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ABSTRACT

based onaseie . Vs lyses aid numerical results for slieg

frequency multipliers utilizing 1ossy abrupt-junction varactorV The theory

is based on a series model of the varactor -- a constant resistance in series

with a nonlinear elastance. This model proves to be a good characterization

of practical varactors and permits us to perform closed-form solutions for

multipliers of any order. The problem is a nonlinear one and, consequently,

it is not possible to make one solution which is applicable to all multipliers;

rather, we have to solve each multiplier separately by lengthy iterative

numerical calculations. Therefore, only a limited number of the infinity of

possibilities are treated.in thepwt.rk\

The analysis gives formulas for g neral abrupt-junction-varactor

4frequency multipliers in tl'e sinusoidal steady-state, i. e. , we write the

voltage, charge, current, and elastance as terminated Fourier-series. We

derive relations for efficiency, power handling capability, input and load

resistances, and bias voltage as functions of the varactor parameters and the

input frequency. The results of the calculations are presented as design

charts which allow one to determine the expected multiplier performance

once a varactor and an input frequency are specified.

The various multipliers are compared on the basis of efficiency which-

results in the conclusion . t they are all nearly equivalent. Chains (or

cascades) of multipliers are also considered and the same conclusion results,

that is, it doesn't make much difference with respect to efficiency whether

lower-order multipliers are cascaded or whether a single multiplier is

employed to generate a specific harmonic.
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SOME RESULTS FOR HIGHER-ORDER

VARACTOR FREQUENCY MULTIPLIERS

I. INTRODUCTION

In the past few years the application of the semiconductor capacitor

diode (varactor) to frequency multiplication has received considerable at-

tention, Most of this interest stems from the possibility of conversion

efficiencies which are much higher than those obtainable by other techniques.

Other considerations, such as power handling capability and high frequency

operation, also make the varactor attractive for frequency multiplication

purposes.

Several analyses of varactor frequency multipliers have been presented

in recent years. These treatments have generally failed to give good results,

because they are based upon either a lossless varactor model or small-

signal operation ot the varactor. Varactor frequency multipliers, however,

are large-signal devices, and a loss mechanism -- the series resistance --

is associated with all practical varactors. Therefore, a large-signal analysis

with a lossy varactor model is required for any realistic, theoretical treat-

ment of frequency multipliers

Such an analysis has been presented by Rafuse for the abrupt-junction-
1*

varactor frequency-doubler. The techniques used by Rafuse were later

extended by the author to include higher-order, abrupt-junction-varactor
2

frequency multipliers. A similar procedure has also been used in the

approximate, but quite accurate, analysis of the graded-junction-varactor

frequency-doubler.3 These results (and some extensions) have now been

incorporated in a book by Penfield and Rafuse.

The lossy varactor model which has been used in the analyses of

Rafuse, 1 Greenspan, 3 and the author is shown in Fig. 1 1. In this model

the lead inductance and the case capacitance have been neglected. These

stray elements certainly affect the design of a practical multiplier. However,

*Superscript numerals denote references listed at the end of the report.



they do not change the fundamental limits which we seek because, in theory

at least, they can be tuned out at a finite number of frequencies. Shunt con-

ductance has also been neglected, since its impedance is large compared to

that of the varactor at the operating frequencies normally used in multipliers.

At low frequencies the effect of the shunt conductance must be considered.

This model has been verified by careful measurements of many varactors

over a wide range of frequencies and bias voltages.

p i lt)

e~t)

NONLINEAR S(v)M - (t) +ELASTANCE 7

Fig. 1. 1 The varactor model

The series model shown in Fig. 1. 1 is most conveniently treated on

an impedance basis. For this reason we consider the nonlinear element to

be an elastance rather than a capacitance. This model also suggests a cur-

rent- (or charge-), rather than a voltage-, controlled nonlinear characteristic,

since the series resistance "gets in the way" when voltage pumping is

attempted.
th

An idealized model of an n order frequency multiplier with idler

currents is given in Fig. 1. 2. The various currents flowing through the

varactor are assumed to be completely separated and individually controlled

in this model. In practice the only accessible currents are usually just the

input and output ones (the idler circuits are often an integral part of the input

and output coupling networks). The treatment of the various multipliers in

this report tacitly assumes that a circuit closely approximating an idealized,

lossless one can be constructed in practice (this is nearly the case for very

narrow bandwidths). If the circuit losses are not small, the theoretical

predictions can be corrected by very simple procedures to give a better

estimate of the expected performance of the multiplier.
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Fig. 1. 2 Model for an n order multiplier with idler circuits.

In this report we present exact solutions for several higher-order,

abrupt-junction-varactor frequency multipliers as follows: a tripler, two

quadruplers, two quintuplers, two sextuplers, and an octupler. A tripler,

a quadrupler, and a sextupler were treated previously by the author by a
2

quasi-optimum procedure. The re lts given here are true-optimum

solutions. Only maximum-drive operation is considered in this report, that

is, the power levels are such that the varactor is driven over its entire non-

conducting (or reverse-biased) region. If necessary, the theory can easily

be modified to include the under-driven case (the same numerical results

are still usable).

Only a brief outline of the general multiplier theory will be given,

since the derivations have been given elsewhere. 1,2,4, 5 The pertinent

equations are given together with some discussion as to how they are obtained.

3



II. GENERAL MULTIPLIER ANALYSIS

2. 1 Characterization of the Varactor

The varactor model which we use is shown in Fig. 1. 1. It includes a

constant resistance in series with a nonlinear elastance. In this report we

are only concerned with the abrupt-junction varactor, which is characterized

by the following incremental, nonlinear elastance:

S(v) d v ( . )

S~) = Sq [Vixj

where Vp is a constant (usually a few tenths of a volt), v is the reverse applied

voltage (considered to be positive), and Smax is the maximum elastance

which occurs at the avalanche breakdown voltage V Careful measurements

of many varactors have shown that Eq. (2. 1) and the model of Fig. 1. 1 give

a quite accurate characterization of the varactor behavior. In practice,

however, it is often found that a varactor has a nonzero minimum elastance,

Smin, which occurs when v = Vmin. We will use this bound rather than the

one implied by Eq. (2. 1), S = 0 when v = -4,. For this case, Eq. (2. 1) is

written as

2 2 2
v-Vmin -min

VB - Vmin S - S
max min

Since we are dealing with a charge- rather than a voltage-controlled

device, we also need the elastance-charge characteristic of the varactor.

This is found by integrating Eq. (2. 2):

S(q) = S max LB + ' (2.3)

where C is a constant of integration and QB is the charge at the breakdown

voltage,

4



Q . + C 2S(VB - Vmin)(24

QB C= Smax S( B.S (2.4)
max rain

'the constant of integration is evaluated by requiring S = Smin when q = Qmin

(also, v = V min). Thus, we have

q Qm S - Smi)

B in max in

and

Q ~mun Z(VB - Vm n) (. 6)"B m min =(S mkx + Snn mZ 76n

One final relation is required for the characterization of the varactor.

It is the terminal, current-voltage relation,

e(t) = v(t) + R i(t) , (2. 7)

or, when Eq. (2. 2) is used,

(S - S )
e (t) - V Min (S-ax " 'min ) (B " Vmn + R~ i(t) .(2. 8)

(S -S Z min
max min

In the study of frequency multipliers, we are concerned with the

fundamental frequency and the various harmonics. Therefore, we write the

charge, current, voltage, and elastance in Fourier-series:

q(t) k Qk e t (2.9)

jkw 0 t jk0 t
i(t) = 'k Ike jk Jkwo Qk e (2.1 0)

5



jkw 0 t
v(t) = Zk Vk e , (2, 12)

jkc• t
e(t) = Zk Eke (Z, 12)

kk•

S(t) = ZkSk e , (2. 13)

where -k = _ l-k = , Vk Vi, Ek = E'k, and Sk = S, I since we

are dealing with real time functions. The varactor is assumed to be operated

only in its non-conducting region, so there is no direct current (I = 0).

Another convenient parameter is the normalized elastance defined by

S t)=k Smn Z kMk e ,M°k = Mi (2. 14)
mnax min

Since S(t) must lie between Smin and S ,max we see that

0 f- m (t) -- . (2, 15)

For many multipliers (including most of those studied in this report)

the normalized elastance-coefficients, Mk, are found to be entirely imaginary

fork k 0, i.e., jMik = IMkI = mk = -jMl . Equation (2. 14) for this important

special case can be rewritten as

m(t) = in 0 + 2 E k>0 mk sin kw t (2. 16)

When the above condition is applicable, we observe that m(t) - m 0 is an odd

function of time. Thus, m0 must equal one-half, if both limits in Eq. (2, 15)

are to be met. With m 0 set equal to one-half, Condition (2. 15) for this

special case, jlVtk = mk for k > 0, can be written as

Zk>0 mk sin kwot :- 0. 25 . (2r 17)

6



This completes the characterization of the abrupt-junction varactor

for our purposes. Therefore, we now proceed with the formulation of the

frequency multiplier characteristics (input impedance, idler and luad

impedances, efficiency, power handling capability, bias voltage, etc.).

2. 2 Varactor Equations of Motion

An expression for the voltage at each frequency, Ek for k * 0, is

found by inserting Eqs. (2. 10), (2. 12), (2. 13), and (2. 14) in Eq. (2. 8):

Ek R 2 M (VB - V )min
k s Ik + Smmin Mk (Srx + n

max inn

+ ((B - V n) ; rMkr (2. 18)
(Smax Sm -) m r

The current 1k can be expressed in terms of Mk by using Eqs. (2. 5), (2. 6),

(2. 9), and (2. 14) in Eq. (2. 10):

Ik = jkwo Qk

= jkwoMk(QB - Qmin)

=2jkw M VB Vmin= 2.J~o~k + S(2. 19)
o kS-F +max min

When we use Eq. (2. 19) in Eq. (2. 18), we find

Ek R + Smin + Rsc r Mr Mk-r

k o o k

where

S -Smax min (2.21)
c R

7



is the varactor cutoff frequency as defined by Penfield. (When Smin is

negligible, w reduces to the definition of cutoff frequency originally given

by Uhlir. 7)
In the summation of Eq. (2. 20), the terms for r = 0 and r = k com-

bine with Smin/Jk%° to give a term, (Smin + m 0 o0 R s)/jkw0 . It can be shown

with the aid of Eq. (2. 14) that this term is the average reactance of the

varactor at the k thharmonic, S0 /jkw•0 . Therefore, Eq. (Z. 20) can be re-

written as

E k =R+S 0 4 0,k Mr*k -r (2. 22)Ek SrO 0scZ• ,kt Mk r

For simplicity in the later analyses, we will assume that this re-

actance will be tuned out by the termination impedance at each frequency,

i. e. , we choose

Ek So
Zk k • R. + j 0° , k * ±1 (2. 23)

k 0

This is not necessarily an optimum choice for the termination impedances,

since improved multiplier performance may actually be obtainable in a

detuned mode of operation. However, this restriction considerably simplifies

the analysis and numerical evaluation of the multipliers and will, therefore,

be applied in all of the following work. For this tuned mode of operation,

Eq. (2. 22) becomes

Rw k (jMr) (jMk r)R+R=Rstc r •0 O, r -r k 1.(24
Rs + Rk 0 - (jMk) , k 1 (2.24)

At the input frequency we define the ratio of E 1 to I as an "input

impedance":

S•0 Rs wc Ir f 0, 1 (jMr) (jMl-r)
Z. = R + (. 5

in s -W0 Z jM 1 (.

8



It is important to note that Z. is not an impedance in the usual sense,in
because it depends on drive level (in particular, both S0 and the Mk change

with the drive level). However, Z. is a useful quantity and we shall referin

to it as the "input impedance". With the same understanding, we shall call

the real part of Zin' Re [Zin] , the "input resistance". It is

0 E 0 1(jM) (jM14 -r)
Rin = Rs - Rs rW Re jM (2. 26)

01

An abrupt-junction -varactor frequency multiplier with idlers will

have N currents (input output, and N-2 idler currents) flowing through the

varactor. These currents (or the M k) are related by a system of (N-i) non-

linear equations as found by expanding Eq. (2 24) into its component equations.

(There are actually 2(N-1) equations included in Eq. (2. 24), but those for k

negative are just redundant complex conjugates of those for k positive. ) Note

that Eq (2. 15) must always be satisfied and, in fact, it provides the Nth

equation in the system of N nonlinear equations in the unknown Mk

The set of equations described above give expressions for the resist-

ances at the various harmonics in terms of the Mk. Unfortunately. the

problem we must solve is usually just the inverse of this one. That is, we

are given values for the idler resistances (circuit constraints) and the

normalized input frequency w o/c (varactor constraint); then we are asked

to find a load resistance which will maximize either the efficiency or the

power output. This requires that we "invert" the equations of motion to

obtain a system of equations for the Mk in terms of the Rk and the input

frequency, Since the (N-1) equations for the Rk' Eq. (2. 24), are quadratic

in the Nifk, it is quite clear that solutions for the Mk will result in higher-

order polynomials in the general case. Therefore, our problem will involve

finding the roots of higher-order polynomials. This can be done in closed

form only for quadratic, cubic, and quartic equations. Thus, in the general

case, we will have to resort to numerical techniques in order to find the

desired roots (solutions for the Mk)

9



A further complication in effecting a solution for a multiplier is that

Condition (2. 15) contains an additional unknown, the time to at which m(t)

is a maximum (or minimum). Thus, Condition (2. 15) in the general case is

a transcendental equation which must also be solved by iterative numerical

techniques.

The above considerations point out the difficulties involved in the

solution of abrupt-junction-varactor frequency multipliers. Except in the

simplest cAses, there is obviously little hope of finding a solution for higher-

order multipliers in closed form. It is clear, therefore, that we will have

to resort to iterative numerical procedures in order to find the desired

solutions. These calculations are long and tedious and are best done by

machine computation.

A general approach to the problem of performing the calculations on

a digital computer is available. However, we will defer a description of the

method until we have formulated the tripler equations, because the process

can best be described with reference to a particular multiplier.

Once we have found (by a suitable numerical process) the values of

the Mk and the load resistance which maximize efficiency or power output,

it is a simple matter to calculate the remaining parameters of the multiplier

(efficiency, "input resistance", power handling capability, bias voltage, etc.).

The "input resistance" equation has already been derived. Therefore, we

turn now to the formulation of power relations, bias voltage formulas, and

an efficiency equation.

