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CONCERNING THE STRENGTH AND STABILITY OF CYLINDRICAL B113TALLIC SHELLS

by

E.I. Grigolyuck

The strength and stqbility of an axially symmetric cylindricalbimetallic

shell is investigated in this article. The shell is assumed to be thin and

elastic. It is considered that the hypothesis of incompressibility of the

layers and of the non-deformability of the normal element retain this force

also for the bimetallic shell /A-3/. Separately investigated was a shell

of an infinite and finits length, and the so-called condition of reduction when

applicable to the shell. Examples of calculation of shells down to the

determinants of displacements and stresses, are given. In a particular case,

the results for a homogeneous shell are obtained. Axisymmetric stability of the

shell is investigated by linear arrangement.

1. Basic Equations of the Problem. Let the radius of the surface seam of

the cYgindrical,,bimetallic, thin-va: led shell equal R; its length, 1; the

thickness of the internal and exteimal layer correspond to 1 ad 6; x be

the interval from tho left edge of the cylinder to the cross section; z, the

positive distance from the surface of the seam along the thickness of the

shell if directed toward the center of the curvature. The element of the

shell is shown in Fig. 1. During axisymmetric deformations in the cross
Isections of the element, normal a1 and tangent , stresses occur. In

the meridianal sections only the normal stress C2 occurs.
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Internal forces relative to unit length of the seam surface: the

bending moments I1 and N2 , the normal forces N1 and N2 and the cross-sectional

force Q, are shown in Fig. 1. They are associated with stresses by formulas

8,.0

ii..j~~~~ 1(t)P (z-~zz dz +1
2 (j~Lizz 3152) zdz

a,
Mzdz j -YSdz+

N1~~~~~~~sl z..~ (1'*d: + 22((2~)d Z~~d

41 0 0 . .

-.I(') dz+ 0,(2)dz

QI - dz +-8,

Here Index 1 at the right top relates to the internal, and Index 2 to

the external layer.

We will examine the deformation of the seam surface. Let u and w be

the respective components of the complete displacement of the seam surface

in axial and radial directions (Fig. 2).

&Rdydx.IO D eforeI. p, Rd. dr or:n.ation
fl4.ffl w w-dw

""sn efac-,. o d#
seara R p

VI Rdt \ -NdNiJR4d( aftcr

.Fig 2

Then the axial relative to deformation of the seam surface equals
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Ir (dx + hdu)' + (dw)'-d: =+ i/(1."I =i ---. - / + 2te +" u's•--• (t.2)

The line indicates the derivative by x. Arranging the radicant

expression into a series and limiting ourselves to the two first terms of the

series, we have

, -e + +V' + (.3

Here, the second term of the right side of the expression (1.3) is

negligibly small in comparison with the rest. So, during the displacements

respective to the wall thickness, the following formula should be used:

U, (1+ (1.4)

By a quadratic term during minor displacements we can disregard

,• -u'.(1.5) I

The relative annular deformation of the seam surface will be

"2x(R-w)--2uR W I

The incline angle of the normal to the surface of the seam B is

related to flexure w by equation of consistency (Fig.2.)

which at values (1 are negligible in comparison with the unity and such

angles . , in the presence of which angles, substitution of the sine angle

by the value of the angle itself is valid and converts into the following:

3



The obtained formula is valid for small and large displacements of

the seam surface only if the indicated conditions are retained.

Relative deformations of the surface of interval z from the seam

surface are equal (Fig. 2)

where , w , u1 - -r (h.O)

Normal stresses in the cross-sections are detarmined by Hooke's law

-[- + pI'ea - (XL + f11K2) - ( + 1'J)PI1t

-,")" • ['I + 1 :'1, - z (X, + 1,s1X) - (1 + i'•A, (0t (1.11)

""=--p+•P2, l'•+ - z (X1 + Px) - (1 + a) %itj

72( F (- ?~z U)f'_- , [6: + i'2gi - "(X + 1 , -(+) - (1 + :' / ( -1

where E1 and E2 are moduli of the normal elasticity of the material layers,

9i and P are Poissons ratios of the material, gl and #2 are coefficients

of the linear temperature elongation of the material layers, and t is the

temperature.

Substituting expression (1.11) into formulas (1.1) we have

Al,- C,, 1 + C,,, Dx, - (1.12)

' C,,A + Cl,, - D, - Dix, - g (1.13)
,V. B,, +/.,, - C,, - C,•- /(1.i4)

N, - Bi:l + BI, .... - Cix - / (1.15)



by this

5,8,' ...1. L jI+1 K''a' + P •'i £S . t A'

I.- Ba i z ' s I E 'S,,,, I E r,,,,
2.1-:5',, -• ! , '2 1- -- N -,"• -' -pP1 ", + = (1.16)

It is not possible to express transverse force Q1 by its corresponding

deformation.

The equation of equilibrium for an infinitesimal element during fairly

big displacementm of the seam surface will be (Fig. 1)

[' 1 (0 + u')A' + P. - 0 (1.17)
,'+ M , + IV W, IT + -A + e o( ~ 8

Q +P'-

energy of the shell in which the action of the lateral force Qwas

disregarded

R11 , ((1.0)) + + w
t, (1.20')

--5 flAi ,-1-u')l-I-p~)).udz dlI- l (i-+-/) .u -- ,lllw' ,+ (l,'ll +q 4VU1).. .wI•



it is evident that the system of the equilibrium equations (1.17) - (1.19)

corresponds to the instance when deformations and p&rameters of the change

in curvatures are determ•ned by (1.3), (1.6), (1.10). If Ci is deternrined

according to (i.4), then the first equilibrium equation (1.17) will be

N1 + px - Os from here when px 0, we have

N•, - onst. (1.21).

In all calculations value x2 may be considered to equal zero. Then the

second and third equilibrium equations '(1.18)- (1.19) give

.I+," +(N,,)' +" P+ p. 0.

With condition (1.21) we have

SN".+ + -p( 0.(.22)

Finally, small dispacements may be disregarded by the second term

.t," + • + P, =0 . (1.23)

Asa result, a complete system of equations is obtained for solving the

problem. The number of unknowns equals eleven, the number of equations.

Furthermorewe bear in mind the instance when equation (1.22) is valid.

We exclude C1 from (1.12), (1.13), (1.15), by means of equation (1.14)

f + .

:'m -f[vz /+-.-:, +C,.6
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Then ~ 7~~I-~I, I ~ LY ~ (*4

.|1. -f i ctt'1i _ 1 1)'11 - C 'C, •,+N: - -•" 1, . , + (N , +/)--. (1.2-4)

We will substitute expressions (1.24k) and (1.26) into equation (1.22)

v + -3-1 + b'-1-1 w "=) (1.27)

where

(1.29)

The problem olf adxally symmetric deforrmation of an elastic thin-walled

bimetallic cylindrical shell under any relationships between the thickne~s,

under dif'ferent mechanical characteristics of' the material layers, and irnder

arbitrary heating along the thickness in the axia1 direction, is allreduced

toward solving equation (1.27).

During the calculation of shell stability, it should. be assunced in
e:Wression (1.28) that N(. 6; then equation (1.27) will correspond with the

initial equation (1.23).

