 2):

Vor Vmin smax - Smin) 2 Zmo smin

=(
VB - Vmin ymax * Smin ° max  ~min

(2. 35)

where Eq. (2. 14) has been used to write Eq. (2.35) in terms of the Mk'
An alternate expression for the bias voltage is obtained by time

averaging Eq. (2.1):

12
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T3 = ( mas.x min) (m°+ s____s___m-m ) + Z(m12+mzz+ .
B @ max max min
(2. 36)

where Eq. (2. 14) has again been used to write S(t) in terms of the Mk'

2.6 l1dler Currents
In the preceding analysis we have not specified the number of éurrents
in a multiplier or the frequencies at which they must flow. The simplest
case, a doubler, obviously requires currents at just the fundamental and
second harmonics. However, it is not so clear which currents must be
present in higher-order multipliers. Therefore we must examine this
important problem.
The abrupt-junction varactor has a square-law voltage-elastance
(or voltage-current) characteristic, Eq. (2.2). This tells us that no
multiplier, other than a doubler, can be constructed with just two currents
flowing through the varactor. However, we can let extra currents flow and
obtain higher-order multiplication. For example, mixing of the fundamental
and the second-harmonic currents and elastances generates a voltage at
the third harmonic. A tripler can therefore be constructed with an idler at
the second harmonic. Doubling of the second harmonic also permits con-
struction of a quadrupler with an idler at the second harmonic. Both of
these multipliers are analyzed in this report, and they are found to give
very good efficiencies as long as the operating frequency is not too high
(wo/wc less than about 0.1 for efficiencies greater than 5 or 10 per cent).
Further consideration of the power transfer characteristics of the
abrupt-junction varactor indicates that an idler frequency must be related
in at least one of the following ways to the frequencies of the currents
already present:
1. Sum of two frequencies,
2. Difference between two frequencies,
3. Twice some frequency,
4. Half some frequency.
Use ci ‘he above constraint: -“ows that a quintupler, for example, could be

constructed with idlers at Zwo and 3w°, Zwo and 4wo, or Zwo, 3wo. and 4w°.

13
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This gives only the possible idler configurations for a quintupler when the
idler frequencies are less than the output frequency. Obviously, there are
numerous additional possibilities, if we allow idler currents to flow at
frequencies higher than the output frequency.

In general, there are numerous possible idler configurations fox
realizing a particular higher-order multiplier (many of these are tabulated
in Chapter 8 of Reference 5). Unfortunately, there is no a priori way of
telling which possibility will lead to the best multiplier performance (or,
indeed, whether a particular multiplier will operate efficiently}). The only
way to find the "best" multiplier for a specified order of multiplication is to
perform detailed calculations for the various possibilities. This, of course,
is a lengthy procedure which has not, as yet, been performed. In this
report we treat several multipliers as follows: 1-2-3 tripler, 1-2-4 quad-
rupler, 1-2-3-4 quadrupler, 1-2-4-.5 quintupler, 1-2-3-5 quintupler,
1-2-4-6 sextupler, 1-2-3.6 sextupler, and 1-2-4-8 octupler. This is far
from an inclusive list even for the five orders of multiplication treated.
However, they are representative and they include several of the configura-

tions which are used in practical situations.

14



III. TRIPLER SOLUTION

We now proceed with the solution of an abrupt-junction-varactor
tripler.

As previously mentioned, a tripler will not work unless idler currents
are allowed to flow through the varactor. The simplest idler configuration
has only one idler, at the second harmonic. However, a tripler could have
two or more idlers, e. g.: Zwo and 4wo, Zwo and Swo, Zwo and 6w°, Zwo,
4wo and Swo, etc. The idler at the second harmonic could be eliminated by
choosing idlers at wo/Z and 3w°/2. Unfortunately, there is no a priori way
of telling which of the possible idler configurations would lead to the best
tripler performance. If we wanted to select the best possible tripler, we
would first have to solve each one completely. This would obviously be a
long and tedious process. Rather than embark on such a task, we will
analyze only the 1-2-3 tripler, since our intuition suggests that it will be

the simplest one to analyze and construct.

3.1 Tripler Formulas
The formulas developed in Chapter 1l apply to this case with all Mk
zero except for k = -3,-2,-1,0,1,2, and 3. From Eq. (2. 24) the idler and

load resistance equations are

R,y + R w,  (M;)(iM,)

-] = C 1 2 (3 1)
TR 3e, M '
Ry +R, o (M)? - 2GM))*(M;) 6.2

K, o, ™ |

We now want to find the phase relationships among Ml' M,, and M3. To
this end, let us choose the time origin such that le is real and positive
and thus equal to its magnitude, m;. Then Eq. (3.1) shows that jMz and
jM3 have the same phase angle, and Eq. (3. 2) shows, therefore, that the
phase angle of jM, is zero. Thus, we have the result that jM, = m, and

jM3 = m,. In terms of the m, . the various tripler formulas are

15
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R3 = Rs('ST = -1, (3.3)
o 3
w, my
RZ-RS q‘—o—-rn—z(ml-Zm3)-l N (3 4)
e M2
Rians-“-)—--rr—l-—(ml+m3)+ 1 N (35)
o 1
in “o 2 ©c 2
= 8(:)—) = mlmz(m1 + m3) + m; |, (3. 6)
norm c o
L
Pout “o 2 3wc 2
= 8(—‘0—) (T- m;m,m, - 9m3 ) . (3.7)
norm c o
2 |w
diss _ “o c 2 2
—— = 8(-“:) Zo-; m, rnz(m1 - 2m3) +m1 + 9m3 , (3.8)
Paiss,v _ g%, tm] +4m] + 9m7) . (3. 9)
norm “e
w
- m . m,-3m
3m3 W, 172 3
€= — S , (3.10)
1 < +m,) +
o, malmy tmy) +m
V _+¢ S -S . 2 S .
2 2
v - (————) [711’ + 2(m +m, +m33):| + g, (3.11)
B 4 max max

1 . .
where we have set m = For convenience, we have defined another

normalization power
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smin 2
+ .) Pnorm * (3.12)
max min

P = Smax -
norm

The Mk have been shown to be entirely imaginary. Thus, Condition
(2.17) can be used in place of Condition (2.15). The limit on the magnitudes

of the m, for the tripler, therefore, becomes
m, sin w,t + m, sin Zwot + mj sin 3wot = 0.25 (3.13)

for all values of t.

3.2 Solution of the Tripler Equations
The above formulas are all written in terms of varactor parameters
' }
(RS, W, Pnorm) and the m, .
m, which satisfy Condition (3.13) and which give positive values for R,

Hence, if we know values of m,, m,, and

and R3, it is apparent that a few simple calculations will yield the remaining
multiplier parameters.

More often, as pointed out in Section 2. 2, we are asked to determine
the values of R2 and R3 which will maximize either the efficiency or the
power handling capability. For every value of input power within the bound
of Condition (3. 13), there will be optimum values for R, and Rj. Usually,
however, we wish to utilize the full power handling capability of the
varactor; that is, we want the elastance to attain the values of Sm. and

in
S during each cycle. Therefore, we seek solutions for the m, such

tl?;:’zlondition (3.13) is satisfied with the equality sign at the time, t,, at
which m(t) is a maximum. For this maximum drive level operation, the
solutions should be such that the efficiency or power output is maximized.
We are dealing with a nonlinear problem so we expect some difficulty

in finding the optimum values of RZ and R3 for a specific input frequency,
wo/wc. Part of the difficulty resides in having too many unknowns and not
enough equations, i. e., we have six unknowns, m,, m,, my, RZ’ R3. and
to’ and four equations. (3.3), (3.4), (3.13), and the derivative of (3. 13)

evaluated at to
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dm(t)

‘t=t =m, cos woto + &mzcos Zmoto + 3m3cos 3"’0‘0 =0, (3.14)
o

Ve can eliminate Rz as an unknown, since its value is usually set by
the practical circuit in which the varactor is imbedded (in our calculations
we allow Rz to take on the fixed values 0, Rs’ ZRa’ SRs’ and lOORs). In
theory we could now solve Eqs. (3.3), (3.4), (3.13), and (3. 14) for m,, m,,
mg, and t, in terms of R3. These solutions could then be used to write
the efficiency in terms of R3. Next, the optimum load resistance would be
determined by equating to zero the derivative of the efficiency with respect
to R3. This is a mathematically rigorous approach, but it meets with
considerable practical difficulty because Eq. (3. 14) has two or more roots
in the interval, 0 = w,t = 2w, and we must, of course, select the correct
one. In higher-order multipliers the problem becomes considerably more
complicated, so we will abandon this approach and turn to an iterative
numerical procedure which has general applicability.

To facilitate our calculations, we solve Eqs. (3. 3) and (3. 4) for m,

and m, in terms of m,;:

o2 1 (3.15)
m, l(Z + Rs 4"’o + zml"’c Rs
Rs m) 9. 3“0 3 :s
and
m
3 _ 1 - . (3.16)
m R, +R_ Ry +R_ 120
2+ o
R R 2 4
s s mTw

The value of R, will be fixed for reasons discussed above. It is also
logical to assign a value to the normalized input frequency, '.oo/wc, since we

are usually interested in using a particular varactor for a specific application.
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These parameters can, of course, be changed at a later stage of the calcula-
tions to find the expected multiplier behavior with different operating
conditions.

We have no way of fix'u;g the optimum load resistance, so we will
determine the correct value by a trial and error procedure. That is, we will
assign an initial value to R3 and compute the multiplier performance; then
R3 will be varied and the calculations repeated. This process will be
continued until the optimum load resistance has been located. Obviously,
we can use the results of the first two calculations of R3 to decide on the
third value, etc. Finally, when we have values for R3 which give us
efficiencies (or power outputs) near the maximum, we can use parabolic
interpolation through three points to get an accurate value for the optimum
load resistance.

The problem has now been reduced to the solution of two equations,
{(3.13) and (3. 14), in two unknowns, m, and ty (rn2 and mg as given by
Eqs. (3.15) and (3. 16) depend only on m, when we assign values to wo/wc,
RZ’ and R3), This pair of equations is still extremely difficult to solve, so
we adopt an iterative numerical approach. To do this, we assign an initial
value to m, which we label ml(l), then we compute mz/ml(l) and
m3/m1(l). Next. we search for the value of t, which satisfies Eq. (3. 14).
(There will be two or more solutions for to in the interval, 0 = t, = Zw/wo,
each of which must be investigated. ) Finally, we check Condition (3.13) to
see whether our initial choice of m, is correct at the time to where m(t)
is a maximum. If ml(l) has the wrong value, we must assign a new value
to m, and recompute mz/ml, m3/m1, and to This process is continued
until we have finally located the correct value for m,.

At this point we obviously need a systematic method of choosing
successive values for m, such that our solution will eventually converge.
Condition (3. 13) evaluated at t = t, provides the necessary tool. For our

purposes, we rewrite Condition (3. 13) as follows

m, m,
. . . <
m, lsinw t_+ -m—l- sin Zmoto + —-—ml sin 3(..:@to 0.25 . (3.17)
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The solutions which we seek are for maximum drivé level in which
case we insist that Eq. (3. 17) be satisfied with the equality sign. This can
only occur for one value of m,. The m, which we have factored out in
Eq. (3.17) is not independently specifiable, but we can at least obtain an
estimate of m, for our second iteration by assigning to it a value such that
the equality in Eq. (3. 17) will be met. More generally, the (£ #+ 1)“ iterative
value, ml(l + 1), can be obtained from the Ith, ml(l), by requiring

m, (1) m,(£)
m1(1+ 1) =-i- sin woto“) + ;—n-f-(-n— sin Zwoto(l) + m:: sin 3m°to(!) -1 .
(3.18)

The numerical procedure should now be clear. We simply choose an
initial value for my, find mz/ml, m3/m1, and to' and then compute a new
value for m, from Eq. (3.18). When m, is changed, it is obvious that
m,, mg, and to will change so the calculations must be repeated. We then
find a third value for m, from Eq. (3.18). The process thus continues until
ml(l +1) and ml(l) agree to sufficient accuracy (the results presented in
this report were calculated to an accuracy of 0. 01 per cent).

Once the above calculations have been perforined, it is a simple
matter to use the results to find the remaining multiplier parameters (R‘in'
P, P P

in’ " out’ " diss
frequency. A typical plot of efficiency, power input, and power output

, etc.) for the given values of idler resistance and input

versus load resistance is given in Fig. 3. 1. In this figure we note that the
three maxima occur at slightly different values of R3. However, the
efficiency is not significantly reduced where the power output is maximized,
and vice versa. For practical purposes, therefore, power output and ef-

ficiency can be simultaneously maximized.
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Fig. 3.1 Efficiency, power input, and power output as functions
of the load resistance for an abrupt-junction-varactor
tripler. In this plot we have assumed that RZ =0 and
wy = IO-ZwC, but the qualitative features are the same

~ for other idler resistances and frequencies.

