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TRANSIATOR'S NOTES

Whenever the Russian symbols kr are encountered in the text and
expressions, these should be read as kg  i.e, kilograms

When the Russian p is found this should bs read as or i.e. abbreviation
for CRITICAL, '

The small Russian ,,, denotes RIB,

Russian a.lphubet:ical letter B is equivalent to Latin B,
r is equivalent to Latin G,



CONCERNING THE STRENGTH AND STABILITY OF CYLINDRICAL BIMETALLIC SHELLS

by
E.I, Grigolyuck

The strength and stgbility of an axially symmetric ,cylindrical;bimetallic
shell is investigated in this ar@icle. The shell is assumed to be thin and
elastice It is considered that the hypothesis of incompressibility of the
layers and of the nonedeformability of the normal element retain this force
also for the bimetallic shell /1-3/. Separately investigated was a shell
of an infinite and finits length, and the so-called condition of reduction when
applicable to the shell, Examples of calculation of shells down to the
determinants of displacements and stresses, are given, In a particular case,
the results for a homogeneous shell are obtained, Axisymmetric stability of the
shell is investigated by linear arrangement,

1l, Basic Equations of the Problem. Let the radius of the surface seam of

the cyiindrical, bimetallic, thin-wa:led shell equal R; its leng:ch,l s the
thickness of the internal and external layer correspond to 51 a.nd 52 3 X be
the interval from the left edge of the cylinder to the cross section; z, the
positive distance from the surface of the seam along the thickness of the
shell if directed toward the center of the curvature, The element of the
shell is shown in Fig, 1." During axisymmetric deformations in the cross
sections of the element, normal o; and tangent i3, stresses occur. In

the peridianal sections only the normal stress 0'2 occurs,



¢
Internal forces relative to wunit length of the seam surface: the
bending moments M, and M,, the normal forces Ny and N, and the cross-sectional
force Q,, are shown in Fig, 1, They are associated with stresses by formilas
] 0 . 3, 0
X1 2 { —_——ldz (1) @zd:
‘.’II,-§=,“) (1— R)zdz+ _\‘.a,(” (i ”) d s‘s, “"‘*‘.S:x 2
8, ]
Mym\a30zdzt | 3@z ds
o s ' _", 3 .0
Ny S o, (1—7;') d: + S 3, (1—7"‘)411 z§ 7,0dz 4 Sa.,‘m ds
] ~& -
3, 0

Ny §=.m ds+ | oydz

8, . 0 s \
I A PR G (e T X!
J -
Here Index 1 at the right top relates to the internal, and Index 2 to
the external layer,
We will examine the deformation of the seam surface, Let u and w be
the respective components of the complete displacement of the seam surface

in axial and radial directions (Fig. 2).

—T dr
. Pnuan 1 yedu
Bz >0 LAt TR o efore
tydz /{Z,/de 26 B e - deforiation
, Myz |/ Mrdmiidy AR wedw
R AN . szrface of ! «dy 3
M Al seam e !
4 Rdp R WedbRly % /afé’af:r ” '
| 10,d0,)Rdy dmEonyation s’ i
/Vzdz w ¢ !
‘ Up=U-20 ! i
—_—— - H i
-z Fig 1 t :
Fig 2 i

Then the axial relative to deformation of the seam surface equals
2



Y I S — 1
- ___!;z lu)d':( ) ’=V1+2“ F U 1. (1.2) i

L
l

The line indicates the derivative by x. Arranging the radicant
expression into a series and limiting ourselves to the two first terms of the

series, we have
Cnevtdvisden, 0y
Here, the second teym of the right side of the expression (1.3) is

negligidbly small in comparison with the rest, So, during the displacements
respective to the wall thickness, the following formula should be used:

c.-u'+-._1.-w" . (1.4)
By a qqadrat%.c term during minor displacements we can disregard

Gomu, (1.5) }

The relative annular deformation of the seam surface will be

2n (R =~ w)—2nR w_ .

The incline angle of the normal to the surface of the secam & is

I

related to flexure w by equation of consistency (Fig.2.)

5ind m 1-:-—?,"" , (1.7)

which at values El are negligible in comparison with the unity and such

angles & , in the presence of which angles, substitution of the sine angle

by the value of the angle 1tse;.f is valid and clbuverts into the following:
3



b= (1.8) 1

The obtained formula is valid for small and large displacements of
$ . ‘
the seam surface only if the indicated conditions are retained,
Relative deformations of the surface of interval z from the seam

surface are equal (Fig, 2)

843 == 8y — 2x,, Iop =2 By %, (1 &)}

vhere p——— "y = “i (1.10)

Normal stresses in the cross-sections are dets>rmined by Hooke's law

o, = ‘:'!‘—;[tl ey —z(x, + fryeg) ~ (1 + 1)3,2)

3,1 o= E‘::“: [8 + 8, — 2 (g 4 taxg) ~ (1 + 1)3,¢) 0L:2<3)

)
:l‘-’

g (1.11)
=r— __“‘n (81 F 383 —2 (x4 paxg) — {1 4+ 14) 221)

K !':ui' lea 1oty = 2 (g b ) = (Lbpyy ) SISV

where El and E2

2y and K, are Poissons ratios of the material, ;il and 52 are ccefficients

are moduli of the normal elasticity of the material layers,

of the linear temperature elongation of the material layers, amd t is the
temperature,

Substituting expression (1.,1l) into formulas (1.,1) we have

My Ciey - Cysy - Dyxy — Dyuy—g; (1.12)
My=Cyt, 4 Cy8y — Dyx, — Dyxy — g (1.13)
Ny = Bty + Bygy — Cyx, — Cog—/ (1.14)
Nym By, - Bty - Cysy — Cyey — f (1.45)

L



by this

E,3 E, ! ) ¥
8= ‘—_L‘f;i"l' T::&_':.i' By=p = + by 1 Eibs

11_“‘1 _p'n
1 B3t 1 Egy 1 ESY 1 Epg
G=yToa—2 T O™ ami— z"’i_j'i."

.| BB {1 EgZ¢ i E\3 i y
D=yttt st DamonRnt st 016
- B3m I:'&ml { BE3’n 1 E3
/. -fl—\;l;.l- ‘_“.’ g-zTu—-l-l‘l.'..z Ny

e
) [y 0 . L)
m, -“&Sﬁ;ldz.u:."é.' & Betds, ""'8%‘53""“'""'%' §p’“d= ’
-2 ~4

It is not possible to express transverse force QJ. by its corresponding

deformation,

The equation of equilibrium for an infinitesimal element during fairly
big displacementst of the seam surface will be (Fig. 1)

[Ny (1 + ) + pamm O a4
QO + G+ INwT + G+ p=0 e
i —Q =0, " (1.19)

Here Py and p, are components of the external surfacg _load in the
direction of axes .x and 2z, From the expi'ession for variation of potential
energy of the shell :Ln whiﬁh the action of the lateral force Q; was
disregarded

' .
W= R ey + py] o dz—
4

SRR g

\ (1.20)
= S UN )+ paindz + [N, (1 0) 2 — My’ + (M + Nyw) twly,

5
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it is evident that the.system of the equilibrium equations (1.17) = (1,19) p
corresponds to tﬁe instance when deformations and parameters of the change

in curvatures are determined by (1.3), (1.6), (1,10), If € is determined
according to (1,4), then the first equilibrium equation (1.,17) will be

1
Nl +py, = 0; from here when P, ™ 0, we have

N, = const. (1.21),

In all calculations value x, may be considered to equé.l zero, Then the
second and third equilibrium equations (1.18)- (1,19) give

M (N ) 4 —l“-' +p=0.
6 .
With condition (1.21) we have

My N g p =0, 1.22)

Finally, small displacements may be disregarded by the second term

My 2y p =0, ‘ (1.23)
-
Asaresult, a complete system of equations is obtained for solving the
problen, Th; number of unknowns équals eleven, the number of equations,
Furthermore, we bear in mind the instance when equation (1,22) is valid.

We exclude € from (1.12), (1,13-) s (1.15), by means of equation (1,1h)

i . A v
f:-,—,“x\’;-.-/-*--,—;—w-!-é'.w ]

6



Then (g == ()

el - G DB —CE . O "
My= = ne I”x R l”x L -r-lﬁ'(a\l +hH—g (1.24)

t C\,~CyB DBy —=CCy . C 9=
‘ll._.s._‘u 1 lll; 323 00 12 ‘lf. 18 +-§'.(4V1+/)"“»’ (1_.7.:;)

. t BtDt - CO\B @ B, B .
-\’:___.1._“ lu' 3 W - 2 I“‘ 1 + 2 [N’+( I)/] (1 )b)

We will substitute expressions (1.,2L) and (1.26) into equation (1,22)

@V 4 2aw” 4 b = 0 (z) (1.27)
vhere
= 1 Gy —C\B,— B, R, Oy 2 ;
I D0, - Y=y 1A

06) = g (- 40+ i [V (1 ) ] e
(1.24)

The problem of axially symmetric deformation of an elastic thin-walled
bimetallic c¢ylindrical shell under any relationships bebween the thickness,
under different mechanical characteristics of the material layers,and under
arbitrary heating along the thickmess in the axial direction; is allreduced
toward solving equation (1.27).