With CI - 02 - 0

),' list,
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the calculation is simplified. By s

1, - D f," + (I -4- .II = -- 1)ftw" + (1 + !,)n]

, -(1 + it], N, tN, A (I (:,')(•+mR)

where

m M- m, + m,nr,

during which • is the thickness f the shell.

Consequently, instead of equation (1.27) we get

-IV L ,IW" + .. ,W=&:., =, ,, + p it) -4k'Im--(I +,)n" (O.:l).

Here

With E1 P i.e., for monometal we have

k =, W) (1.35)



In the following paragraphs 2 - 9, the strength of the bimetallic

cylindrical shell is investigated; and in paragraphs 10 - 11 , the static

and dynanic stability of the shell during axially symmotric deformation due

to axial compressive forces.

2. The Integral of the Basic Equation of the Problem. Here, we investigate

the instance which may be disregarded by the second term in the equation

(1.22). We will pause and find a general solution to the homogeneous

equation (1.27).

Substituting w- expsx, we get a characteristic equation

.,
4 .: Its' i.

From this
" ,(2.1)

The solution of homogeneous ecuation (1.27) may be presented as

"= T?,h i-Ikac(s :i" + T'.•1m sii ki + 2',shix cos •xz + Tch a. .in :x (2.2)

where TI, T2 , T3 , T4 are arbitrary constants.
I

For this, it should be shown that 0ý<b2, i.e., all roots of the

characteristic equation (2.1),ar', complex. First we calculate
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-~ ' II + + ( I,;. i -}-

I)Lis, -cis + i-, - - +

+ ( + +~--

Ne tabulate the followi.ng expression:

(a bt')(DI - C1 "R2 -'(C 21 - ---•CJ - ( 2 
- 1112) (D--, - C12)-

- v + ..... s E! 'E,'8,'82'
-- &'j, 1)3 (+I;! - + I, '(I - +

+ + 1• 2, (2&,- + 2a$2 + 3a,) +
2 0 -M(I -- IA)' 0(1 -- 14

+ I ! E 1,'8,1' ' I ';n X
" -A + 12 T(-IAi'(I--IA')

x ((4' + &2')(8- (8 ,,' -
3 ,,a, - 2 Fpjp) + GY,4 (2 -:JI, - 1•,i)1)

With uI <1 and 2< , multinomial, enclosed in braces, it is always

positive; thus

(C.BI - BC,)' - (BI' - B32) (DB - C1)<O.

Prom this, it follows that U2 < b2 . The general solution of equation (1.27)

will be

(2.4)j

where wo is a particular solution of the heterogeneous equation (1.27).

3. A Cylindrical Shell of Finite Length. We introduce the designation

(D, (.r) -= sit2.r ms :, (Oj(.r) r It a•. sin, x.

10



The derivatives of functions .i(x) (i - 1, 2, 3, 4) along x and the

integrals of these fimctions are indicated below (the value of the argument

is omitted)

031 aI, 20. ý

i (21 ' - a01 -2*14), 02, = al -,P) + -D,
(1);'- (22 0 , -- ,a"4., 04- -= (2 -V0 + 22ý,

(I)IV - (al'-- 6js +-j,, 41 4 (" 1 '-- S') Ds,

11" 1-. (a' - OCa@'+,, + 14' (a' - A+ ,

q),IV - (0- Gas'"' + :.') 04 + 4•('--) (D

j,(x) v. 1dx _ 0,I'•, I(*) -- ,,('-}

xT Old," - -940, + (x) + 1-x x

IIJS 0.,,U ". - .2'- M ) + • 'd

The values of functions e•*j(x) and their derivatives at zero value of

the argument are shoim in Table I.

Table I

0 .0 - +
2 0 0 22A 0 4MA(CL2-- AS)

3 0 0 -~' 0
:00 0 '-3u') 0

For the forces of (1.12), (1.13), (1.i5), (1.19) we obtain the expression

I £!,'-- BSC, .
.11•, k,0,T, -- k,0,T, + k,0 4T,-- k1 0,T -- . -

DIe,-c,, - '+( I+ (3.1)U_ + ....



.11. =, -- (/), -- k3(D) T, - (k.4 2 + kA301) To- (kRAS- k204) To - (3.2)

(k g + A.C , i --C DT1l- C C, C, - + C1 -.-- ~~~~~~ +4@ +y +== 4 -lu '- •"

,A (- (' - kA1(1') T' - (k403 +/.'I') T" - (kLt4-- k,) T3 -- (3.3,
1i .ll, s -fiec,1 ,, 1) -Cl fI.)'

• /'@ + ksN) T,-- , _u, I -- •l 1 - 11 '. - x1

" k, ( -I"'3 + MP1l) T7 + k, (tA, --- ,1,a) Ts -- k, (,)L. + 2(q,=) TI+
+ k, I Co, D',, - , w,'"+ ,(- -

where

k -2a., k = +J. (3.4)

2a,- Cl,'- C
k= ..... -. 7"- ' 4- B , ------

The normal meridianaial fo~rce N1 is dependent on either the nature of the pro-

blem Or tl- condition of axial displacement, or on the equilibrium equation

of a shell part.

Axial displacement is determined by formula (1.5)

S= 10 1,Q,! - 1124)) T, + ( +llaD, + ;-111(b3) T, +

+ (i 3 , -. 1 ) To + (211202 + .ýI,0D + (3.6)

U

where T is the arbitrary constant.

if, C, 
,D

, .- C," + " 5'3 S)1T '1C (al -i )J1 (3.7)
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Equations (3.1) - (3.4) are valid for a thin bimetallic cylindrical

shell with arbitrary thickness r,@i.os 61 and 62, elasticity moduli E1 and

Z2, and Poisaon"s coefficients u and V. Under these conditions the

deformation was assumed to be elastic as well as axially symmetric.

4,. A Cylindrical Sb1ll of Infinite Length. The solution of the homogeneous

equation (1.27) for a shell of infinite length may be obtained directly

from expression (2.2). For this purpose we express the hyperbolic sine and

cosine through exponential functions. Sinces x -as , terms containing exp

WC tend toward infinity, the oonstants :f integration for a shell of infinite

length$ with these terms, may be assumed to equal zero. Then

Z~- TA,( + ~.) A(ax, "C) + W. (4. 1)'

where TI, T2 are the new constants of integration, determined from conditions

in the investigated edge

The first four derivatives of A(cc, 94) (i - 1, 2) along x and the

integrals of these functions are indicated below (the value of the argument is

omitted) .
A1' -- -- Ia , . I2 - -- :4, --AAA

," -- (0'--') A,-2aPA, A 2" (2'-.- " :, + 2-1 .,

A,"' - - a(a' - 3',2)A, -a (1--3'1")A,

A1 1V - (a'-Oa'' + IM)A, -4aý (12...' ..l
A41v - WV6as + 04)A 2 + 4ut (W- jil A,

A (I - A,) - , a d (I -A,) + PA,

13



The values of functions Ai(=x, Ox) and theit derivatives with x = 0

are indicated in Table II.

