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ABSTRACT

The non-linear coupled field equations of thermoelasticity are
herein solved for the quasi-static behavior of a solid bounded by
two parallel planes. The mechanical energy converted to heat
during each cycle of the loading process is explicitly evaluated
and its spectral variation computed. From this exact solution an
approximate, but quite general, expression for the thermoelastic
energy dissipated in solids as a result of elastic deformation is
developed.

This technical documentary report has been reviewed and is approved.

W. J. TRAPP
Chief, Strength and Dynamics Branch
Metals and Ceramics Laboratory
Directorate of Materials and Processes
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I. INTRODUCTION

Thermoelastic damping as one of the causes of energy dissi-
pation in engineering materials has been studied by a number of
authors. Among them Zener (1,2),* Lessen (3,4), and Biot (5)
may be mentioned. In his treatment of thermoelasticity as a part
of general theory of irreversible thermodynamics, Biot works out
an exaple of thermoelastic damping in an ideal material.** The
equation of heat conduction in his case is developed by a slightly
different approach from that used by Jeffreys (6). Biot considers
the unit volume, which is fixed in space, as the fundamental
thermodynamic system. Unlike Jeffreys, however, Biot does not
find it necessary to use the conservation of mass requirement.
A linearization of the entropy expression leads to a linear heat
conduction equation in Biot's treatment. Quantities of transport
by the transfer of mass across the system boundary are not con-
sidered in (5) and do not arise in (6).

In this report, intensive quantities per unit mass are used.
The boundary of the fundamental system, the unit mass, is varying,
but it always contains the same mass. The usual conservation of
mass relationship is used and the equations of motion are shown to
be consistent with the unit mass system. The second law of thermo-
dynamics is postulated in deriving the rate of entropy variation
in an elastic solid. It is then shown that energy dissipation is
due explicitly to the irreversibility of the heat conduction
process. The non-linearity in the heat equation is then shown to
be necessary in order that predictions of the theory Le consistent
with the energy conservation requirement. This is a point of in-
terest in that a linear thermodynamic consideration leads to a
non-linear field equation. It is also a point of some importance
in the calculation of energy dissipation per cycle in the steady-
state vibration of a system because the amount of heat ejected by
the system is entirely lost by the linearization.

An example which is simple enough to be worked out in mathe-
matical detail is solved and the energy dissipation calculated.
An approximate theory is then introduced. The result is shown
to be very accurate, as compared to that obtained by the exact
method.

* Numbers in parentheses refer to the references on page 30.
** Sometimes the treatment of thermoelastic damping in ideal-

ized materials is erroneously considered as to explain actual
dumping in real, imperfect materials.

Manuscript released for publication 1 April 1962 as an
ASD Technical Docusntary Report.
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II. THERMODYNAMICS OF ELASTIC SOLIDS

In the consideration of the coupled phenomenon of mechanical
deformations and the conduction of heat in an idealized elastic
material, we shall choose as thermodynamic state variables the
six components of the stress tensor, crij , the six components
of the strain tensor, fil , and the local absolute temperature,
T. We are dealing with a perfect continuum for which the above
state variables are, in general, functions of the space coor-
dinates, xI , as well as the time, t.

An isotropic solid is defined as elastic in this paper if
the equations of state,

ij = 2 /Aaij+X 8ij "kk-( 3 X+ 2 'l)a B 6 , (2-1)

i, j, k = 1,2, or 3,

are observed everywhere within the solid. In equation (2-1), 1
denotes the local temperature in excess of the uniform reference
temperature To which is chosen together with the reference un-
stressed and undeformed state, i.e., al - 91 - 0 at T ; X
and IL denote the Lam6 constants of elalticit) under isotgermal
conditions; a denotes the linear coefficient of thermal expan-
sion and

lij = I if I=]

-0 if ij

The basic relationships to be studied are the equations which
state the conservation of momentum, mass, and energy, and the
second law of thermodynamics for the irreversible process written
in the form of an equality. Intensive quantities are to be used
in these equations. These quantities are, strictly speaking,
material point functions, but the unit mass may be used to help
visualize a physical thermodynamic system, e.g., the value of
the specific entropy at a point may be regarded as the total
entropy of a unit mass centered on the point in question. Since
the boundary of this fundamental system is deforming with it,
there is no mass transfer across the boundary and the question of
quantities of transport need not arise.

The conservation of momentum is stated by the well-known
equations of motion

2



Jill + p F= P U1 (2-2)

In the last equation p is the mass density of the solid; Fi, the
bodily force per unit mass; and ui, the displacement vector. We
have also adapted the convention of denoting differentiation with
respect to space coordinates by a comma, and differentiation with
respect to time by a dot over the quantity. It is perhaps
worthwhile to remark that equations (2-2) are satisfied by the
medium in its deformed state, and hence, the use of Eulerian
coordinates are indicated. This is consistent with the use of
a deforming unit mass system. In addition to the equations of
motion, appropriate stress, or displacement, boundary conditions
must be satisfied.

The conservation of mass can be stated in the simple form

P (2-3)

where e is the cubical dilatation and PO is the density of the
material at zero strain. In addition, there are the usual com-
patibility requirements on the strains such that no material dis-
continuity may occur.