2. 3 Power Handling Capability

The input power can be computed in terms of the input current and

the input resistance as follows:

Pin: Z=IIz 1 Rin ' (2. 27)

or, with the use of Eqs. (2. 19) and (2. 21),

10



max min p inPin 8(S +S . 2norm m 1  - (2.28)in max min nomwc s

where m, = IMVI (in general mk =IMkl) and

= (VB-V )R (2.29)
Pnorm- (. 9

s

is the varactor normalization power. Alternatively, P. is equal to thein
power dissipated in all idler resistances, in the load resistance, and in the

varactor series resistance. Thus,

Smax Sin 2 z(R k )
= 8( +m m. P norm(0-) Zk>0 nk m k R k

max mmn c R =0 s

where in the summation for k = I we let R be zero (no power dissipation in

the "input resistance"). Equation (2. 28) is easier to evaluate, but Eq. (2. 39)

shows clearly how the input power is divided up among the various frequencies

The output power is easily seen to be that portion of the input power

which is dissipated in the load resistance R . It is given by the term in

Eq. (2. 30) which contains Rn:

p 8 max mmin P (-o n m n (2.31)out S + 7 norm - n mn
max min c s

The dissipated power is simply the difference between Eq. (2. 30) and

Eq. (2. 31). It is

S -S 2 • 2
= 8( max mi) ~ 0)

diss 8S + Si) Pnorm ('W) Xmax min c

k 2 M2i+ Z k 2 i~ M. (2.,32)
>0 kR +k>0 mRk. Z

12ý k 1, n



Of this dissipated power, a portion

S S. 2 2
Smax Smin 2 o2 2

P -S( ax m P (0 k km (2.33)
diss,v = 8( +S 7 norm W k>0 k

max mm C

is dissipated in the series resistance of the varactor. The remainder is the

power dissipated in the idler terminations.

2. 4 Efficiency

The conversion efficiency c is the ratio of output power to input

power. Thus, from Eqs. (2. 28), (2. 30), and (2. 31),

2 2
n nE =

m IRin

2 2
n 2m 2 Rn Rn (2. 34)

Ek>0 k mk (Rk + RS)

R =0

where in the last expression we set R 1 equal to zero, since the input power

is not dissipated in the "input resistance".

2. 5 Bias Voltage

The bias voltage is found by taking the time average of Eq. (2. 2):

V°-V. "Sma Smin F 2o m~i
in mx-Smin) [ m2 + r- o--min + 2 (m2 +m 2 +

B min max min max m(.in
(2. 35)

where Eq. (2. 14) has been used to write Eq. (2. 35) in terms of the Mv~k.

An alternate expression for the bias voltage is obtained by time

averaging Eq. (2. 1):

12



vo+4  s .s. S. 2 2 2
0max - ra in) tmo+ mi.. n-S + 2(m1 +m 2+ . .VB max max min

(2. 36)

where Eq. (2. 14) has again been used to write S(t) in terms of the MRk.

2. 6 Idler Currents

In the preceding analysis we have not specified the number of currents

in a multiplier or the frequencies at which they must flow. The simplest

case, a doubler, obviously requires currents at just the fundamental and

second harmonics. However, it is not so clear which currents must be

present in higher-order multipliers, Therefore we must examine this

important problem.

The abrupt-junction varactor has a square-law voltage-elastance

(or voltage-current) characteristic, Eq. (2. 2). This tells us that no

multiplier, other than a doubler, can be constructed with just two currents

flowing through the varactor. However, we can let extra currents flow and

obtain higher-order multiplication, For example, mixing of the fundamental

and the second-harmonic currents and elastances generates a voltage at

the third harmonic. A tripler can therefore be constructed with an idler at

the second harmonic. Doubling of the second harmonic also permits con-

struction of a quadrupler with an idler at the second harmonic. Both of

these multipliers are analyzed in this report, and they are found to give

very good efficiencies as long as the operating frequency is not too high

(W0/w c less than about 0. 1 for efficiencies greater than 5 or 10 per cent).

Further consideration of the power transfer characteristics of the

abrupt-junction varactor indicates that an idler frequency must be related

in at least one of the following ways to the frequencies of the currents

already present:

1. Sum of two frequencies,

2. Difference between two frequencies,

3. Twice some frequency,

4. Half some frequency.

Use ci .he above constraint," -- ,-Jvs thiat a quintupler, for example, could be

constructed with idlers at 2w and 3w 0, 2w and 4w 0, or 2 0, 3o and 4w .

13



This gives only the possible idler configurations for a quintupler when the

idler frequencies are less than the output frequency. Obviously, there are

numerous additional possibilities, if we allow idler currents to flow at

frequencies higher than the output frequency.

In general, there are numerous possible idler configurations Ioz

realizing a particular higher-order multiplier (many of these are tabulated

in Chapter 8 of Reference 5). Unfortunately, there is no ap way of

telling which possibility will lead to the best multiplier performance (or,

indeed, whether a particular multiplier will operate efficiently). The only

way to find the "best" multiplier for a specified order of multiplication is to

perform detailed calculations for the various possibilities. This, of course,

is a lengthy procedure which has not, as yet, been performed. In this

report we treat several multipliers as follows: 1-2-3 tripler, 1-2-4 quad-

rupler, 1-2-3-4 quadrupler, 1-2-4-5 quintupler, 1-2-3-5 quintupler,

1-2-4-6 sextupler, 1-2-3-6 sextupler, and 1-2-4-8 octupler. This is far

from an inclusive list even for the five orders of multiplication treated.

However, they are representative and they include several of the configura-

tions which are used in practical situations.

14



III. TRIPLER SOLU-.TION

We now proceed with the solution of an abrupt-junction-varactor

tripler.

As previously mentioned, a tripler will not work unless idl'-r currents

are allowed to flow through the varactor. The simplest idler configuration

has only one idler, at the second harmonic. However, a tripler could have

two or more idlers, e.g. : 2w and 4wof 2 W 0 and 5w0 , 2 w and 6w0, 2 w o

4w and 5wof etc. The idler at the second harmonic could be eliminated by
choosing idlers at w0 /2 and 3w 0 /2. Unfortunately, there is no a priori way

of telling which of the possible idler configurations would lead to the best

tripler performance. If we wanted to select the best possible tripler, we

would first have to solve each one completely. This would obviously be a

long and tedious process. Rather than embark on such a task, we will

analyze only the 1-2-3 tripler, since our intuition suggests that it will be

the simplest one to analyze and construct

3. 1 Tripler Formulas

The formulas developed in Chapter II apply to this case with all M k

zero except for k = -3, -2, -1,0,1,2, and 3. From Eq. (2. 24) the idler and

load resistance equations are

R 3 + Rs Wc (jM 1 )M 2) (3. 1)

s o 3

R2 + R s - c (jM 1 ) 2 - 2(jM 1)*(jM 3 ) (3.2)

5 0

We now want to find the phase relationships among 1I 1 , M 2 , and M 3 . To

this end, let us choose the time origin such that jM1 is real and positive

and thus equal to its magnitude, m 1 . Then Eq. (3. 1) shows that jM2 and

jM 3 have the same phase angle, and Eq. (3. 2) shows, therefore, that the

phase angle of jMvE 2 is zero. Thus, we have the result that jv 2 = m 2 and

jMl3 = m 3 . In terms of the mký the various tripler formulas are

15



wc mlm2WC 1 -1) (33R 3 = RSI•° m 3 (1, 3.3)

R 2 =R m2lmI2m 3 1] , (3.4)

Rin =RS[: LM (mi1 +2m 3 + 1 (3.5)

R 8 8('-1 mlm+(m 1 + m+ (3.6)

nOrm r1 0 J

Pout _ 81 ) c ... Sm~~ 3 - 9m 3 ) (3.7)dins 0  +wF + 2 32
norm c 1Wo

dss-8(-)1 -mlm (In-Z2m3)+m + m , (3.8)
•norm c

Pdiss v o (mZ +4m + m )(3 )
_- (3.9)

PI 8 0) mn 4m 2 + 9m3

norm c

3m gml m 2 -3m

m1 1

P dis w 0  
, -CZ + 9 (3.10)

1 8-- )m(m1 +m23 ) + in 1

0

o 2 2 22

VB+,p Sa S l n) +2(m+m +m4m] + 9,3 (3.11)

max max

1where we have set m° = •. For convenience, we have defined another
normalization power

16



S -S 2
nmax in(3

norm + nornorm
max min

The Mk have been shown to be entirely imaginary. Thus, Condition

(2. 17) can be used in place of Condition (2. 15). The limit on the magnitudes

of the mk for the tripler, therefore, becomes

ml sin w ot + m. sin 2w 0t + m 3 sin 3w t -- 0.25 (3. 13)

for all values of t.

3. 2 Solution of the Tripler Equations

The above formulas are all written in terms of varactor parameters

(R , nor P' ) and the m Hence, if we know values of m 1 , m 2 , ands norm k
m3 which satisfy Condition (3. 13) and which give positive values for R2

and R 3 , it is apparent that a few simple calculations will yield the remaining

multiplier parameters.

More often, as pointed out in Section 2. 2, we are asked to determine

the values of R 2 and R 3 which will maximize either the efficiency or the

power handling capability. For every value of input power within the bound

of Condition (3. 13), there will be optimum values for Rz and R 3 . Usually,

however, we wish to utilize the full power handling capability of the

varactor; that is, we want the elastance to attain the values of S min and

Smax during each cycle. Therefore, we seek solutions for the mk such

that Condition (3. 13) is satisfied with the equality sign at the time, to, at

which m(t) is a maximum. For this maximum drive level operation, the

solutions should be such that the efficiency or power output is maximized.

We are dealing with a nonlinear problem so we expect some difficulty

in finding the optimum values of R2 and R3 for a specific input frequency,

W o/WC. Part of the difficulty resides in having too many unknowns and not

enough equations, i. e. , we have six unknowns, mi, m?, m 3 , R 2 , R 3 , and

to, and four equations. (3. 3), (3. 4), (3. 13), and the derivative of (3. 13)

evaluated at t
0
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dmit}dm-t) mcoso Wt + Zm cos 2wot + 3m 3 cos 3,.ot 0. (3.14)

0 t=t

We can eliminate R 2 as an unknown, since its value is usually set by

the practical circuit in which the varactor is imbedded (in our calculations

we allow R2 to take on the fixed values 0, Rs ZR, 5R , and 1OOR), In

theory we could now solve Eqs. (3. 3), (3. 4), (3. 13), and (3. 14) for , mP 2

m 3 , and to in terms of R 3 . These solutions could then be used to writ;ý

the efficiency in terms of R 3 . Next, the optimum load resistance would be

determined by equating to zero the derivative of the efficiency with respect

to R . This is a mathematicall.y rigorous approach, but it meets with

considerable practical difficulty because Eq. (3. 14) has two or more roots

in the interval, 0 : w 0t -- 27, and we must, of course, select the correct

one. In higher-order multipliers the problem becomes considerably more

complicated, so we will abandon this approach and turn to an iterative

numerical procedure which has general applicability.

To facilitate our calculations, we solve Eqs. (3. 3) and (3. 4) for m 2

and m 3 in terms of rn

m2  __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _M Z 
(3.15)

m I RZ + Ra 4wo 0 mlwc R+
-m Wc +3~ WT.F-R

a Io 3 s

and

m3 1
3 1 (3. 16)12%

m 2 + Rs 8 3 +Rs a o

s s m IWc

The value of R2 will be fixed for reasons discussed above, It is also

logical to assign a value to the normalized input frequency, 40/wc, since we

are usually interested in using a particular varactor for a specific application.
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These parameters can, of course, be changed at a later stage of the calcula-

tions to find the expected multiplier behavior with different operating

conditions.

We have no way of fixing the optimum load resistance, so we will

determine the correct value by a trial and error procedure. That is, we will

assign an initial value to R3 and compute the multiplier performance; then

R3 will be varied and the calculations repeated. This process will be

continued until the optimum load resistance has been located. Obviously,

we can use the results of the first two calculations of R.3 to decide on the

third value, etc. Finally, when we have values for R3 which give us

efficiencies (or power outputs) near the maximum, we can use parabolic

interpolation through three points to get an accurate value for the optimum

load resistance.

The problem has now been reduced to the solution of two equations,

(3. 13) and (3. 14), in two unknowns, mI and to (in. and m 3 as given by

Eqs. (3. 15) and (3. 16) depend only on mI when we assign values to wo/ c,

R., and R 3 ). This pair of equations is still extremely difficult to solve, so

we adopt an iterative numerical approach. To do this, we assign an initial

value to mI1 which we label ml(l), then we compute in 2 /ml(l) and

m 3 /m 1 (l). Next, we search for the value of to which satisfies Eq. (3. 14).

(There will be two or more solutions for t in the interval, 0 -- to -- 2•/•o,

each of which must be investigated.) Finally, we check Condition (3. 13) to

see whether our initial choice of mI is correct at the time t where m(t)

is a maximum. If ml(1) has the wrong value, we must assign a new value

to mI and recompute m 2 /mI, m 3 /ml, and to. This process is continued

until we have finally located the correct value for mi.

At this point we obviously need a systematic method of choosing

successive values for mI such that our solution will eventually converge.

Condition (3. 13) evaluated at t = to provides the necessary tool. For our

purposes, we rewrite Condition (3. 13) as follows

mI i[not° + -sin Z7- t +- sin 3 w t :5 0.25 (3. 17)ml 00 m 1
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The solutions which we seek are for maximum drive level in which

case we insist that Eq. (3. 17) be satisfied with the equality sign. This can

only occur for one value of mI1 . The mI which we have factored out in

Eq. (3. 17) is not independently specifiable, but we can at least obtain an

estimate of mi for our second iteration by assigning to it a value such that
atthe equality in Eq. (3. 17) will be met. More generally, the (I + 1) iterative

value, m 1 ((1 + 1), can be obtained from the Ith, m 1 (), by requiring

m I (+ 1) = I in w to(1) + Z sin 2 0oto(-) + MP sin 3woto( )]"

(3. 18)

The numerical procedure should now be clear. We simply choose an

initial value for mI, find m 2 /m 1 , m 3 /mi, and to, and then compute a new

value for mi1 from Eq. (3. 18). When mI1 is changed, it is obvious that

m 2 , mi3 , and to will change so the calculations must be repeated. We then

find a third value for mi1 from Eq. (3. 18). The process thus continues until

ml(I + 1) and m 1 () agree to sufficient accuracy (the results presented in

this report were calculated to an accuracy of 0. 01 per cent).

Once the above calculations have been performed, it is a simple

matter to use the results to find the remaining multiplier parameters (R.in

Pin' Pout' Pdiss' etc' ) for the given values of idler resistance and input

frequency. A typical plot of efficiency, power input, and power output

versus load resistance is given in Fig. 3. 1. In this figure we note that the

three maxima occur at slightly different values of R 3 . However, the

efficiency is not significantly reduced where the power output is maximized,

and vice versa. For practical purposes, therefore, power output and ef-

ficiency can be simultaneously maximized.