Table I1

I Iv
I A$O. 0) A1 ,(O.o) AO'.U1 ,:) .Au. ( , 1

2 ' -- M-A(' -:I*,) -'aft'al A$)

Internal forces and a)dal displncements for a long shell equal

Jis
.. . , t C, Zl -J,, , • - .L .

IClit-~JDII. C 0iB C-CN2 - (k,4, -k,,A,)T -- (kA, + ksAj)T, - t 1,1 --
P0- CC o +£-'-N+1)--u(.I-

Nv, - - ( _,B-kA,) T1 -- (kA, + k,AP ) T,--+ I

-= k, (=As - PA) T, + 7-1 A, - ýA.T) T-I- B c,,- c -
Dil -C12 "II -

-- W .J r),: V'-P.) -- 8, (4.5)

uwT& (-a.A- (=' A•- ,+T)4
pB, + T. rr. F"/•= \l, ),a~ ~ T -' [(+ I.--A~ (,C1 + 'A~~..)4 +

+ (PsJ~ + £it~~ ~[~)~A
x x

+ •-N T,+" (N+ ,)d.o+ d C.,%) (4.

5. A Cylindrical Shell for Which the Condition of Reduction is Applicable.

With C a C2 - 0, the so-called condition of reduction ul g2- ,,4 and

62 2
Ell, v12 222 is valid. From a mechanical vievwpoint these conditions

satisfy a state, during which the seam surface of the shell becorM3s a

neutral surface during bending. From the mathematical viewpoint the

14



calculation for the bimetallic she 1. 'ompare~s with the calculation for a

homogeneous (monometallic) shell, I it with several introduced moduli, one

of which is the modulus of olasticA.ty during bending and analogous to the

known modulus, introduced during the calculation of stability beyond the

elasticity boundary of the rectangular cross-Cection of a rectilinear bar

(1 1." + V 1',)e

the other is the modulus of elasticity on stretch and is equal to the

square root from derivatives of the elasticity moduli of layers' il/Lk77.

In accordance with (1.28), a - 0, and with (2.3), 9 - (. All functions

for the investigated instance art received if we assume that C1 - C2 - 0

in sections 3 and h.

Table III

I .,'AF(•, ) -. k"F,,(•) ,-4&,J •(•) - /iA'Ys(•) F:,(•)/'k
I ,J'W(,) 44'FA() 4k'F,(-,) -ik'F1 ({) FJ(4)/k

The solution may be presented, also,through the A. N. Krilov functions

introduced by him when making calculations for bars on an elastic base /4/.

Table IV

-h Z F2 ( .rh E-A (E =kx)1..,(0) 610 F, . 10 IY

I I 1) (o0 -iF k
4o

, ( k Fk,(i) - shisini
100( k3 0



The derivatives of A.N. Krilov? s functions along x are shown in Table II

The value of A.N. Krilo'v functions~as well as of their derivatives when

x 0, are shown in Table IV; by which

A general solution of equation (1.33) will be

W ,() + Tsfs(t) + TaFa(i) + T4 F4 M~ + WO (5.1)

where Tl, T2j T p Th are the new constants of integoration,

The e~~ressions for forces and the angle of inclination of the normal

will be

.1, 2D [4T1F3 (Z) + 1.T,F4(Z) - T.F. (2) - T,.El- Dfw0 " + (I + i,)n I
iI,21ik'Dj4T1 F3(;) 4+ ISTF 4(i) - - T7b'1(Z) - T4F2(E) j - D [pwrc" + (I + )'

AID 11D[T1 F2(i) + 4T2F3(E) -I- isT3F4 (Z)- 'r.F,(E)l D[w.,' + (I + pL) n'j

N2 -n10. 1- .~ 11 0TIF1 (i)-~ .'()+'FA)I 4 .()++mI(.2

* 0- ki-4TF;(*) + ()+ .J()+TF()+w,

But for a Cylinder of Infinitcu length we will find /5/

l 1-2k'DIT 3 A,(C) - T:,ASC)] - D [wo" + (I + p)nj
-412- 2,'k'DfT1 As(i) - 72A, ()if - Dji'w0" + (1 + ,)nj

-, - 2k3D 1T1A2(E) + TA,A(ý)j - D [w0"' + (t + p)n',j
N2~ pN, ij' 1 TA 1(i).+ T2,A(E) + w0 + mA'Ij 53

-T14,I(E) + TA2(t) + w., 0= /4T,A ,(Z) -TAs(i)J + w.
Here

At - e-E sin Z, As (t) =eEC(sin e + cosC
A)- eCcostC, Ad(t) e- c(cos i-.sin Z)

16



by TI, T2 , certain other arbitrary constants are indicated here.

Table V

4 AI (Ct) A;* (C) I A,` (C AV(o

I kA4I4 ) -2k'As(ý) 248A,(ý) -- A'A1( -) [-A,(,)J/2k
2. --kA4() 2k0A,(•) 2k'A,(4) --44AA(,) II-A,(4 )j/2k
3 -2kA 1 (() --2kA,() 4k'A,(&) ---4'A.() It-A,(t)I/k
4 --kAo() 20AS(g) --iA'A,4( --4kIA,() A.(t)/k

Thederivatives of functions A.(M) Ui - 1,...4) along x are shown in

Table V. The value of these functions, as well as of the derivatives, when

Sa 0 are given in Table VI.

Also presented are the values of the integrals

x= i Ai (M) dx

Table VI

S A1 (O) Aj(O) IA 1 ((O)) A," (0) 1AI

1 0 k 1-20' 2kI
2 1 -k 0 2k0 -4k'
3 1 0 -- '2k' Us' -4k'
4 1-2k 2k0 0 -Ak0

6. Boundary Conditions. Boundary conditions are in brackets in formula

(1.20). There are a total of 6 boundary conditions- three on each edge.

They permit determination of constants N1 , T1 , T2 , T3 , T4, T .

The form adopted for solving the problem brings an, accord of the boundary

conditions for homogeneous and bimetallic shells.

17
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Thus, as an example for the e're. edge

NS - (Af ,0.

For the rigidly fixed edge

7, The Determination of Normal Stresses. Normal stresses in layers of the

shell are found by formulas (1.31), where €' C2. x., x2 are determined

through interal forces from (io•2) - (1.15) by formulas:

Here

Al (N, + viD + (N, + B., + (M, + g) s + (A, + g) B,

-1= (.VA +) 1h, +,(G'X + ZB + (MJ, +,g) B, + (M, +q),6,A3 - - (N + h") B - (N, + 1) B4 + (MA + g) B, + (M, + g) B,
- (NV + /) B, - (N1 + /) B3 + (Mf, + 9) B, + (M, + g) B,
Pis - (U - L1') (OII' - Dg') - 2 (BUDs + BDD,) (Cl, + Cs,) +

+ 4CC, (1UD2 + UD,) + (Cis-- q- ,

Bi- I (Di' - L•,') + 2C, (,D, - D, (Cis + C,')
13, - - A, (L,, - b,2) + 2C,'01 - D2 (CL + Cz)
B3 - - II, (CD2 - CD.) + C, (C.' - CI) + B, (CD, -CD,)
V. - - B. (-C-!)1 + CI),) - C, (-IBiD, + CA) + C, (-B D, + C')

I"& -= 1J, (Ct't+ Cat) -- 2/]=('1(: -- D, (B12 -- B21t)
B,. B, (C,' + C,') -2U,c,C, + Li2 (U,, --B,') (7"

(7.2)

If Poisson's ratios of the material layers are identical i.L = P22 ,

then the introduced expressions for (1, C2' xl, x2 become simplified, as
C2 -= pC, D. - pDi, B. = tn,

By this
.(I= IL&+U7t) 1D - 1,11, - p,,+) i C1

.l N, + (I - I,) /I' , - I.z-MP, + (1 -) C,
"•~ ~ ~( ".) WSt - ,)•;- CL, -

,, ,,[1 ,:•a + 14 - 1 G.) (Ic -. 1.31,• -,f + (t.- t,) i,
Xs am -.V JAN,: +,, + (7.3)

. ~18 ,

8 i



Thus, as an example for the "'roe edge

N, M•A Q- 0.