During the calculation of shell stability, it should be assumed in

espression (1.28) that N.= 07 then equation (1,27) will correspond with the

1l
initial equation (1.23).

sy ey, = Ei2 (1.30)

7



the calculation is simplified, By ilis

Mys= — D" 4+ (1 + p)n). Me=— Dlpw” + (1 + 1)n]
' o . i (1.31)
N, =D [z, e — (1 4+ "‘] o NymoNy = (1 =)@ +mR)
where ’
.
B 3V I‘,',I‘.i ’ D 1 1120
iy =
11— ity v TR I A (1.532)
moem +mV EE, . o
s+ ViJE, ' = 8

during which & is the thickness - the shell,

Consequently, instead of equation (1.27) we get

lfm SE (N, 4+ peR) —4k‘l?m—-(l+p)n” (1.3,

wlv__uv"+lil| W T ,)“

Here

‘
= (1—14’)13 V'm = VVA, + V Ey
4DIt T VI e (1.34)

. VEE

With E, = E,, i.e,, for monomstal we have

. .
k= V30— s V"* . 1.35)

8



In the following paragraphs 2 - 9, the strength of the bimetallic
cylindrical shell is investigated; and in paracraphs 10 - 11 , the static
and dynamic stability of the shell during axially symmetric deformation due

to axial compressive forces.

2, The Integral of the Basic Equation of the Problem. Here, we investigate

the instance which may be disregarded by the second term in the equation
(1,22), We will pause and find a general solution to the homogensous
equation (1.27).

Substituting w = expsx, we get a characteristic equation

a4 das? -4- 13-,

From this - o .
sV =a o) a i @1

The solution of homogeneous ecuation (1.27) may be presented as
s 7' ch azeos %o 4 Lyshou sin 3e + Tashor cos 3z 4 Tchaz~in uc (2.2)

where Tl ,-T2 s T3 s Th are arbitrary constants.

’
b--u - Ay
R V= @2.3)
For this, it should be shown that ozz%z, i.8., all roots of the

characteristic equation (2,1),ar; complex, First we calculate
*



5\ EgB,8, (B i 8)

. .y 1.,
('30“—"'”3- 2 (ri—) (1= *) {1 -—pg®)

- £93,0 15388, E,F 3,3,
e B 3882 o PR L uJ e DO
By = Byt = feep? + = ¥a® 2 (=) (1= U -- )
{ oY 1 E38,4
(1 14 L]
Dl =Cl i T = wy T

E\I'\3:3,

’ b gy A . -
+y m(-‘lh’ + 235% + 38,34).

VYe tabulate the following expression:

(@® — ) (DB, — C')R? == (Co3y — B,C)) — (B, — By?) (D1, — €yt )=
- t 8 1 E8,¢ i E3E,8,25,4
=Tt Tt T T
{ E 8,8, 48,8 1 EPESS «
i T 6 = T il a7 @4° + 24, + 33,3,) +
|t 0 22 4 Bty 4

T =gl —ug? 6 T =g Utk +

1 E,EQb38 t  ESESN ’;
T TR - T T T -

X [(&? + &) 8- 3" — 3yt — 2py183) + 03,33 (2 "":Fx' - Pa’)]} .

’ -

With 1 <1 and 1 <1, miltinomial, enclosed in braces, it is always
positive; thus

(CzBl - Bacx)’ - (Bx’ - B:’) (DxBx - cx’)<0 *

From this, it follows that o < b2. " The general solution of equation (1.27)

will be
w=ut+ o, | @8 |

%
where W, is a particular solution of the heterogenesous equation (1.27),

3. A Cylindricel Shell of Finite Iength. e introduce the designation

D, (z) = chazcos iz, B, (r)=sharsinis

M, (r) = sharcos2r, D) = chaesin iz,

10



The derivatives of functions +(x) (1 =1, 2, 3, L) along x and the
interrals of these functions are indicated below (the value of the argument

is omitted)

cpl - gy — 1‘04, 1y gty 4 2Dy
Dy ma®, — %D, b, = a@, + 30,
By s (4 = 3 O, —205D,, Dy == (a1 = 3) Dy - 2530,
Dy wm (a8 — ) By — 2030, B, == (aF — ) D+ 230,
D, ma 3 (2t — 33 By o 3 (57— Bah) D, D" = 2 (2 — B, — 3 (3 — a) Dy
{ @ m g (2t — 33 B, + 3 (32— 3a)D,, B = @ (22 —35°) D, — B(E1—3a)D,
DIV s (a8 —Ba?3 o+ 1) Dy — 42} (a* — ) Dy
D1V ae (o — GatA 4 3, + 4a3 (a*— 59D,
DIV mm (a8 = Gat3? + 39) D3 — ha} (a'—32) O,
DIV w= (2t — Gas + 3) O, + 4a’ (a™—3") D5
X
jrlz) == Is.q,,dz = ch, ‘*{50. Jald) = S(D,dz= 030.;#’

IA

x .
. 2 (B — 1)+ 20, B — 1)+ ag
Jolz) = §‘Dad$ =—axy = [@= §04d3 -

The values of functions f?i(x) and their derivatives at zero value of

the argument are shown in Table I.

Table I
 bom ! g | om|  of@m | el
i { 0 xl— B 0 at — Batft + B¢
2 0 0 228 0 AaB(a? — )
3 0 3 0 alx? — 389%) 0
4 0 - B 0 . —f(pr3at), 0

For the forces of (1.12), (1.13), (1 18), (1.19) we obtain the expression

M, == k@7, — kT s + ki@, T,‘—k,tb,T. P "-£!— w—
| 2B g, ,—wv -t (3.4)

11



My = — (k,®, — kD) Ty — (k;Dy + £:0)) T s — (k03— "304) T,— (32

"'C G Il
—_— (k3®4 + ka‘p’) T‘ — c:’kaufgn: w, D’R‘Bl - U 1Y) + ('v.l + f) —y

Ny e = (kO = kD)) Ly (haDg + Agly) Ty — (h Dy = kyy) T3 — (3.4

, ns - C. B, —C\ I S 13,
= (b Oyt ks ®y) T'— "/m" L e T ‘\‘+( ”:)/J

1 -y (30 + ay) '1‘, o ky (g — 2Dy) T - Ky (30, + ahy) 'l'=+

4, -— L1, un—-ct .,
ke (g — ety 1y S 5 Sty — DB " P — )

vhere
by - G2 . 1Oyl - Cally 2 I)IUI"'" Cy
/I == -al L l”‘ -~ L ” ‘ +( B—L- (3 4)

Dl =€ TR P
A; -7 .:a? b “‘"I"I'_‘ s I" b i’ B, +(a i’ )

Cll, —C 1,
DA 39

L Celh —Cilly o
L

ky = 223

The normal meridianal force Nl is dependent on either ;the neture of the pro-
blem artle condition of axial displacement, or on the equilibrium equation
of a shell part,

- _
Axial displacensnt is determined by formula (1.5)

we Ty g l@U Oy — 500 Ty + QU O+ 3,D5) Ty +

o (w0, = 50,0, — e }Ta+(all,(b,+ HO, +  (3.6)

1-—(;,—"-’1;,,—,‘/.+3m.+/)dz¢ "*Swmw.w..}

where 'I'5 is the arbitrary constant,
[

N B :
'"C”*'w"') =Gy @D

—

12



Equations (3.1) - (3.L) are valid for a +thin bimetallic cylindrical
shell with arbitrary thickness rewios O and ), elasticity moduli By and
E2 , and Poisaon's coefficients ,ul'a.nd Hoe Under these conditions the

deformation was assumed to be elastic as well as axially symmetric,

'Ls A Cylindrical 8hell of Infinite Length. The solution of the homogeneous

equation (1,27) for & shell of infinite length mey be obtained directly

from expression (2,2), For thia'pm-pose we express the hyperbolic sine and
cosine through exponential functions, Since x == , terms containing exp

ax tenc:.l toward infinity, the constants of integration for a shell of infinite
length, with these terms ,. may be assumed to equal zero, Then

w-:T\A, (az, )+ T,;l, (2, 2x) + % (4.1)

where Tl s '1‘2

in the investizated edge

are the new constants of intespation, determined from conditions

A = d(ar, Sr) = e % . )
ad, 3r) = e-"in b, A= (2, 38) = e weus

The first four derivatives of A;(cx, fx) (£ = 1, 2) along x and the
integrals of these functions are indicated below (the value of the argument is

omitted) .
Y A w-—ad, + 34y, Ay e A —ad,
AV =@ — ) 42034, A = (28— 38 4, + 230,
s Ay = —afa?— 324 — 3(22 —3a%) A,
4" = —aa® — 354, — a(a?—-330) A,
AtV == (a8 — Ga®® 4 9) A, —4ad (a? — §7) .,
AV = (a4 — 6% 4§94, +4a3 (a* — §%) 4,

9w

2 )
Golr) = S5(1—Ay) —all, ' {1~ Ay) + BA,
L (2) §""“"*’5W“- a,(,)-‘;,g,d;__ﬁ_?’.ﬁ;i__.