Power output and efficiency both have very broad maxima as functions
of R‘3. This feature is very convenient in practical designs, since it is not
always a simple matter to obtain an exact resistance for the load. Interstage
matching networks in multiplier chains are also simplified in some cases
because of this property. The reasonably good predictions of previous
quasi-optimum solutions were also a conscquence of these broad maxima.

The above procedures give a value for the optimum load resistance
for fixed values of idler resistance and input frequency. To generate a
complete set of multiplier performance data, we vary RZ or wo/wc {or both)
and repeat the calculations. These long and tedious computations were
programmed for numerical evaluation on an 1. B. M. 7090 digital computer.
The results for maximum efficiency operation of the tripler are given in
Figs. 3.2 to 3.8, Efficiency, input resistance, load resistance, power input,
power output, dissipated power, and bias voltage are plotted as functions of

frequency for several values of idler resistance, RZ'
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Fig. 3.2 Maximum efficiency of a 1-2-3 abrupt-junction-varactor

tripler for various idler resistances, R,. It is assumed
that the varacior is fully driven, and that the load is tuned
and adjusted to give maximum efficiency.
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Fig. 3.3 Input resistance of an abrupt-junction-varactor tripler,

adjusted to give maximum efficiency for the various
values of idler resistance, R).
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Load resistance vs. input frequency for maximum efficiency

operation of a 1-2-3 abrupt-junction-varactor tripler,
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efficiency operation,
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Fig. 3.8 Bias voltage of a 1-2-3 abrupt-junction-varactor tripler,
adjusted for maximum efficiency operation, for various
values of idler resistance, R,.
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Fig. 3.9 Elastance waveform of an abrupt-junction-varactor tripler
. at low frequencies, adjusted to yield maximum efficiency
with a lossless idler termination (m, = 0. 148, m, = 0, 092,
m, = 0,074). We show the fundamental, second harmonic,
an% third harmonic individually and their sum.
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At low frequencies, we expect the efficiency to approach 100 per cent,
since the varactor losses become relatively less important as the reactance
gets large. Figure 3. 2 shows that this is indeed the case. In fact, the
efficiency even approaches 100 per cent with a nonzero idler resistance.
Note also that the highest efficiency occurs with a lossless idler circuit,
which is expected from detailed consideration of the properties of idler
circuits. At low frequencies the input and load resistances become large.
However, at high frequencies the series resistance of the varactor dominates,
and the input and load resistances approach Rs‘

Input and output power are approximately equal at low frequencies,
and vary linearly with frequency, as shown in Figs. 3.5 and 3. 6. At high
frequencies the efficiency is low and, consequently, the input and dissipated
powers are almost equal. (In fact, most of the input power is dissipated in
the varactor at the fundamental frequency.)

In the figures we have neglected the factor containing S in the

min

multiplier equations. If Smin is not negligible, the values shown in
. - 2

Figs. 3.5 to 3.7 must be multiplied by (S§___ -S_. ) /(Smax +S_in

The bias voltage as given in Fig. 3.8

)z, i.e.,
1
Pnor must be replaced by Pnor .

must be modified according to Eq. (3.11), if Sm. is not negligible. The

4 in
operating conditions specified above lead to an average elastance given by

S +S .
max min

§, = ——— . (3.19)

This is the value of elastance that must be tuned out at each frequency
according to the theory.

The conditions for maximum power output are qualitatively very
similar to those for maximum efficiency. For small values of idler
resistance, R,, the results are not significantly different from those pre-
sented in Figs. 3.2 to 3. 8 for maximum efficiency. The two optimizations
differ quite a bit for large values of R,, but we do not plot the results

because large idler resistances are of little or no practical interest.
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It is interesting to examine the elastance waveform under typical
operation. The plot shown in Fig. 3.9 is for the low frequency values of
m,, m,, and m, for maximum efficiency operation with a lossless idler.

For maximum drive operation, smin and Sm are attained once per cycle.

ax
At higher frequencies m, and my become small, while m, increases toward
0.25. Thus, the fundamental elastance dominates the elastance waveform

at high frequencies.

3.3 Asymptotic Formulas for the Tripler

At low and high frequencies the tripler behavior can be described by
asymptotic formulas. The limiting values of m,, m,, and m, for low
frequencies can be found from the computed data. Then the appropriate
formulas are found from Eqs. (3. 3) to (3.11). For high frequencies we use
the limiting values, R.m ~ R3 ~ Rs and m, ~ 0.25 (mk << m,; for k > 1), in
Egs. (3.3) to (3. 11) to find asymptotic relations. These formulas are
summarized in Table 3.1 for the lossless idler case. For low frequencies
both maximum power output and maximum efficiency formulas are given.
Power output and efficiency are simultaneously maximized at high frequencies,

so only one set of formulas is required.
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Table 3.1 Asymptotic Formulas for the 1-2-3 Tripler

Maximum power output and maximum efficiencyare achieved with a lossless
idler, so we have set R, = 0. For simplicity we have also assumed

S . <«§ .
min max
Low Frequency High Frequency
Maximum € Maximum Pout Max. € and Pout
w, W, .5 . % 4
€ 1 -34.8-— 1 -35.1 —=— 6.08x 10 " {(—)
w w W
c c ‘ (o)
Ye Y
R. 0.137(—)R 0.126 (—)R R
in w 8 w s 8
o o
“e “e
R3 0. 184(3-§)Rs 0. 168(-33;)11.5 Rs
P. w W, W, 2
n 0.0241(-2) 0.0242(—) 0.500(—)
(D] W (D]
norm c c c
P w w w 2
out 0. 0241 (=2) 0.0242(-2) 3.04x 1072(=5)
norm Bt c o
P.. w 2 w_ 2 w 2
diss 0.837(=2) 0.849 (-2) 0. 500 (=2)
w w w
norm c C c
Vo +to
W 0. ?21 0.324 0.375
m, 0.148 0.155 0. 250
“e
m, 0. 091 0.084 0.0156(;)—)
o
We 2
m, 0.074 0.0775 0. 00065(-0-)-)
o
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IV. QUADRUPLER SOLUTIONS

The quadrupler is the only abrupt-junction-varactor multiplier,
other than the tripler, which can be made with a single idler (at the second
harmonic). As with the tripler, however, there are several alternate ways
to construct a quadrupler with two or more idlers. The simplest, multiple-
idler quadrupler is one with idlers at Zwo and 3w°. Both the 1-2-4 quadrupler
and the 1-2-3-4 quadrupler will be studied. Some other multiple-idler
configuration may be better than either of these, but we will not pursue the
problem. .

The analysis of each quadrupler is very similar to that of the tripler.
The techniques of solution and the general nature of the results are the same,

although the formulas and specific curves are different.

4.1 1-2-4 Quadrupler Formulas
The formulas of Chapter II apply to this case with all Mk zero
except for k = -4, -2, -1, 0, 1, 2, and 4. The idler and load resistance

equations become, from Eq. (2.24),

. 2
R4 + Rs w (JMZ)

C
= . , (4. 1)
Rs 8wo JM4
. A . oy
R 4w JMZ ’ )
-] (o]

The arbitrary phase reference (time origin) may be chosen such that le is
real and positive and thus equal to its magnitude, m,. Equation (4. 1) shows
that the phase angle of jM4 is twice that of jM,. Finally, the use of this
information in Eq. (4. 2) demonstrates that jMZ (and therefore jM4) must
be real and positive; thus, jMz =m, and jM4 = m'4. I» terms of m,, m,,
and m, the various 1-2-4 quadrupler formulas are

2
w, m,

R, =R (g —— - 1) , (4.3)
4 sm;m4
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W 2 2
m,’ - Zm,m,

- c
RZ Rs(lwo ™y -1) , (4. 4)
,wc
Rin = Rs(z’-;- m, + 1) , (4. 5)
P, w 2 w
in o c 2 2
= 8(—) (—m, m, +m,.) , (4. 6)
norm “e “o 172 1
P w 2 2w
out . 8(=2) (== mzz m, - l6m:) , (4.7)
norm c (o)
diss _ 8(“’0)z wc( 2 &nZ ) + 2 +16 2 (4. 8)
O oo imymp Ay my) tm, Mms | :
norm c o
diss w, 2 2 2 2
125.Y - 8(=2) (m{ + d4mj + lém,) , (4.9)
norm c
W, 2 o
2m, W, ma - °my
€ = > - , (4. 10)
m =< m, +1
“o
V +¢ s -8 . 2 S .
0 _ 4, max min 1 2 2 2 min
max max

where we have set m = -é- . The power relations have been normalized with
respect to P;\orm as defined by Eq. (3.12).

The Mk have been shown to be entirely imaginary. Therefore,
Condition (2. 17) gives the limit on the magnitudes of the m,. For the 1-2-4

quadrupler we have
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m, sinw t+m, sin Zwot +m, sin 4w°t < 0.25 (4.12)

for all values of t.

4.2 Solution of the 1-2-4 Quadrupler Equations

The above formulas are written in terms of varactor parameters
(Rs’ W, P;mrm) and the m,. Hence, if we know values of m,, m,, and m,
which satisfy Condition (4. 12) and which give positive values for R, and R4,
it is apparent that a few simple calculations will yield the remaining multiplier
parameters.

Usually, however, we must find the values of RZ and R4 which will
maximize either the efficiency or the power handling capability of the
quadrupler. Both of these maxima occur when the varactor is optimally
driven, that is, with the elastance attaining the values of smin and sma.x
at least once during each cycle. Therefore, the values of the m, must be
such that Condition (4. 12) is satisfied with the equality sign at some time to’
when mf(t) is a maximum.

As was the case with the tripler, we have to use an iterative
numerical procedure to find‘solutions of the nonlinear quadrupler equations.
These calculations are usually performed by choosing values for R,, R4,
and wo/wc and then computing the required values for m,, m,, and m,. It
is convenient, therefore, to solve Eqs. (4. 3) and (4. 4) for m, and m, in

terms of m, (this choice of reference is found to give the simplest equations):

(ﬂ)z i R2R+ Rs 4w° . R: mzwc ' (4.13)
my s mec !:4 !:s l::o

rn4 ) mzwc Rs 14
=, - . KR, (4.14)

The numerical procedure used for solving the quadrupler equations
is exactly the same as described in Section 3. 2 for the tripler, except that

in this case m, is the control parameter. Computations for maximum
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efficiency operation and maximum power output operation were performed on
an 1. B.M. 7090 digital computer. The results for maximum efficiency
operation are given in Figs. 4.1 to 4. 7. Efficiency, input resistance, load
resistance, power input, power output, dissipated power, and bias voltage
are plotted as functions of frgquency for several values of R,.

For a given frequency and a specific value of R,, the efficiency, the
power input, and the power output as functions of the load resistance look
somewhat like those shown in Fig. 3.1 for the tripler. The three maxima
usually occur at slightly different values of R4 at low frequencies. However,
the efficiency is not much reduced where power output is a maximum, and
vice versa. Thus for practical purposes the power output and the efficiency
can be maximized simultaneously. At high frequencies both maxima occur
with the same load. The maxima are quite broad which explains the
reasonably good predictions of the previous quasi-optimum solution.

At low frequencies the efficiency approaches 100 per cent, even with
a nonzero idler resistance, as expected. Power input and power output are
approximately equal at low frequencies, while at high frequencies input and
dissipated powers are nearly equal. Also, at high frequencies the ‘input and

load resistances become approximately equal to R

In the figures we have neglected the factors conta.mmg sm'm in
qs. (4.6), (4.7), (4.8), and (4.11). If sm'm is not negligible, we must
. . . \ .
use pnorm instead of pnorm for the normalization power, and the bias

voltage as given in Fig. 4.7 must be modified according to Eq. (4.11). The
average elastance is given by Eq. (3.19), since our solutions are for maxi-
mum drive.

The conditions for maximum power output are very similar to those
for maximum efficiency. For small values of idler resistance, the results
are not significantly different from those presented in Figs. 4.1, 4.4, 4.5,
and 4. 6. The input and load resistances and the bias voltage are somewhat
different, but not enough to make replotting necessary. The two optimiza-
tions differ quite a bit for large values of Rz; however, we do not plot the

results because in practice large idler resistances are of little or no interest.
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Fig. 4.1 Maximum efficiency of a 1-2-4 abrupt-junction-varactor

quadrupler for a variety of idler resistances, RZ'
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Fig. 4.8 Elastance waveform of a 1-2-4 quadrupler adjusted for
maximum efficiency operation. The plot is for low frequencies
with a lossless idler (ml =0.13, m, = 0.15 and m, = 0. 053).

39

it e o ——— R -




e v gean - L s

A plot of the elastance waveform under typical operation is shown in
Fig. 4.8. The low frequency values of m,, m,, and m, for maximum
efficiency operation with a lossless idler are used in the figure. Since the
solutions are for maximum drive, the elastance varies between smin and
smax during each cycle.