For the rigidly fixed edge

7. The Determination of Normal Stresses. Normal stresses in layers of the

shell are found by formulas (1.1i), where Cis (2' •' x2 are determined

through internal forces from (lo °) - (1.15) by formulas:

81A, A ,A

. a XL , • (7.1)

Here

Aj - (N2 +I)B,+ (NI+1)B2+(AI,+g)J,+(AI,+g)Bs
-. - (N,A + /) Z3, +' (N, + h) B1 + (M, + g) B4 + (of, + ) B,-, Vs(\ +/)B3- + (N'z+ I) B + (:lWi" 9)E&•+ (Mr-Ig) B,= - (., + h /4 - (N, + h) + (Of + S) B. + (Als + g) 5,

A, s -- (.N, +1)11, - (N, +I) 1,•+ (Ml, +1g) D.+--(M + g) Ba
0- (•' - A, ' (D,' - DA') -2 (AD, + B1Dj) (,' + C,) +

+ 4C,C, (BD, + L4D,) + (C1'-- Cy
II - JJ (1)' D2') + 2CC 2D, - D1 (Ca + C,')

Ls- -- L. (-' D,'2) + 26CC 1,D1 -- Da (C1' + Cs')
• , - -1B (CAD, - CD,) + C, (C?' - C,') + B, (CD, -CD,)
D .- -- 11, (-C,D, + C2D2) - C1 (-BD, + 4C4 + C2 (- BD, + C,')

1i j - ii, (C1' + 2'1) _ 2_1,C, - DI (B1' - B,')
B & I= , (Cs' + C a') --21 CC,2 + D 2 (B' --B,') (7.2)

If Poisson's ratios of the material layers are identical i = P2 =,

then the introduced expressions for I', C2, xl, x2 become simplified, as
CS' - PC,, D2 - pD,, B2 = pB1,

By this
, [ I:: W+ (I - -) .ID,-- ,)

"" (0 - •,') "0l,,- CC)

X2 IN[ff,-•,z + 0 - W, -Its -[. &•M I + 0 t - 1,) 11 Do,
0 2LL (7.3)
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The following exprossions are necessary for calculating stresses during

X-.JI,, + ,ID ,C, +/D 1 + - IC

Ma~9 + DID, - X 2 +1X=
X1 jL2 'IC -1- -' 11 , = F ',= •, ,-

Plj,ý= C -- X2=X -,+Q -- & - NC, -- .11,' , -+ /C, _

A, A/ (7.4)

If the condition, of reduction is valid, then in formulas (7.3) and

(7.4) it should be assumed that C1 i 0. Then

"L Mi -- ,) *1 + . ' =4 = 'TI-- VMS +na

W,1e go over this last case in more detail. Substitution of the obtained

values into equations (1.11) gives

* N+sumes th re a n 3 ufc. S(7.5)
h•_,', N, + •,/ "z, 33,(a,=

Assuming that in (7.%), z * 0 and z - 01, we obtain stresses along the

boundaries of the internal layer

19



[o'iE] a- Vf' - IL' PIS[m ~(0)] (7.6)• r I ____wN

[_ •.I:-C" y •, "" + r, [m --Pit ( •.0))
'- I-I- (I + in - p+t +

+ +3 ( / ) -. ),-

We obtain the stresses along the edges of the external layer by assuming

that in (7.5) z - Oad z u-62

+ T/ iM-Pit+ ~ (7.7)

"{+•P ~ a I,_,V - - +* (+/ ,+ - m Pit- 8,, n-,• .
t ,')1 uw._,,- • -..-- (i +j/• ) + • ' •;(•+',

For determining temperature terms, we find in the expression of stresses

the expressions m and n as the adopted laws of temperature change.

Let the temperature along the thickness of each layer be constant. In

the internal layer the temperature difference before and after deformation

is equal to AtIl, and in the external layer A t 2 . By this from (1.16)

=n= m•=1 -- =•IA

so, by (1.32)

41., + Ow, .3 A,. - ,t,&* (7.8)

20
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With l E,,At,= A -At, i.e., for monometal we get

ra= A,. n= O. (7.9)

Let the temperature change linearly along the thickness of the waIL:

t-o + + = +Z,) + + ,

where t1 is the temperature of t71 inner layer at z 5 6 ljand t 2 is the

temperature of the outer layer at z - 62. Here

MM lisp's + 11 (242 + &M, ma --- [= 6 + to (2&1 + as))
nj., - 1It + t, (3a + 241)), n, +.

34-!- N •a2 + 1, (2&,2+38s)])•

These expressions with C1 - C2 - 0 convert to the following:

=' , I', (2 +') +2 i,, ml •tn + 1, (1 + 2 V'r
2(1.* V'ZI7 2(1 + 'Jr1/Ej

- , fIt, (3+2 7 )+, +'.2 -7,,

Then

, , (2 + VY7 ) + P, YTTI + t2 , V71 + P, (2E,1E, + -7
m ='2 (1 +1r'W)"

n = "Ir. (3 + 2'+)t- , 1 .+,• r.'.•!7P-, (2 + 3 v-,)] (7.10)

For monometal E E 2 = E, 31 = 2 P j an

21 (7.11)
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a. Constant Temperature Along the Thickness of Each Layer. Substituting

ecpressions of m and n along (7.8) on the right side of equation (7.5) and

omitting the terms representing internal forces, we will obtain:

;, IILY'- ( ,6) 7..
S=1- :-- + -, 1.-' _ -2

Stresses along the boundaries of each layer will be

([ti]) ) [a-] A E,

,,, .*O, •l7.13=

[2< 51 _ -,, T

r .I-L/'- " lt-- 1 iV EV+1_'

o tm t s re alwaysh si

Sit is evident. that when CI C2 0,O, the diagrams of the temperature terms

Sof tho stresses are always similar during uniform heating along the thickness

* of each layer, and the state of the neutral layers during pure thermal

deformation (N1 a N2 - Ml - M2 - 0) is always the same (z - + 261/3 and z-

-26 2/3).

b. The Linear Flow of Temper Ltre Change along the Thickness of the Wall.