13



The values of functions Ai(rxx, Bx) and their derivatives with x = 0

are indicated in Table II.

Table IT
] I A (0. 0) [4,'(0.0) }A,'(o.u; T AW, 0 : A‘l\’(.,, ;-, -
! I o | 8 | -2 —pm—t) | —iapar—py
2 1 - at— B, ooa(x?—d8Y) | abe—fatpt o4 B0

Internal forces and axdal displacements for a long shell equal

. ) g C.Be -
Mk T\ Ay kT, + li .BLB lu.c, o g.nJUI cY, oo+

TN+ —g (.2

[4
My = (hghy = AT, — by + kAT = § SOl
Bo—c 0 ” c
~ B0, - (N4 N —g iy -

Nym — (keAy ke A) Ty — (k143 + kg A,) T’_}{ B2 ..l.;ly .’W,,-
c_J_LB —C\By B, , B,
—SRE el g+ (-5 (5.4)

Q= k@A —BAN Ty Byt oy — 3 Ty SBZ Oy
1

DB, —C2 ., ..Ci.p ,
— DB o S —p) —s (%.5)

e=Tit s {[—{e0+ i) dn— (1t i s+
+rtgr | 1o+ (s i) = (ot i) 4+

B| t l‘ / ) |

5. A Cylindrical Shell for Which the Condition of Reduction is Applicable.

With C._’L ] 02 = 0, the so-called condition of reduction o= k= U and
2 '
Elél = 32022 is valid, From a mechanical viewpoint these conditions
satisfy a state, during which the seam surface of the chell bacomss a

neutral surface during bending, From the mathematical viewpoint the
‘ 1k



celculation for the bimetallic she 1| ~ompares with the calculation for a

homogeneous (monometallic) shell, iut with several introduced moduli, one

of which is the modulus of elastic’ty durin; bending and analogous to the

known modulus, introduced during the calculation of stability beyond the

elasticity boun@ary of the rectangnlar cross-cection of a rectilinear bar
3 T 1.3\, M-

n J
S TR
, 1) {.,fVl,) ‘

‘¢

the other is the modulus of elasticity on stretch and is equal to the
square root from derivatives of the elastiéi'ty mod}.}li of layers' VL",'I’,'

In accordance ﬁi’bh (1.,28), @ = 0, and with (2,3), ¢ = 8, All functions
for the investigated instance aré received if we\ assume that C. = C, =0

1
in sections 3 and L,
Table III
! l-;"(!; ‘ F l “FyiE) Ny ! S0 ,
L] - AAFg3) | — 3K (8) | —ak3Fy(3) —4kFy(3) FE)k ' §
2 ARGE) =AkIF(€) | —4kPFy(E) -~ kF(€) Fa(5) ',
s kR BRE) —WRF (%) — KPS F &)k 1
V] ORRG | BRD () —FE) | 1=K (8))/4k i

— P - 1

The solution may be presented,also,through the A, N. Krilov functions

introduced by him when making calculations for bars on an elastic bvase /L/.

Table IV

F, () = chkcost (& = kx)

O e e vt

.- R e mat Y DY (R -'...-(chEsinE-{-shEcm %)
1] 0 o | o —we :
4] o k 0 ! 0 0 F3(8) me - -shEsin
Gl 0 Kt 0 0 . ) )
AT 0 l & 0 Fy(€) m - (ch&sin& —sh&cosf)

15



The derivatives of AN, Krilov'!s functions along X are shown in Table III.
The value of AN, Krilo'v functions, as well as of their derivatives when

x = @, are shown in Table IV; by which '

Ni(®) = \ F@de,

A general. solution of equation (1,33) will be

W = T,F](E) + Tgpg(i) + Tnﬁ‘a(i) + T‘F.(E) + We (5.1) )

?here Tl, T2, T3, Th are the new constants of intesration, -
The expressions for forces and the angle of inclination of the normal
will be '

M= 4D [AT\F3(3) 4 4T 3F (@) — T3F, () = T, Fo())] — Dlwy” + (1 + p)n)
M emp kDT Fy(3) 4 4T F (8) - = ToF\(8) — ToFa®)] — Dpwe” + (1 + wn]
Qy = KD AT Fy() + 4ToFa(®) - AT5F @) — VP @) = Dlwy™ + (1 + p) n')
Ny =pN,— "—",’,‘ﬂ [T F1(8) 4 T8+ TaFu8) -+ ToF (§) +wo+mi] (5.2)
0= k[—A4T\F.(3) + WL E) + TR + T Fys(®)] 4+ wo'

But for & Cylinder of Infinitc length we will find /5/

M, = 2RDIT, A — T, A @) = D0, + (4 4 )]

My - thk’D[T,A,(E)—T,A, 8)i — Dipw,” + 1+ w)n}

Qi =—2BD T, A(%) + T3 A, ()] — D [w,”” + (1 + ]
P

Ny oy =B (7,0, 4 7,40 4 0, + mA

(5.3)
- TxA}(E) + T34,(3) + w,, O = KT A () — T, 4,(3)) + wy

Hera ’
A, (§) == e~%3ink, As (§) = e~%(sin§ +- cos §)
Ay(5) == e=%cosé, Ay() = e~Y{cos §—sin§)
16



by T,, Ty, certain other arbitrary constants are indicated hecre,

Table V

. ,” LA 'v -
] e so | 4o Mo | oxo

1] ka® —2k%A4(E) | 2834,(8) =k (8) | [1—Au5))/ 2k
2] =—kAyE) 2k A,(8) 2k*A (E) —AIBAL(E) | [1~ALE)) I 2k
3| —2kA)E) | —2hBALE) [ AKALE) - | —4kSALE) | [1—Ay(E)] 1k
4| =2kAE) | 2044() | ~—4BAR) —4kiA4(8) A (B)/k

The derivatives of functions 4, (&) (1 = 1,.04l4) along x are shown in
Table V. The value of these functions, as well as of the derivatives, when
{ = 0 are given in Table VI.

Also presented are the values of the integrals

x
X;=SA((E)III e
o .

Teble VI

4o | am 4] o 4@ | Ao

1] o0 & —-2»' .20 )
2| 4 | —k| 0 ze |
3l 1] o |2 an | —uke
4t |—kfae | 0 —hkt

. t N
6, Boundary Conditions. Boundary conditions are in brackets in formla

(1.20), There a.re a total of 6 boundary conditions- three on each edge,
They permit determination of constants Nl’ Tl’ T 23 T3, L’ TS'
The form adopted for solving the problem brings an. accord of the boundary

conditions for homogeneous and bimetallic shells,
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Thus, as an example for the “rec asdre

Ny=My=(@;=0.

For the rigidly fixed edge

*

[ 4
U=0=w=0.

*

7.' The Determination of Normal Stresses. Normal stresses in layers of the

shell are found by formulas (1,11), where €9 €35 Xy X, are determined
through interal forces from (1.02) - (1,15) by formilas:

"""}' ""A-' "x"é"- "s“%‘ (1.0
Here

Sy = (Vi + N By + (Ns+ ) By + (My + ) By + (My + g) B,
= (Ny+ N Ly +(Ny+ ) B, + (M +8) By + (M3 + g) B,
3= = (N} + ) B, — (Ny+ ) B+ (M, +p) By + (M, +g) B,
A= — (‘vl + /)Ed - (N: +/) B:'*' (‘”x + 6’) Bo+ (‘”a + g)Bl
3= (B2~ B2 (D} ~ D=2 (BzD: + Bxbx) €+ c’a) +
+ 4C\C; (8,0, + B,D,) + C2—C?
bym By (D= DY) + 26,00, — D, (Ci* + Cs')
Ly w — I, (D,* - DY) 4 2C,C,0, — D€+ €
Ly = B, (C,D, = CoD)y) + €, (€2~ €Yy + B, (CsDy ~C,Dy)
- Lym — B (—Ci); + C,D,) ~ €, (—B,D, + C,Cy) + Ca(—B,Dy + €
["; = (Clz + cz’) - 23:('1(": - D, (By? ~ B‘l‘)
by = B, €2+ Cs’) "231(:10: + D, B, "Ba’) ) (7-2)

If Poisson's ratios of the material layers are identical o= o=,

then the introduced expressions for €, €,, X, X become simplified, as
C3=pC,, D'z = pD), By =pbB.