20



40~~

z
% 10 100

LOAD Rp ISTAN i.*I

Fig. 3. 1 Efficiency, power input, and power output as functions

of the load resistance for an abrupt-junction-varactor

tripler. In this plot we have assumed that R2 = 0 and

Wo = 10- wC, but the qualitative features are the same
for other idler resistances and frequencies.

Power output and efficiency both have very broad maxima as functions

of R 3 . This feature is very convenient in practical designs, since it is not

always a simple matter to obtain an exact resistance for the load. Interstage

matching networks in multiplier chains are also simplified in some cases

because of this property. The reasonably good predictions of previous

quasi-optimum solutions were also a consequence of these broad maxima.

The above procedures give a value for the optimum load resistance

for fixed values of idler resistance and input frequency. To generate a

complete set of multiplier performance data, we vary R 2 or wo/wc (or both)

and repeat the calculations. These long and tedious computations were

programmed for numerical evaluation on an I. B. M. 7090 digital computer.

The results for maximum efficiency operation of the tripler are given in

Figs. 3. 2 to 3. 8. Efficiency, input resistance, load resistance, power input,

power output, dissipated power, and bias voltage are plotted as functions of

frequency for several values of idler resistance, R 2 .
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Fig. 3. 2 Maximum efficiency of a 1-4-3 abrupt -junction -varactor
tripler for various idler resistances, R 2 ' It in assumed
that the varaccor is fully driven, and thait the load is tuned
and adjusted to give maximum efficiency.

2z



10 ItOR

ROR0

Fig. 3. 3 Inu resstnc of an 1butjntinv co tr1r

IORS R_ __ O

di II[Nil

10' u*W 10' a., 10 a we 0.100 we, 1 we

INPUT FREQUENCY ei*

oi.3.3 Ipertion itac of a n1- - abrupt -junction--varacto r tripler.

adusedt gvemxiumefiiec fr h vr3u



10 Pnerm

10"' - 1"00/

Ll I- '

10.3 R2-,R, S

10-4
IO'--R 2 ORs'2Rs,5Rs /Tl

!0'5

I0 000

10'
_0-7

10-10--

104 We. 16-3W.0  0a 0  01. a*I

INPUT FREQUENCY a..

Fig. 3. 5 Input power of an abrupt-junction-varactor tripler adjusted
for maximum efficiency operation for various values of
idler resistance, Rz.
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abrupt -junction -var actor tripler adjusted for maximum
efficiency operation.
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At low frequencies, we expect the efficiency to approach 100 per cent,

since the varactor losses become relatively less important as the reactance

gets large. Figure 3. 2 shows that this is indeed the case. In fact, the

efficiency even approaches 100 per cent with a nonzero idler resistance.

Note also that th. highest efficiency occurs with a lossless idler circuit,

which is expected from detailed consideration of the properties of idler

circuits. At low frequencies the input and load resistances become large.

However, at high frequencies the series resistance of the varactor dominates,

and the input and load resistances approach Rs.

Input and output power are approximately equal at low frequencies,

and vary linearly with frequency, as shown in Figs. 3. 5 and 3. 6. At high

frequencies the efficiency is low and, consequently, the input and dissipated

powers are almost equal. (In fact, most of the input power is dissipated in

the varactor at the fundamental frequency. )

In the figures we have neglected the factor containing Smin in the

multiplier equations. If Smin is not negligible, the values shown in

Figs. 3.5 to 3.7 must be multiplied by (Smax -S min ) 2/(Smax +S min) 2, i.e.,

Pnorm must be replaced by Pnorm The bias voltage as given in Fig. 3. 8

must be modified according to Eq. (3. 11), if Smin is not negligible. The

operating conditions specified above lead to an average elastance given by

S +Smax + min

S - m (3. 19)

This is the value of elastance that must be tuned out at each frequency

according to the theory.

The conditions for maximum power output are qualitatively very

similar to those for maximum efficiency. For small values of idler

resistance, R 2., the results are not significantly different from those pre-

sented in Figs. 3. 2 to 3. 8 for maximum efficiency. The two optimizations

differ quite a bit for large values of R.2 , but we do not plot the results

because large idler resistances are of little or no practical interest.
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It is interesting to examine the elastance waveform under typical

operation. The plot shown in Fig. 3. 9 is for the low frequency values of

im1 , M2 , and m 3 for maximum efficiency operation with a lossless idler.

For maximum drive operation, S min and Smax are attained once per cycle.

At higher frequencies m 2 and m 3 become small, while m 1 increases toward

0. 25. Thus, the fundamental elastance dominates the elastance waveform

at high frequencies.

3. 3 Asymptotic Formulas for the Tripler

At low and high frequencies the tripler behavior can be described by

asymptotic formulas. The limiting values of ml, in 2 , and m 3 for low
frequencies can be found from the computed data. Then the appropriate

formulas are found from Eqs. (3. 3) to (3. 11). For high frequencies we use

the limiting values, R in ' R3 N Rs and m 1 0.25 (rnk << mI for k > 1), in

Eqs. (3.3) to (3. 11) to find asymptotic relations. These formulas are

summarized in Table 3. 1 for the lossless idler case. For low frequencies

both maximum power output and maximum efficiency formulas are given.

Power output and efficiency are simultaneously maximized at high frequencies,

so only one set of formulas is required.
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Table 3. 1 Asymptotic Formulas for the 1-2-3 Tripler

Maximum power output and maximum efficiencyuie achieved with a Ionalesa

idler, so we have set R 2 = 0. For simplicity we have also assumed

S .<< S
min max

Low Frequency High Frequency

Maximum C Maximum P out Max. c and P out

I-°34.8- 1 - 35.1 6.08x 10"5 1-.E)
c c 0

R. 0. 137 (-E.)R 0. 126 c(. a
in W a W5

0 0

a 3  0.184( . c-).Rs 0. 168 ( -- )R R
0 0

P. WA CA C)
in 0.0241()0 0. 024( 0.500(- )

norm c c c

Pout W 5o
15 0.02411( W o) .0. 04 x 10 o' .)

norm c c 0

Pdiss 2 w o 2  CA) 2
0.837 (-2) 0.849 (-•) . 500(7-)

norm c C c

0 (q,0.321 0.324 0.375
V B + 4,

m1 0.148 0.155 0.250

m2 0.091 0.084 0.0156(1-)
0

wo z

m 3  0.074 0.0775 0.00065( ()
0
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IV. QUADRUPLER SOLUTIONS

The quadrupler is the only abrupt-junction-varactor multiplier,

other than the tripler, which can be made with a single idler (at the second

harmonic). As with the tripler, however, there are several alternate ways

to construct a quadrupler with two or more idlers. The simplest, multiple-

idler quadrupler is one with idlers at 2 w and 3wo. Both the 1-2-4 quadrupler

and the 1-2-3-4 quadrupler will be studied. Some other multiple-idler

configuration may be better than either of these, but we will not pursue the

problem.

The analysis of each quadrupler is very similar to that of the tripler.

The techniques of solution and the general nature of the results are the same,

although the formulas and specific curves are different.

4. 1 1-2-4 Quadrupler Formulas

The formulas of Chapter II apply to this case with all M-k zero

except for k = -4, -2, -1, 0, 1, 2, and 4. The idler and load resistance

equations become, from Eq. (Z. 24),

R 4 + R s W c (jM 2 )2 (4.1)

s 0 4

R2 + R5  Wc (JM1) 2 - 2(jM 2 )*(jM 4 )
R Co (4.2

5 02

The arbitrary phase reference (time origin) may be chosen such that jMI is

real and positive a"d thus equal to its magnitude, min. Equation (4. 1) shows

that the phase angle of jM4 is twice that of jM2 . Finally, the use of this

information in Eq. (4. 2) demonstrates that jM2 (and therefore JM 4 ) must

be real and positive; thus, jM2 = m 2 and jM4 =m Ir terms of m 1 , m7,

and m 4 the various 1-2-4 quadrupler formulas are

2Wc m2Rw R m 0 (4.3)
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Wc m2 2m m4

R -=m -C1 (4.4)
o 2

R. =R (c-- m 2 + 1) (4.5)
in 9 W 20

in C W•c 2 2
-I" !L- 8 (2.) M-- mZ + m (4.6)
norm c 0

P WZZ2 2•
out o c 2 25 8(-) (- m m 4 -16m ) (4.7)

Cdss- A) W m12 4 1
norm c 0

P di 8(W0) [w -. Zm2 _2.m 2 m 4 ) + m +2~ 4 ] 48

-5 8~ + 262 2 (4.8)

"Pdissv -8(e) (M 1 2+ 4m + 16m 4 ) (4.9)

norm C

c 2Zm 4 W- m2 -8m 4

o (4.1lO)

m I - m2 +
2

0

V+0 +P Smax . min )[1 + 2/m +m 2+ m + n (4.11 )

VB+(P = - 4in+mr-m(4.max
max max

1
where we have set m° The power relations have been normalized with

0

respect to Pn as defined by Eq. (3. 12).norm
The Mk have been shown to be entirely imaginary. Therefore,

Condition (2. 17) gives the limit on the magnitudes of the mik. For the 1-2-4

quadrupler we have
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m s sinsW t+m 2 5inZ2w m in 4w~ot : 0. 25 (4.12)

for all values of t.

4. 2 Solution of the 1-2-4 Quadrupler Equations

The above formulas are written in terms of varactor parameters

(Rs, • , P' ) and the m Hence, if we know values of ml, Im 2 , and m
3c norm k

which satisfy Condition (4. 12) and which give positive values for R and 1

it is apparent that a few simple calculations will yield the remaining multiplier

parameters.

Usually, however, we must find the values of Rz and R 4 which will

maximize either the efficiency or the power handling capability of the

quadrupler. Both of these maxima occur when the varactor is optimally

driven, that is, with the elastance attaining the values of Smin and Smax

at least once during each cycle. Therefore, the values of the mik must be

such that Condition (4. 12) is satisfied with the equality sign at some time to
0

when m(t) is a maximum.

As was the case with the tripler, we have to use an iterative

numerical procedure to find solutions of the nonlinear quadrupler equations.

These calculations are usually performed by choosing values for R 2 , R 4 ,

and w o/W c and then computing the required values for mi, im 2 , and mi 4 . it

is convenient, therefore, to solve Eqs. (4. 3) and (4. 4) for mi and mi4 in

terms of m 2 (this choice of reference is found to give the simplest equations):

2)2=R?+ Rr 4w + R 5  iZWc
mI 2 2 + m + s (4. 13){m-2) R 1s m2w c R 4 T Rs 8 -4w

m 4 m2w c R s- = (4.14)
M2 0 14 +aR

The numerical procedure used for solving the quadrupler equations

is exactly the same as described in Section 3. 2 for the tripler, except that

in this case m 2 is the control parameter. Computations for maximum
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efficiency operation and maximum power output operation were performed on

an I. B.M. 7090 digital computer. The results for maximum efficiency

operation are given in Figs. 4. 1 to 4. 7. Efficiency, input resistance, load

resistance, power input, power output, dissipated power, and bias voltage

are plotted as functions of frequency for several values of R 2 .

For a given frequency and a specific value of R 2 , the efficiency, the

power input, and the power output as functions of the load resistance look

somewhat like those shown in Fig. 3. 1 for the tripler. The three maxima

usually occur at slightly different values of R4 at low frequencies. However,

the efficiency is not much reduced where power output is a maximum, and

vice versa. Thus for practical purposes the power output and the efficiency

can be maximized simultaneously. At high frequencies both maxima occur

with the same load. The maxima are quite broad which explains the

reasonably good predictions of the previous quasi-optimum solution.

At low frequencies the efficiency approaches 100 per cent, even with

a nonzero idler resistance, as expected. Power input and power output are

approximately equal at low frequencies, while at high frequencies input and

dissipated powers are nearly equal. Also, at high frequencies the input and

load resistances become approximately equal to Rs.

In the figures we have neglected the factors containing Smin in

Eqs. (4. 6), (4. 7), (4. 8), and (4. 11). If Smin is not negligible, we must

use PI instead of P for the normalization power, and the bias
norm norm

voltage as given in Fig. 4.7 must be modified according to Eq. (4. 11). The

average elastance is given by Eq. (3. 19), since our solutions are for maxi-

mum drive.

The conditions for maximum power output are very similar to those

for maximium efficiency. For small values of idler resistance, the results

are not significantly different from those presented in Figs. 4. 1, 4. 4, 4.5,

and 4. 6. The input and load resistances and the bias voltage are somewhat

different, but not enough to make replotting necesnary. The two optimiza-

tions differ quite a bit for large values of R.; however, we do not plot the

results because in practice large idler resistances are of little or no interest.
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A plot of the elastance waveform under typical operation is shown in

Fig. 4. 8. The low frequency values of mi1 , 0 2 , and m 4 for maximum

efficiency operation with a lossless idler are used in the figure. Since the
solutions are for maximum drive, the elastance varies between S i andrmin
S during each cycle.
max

4. 3 Asymptotic Formulas for the 1-2-4 Quadrupler

At low and high frequencies the behavior of the 1-2-4 quadrupler can

be described by asymptotic furmulas. The limiting values of mi, in 2 , and

m4 for low frequencies can be found from the computed data. Then the

appropriate formulas are found from Eqs. (4. 3) to (4. 11). For high frequencies

we use the limiting values, Rin % R4 % Rs and m1I P 0.25 (mik <<in for

k > 1), in Eqs. (4. 3) to (4. 11) to find asymptotic relations. These formulas

are summarized in Table 4. 1 for the lossless idler case. For low frequencies

both maximum power output and maximum efficiency formulas are given.

Power output and efficiency are simultaneously maximized at high frequencies,

so only one set of formulas is required.