The temperature terms of the expr, .' ens o-., stresses (7.5) appear as
22



0i) _(I) PI

~f~j3 (1 Viih 1'(7.14)

~ t 12E~Yb~a) +~y~rj~-L + rb~j R,) r:8 (3EI +V 2Yl&,)
PEI- YYXR)& (+Vd a4)

(5 + V,.

From here

2 , +rt2

[o'P'] -[o~'L ] -- • "" **"" 7--

["'I ~ ~ ( -["- 0• --' ,+•T

For a homogeneous shell the normal stresses are determined by fornulas

°-"T- " 1" : + • (m -- t+ :)
N. (7.16)•'+ •""+ (M + -- 11:

02s a. + a2s +1_ P~z

During the linear law of temperature change along the thickness of the

wall , 2 + Uf,'+ 12M,: (7.17)

At this stage the stresses along the surface of the shell equal to

L:.m--F . a6mML 6M, (7.18)
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In formlas (7.18) the top symbol pertains to points of the outer surface,

and the bottom symbol to points of the inner surface.

8. Calculation of Long Cylindrical . hells.

a. A Long Cylindrical Shell wýth a Fastened Edge duri= Uniform Heating

along the Meridian and with Uniform ] ressUre.

Letting ps a p " csont, t a t (z), the individual solution of the

heterogeneous equation (1.27) will be

we ;r I" + (+V) .......

If the ahell Is eapobed to the action of the a~dal tensile force,

the resultant of *hih in each section equals Nq then

By selecting the origin of reading x of the fastened edge for determination

of constants Ts and ?2' we have conditions w a w' s 0 with x - 0. From here

(8.2)
[ A, (as,,) (.8, px)].

Forces are d•ermined from expressions (4.2) - (4.5)

All -W* (k, A& (as, Px) - -1p A.A2 (s p8) - Ca.J +~(N, +1-

•. _ .... (.'- •') hA, (6, •*) (8.3)
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If the heating along the ti~iclaess of the wvall changes in accordance

with the linear law but the shell is homogeneous, then from (8.2) and (8.3)

we get (p - 0)

,.--m~ i t -- As (E)l, 0 ==-21.k '- •+• A, (Z)

-, r2(i-• [, /• -•) t,..,4(C) __ {: -_ t.)J"M f.y----SL' -R")
(8.4)

Nora.ial stresses in the edge points (x 0, z - + ½6) will be

I. +$A 2 -I - --)]

@121[21 V(1-' 4: QT+4 ( +
________ s.5)

In the outer edge points of the cylinder (11 -a 0.3) the stresses equal

- -Ep (0.193t, +1.62tj

= --Ep (O.O58Ot,+ i.48,)
in the inner

as,. Ep (0.t931,+ 1.62tj)

,=--Eý (0.042t,--O.4861%) "

At a sufficient distance from the edge

(8.6)
•:ES (I.- ,
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6 0 •

.. 1-

Fig. 3

Lets examine a numerical example. Let the cylindrical shell be under

a uniform external pressure p and be unifor~mly heated to L-t°C, along the

thickness of the wall. We consider the heating along the axi~s as uniform,

and the axi~al kdisplacement as free. Given are

, - 2,~ == 2.106 xr/cM', Pi-p, " d.lt 0.33
-- ,, I 1-0.0-7 I/'C, •, '', -2 0.5C)4, )I=-40cM.

Byj formuas (1.16), (1.28), (2.3), (3.5), (7.2) we fin

* I, -- --. 1:6 4.10 ' ic rcr
SCII,- -- 0.5•1423.10' •rcw

2 , -- 0.13833.104 Orc
SD~, --0.0.M2902.10' arcx

an -t 0.0010924 c0"

1I b -- 0.085777 C,,-'

BI;• -- 26;.,43.10" K",'iI

Ik
E2 I -2E - - 83106 .10'W P, -11 .3

C A626 IrH



B1 " 24.441 .10" 16-- 317/.3•. 0" IOrcU-

1. - 100.n9.10" w1o m-'

A 38.362.10" 1H
k, 1 0930 grr'•

k, -M2- 31i.O HC1
1

.. ,V3,28.7 MroC'
k, m 37.502 urcu"

k, m 477.9t 34cu'

_' ;. _' . . .. -- .

Fig. 4

4

Fig. 5

Further, from formulas (1.16), (8.1) we have

-29.O082')A .fc

- gm---.3007AI kg

S•w, - 0,000534904,9 +
+ 0.0010665p c. ,

"27
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Forces are calculated by formulas (8.3) which take the form of

M, I= (I t.G~p-- 5.847.•i)A, (ax', •r) -- (11l.51 p-- 5.773Az) .4= (ax, •x) --

" -O.Ai 8 Gp -- 0.0802.%t

.= (0.3hifi3p- 6 .I837.%t) A, (ax, Pz)-(6.943p-3.482.At)A 2 (aX, PX) +
* + 3.286 p-0.O802.1t

N.-• (.;0p - 20.)6,.•t)..I((=, p) + (3 9 .s9p- 10.81,I) .4 (az, p)--40p
-, o .001017 [1--.0.87:;u,'(a, p.r)- ,1= (ax, J.)] p--

- 0.00)34,9I l--0.9873A1 (2z, 1x) -- A(ax, Px)]I.

Stresses are determined by £fomulas (1.11). Diagrams of forces and

bendings are shown in Fig. 3, stresses of pressure in Fig. 4, and temperature

b. A Long Cylindrical Shell with a Supported Edge during Uniform Heat-

ing along the Meridian and with Uniform Pressure.

Fom conditions w v 0 and M z 0 with x x 0 we find:

,• ~~~ ~V T=•[I• o-1, + /) + T,--o. (8.7)

We will determine the forces by formulas (4.2) - (4.5). Let's pause

in the case of a homogeneous shell with linear heatinr- along the thickness

of the wall. Here

T, - • i-, T,./ t'. (8.8)
2

The forces and bendings are determined by formulas (5.3). On the edge

of the cylinder we have

I
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In the inner points of the fibers at the edge, the stresses would be:

a-=O, a=2- Et,
in the outer

c. A Long Cylindrical Shell with a Free Edge during Uniform Heating

along the Meridian and with Uniform Pressure.

Since M, QI = 0 with x = 0, then

. = [C3,-CfC(NIJ, + /g+ T3,=--T, (8.9)

For a homogeneous cylinder • linear heating along the thickness of

the wall (p 0 0) we find /1/

-, EB)(t, I)- [1-A 3 0)J, M1 - -1 1 - ,AA(A)J12 0 -, 0, (l- • #
Q- -- 2(1 + p)DAP - "A, , NI= E,. -W- )

Lt+ 2 1+_- a.('- ')A -)2 (8.10)

i-:. mum stresses at the edge

(,u - 0.3)

With R- - 7T the meridianal stress has an extreme value

*I~ ~ E~~ T, 1.4 T0.745Eý (tI-11 ,) ýa -0 )

there is also.
a2 --4.740 L",1 (1t2, --,.

0~ ~ ~~~~~~~~~L 0 [-.14VT=' (+ &')~Cisf) '+0.700}E(i- 2
0•,- .3) .')