By this ,
(Vi g+ (1= ) (1 Dy~ (M~ udfy + (1= 1) 4] C,
(1—w) (OB, —~ (4]
, [Ne= 8y 4 (1= ) /) Dy —= [ My~ pM, + (1 — ) 4] €
= e
Nt (=W /)G = [M~ oMy 4 (I 83
= (4= ) (0,55 €35 M2
kg N BN (U W 1€y (I, ~ pM,y 4 (4 =) 6] B,
=Dt --¢ T -

- 18

€ = .

(7.3)
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Thus, as an example for the “reec edge

‘N‘ =‘"l=()l.’0‘

For the rigidly fixed edge

»

[4
U=0=w=0.

<+

7. The Determination of Normal Stresses. Normal stresses in layers of the

shell are found by formulas (1.11), where € €5 X x, are determined
through internal forces from (1.32) - (1.15) by formulas:

' 'l""é‘;" ¢ mm 2L xlnes'-, xgxx =L (7.1)
Here

3= (N, + ) L+ (N, + N5, + (¥, + 88, + (Ms+¢) B,
= (Vi + N+ (N + ) B, + (M, + ) B, + (M, + g) B,
b= = (N + NBy— (N, + ) B, + (A, + ) By + (M, + g) B,
A= = (., +NBy— (N, +/) By + (My+g) B+ (‘”:"l"g)gl
A= (B~ B:’) (D = D=2 (B2Dy + BIDI) (Cx‘ + ca’) +
+ 4C\C3 (B,Dy + B,D,) + (Cy2 — ¢
Lym B3y (D~ DY) + 260D, =D, (2 + G
Ly — 1, (D= DY) + 2660, - D, (C? + ¢
Lym — Bz (CLDl - C,l),) + Cx (Cx’ - Cs') + B, (caDa "CxDI)
. L= — By (—C,Dy + C2D;) — €\ (—B,D, + CiC) + Cy (— B,D, + G
Lgm A €3+ ¢ — 213:("1(:: ~ D, (B;*~ By
Ly = i, (C,’ + ca') —211‘C,C, + 0, (B =By (7-2)

If Poisson's ratios of the material layers are identical Mom =,

then the introduced expressions for €, €,, X, X, become simplified, as
CyompCy, Dz =pD,, By =pB;.
By this ,
. = ANy —py + (1 —~ W1 Dy — (M — My 4 (1 —p) ] €,
(U= ) (D8, —C )

ey ANE BN () ] Dy [My— p M, 4 (1= ) 0] C
“ e
- [‘!I:W_\'a_‘t_(‘_- w/]C~ [M:_l‘-M; +(—p) 88,

(1= w) (DB —CY

. '_l"\'.-vN,Hl—u)/]c =My — M, 4 (1 —=p) ) B
= ‘ = g’)‘(u.u‘,':.‘-'c,-)‘," £1gl D, (7.3)

i ty
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The following expressions ars necessary for calculating stresses during

M= ks
) NIy MG D, = o€ -
'l f‘!“a=' . l‘,l'l,l—-(.' ;l ! » 3:+}l¢x ‘v'n‘ 1;‘11}01 "'C/.Dl"'scl
14— ¢,
NG =MD 1]’ --xl3 —
hpam SESU MG e,
144 ' ) (7.4)

If the condition, of reduction is valid, then in formulas (7.3) and
(7.L) it should be assumed that C; = O, Then

Ny— Ny .
§ - T=pH) B +m, &y == (l—u')B +m

M, My —ud,
(‘L';-)n B mem—gshg—n

tle go-over this last case in more detail., Substitution of the obtained

values into equations (1.,11) gives

—’/— LM, %’—‘(i-}-l/z ).-i- -E—'(m—,’-ﬁ,t-l-nz)

0<2s<d)
E, N M ]
TR VLS P RNV SR SR
(7.5)
P %NW'wﬁ+VLﬁ+h:m 8t + nz)
(~8; <3<0)

V-E—'tlvl_*_ 35[! (1+Vb’)+ (m ﬁz“*'nd’-)

If it is assumed that z = O in the above expressions, then we obtain
the surface stresses of the shell joint, The second terms of each of the
four expressions disappear., This means that at Cl = 02 = 0, the seam surface
assumes the role of a neutral surface,

Assuming that in (7:?), Z2=0and z = 0, We obtain stresses alons the

boundaries of the internal layer
19
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'[“"*’],-o-l/"”‘+,_,‘(m-—w(on o

(4], 0=V 2 2 + B imlae ) :
["(P];-a.: V “; """ ——(1 + VE ) i _p[m—h‘ (6:) + n3,]
[¢9], o= N- T3 (VB )+ In— e )+ ).

e obtain the stresses along the edres of the external layer by assuming
that in (7.5) 2 = 0end 2 ==, -

[“Ld'VJ ”’w~wm1 o an
[3] =V B 3+ 2 im—pe ON
{ “’]..-.,-V%-’%L-s—*(i+1/“')+  (m— (= 8 — ]
["’].--a.'l/%-"a"—" 1+ V2 )+ _,(m-a.¢<-a.)—n?a1~

For determining temperature terms, we find in the expression of stresses
the expressions m and n as the adopted laws of temperature change,
Let the temperature along the thickness of each layer be constant, In

the internal layer the temperature difference before and after deformation

is equal to A1y, and in the external layer At,, 3ythis from (1,16)

my = Ry = 530, Mmy=—ng=3Al, »
50, by (1.32)
. s.v-HimVl,/l 3 8,An —B,A¢
e SRR, amphugh. g

20



Vith Fye By Bi=f=h A4 “3’3"‘3" i.e., for monometal we get

TN v eame ¢ -

m == ﬂAI,. =0 (1.9) ;

Let the temperature 5hange linearly along the thickness of the wall:

+

bty DT Gy o) = BRIl g b,

where tl is the temperature of t‘-‘,,". inner layer at z = 51J and 'b2 is the

temperature of the outer layer at z = 52. Here

m, = —gf-(l:’n +4 (2% +8))), my = -f% (48, + 4 (28, + 3,)]

ny - %‘,—u.a. + 4 (33 + 23], Ny == — -g"— (1,35 + £ (28,433,)) .

These expressions with Cl- Gy = 0 convert to the following:

mo= Bl CHVETE) 40, VE VEE]
2(1 4 VL,/LI)
y LI B+2VETE) + 4 Vﬁ,/b.]
SU+VEJE,) My =

o B lu 0+ 2VESE))
2t +VEJE)

B C+3VETE
. 3 +VEYE)

Then

t.w.<2+l’h./r>+a.l’l,/l L+ 4 (8 VEJE, + 8 2B E, + VEE)]
2 (1 +VEJEN

na JUB G+ 2VETE) — 80 +4 10 VEE — 8,2+ 3VEE)
28 (1 + VEJE,)

m=

(7.10)

For monometal E, = E, = E, !31 = fp = 0 anc

=, nmj-ile—. (7.11)



sy

,..“.,,,

N4
G e,

- e

*

i

i
e
o
1

5

NI .. . e bR L5 IR €

o

ﬁ

a. Constant Temperature Along the Thickness of Fach layer. Substituting

exprossions of m and n along (7.8) on the right side of equation (7.5) and

omitting the terms representing internal forces, we will obtain:

1 1 kY -q al EVE 3 :

ot s 3' e [;’ .+l":. "."E"s'] (072:28)
ot 3;-\'-—!515': E VI
v = =% WWE+VE

(7.12)

+ Et 3 ] «—8,<: 370 .

Stresses along the boundaries of each layer will be

(l)] = Baar, —f,A l'l VE,
50 1= VE +VE,

A Bsh—say, EVE
| = S L

|
i
[

1m0 1-“ VE:'*‘VE
4 ] = A BAn—Ban EVE
e T VESYE

From relationships
(oo _ [ _ Pl _ [Pems __,
[a(l)] 3"‘0 a(z)lz"'l °(%’]z--l. [c%)]:--J.

it is evident: that when Cl = Cy = 0, the diagrams of the temperature terms
of the stresses are always similar during uniform heating along the thickness
of each layer, and the state of the neutral layers during pure thermal

deformation (Ny = N, = M; = My = 0) is elways the same (z =+ 20 /3‘ and z =

- 25,/3).

b. The Linear Flow of Temper t-re Change along the Thickness of the Wall,

The termperature terms of the expr. :rions for stresses (7.5) appear as
% .