4. 4 1-2-3-4 Quadrupler Formulas

The idler and load resistance equations for the 1-2-3-4 quadrupler

can be written directly from Eq. (2. 24) where the Mik are zero except when

k takes on the values, -4, -3, -2, -1, 0, 1, 2, 3, and 4. Thus

R4 + R(s Wc (J 2 )2 + 2(jN )(JM 3 ) 15)

gw- jM40 0

R3 + Rs _c (JM 1 )(jM 2 ) - (j1lv)*(jM4 )
s -j'M 3  (4.16)

5 03

R 2 + R 8 c (jM) 2 - 2(jM d*(JM 3 ) - 2(JI2)*(jM4(

R "Mo .T 4. iv
a 02

The addition of the extra idler considerably complicates the problem of

finding phase relationships. However, by selecting the time origin such
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Table 4. 1 Asymptotic Formulas for the 1-2-4 Quadrupler

Maximum power output and maximum efficiency are achieved with a lossless

idler, so we have set RZ a 0. For simplicity we have also assumed

mmin << Smax*

Low Frequency High Frequency

Maximum 9 Maximum Pout M-aw. I and Pout

9 1 6Z.9SIw) I - 66. Ae 5.96 1
C Wc

Ri 0. ISO(.)R* 0. 136 (-.)R R
i o0 Wo0

P 0. ZOS (..-CR, 0. 0.136( C )R,

4 - "C- a
Pin w Wo

"0.01960) 0.°Ozol 1() 0. ° °(•!)
Pnorm WC 6c WC

Pout W W w 4
0 . 0196!) o. 0CzoIl( ) a. 98 z 1o (-E)

norm We C 0Ed

Pdiss %3 (•) 33() o
1s. Z3(OI . 31Z)0 o.o I Z)

norm WC C c

0' 0.334 0.334 0.3?5
VB +

m 0. 118 0.136 O.2SO

ma 0.150 0.136 O. OI16(1)

m4 0.05S 0.068 1. S3 x 10"(--.)
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that jMl is real and positive and thus equal to its magnitude, ml, we can

write Eqs. (4. 15), (4. 16), and (4. 17) as

m 2 0j3e m 2 m 4 ej(• 4 " 4

-e m ' m- (4. 18)
mIm m1

m3 b =b[iO2 m4i 04j(.9

m 4 j04 m2O 2 ~ m •
e = c m)2 e + 2 m3-ej 0 (4.20)

Ji4k mpt 0 I I R

where we have set jLk= mk e , a = ml'oc- •- b = 1 6-) W s,

m w 1 .) Cq a i n ( 4.a9 0 2 s 0 3
and c = 8-- R4 + R Equations (4.19) and (4. 20) are now solved for

and ml/mI in terms of m.2 /m

m 4 j0~4  1 M2 j04 M m2 042
-e =A(1 + 79 e )-e ,(4.21l)

m 3 j0 3 A m j j 2 e m2 j2e,
e e e (4.22Z)

where

Zbc
A = = (.23)

Equations (4. 21) and (4. 22) can be used in Eq. (4. 18) to obtain

in 2 --22 m2 J2

Am2 e jO2 + +:L + A • M- e O -1 0. 44. 242
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Equation (4. 24) can be separated into two equations relating real and

imaginary parts when the relation, e = cos e + join E, is used. Thus, we

have

m2) 2 (2• "+A m +"• A
A( 2cos 2) + a co - 40. 2

ml

and

+ A Am2 2 m 2  /

sin + a . ZA(..- cos =o , (4. 26)

where the trigometric identity, sin 20 = 2sin ecos 9, has been used to write

Eq. (4. 26) in the form given. Equation (4. 26) is obviously satisfied for

(2 = nir, n = 0, 1, 2, ... Only the cases 02 = 0 and ir need to be investigated,

since the same results are obtained for n ?" 2. For 02 = 0, Eq. (4. 25)

becomes

A m2 3 in 2
2  1 A m2

"(!(12) A(m-) + (a" + -L) m 1 = 0. (4.27)
m I m a cm 1

According to Descartes' rule of signs*, Eq. (4. 27) has exactly one positive

real root regardless of the values of the coefficients (the coefficients are,

of course, positive and real). It is this root which we seek as our solution

for m 2 /m 1 .

For the alternate posibility, ir = it, Eq. (4. 25) becomes

A A((m)) +m(,+ + 1 =0 (4.28)
m 1  a c m

*See any standard text on college algebra which covers the theory of
equations. For example, bf. Richardson, "College Algebrau, Prentice-Hall
Inc., New York, N. Y. , 1947.
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We again apply Descartes' rule of signs to find that Eq. (4. 28) has either two

or zero positive real roots. Therefore, a solution for = ir may or may

not exist depending on the values of the coefficients in Eq. (4. 28). In

particular, it can be shown that no roots exist at frequencies (Wo/W ) of the

order of 0. 1 or greater. This point will not be pursued further, since it is

later found that a properly optimized multiplier will operate in just the

single mode, 42 = 0.

There is a third possible solution of Eq. (4. 26) which gives a value

for 02 which is not equal to an integer multiple of it. The appropriate

solution is

+ A + A m 2 Z

cos m2 - 1 ) (4. 29)

2A( m2

This solution will only be possible when the right hand side of Eq. (4. 29) lies

between zero and one. It is later found that a, b, and c for an optimized

multiplier take on values such that the right hand side of Eq. (4. 29) is always

greater than one. Therefore, we will usually be able to neglect Eq. (4. 29) as

a possible solution.

For any of the above cases we can write the following formulas for the

1-2-3-4 quadrupler:

S2• 3@Z J4~3
R c m 2 e + ZmIm 3 e

m 4 = Rm mre - 1) , (4.30)
m 4 e

A2 J04
W mlIm 2e M- mm4 e

R • 3 Tcj - 1) , (4.31)

m 3 e
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Sj03 j(+4 -02 )W •c ml I 2mlm 3 e " 2M2 m4 e

R.c Fmm 2  + m 2 m 3 e+mme

(4. 33)
p R.

02= 8j--03 (il j '013 )

norm c s

out R 81 +---1 1 24
-"s0( ' +4.36)P n 8 ( -0) 2 m n( 

. 4norm c L

disP ouo(W2 6 2 2 2 24 35

Pdissin 1o 4m 2r( + 9m- + 16m (4. 37)

norm c

16I 8(+4R4+ M ( X )+I6

nom 2] -- (4. 38)

V° ( Smx tai ) mo+in

-5. 2 3 2

vo+,o = max m 1  F~ + max

VB+ 0-( max . max mtai

2 2 2+ 2 s (4W 39)

PI -Z(m 2) (m +4m +9 6m(.7

where the power relation. have been normalized with respect to 1P. asnormdefined by Eq. (3.12).
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In general, the jMk are complex numbers, so we must use

Condition (2. 15) rather than the special one given by Eq. (2. 17). Thus we

have

0-- m0 + 2m 1 sinwot + Zm 2 sin (Zwot +0 2 )

+ 2 m 3 sin (3wot + 43) + 2r 4 sin (4ot+44 ) 1 1 (4.40)

for all values of t.

4. 5 Solution of the 1-2-3-4 Quadrupler Equations

To properly treat this multiplier we would have to separately examine

each of the possible solutions. Rather than attack the problem in this way,

we begin by assuming 4). = 0 and then proceed as if this choice yielded the

only solution. We know that it yieldc the only solution at high frequencies.

However, at lower frequencies there may be a problem of jumping from one

mode of operation to another. If "phase jumps" from mode to mode occurred

in practice, the multiplier would probably be useless because of the resulting

efficiency and/or power level changes. Therefore, we attack the problem by

maximizing efficiency (or power output) for one mode of operation (02 = 0)

and then check to see whether any other mode of operation is possible with

the specified idler and load resistances. For the 1-2-3-4 quadrupler, it is

found that the phase stays locked with 02 = 03 = 04 = 0 for maximum

efficiency or maximum power output operation. Therefore, this quadrupler

will be a useful device when operated with an optimized load resistance.

If a non-optimum load (R 4 < R 4, opt only) is used, *phase jumping*

may be a very serious problem. This problem has not been investigated to

any extent except to show its existence. Probably the phase will remain

locked even with load resistances about one-fourth of the optimum value.

Since most multiplier designs are based on maximum efficiency or maximum

power output operation, "phase jumping" should not be an important problem.

The numerical procedures used for solving the 1-2-3-4 quadrupler

equations are the same as described in Section 3. 2 for the tripler. In this

case (02 set equal to zero), Eqs. (4. 27), (4. 21), and (4. 22) are used for the
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calculation of mZ, mi3 , and m 4 in terms of mi1 . The limit on the magnitudes

of the mk is given by Condition (4. 40) with m° = i/2 and (P. = 03 = (4 = 0.

(For maximum efficiency and maximum power output operation, 03 is equal

to zero, which is not necessarily the case under non-optimum conditions.)

Computations for maximum efficiency operation with 02 = 0 were

performed on an I. B. M. 7090 digital computer. The results are given in

Figs. 4. 9 to 4. 15. Efficiency, input resistance, load resistance, power

input, power output, dissipated power, and bias voltage are plotted as

functions of frequency for several values of R and R 3 .

The curves in the figures are qualitatively very similar to the tripler

and the 1-2-4 quadrupler curves and are interpreted in the same way. In

the figures we have neglected the factors containing Smin. If Smin is not

negligible, we must use PI instead of P for the normalization
norm norm

power, and the bias voltage as given in Fig. 4. 15 must be.modified according

to Eq. (4. 39) with m0 set equal to one-half. The average elastance is given

by Eq. (3. 19), since the solutions are for maximum drive and m° = 1/2.

A plot of the elastance waveform under typical operation is shown

in Fig. 4. 16. The low frequency values of mi, m 2 , mi 3 , and mi 4 for maxi-

mum efficiency operation with lossless idlers (R 2 = R3 = 0) are used in the

figure. For maximum drive operation, the elastance attains the values of

Smin and Smax one or more times during each cycle.

4.6 Asymptotic Formulas for the 1-2-3-4 Quadrupler

At low and high frequencies the behavior of the 1-2-3-4 quadrupler

can be described by asymptotic formulas. The limiting values of mi, imn,

m 3 , and m 4 for low frequencies can be found from the computed data. Then

the appropriate formulas are found from Eqs. (4. 26) to (4. 35) with

•*2 = 0P3 = P4 = 0. For high frequencies we use the limiting values,

Rin ft R 4  Rs and ml c 0. 25 (mik << mi1 for k > 1), in Eqs. (4. 18) to (4. 20)

and (4. 30) to (4. 35) to find asymptotic relations. These formulas are

summarized in Table 4. 2 for maximum efficiency operation with lossless

idlers. The high-frequency asymptotes apply for both maximum efficiency

and maximum power output operation.
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Ii
Table 4. 2 Asymptotic Formulas for the 1-2-3-4 Quadrupler

Low-frequency and high-frequency formulas are given for the abrupt-junction-

varactor quadrupler with idlers at 2w and 3w0 . We have assumed that

Smin is negligible in comparison to Smax, and that R= R = 0.

Low-frequency High-frequency

Maximum C MAx. c and P out

I - 45.6(-- 8.0 x 10"(--)
c o

R in .096(••), a RRa
0

R4 .250(•.)R a R
0

P. 61 2
in .022O6( 0  0. 500(-a

norm c c

Pout -7 c4
0.0o226(Zo) 4. 0 x o10 --

norm c 0
P diss I.03••2 0

.1.033(0) 0 500(0•
VP

norm c

0.330 0. 375

m01 0.1715 0.250

m 0. 0532 0. 0156(-c)
0

wZ
m 0.0693 0. 00l3(-..)

m40. 0532 5. 6 x 10" _)
150
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V

4.7 Comparison of the 1-2-4 Quadrupler and the 1-2-3-4 Quadrupler

Since two practical idler configurations exist for the abrupt-junction-

varactor quadrupler, it is of interest to compare their performance. Mvost

of the comparisons can be made by referring to Figs. 4. 1 to 4. 7 and

Table 4. 1 and to Figs. 4. 9 to 4. 15 and Table 4. 2.

The maximum efficiencies with lossless idlers for the two quadruplers

are shown in Fig. 4. 17 for comparison. Higher efficiency is obtainable from

the 1-2-3-4 quadrupler for all frequencies, although the difference is not

very large. The maximum difference in efficiency is about 13 per cent.

Also of considerable interest is the comparative power handling

capability of the two quadruplers. The power outputs at maximum efficiency

with lossless idlers are shown in Fig. 4. 18 for comparison. The 1-2-3-4

quadrupler has the highest power output at all frequencies, but the difference

is quite small. At low frequencies the ratio of the power outputs,

P out(1-2-4)/Pout(-2-3-4), is approximately 0. 867.
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V. QUINTUPLER SOLUTIONS

Unlike the tripler and the 1-2-4 quadrupler, quintuplers require two

or more idlers. There are two possible idler configurations for the abrupt-

junction-varactor quintupler with only two idlers. The first has idlers at

the second and fourth harmonics (1-2-4-5), and the other at the second and

third harmonics (1-2-3-5). Many other quintuplers are conceivable, but all

of them have three or more idlers. We will restrict our attention to the

two-idler quintuplers, even though some multiple-idler device may actually

yield better performance. There appears to be no a priori way of determining

which of the two-idler quintuplers is better so both must be analyzed.

Detailed investigation of the 1-2-3-5 quintupler formulas reveals an unusual

behavior which probably causes this device to have no practical value except

at high frequencies. No direct comparison will be made because of this

anomaly.

5. 1 1-2-4-5 Quintupler Formulas

From Eq. (2. 24) the idler and load resistance equations are

R*5 + R (Jlvt1 )(jM . 4 ) (5. 1)

-- Z(s. 1)iM.

R 4 + Rs Wc (jm2) 2  ( Z5j.2)*(jMs)
R- W0i (5 .2)

R- + R s Wc (jM 1 ) 2 - 2(jM 2 )(jM 4 ) (5.

R U. jM25s 0•

The time origin may be chosen such that jM1 is real and positive and thus

equal to its magnitude, mi1 . Equation (5. 1) then shows that the phase angle of

jM 5 is equal to the phase angle of jM 4 , and Eq. (5. 2) indicates that the

phase angle of jM 4 is twice the phase angle of jM 2. Using this information
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in Eq. (5. 3), we see that the phase angle of jM2 must be zero, so that

jMV1  1mI, jl2 = m 2 , jM 4 = m 4 , and j)&5 =m 5 .

In terms of the mk the various 1-2-4-5 quintupler formulas are

=W m m 4
Rs Rs( c M 2m5 1-1) , (5.4)

S

"4 = ( ,'So m4 -s1) , (5.5)
04

2
R Wc m l Zni 2 m 4  - 1) (5.6)

0 2

W mlm2 + 4m
R. = Rs(•-- Im + 1) (5.7)
in s W m0

P. W
Pin - 0 m I (m + + m2 (5.8)

norm c )[Co] ( )

Pout ao2[5c2
•1_4 5125m 5c

norm 8(W w mlmm5 25m5 (5.9)

nPdiss = 0) - m + m + 25m (5.10)

+4m + 16m2 + 25m5') (5.11)
nor BC- (i 1  4 2  6 4 + i 5 ,norm c

5m 5  (S)iml m 4 - 5m 5
- 0 (5.12)

1(-) (ml m 2 + m 4 m 5 ) + mI
0
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V +~ (S -S 2.2 S0___ max min rI rninz 1 711

B. + M rax
max

(5.13)

where we have set m° = 1/Z. The power relations have been normalized with

respect to Pn as defined by Eq. (3. 12).norm
The Uk have been shown to be entirely imaginary, so Condition (2. 17)

can be used as the bound on the magnitudes of the m k. For this case we

have

m 1 sin w0t +m 2 sin Zwot + m 4 sin wot +m. sin Scoot : 0.25 (5. 14)

for all values of t.