S •29
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d. A Long Cylindrical Shell with Closely Placed Ribs during Uniform

Heating along the Meridian and with Uniform Pressure. (Fig. 6)

We assume that the radius of the seam surface and the radius

of the central axis of the ring R, differ unessentially from each other,

i.e., Ro R.

We will substitute the action of the rib on the cylinder with

concentrated force P kg/cm uniformly distributed along the circumference

(it may be considered,for example,that a uniform pressure is distributed

fro•m the rib to the cylinder. along the vhole area of contact)(Fig.6).

The unknowns T1 , T2 , P are determined from conjugation conditions at the

contact point of the rib and the cylinder (Fig. 6)

w,'-O,, W•--- AR.,- -- • -*,,t,,, I

where • is thes increment of the central axis radius of the rib, E, F3

is the elasticity of the rib, fkt % is the relative thermal exqansion of

the center axis of the rib. Then

T 1,-- T,, p 1'. D,11 -- C,' M

T,,o + , (8.14)

Bending of the cylinder equals

W wo + -0- ,aA (ax, Px) + ýA, (ax, x)J Tr, .(8.15)

The stress in the rib equals

yu- (8.16)
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Fig. 6

M,

pz

Fig. 7

With E,, F•.- • and tw.- 0, ue get the previously investigated instance

of a shell with a rigidly fastened edge.

e. A Long Cylindrical Shell with an End Rib during Uniform Heating along

the Meridian and with Unrform Pressure (Fig. 7).

The unknowns which are the constants of integration T1 and T2, the

radial force P, and the bending moment mo acting on the rib are determined

from equations (see /6/) (Fig. 7).

W" == -AR"
e , T' B-P, M0-md D, -0

Here EI m is the bending rigidity of the rib. As a result we

have Ti+W=-- .- , - --zIa , T3,-- ., (8.17)

I CD' -- C rig ( _ D'fl1-Cs,
if II ): I~T V, + [a (a'-3.SjT,+p@"-3c 2)Tj1- P

I COBf-CC 1), fl-C,'s-- X. B' (-. + [2)T 1 -2(aa-. (0 )T,1 +

+ G, + I)-- ma,
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After determination of the constants it is not difficult to find the

forces and stresses in the cylinder and thc rib. The normal stress in the

rib (Fig. 7)

low P . M, PF"

where z, is the distance from the center axis of the cross-section of the

rib to the point under examination.

9. Calculation of Cylindrical She! !s of Finite Length.

a. A Cylindrical Shell with R !idly Fas -ened Edges during Uniform Heating

along the Meridian and with Unifor.< ,csssure.

Since w : w'a O withx 0::tx x 0, then

r =. - (I'-4 -P).qh M! Ain i - (ch'i--cus'P) u4
KAUh'a -- n*le 54 (9.1)

7- C'od-ch-c Cs)(•h21-.') , -- T.

For a homogeneous cylinder with terperature variations according to the

linear law, alonp the meridian (p 0 0) we have

o .+. , shkzcosk(l-z) + chkxsin k (l-z) + coa kzshk(l -X) +

wi == -- R• zsh kl + sin (1
" s+i sh+kL sin --

. kzin k(l--' +-in Ik shknl -z) (.2)

". I + p ý2(shkl + sin ki

-sh kZ cos k (I- z)--cos sh k(--x) + sin kx ch k(l--z)]-(--))

-- T "(c h k z sin k (I -z
- h kx cos k (I - x) -cos k.Tsh k(Z-x)+sin kx- ch k(L - x)I - (11)

Qi 4Dk'RM 1j2, CO h k J-) cRxcs + si N*I-
N, + t,. A k cos k(l--)+Ch /miri: k (1--) +CoS kz shk(l--) +ein kx,,hlk(I--)NSr _E4• 2' s-.h &I + sin X&
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We calculate the stresses in the fiber points of the cylinder

(i) x Oandx-l

± 7i~i~~j [)r.(~~S ~+

@m ,( r(,TViP=,. .. +,1 (94)

Here by means of I' '2' 03 and the following expressions are indicated:

oil +hl- i, kj

(9.5)
"i'h kl-sin kish ki+-sin ki

I

Sch |kl sin Iki -sh | M os | iSsitl* + sIiihik

ý,h. k lksinjkI+sh~klcos kI
AhTI-+sin kT

I 'it q

Fig. 8

The values of functions 0- 4 (ý 2 't 1ý ;'3 ~() ~- 5( are

01 1 2 4( o' !3' 4 "

presented in TablesVII and VIII and in Fig. 8.
33
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Table VII

O 0 0 W.) 51, 0.50263
O. I 0. 0500)0 0.001I70 i 9 0.•8768 0.55092

0.(.M) 0.00607 2.0 0.92i12 0.59908
0,3 0. 1 '99t! 0.0149J9 2.A 0.95170 0.64659
o 0./ " . 110.1997 0.024156 2.2 0.97926 0.69291

0. ... 0.061147 2.3 1.0036 0.73154
. .2.6 P-9. 17 O ,051,MU13 2.4 1.0240 0.78004

0.7 0.13.1953 0.081521 2.5 L.OW28 0.81997
.s 0.511. 0..• ,15 3.0 1.08M 0.97221

O .v . 0. 4.:,il O. MAW•3 3.,5 1 .0813 1.0.133

.0.072.A 0.1115M 40 1.05 13.0370

0. .10,557 0.110158 41 1.0272 1.044.A
'. o.,O0 O. 2": u.", 4. O 1.0093 1.0261

5.0 .03 3061.t 0.2751,5 t .0000 t.016
, 0. 1 I',7', 0.31796 0.9 0.9 1.0027

0.99642 0,90870
1.1; 0.77%31 0. SO7 .3 0.997M3 o. 9w7"
1.7 O..%t:kOi 0.451/7" 7.0

Table VIII

0 0 0 2,1 0.15707 0.412.i4)
0.A 0 o. :,.o g 2.2 u. Ii,773 0.397OXI
0.2 0.001499 0../,9uj9 2.3 0. 17692 o.;I119
0.3 0.003666 0.1'.91.111"; 2.4 0.1 K'71 O.MNS',

0.4 0.006748 0.,.i1J.49 2.5 . 11.97 0.3e1..'Z
0•5 0.01031949 0. /,.r.773 3.0 0.21611 0.2L5oom
0.6 0.011498V 0.4irj2.9 I.." 0.20,'4 O. U;9i• t

0.7 o. tyZt87 0.49871 1.0 0.185140 0.0721'2
0.8 0.0A2696 0.,497' 4.5 0.15170 0.017KQ1
019 O. 03593 0.49t,61 5.0 0. 11628 -0.011669
1.0 0.0LM130W 0.49 '12 5.5 O.083430 -0.0A'W,/A8
I.I O.019801 0.1,692',8 6.0 o.0321287 -- 0.2 2182
1.2 0.0,8%39 0.4891,1 6.5 0.0.V12'4 ... 0i2662
1.3 0.0600O79 0., 7.0 0.017629 --0.0Vm41,
1.4 0.079037 0.4FO,59 7.5 0. 0.o,317 -.. 0327Y-Y
1.5 0.089805 0.47467 8.0 -. 00018968 --0.0218116
1.6 0.10091 0.46759 8.5 -0.0013405 -0.019124

1.7 0.11228 0.45924 9.0 -0.009518 -0.0132%0
018 0.12372 0.44961 9.5 -0.00897i -0.00"3210

t.9 0.13510 0.03458 io.O -. 0.00-473 -- 0.004550

2.0 0. 14626 0.42624
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b. A Cylindr.l Shfl with Frc Edges Aer the Influence of a Uniform

Pressure and TeMlp.er•,t_•e; -Fpqm the boundary aond•it•nos . ' 0 with

x = 0 andx u 1 we dete~rmine

TSM~• .91 (N + s 4.6.