'
)
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a“;) £ s“z) =

AVEEWAMA+VEE»»;u+VEE5mm+g&m+sfﬂhﬂ
= g') G +VEJEY

(7.44)

q‘%’ = a%’ =

4 (2E, +YEE) + 4V EE + w3 = (1 4+ VEZE) [t BB, + 2V “lb')
~icw t+v b./b.)'

4HVE VEE, B,
T UHVEJE)

From here

(o) o=, - 2
[w] L] - 2: e
L - .
[#]_s[]_m SeniatEE.

Tor a homogeneous shell the normal stresses are determined by formulas

°|=—§J" l""n' +t (m—‘a“*‘nn) (7 16)
o B —’i’,—ff—+;-;5—“(m—ﬁz+nz)o

During the linear law of temperature change along the thickness of the

wall * ‘
glg.l_:-’--’--il';!&‘—' . q,:e—&— !—l’-’—‘-' (7.17)
At this stage the stresses along the surface of the shell equal to

A ' N, M
weliz S, mliz au




In formlas (7.18) the top symbol pertains to points of the outer surface,
and the bottom symbal to points of the inner surface, '

8. Calculation of Long Cylindrica. Shells,
a. A Long Cylindrical Shell w th a Fastened Edge during Un 1;9;&' Heating
along the Meridian and with Uniform iressure. .
.Letti_ﬁs P, = P = const, t = ¢ (z), the individual solution of the

‘heterogemoua-oq‘uatim (1.27) will ve

bl RN (=] o9

I the shell is exposed to the soticn of the axial tensile force,
. [
the resultant of which 4in each section equals N, then
. K/ ,

-  . Nx".'lﬁ','. \

By selecting the origin of reading x of the fastened sdge for determination
..9 .
of constants T, and ra, we have conditions we w! » O with x = 0, From here

T,-—-g—w;. Ty =1,
. 8.2
=1 = 4 e, o) iy (e, )] .

4

Forces are determined from expressions (L4.2) - (4.5)

.va’l - ﬂ.{"' 4“ (l’, p‘) — -;- "'x“'a(“o ?z)__ _Ej_l_?.-‘-clﬂl } +1?;P(Nl +n—‘
a"l - 0y {(k. + -&'k. )I"(u,pz) l<( k‘ ..-.%. k‘) A. (a.':, ﬁz) — C.Bi ‘-c|5} +
+ gf Ni+N—s

.3
: Q:"‘"%"("—V)"Mt(”v?’) 3

Ny "' ';"o {( ks + T.,' kl) 0"1}(.““"0 3’)'*" ( ky— ‘;" kl).!‘l‘(;'-"t p’)} —pR-

2l,
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If the heating along the thickness of the wall changes in accordance
with the linear law but the shell is homogeneous, then from (8.2) and (8,3)

we get (p = 0)

wm—R3ATD [ — 4, @), O =—2R%IT 4, 0)

310 V3ii—pd ¢ +¢ -
M‘-P“_”[z.._‘;_u_.. te g @) — (1 — )] o

Et VIin = 4)
Hym 1::(18-15“' [2 —:%f& A A.(E)—-(t,--:,)]

Qe —dDRIAE 4,0, Ny=—ElE g -
Norinal stresses in the edge poirts (x = 0, z = + 38) will be

E3 V3id—g) f+¢
=tri—w [2 iTs "'("-")]

@8.5)
VIT=® . i
Og-i‘“_“)[z ‘1(+““_) t -::f' _(tl__':):‘_'z(i F) |+ ].

In the outer edge points of the cylinder (u = 0,3) the stresses equal

" o, wm — EB (0.403¢, +1.621)
0, =—E3 (0.05802,+1.485)
in the inner
oy E3(0.1931,+ 1.62t5)
oy —E3 (0.942,—0.4861,) -

At a sufficient distance from the edge

w=— R3 ’I':'!
8.6)
Ex(t—t) .
' amer=F =

25
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Leots examine a numerical example, Let the cylindrical shell be wnder
a wniform external pressure p and be wniformly heated to [-t°C, along the
thickness of the wall., We consider the heating along the axis as uniform,

and the axial ‘displacement as free. Given are

E, = 2F, == 2.10%xr/cu3, pp==pye1.1 2033
By 48,02 160-40-71/C, & miye=05cn,  Re4Ocx.

By formilas (1,16), (1.28), (2.3), (3.5), (7.2) we find

Tiy o 166108 kron=?
I3y = 0.51783. 408 Krex-t
C, = — 013445108 gr
C, we —0,036126. 10 ke
Dy = 0.43433.10% 1eres
Dy m 0.042902.10% krens

n = ,001002% cm-®

& = 0,085777 cm-t

o = (,20577 ca~t

8 =2 0.20841 ex~?
By me 20,443-10% krdexm
By m —=8.39{1.10" kricm

26
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B, = 20,44 A0
By 9,4508.10' jux?
2},=-311.1&3-10“Kr’cu"
Dy 00,6010 wrdex?
A == 36.362- 108 kr
k, = 10930 xresm?
ky = —3124.0 Kress
k, =3428.7 Koot
ke w3702 Krex-?
ky = 47191 Krow™?

JRNSL SR P Sy
WMipg071s o),
o

9 {;'!"]:'JI:‘. [ﬂJml]-'
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Fig. 5

Further, from formulas (1.,16), (8,1) we have

J = 20.082A. Xg/cm

g = —1.3007AL- kg

w, = — 0.00053490A¢ +
+ 0.0010665p

27
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Forces are calculated bty formulas (8,3) which take ‘the form of

My = (11.60p — 5.8478) 1, (ar, b2) — (11.50p— 5.773A1) Ay (az, f2) —
- —0.1486p — 0.0802A¢

My == (0.3663p — 0.183780) 4, (er, Bz)—~(6.943p—3.482A0) 4,(az, 82) +
, . +3.286 p—0.9802.

Ny -3 (10p =~ 200630 4, (ar, 32) + (39.40p — 10.81A4) 4, (a2, Bz) — 40p

w == 0,001067 [1~-0,98734, (ax, 3x) — 4, (ar, §2)] p—
— 00005349 {1~0,9873.4, (a2, 82) — Ay(az, Bx))Ae.

Stresses ars determined by f‘crmulas_ (1.11), Diagrams of forces and

bendings are shown in Fig, 3, stresses of pressure in Fig, L, and temperature

in Fig.5. (
b. A Long Cylindrical Shell with a Supported Edge during Uniform Heat-

ing along the Meridien and with Uniforn Pressure.

From conditions w « O a:nd M=z Owlth xz O we find:

‘ r,-ﬂ.[&ﬁuui‘&&%_ﬁ';w,q-/).;.gl, Tym—wy. B.7)

We will determine the forces by formulas (4s2) = (L,5), Let's pause
in the case of a homogeneous shell with linear heating along the thickness
of the wall, Here

A Fw . . . ’
Tl--zT:-p'H—'n T’ -”“ih—;—“ . (8'8)

The forces and bendings are determined by formulas ( 5.3), On the edge

of the cylinder we have

O =0, oy — LBty F (1, —1y)] .
28
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In the inner points of the fibers at the edge, the stresses would be:

0y == 0, gy = — EJ3t,
in the outer ;
v 0=, og=—Ljly .

¢. A Long Cylindrical Shell with a Free Edge during Uniform Heating

along the Meridian and with Uniform Pressure.

-Since M; = Q = O with x = 0, then

[c,n. —Cuhy

c,
ST (N Ntg],  Ta=gT 89).