4.3 Asymptotic Formulas for the 1-2-4 Quadrupler

At low and high frequencies the behavior of the 1-2-4 quadrupler can
be described by asymptotic farmulas. The limiting values of m,, m,, and
m, for low frequencies can be found from the computed data. Then the
appropriate formulas are found from Eqs. (4.3) to (4.11). For high frequencies
we use the limiting values, Rin ~ R4 ~ R.s and m, ~ 0.25 (mk << m, for
k > 1), in Eqs. (4. 3) to (4. 11) to find asymptotic relations. These formulas
are summarized in Table 4. 1 for the lossless idler case. For low frequencies
both maximum power output and maximum efficiency formulas are given.
Power output and efficiency are simultaneously maximized at high frequencies,

so only one set of formulas is required.

4.4 1-2-3-4 Quadrupler Formulas - -

The idler and load resistance equations for the 1-2-3-4 quadrupler
can be written directly from Eq. (2. 24) where the NI.k are zero except when
k takes on the values, -4, -3, -2, -1, 0, 1, 2, 3, and 4. Thus

Y
Ry+R, o, (Mp)7 + 2(M,)(jM,)

C
= R {4. 15)
Rs 8"“o jM:4
. . 2 . *,.
Rs 3")o jM3
. 2 . %x,. . *,.
Rz + RB _ wc (JMI) - Z(JMI) (JM3) - Z(JMZ) (JM4) (4.17)
Rs - 4&)0 jMZ )

The addition of the extra idler considerably complicates the problem of

finding phase relationships. However, by selecting the time origin such
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Table 4. 1 Asymptotic Formulas for the 1-2-4 Quadrupler

Maximum power output and maximum efficiency are achieved with a lossless

idler, so we have set R, = 0. For simplicity we have also assumed

<<
n sm

mi ax'
Low Frequency. High Frequency
Maximum ¢ “Maximum ”out Max. ¢ and ';_%.
Y ) -8,%
[ 1 - 62, 5(;—) 1 - 66, Z(;—-) 85.96 x 10 (T,
C [ [+}
“e Ye
Rln 0. lSO(E-)R. 0.136(3-)11. R.
o o
Ye e
P‘ 0. ZOS(wo-)R. 0. 136(-5:)!1. R.
P w w w 2
gD 0.0196(~2) 0.0201(=2) 0. 500 (=2)
norm uc uc [+
P w X w 4
out 0.0196(Z2) 0.6201(Z2) 2.98 x 10‘“(.‘;&)
norm c c o
P w @ w & w 2
diss 1.23(-2) 1.33(=2) 0.500(=2)
norm We c c
' Vo K J
v;-r; 0.334 0.334 0.3718
m, 0.128 0.136 0. 250
Y
.8, Y 3
m, 0. 088 0.068 1.53 x 10 (-5-)

4]




TR B e B issctt o e g

T e

oo

. *-

‘
that le is real and positive and thus equal to its magnitude, m;, we can
write Eqs. (4. 15), (4.16), and (4. 17) as

-
my Wa_ | ,T3 i63  mpmy ilbg-9))
E—e = - t—n-—e‘ -Z—E—e ’ (4-18)
1 [ 1 1 71 ‘
my jé m, j¢, m, jo
3 3 _ 2 2 4 4
-ﬁ-\- e =b —m—— [ - ;n——e » (4~ 19)
1 1 1
m, j¢ m, 2 j2 m, j¢
-..—43 4=c -.—z.) e z+2—-1e 3 R (4. 20)
m) | m
h h J m, @ Rs b m) @ Rs
where we have set j =m, e A P T ' P T TR
m.w R Mk k o 2t 8 Yo 3 8
and ¢ = glw < R4 :Rs . Equations {4.19) and (4. 20) are now solved for
m3/m1 and m4/m1 in terms of mz/m1
m m, j¢p, m i
fe ™ Al t g Ee A Ee 2, (4. 21)
1 1 1
my j¢3 A ) ™p IO m; Jb
—_— = 5(s -—e J——e , (4. 22)
m c m m
1 1 1
where
A= T - (4.23)

2 j2
PO C T TP Wi i E A P TR 2
1

42




P el T ———

Equation (4. 24) can be separated into two equations relating real and
imaginary parts when the relation, eJe = cos ©+ jsin O, is used. Thus, we

have
m, 2 m { m
2 1 . A, A,™2 2 -
A(I-n_;) (Z - CcOo8 %2) + —a- + < + B—(-nTi-) r-n—l— cos ¢z -1=0, (4. 2
and
1, A, A™22 m, |
sin ¢z ; + -C_ + F(?n—l—) - ZA(ET) cos ¢z =0 N (4. 26’
- J

where the trigometric identity, sin 20 = 2sin ©cos ©, has been used to write
Eq. (4. 26) in the form given. Equation (4. 26) is obviously satisfied for

4’2 =aw, n=0,1, 2, ... Only the cases ¢2 =0 and ™ need to be investigated,
gsince the same results are obtained for n= 2. For ¢2 =0, Eq. (4. 25)

becomes

m
'E(-nT-) +A(-ﬁ) +(-j:7+%)-t-n—f-- 1=0. (4.27)

According to Descartes' rule of signa*, Eq. (4. 27) has exactly one positive
real root regardless of the values of the coefficients (the coefficients are,
of course, positive and real). It is this root which we seek as our solution
for mz/ml.

For the alternate posibility, ¢Z = w, Eq. (4.25) becomes

3 m, 2 m
A, M2 2 1 , A, ™2 .
'B'("rﬁ'i‘) - A(‘;n-l—) + (-a— + ?)F\T +1=0 . {4. 28)

#See any standard text on college algebra which covers the theory of
equations. For example, M. Richardson, "College Algebra", Prentice-Hall
Inc., New York, N. Y., 1947.
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We again apply Descartes' rule of signs to find that Eq. (4. 28) has either two
or zero positive real roots. Therefore, a solution for 4’2 = T may or may
not exist depending on the values of the coefficients in Eq. (4.28). In
particular, it can be shown that no roots exist at frequencies (wo/mc) of the
order of 0.1 or greater. This point will not be pursued further, since it is
later found that a properly optimized multiplier will operate in just the
single mode, ¢, = 0.

There is a third possible solution of Eq. (4. 26) which gives a value
for ¢z which is not equal to an integer multiple of *. The appropriate

solution is

cos ¢, = . (4. 29)

This solution will only be possible when the right hand side of Eq. (4. 29) lies
between zero and one. It is later found that a, b, and c for an optimized
multiplier take on values such that the right hand side of Eq. (4. 29) is always
greater than one. Therefore, we will usually be able to neglect Eq. (4. 29) as
a possible solution.

For any of the above cases we can write the following formulas for the

1-2-3-4 quadrupler:

2 J j¢3
w, my e + Zmlm3e
m,e
4
m R
w m,m,e -mm,e
1772 1774
R, = R_(ws -1), (4. 31)
- 3 ] Two 1¢3
mjye
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2 g - 0)
(wc m; - Zmlm3e - Zmzm4e ) : (
R,=R - 1), 4. 32)
2 8" 4w, P,
m,e :
j¢2 J(¢3 'd’z) J(¢4 '¢3)—
wc mlmze +m2m3e +m3m4e )
R. = 1+ — Re |
in s W m
o 1 .J
(4. 33)
Pin _ 8(""’0)Z 2 Rin 4. 34
P8 ™ oo : (4.34)
norm c 8 .
P w_ 2 R
out _ o 2 4
norm c 8
P, w 2 R R
diss (o) 2 2 2 2 3 2
= 8{—) Im, +4m, (1 + ) +9Im (1 + Y+ 1ém, [, (4.36)
norm “e 1 2 R-s- 3 1:,‘-s- 4
P, w 2
diss,v . §(-2) (mZ+4mZ +9m2 + 16m?) , (4.37)
W 1 2 3 4
norm c
16m 2 R
€ = 2 2 (4. 38)
- R, ' . )
m, in
5 -85 .
VB to max ° max min
2 2 2 2
+Z(ml tmy; +mjy + m4) , (4. 39)
where the power relations have been normalized with respect to p;xorm as

defined by Eq. (3.12).
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In general, the ij are complex numbers, so we must use
Condition (2. 15) rather than the special one given by Eq. (2.17). Thus we

have

0= m + Zml sin wot + ZmZ sin (Zwot + qbz)

+ 2m, sin (3w t + §,) + Zm, sin (4wt +¢,) =1 (4. 40)

for all values of t.

4.5 Solution of the 1-2-3-4 Quadrupler Equations

To properly treat this multiplier we would have to separately examine
each of the possible solutions. Rather than attack the problem in this way,
we begin by assuming 4)2 = 0 and then proceed as if this choice yielded the
only solution. We know that it yielde the only solution at high frequencies.
However, at lower frequencies there may be a problem of jumping from one
mode of operation to another. If "phase jumps" from mode to mode occurred
in practice, the multiplier would probably be useless because of the resulting
efficiency and/or power level changes. Therefore, we attack the problem by
maximizing efficiency (or power output) for one mode of operation {¢, = 0)
and then check to see whether any other mode of operation is possibie with
the specified idler and load resistances. For the 1-2-3-4 quadrupler, it is
found that the phase stays locked with 4)2 = ¢3 = ¢4 = 0 for maximum
efficiency or maximum power output operation. Therefore, this quadrupler
will be a useful device when operated with an optimized load resistance.

If a non-optimum load (R4 < R4’ opt only) is used, "phase jumping"
may be a very serious problem. This problem has not been investigated to
any extent except to show its existence. Probably the phase will remain
locked even with load resistances about one-fourth of the optimum value.
Since most multiplier designs are based on maximum efficiency or maximum
power output operation, "phase jumping" should not be an important problem.

The numerical procedures used for solving the 1-2-3-4 quadrupler
equations are the same as described in Section 3. 2 for the tripler. In this
case (¢Z set equal to zero), Eqs.. (4. 27), (4. 21), and (4. 22) are used for the
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calculation of m,, mj, and m, in terms of m,. The limit on the magnitudes
of the m, is given by Condition (4. 40) with m_ = 1/2 and ¢, =, = ¢, = 0.
(For maximum efficiency and maximum power output operation, ¢3 is equal
to zero, which is not necessarily the case under non-optimum conditions. )

Computations for maximum ecfficiency operation with ¢Z =0 were
performed on an 1. B.M.. 7090 digital computer. The results are given in
Figs. 4.9 to 4.15. Efficiency, input resistance, load resistance, power
input, power output, dissipated power, and tias voltage are plotted as
functions of frequency for several values of R2 and R3.

The curves in the figures are qualitatively very similar to the tripler
and the 1-2-4 quadrupler curves and are interpreted in the same way. In

the figures we have neglected the factors containing Srn If Smin is not

negligible, we must use P;'lorm instead of Pnorm for tllir:a normalization
power, and the bias voltage as given in Fig. 4. 15 must be. modified according
to Eq. (4. 39) with m set equal to one-half. The average elastance is given
by Eq. (3.19), since the solutions are for maximum drive and m = 1/2,

A plot of the elastance waveform under typical operation is shown
in Fig. 4.16. The low frequency values of m;, m,, m,, and m, for maxi-
mum efficiency operation with lossless idlers (RZ =Rg = 0) are used in the
figure. For maximum drive operation, the elastance attains the values of

S . and S one or more times during each cycle.
min max

4.6 Asymptotic Formulas for the 1-2-3-4 Quadrupler

At low and high frequencies the behavior of the 1-2-3-4 quadrupler
can be described by asymptotic formulas. The limiting values of m,, m,,
mg, and m, for low frequencies can be found from the computed data. Then
the appropriate formulas are found from Eqs. (4. 26) to (4. 35) with
(pz = ¢3 = ¢4 = 0. For high frequencies we use the limiting values,
R.m ~ R4 ~ Rs and m, = 0.25 (mk << m, for k > 1), in Eqs. (4. 18) to (4. 20)
and (4. 30) to (4. 35) to find asymptotic relations. These formulas are
summarized in Table 4. 2 for maximum efficiency operation with lossless
idlers. The high-frequency asymptotes apply for both maximum efficiency

and maximum power output operation.
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Table 4. 2 Asymptotic Formulas for the 1-2-3-4 Quadrupler

Low-frequency and high-frequency formulas are given for the abrupt-junction-

varactor quadrupler with idlers at Zwo and 3w°. We have assumed that

sm’m is negligible in comparison to smax’ and that R, = R3 =0,
Low-frequency High-frequency
Maximum € Max. € and P
out
W, 7. % 6
€ 1 - 45, 6(—) 8.0x10 "(—)
w w
c o
“e
o
“e
R4 . 250(29—')?‘3 | Rs
o
P, w w_ 2
2 0.0226(~2) 0. 500(=2)
w w
norm c c
P w w_ 4
out 0. 0226(-2) 4.0x1077(5)
norm c o
P, w_ 2 w 2
diss 1.033(=2) 0. 500(==)
w w
norm C c
Vot 9 0.375
0.330 .
V@
m, 0.1715 0. 250
“c
m, 0.0532 0. 0156(‘-”-0-)
We 2
m, 0.0693 0. 0013(-5:)
-5, % 3
m, 0. 0532 5.6 x 10 (-5:)
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4.7 Comparison of the 1-2-4 Quadrupler and the 1-2-3-4 Quadrupler

Since two practical idler configurations exist for the abrupt-junction-
varactor quadrupler, it is of interest to compare their performance. Most
of the comparisons can be made by referring to Figs. 4.1 to 4.7 and
Table 4.1 and to Figs. 4.9 to 4. 15 and Table 4. 2,

The maximum efficiencies with lossless idlers for the two quadruplers
are shown in Fig. 4.17 for comparison. Higher efficiency is obtainable from
the 1-2-3-4 quadrupler for all frequencies, although the difference is not
very large. The maximum difference in efficiency is about 13 per cent.