0 (01D,- 0Be (C W rbhlM (Ophhai- si~n 1

For a homogeneous .Fi ~r-,rlth line•r, hbeani ,4ng the thickness of
the wanl • , ' '',"-

......... +. ... . . .

--chkzsiu k(l--z)--eiaxkze~k (L--r) + cowkz~Iak(L.--:)J (9.7)

k ~M A k + rnn a I

The maxirmu normal stresses at the cylinder edges will be

t+I*
M- +.

,,- o,. o, - -- -('•"[a: " + •- '••j" (:9.8)

These same stresses in the middle of the cylinder. equal

, ,..,,,,,-,., .-, ;. ."... W ..]

c. A Calindricl SBhell +with aidlv S=2rt= Edge e during uniform Heatinp2

alon' the Maridian and with Uniform Prossure. Since w M N - 0 with x - 0

and x 1 1, then

35



Ts , ._ ,, T-. -it "IF , 1 , +)+ (9.10)

we_ w shuJsaI~
W.h -4 -e=I l -- V +, +l WoiIch ed -- Cos i:

For a homogeneous cylinder with linear heating along the thickness

we get

t, Oh It A n kI)(9.1)(
T2  -f,!L.., (Ishktl-..InhI)clchkl--eos0 h) +z4~.~ tat,--t [--F, (ki F.Chi)

uli' ~ ~ ~ W ha*1na hh + sin- il

T4 IStti±-AziF 4• k)+'/•Ih2kI -sin 2hdkI t t--. i--r,(/h)F,(h).
2 - 2 II-, zknakF 0sa

1 )

d. A Cylindrical Sellvith Ribs during Uniform Heating along the AxJ.s

and with Uniform Pressure. Let' examine a cylindrical shell with close and

evenly placed ribs. In this instance, the ribs at a dist.~nce from the

edges act only throughestretch on the compression. The ribs transmit only

the concentrated ringed force P kg/cm., to the shell. We have five boundary

conditions for determining the five unrmnons, TI, T2 , T3 , T4, P. We initially

select the middle coordinate between the two ribs (assim•ing R.• • R). Then

at

U,,. 0, Q, o0 Ulm z-o; W' 0, AR• --. , Q-P• -

Conditions with x- 0 follow from symmetric consideration of deformation

relative to the initial section. As a result
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P - s (a* + ýMw~)j04 Ci)a( )] ((i)[o()+

+ •s,( i]) + 0,( [ý< i I,(i) -40. (.1)] + 44P (4,+A [0,-(y,) +

+•-(•',) )•ll.• , ,. Ti,-,-o.0

From here with F - and t•= 0, we get the intance of rigid

fastening of the cylinder during x = • • 1,

10. Static Stability. We assume that before the lose of stability, th•

shell is uniformly compressed by forces N1 - - q kg/om. LeU exanine the

instance of an axially symmetric form of stability when the following conditions

are satisfied:

W (0)-(- M U, ,•(0)- II(O-0.

Solution of basic equation

U1+ 2•4w" +b'(w-w.). 0 (10.1)

where B, - (10.2)

we search in form o0
•--•+•..(t0.3)

"Here w6  is the bending due to the loss of stability. Let

we- T As sin x(10.4)
s-3
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by this , O=T0/IE is the number Of half-waves in the direction of the shell

axis originating during the loss of stability. By substituting expressions

(10.3) and (1o.4) into equation (10.2) we find the critical force

*

By considering q as a continuons fiuction X we determine the minimum

value of the critical force

qMS [2 (a'B 3  CID&.+ C,-R3J (10.8)

w.hich occurs during

4f 1-. LA -I
1111  R3 (t0.7)

From (10.6), (10.7) we obtain the known form given by S. P. Timoshenko

for a homogeneous shell /7/

y12 •(t--z') 1//'.~ (10.8

Stresses in the layers at the moment of stability loss are determined

from equations

and thus:
0C1), - E'=, e,-+''•, ° e-=TJ• "(o9

From here /7/ we obtain the following for a homogeneous shell:

ES I.
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(2).
The nurerical values of forces a minl" stresses al(1) and or for a

series of values 0, cr2, El E2 , YI' !- are given in Table IX. In Tables

x - xi the values of stresses in the layer during the loss of stability

are shown for a series of relationships 6i/02 and Ej/E for value z - 0.3.

These results are presented in Fig. 10 - I1, where

(2 )

q~ S j 7s 1

R

Fig. 9.

11. Dynamic Stability. The problem concerning dynamic stability of a bar

was raised by N.M. Belyaev /8/.

Let's investigate an axially symxnetrJ.c form of loss of stability of a

bimetallic shell when the latter is uniformly compressed by axial forces

N, -q--q ,- qcosw T (111)
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6

where w is the circular frequency of the external force and T is the time.

Considering the inertia of the bending of the shell sections, the equation

of the problem will appear as

b'w'n, •,N -r •P

W,• + e'+ Owb'•- ., -,- ( tN, r (11.)

where

r" 71a +'-.at (1H.3)

where Y. and Y 2 are specific gravities of the material layers.
12

Solution of equation (11.2) is presented as-

0-!

where A (T) is the parameter, depending on time,
0

•' - •~j (qo + q1 co wT). (15

By substituting expression (11.4) into equation (11.2) we find

Here qis the critical force determined by for=ula (10.5).

Equation (11.6) is reduced to the Mathieu equation.
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+ 4 0 - 1. ,'S 2") .Ao (T) =O (11.7)

where w 0 is the average natural frequency of the shellp

-q ' -- (11,8)

Generally speaking., investigation of dynamic stability of an elastic

.system always reducesto the Mathieu equation if the forms of loss of

static stability and oscillations are the same.

80.7
7'1 1-

Fig. 10

Mlathieu equation was investigateci ;:.ore comprehensively for the first

time by A. Andronov and M. Leontovich /9/ in connecticu with the problem

of oscillation of a pendulum in the gravitational field. For instance,

when C < 1 and we is any valid number, they showed that equation (11.7)

can have the folloving solution. The first, a so-called stable solution,

41



represents an almost periodic function

A ,o(T ) 
cogeI + - - -, + 9 2 8111 M' (11.9)

where c?(T), cp ( . C), v(r), v(r) are functions of r, the period of

which equals irj 7 is the characteristic numbe grj '0, are the

arbitrary constants.