8

For a homoéeneous cylinder v lincar heating along the thickness of

the wall (p = 0) we find /5/

’ - R ES —
M= BRO= gL M= —-——l,'ii" )11 — pag(o)

Qum 20+ HDRETEA ), NamBig e (i— 1) 40)

L 1+
wm— B[ T T PR

[
HarZimum stresses at the edge

b q—), VJ(l-y.’) —0.107 4,
Bly=n) [ = :“] ookt B3 (a—1ta) -
(npu = 0.3) (8.11)

5,m(), o, =

With k¢ = 7 the meridianal utress has an extreme value

at
o, = F14.04 3_5‘_(:___—'_1 = FOTASES (ty—ty)  (npap=0.3); (8.12)

there is also.

o = [— 0.0144V TTT=1) F (1 + 0.083 [ FF= 8 = 70 ;32} E3(t,—1y).
b pm0.3) (8.13)

) 29



d. A Long Cylindricael Shell with Closely Placed Ribs during Uniform
Heating along the Meridian and with Uniform Pressure. (Fig. 6)

We assume thaf; the radius of thg seam surface and the radius

of the central axis of the ring R, differ vnessentially from each other,

i.e., R, == R,

We wil; substitute the action of the rib on tre cylinder with
concentrated force P kg/em uniformly distributed along the circumference
(it may be considered,for example,that a uniform pressure is distridbuted
from the rib to the cylinder. along the whols area of contact)(Fig.6).
The uninowms T,, T2 s P are determined from conjugation conditions at the
contact point of the rid and the cylinder (Fig. 6)

W =0, wea—ARy= _l{%-pwcmn, Q= —1P
vhere /R, is thesincrement of the central axis radius of the rib, E,_ Fy
is the elasticity of the rib, Lut ua is the relative thermal expansion of

the center axis of the rib, Then

Ty= 5T, P=ia2B=fl @iy,

b
T wy + B, tull (8.14)
3= 4 — . ¢
144 ’I'i 1;.‘: M‘y‘% (a? +87)

Bending of the cy]:‘inder equals

@ w5 [ (o, B2) + By (a5, B2 T -(8.45)

The stress in the rid equals

O = —‘;ﬁ . (8.16)

30



Fig, 7

With Eu Fu = @ and tw= 0, we get the previously investigated instance

of a shell with a rigidly fastened edge,

e. A Long Cylindrical Shell with an End Rib during Uniform Heating along
the Meridian and with Uniform Pressure (Fig. 7).

The unknowns which are the constants of integration Tl and T2, the

radial force P, and the bending moment n, acting on the rib are determined
from equations (see /6/) (Fig. 7). ‘

-

Ldisd

T‘w=—ARm--—l’, —-,9.“!,“}?
‘w
¢}
'w'—"'r.:‘;,:. ’ Qx=—P- My=m, opn S0 -

Here E_ I, is the bending rigidity of the rib. As a result we

; P Wit
have ‘ T4 Wo =— g —duluB,  T3—Ta= -——,;-'7:7:' 8.17)
g PO a7, — oy 4 BB fa (33T 4 30— 30T = — P

%M (Tat+w) + M:‘g"‘ (2437, “"(“’ BT, +

B N+ f)—g=m, .
31



After determination of the constants it is not difficult 1o £ind the
forces and stresses in the cylinder and the rib, The normal stress in the

rib (Fig. 7)

, .
o= (1= gte,) (8.18).

where z., is the distance from the center axis of the cress<section of the
rib to the point under examinaticn.

9+ Calculation of Cylindrical Shells of Finite Length.
a. A Cylindrical Shell with R':idly Fas-ened Edges during Uniform Heating

along the Meridian and with Unifor: . -essure,

Since w = W'x Owithxno wrd X - Uy then

Ve —1w,, J"' -3%)sh al 8in 3! — (chtxl — cos®pl) a8
[ Rl /) T’ =~ B*shial — avsin® 81 = (9‘1)

g {chal — cas 81) (8 hal — ainar)
Taa‘w ﬁ'ih'ﬁl—a'smlp[ T‘g__;_r‘.

For a homogeneous cylinder with terperature variations according to the

linear law, alon? the meridian (p = 0) ve have

U sh kz cos k{I— z) + chkz sin k {I—z) 4 cos kzsh k(! “")
‘w——-R? . '{,1 b K+ sin +
sin kzch k (I —7)

|

! N Mnkzch ki -
‘ ’ . + sh kl + sin ki
! .

I

i
!
)

[} +t sh kz sin k(I = z) — ain kz shk (! — x) (
& = 2kR3 A5 shkl + sin ki 0-2)

E¥: fa“’“’u—mf Tt 48 .
My=gii—e B {...z ) ety b kzsin k (1—2)

—shkzcosk (I —~z)— cos 2 sh k{l—z) + sin kz chk (I—2)] — (t; — z,)}

;933 Y 3‘ l_—' +t (] 2 e
M'_i_z_f_‘___” {_g,, ‘Tl_‘um(ch kzsin/i(l —z)

— gh kz cas k (| — x) —cos kz sh k(l—z) +sin kx ch k(I —~ 2)] — (l,—-t,)}

4 + 4 coskrch k{l—x)—ch kxcoslr(l--zL
Q= — GD"’RS P sh Kl + sin ki Ny=0

t "‘Lz 1, sh kz cos k(l—z)+chkzsink (I—x) +cos k=2 shi([—2) +8in kachk(l—z)
sh ki + sin ki

Nyw —E3

! | ' 32
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Yo caleculate the stressec in the fiber points of the eylinder

(1) x=08ndx=1
L 'i(l—u) ety -
"'izu-ip)[o it e A B ‘:)]
)Hl—p’) bt o it
=& g | RS Bk b () F 20 pyftY]
1
(2) z=-zl

(9.3)

E‘% l ;“ = “') ‘I + " &) g waem bnd ]
i *m-m[ T T R ==t ©.4)
t+l]

s Val=ue
= 5 e [ et T ) 4

-

! dicated :
Here by means of ¥ 12 ‘"2’ (’)3 and V), the following expressions are indica

eh ki—cos ki

: by shklTsin ki .
i 9.5) .
' sh k! —sin kI )
sh ki Fsin &t

ch § ¥ sin Jkl —sh | kicos j &
.‘!",‘ sh kT sin &1

g Ch{ Al sind ki 4 sh § klcos ] ki
P sh I+ ain AT

i)
w l{l

Fig, 8

- i A » oy bg h o &
The values of functions iy= ll‘l(t:.) s Uy m ,L-z(-,) s !;'..3 z,’)3(r,) s ¥, l)h( ) are

presented in TablesVII and VIII and 3131 Fig. 8.



Teble VII

t wy | wo |2 [ wo | we

0 0 0 1.8 0.83154 0.50263
0.1 0, 05000 0.00170 1.9 0.88766 0.55092
0.2 0.00009 0.00687 2.0 0.92112 0,59908
0, 0. 143840 0.014999 2.4 0.95170 0.64659
0.4 0. 11997 0.026656 2.2 0.97926 0.69281
0.5 0,330 0.041847 2.3 1,0036 0.73754
0.6 0,20078 0.05994 2.4 1,0240 0,78004
0.7 0.34053 0.081522 .5 1.0428 0.81997
0.8 0.3ut08 0.10635 3.0 1.0884 0.97221
0.0 . 0. 44538 0.13437 3.5 1.0813 1,033%
(Y 0.49724 0.18518 4,0 1.0338 1.0370
% DA K04 | 01438 | 4.3 10272 1.0%44
L2 0.0 0250 1y 1.0003 1.0261
v | ot 0.27604 4 pe 1,000 1.0116
1 , 068550 ' 0.31708 0.0 0.008a3 1.0027
1.4 072472 0.305m 6 0.90642 0.40870
1.6 f 0.7 odoqus T ot 0.09753 0.94760
L7, oSt | 0dnaTr ’

[} N W
Table VIII

¢ wo | owo ot e ww

0 0 0 2.4 0.15707 0.41250
0.1 0 0. 50000 2.2 [TRTY A 0.3474%
0.2 0.001499 0..,9908 2.3 0.17692 0.8
0.3 0.003666 [{RATTEY 2.4 0.18571 (U4
0.4 0.0G6748 0,49489 2.5 019357 0.34531
0.3 0.010304 0.49973 3.0 0.21615 0.25580
0.6 0.014983 0.49429 3.5 0.21085 0.1:2941
0.7 0.020387 0.49871 4.0 0. 18380 0.072002
0.8 0.026596 0.49786 4.5 0.15170 0.017%15
0.9 0.033593 0.49661 5.0 0.13628 —0,016069
1.0 0.041305 0.4U482 5.5 0.0%3830 —0.034048
1.1 0.0%9501 0.49248 8.0 0.056287 —0.0%2182
1.2 0.058434 0,48941 6.5 0.0346% =01, 0520662
1.3 0.063704 0.48547 7.0 0.017629 0. 03838
1.4 0.079037 0.42059 1.5 0.0058317 0. 082702
1.5 0.089%05 0.47467 8.0 ~0,0015068 —0,025816
1.6 0.10094 0.46759 8.5 —0.006405 -0,018124
1.7 0.11228 0.45824 9.0 ~0.008518 ~0,013200
1.8 0.12372 0.44961 9.5 ~0,008971 —0,0083210
1.9 0.13510 0.43558 10.0 ~0.00%373 ~0.0045504
2.0 0.14626 . 0.42624 , )
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b. A Cylindrme.l She.ll with Fme Edges unﬂer the Influence of a Uniform

Pressure and Temperat/ure. From the boundary concfitions Ml Ql # 0 with
x-Oandx-lwedetérmlne ’

, Tt"'r["!'mr“'wo A(Nﬁ_,)ﬂ] at+gahgq§‘1?3:.::{$:+nn-pn
T"‘-T["Eb—'r'z’ —-"(N;+/)+¢] T.-TT. 0.6)

7, m 4 [SB505 w.-,;:(N.+/)+s]———,nr§LL.;|—rg—ﬂ“"";ff‘“ . .