Algo of considerable interest is the comparative power handling
capability of the two quadruplers. The power outputs at maximum efficiency
with lossless idlers are shown in Fig. 4.18 for comparison. The 1-2-3-4
quadrupler has the highest power output at all frequencies, but the difference
is quite small. At low frequencies the ratio of the power outputs,
Pout(1-2-4)/Pout(1-2-3-4), is approximately 0. 867.
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Fig. 4.17 Comparison of the maximum efficiency obtainable from the abrupt-.
junction-varactor 1-2-4 and 1-2-3-4 quadruplers. In both cases
the idler terminations are lossless.
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V. QUINTUPLER SOLUTIONS

Unlike the tripler and the 1-2-4 quadrupler, quintuplers require two
or more idlers. There are two possible idler configurations for the abrupt-
junction-varactor quintupler with only two idlers. The first has idlers at
the second and fourth harmonics (1-2-4-5), and the other at the second and
third harmonics (1-2-3-5). Many other quintuplers are conceivable, but all
of them have three or more idlers. We will restrict our attention to the
two-idler quintuplers, even though some multiple-idler device may actually
yield better performance. There appears to be no a priori way of determining
which of the two-idler quintuplers is better so both must be analyzed.
Detailed investigation of the 1-2-3-5 quintupler formulas revsals an unusual
behavior which probably causes this device to have no practical value except
at high frequencies. No direct comparison will be made because of this

anomaly.

5.1 1-~2-4-5 Quintupler Formulas

From Eq. (2.24) the idler and load resistance equations are

Rg+R,  u (MM, .
Ry %y M, .

. 2 . .
Ry+R, o (Mp)° - 2GM)* (M)

= - , (5.2)
R_ 8w M,
. 2 g Mg
Ry+R, o (M) - 2(M,)7 (M) (5. 3)
K L™ M, ‘ B
8 o

The time origin may be chosen such that le is real and positive and thus

equal to its magnitude, m,. Equation (5. 1) then shows that the phase ‘a.ngle of
Mg
phase angle of jM, is.twice the phase angle of jM,. Using this information

is equal to the phase angle of jM4, and Eq. (5.2) indicates that the
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in Eq. (5.3), we see that the phase angle of JM, must be zero, so that
le =m,, jMz =m,, jhi4 =m,, and jM.5 = mg.
In terms of the m the various 1-2-4-5 quintupler formulas are

R.=R {( -1) ,
5 ] Swo mg
w, my - Zmlm5
R,=R( -1),
4 s’ Bw m
o 4
w, my - Zmzm4
R, =Rylgg ™ -1,
o 2
w mym,+mm
-2 LA 254y,
in 8'w m
o 1
in “o 2 “e 2
=8(5) |gmmlmm, +mmg) +m"|,
norm c
2 [
P w 5w
out z 8(=2) {~— m,m,m -Zsz )
w w 17475 5
norm c L (o}
2 r
P, [X) w
diss _ o c 2 2
= 8(~—) = ml(mlmz - 4m4m5) tm) + Z5m5 )
norm c )
P.. w 2
diss,v _ o 2 2 2 2
= 8(—) (m; +4m, + lém + 25mg’) ,
norm c
“e
Sm (G—)mlm4 - Sm5
5 (3
€ = ’
m

w
c
(;-;) (mlm2 + m4m5) +m,
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B S max

max
(5.13)

where we have set m = 1/2. The power relations have been normalized with
respect to P;xorm as defined by Eq. (3.12).

The Mk have been shown to be entirely imaginary, so Condition (2. 17)
can be used as the bound on the magnitudes of the m,. For this case we

have

m, sin w,t +m, sin 'Zwot + m, sin w,t + mg sin Swot < 0.25 (5.14)

for all values of t.

5.2 Solution of the 1-2-4-5 Quintupler Equations

The solution of these equations is similar to the solution of the other
abrupt-junction-varactor multiplier equations. If, for example, we know
values of m;, m,, my, and mg which satisfy Condition (5. 14) and which
give positive values for R,, R4, and R5, then all quantities of interest can
be calculated. .

As discussed in connection with the other multipliers, we are usually
faced with the inverse problem of finding the loading conditions which
maximize either the efficiency or the power output. Both of these maxima
occur when the elastance attains the values of smin and smax one or more
times during each cycle, that is, when Condition (5. 14) is satisfied with the
equality sign at the time t_ when mf(t) is a maximum or a minimum.

The tripler and quadrupler equations were solved by an iterative
numerical procedure. The same is true for the 1-2-4-5 quintupler. As
with the other multipliers, we usually choose values for Rz, R4, Rs. and
t.oo/(.:c and then compute the required values for the m, by iteration. It
is therefore convenient to solve Eqs. (5. 4),:(5.5), and (5. 6) for three of the
my in terms of the other one. The equations are found to be simplest if

m, is used as the reference. Thus,
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R

My 8
+ — + ) -1=0, (5. 15)
m, T R, +KR_ R mye_
m, 2 m R, +R 4w
(—L) =2 4 + ZR 2 2 ’ (5. 16)
ma m, s M2%%
mg R, mpe.om my (5. 17)

m, R5+Ks 5«»0 m, m,

The numerical procedure for solving these equations is the same as
described in Section 3. 2 for the tripler, except that in this case m, is the
control parameter. In performing the calculations, it is important that we
take only the positive real root of Eq. (5.15), since it is the only one which
satisfies the phase condition. The pertinent computations for maximum
efficiency operation and maximum power output cperation have been per-
formed on an 1. B.M. 7090 digital computer. Again we find that the efficiency,
power input, and power output as functions of R5 for a given frequency and
specific values of R, and R‘1 look somewhat like Fig. 3.1 for the tripler.
For small values of the idler resistances we also find that, for practical
purposes, efficiency and power output are simuitaneously maximized.

The computed results for maximum efficiency operation are presented
graphically in Figs. 5.1 to 5.7. In these figures we show efficiericy, input
resistance, load resistance, power input, power output, dissipated power,
and bias voltage as functions of frequency for several values of R, and R4.
These plots are similar to those given for the tripler and quadruplers and

are interpreted in the same way.
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Fig. 5.1 Maximum efficiency of an abrupt-junction-varactor 1-2-4-5

quintupler for several values of idler resistances, R, and R,.
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Fig. 5.2 Input resistance for a 1-2-4-5 quintupler adjusted for maximum
efficiency operation.
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Fig. 5.3 Load resistance for maximum efficiency operation of a 1-2-4-5
quintupler for a variety of idler resistances, Rz and R4.
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Fig. 5.4 Power input of a 1-2-4-5 quintupler adjusted for maximum
efficiency operation,
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Fig. 5.5 Power output for maximum efficiency operation of a 1-2-4-5
quintupler for several values of the idler reliqtancel. Rz and R4.
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Fig. 5.6 Total power dissipated in a 1-2-4-5 quintupler adjusted for
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Fig. 5.7 Bias voltage for a 1-2-4-5 quintupler adjusted for maximum
efficiency operation for a variety of idler resistances, Rz
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Fig. 5.8 Elastance waveform of a low-frequency 1-2-4-5 quintupler adjusted
for maximum efficiency operation with lossless idler terminations.
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The minimum elastance, S has been neglected in Figs. 5.4t05.17.

i
If Smin is non-zero, we must useml;zorm instead of Pnorm for the nor-~
malization power, and the bias voltage as given in Fig. 5.7 must be modified
according to Eq. (5.13). The average elastance, So. is given by Eq. (3. 19),
since our solutions are for maximum drive.

The conditions for maximum power output are very similar to those
for maximum efficiency, at least for small values of R, and R4. For large
values of the idler resistances the optimizations are quite different, but we
do not plot the results because in practice large idler resistances are
generally undesirable.

A plot of the elastance waveform is shown in Fig. 5.8 for maximum
efficiency operation at low frequency with lossless idlers. For maximum
drive (as shown in the figure) Sm.m and smax are attained at least once per
cycle. With some loading conditions, it is possible to attain Sm.m and Smax
twice per cycle. Care must, therefore, be taken in performing the calcula-

tions to make sure that the higher maximum is used in checking Condition (5. 14).

5.3 Asymptotic Formulas for the 1-2-4-5 Quintupler

At low and high frequencies the behavior of this multiplier can be
described by asymptotic formulas. 'The limiting values of the m, for low
frequencies, as found from the computed data, are used in Eqs. (5. 4) to
(5. 13) to determine the appropriate formulas. For high frequencies we use
the limiting values, Rin 8 R5 3 R‘. m, ~ 0. 25, and my << m, for k>1,
in Eqs. (5. 4) to (5. 13) to find the asymptotic relations. These formulas are
summarized in Table 5.1 for the case of lossless idlers. The asymptotic
relations for low frequencies are almost identical for both maximum
efficiency and maximum power output operation. Therefore, only one set of

low-frequency formulas is given.

5.4 Formulas for the 1'-2-3-5 Quintupler

The formulas developed in Chapter 1I apply to this case with all Mk zero
except for k = 0, *1, #2, 4#3, and ¥5. From Eq. (2. 24) the idler and load
resistance equations are '

t
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Table 5.1 Asymptotic Formulas for the 1-2-4-5 Quintupler

Maximum power output and maximum efficiency are achieved with lossless

idlers, so we have set R2 = R4 = 0. For simplicity we have also assumed

S . < 8
min m

ax’

Low frequency

i € P
Maximum € and ou

t

High frequency

Maximum € and P
out

in

norm

out

norm

diss

“s
1 -92. 9(3—)
c

wC
0. 136(;:)Rs

w
0. 209(3-5‘-’-) R,
[o]

wO
0.0178(—2)
wC

wO
0.0178(=2)
C

W, 2
1. 65(—)
“e

0.322

0.128

0.109
0.075

0.046
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Rs + Rs wc (JMz) (JM3)

K, Boy M '
. . . »*,,
Ry +R, wg GM)GM) - (My) (M)
K, TG, 1%
R, +R. o (M) - 20M,)%(M,) - 20M,)* (M)
27" _ Y i L M 5
X, o, ™

(5.18)

(5.19)

(5. 20)

Without loss of generality, we may choose the time origin such that le is

real and positive and thus equal to its magnitude, m,. Equation (5.18) shows

that the phase angle of st equals the sum of the phase angles of jM, and

M

3 When this information is inserted in Eq. (5.19), we find that the phase

angle of jM3 equals the phase angle of jM,. Finally, from Eq. (5. 20) we

find that jM, must be real and positive. It then follows that jM3 and st

are real and positive and equal to their magnitudes, m, and mg, respectively.

In terms of the m, the various 1-2-3-5 quintupler formulas are

k

w, mpmg
RS =R 55 m, -1 !

L o
w m,m, ~m-,m
R. = R c 1772 275 -1 ,
3 8 |3w m
o 3
R‘ 2 W, my -2m1m3-2m3m5 !
2 T8 4w m, - g
o
w m,m,+m,m
R, =R |- L2 2 3,.,{,
in s|w m
o 1
in 0, 2 “o 2
= 8(—) o m, rnz(rnl + m3) +m, ,
norm < c
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z (=) |— m,m,m_, - 25m , (5. 26)
norm “e “o 27375 5
diss w, 2] v 2 2 2
28—} | = m,m, +mym, - 5m_m_.) +m, + 25m ,
norm c W, FANSS| 1773 375 1 5-
(5. 27)
diss w, 2 2 2 2 2
" = 8(—=) (m, + 4m, + Im; + 25m) , (5. 28)
norm c

wc m 5
5m. o Mam3 - Mg
€= — wo , (5. 29)
1 c
?3: mz(ml+m3) +m1
V +¢ S -8 . 2 S .
o _ ¢ max min 1 2 2 2 2 min
max max
(5. 30)

where we have set m = 1/2. The power relations have been normalized with
respect to P;xorm as defined by Eq. (3.12).
The Mk have been shown to be entirely imaginary, so Condition (2.17)

can be used as the bound on the magnitudes of the m,. For this case we have
m, sin w t +m, sin Zwot +m, sin 3w°t + mg sin Swot = 0.25 (5.31)

for all values of t.