5. 2 Solution of the 1-Z-4-5 Quintupler Equations

The solution of these equations is similar to the solution of the other

abrupt-junction-varactor multiplier equations. If, for example, we know

values of mi, m 2 , m 4 , and mi which satisfy Condition (5. 14) and which

give positive values for R 2 , R14 P and R 5 , then all quantities of interest can

be calculated.

As discussed in connection with the other multipliers, we are usually

faced with the inverse problem of finding the loading conditions which

maximize either the efficiency or the power output. Both of these maxima

occur when the elastance attains the values of S min and Smax one or more

times during each cycle, that is, when Condition (5. 14) is satisfied with the
equality sign at the time t when m(t) is a maximum or a minimum.

The tripler and quadrupler equations were solved by an iterative

numerical procedure. The same is true for the 1-2-4-5 quintupler. As

with the other multipliers, we usually choose values for R 2 , t 4V R15 , and

W o/Wc and then compute the required values for the mik by iteration. It

is therefore convenient to solve Eqs. (5. 4), (5 5), and (5.6) for three of the

mk in terms of the other one. The equations are found to be simplest if

mZ is used as the reference. Thus,
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f

m4 4 ~ ro. oc

m4  8 R2 +Rs R 4 +R 8W0
+ + " mn w - 1 , (5.15)

2 5 s c

m1 _ 4 R2+R940(-) -= 2 + - (5. 16)in2  rn + s m c,

m 5  R mzw0c ml m4mz- 5 s 2c 1 z 421
m 2 __W _2M

The numerical procedure for solving these equations is the same as

described in Section 3. 2 for the tripler, except that in this case m 2 is the

control parameter. In performing the calculations, it is important that we
take only the positive real root of Eq. (5. 15), since it is the only one which

satisfies the phase condition. The pertinent computations for maximum

efficiency operation and maximum power output operation have been per-

formed on an I. B. Mvt. 7090 digital computer. Again we find that the efficiency,

power input, and power output as functions of R 5 for a given frequency and

specific values of R. and R 4 look somewhat like Fig. 3. 1 for the tripler.

For small values of the idler resistances we also find that, for practical

purposes, efficiency and power output are simultaneously maximized.

The computed results for maximum efficiency operation are presented

graphically in Figs. 5. 1 to 5. 7. In these figures we show efficiericy, input

resistance, load resistance, power input, power output, dissipated power,

and bias voltage as functions of frequency for several values of Rz and R 4 .

These plots are similar to those given for the tripler and quadruplers and

are interpreted in the same way.
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The minimum elastance, Smin' has been neglected in Figs. 5. 4 to 5. 7.
If Si is non-zero, we must use P' instead of P for the nor-

norm norm
malization power, and the bias voltage as given in Fig. 5.7 must be modified

according to Eq. (5. 13). The average elastance, So, is given by Eq. (3. 19),

since our solutions are for maximum drive.

The conditions for maximum power output are very similar to those

for maximum efficiency, at least for small values of R and R 4 . For large

values of the idler resistances the optimizations are quite different, but we

do not plot the results because in practice large idler resistances are

generally undesirable.

A plot of the elastance waveform is shown in Fig. 5. 8 for maximum

efficiency operation at low frequency with lossless idlers. For maximum

drive (as shown in the figure) Smin and Smax are attained at least once per

cycle. With some loading conditions, it is possible to attain Smin and Srain max
twice per cycle. Care must, therefore, be taken in performing the calcula-

tions to make sure that the higher maximum is used in checking Condition (5. 14).

5.3 Asymptotic Formulas fdr the 1-2-4-5 Quintupler

At low and high frequencies the behavior of this multiplier can be

described by asymptotic formulas. The limiting values of the mk for low

frequencies, as found from the computed data, are used in Eqs. (5. 4) to

(5. 13) to determine the appropriate formulas. For high frequencies we use

the limiting values, Rin s R 5 s R s, m 1 s 0.25, and mk << mI for k > 1,

in Eqs. (5. 4) to (5. 13) to find the asymptotic relations. These formulas are

summarized in Table 5. 1 for the case of lossless idlers. The asymptotic

relations for low frequencies are almost identical for both maximum

efficiency and maximum power output operation. Therefore, only one set of

low-frequency formulas is given.

5. 4 Formulas for the 1'-2-3-5 Quintupler

The formulas developed in Chapter II apply to this case with all M k zero

except for k = 0, *1, *2, *3, and *5. From Eq. (2.24) the idler and load

resistance equations are
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* Table 5. 1 Asymptotic Formulas for the 1-2-4-5 Quintupler

Mvtaximum power output and maximum efficiency are achieved with lossless

idlers, so we have set R 2 = R4 = 0. For simplicity we have also assumed

S . <<S
min max

Low frequency High frequency

Maximum C and Pout Maximum e and Pout

I - 92. 9(---) 2. 33 x lo-°10(W-.)

c 0

0
R.n 0. 1361(-E) Rs R

W0 5 5
o

R5 0. 2091- c ) Rs Rs

p. W 2O. 0178(-a) 0. 5001-.1

norm c c

P out Wo -10c 6
So0.0178(-) 1. 16 x 0 (ca

norm c 0

Pdiss 10 w0.o 2
1.65( 02.1.00-)

norm c c

0 4P 0.322 0.375

m01 0.128 0.250

m 2  0. 109 0. 0156(1c-)
0

m 0.075 3. 05 x lu '--i
4 W 0

7w 4
m5  0.046 7.63 x 10" (-L)

60
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R5 + R a c (JM 2)(JM 3)

5s - o 'J 5(. s

R 3 + Ra c (jM )(JM 2 ) (jM2 )*(jMs) (5.19)

Rs T jM3
9 03

RZ + Rs Wc (JM 1)2 - 2(jMl)*(jM 3 ) "- 2(jA 3 ) (fj 5 )
R s - ý • oj~ (5.20)

Without loss of generality, we may choose the time origin such that jMI is

real and positive and thus equal to its magnitude, mi1 . Equation (5. 18) shows

that the phase angle of jlvt equals the sum of the phase angles of jM2 and

jM 3 . When this information is inserted in Eq. (5. 19), we find that the phase

angle of jivE3 equals the phase angle of j]l.2 . Finally, from Eq. (5. 20) we

find that jM2 must be real and positive. It then follows that jM 3 and jivE5

are real and positive and equal to their magnitudes, m 3 and m 5, respectively.

In terms of the mk the various 1-2-3-5 quintupler formulas are

R 5 =R [ •-• I1 , (5. 21)
5° s .. Z- m2 -5 zm

"" =mR ;m 2 -m 2 m3 (5.22)3 11[4)
m m - 2mI m3 2m3 m

"" 2 =R m2 (5.23)

R R U'c Min 2 + m 2 m 3+1(.4in Rs [ml+ I (5.I24)

~in 2]8!norm - (c1mzmI + 3+ mj (5. 25)
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Sout w 2..ou 8(=-) (5.26)0)or C c ML 3m5o5

norm 
c

P is 0 22
P - =8(-W) Z 2M1+ m5 m 3 m 5 mI) 25ms]

norm c 0(5:2z7)
~dis s, (W0 o (m 2 +m mm2 + m 1 2+ 5 578

norm c

JE-! Smz w3 - 5m 5
L W (5:27)

Z- m2(m +m3 + m

0is o a i 2 2 2 ý i

BV1-1y--vo-- ( ) +2+m +m +Zm) +M ( + 5ax(5.329)

where we have set m° = 1/2. The power relations have been normalized with
respect to P m1 as defined by Eq. (3.12).

The 14k have been shown to be entirely imaginary, so Condition (2. 17)

can be used as the bound on the magnitudes of the mk. For this case we have

msin wot +m 2 (sin mot +m3sin 3wot +m.sin 5wot - 0. 25 (5.31)

for all values of t.

5. 5 Technique of Solution of the I -2- 3- 5 Quintuplet

The solution of these equations is similar to the solution of the other
abrupt-junction-varactor multiplier equations. If, for example, we know
values for the mk which satisfy Condition (5.(31) and which give positive

values for as2, R3, and on, then all quantities of interest can be calculated.
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More often we must find values for the mk which are compatible with

prescribed values of the resistances. In this case it is convenient to have

Eqs. (5. 21) to (5. 23) solved for the ratios of the mnk. Any one of the mk

could be chosen as the reference, but the choice of m 2 leads to the simplest

formulas:

4wo R 2 + Re
mZ3 2 m2c Rs

" 3w- 0 R 3 -+R mzwc a z 6W 0 R 3 "+Re 4 m•.wc .
2zw 5w055 + R e c i sW0 R D

(5.32)

ml 3wo R 3 + Re m 2wc Ra m 3
= -(-_•+ (5.33)

M? m2 wc R 5 R 5 + X ;F2

ms I m 2 wc R 8 m3 (5.34)

The numerical procedure for solving this multiplier is much the same

as for the other. multipliers. However, this quintupler exhibits an unusual

behavior at low to moderate frequencies which probably makes it impractical.

5.6 Anomalous Bebaviar of the 1-2-3-5 Quintupler

The 1-2-3-5 quintupler has an unusual property that can be appreciated

by studying Eq. (5. 32). We recall that the phase condition requires the jMk

to be real and positive. Therefore, the right hand side of Eq. (5. 32) must

be positive. In particular, the denominator of this equation must be positive,

which places a restriction on the permissible values of woo/wc, 2 , .R3 , and

R 5. This condition is separate from the requirement that the elastance vary

between Smin and Smax.
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Further information about this restriction can be obtained by noting

that the denominator of Eq. (5. 32) is a function of only two quantities:*

m 2 c (s 35)
-sw- Ro 3 8

and

m2 Wc Rs
m~w (5. 36)

o 5 .

Figure 5. 9 shows clearly the combinations of these quantities for which the

denominator is positive (or negative). The solid curve is for the values

which make the denominator zero.

As m 2 is varied for specific values of R3 and R 5 , both the abscissa

and the ordinate of Fig. 5. 9 are increased simultaneously along a straight

line passing through the origin. The dashed line in Fig. 5. 9 shows one such

line for R 3 = R5 a 0. If m2 is. small, then operation is in an allowed region

near the origin. If m 2 is high enough while Condition (5. 31) is still satsified,

operation is again permissible. Between these two regions there is a for-

bidden region which raises the important question as to whether operation

can pass from one allowed region to the other.

Consider a quintupler with values of R3 and R 5 such that the operating

line passes through the forbidden region, for example, the dashed line in

Fig. 5. 9. (Most practical multipliers would have operating lines that pass

through the forbidden region, since R 3 is usually small while R 5 is large.)

Before the multiplier is excited, m. = 0 and the point describing the operation

is located at the origin. If the input power is gradually increased, m2

increases, and the operation is described in Fig. 5. 9 by a point that moves

along the line indicated. For some value of the input power, the operating

point will encounter the-boundary of the forbidden region from the left in

Fig. 5. 9 (assuming, of course, that Condition (5. 14) is not violated before

*This method of investigating the anomaly was pointed out to the author by

P. Penfield, Jr.
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ALLOWED RESION -

--FORBIDDEN REGION

0 4 a
",Iw RS

Fig. 5. 9 Assumed values of R V RS, w , and m must be compatible
with the figure for the calculaledCvalues o~m1 , m V and m 5 to
be real. Lines are formed on the plot by varying m 2 for fixed
values of R 3 and R 5 . The dashed line is for R = R . The
region below the line is for R5 > R 3, and the region above the
line is for R 5 < and t

4 --_ALLOWED REGION

F ORBIDDEN REGION

0 a --/- 70
3R

j~ ~ ~ 4 +L W S I I

Fig. 5. 10 The lines shown on the plot give bounds on the values of m 2 ,
R 1 R., and w /W such that the 1-4-3-5 quintupler will a y•ys
be3 operating in an allowed region. The lin~s are plots of
Conditions (5. 37), (5. 38), and (5. 39) with equality signs.
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this point is reached). The operating point cannot move into the forbidden

region because the phase condition would be violated, and it cannot depart

from the operating line because R 3 and R.5 are fixed. Therefore, the

operating point remains near the boundary of the forbidden region as the

power input is further increased. Finally, the power input reaches a point

where the varactor is fully driven, but the operating point has not moved any

significant amount. Any further increase in the input power drives the

varactor into either conduction or avalanche breakdown (or both). When this

occurs the resulting nonlinear effects (or, perhaps, transient effects) may

cause the mrLultiplier operation to switch to the allowed region beyond the

forbidden region. It is not clear that this will happen and even if it does

it may be an undesirable feature for a practical multiplier.

The above argument indicates that the 1-2-3-5 quintupler will usually

be operating in a region very near the origin in Fig. 5. 9 unless some transient

effect occurs such that operation is switched to another segment of the

allowed region where m 2 is large. Operation near the origin corresponds

to small values of m 2 for which the efficiency is low. Conversely, large

values of m 2 give high efficiency. This leads us to conclude that this

multiplier would normally be operating in a low-efficiency mode or, perhaps,

it might be susceptible to "jumping" from high- to low-efficiency operation

(or vice versa) due to power level changes. Neither of these possibilities

are desirable in a practical multiplier. Therefore, we are inclined to reject

the 1-2-3-5 quintupler as a low-frequency multiplier.

There are certain regions of operation for this multiplier in which

the forbidden region is never encountered. For example, if the operating

line is steep enough, then operation is always in the allowed region. In

particular, if

3 s 4. 17 (5.37)

5 +5

then all values of m 2 are allowed. This corresponds to the region to the

left of line (1) in Fig. 5. 10. If Condition (5. 37) does not hold, then some
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values of m2 are forbidden (for example, if R 3 < 3.17 R some values of

m2 are forbidden because R, must be non-negative).

Another bound which assures that we will be operating in the allowed

region is

mzc 8s5• 3+K ;I (5. 38)

0 3 s

This corresponds to the region to the left of line (2) in Fig. 5. 10.

Condition (5. 38) is always satisfied for high frequencies so the 1.02-3-5

quintupler can be used as a high-frequency multiplier. Similarly, we are

above the forbidden region (above line (3) in Fig. 5. 10), if

mw + R a 20.0 o (5.39)

Uo _ 5 +aR

If any one or more of Conditions (5. 37) to (5. 39) holds, the corresponding

values of w o/Wc, m 2 1, Rt3 and R.5 are allowable. It should be emphasized

that this condition is separate from Condition (5. 31); values that art com-

patible with Fig. 5. 9 are not necessarily realizable. Both Condition (5. 31)

and the requirements of Fig. 5. 9 must hold.