For a homogq‘um oylinder with linesr heating aleng the thickness of

e . L eal )

the wall S L e -

~ BRSO e el LT - -, '
z ~ e e L L

,;.-u‘.-...

m !# , t“l +Far—ifmﬁrk_;§mlu—zy-
—chlzsin k(l-z)-—bmluhk (l—2z) + coskzalnk(l—-.r)] “.7)

I\ Tdu byt ch Az 008 kiloe £) — ¢08 k2 chik {iwnz)
k Vg sh &l 4 sin ki

The maxirmm normel stresses at the c¢ylinder edges will be

o~

5; - 0.,. Sg == _E_:’_E:z‘-":) [; 1 + + ?31 . (!).8)

These same stresses in the middle of the cylinder, equal
| L (0.9)

' - - EA (=1 L2
o=F F?((:" @29 —1) = "E(f-—-?)'l [""‘" LS Valu—w "]

¢. A Cylin S ‘wi ol 5 during yniform Heating

along the Meridian and with Uniform Pressure, Since w = Ml = Owith x= 0

and x = 1, then
. 35



Tym—wy Tym—L[GB=CB o0 '
= om g MR R e Sk n e oag)

—ea d

)
Ty u.m',_'.gl G’_,.‘. 10 I3, C,
3 { ky [ 'II.I(-*—'W.,—-M(‘\,-}-/).}.g],*_ woshal}chul—cosﬁl

T = Ishal (Gl —C,l 4 - '——-w-*.—-.in'a.‘
TEY | v il Bed ‘ |
o je [-—-m-_'w.—jj (Vi + 1) + ] wesln ) iy |

For a homogensous cylinder with linear heating along the thickness

we get

; XY o ' '
s  DmmAgh, . Liegisy (9.41)
Ty me R bty (ahkl-ulnkl)(chkl-—cmkl) {4 o ‘ -,
2 47 Yy Ty +2 g Lluh_'r'l: t'(+ﬂl-&':'-‘:“
7"-=8H;1"+‘ Fy ikl) 41/, (sh 2k — sin 2kt) 1ok, ty et [{—F (kl)gf (k! V
oy K s - -— )
) 2 2 I’ ﬁ 3 sh* '+sn"ld *

sl ko sind ki

1

d. A Cylindrical Shell with Rits during Uniform Heating along the Axis

and with Uniform Pressurs. Letds examine a cylindricel shell with close and

evenly placed ribs, In this instance, the ribs at a distance from the

edges act only through stretch on the compression, The ribs transmit only
the concentrated rinced force P kg/cm, to the shell, We have five boundary
conditions for dete;mining the five uninowns, Tl, T2, T3, Th’ P, Ve initially

select the middle coordinate between the two ribs (assuming Ry~ R), Then

) - ;l
w =0, ¢,=0 8 2=0; w =0, ARy=—®u, Q=P =T

Conditions with x = O follow from symmetric consideration of deformation
relative to the initial section, As a result
36



0, (31) + 10, (%?)

= (3)—e0,(30) "

(9.42)

\ . 0.(';’)+0. ,l) Dy —C ‘
P ma 4as (a + §) ”.(,I)-.o, B‘—-‘-T. . ‘

r.--(u.-a-;u.u.ml0.(,«)—«4».(.:)] @, (30) [s0s (30) +
+ 50, (1)) + 04 (L) [50,(41) = 00, (0] o 4aB a2+h [0S () + .

+¢’|'(;I)"%§E1%"n‘}- TimT w0

From here with E, R, == and t..= O, we get the instance of rigid
fastening of the cylinder during x = I 21,

10, Static Stability. We assune that before the loss of stability, tho

shell is uniformly compressed by forces Nl " - q kg/cm. Lets exmﬁné the
instance of an axially symmetric form of stability when the follow.fmg conditions

are satisf:ied:
w(O);w(l)uw.. ' (0) s () 0«

* Solution of basic equation

WY + 200" + b* (w0 —10,) = 0 (10.1y .

where Wy = —*%T;D;’n:r (10.2y .
we search in form of :
wmwytws . (10.3) ;

" Here LA is the bending due to the loss of stability, Let

Wy v ZA. sin 2% s . . (10.4}
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by this N\ = OmR/1,0 is the number of half-waves in the direction of the shell
axis originating during the loss of stability, By substituting expressions
(10.,3) and (20,k4) into equation (10.1) we find the critical force

9"5[;:: (DxBi C’,)+”"'”=’} 22 DB=0B . (105

By considering q* as 4 continnous fuaction A we determine the minimum

value of the critical force

Jmin® = 'Ef][v (BI=BY (DB, —C) ~C,B, + ca”n] (10.6)
vhich oceurs during

v B — b
=V pa=es R (10.7)

From (10.6), (10.7) we obtain the known form giveu by S. P. Timoshenko

for a homogeneous shell /7/

Jan® = £t A= V‘ 12(1 —p?) l/'li{‘ - (10.8y

H Vii—wh

Stresses in the lavers at the moment of stability loss are determined

from equations
,(A) ,m
l

o8, + ol = — e EmE S
and thus:
. E . E
Ve EEEEg VT T EivEs - (09

From here /7/ we obtain the following for a homogeneous shell:

* E3 i, . ’
oy om e dBE o V= (10.10)
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2 2
The nurerical values of forces g min%, stresses 0'1(1) and 0'1( )for a

series of values 0, Oy, El’ E2 s My Uy are given in Table IX. In Tables

¥ - XI the values of stresses in the layer during the loss of stability

are shown for a series of relationships 61/02 and 31/32 for value & = 0,3,
These results are presented in Fig, 10 « 11, where

) ‘ ‘ s

W= —EF

(10.41)

P n
-,‘(2) -— T .

Fig. 9. '

1l. Dynamic Stability. The problem concerning dynamic stability of a bar

was raised by N.M., Belyaev /8/,
Lets investifate an axially symmetric form of loss of stability of a

bimetallic shell when the latter is uniformly compressed by axial forcss

N.=—q-—'q°-—q.,cosw7‘ (11.1)
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) .
where w is the circular frequency of the external force and T is the time,

Considering the inertia of the bending of the shell sections, the equation

of the problem will appear as

' " _ B 15 dw ) .
oW + 20w + P m (g V=T ) a1

where

<

I w33, o+ 1ads ‘ (14.3)

where ‘)'1 and ¥ o 8re specific gravities of the materdial layers,

Solution of equation (11.12) is presented as

0=

w= Wot ) Ao (T) sin 5% (11.4)
[ L3}

where A()‘(T) is the parameter, depending on time,

n.R

(W = T N IThR

(9o + queoswl), (14.5)

By substituting expression (1l.lL) into equation (11,2) we find

™
=10y ‘-‘{ dar i
.. LA

(q* — qu— g, C0S ol') Jdo (T)" sin)—';‘- =0 (11.0).
A= '

Here q' is the critical force determined by formila (10.5).
Equation (11.6) 1s reduced to the Mathieu equation,

ho



¢
N EYS w?

— 4 . (= rucns 22) Ao (1) =0 (11.7)

where Vg is the average natural frequency of the shell,

SETT R S S 4 -E=CPRTY )
Generally speaking, investigation of dynamic stability of an elastic
.system always reduces to the Mathieu equation if the forms of loss of

static stability and oscillations are the same,

’ R ,[ﬂl ?‘ﬂﬂ/
a.55 "l\\ //”;
! = 015
N2 T
+ '/ }
s s
F;
N~
/ //
a5 ‘v////
4 [
“ \I/}I/J G '3: I
Fig, 10

Mathisu equation was investigated Liore comprehensively for the first
time by A, Andronov and M, Leontovich /9/ in connectica with the problem
of oscillation of a pendulum in the gravitational field, For instance,
when € <1 e?.nd W, is any valid number, they showed that equation (11.7)

can have the following solution, The first, a so-called stable solution,
RS §



represents an almost periodic function

ar(t) + é,’uinw(t) (11.9)

-

Ao iT) - g,8"o () + ‘,"‘,‘"‘" ® “'f %) -ul.h' coa_

where ¢ (1), @ ( = T), n(r), V(r) are functions of v, the period of |
which equals ; T is the characteristic nurber; 815 Bp» gi, g; are the
arﬁitrary constants,

If 7 s the raticnal mumber, then A (1) is a function with a perdod

an,

The stable,values, we/w corréspond to the stable solution (11,9). The
second to the unstable solution (when T = ik or 7 = 1 + ik)