5.5 Technique of Solution of the 1-2-3-5 Quintupler

The solution of these equations is similar to the solution of the other
abrupt-junction-varactor multiplier equations. If, for example, we know
values for the m, which satisfy Condition (5. 31) and which give positive
values for RZ’ R3, and RS’ then all quantities of interest can be calculated.
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More of’:en we must find values for the m, which are compatible with
prescribed values of the resistances. In this case it is convenient to have
Eqs. (5.21) to (5. 23) solved for the ratios of the my. Any one of the my
could be chosen as the reference, but the choice of m, leads to the simplest

formulas:
4wo RZ + R'
(m3 )Z N m oW, Rs
m, (Swo R3+Rs +mzwc K' )7- Eo R3+Rs ] 4 ™29 R.
maWe Rs Wc HS Hs maow, ™ Ra 5 Yo HS'“-
(5. 32)
T..l. 4 3w R.3 +R. . myw, R. ):x}_ (5. 33)
m, myw, R’ Two KS +Ks m,
m ma.w R m
5 . 2%¢c s 3
—= = { ) — (5. 34)
m, 56, Kg TR, m,

The numerical procedure for solving this multiplier is much the same
as for the other multipliers. However, this quintupler exhibits an unusual

behavior at low to moderate frequencies which probably makes it impractical.

5. 6 Anomalous Bebavior of the 1-2-3-5 Quintupler

The 1-2-3-5 quintupler has an unusual property that can be appreciated
by studying Eq. (5.32). We recall that the phase condition requires the ij
to be real and positive. Therefore, the right hand side of Eq. (5. 32) must
be positive. In particular, the denominator of this equation must be positive,
which places a restriction on the permissible values of wO/wc, m,, R3, and
RS'

between S_ .
min

This condition is separate from the requirement that the elastance vary

and Smax'
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Further information about this restriction can be obtained by noting
that the denominator of Eq. (5. 32) is a function of only two quantities:*

myw, R

1) E3 +BR {5. 35)
o 8
and
m.,w R
- KPR, (5.36)
o 8

Figure 5.9 shows clearly the combinations of these quantities for which the
denominator is positive (or negative). The solid curve is for the values
which make the denominator zero.

As m, is varied for specific values of R3 and R’S’ both the abscissa
and the ordinate of Fig. 5.9 are increased simultaneously along a straight
line passing through the origin. The dashed line in Fig. 5.9 shows one such
line for R; = R, = 0. If m, is small, then operation is in an allowed region
near the origin. If m, is high enough while Condition (5. 31) is still satsified,
operation is again permissible. Between these two regions there is a for-
bidden region which raises the important question as to whether operation
can pass from one allowed region to the other.

Consider a quintupler with values of R3 and RS such that the operating
line passes through the forbidden region, for example, the dashed line in
Fig. 5.9. (Most practical multipliers would have operating lines that pass
through the forbidden region, since R3 is usually small while RS is large.)
Before the multiplier is excited, m, = 0 and the point describing the operation
is located at the origin. If the input power is gradually increased, m,
increases, and the operation is described in Fig. 5. 9 by a point that moves
along the line indicated. For some value of the input power, the operating
point will encounter the boundary of the forbidden region from the left in
Fig. 5.9 (assuming, of course, that Condition (5. 14) is not violated before

*This method of investigating the anomaly was pointed out to the author by
P. Penfield, Jr.
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Fig. 5.10 The lines shown on the plot give bounds on the values of m,,

Ry, Rg, and o_Jw_ such that the 1-2-3-5 cgnintupler will alvays

bé operating in an‘allowed region. The linés are plots of
Conditions (5. 37), (5.38), and (5. 39) with equality signs.
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this point is reached). The operating point cannot move into the forbidden
region because the phase condition would be violated, and it cannot depart
from the operating line because R.3 and Ry are fixed. Therefore, the
operating point remains near the boundary of the forbidden region as the
power input is further increased. Finaliy, the power input reaches a point
where the varactor is fully driven, but the operating point has not moved any
significant amount. Any further increase in the input power drives the
varactor into either conduction or avalanche breakdown (or both). - When this
occurs the resulting nonlinear effects (or, perhaps, transient effects) may
cause the multiplier operation to switch to the allowed region beyond the
forbidden region. It is not clear that this will happen and even if it does

it may be an undesirable feature for a practical multiplier.

The above argument indicates that the 1-2-3-5 quintupler will usually
be operating in a region very near the origin in Fig. 5.9 unless some transient
effect occurs such that operation is switched to another segment of the
allowed region where m, is large. Operation near the origin corresponds
to small values of m, for which the efficiency is low. Conversely, large’
values of m, give high efficiency. This leads us to conclude that this
multiplier would normally be operating in a low-efficiency mode or, perhaps,
it might be susceptible to "jumping" from high- to low-efficiency operation
(or vice versa) due to power level changes. Neither of these possibilities
are desirable in a practical multiplier. Therefore, we are inclined to reject
the 1-2-3-5 quintupler as a low-frequency multiplier.

There are certain regions of operation for this multiplier in which
the forbidden region is never encountered. For example, if the operating
line is steep enough, then operation is always in the allowed region. In

particular, if
R3 + Rs

D = 4.17 , (5.37)
5+ 8

then all values of m, are allowed. This corresponds to the region to the
left of line (1) in Fig. 5.10. If Condition (5.37) does not hold, then some
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values of m, are forbidden (for example, if R3 < 3.17 R., some values of
m, are forbidden because R5 must be non-negative).
Another bound which assures that we will be operating in the allowed

region is

myw, R’
= D 1.5 . (5. 38)

o 3 8

This corresponds to the region to the left of line (2) in Fig. 5.10. .
Condition (5. 38) is always satisfied for high frequencies so the 142-3-5
quintupler can be used as a high-frequency multiplier. Similarly, we are
above the forbidden region (above line (3) in Fig. 5.10), if

mqw R
2 c S > 20.0 . (5.39)

)

If any one or more of Conditions (5. 37) to (5. 39) holds, the corresponding
values of wo/uc. m,, R3. and R5 are allowable. It should be emphasized
that this condition is separate from Condition (5. 31); values that are com-
patible with Fig. 5.9 are not necessarily realizable. Both Condition (5. 31)
and the requirements of Fig. 5. 9 must hold.

5.7 High-Frequency Solution of the 1-2-3-5 Quintupler

At high frequencies Condition (5. 38) always holds. For these
frequencies, the 1-2-3-5 quintupler exhibits an efficiency several times that
of the 1-2-4-5 quintupler. The 1-2-3-5 quintupler also has a power outpu€ ‘
greater than that of the 1-2-4-5 quintupler. The pertinent high-frequency
formulas are summarized in Table 5. 2. In deriving the formulas given in
this table, we have used the limiting values, Rin » Rg ™ R,, m; ~ 0. 25, and
m, << m, for k > 1, in Eqs. (5.21) to {(5.30). We have also assumed that
the idler terminations are lossless, that the varactor is fully pumped, that
smin is negligible, and that the output load is adjusted for maximum power
output and efficiency.
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Table 5.2 Asymptotic Formulas for the 1-2-3.5 Quintupler

High-frequency behavior of the abrupt-junction-varactor 1-2-3.5 quintupler

with lossless idler terminations. We have neglected Sm.m in comparison to

€~ 16.6 x 10

Vo+¢
v—+—¢ s~ 0,375

m, & 0.250

“e
m, & 0.0156 —
w

w 2
(=2)

P._ =~ 0.500 P —
in W,

norm

P & 0.500 P

diss norm

we 2
m, ~ 0. 0013(:):)

-6, % 4
m_® 2,03 x10 (—)
5 W,
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V1. SEXTUPLER SOLUTIONS

The sextupler, like the quintupler, requires two or more idler

‘currents. Two sextuplers are possible with two idlers. One has idlers at

the second and fourth harmonics (1-2-4-6), and the other has idlers at the
second and third harmonics (1-2-3-6). There appears to be no a priori way
of deciding which of these is better, or in fact of knowing whether either is
better than a sextupler with more than two idlers. In this chapter we restrict
our attention to the two-idler sextuplers. The two sextuplers will be com-

pared to demonstrate the differences in their expected performances.

6.1 1-2-4-6 Sextupler Formulas
From Eq. (2.24) the idler and load resistance equations are

Rg+R,  w, GMpIGMy) o1
X, T, IV,
M) - 26M,) (M)
Ry+R, o GMp)° - 26Mp) M, 2
X ™ ™ ' '
8 () 4
R, +R GML)2 - 2GML)*GM) - 26GM.)*GM.,)
2" " We  WUMy) - SUML) UM, - AU WV
= : (6. 3)
X T, ™;

We choose the time origin such that le is real and positive and thus equal
to its magnitude, m;. Equation (6.1) shows that the phase angle of jM6 is
equal to the sum of the phase angles of jM, and jM 4 When this information
is used in Eq. (6.2), we find that the angle of jM, is twice the angle of jM,.
Finally, Eq. (6.3) shows that the phase angle of jM.2 is zero. Thus,
M, =m,, jMI4 =mg, and'jM6 =mg, where, as usual, the m, are the
magnitudes of the Mk‘ '

In terms of the m, the various 1-2-4-6 sextupler formulas are

w, mpm, , ' »
R6=Ra('6¢_n: mg -1 ' (6.4
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R,=R. |83 m -1 (6. 5)
W - 2m,{m, +m/)
4V 72 6
R‘Z = Rs %c m - ! (6. 6)
o) 2
“e
Rin = Rs(fo: m, + 1) (6.7)
Pm w, 2 2 9
= 8(.“.)_) m, (Zo— m, +1) , (6. 8)
norm c o
Pout w, 2 6w
- 8(2) (4% mymym, - 36m{) (6.9)
norm “Ye Yo
P.. w 2 lw
diss _ g_2)" | < mylm 2 - 6m mg) + m? + 36ml |, (6.10)
norm c o
dess v “o 2 2
= 8(-——) (m1 + 41fnZ + 16m + 36m6) , (6.11)
norm
W
<m - 6m
6m6 W, 2 6
€ = , (6.12)
m, Ye
;—; ml 2 +m1
V +¢ [} -S .. 2 2 2 2 2 s_.
VST._ =(_E§_’§.__§‘-‘£) [-i-+2(m1 +m, +m, +m6)] +s_rr2_n_ ’
B ? max max
(6. 13)

where we have set m = 1/2. The power relations have been normalized with
; .
respect to Pnorm as defined by Eq. (3.12).
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The M’k have been shown to be entirely imaginary, so Condition (2.17)
can be used as the bound on the magnitudes of the my. For this case we
have

m, ein w,t +m,sin Zwot + m4sin 4w°t + mésin 6w°t = 0.25 (6.14)

for all values of t.

6. 2 Solution of the 1-2-4-6 Sextupler Equations

The solution of these equations is similar to the solution of the other
abrupt-junction-varactor multiplier equations. For example, all quantities
of interest can be calculated, if we know values of m,, m,, m,, and m
which satisfy Condition (6. 14) and which give positive values for R’Z' R.4.
and R6'

More often, however, we are interested in finding the loading condi-
tions required for maximum efficiency or maximum power output operation.
Both of these maxima occur when the elastance attains the values of Sm.m
and smax one or more times during each cycle, that is, when Condition (6. 14)
is satisfied with the equality at some time, to’ when m(t) is a maximum.

The 1-2-4-6 sextupler equations, like those for the other abrupt-
junction-varactor multipliers, are solved by an iterative numerical procedure.
As with the other multipliers, we usually choose values for the idler
resistances, the load resistance, and the frequency and then compute the
required values for the m,.. it is, therefore, convenient to solve Eqs. (6. 4),
{6. 5), and (6. 6) for three of the m,

are found to be simplest if m, is used as the reference:

in terms of the other one. The equations

4 1 (6.15)

m, Two R4+Rs R myw, R :
m,w, Rs Two K6 ¥ Ks

Mo _ M4 _B._mzwc R—TRS : (6. 16)

mo ma Yo 6 + 8
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m, 2 4 R, +R m m
1 - 0 2 8 4.0y 6
(5-2-) = 0, X, + 7-(51—2-)(1' + E;) . (6.17)

The numerical procedure for solving these equations is the same as
described in Section 3. 2 for the tripler, except that in this case m, is the
control parameter. Computations for maximum efficiency and maximum
power output operation have been performed on an 1. B. M. 7090 digital com-
puter. Again we find that the efficiency, power output, and power input as
functions of Rb for a given frequency and specific values of R, and R4 look
somewhat like Fig. 3.1 for the tripler, For small values of the idler
resistances we find that, for practical purposes, efficiency and power output
may be simultaneously maximized.

The computed results for maximum efficiency operation are presented
in Figs. 6.1 to 6. 7. In these figures we show efficiency, input resistance,
load resistance, power input, power output, dissipated power, and bias
voltage as functions of frequency for several values of R, and R4. These
plots are similar to those given for the other multipliers and are interpreted
in the same way.

The minimum elastance Sm has been neglected in Figs. 6. 4to 6.7.