5.7 High-Frequency Solution of the 1-2-3-5 Quintupler

At high frequencies Condition (5. 38) always holds. For these

frequencies, the 1-2-3-5 quintupler exhibits an efficiency several times tlFat

of the 1-2-4-5 quintupler. The 1-2-3-5 quintupler also has a power output

greater than that of the 1-2-4-5 quintupler. The pertinent high-frequency

formulas are summarized in Table 5. 2. In deriving the formulas given in

this table, we have used the limiting values, Rin ", R 5 s, Ra, mI ; 0. 25, and

mk<< mI for k> 1, inEqs. (5. 21) to (5.30). We have also assumed that

the idler terminations are lossless, that the varactor is fully pumped, that

Smin is negligible, and that the output load is adjusted for maximum power

output and efficiency.
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Table 5.2 Asymptotic Formulas for the 1-2-3-5 Quintupler

High-frequency behavior of the abrupt-junction-varactor 1-2-3-5 quintupler

with lossless idler terminations. We have neglected Smin in comparison to
Smax

-10 Wc 8  °2
E : 16.6 x 10 (-) P. M 0. 500 P 0)W in norm W~o c

10 2

R.R P sw8, 28 xl10- P
in s out norm(W 0

w 2

5 Rs Pdiss w 0. 500 norm(wo)
c

0 + 0. 375

S2
mI s 0. 250 m 3 u O. 001 3( -- 1

0

m 2  0. 0156 . m 2.03 x 10-6(c
W7 5 W
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VI. SEXTUPLER SOLUTIONS

The sextupler, like the quintupler, requires two or more idler

*currents. Two sextuplers are possible with two idlers. One has idlers at

the second and fourth harmonics (1-2-4-6), and the other has idlers at the

second and third harmonics (1-2-3-6). There appears to be no a priori way

of deciding which of these is better, or in fact of knowing whether either is

better than a sextupler with more than two idlers. In this chapter we restrict

our attention to the two-idler sextuplers. The two sextuplers will be com-

pared to demonstrate the differences in their expected performances.

6.r1 1-2-4-6 Sextupler Formulas

From Eq. (2. 24) the idler and load resistance equations are

- , (6.1)

R 4 + R - c (Ivt) 2 - 2(jm 2 )*(jm 6 ) ,(6. 2)
-- x--= Tw-jM 4Rs 0•

R2 + Rs Wc (jM•) 2 _ 2(jM 2 )*(jM 4 ) " Z(jM4)*(jM 6 )

jM . (6.3)
s 02

We choose the time origin such that jMI is real and positive and thus equal

to its magnitude, mi. Equation (6. 1) shows that the phase angle of jM6 is

equal to the sum of the phase angles of jM 2 and jL' 4 . When this information

is used in Eq. (6. 2), we find that the angle of jM 4 is twice the angle of jM 2 .

Finally, Eq. (6. 3) shows that the phase angle of jMi2 is zero. Thus,

jM2 = m2. jl' 4 = m 4 , and jM 6 = m 6 , where, as usual, the mik are the

magnitudes of the Mkl

In terms of the mk the various 1-2-4-6 sextupler formulas are

•cj mm4

R 6 = Rs(-,. m62 4 1), (6.4)
o 6
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R 4 =R[ m 2 (m 2  
(6.5)

l -ZM(m 2 +m 6 ) (6.6)
R2 = [ R2 

(6.6

R.in =Rs ( oo 2 + (6.7)

0

P.W2

iorn 8(0) m Z(o + 1) + (6.8)

norm c 0

out = 8( 2) Wc m 4 m 6 - 36m6) (6.9)

norm c 0

Pdiss 8( m2(rnlz - 6mm4r) + + 36m ,(6.10)

norm C

Pdiss,v 8( -.o)2(ml2+ 4m( + 16m 2 + 36m•2 (6.11)

norm c
c

6m 6  Z o m2 m 4 - 6m 6

0- (6.12z)
nl W c

-- M M2+rn
1 1

0

Vo+ 47 Srnax - Srnin) 212 2 ma ) + Srnin

Bmax I

(6. 13)

where we have set mo = 1/2. The power relations have been normalized with

respect to P' as defined by Eq. (3. 12).
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The M_ have been shown to be entirely imaginary, so Condition (2. 17)

can be used as the bound on the magnitudes of the mk. For this case we

have

mI sin wet +m sin Z t+ m 4 sin 4ot + m 6 sin 6wot : 0.25 (6. 14)

for all values of t.

6. 2 Solution of the 1-2-4-6 Sextupler Equations

The solution of these equations is similar to the solution of the other

abrupt-junction-varactor multiplier equations. For example, all quantities

of interest can be calculated, if we know values of mi, m 2 , m 4 , and m 6

which satisfy Condition (6. 14) and which give positive values for R.2 , R 4,
and R 6 .

More often, however, we are interested in finding the loading condi-

tions required for maximum efficiency or maximum power output operation.

Both of these maxima occur when the elastance attains the values of S .
m in

and S max one or more times during each cycle, that is, when Condition (6. 14)

is satisfied with the equality at some time, too when m(t) is a maximum.

The 1-2-4-6 sextupler equations, like those for the other abrupt-

junction-varactor multipliers, are solved by an iterative numerical procedure.

As with the other multipliers, we usually choose values for the idler

resistances, the load resistance, and the frequency and then compute the

required values for the m k. It is, therefore, convenient to solve Eqs. (6. 4),

(6. 5), and (6. 6) for three of the mik in terms of the other one. The equations

are found to be simplest if m 2 is used as the reference:

m 4 1 ( 6 1 5
mi 2  8W0o R4 + Rs m2Wc R (6.15)

maWc Rs +

mi 6  m4 m 2Wc RsmZ mZ(6. 16)

2 2 0 6  s
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4w 0 c R 2K+ Rs m4)_ m6
2 - Wmt (6.17)

The numerical procedure for solving these equations is the same as

described in Section 3. 2 for the tripler, except that in this case m 2 is the

cantrol parameter. Computations for maximum efficiency and maximum

power output operation have been performed on an I. B. M. 7090 digital com-

puter. Again we find that the efficiency, power output, and power input as

functions of R 6 for a given frequency and specific values of R2 and R4 look

somewhat like Fig. 3. 1 for the tripler. For small values of the idler

resistances we find that, for practical purposes, efficiency and power output

may be simultaneously maximized.

The computed results for maximum efficiency operation are presented

in Figs. 6. 1 to 6. 7. In these figures we show efficiency, input resistance,

load resistance, power input, power output, dissipated power, and bias

voltage as functions of frequency for several values of R 2 and R 4 . These

plots are similar to those given for the other multipliers and are interpreted

in the same way.

The minimum elastance Smin has been neglected in Figs. 6. 4 to 6. 7.

If S . is not negligible, we must use P' instead of P for themin norm norm
normalization power, and the bias voltage as given in Fig. 6.7 must be

modified according to Eq. (6. 13). The average elastance, S 0 , is given by

Eq. (3. 19), since our solutions are for maximum drive.

The conditions for maximum power output are very similar to those

for maximum efficiency, at least for small values of R, and R 4 . For large

idler resistances the optimizations are quite different, but we do not plot the

results because they are of little practical interest.

A plot of the elastance waveform is shown in Fig. 6. 8 for maximum

efficiency operation at low frequency with lossless idlers. For maximum

drive (as shown in the figure) Smin and Smax are attained at least once per

cycle. With some loading conditions, it is possible to attain Smin and Smax

twice per cycle. Care must, therefore, be taken in performing the calculations

to make sure that the highest maximum is used in checking Condition (6. 14).
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Fig. 6.4 Power input for maxium efficiency operation of a m:I-4-6

sextupler for a variety of idler resistances. Rz and R 4.
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Fig. 6. 5 Power output for maximum efficiency operation of a 1-4-4-6
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maximum efficiency operation.

86



0.40

"R"aRR-IoOORs 34T61

24

0.34 R2 .-R.....

01 0

10"4© 10" 3we 10" 0.1 re 1 , I IO

INPUT FREQUENCY Fo

Fig. 6.? Bias voltage for a 1-2-4-6 sextupler adjusted for maximum
efficiency operation for a variety of idler resistances* R 2Zand R4.S0 4weo , 3w 1-2. 1w -4 -e Iowa

tan

TIME -
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adjusted for maximum efficiency operation with aonsles,
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6.3 Asymptotic Formulas for the 1-2-4-6 Sextupler

Like the preceding multipliers, the 1-2-4-6 sextupler behavior can be

described by asymptotic formulas at low and high frequencies. The limiting

values of the mk for low frequencies, as found from the computed data, are

used in Eqs. (6. 4) to (6. 13) to determine the appropriata formulas. For

high frequencies we use the limiting values, Rin 0' R6 f Rs, ml as 0.25, and

mk << m, for k > 1, in Eqs. (6.4) to (6. 13) to find asymptotic relations.

These formulas are summarized in Table 6. 1 for the Iossless idler case

(R 2 = R4 - 0). One set of asymptotic relations describes the high frequency

performance, since efficiency and power output are simultaneously maximized.

Both maximum efficiency and maximum power output relations are given for

low frequencies.

6. 4 1-2-3-6 Sextupler Formulas

The second idler in this sextupler is at the third harmonic, rather

than the fourth harmonic, so the formulas are somewhat different from those
given in Section 6. 1 for the 1-2-4-6 sextupler. From Eq. (2. 24) the idler

and load resistance equations are

R6 + Rs a Wc (jM 3)

Z = -~) (6. 18)

R 3 +Rs W c (JMI)(JM2 ) - (JM 3 )*(JM 6 ) (6.19)
3w jM3 '(.19

o 0J3

R= ...W (j. 2 _ Z(JM (6. 20)

5 0

As before, we find it convenient to choose the time origin such that JMI is

real and positive. Equation (6. 18) shows that the phase angle of JM 6 is

twice the phase angle of JM3 . Use of this information in Eq. (6. 19) shows

that the angle of JN( 3 is equal to the angle of JlM2 . Then, from -Eq. (6. 20),

we find that JM2 is real and positive. Therefore, each JMk is real and

positive and thus equal to its magnitude mk.
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Table 6. 1 Asymptotic Formulas for the 1-2-4-6 Sextupler

Low-frequency and high-frequency formulas are given for the abrupt-junction-

varactor sextupler with idlers at 2 wt0 and 4wo. We have assumed that Smin

is negligible in comparison to Smax' and that R2 = R 4 = 0.

Low Frequency High Frequency

Maximum e Maximum Pout Max. e and Pout

to .WA 13, to1,0
too 1 - 104 0 9. 10 xt lo -E1 -99-- W

c c o

Wa S W )
o toRO.1(c) . 1301(-.iRs R

Rin 0. 017 8 - 0Rss

o .

R6  0. 135( c O. 110( c--)R R
0 0

P. W
in 0 .2(o) 0. 500(-a)

norm cc c

P 0.t W0 .13 w 8
Pout 0.0219(-) 0. 0225(z-) 4.55 x o ( 8

norm c c 0

P dis s w
PT 2.18( 2.34('-) 0.500(•2)
norm c c c

0 + 9  0.340 0. 34Z 0.375

vB+

m0 0. 153 0. 147 0.250

m 2  0.117 0.131 0. 0156(-E)
2 0

w 3
M0. 067 0. 055 3. 05 x 10 5 ( S.)

8WcS
m0.058 0. 066 3. 97 x 10-(C
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In terms uf the mrk, the various 1-2-3-6 sextupler formulas are

2
w m6

3= R m3 -1) , (6. 21)

1 2

w m 1 - 2mlm3

R1) = R,(E + 1) (6.24)
in8w 0 mm

pin a o2 w

i = --8 + o + (6.25)

out w 2( 3wc 2 36cm 2 36221Pot 8( oW (.)__ m3 m66
= • m-m 6 -36 ) ,(6. 26)

norm c 0

P diss - w )2-- (m 2 2+ m m 3m 2 2 + 36m ,

T - Z(-2 1 3 3m +m
norm c L (627)

Pdiss, v 8(w) (i2 + 4m 2 + 9m__ + 36m ) (6.28)-P w 1 + 2af + 3+ 6)

norr-, c

3m 6  - 12
S 6 3(6.29)

Z-- m2 (ml + m 3 ) +I 1

0
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V 0 + S a Smin) [1 + 2(m 2 +m2 + 2 Smin

max 16x

(6.30)

We have used PI as defined by Eq. (3. 12), to normalize the power

relations, and we have set m 0  1/2 to write the bias voltage in the form

given by Eq. (6. 30).

The Mk are imaginary, so Condition (2. 17) can be used as the bound

on the magnitudes of the mik:

miI sin wt + m2 sin Zwot + M3sin 3wot + m6 sin 6wot :S 0. 25 (6. 31)

for all values of t.

6. 5 Solution of the 1-2-3-6 Sextupler Equations

The technique for solving these equations is similar to that used for

the 1-2-4-6 sextupler. If mi, m 2 , mi3 , and m 6 are known, then all

quantities of interest can be calculated. More often, however, the mk must

be computed for specified values of R 2 , R13 R 6 , and wo/wc such that

Condition (6. 31) is satisfied. Usually we must find the loading conditions

required for maximum efficiency or maximum power output operation. These

maxima occur when the varactor is fully driven, that is, when the elastance

attains the values Smin and Smax one or more times during each cycle.

Thus, the problem is to find values for R 2', R 3' and R6 such that efficiency

or power output is maximized. The values of the mik must be compatible

with the load and idler resistances, and they must be such that Condition (6. 31)

is satisfied with the equality sign at the time, to, when m(t) is a maximum.

The 1-2-3-6 sextupler equations, like those for the other abrupt-

junction-varactor multipliers, are solved by an iterative numerical procedure.

Usually, we choose values for the idler resistances, the load resistance,

and the frequency and then compute the required values for the mik. It is,

therefore, convenient to solve Eqs. (6. 21), (6. 22), and (6. 23) for three of

the mk in terms of the other one. If we choose mI as the reference, then
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m 3 m 36 R+R R+R R R3 3 o 3 s 6 a 6  s 6 b

(6. 3Z)

m l _ G - 2 -) , (6.33)m m+ R s m I

m6 m 1c 8s ",3
ml T6+-T (,iF) (6.34)

The cubic equation for m 3 has only one real root which lies between zero

and 1m. Some other mk could be chosen as the reference, but it is

apparently not possible to avoid a cubic equation. The choice of m 1 as a

reference seems to be preferable, since m 1 goes to the fixed limit of 0. ZS

at high frequencies which is convenient when solutions are obtained by

iterative methods.

The above equations have been solved numerically on an I. B. M. 7090

digital computer for maximum efficiency and maximum power output operation.

Efficiency, power input, and power output as functions of R.6 for a given

frequency and specific values of R 2 and R.3 are found to look somewhat like

Fig. 3. 1 for the tripler. Thus, for practical purposes, efficiency and power

.output may be simultaneously maximized (at least for small values of the

idler resistances).