A gt wl) Faeta(—d, (11.40)

where ¢ 1(‘2’) is the periodic function with a period 7 or 27, Here A,(T)

increases indefinitely only if the correlation between A’o(o) and dA_( 0)/dz
are not such that g - 0. )
<

12
12 Al — f .
17— ,.‘..+__ ; vor
)
Y] PR ET Y R R el R
¢ .
) B i (. .
’ o L2 A1 B
{
gtf—ad- | —
7] I L
25 ===
ov - !
23> PR U F g .,
a2 A I ! J
21 == S : }‘
T
O—33~7T 13 & 13 ¢
1}2 Fig' n



Table IX

. " o F 10742 R, 1ol -
boew] boow | Neln | WA " T R, iw-odp,
o03] o0 | 03 | oms | ot | ooz | 118
o] van |1 2 0.3 | 03 | 083 | 145 | 0.5%
o | 0ws | 4z 2 03 | 03 | tzi0 | 120 |tz
o | o |t i 0.3 | 033 | 0.6115 | 0612 | 0.612
00T 00 |2 1 0.3 | 033 | 1315 | o6z | 1.58
owr| 005 | 1 2 033 | 03 | 1206 | 1.4z | 0.7T10
0.0 { 0.07 2 1 0.3 0.33 1.239 0.729 | 1.48
o] 007 | 1 2 033 | 03 | 128 | 1.35 [ 0.67
ox! won | 2 1 0.3 | 038 | 3970 | 113 | 2.27
015 o | 1 2 0.3 | 03 | 3.8 | 25 | 1.25
0.0 013 | 2 1 03 | 033 | 3.208 | 128 | 2.58
00| 045 | 2 o3 | 03 | 302 | 2u | 142

Table X

Values n'*) With u = 0,3

I:',‘II.’. | 10 8 5 4 ' 2 I 1 i 0.78 ! 0.5 l O.H‘I 0.1

Ll
o 0.6052 [ 0.6002 {06052 ). €052 10.£052 | 0.6052 [ 0.6052 [0.605210.6052/0. 6052
10 0557310358 (05630 1).5721 [0.5816: 0.6052 [ 0,6477 0.6367’;).6!‘»’.?.0.6539

-3

8 0.5471 {0.53582]0.5535 1 ). 5650 0.5775'0.6052 0.8191 j0.6339/0.662210. 6344
5 0.5200810.5250 1 0.5:144 19,5300 0.56%3 | 0.6052 | 0.6210 10.639410. 64500, 5795
K3 0.4832 [ 0.490% 1 0.5080 1).5154 10,5007 | 0.6€052 | 0.6193 10,6297 .6087(0.510L
2 0.4558]0.463210.4925 1 0.5201 { 0.50°0510.6052 | 0.6146 .61%10.5706:0.4622
1 0.4271 [0.4473 1 0. 4942 10,5355 0.5795 | 0.6032 | 0.6006 .578510.5471}0.4271
0.75 0,530 10.4575 10,5008 | 0.56334 10.5032 | 0.6052 | 0.5049 . 368610, 507410.4327
05 0.5622 [0.490910.5174 | 0.5944 | 0.6136 | 0.6052 | 0.5995 10. 5603/0.5077 4548
0.2 05193 1 0.57671 ] 0.6194 | 0.639% | 0.6:167 [ 0.6032 | 0.5381 10.56440.531410.5052

0.1 0.65%9 [0.6650 | 0.6636 1 0.65:7 | 0.6367 £ 0.6052 | 0.5942 10.58160. 5671 :5573
0 0.6052 ] 0.6052 | 0.6032 | 0.60532 [ 0.6032 | 0.6032 | 0.6052 0. 603210.6052)0. 6032
4

..

o e—— e et

ot s St 0 e b £ At Ll 0 ¥+ et L B



-~ Table XI

Values n(z)with 14 =0,3

|

kil l ml-- 5i aizlxio.n'o.s‘o.ulo.x
8 /8

o 0.0005 1 0.00915 10,0212 10.067210.1313 0.605211.076 | 2.4211 0.684] 6.052

{0 0.0°0T3 [0.06N7 0. 1128 10,1907 { 0.2908 10.6052[0.8236] 1.273] 2.657 6.539

8 0.0007LH[0.06866 104151 0185 | 0. 2887 [0,6052[0. 82341 1.278] 2.6849] 6.344

) QL0020 | UL RO 106 10,4506 10,282 10,6052(0. 82791 1.279] 2,584 5.795

3 0.03R4210.06135 10,1018 10.478510,280% 10.603-10,8260! 1.259] 2.435] 5.101

< 0.01518]0.05815 0.00859 [0,1764 | 0,2803 0.605210, 8194} 1,227] 2.242] 4.622

1 0.0,:271 ] 0.00592 0. 0YSS3 10,4818 { 0. 2897 10605210, 5008] 1.450] 2,068 4.271

07 0,040 0.7 0. 1022 10,1875 10,2966 10.6052(0.7932] 1.137] 2.030] 4.327

0.0 0,022 [ 0,064 [0, 1005 [0, 1081 ] 0.206X 0.6052]0.7850] 1.123] 2.034] 4.548

0.20 0,003 | 0.07204 [0 1200 10,213 | 0.3182 [0.6052[0.7841] 1.120] 2,125 5.052

0.1 QL0330 082000, 34T 10,2182 10,3183 10,605210,7923] 1.160] 2.268] 5.573

0 006G [0.07765 10,1210 102047 | 0.3021 10605210, %070] 1.210! 2.4211 6.052

The first solution corresponds to the stable work region of the shell,
the second to the unstable, Values €, and wg/w determining the dividing
lines of the stable and unstable regions correspond to the solution, one
of which is the periodic with a period 7 or 27, the other being %F(z) +
%(1), where F (7) and &(7) are the periodic function with a period of 7 or
27,

The boundaries of the unstable regions (with accuracy to 603)will be /10/:

First region

(..22_"-\ -Vi? ] o F 40 (11.41)
Wyn 711,12
Second region, o (22) Vitiw (1142
(‘;—) ‘Vé— 3 t @p/22
xpy 24
MR a _yTEwEe  am
"up 3,32

Ly
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Here w,__ are the cpitical vulues of frequencies of the erxternal force

kp
g, during which the cylindrical shnll becomes unstable,

12, A Multilayered Cylindrical Shell, If the shell is multilayered, then

all basic correlations obtained previously remain thé same, and the
exoression changes for By, B,, sees Dyy £ and g, Let the shell have m layers,
Lets assume that the surface ir':n layers, distant from the internal surface,
is the original, The surfaces of the j layer, are spaced at a distance of
£4 and gj-l'

Let °;j - Ej - ¢ 4 be the thickness of the j layer, E

J
normal elasticity, “3 the Poissons ratio, 8 3 the coefficient of the

the modulus of

linear thermal expansion, As previously, we consider that the shell is
thin and elastie, Then, instead of expression (1.1) for a bimetallic shell,

we have the following correlations for a multilayered shell:

P ] ;‘ -§1—1

A ) 3ds 6,N3dz
M,-%é_la. i

n & m " Si—l
My= S o Wzdz 4+ § alzds -

(I 18 nel =&

n Y - om Y (124
N;-z; 0, dz ):I S o ds
t g wel ‘{,
n Y "“ 'E"‘
: Ny D @ dat N § 3 d:
i R wH -G

Here the stresses in the j-m layer 01(3) and 0'2(3) are determined
by Hooke's law, In order to obtain formulas for cl(j) and 02(5)it is
sufficient to exchange indexes 1 and 2 related to the layers in expression

(1.11) by Jo é
L5
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As a result, for internal forces of a MmMultilayered shell, expressions
t
which in their form do not coincide with formwlas (1,12)« (1.,15) are

obtained; however, for rigidity the following expressions should be

taken:
P m m . . m ) '
: £} E,8
=2 B=3nlge. T=2uy 022
K (&bl OB (Eptd)
' D, = | 3 _!_(1’_%.’_‘_ , Dy== -!’-'Zp, — =
€ =t LA LTRATE R 2' 5 31(‘:*"[-:)
l-“j u-‘-l _I‘”
"o :.,(z,jz, Do E(G Yo
C, —2 1=y, 2 ’2-" L A i—p,
O Eibm N Eym L Y Eadte 1 B
[=nmy Y am= ° T T F 2 ST
; 1 .!i 1 =%
; o 8,1d., ! em tdz
: mi=3; !Smp,ld mj = _S‘, B
- . » % ” I
- n,-af“, S fitzdz, n,'=—a",'. S Bjtzdz .
{ o 8-t -
Further calculations remain unchanged, ,
[4
Submitted 25 Sep 1952 Institute of Mechanics

Academy of Sciences,SSSR
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