If Smin is not negligible, we must :znse P;iorm instead of Pnorm for the
normalization power, and the bias voltage as given in Fig. 6.7 must be
modified according to Eq. (6.13). The average elastance, So, is given by
Eq. (3.19), since our solutions are for maximum drive.

The conditions for maximum power output are very similar to those
for maximum efficiency, at least for small values of R, and R4. For large
idler resistances the optimizations are quite different, but we do not plot the
results because they are of little practical interest.

A plot of the elastance waveform is shown in Fig. 6.8 for maximum
efficiency operation at low frequency with lossless idlers. For maximum
drive (as shown in the figure) Sm.

in
cycle. With some loading conditions, it is possible to attain S

and S are attained at least once per
max

min and smax

twice per cycle. Care must, therefore, be taken in performing the calculations

to make sure that the highest maximum is used in checking Condition (6. 14).
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Fig. 6.1 Maximum efficiency of a 1-2-4-6 sextupler for several values of

the idler resistances, Rz and R4.
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Fig. 6.2 Input resistance for maximum efficiency operation of a 1-2-4-6

sextupler for a variety of idler resistance, Rz and R4.

10*R, S
|3-47-6l53l ‘
10%R, ST
o’ 00R,
ION. —_—=cs bt LRZ- R4.° ==
s S
:RZ'R4"°°RS T R, *R, = 5R
a L LLLLLIL | WL
107 %, 1072, 10 %, 01 wg "R 10w,

INPUT FREQUENCY w,

Load resistance of a 1-2-4-6 sextupler adjusted for maximum

Fig. 6.3
efficiency operation,
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Fig. 6,4  Power input for maximum efficiency operation of a 1-2-4-6

sextupler for a variety of idler resistances, Rz and R4.
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Fig. 6.5 Power output for maximum efficiency operation of a 1-2-4-6

sextupler for a variety of idler resistances, Rz and R4.
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Fig. 6.6 Total power dissipated in a 1-2-4-6 sextupler adjusted for
maximum efficiency operation,
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Fig. 6.7 Bias voltage for a 1-2-4-6 sextupler adjusted for maximum
efficiency operation for a variety of idler resistances, Rz
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Fig. 6.8 Elastance waveform of a low-frequency 1-2-4-6 sextupler

adjusted for maximum efficiency operation with lossless
idler terminations. '
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6.3 Asymptotic Formulas for the 1-2-4-6 Sextupler

Like the preceding multipliers, the 1-2-4-6 sextupler behavior can be
described by asymptotic formulas at low and high frequencies. The limiting
values of the m, for low frequencies, as found from the computed data, are
used in Eqs. (6. 4) to (6.13) to determine the appropriata formulas. For
high frequencies we use the limiting values, Rin ~ R6 ~R,, m ~0 25, and
m; <<.m, for k > 1, in Eqs. (6. 4) to (6. 13) to find asymptotic relations.
These formulas are summarized in Table 6.1 for the lossless idler case
(R, = R,= 0). One set of asymptotic relations describes the high frequency
performance, since efficiency and power output are simultanecusly maximized.
Both maximum efficiency and maximum power output relations are given for

low frequencies.

6.4 1-2-3-6 Sextupler Formulas

The second idler in this sextupler is at the third harmonic, rather
than the fourth harmonic, so the formulas are somewhat different from those
given in Section 6.1 for the 1-2-4-6 sextupler. From Eq. (2. 24) the idler

and load resistance equations are

. 2
Ry + R, - “c (JM3) (6.18)
I[l Tew, My
Ry+R, oo GMIUM) - (M) (M) .19
R 3wy M,
Ry +R, o UM - 20M,)°My) (. 20
LN R ™, |

As before, we find it convenient to choose the time origin such that le is
real and positive. Equation (6. 18) shows that the phase angle of jM6 is
twice the phase angle of jM;. Use of this information in Eq. (6. 19) shows
that the angle of _1M3 is equal to the angle of M,. Then, from Eq. (6. 20),
we find that jM, is real and positive. Therefore, each ij is real and
positive and thus equal to its magnitude m,.
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© varactor sextupler with idlers at Zwo and 4w . We have assumed that Sm.

Table 6.1 Asymptotic Formulas for the 1-2-4-6 Sextupler
Low-frequency and high-frequency formulas are given for the abrupt-junction-

in
is negligible in comparison to smax’ and that R, = R4 = 0.

Low Frequency High Frequency
Maximum € Maximum pout Max. € and Pout
('] w (]
¢ 1-99-2 1-104 -2 9.10 x 10713(_<)10
[ [ W
[+ C (o]
wC wC
in 0.117(==)R, 0.130(==)R, R,
o (o]
wC wc
R, 0. 135('65;’“:; 0. “0(‘67»:)“3 R,
. w W, @5 2
n 0.0219(-2) 0.0225(—) 0.500(—2)
w W w
norm C (o] C
P w w w_ 8
out 0.0219(=2) 0.0225(-2) | 455 x10713(2)
norm wC (o} [o]
Pd' w_ 2 w, 2 W, 2
188 2.18(-2) 2.34(—2) 0. 500(—>)
W w (V]
norm C C C
vV, te
\Fe12 0.340 0.342 0.375
m, 0.153 0.147 0. 250
wc
m, 0.117 0.131 0.0156(;:
-5,% 3
m 0. 067 0.055 3.05x 107 7(—=
4 “o
-8,% 5
m, 0. 058 0.066 3.97 x 107 (=)
[+]
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In terms of the m,, the various 1-2-3-6 sextupler formulas are

w m2
3

R, =R _(yoom — - 1),
6 sIZwo m,

Ye M2 " M3Myg

(6. 21)

(6. 22)

(6. 23)

(6. 24)

(6. 25)

(6. 26)

(6. 27)

(6. 28)

(6. 29)

R = R' ( - 1) ]
3 8 3w° m,
w mz 2m.m
1° 173
R, =R (7 -1,
2 8 44»0 m,
w m,m, +m,m
ians(w_c 1 zm 22 1,
o 1
in “o 2 “e 2
= MG |G mymelmy tmg) bmy )
norm c o
P w 2 3w
B - 85D (5 mymg - 36my)
norm c o
P, w 2 |w
diss 8(32) -‘A)—c(mlzrx‘xZ +m m,m, - 3m32m6) + mlz + 36m6z
norm c
di w, 2 2 2 2 2
188,V - 8(‘-03-) (m1 + 4mz + 9m3 + 36m6 ) .,
norr. c
w
c 2
3m6 o M3 - 12m6
€ = S
m; @ ,
> mz(m1 + m3) + m,
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V t+o S -S . 2 s
o max min 1 2 2 2 2 min
= ( ) [ +2m, +m, +m, +m )] +
Veto Smax 3 1 2 3 6 smax
(6. 30)
We have used P! , as defined by Eq. (3. 12), to normalize the power

norm
relations, and we have set m_ = 1/2 to write the bias voltage in the form

given by Eq. (6. 30).
The M, are imaginary, so Condition (2. 17) can be used as the bound
on the magnitudes of the m,

m, sin w t + m,sin Zwot + m, sin 3w°t + m, 8in 6wot =< 0.25 (6.31)

for all values of t.

6.5 Solution of the 1-.2-3-6 Sextupler Equations '

The technique for solving these equations is similar to that used for
the 1-2-4-6 sextupler. If m;, m,, m,, and m, are known, then all
quantities of interest can be calculated. More often, however, the m, must
be computed for specified values of R’Z’ R3, R6, and wo/wc such that
Condition (6. 31) is satisfied. Usually we must find the loading conditions
required for maximum efficiency or maximum power output operation. These
maxima occur when the varactor is fully driven, that is, when the elastance
attains the values Sm

and Sm one or more times during each cycle,

Thus, the problem is lt!; find valz’e‘s for R'z, R3, and Rb such that efficiency

or power output is maximized. The values of the m, must be compatible

with the load and idler resistances, and they must be such that Condition (6. 31)

is satisfied with the equality sign at the time, ty when m(t) is a maximum.
The 1-2-3-6 sextupler equations, like those for the other abrupt-

junction-varactor multipliers, are solved by an iterative numerical procedure.

Usually, we choose values for the idler resistances, the load resistance,

and the frequency and then compute the required values for the my. It is,

therefore, convenient to solve Eqs. (6.21), (6. 22), and (6. 23) for three of

the my in terms of the other one. If we choose m, as the reference, then
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i, o L LTI (AT TN e, T By 5 as oy vn o .

2
(m3)3+m3(36wo R3+R'3 R6+Rs+6k6+R‘)-3R6+R.-=O
m m, mlzwcz R, Rg !Ez :s . !:2 ls
(6. 32)

m m, w R m
.5_2_ - _%___1 S - -z.r.n_3.) , (6. 33)

1 o 2 8 1
m m) @, Rs m, 2
5 - (6. 34)

3
m, - T, KK, (w))

The cubic equation for m, has only one real root which lies between zero
and é»i'nl. Some other m, could be chosen as the reference, but it is
apparently not possible to avoid a cubic equation. The choice of m; asa
reference seems to be preferable, since m, goes to the fixed limit of 0. 25
at high frequencies which is convenient when solutions are obtained by
iterative methods.

The above equations have been solved numerically on an 1. B. M. 7090
digital computer for maximum efficiency and maximum power output operation.
Efficiency, power input, and power output as functions of R6 for a given
frequency and specific values of R2 and R3 are found to look somewhat like
Fig. 3.1 for the tripler. Thus, for practical purposes, efficiency and puwer
output may be simultaneously maximized (at least for small values of the
idler resistances).

The computed results for maximum efficiency operation are presented
in Figs. 6.9 to 6, 15. In these figures we show efficiency, input resistance,
load resistance, power input, power output, dissipated power, and bias
voltage as functions of frequency for several values of RZ and R3. These
plots are similar to those given for the other multipliers and are interpreted
in the same way.

The minimum elastance S_ . has been neglected in Figs. 6.12 to 6. 15.
. . : . .
When Smm is not small in comparison with smax’ Pnorm must be used as

the normalization power. Also, the values given in Fig. 6. 15 for the bias
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Fig. 6.9 Maximum efficiency of a 1-2-3-6 sextupler for several values
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Fig. 6.10 Input resistance of a 1-2-3.6 sextupler adjusted for maximum
efficiency operation,
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Fig. 6.11 Load resistance for maximum efficiency operation of a 1-2-3-6
sextupler for a variety of idler resistances, Rz and R3.
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Fig. 6.12 Power input for maximum efficiency operation of a 1-2-3-6
sextupler for a variety of idler resistances, R2 and R3.
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Fig. 6.13 Power output of a 1-2-3-6 sextupler adjusted for maximum
efficiency operation.
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Fig. 6.15 Bias voltage for a 1-2-3-6 sextupler adjusted for maximum
efficiency operation for a variety of idler resistances, Rz
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Fig. 6.16 Elastance waveform of a low-frequency 1-2-3-6 sextupler adjusted
for maximum efficiency operation with lossless idler terminations.
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2 /al
ax " smi n) /sma.x and then

to find the bias voltage when smin is not negligible.

voltage must be multiplied by the factor (Sm
addedto S_. /S

min/ “max
Since the solutions are for maximum drive, the average elastance is given -

by

§ = _max min (6. 35)

The conditions for maximum power output are very similar to those
for maximum efficiency, at least for small values of R, and R3. For
large idler resistances the optimizations are quite different, but we do not
plot the results because they are of little practical interest.

A plot of the elastance waveform for maximum efficiency operation
with lossless idlers at low frequencies is shown in Fig. 6.16. For maximum

drive Sm. are attained at least once per cycle. With some

in ax
loading conditions, it is possible to attain S_ . and S twice per cycle.
min max

and S
m

Therefore, care must be taken in performing the calculations to make sure

that the highest maximum is used in checking Condtion (6. 31).

6.6 Asymptotic Formulas for the 1-2-3-6 Sextupler

The performance of the 1-2-3-6 sextupler at low and high frequencies
can be described by asymptotic formulas. The low-frequency formulas are
found by using the limiting values of the m, in Egs. (6. 21) to (6.30). At
high frequencies the input and load resistances both become nearly equal to
the seriers.resistance of the varactor, while the my become small, exc):ept
m, which approaches 0.25. These formulas are summarized in Table 6. 2
for the lossless idler case (RZ = R3 = 0). One set of asymptotic relations
describes the high frequency performance, since efficiency and power output
are simultaneously maximized. Both maximum efficiency and maximum

power output relations are given for low frequencies.