The computed results for maximum efficiency operation are presented

in Figs. 6. 9 to 6. 15. In these figures we show efficiency, input resistance,

load resistance, power input, power output, dissipated power, and bias

voltage as functions of frequency for several values of R2 and R.3 . These

plots are similar to those given for the other multipliers and are interpreted

in the same way.

The minimum elastance S min has been neglected in Figs. 6. 12 to 6. 15.

When S is not small in comparison with Sx, PI must be used as
m in ma'norm

the normalization power. Also, the values given in Fig. 6. 15 for the bias
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voltage must be multiplied by the factor (S - S / A 2 and thenmax min) 'max adte
added to S min/Smax to find the bias voltage when Smin is not negligible.

Since the solutions are for maximum drive, the average elastance is given

by

S +S
4" max min (6.35)

The conditions for maximum power output are very similar to those

for maximum efficiency, at least for small values of Rz and R.For

large idler resistances the optimizations are quite different, but we do not

plot the results because they are of little practical interest.

A plot of the elastance waveform for maximum efficiency operation

with losslesa idlers at low frequencies is shown in Fig. 6.16. For maximum

drive Smin and Smax are attained at least once per cycle. With some

loading conditions, it is possible to attain S min and Smax twice per cycle.
Therefore, care must be taken in performing the calculations to make sure

that the highest maximum is used in checking Condtion (6. 31).

6.6 Asymptotic Formulas for the 1-2-3-6 Sextupler

The performance of the 1-2-3-6 sextupler at low and high frequencies

can be described by asymptotic formulas. The low-frequency formulas are

found by using the limiting values of the mk in Eqs. (6. 21) to (6.30). At

high frequencies the input and load resistances both become nearly equal to

the series resistance of the varactor, while the mk become small, except

mI which-approaches 0. 25. These formulas are summarized in Table 6. 2

for the lossless idler case (R 2 = K3 = 0). One set of asymptotic relations

describes the high frequency performance, since efficiency and power output

are simultaneously maximized. Both maximum efficiency and maximum

power output relations are given for low frequencies.

6.7 Comparison of the 1-2-4-6 ard 1-2-3-6 Sextuplers

Since there are two practical idler configurations for the abrupt-

junction-varactor sextupler, it is of interest to compare their performance.

Most of the comparisons can be made by referring to Figs. 6. 1 to 6.7 and

Table 6.1 and to Figs. 6.9 to 6.15 and Table 6.2.
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Table 6. 2 Asymptotic Formulas for the 1-2-3-6 Sextupler

Low-frequency and high-frequency formulas are given for the abrupt-junction-

varactor sextupler with idlers at Zo and 3w . We have assumed that Smin

is negligible in comparison to Smaxi and that R. = R 0.

Low F.requency High Frequency

mfaximum M Maximum Pout Max. e and Pout

w W o 1.81x o l~ c " 10

I - 134(1°) 1 - 154- 2..87 x10 (Za)

R.n 0. 0o411 R 0. 059(•c)R 8  a
0 0

w ~Ca
R 6  -0. -1 14F--)R8 0.062( c) R 8  a

60 -0

in 0

in 162( -2 ) 0. o1E3( - 0. 5 00(0O. O13-)0 50-

norm c c c

'a out -12 618
out 0.0162() 0.0183(---) 1. 44 x10 (Z- )

norm c c 0

Pdiss w. 17 --• 2 Wo o

2.17(_ W . 83(•- 0. 500oz;-1
norm c c c

S0.381 0.363 0.375

m 0.222 0.198 0.250

m? 0.027 0.039 0.0156(1)
0

WO
2

m 0.111 0.099 0. 0013(..)
3 410

m. 054 0. 078 7. 06 x 10 (_
9Wo
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The maximum efficiencies with lossless idlers are shown in Fig. 6. 17

for comparison. Higher efficiency is obtainable from the 1-3-4-6 sextupler

for frequencies up to approximately 0. lwo, although the difference is not very

large. The maximum difference in efficiency is about 11 per cent. For very

high frequencies (w greater than about 0. l ) the 1-2-3-6 sextupler gives

higher efficiency, although this fact is not evident in Fig. 6. 17 because both

efficiencies are so low. (This may be appreciated from a comparison of the

high-frequency relations given in Tables 6. 1 and 6. Z )

Also of considerable interest is the comparative power handling

capability of the two sextuplers. The power outputs at maximum efficiency

with lossless idlers are shown in Fig. 6. 18 for comparison. The 1-2-4-6

sextupler has the highest power output for frequencies up to approximately

0. 1Wc, while at very high frequencies the 1-2-3-6 sextupler delivers the

most power. At low frequencies the ratio of the power outputs,

P (1-2-3-6)/P (1-2-4-6), is C. 74, while at high frequencies this ratio
out out

becomes 3. 16.
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VII. OCTUPLER SOLUTION

There is only one possible two-idler configuration for an octupler.

It is one with idler currents flowing'at the second and fourth harmonics, and

is called a 1-2-4-8 octupler. Obviously, there are many multiple-idler

configurations which would allow multiplication-by-eight, but we will not go

into this problem because it becomes extremely complicated. The 1-2-4-8
octupler is relatively easy to analyze and is, therefore, the one which we

will discuss, although it is not necessarily the best possible octupler.

7. 1 1-Z-4-8 Octupler Formulas

The formulas in Chapter 11 apply to the octupler with all )Ak equal to
zero except for k = 0, *1, *2, *4, and *8. The ;'ler and load resistance

equations are

R 8 + Rs a Wc (jM4 ) 2

a 0 8

"*4 + Rs 8 c (jM2)2 - Z(jM 4 )*(jM8) (7.2)
R .W- jlvi45 04

* +R 5  c (jM) -(j

-
. (7.3)

5 0

Equation (7. 1) shows that the phase angle of jM8 is twice the angle of jM 4 .

Then, Eq. (7. 2) indicates that the angle of jM 4 is twice that of jMZ*. When

this information is used in Eq. (7 3), we find that the phase angle of jMZ is

twice the phase angle of jMI*. We can without a loss of generality assume

that jM 1 is real and positive. Then each jMk is real and positive and thus

equal to its magnitude mik, i. e., jM 1 = Mi, lj 2 =m i 2 , j' 4 = m 4 , and

jM8 = M 8
In terms of the mk the various 1-2-4-8 octupler formulas are
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R~ 1 1R w, I (7.4)

"4 'a Tw m8

0 4

wm2m
R R(.1"-"•o 1n 2m 4  17.6)

o 2

P. wZw
R. R + m m 1) (7.7)

Rin 8 Rs(o 2• 1 77

in o c 2 2
(- ) (a-)nm 2 + m 1  (7.8)

norm c 0

Pout w 2 w c 2 2
8(1w a) (4 -m4 me - 64m 8) (7.9)

norm c (

Pdiss w 8o2 2 21
3dis = 8(_Z - (m m M - 4m 4 m + m + 64m 1 (7. 10)

norm

diav w 2 2 2 2 2
( 8a2.) + 4m + 16m 4 + 64m 8 ) (7.11)

norm c

'_c 2 .16m 8
4 8 o (7. 1Z)

mi c- m 2 + 1
0

V° +9 Smax Stmin ) 1 (m + +m 2 2 S.v.-*B+Zi 1 +,m +mQ) + !~.

VB + Sax max

(7.13)
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We have set m 0 equal to one-half in order to write the bias voltage in the

form given by Eq. (7. 13). The power relations have been normalized with

respect to Pono' which is defined by Eq. (3. 12).

We can use Condition (2. 17) as the bound on the magnitudes of the ink#

since all of the Mk have been shown to be imaginary. The required condition

for this specific case is

m sin wt +msin Zw tm 4 sin 4wot+m8sin 8wot S O.Z5 (7. 14)

for all values of t.

7. Z Solution of the I-Z-4-8 Octupler Equations

The technique of solution of these equations is similar to that for the

other multipliers. If values for the mk are known, then all quantities of

interest can be calculated. On the other hand the mk values must be calculated

when other information is available. The usual problem is to find the loading

conditions required for maximum efficiency or maximum power output

operation with the varactor fully driven. For the solution of this problem

we usually begin by choosing values for R 2 , R 4 , and R8 and then compute

the required values for the mk such that Condition (7. 14) is satisfied with

an equality at the time when m(t) is a maximum. The load resistance is

then varied and the calculations repeated until the desired maximum has been

found.

Since we are usually asked to find values for the mk which are

compatible with specific values of R.2 , R 4 , and R 8 , it is convenient to solve

Eqs. (7. 4), (7. 5), and (7. 6) for three of the m k in terms of the other. If

m4 is chosen as the reference, the simplest equations result:

m 8 4c Rs (7.15)

F4 -r o 8+ Rs

(m 2 8W 0 R4 + Ra m 4 'c Rs

105



! (_~m_1 2 .m 2  •o R'2 +÷R

)7 4 m4n + 2). (7.17)
4 c s

These formulas, together with a specification of the drive level, are sufficient

to determine the mk uniquely. In the usual case the drive level is specified

to be such that the elastance attains the values Smin and Smax one or more

times during each cycle.

The above equations have been solved numerically on an I. B. IM. 7090

digital computer for maximum efficiency and maximum power output operation.

As was the case for the other multipliers, the 1-2-4-8 octupler can-be, for

practical purposes, maximized simultaneously for efficiency and power

output (at least for small values of the idler resistances).

The computed results for maximum efficiency operation are presented

in Figs. 7. 1 to 7. 7. In these figures we show efficiency, input resistance,

load resistance, power input, power output, dissipated power, and bias

voltage as functions of frequency for several values of the idler resistances,

R 2 and R4. These plots are similar to those given for the other multipliers

and are interpreted in the same way.

The minimum elastance,. Smin., has been neglected in Figs. 7.4 .to

7. 7. When Smin is not negligible, we must replace the normalization power

Pnorm with PInorm The bias voltage values as given in Fig. 7. 7 must be

modified according to Eq. (7. 13) when Smin is important. Since the solutions

are for maximum drive, the average elastance is given by Eq. (6.35).

The conditions for maximum power output are very similar to those

for maximum efficiency, at least for small values of R 2 and R 4 . For large

idler resistances the optimizations are quite different, but we do not plot

the results because they are of little practical interest.

A plot of the elastance waveform for maximum efficiency operation

with lossless idlers at low frequencies is shown in Fig. 7. 8. Like several

of the other higher-order multipliers, the elastance waveform for the

octupler may attain the values of Smin and Smax more than once per cycle.

Therefore, the calculations must be carefully performed to make sure that

the highest maxirrnum is used in checking Condition (7. 14).
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7. 3 Asymptotic Formulas for the 1-2-4-8 Octupler

For low and high frequencies the performance of the octupler can be

described by asymptotic formulas. These formulas are summarized in

Table 7. 1 for the lossless idler case (R.2 = R 4 = 0). At low frequencies the

limiting values of the mk (as found from the computed data) are used in

Eqs. (7. 4) to (7. 13) to find the desired formulas. For high frequencies we

use the fact that m 1 approaches 0. 25 while the other mk become small to

obtain the asymptotic relations (we also use Rin R 8 R 0).
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Table 7. 1 Asymptotic Formulas for the 1-2-4-8 Octupler

Low-frequency and higlh-frequency formulas are given for the abrupt-junction-

varactor octupler with idlers at Ztoo and 4w . We have assumed that Smin

is negligible, and that the idler terminations are tuned and reactive.

Low Frequency High Frequency

Maximum e Mvfaximum Prout Max. e and P out

0 1 (9 14
1 - 168-- 1 - 193 2-2 8.67 x 10

C c o

R. 0. 103(-) R 0. 116( C)R R
in W 8 5

0 0Rs 0. 150( s coR. 076( rc-) R Rs
0 0

P. Wo o wo 2
n 0.0198(-) o.0215( -) .500(-)

norm c C C

0.019g••-) 0. 0215( 2-) 4. 34 x 10 - (--E

norm c c 0

Pdiss W_ 2  w 2  WZS3.33() 4. 17(-2) 0. 500(1)

norm c C c

V0o
S0.351 0.352 0.375

m 0.155 0.153 0.250

i 2  0.103 0.116 0.0156 -c

0

m4  0.117 0.100 3.05 x 10-

0.045 0.067 2.91 x-
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VIII DISCUSSION

In the preceding analyses we have made a few assumptions so that we

could derive fundamental performance limits for varactor frequency multipliers.

Some of these restrictions can be removed to give better estimates of the

performance which can be obtained in practical devices. For example,

coupling network losses were neglected in the theory except at the idler

frequencies. These losses can be accounted for as follows: 1. Lump the

input circuit losses with the "input resistance" to obtain the actual input

resistance; 2. Compute the actual load resistance as the difference between

the theoretical load resistance and the output circuit losses; 3. Determine

input and output circuit efficiencies from the known values of the losses, the

load resistance, and the "input resistance"; 4. Calculate the expected

overall efficiency as the product of the theoretical efficiency with lossy idler

circuits, the input circuit efficiency, and the output circuit efficiency.

Case capacitance presents a more difficult problem. For low-

frequency varactors the case capcitance is usually small compared to the

nonlinear capacitance, and therefore its effect is small. However, high-

frequency varactors usually have case capacitances of approximately the

same values as the nonlinear capacitances, and we therefore expect the case

capacitance to have a significant efiect on performance. The best way to

handle this problem, from a theoretical standpoint, is to tune out the case

capacitance at all frequencies of importance. This approach, however, is

not always feasible in practice, particularly when the coupling networks are

realized with distributed parameter elements (coaxial line or waveguide,

for example). If the case capacitance is not negligible and it is not tuned

out, then its degrading effect on performance can be determined by the usual

techniques of circuit theory.

Lead inductance is a very important element when fundamental limits

on bandwidth are sought. However, for narrow-band applications, it is

relatively unimportant because it can be simply included in the series tuned

circuit at each frequency.

Throughout the analysis tuned conditions were assumed in the output

and idler circuits. This assumption is not necessarily valid, since more
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favorable current amplitudes may be obtained in a detuned mode of operation.

In fact, there may be significant advantages to be gained by not tuning the

idler circuits (bandwidth, for example, may-be improved). The addition of

the phase variables in the untuned condition makes the theory much more

complicated. Furthermore, at low frequencies the efficiency is already so

high that any improvement would bi negligible. At high frequencies all

harmonic currents, except the fundamental, become small so that detuning

would have little or no effect. In the mid-frequency range some improvement

in efficiency might be expected (perhaps 2 or 3 per cent).

In analyzing the various multipliers, we have tacitly assumed an

idealized coupling network of the general type depicted in Fig. 1. 2. Obviously,

in practice network realizations will be quite different. Idler circuits will

very often be built into the input and output circuits. Also, there will very

frequently be impedance transformations between the varactor terminals and

the load and source terminals. In any case, however, the coupling networks

and the actual load and source impedances should be such that the constraints

of the theory are satisfied, that is, the impedances seen at the varactor

terminals should be the optimum values as given by the theory regardless of

the other details of the coupling network.