If 7 is the rational number, then As(T) is a function with a period

2v7,

The stable~valueA w/w correspond to the stable solution (3-.9). The

secmd to the unstable solution (when T - ik or - 1 + ik)

A.(T) - ge-" , + gcoI(-"), (11.10)

where q P7) is the periodic function ;-.th a period 11 or 27T* Here Ao(T)

increases indefinitely only if the correlation between A (0) and dA (0)/dr
a

are not such that g2  O0

17.0

V 7J

"II i$ L i
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Table DC

j 8, euI rscu | 4r/cM

0o.(r o.05 2 1 0.3 0.33 0. 57 0.530 . i8
0.1c) 2 O..5 0.3 0.$;34 -1.15 0.576
O.(i, O.W. -,2 " 0.3 0.3 1.210 1.21 1.21
(.1 Ir 0.4 1 1 0.33 0.33 0.6116 0.612 0.612
0.,7 1).05 2 1 0.3 0.33 1.315 0.6952 1.31.4
0.(17 0.05 1 2 0.33 0.3 1.206 1.112 0.710
0.05 0.07 2 1 0.3 0.33 1.239 0.729 1.46
0.05. 0.07 1 2 0.33 0.3 1.2-46 t.35 0.677
0.1-' o.05" 2 1 0.3 0.33 3.970 1.13 2.27

0.15 0.01) 2 " 0.31 0.3 3.128 2.50 1.25
0.05 0.t5 2 1 0.3 0.33 3.12 1.28 2.5625
O.05 0.15 21 0.33 0.3 3.912 2.24 1.12

Table X

Values 77(1) 1!ith ,t '0.3

- 0.6052 0. 05- 2 1 0 ,5 '5 )5.-O5 2 0 - 0.0. 52 0.6052 .= '2
to 0..73. 0.7':1 0."Zs! i ,i.5729 I. Ft 0. 36W2 0.6177 46.3r,7.6tmn )46o

0. 5291 9.502o 0..".31. s.5';.:s 0.577W 0 *i5 0.5795o.02 1

5 ~ ~ ~ ~ 0 0.0520 oso .s6 s.;1oJjoc(0.039i .&j59
31 0-1~ 0-4104i 0.5sj 51VU 5 0.5r0710.6052 0.6195 0.6297 .(,M7).Slot
2 0.45%i 0.4r.52 0.0925 ii.&3 0-541). 0-60522 0.61-16 .6136;0.5706,0.4622

0 -.4271 0.443 0o.- 5,2 0.-5V: 0.57U5 0.0•CO05o 0. 000 .m 7 .5171 .427 1
0.75 0.13V) 0.4575 0.51M .0. S oj 0 .60•52 0.5)99 .50•10 .5074 .4327

o, u46"'~ 0.490M 0.5S76s 1). 5411. 0.61368 0.0052 0 SWI5 540 W507 _7 .4548
o. 2 .0-54W 0.57063 0.,194, 0.f.3151 0 "710.6052 O.5 -%V1 S4. 531.4.5052o.1t 0.6XV 0 .C4,0 0.MAO,; o.A,-V7 0.:117O.o7 0 .60 S .92 .581 5.567!o .5573
0 0.602 0o-6,2 o.4" O10-6 o.oo.- 0 ,60 5 2 0.6o.xo) 0. C= J= G .6052

* 43



- Table XI

Values 7(2)with j• =0.3

I~ll.: 10 ' .5 o 1 2 1 .,2 0.8 0.25 j o.1
o.00.73 0.095 0..m/ 0.1(

0.0.(4:5, 0.00915 0. 0 21- 0.00720.1513 0..05" 1.07r 2.421 O. "41 6. 052
1 (O.t:,73 0.W987 0. 12X 0.1907 0.290. 0.(60.520.8236 1.27:3 2.657 6.539

o.m:,.71 l.0o;,N;al 0.1111 o.1 iN; 0.21s7 0.60520.8254 1.27b 2.64Vb 6.3/44
5 ,:, U.0 -A.I 0 P<5: 0.2912 0.=0520.8270 1. 279 2.,58, 5.795
:1 o.t s 0.0613:15 0.1018 0.17;5 0 .2801 0.603- 0.820 1.250 2.435 5.101
L, 0.o~ 0,. .M5m5 0A01191. 0. 176. 0.2%05 0. M- ().A 19. 1.227 2.2A2 4.622
1 0. 0ý:.- 71 0.0552 U.09-I 0.1818 0. 2X97 0.C4 05..4 i 1.l51I 2.01 4.271

0 75 0. 03MU 0.0t1 -0.1022 ]017.N U.2911 0. 6OS20.7932 1.137 2.06, 4-.27
0.5, 0. ,;22 0.0(I.b; 0.10, 5 "0.IU.I10.30W']0.0052 0.7859 1.121 2.031 4.548
0.115 .o.";,i3 . 1)720 ')1239 0.21:* 0.31•I, 0.0 ;.0 0.7W,1 1.129 2.14, 5.032
0.1 I0.':5 , O.Os21:. -Ml3 7 0.I. " IN' 0 it, ) 6,0',' 079"-1 1.W 2.2W4 5.573

0 0. i(1'l C.--, o u-110 ).2(117 0:3I021 O:(.4105I. O7Q 1.2101 2.421i 6.002

The first solution corresponds to the stable work region of the shell,

"the second to the unstable. Valusz C. and wft determining the dividing

lines of the stable and unstable regions correspond to the solution, one

of which is the periodic with a period 7 oe 217, the other being TF(T) +

'•(y), where F (7) and 7(i) are the periodic function with a period of V or

2.f.

The boundaries of the unstable regions (with accuracy to Ce3 )ill be /10/:

First region
\ I~ll •11,1mm('1I.11)

\ econd- Il '. (S• -, V,1 + ' (1.2

Third region 2( 3
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Here wkp are the ciitical values of frequencies of the external force

q, durinr which the cylindrical shnrl becomes unstable.

12. A Multilayered Cylindrical Shell. If the shell is multilayered, then

all basic correlations obtained previously remain the same, and the

expression changes for B1, B2 , ... , D2 , f and g. Let the shell have m layers.

Let's assume that the surface injn layers, distant from the internal surface,

is the original. The surfaces of the j layer, are spaced at a distance of

ýj and CJ-l"

Let 0 J j J-I be the thickness of the J layer, Ej the modulus of

normal elasticity, 14j the Poissons ratio, Aj the coefficient of the

linear thermal expansion. As previously, we consider that the shell is

thin and elastic. Then, instead of expression (1.1) for a bimetallic shell,

we have the following correlations for a multilayered shell:

I Al . GIG z @1bsd + GIG a G~dz

I M dZ + I 0

. Ij d I *I(

Z 4;j,. 736(1) dz + s2(j)- '

Here the stresses in the J-n layer Ul() and C2(j) are determrined

by Hooke's law. In order to obtain formwlas for ai(j) and a2 Wit is

sufficient to exchange indexes 1 and 2 related to the layers in expression

(1.11) by J.
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As a xesult, for internal frcez of a multilayered shell, expressions

which in their form do not coincide vith formulas (1.12)_ (1.15) are

obtained; however, for rigidity the following, expressions should be

taken:

2 Ii,

SI

,-- *•F

tj -- Md.,

ass Pss 3j- YJ i 1-1

Further calculations remain uncha0ed.

I
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