6.7 Comparison of the 1-2-4-6 and 1-2-3-6 Sextuplers

Since there are two practical idler configurations for the abrupt-
junction-varactor sextupler, it is' of interest to compare their performance.
Most of the comparisons can be made by referring to Figs. 6.1 to 6.7 and
Table 6.1 and to Figs. 6.9 to 6.15 and Table 6. 2.
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Table 6. 2 Asymptotic Formulas for the 1-2-3-6 Sextupler

Low-frequency and high-frequency formulas are given for the abrupt-junction-

varactor sextupler with idlers at Zwo and 34»0. We have assumed that. smi

is negligible in comparison to sma.x’ and that R, = R3 =0.

n

Low Frequency

High Frequency

Maximum €

Maximum Pout

Max. € and P out

in

norm

out

norm

mg

m0
1-134(2)
C

0 041(-‘»—0-)11
: w, s

(]
. R C
0. 1}4(52';) Rs

Yo
0.0162(—)
“e

mO
0.0162(—>)
mC

w 2
2. 17(=2)
wC

0. 381
0. 222

0. 027

0.054

wo

1-154-2
w

Cc

0 059(:’5)11
: W, s

- )
0. osz(.&-f-)ns
: (o]

wO
0.0183(=2)
Cc

0)0
0.0183(=2)
[+

w 2
2. 83(52-)
(o]

0.363
0.198

0.039
0.099

0.078

W 1'0
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The maximum efficiencies with lossless idlers are shown in Fig. 6.17
for comparison. Higher efficiency is obtainable from the 1-2-4-6 sextupler
for frequencies up to approximately 0. lwc, although the difference is not very
large. The maximum difference in efficiency is about 11 per cent. For very
high frequencies (wo greater than about 0. lwc) the 1-2-3-6 sextupler gives
higher efficiency, although this fact is not evident in Fig. 6. 17 Lecause both
efficiencies are so low. (This may be appreciated from a comparison of the
high-frequency relations given in Tables 6.1 and 6.2,)

Also of considerable interest is the comparative power handling
capability of the two sextuplers. The power outputs at maximum efficiency
with lossless idlers are shown in Fig. 6.18 for comparison. The 1-2-4-6
sextupler has the highest power output for frequencies up to approximately
0. lwc. while at very high frequencies the 1-2-3-6 sextupler delivers the
.most power, At low frequencies the ratio of the power ocutputs,
Pout(l-Z-3-6)/Pout(l-2-4-6), is C. 74, while at high frequencies this ratio
becomes 3. 16.
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Fig. 6,17 Comparison of the maximum efficiency obtainable from the

abrupt-junction-varactor 1-2-4-6 and 1-2-3-6 sextuplers.

In both cases the idler terminations are lossless.
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Fig. 6.18 Comparison of the power output for maximum efficiency operation

with lossless idler terminations for the abrupt-junction-varactor
1-2-4-6 and 1-2-3-6 sextuplers.
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V. OCTUPLER SOLUTION

There is only one possible two-idler configuration for an octupler.
It is one with idler currents flowing’at the second and fourth harmonics, and
is calleda 1-2-4-8 octupler. Obviously, there are many multiple-idler
configurations which would allow multiplication-by-eight, but we will not go
into this problem because it becomes extremely complicated. The 1-2-4-8
octupler is relatively easy to analyze and is, therefore, the one which we
will discuss, although it is not necessarily the best possible octupler.

7.1 1-2-4-8 Octupler Formulas
The formulas in Chapter 1I apply to the octupler with all Mk equal to
zero except for k = 0, 1, %2, 4, and #8. The ‘'\er and load resistance

equations are

ap 12
Rg + R, Y (iM) (7.1)
K, Tow, ~IMg
| g 12 g v
R,+R, Y (GM,) ™ - 2(iM )% (iMg) (7.2
K 8w M ! '
8 o 4
R, +R M) - 2(M,)% (M)
2 tRy o UM - 2GM,) (M, (7.3)
K, o, M, : '

Equation (7. 1) shows that the phase angle of st is twice the angle of jM .
Then, Eq. (7.2) indicates that the angle of jM’.4 is twice that of jM,. When
this information is used in Eq. (7 3), we find that the phase angle of M, is
twice the phase angle of jM,. We can without a loss of generality assume
that le is real and positive. Then each ij is real and positive and thus
equal to its magnitude m,, i.e., le =m,, M, = m,, jM4 =m,, and
jMB = mg.

In terms of the my the various 1-2-4-8 octupler formulas are
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We have set m  equal to one-half in order to write the bias voltage in the
form given by Eq. (7.13). The power relations have been normalized with
respect to p;xorm' which is defined by Eq. (3.12). '

We can use Condition {2.17) as the bound on the magnitudes of the m,,
since all of the Mk have been shown to be imaginary. The required condition
for this specific case is

m, sin w.t + m, sin Zwot +m

4sin 4w°t + mssin Swot =< 0.25 (7.14)

for all values of t.

7.2 Solution of the 1-2-4-8 Octupler Equations

The technique of solution of these equations is similar to that for the
other multipliers. If values for the m, are known, then all quantities of
interest can be calculated. On the other hand the m; values must be calculated
when other information is available. The usual problem is to find the loading
conditions required for maximum efficiency or maximum power output
operation with the varactor fully driven. For the solution of this problem
we usually begin by choosing values for R,, R 4 and RB and then compute
the required values for the m, such that Condition (7. 14) is satisfied with
an equality at the time when m(t) is a maximum. The load resistance is
then varied and the calculations repeated until the desired maximum has been
found. )

Since we are usually asked to find values for the my which are
compatible with specific values of RZ' R4, and R’8’ it is convenient to solve
Eqs. (7.4), (7.5), and (7. 6) for three of the my in terms of the other. If

m, is chosen as the reference, the simplest equations result:

m m,w R

_8._4c¢ s (7.15)

my o 8 8

(:x:i)z i 8(.00 R.4 + R’ . m4wc R' (7. 16)
my my9e Rs Eo E"8 s
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:l)z:mn"’( “;’ RZ; AP (7.17)
4 4 Ma% s

These formulas, together with a specification of the drive level, are sufficient
to determine the my uniquely. In the usual case the drive level is specified

to be such that the elastance attains the values smi and Sm one or more

n ax

times during each cycle.

The above equations have been solved numerically on an1. B. M. 7090
digital computer for maximum efficiency and maximum power output operation.
As was the case for the other multipliers, the 1-2-4-8 octupler can be, for
practical purposes, maximized simultaneously for efficiency and power
output (at least for small values of the idler resistances).

The computed results for maximum efficiency operation are presented
in Figs. 7.1 to 7.7. In these figures we show efficiency, input resistance,
load resistance, power input, power output, dissipated power, and bias
voltage as functions of frequency for several values of the idler resistances,
R, and R4. These plots are similar to those given for the other multipliers
and are interpreted in the same way.

The minimum elastance, .S has been neglected in Figs. 7. 4 to

min’
7.7. When smi n is not negligible, we must replace the normalization power
i '
Pno::m with pnorm'
modified according to Eq. (7.13) when -Sm.1 n is important. . Since the solutions

-The bias voltage values as given in Fig. 7.7 must be

are for maximum drive, the average elastance.is given by Eq. (6. 35).

The conditions for maximum power output are very similar to those
for maximum efficiency, at least for small values of R, and R & For large
idler resistances the optimizations are quite different, but we do not plot
the results because they are of little practical interest.

A plot of the elastance waveform for maximum efficiency operation
with lossless idlers at low frequencies is shown in Fig. 7.8. Like several
of the other higher-order multipliers, the elastance waveform for the
octupler may attain the values of Smin and Sm ax more than once per cycle.
Therefore, the calculations must be carefully performed to make sure that

the highest maximum is used in checking Condition (7. 14).
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Figd 7.1 Maximum efficiency of an abrupt-junction-varactor octupler for

several values of the idler resistances, RZ and R4.
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Fig. 7.3 Load resistance for maximum efficiency operation of a 1-2-4.8
octupler.
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7.3 Asymptotic Formulas for the 1-2-4-8 Octupler

For low and high frequencies the performance of the octupler can be
described by asymptotic formulas. These formulas are summarized in
Table 7.1 for the lossless idler case (Rz = R4 = 0). At low frequencies the
limiting values of the m, (as found from the computed data) are used in
Eqgs. (7. 4) to (7. 13) to find the desired formulas. For high frequencies we
use the fact that m, approaches 0. 25 while the other m, become small to

obtain the asymptotic relations (we also use Rin ~ Rs ~ R').
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Table 7.1 Asymptotic Formulas for the 1-2-4-8 Octupler

Low-frequency and high-frequency formulas are given for the abrupt-junction-

varactor octupler with idlers at Zwo and 4wo. We have assumed that smin

is negligible, and that the idler terminations are tuned and reactive.
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VIII DISCUSSION

In the preceding analyses we have made a few assumptions so that we
could derive fundamental performance limits for varactor frequency multipliers.
Some of these restrictions can be removed to give better estimates of the
performance which can be obtained in practical devices. For example,
coupling network losses were neglected in the theory except at the idler
frequencies. These losses can be accounted for as follows: 1. Lump the
input circuit losses with the *input resistance" to obtain the actual input
resistance; 2. Compute the actual load resistance as the difference between
the theoretical load resistance and the output circuit losses; 3. Determine
input and output circuit efficiencies from the known values of the losses, the
load resistance, and the "input resistance®; 4. Calculate the expected
overall efficiency as the product of the theoretical efficiency with lossy idler
circuits, the input circuit efficiency, and the output circuit efficiency.

Case capacitance presents a more difficult problem. For low-
frequency varactors the case capcitance is usually small compared to the
nonlinear capacitance, and therefore its effect is amall. However, high-
frequency varactors usually have case capacitances of approxirha.tely the
same values as the nonlinear capaci‘ances, and we therefore expect the case
capacitance to have a significant eftect on performance. The best way to
handle this problem, from a theoretical standpoint, is to tune out the case
capacitance at all frequencies of importance. This approach, however, is
not always feasible in practice, particularly when the coupling networks are
realized with distributed parameter elements (coaxial line or waveguide,
for example). If the case capacitance is not negligible and it is not tuned
out, then its degrading effect on performance can be determined by the usual
techniques of circuit theory.

Lead inductance is a very important element when fundamental limits
on bandwidth are sought. However, for narrow-band applications, it is
relativély unimportant because it can be simply included in the series tuned
circuit at each frequency.

Throughout the analysis tuned conditions were assumed in the output

and idler circuits. This assumption is not necessarily valid, since more
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favorable current amplitudes may be obtained in a detuned mode of operation.
In fact, there may be significant advantages to be gained by not tuning the
idler circuits (bandwidth, for example, may.-be improved). The addition of
the phase variables in the untuned condition makes the theory much more
complicated. Furthermore, at low frequencies the efficiency is already so
high that any improvement would be negligible. At high frequencies all
harmonic currents, except the fundamental, become small so that detuning
would have little or no effect. In the mid-frequency range some improvement
in efficiency might be expected (perhaps 2 or 3 per cent).

In analyzing the various multipliers, we have tacitly assumed an
idealized coupling network of the general type depicted in Fig. 1. 2. Obviously,
in practice network realizations will be quite different. Idler circuits will
very often be built into the input and output circuits. Also, there will very
frequently be impedance transformations between the varactor terminals and
the load and source terminals. In any case, however, the coupling networks
and the actual load and source impedances should be such that the constraints
of the theory are satisfied, that is, the impedances seen at the varactor
terminals should be the optimum values as given by the theory regardless of
the other details of the coupling network.

The preceding theoretical treatment assumed that the varactor was
fully driven. If the available drive power is not sufficient for full drive, then
the theory must be modified. For a particular varactor this can be done by
considering an equivalent, fully-driven varactor with different values of

sm‘m’ smax’
{or figure of merit), W, will be reduced as will the normalization power.

VB’ and Vm.m (same Rs). Obviously, the cutoff frequency
The equations, however, will remain the same and the graphs will still be
applicable when properly modified by the new values of smin' smax' v B’

V ., w, and P . The actual calculation of the performance may be
min’ "¢ norm

quite difficult, since the new values of W, and pnorm must be chosen to be
compatible with the specified drive level. A trial and error procedure will
probably be required, but convergence to the desired result should be rapid.
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We have disregarded one important mode of operation of the varactor
which is not yet fully understood. This is the overdriven case when the
conduction mechanism of the varactor fails. When this occurs (usually at
quite high frequencies), the power input can, in many instances, be con-
siderably increased with little or no deterioration of performance (sometimes
there is an improvement). This is believed to be the result of charge storage,
i. e., the input power is not converted to d. c. power by rectification but is
stored in the varactor as useful energy which can be returned as harmonic
energy when the current direction reverses. A particularly advantageous
feature of this type of operation is that performance appears to be relatively
insensitive to power level changes which is not the case with normal opera-
tion in the non-conductihg region. As this phenomenon becomes better
understood it will probably become a more important factor in the design of
practical devices. (A more detailed discussion of the implications of this

10)

8.1 Comparison of the Efficiencies of the Various Multipliers

phenomenon in practical devices has been given by Penfield.

It is interesting to compare the various abrupt-junction-varactor
multipliers we have described. For generality we also compare their
performance with those of the abrupt-junction-varactor doubler5 and the
graded-junction-varactor doubler. 3

In Fig. 8.1 we plot the maximum efficiency of the abrupt-junction-
varactor doubler, tripler, 1 2-4 quadrupler, 1-2-3-4 quadrupler, 1.2-4.5
quintupler, 1-2-4-6 sextupler, 1-2-3-6 sextupler, and 1-2-4-8 octupler.