The preceding theoretical treatment assumed that the varactor was

fully driven. If the available drive power is not sufficient for full drive, then

the theory must be modified. For a particular varactor this can be done by

considering an equivalent, fully-driven varactor with different values of
Stmin, SmaxI VB0 and V min (same R 8s). Obviously, the cutoff frequency

(or figure of merit), w c, will be reduced as will the normalization power.

The equations, however, will remain the same and the graphs will still be

applicable when properly modified by the new values of Smin' Smax' V BP

V min, wc, and Pnorm" The actual calculation of the performance may be

quite difficult, since the new values of w c and Pnorm must be chosen to be

compatible with the specified drive level. A trial and error procedure will

probably be required, but convergence to the desired result should be rapid.
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We have disregarded one important mode of operation of the varactor

which is not yet fully understood. This is the overdriven case when the

conduction mechanism of the varactor fails. When this occurs (usually at

quite high frequencies), the power input can, in many instances, be con-

siderably increased with little or no deterioration of performance (sometimes

there is an improvement). This is believed to be the result of charge storage,

i. e. , the input power is not converted to d. c. power by rectification but is

stored in the varactor as useful energy which can be returned as harmonic

energy when the current direction reverses. A particularly advantageous

feature of this type of operation is that performance appears to be relatively

insensitive to power level changes which is not the case with normal opera-

tion in the non-conducting region. As this phenomenon becomes better

understood it will probably become a more important factor in the design of

practical devices. (A more detailed discussion of the implications of this

phenomenon in practical devices has been given by Penfield. 1O)

8. 1 Comparison of the Efficiencies of the Various Multipliers

It is interesting to compare the various abrupt-junction-varactor

multipliers we have described. For generality we also compare their

performance with those of the abrupt-junction-varactor doubler5 and the

graded- junction-varactor doubler.

In Fig. 8. 1 we plot the maximum efficiency of the abrupt-junction-

varactor doubler, tripler, 1 2-4 quadrupler, 1-2-3-4 quadrupler, 1-2-4-5

quintupler, 1-2-4-6 sextupler, 1-2-3-6 sextupler, and 1-2-4-8 octupler.

We also show the maximum efficiency of the graded-junction-varactor doubler.

These are plotted as functions of output frequency rather than input frequency.

Lossless idler terminations are assumed in each case.

At low frequencies all of these curves have the asymptotic behavior,

6 1 out

c

where a is not a constant for all mutlipliers but depends on the particular

type and order of the multiplier. The values of a for the various multipliers
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Fig. 8. 1 Maximum efficiency for several abrupt-junction-varactor
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varactor doubler. All idler terminations are assumed to be
los ale 56.
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are given in Table 8. 1. (The cascade figure of merit, an/(n-l), given in

Table 8. 1 will be discussed shortly.)

Table 8. 1 Cascade Figures of Merit

L-, this table we give values of a and an/(n-1) for the various abrupt-junction-

varactor multipliers which have been solved and for the graded-junction-

varactor doubler. Lossless idler terminations have been assumed.

Multiplier a n

X- (Graded) 13. 0 26. 0

X2 9.95 19.9

X3 11.6 17.4

X4 (1-2-4) 15.6 20.8

X4 (1-2-3-4) 11.4 15.2

X5 (1-2-4-5) 18. 6 23.3

X6 (1-2-4-6) 16.6 19.9

X6 (1-2-3-6) 22.3 26. 8

X8 (1-2-4-8) 21.0 24.0

An alternate formula for the low-frequency efficiencies can be found

by observing that the right-hand side of Eq. (8. 1) is simply the first two

terms of the power series expansion of

e -aOut/c- Thus, we try

e = "( /W utJ• c ) (8. 2)

as a possible low-frequency asmptotic relation for the multipliers. 8

Empirically, it is found that Eq. (8. 2) has a wider range of validity than

Eq. (8. 1); and, in fact, Eq. (8. 2) agrees within approximately 3 per cent

with the efficiencies given in Fig. 8. 1 for output frequencies up to about

0. 1 W.c
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The overall efficiency of a complete multiplier chain is the product of

* the efficiencies of the individual stages. Since the exponents add when ex-

ponentials are multiplied together, Eq. (8. 2) is an especially convenient

form for calculating the overall efficiency. For the special case of a cascade

of m multipliers each of order n, we can write8

-(n+n 2 +... +nm )V(GO/Wc)S- e ,(8.3)

where we have assumed that all varactors" are optimally driven and that they

all have the same cutoff frequency. The sum in the exponent can be expressed

in closed form, i. e. , we have

n 0 m

C = e c (8.4)

or,

n out " (o

e=• C (8.5)

We see that the quantity an/(n-1) is a measure for comparing cascades of

various types of multipliers operating b etween the same two frequencies.

The values of an/(n-l) are summarized in Table 8. 1.9 The near equality of

the values of an/(n-1) shows that the theoretical efficiency of a chain of

multipliers does not depend much upon order of multiplication for low-

frequency operation. Thus, the choice of order of multiplication will not be

made on the basis of theoretical efficiencies, at least for frequencies low

enough for Eq. (8. 5) to be applicable.

For a cascade of two different multipliers we can write,

-(& n Wo/Wl + uZnln2wo/w

-e (Wout/wc)(CII/n2 + a2) (8.6)
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where is the order of multiplication of the first multiplier which is

characterized by the constant a, (similarly for n2 and 02). For a cascade

of three different multipliers we have,

W a aout 1 -1 + 2 + a
W n n+n 3)•c n2n3 n3

E=e (8.7)

Equations (8. 6) and (8. 7) can be generalized to the form,

Sut C (8.8)

where the cascade parameter, ac, is given by the formula,

a1 a 2 ak-1
C n=n3. nk n 3 n4. nk n k + +k (8.9)

We can now use Eq. (8. 8) to compare various c scade- of multipliers operating

between the same two frequencies. For example, we may compare the

performance of three cascaded doublers or a cascade of a doubler and a quad-'""

rupler with the performance of the octupler. There are various ways to

combine the doubler with one or the other of the two quadruplers (doubler

followed by a 1-2-4 quadrupler, 1-2-3-4 quadrupler followed by a doubler,

etc. ). The cascade pairareters, ac, for the various possible ways of

multiplication by four, six, and eight are given in Table 8. 2.

We see with the aid of Table 8. 2 and Eq. (8. 8) that the efficiencies of

the various schemes for generating the fourth, sixth, or eighth harmonic are

about the same. The choice between a cascade of multipliers and a single

higher-order miltiplier must therefore be based on practical considerations.

At low frequencies where the above formulas apply, the use of many stages

has the advantage that each stage is easier to design and that less power is

dissipated in each varactor. On the other hand, coupling network losses will

probably more than offset the slight advantage in efficiency of the cascaded
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Table 8. 2 Cascade Parameters for Multiplication by Four, Six, and Eight

In this table we give values for the cascade parameter, %c, as defined by

Eq. (8. 9) for the various possible schemes of generating the fourth, sixth,

and eighth harmonics. Lossless idler terminations have been assumed and

the varactors are all assumed to have the same cutoff frequency.

Sequence of multipliers in the cascade Cascade parameter, a c

Multiplication by four

XZ-XZ 14.9
X4 (1-2-4) 15. 6

X4 (1-2-3-4) 111.4
Multiplication by six

XZ-X3 14.9

X3-XZ 15.7

X6 (1-2-4-6) 16.6

X6 (1-2-3-6) 22.3

Multiplication by eight

X2-X2-X2 17.4

X2-X4 (1-2-4) 18.1

X2-X4 (1-2-3-4) 13.9

X4 (1-2-4)-XZ 17.8

X4 (I-Z-3-4)-XZ 15.6

X8 (1-2-4-8) 21.0
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multipliers. Also, symmetrical circuits can be used to split the power dis-

sipation among two (or more) varactors in a higher-order multiplier.

It is readily apparent that we do not have this flexibility of choice when

the two frequencies involved are related by a prime number. The desired

harmonic can still be generated rilrectly with a single higher-order multiplier

with idler circuits. However, this approach is not very feasible in practice

when the integer involved is large because of the difficulty of controlling

more than two or three idler currents. This difficulty can be circumvented

to a large degree by using large-signal upconverters to sum the outputs of

two multipliers (or multiplier chains). In this way we can generate high-

order harmonics which are prime numbers with simpler lower-order multi-

pliers and a large-signal upconverter. 12

8. 2 Comparison of the Power Outputs of the Various Multipliers

The multipliers can also be compared on the basis of power output.

Figure 8. 2 shows the power outputs of the various multipliers for maximum

efficiency operation with lossless idler terminations. The curves are plotted

versus input frequency. At low frequencies the lower order multipliers are

seen to have slightly greater power outputs.

At low frequencies the power outputs of all the multipliers vary

linearly with frequency, each with a different constant of proportionality.

The appropriate low-frequency asymptotic formulas are given in Table 8. 3.

In this table we have expressed the powers both in terms of Pnorm and wc

and in terms of Uhlir's nominal reactive power, Pr:

(V +B ) Smax-r ZYz (V B " Vmin)2

Pr = max 2 smax m min

1 max norm 1 norm (8. 10)
S +S S --0 7
max mm c min c

Note that Pr has the dimensions of power per unit frequency, and must

therefore be multiplied by a frequency to yield power.
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Fig. 8. 2 Output power for several abrupt-junction-varactor multipliers
and the graded-junction-varactor doubler as a function of the input
frequency, All are assumed to operate at maximum efficiency
with lossless, tuned idler terminations.
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Table 8. 3 Low-Frequency Power Output Formulas

Low-frequency power output formulas are given for the various multipliers.

The formulas are for maximum efficiency operation with lossless idler

terminations. We have assumed that Smin << Smax'

lvMultiplier Low-Frequency Power Output

wi

X2 (Graded) 0.012 P -2 = 0.024Pw = 0.1SIP fnorm w r o r o
c

X2 0.028 P 0= .57Prw° = 0.36P f
norm w r oc

(A)

X3  0.024 P = 0 . 0 4 8 Pr w = 0.30P rfoX0.04nnorm' ro
c

X4 (1-2-4) 0.020 Pnorm = 0.040P r w 0.25Pr o
c

X4 (1-2-3-4) 0. 0226 P 0. 045P w 0. 28P fcnorm w r rc

X5 (1-2-4-5) 0. 018 P norm w 0 = 0. 0 3 6 Pr = 0. 22Prfo
c

X6 (1-2-4-6) 0.022 P = 0. 0 4 5 rP rw 0o 0. 028P

X6 (1-2-3-6) 0. 018 norm = 0.03P w = 0. 23Pr fo

c

4 0

X8 (1-2-4-8) 0. 021 Pnorm w 0.043P r = 0. 27Pf
c
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8.3 High-Frequency Limit

The high-frequency limit is inherently less interesting than the low-

frequency limit because the efficiency is very small and the power dissipa-

tion is very large. Nevertheless, in some applications these limits are

pertinent.

At high frequencies the! series resistance dominates, and to trans-

fer maximum power to the loaý or to obtain maximum efficiency, the load

resistance should equal Rs. The input resistance is also equal to R at

high frequencies.

In deriving high-frequency asymptotic relations for the various

abrupt-junction-varactor multipliers, we used the facts that mI v 0. 25,

Rin 4 Rload 7 R ., and mk<< mI for k > 1. We then found that the mk

(for k > 1) are proportional to (wc/Wo)k- 1 and, therefore, approach zero.

By the same techniques it can be shown that the mk fall according to this

relation for any Nalue of k. This allows us to write the power output into

a matched load as

( 2)
Pout =82mPnorm W•• 8 1

or

P ~P' c (8. 12)
out norm (7-)

The doubler (I = 2) has a power output which approaches a finite limit,

while P cut for higher-order multipliers goes to zero as (wc/wo)2(12). At

high frequencies the power input is the same for all multipliers:

W 2

P Pin 0.5P' (W.) (8. 13)Pdiss innr
C

The efficiency therefore becomes

12.6



= 161•2 (8. 14)

wc 2(.1-1)

0

It is apparent that multipliers with idlers have efficiencies that

approach zero very rapidly at high frequencies. These efficiencies can be

improved by cascading multipliers or by using varactors with much sharper

nonlinearities to convert power directly into the desired harmonic. In the

first case, for example, the efficiency of a quadrupler falls as (Wc/wo) 6

while that of two cascaded doublers falls as (wc/wo)

One important result of the high-frequency limit is that it clearly

shows the superiority of the doubler as a high-frequency multiplier (see

Fig. 8. 1 and the tables of high-frequency asymptotic formulas in the various

chapters). Thus, the last stage (or, perhaps, the last 2 or 3 stages) should

be constructed with doublers if a high output frequency is involved. At high

frequencies the doubler efficiency falls as 0. 0039(wc/w o)2 and the 1-2-4

quadrupler efficiency decreases as 5. 96 x 10- 8 (w /w )6. Two cascaded

doublers thus give an efficiency of 3. 8 x 10-"6(c/•o)1. For operatingForuopratin

frequencies near wc the two doublers in cascade are approximately two

orders of magnitude better than the quadrupler. For lower frequencies the

difference is not so pronounced, but it still exists. Figure 8. 1 indicates that

doublers are definitely to be preferred when the output frequency is in the

vicinity of (or greater than) two- or three-tenths of the cutoff frequency.

8.4 Summary

In the preceding analyses we have derived several important results,

the most important being the fact that varactors are capable of yielding high

efficiencies at lower frequencies when used as frequency multipliers. We

have derived formulas and found nw,-nerical solutions of the pertinent equations

for several of the multiplier configurations which are used in practice. In

the process of analyzing the various multipliers we have found that the

1-2-3-4 quadrupler is definitely superior to the 1-2-4 quadrupler and that

the 1-2-4-6 sextupler is better than the 1-2-3-6 sextupler at low frequencies.
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Furthermore, it has been shown that the 1-2-3-5 quintupler has an anomaly

which probably prevents it from being a practical low-frequency multiplie:.

An investigation of low-frequency efficiency formulas has revealed that

cascaded multipliers and single higher-order multipliers are nearly equiva-

lent on the basis of efficiency.

There are several aspects of multipliers, such as bandwidth, noise,

and operation into the forward region of the varactor upon failure of the

rectification mechanism, which we have acknowledged as distinct problems

but have not pursued. They are, in fact, very difficult problems and each

will need considerable study before any definite conclusions concerning

fundamental limits can be reached.

An important practical problem which we have not discussed is that

of the circuit design of multipliers. There are obviously many varieties

of coupling networks which can be visualized each of which will satisfy the

current and impedance constraints set by the varactor. We have derived

the necessary current and impedance constraints, but we have not pursued

the network realization problem beyond this point.
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