We also show the maximum efficiency of the graded-junction-varactor doubler.
These are plotted as functions of output frequency rather than input frequency.
Lossless idler terminations are assumed in each case.

At low frequencies all of these curves have the asymptotic behavior,

th .
e~1-a_J‘L : (8.1)
[of

where @ is not a constant for all mutlipliers but depends on the particular

type and order of the multiplier. The values of a for the various multipliers
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are given in Table 8. 1. (The cascade figure of merit, en/(n-1), given in
Table 8.1 will be discussed shortly.)

Table 8.1 Cascade Figures of Merit

L. this table we give values of @ and an/(n-1) for the various abrupt-junction-
varactor multipliers which have been solved and for the graded-junction-

varactor doubler. Lossless idler terminations have been assumed.

Multiplier a ?\'!}T a
X2 (Graded) 13.0 26.0
X2 9.95 19.9
X3 11. 6 17. 4
X4 (1-2-4) 15.6 20.8
X4 (1-2-3-4) 11. 4 15.2
X5 (1-2-4-5) 18.6 23.3
X6 (1-2-4-6) 16.6 19.9
X6 (1-2-3-6) 22.3 26.8
X8 (1-2-4-8) 21.0 24.0

An alternate formula for the low-frequency efficiencies can be found
by observing that the right-hand side of Eq. (8.1) is simply the first two

terms of the power series expansion of

-afw w )
e out/ ¢ Thus, we try

-of )
€= e awout/wc (8. 2)

as a possible low-frequency asmptotic relation for the multipliers. 8

Empirically, it is found that Eq. (8. 2) has a wider range of validity than

Eq. (8.1); and, in fact, Eq. (8. 2) agrees within approximately 3 per cent
with the efficiencies given in Fig. 8.1 for output frequencies up to about

0.1 W,
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The overall efficiency of a complete multiplier chain is the product of
the efficiencies of the individual stages. Since the exponents add when ex-
ponentials are multiplied together, Eq. (8. 2) is an especially convenient
form for calculating the overall efficiency. For the special case of a cascade
of m multipliers ;ach of order n, we can write

-(n+ nz +... +nm)a(wo/wc)

€= e , (8. 3)

where we have assumed that all varactors are optimally driven and that they
all have the same cutoff frequency. The sum in the exponent can be expressed

in closed form, i.e., we have

w
n o, m
- T -“z (n - 1)
€= ¢ s (8. 4)
or,
w - W
—a n out o]
n-1 wc
€=e . (8. 5)

We see that the quantity an/(n-1) is a measure for comparing cascades of
various types of multipliers operating between the same two frequencies.
The values of an/(n-1) are summarized in Table 8. 1. 9 The near equality of
the values of an/(n-1) shows that the theoretical efficiency of a chain of
multipliers does not depend much upon order of multiplication for low-
frequency operation. Thus, the choice of order of multiplication will not be
made on the basis of theoretical efficiencies, at least for frequencies low
enough for Eq. (8. 5) to be applicable.

For a cascade of two different multipliers we can write,

.. e-(alnlwo/wc + aynnye fu )

_ e‘(“out/“’c Na,/n, + ay) , (8. 6)
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where”nui is the order of triultipliiiation of the first multiplier which is
characterized by the constant @, (similarly for n, and az). For a cascade
of three different multipliers we have,

W a a
_ _out ( 1 + _2_ +a,)
W, n,n, n, 3 .
€=e . (8.7)

Equations (8. 6) and (8. 7) can be generalized to the form,

-a w w
c=e © out’ "¢ , (8. 8)

where the cascade parameter, a., is given by the formula,

o

a Q.
a = 1 + 2 ¥... ¢+ k-l+ak. {8.9)
C n2n3n.k n3n4nk nk

We can now use Eq. (8. 8) to compare various ¢ scades of multipliers operating
between the same two frequencies. For example, we may compare the
perférmance of three cascaded doublers or a cascade of a doubler and a quad- """
rupler with the performance of the octupler. There are various ways to
combine the doubler with one or the other of the two quadruplers (doubler
followed by a 1-2-4 quadrupler, 1-2-3-4 quadrupler followed by a doubler,
etc.). The cascade parameters, @ for the various possible ways of
multiplication by four, six, and eight are given in Table 8. 2.

We see with the aid of Table 8. 2 and Eq. (8. 8) that the efficiencies of
the various schemes for generating the fourth, sixth, or eighth harmonic are
about the same. The choice between a cascade of multipliers and a single
higher-order multiplier must therefore be based on practicai considerations.
At low frequencies where the above formulas apply, the use of many stages
has the advantage that each stage is easier to design and that less power is
dissipated in each varactor. On the other hand, coupling network losses will
probably more than offset the slight advantage in efficiency of the cascaded
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Table 8.2 Cascade Parameters for Multiplication by Four, Six, and Eight

In this table we give values for the cascade parameter, a,, as defined by
Eq. (8.9) for the various possible schemes of generating the fourth, sixth,
and eighth harmonics. Lossless idler terminations have been assumed and
the varactors are all assumed to have the same cutoff frequency,

Sequence of multipliers in the cascade Cascade parameter, a,

Multiplication by four

X2-X2 14.9
X4 (1-2-4) 15. 6
X4 (1-2-3-4) 11. 4

Multiplication by six

X2-X3 14. 9
X3-X2 15.7
X6 (1-2-4-6) 16. 6
X6 (1-2-3-6) 22.3

Multiplication by eight

X2-X2-X2 17. 4
X2-X4 (1-2-4) 18.1
X2-X4 (1-2-3-4) 13.9
X4 (1-2-4)-X2 17. 8
X4 (1-2-3-4)-X2 15. 6
X8 (1-2-4-8) 21.0
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multipliers. Also, symmetrical circuits can be used to split the power dis-
sipation among two (or more) varactors in a higher-order multiplier. i
 Itis readily apparent that we do not have this flexibility of choice when
the two frequencies involved are related by a prime number. The desired
harmonic can still be generated directly with a single higher-order multiplier
with idler circuits. However, this approach is not very feasible in practice
when the integer involved is large because of the difficulty of controlling
more than two or three idler currents. This difficulty can be circumvented
to a large degree by using large-signal upconverters to sum the outputs of
two multipliers (or multiplier chains). In this way we can generate high-
order harmonics which are prime numbers with simpler lower-order multi-

pliers and a large-signal upconverter. 12

8.2 Comparison of the Power Outputs of the Various Multipliers

The multipliers can also be compared on the basis of power output.
Figure 8. 2 shows the power outputs of the various multipliers for maximum
efficiency operation with lossless idler terminations. The curves are plotied
versus input frequen‘cy. At low frequencies the lower order multipliers are
seen to have slightly greater power outputs.

At low frequencies the power outputs of all the multipliers vary
linearly with frequency, each with a different constant of proportionality.

The appropriate low-frequency asymptotic formulas are given in Table 8. 3.

In this table we have expressed the powers both in terms of Pnorm and W,
and in terms of Uhlir's nominal reactive power, Przs o -
2 — —
Vg ta)® S nax W v P
r -Tsmax B Z(SZ g2 ) B min
max min
=1 smax . Pnorm é_ Pnorm ) (8. 10)
z gmax + Fm'm “e Smin_‘o “e

Note that Pr has the dimensions of power per unit frequency, and must
therefore be multiplied by a frequency to yield power.
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Fig. 8.2 Output power for several abrupt-junction-varactor multipliers
and the graded-junction-varactor doubler as a function of the input
frequency. All are assumed to operate at maximum efficiency
with lossless, tuned idler terminations.
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Table 8.3 Low-Frequency Power Output Formulas

Low-frequency power output formulas are given for the various multipliers.
The formulas are for maximum efficiency operation with lossless idler

e s < '
terminations. We have assumed that smin < Smax

Mﬁltipligr Low-Frequency Power Output

X2 (Graded) 0.012 P 2 =o. 024P_w

0.15P_i{
norm ro

w
o
X2 0.028 P =

norm 0.057 Pr‘wo

0. 36Prf°

o
X 0.024 P — 0.048Prw° 0. 30Prfo

3 norm w

0.040Prwo 0. ZSPrfo

(7]
X4 (1-2-4) 0.020P 32
C

w
0 - -
X4 (1-2-3-4) 0.0226 Pnorm ;-;— = 0.045Prw° = 0. 28Pr fc

X5 (1-2-4-5) 0.018 P

0. 036Prwo 0. ZZPrfo

norm w

X6 (1-2-4-6) 0.022 P 0. 045'Pr w, 0.28 Pr fo

norm

f
"

o]
X6 (1-2-3-6) 0.018P_  -° = 0.037P_ w,

0.23 Pr fo

| X8 (1-2-4-8) 0.021 P 2 = 0. 043P o,

norm ‘6: 0.27 Pr to

125




. it st e+ e

8.3 High-Frequency Limit

The high-frequency limit is inherently less interesting than the low-
frequency limit because the efficiency is very small and the power dissipa-
tion is very large. Nevertheless, in some applications these limits are
pertinent. . ’

At high frequencies the'\.series resistance dominates, and to trans-
fer maximum power to the loaél or to obtain maximum efficiency, the load
resistance should equal Rs' The input resistance is also equal to R’ at
high frequencies. ‘

In deriving high-frequency asymptotic relations for the various
abrupt-junction-varacfor multipliers, we used the facts that m,; 0. 25,
R.m ~ Rload ~ Rs’ and m, << m, for k > 1. We then found that the my
(for k > 1) are proportional to (wc/wo)k'll and, therefore, approach zero.
By the same techniques it can be shown that the m, fall according to this
relation for any value of k. This allows us to write the power output into

a matched load as

2 2 w, 2
pout = 84 m, p;’lorm((-n:) (8.11)
or
w 2(2-2)
pout ~ P;xorm('ug) . . (8.12)

The doubler (£ = 2) has a power output which approaches a finite limit,

while pcut for higher-order multipliers goes to zero as (wc/wo)zu'z). At
high frequencies the power input is the same for all multipliers:
w, 2
[l =2 ) ]
Pdisl ~ p'm % 0.5 pnorm(wc) : (8.13)

The efficiency therefore becomes
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€= 164 m, (8.14)
w, 2(2-1)
~ (=) : (8.15)
[s3

It is apparent that multipliers with idlers have efficiencies that
approach zero very rapidly at high frequencies. These efficiencies can be
improved by cascading multipliers or by using varactors with much sharper
nonlinearities to convert power directly into the desired harmonic. In the
first case, for example, the efficiency of a quadrupler falls as (wc/w°)6.
while that of two cascaded doublers falls as (wc/w°)4.

One important result of the high-frequency limit is that it clearly
shows the superiority of the doubler as a high-frequency multiplier (see
Fig. 8.1 and the tables of high-frequency asymptotic formulas in the various
chapters). Thus, the last stage (or, perhaps, the last 2 or 3 stages) should
be constructed with doublers if a high output frequency is involved. At high
frequencies the doubler efficiency falls as 0. 0039((;9(:/1.»0)Z and the 1-2-4
quadrupler efficiency decreases as 5,96 x 10'8(wc/w )6. Two cascaded
doublers thus give an efficiency of 3.8 x 10'6(w‘c/wo)2. For operating
frequencies near W, the two doublers in cascade are approximately two
orders of magnitude better than the quadrupler. For lower frequencies the
difference is not so pronounced, but it still exists. Figure 8.1 indicates that
doublers are definitely to be preferred when the output frequency is in the

vicinity of (or greater than) two- or three-tenths of the cutoff frequency.

8.4 Summar‘y -

In the preceding analyses we have derived several important results,
the most important being the fact that varactors are capable of yielding high
efficiencies at lower frequencies when used as frequency multipliers. We
have derived formulas and found nvmerical solutions of the pertinent equations
for several of the multiplier configurations which are used in practice. In
the process of analyzing the various multipliers we have found that the
1-2-3-4 quadrupler is definitely superior to the 1-2-4 quadrupler and that
the 1-2-4-6 sextupler is better than the 1-2-3-6 sextupler at low frequencies.
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Furtheérmore, it has been shown that the 1-2-3-5 quintupler has an anomaly
which probably prevents it from being a practical low-frequency multipliex.

An investigation of low-frequency efficiency formulas has revealed that

cascaded multipliers and single higher-order multipliers are nearly equiva-

lent on the basis of efficiency. R .
There are several aspects of multipliers, such as bandwidth, noise,
and operation into the forward region of the varactor upon failure of the
rectification mechanism, which we have acknowledged as distinct problems
but have not pursued. They are, in fact, very difficult problems and each
will need considerable study before any definite conclusions concerning
fundamental limits can be reached.
An important practical problem which we have not discussed is that
of the circuit design of multipliers. There are obviously many varieties
of coupling networks which can be visualized each of which will satisfy the
current and impedance constraints set by the varactor. We have derived
the necessary current and impedance constraints, but we have not pursued

the network realization problem beyond this point.
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