The conservation of energy may be stated by the equation

aU -1 + F~ U* + (2-4)

The terms in the above equation represent, respectively, from
left to right, the rate of change of internal energy, the rate
of change of specific kinetic energy, the rate of work being
done by the bodily forces, the rate of work being done by the
surface tractions, and the divergence of a heat flux, expressed
for the volume occupied by a unit mass at a particular time.
The expression for the work done by the surface tractions can be
derived by integrating the scalar product of the surface traction
and the velocity of a surface element over the boundary of a unit
mass, and by applying the divergence theorem after converting the
surface traction into stresses
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TJ D l dA F rij uiv 1 j dA
(unit mass)

= •V (ClJ 6i ),j dv

We can eliminate the kinetic energy term from equation (2-4) by
scalarly multiplying the equations of motion (2-2) by the vector
U iand substituting the results into equation (2-4), obtaining

(I = *' - _ __I J il (2-5)
at P at p (

The strain-defining relationships

u + (2-6)

have also been used. The substitutions

Ell = EI VE 2 = E2 163 3  E 3 12E 2 3 E4 ,2E 3 1=E5,2EI1 2 =E 6 6

O'11 0"22- "3 '33 0" °23-D 0'31- __'-2
I --- l _5 _ = '6

may be used to transform equation (2-5) into (using differen-
tials) the equation

du=oi do, +dq (2-7)

with dq indicating a differential heat added to the unit mass,
i.e.,

aq
at -(2-8)
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The equations of state in terms of the new variables and

become

(2-9)

for im=1,2 or 3

and

P a"I ýL OI for i= 4,5 or6 . (2-10)

In order to derive the expression for the change of specific
entropy, denoted by the symbol s, the following second law of
thermodynamics is postulated:

Tds=dq , (2-11)

the relationship for a reversible process. This postulate relies
on the argument that the only type of "driving force" besides the
temperature gradient are the mechanical forces; and that an elastic
body eventually comes to rest under a sustained load, unlike the
continuous flow of heat under its "driving force," the temperature
gradient. The behavior of an elastic body is also unlike the
viscous flow of a fluid under a sustained shearing force.

The acceptance of this relationship as applicable outside of
thermodynamic equilibrium is, of course, an essential part of the
usual theory of elastic solids. Also, in accepting equation
(2-11), we assume that the specific entropy depends explicitly on
the state variables only.

We are now ready to derive an expression for the specific
entropy. Writing

dq = "I del + c dT (2-12)

where the Ti and c are as yet undetermined functions of the
state variables and substituting this expression into equations
(2-7) and (2-115, we obtain

dU(oai +'r, )do,+ cdT (2-13)
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and

ds d.e + - dT (2-14)

Since U, as well as s, is a function of state only, dU, as well
as ds, is a perfect differential. This will furnish sufficient
relationships to determine the nature of T, and c. We have from
equation (2-13),

a(- + a+ (2-15)

ac1
and

a1•i,+ r1 ) __ c
a I ac, (2-16)aT at,

and from equation (2-14),

--__ ar (2-17)
adi at,

and

T ,ac
aT T ae, (2-18)

From equations (2-16) and (2-18), we may see that

T -(L) - + - (2-19)arr T ý aT

so that

" ar=-T (2-20)

which, from the equations of state (2-9,10), is equivalent to say-
ing that
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I for i=1,2or3 (2-21)

=0 for i = 4,5 or 6

We see that requirements (2-15) and (2-16) are satisfied by the
Tj thus determined. In addition, from equations (2-16) and

(2-21),

ac aTr
c --- =T .- (T-) 0 (2-22)aE1  8T T

i.e., c is independent of any of the strains.

The differential heat added to a unit mass can now be written
in terms of known quantities

pdq-=(3X+21L)aTde +pcdT . (2-23)

Hence we see that c is just the specific heat of the material
observed under constant strain conditions.

By assuning Fourier's Law for heat conduction,

JI =-kT, (2-24)

the field equation for T

= T +( 3 X+2p)aT t5 (2-25)

is finally obtained. Of course, k is the thermal conductivity of
the material. The inclusion of the last term differentiates
equation (2-25) from the ordinary heat conduction equation de-
rived by neglecting the thermal expansion of the material. The
non-linearity of this extra term plays an important role, as we
shall see later, in the determination of thermoelastic dissipation
in steady-state vibrations of elastic bodies. We shall only point
out here that a non-linear field equation has been derived from
linear thermodynamic considerations. When T in the last term of
equation (2-25) is taken to be constant, the equation forms the
basis of so-called "linear thermoelasticity."
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The heat conduction equation (2-25), the equations of motion
(2-2), the equations of state (2-1), the compatibility require-
ments, and the appropriate stress, displacement, and temperature
boundary conditions form the basic boundary value problem of the
area of study comnonly classified under the heading of thermo-
elasticity.

The solution of this problem, in the linearized version, is
suggested in reference (5), along with the now well-known varia-
tional principle of thermoelasticity which provides a powerful
tool for the numerical evaluation of solutions.

We note that for a given problem the equations of motion can
be solved, in principle at least in terms of the temperatures.
The dilatation 9 can then be substituted into the heat conduc-
tion equation which will contain the temperature as the only
unknown.

Physically, we see that a temperature variation gives rise
to a dilatation which plays the role of a heat source, causing a
change of the temperature and further deformations.

III. THERM)ELASTIC DAMPING

Inasmuch as all thermoelastic processes involve the conduc-
tion of heat, they are dissipative in nature. We shall discuss
this point in detail.

t Let us consider the rate of change of specific entropy
P ,Equations (2-8) and (2-11) can be combined into the

equation

pas I(3-1)

which may be written in the form of a so-called "balance
equation:" (7)

Pas =-( J 1 - (T, Ji) (3-2)

The change of the specific entropy is seen to come from two causes:
the negative divergence of an entropy flow -L and an entropy
production whose strength is given by the last term of the balance
equation. Denote these two parts by p dst ad p d

dt 8t
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respectively, then

I± a + -S1  (3-3)
at at at

The local entropy production is, in the sense of general
irreversible thermodynamics, the product of a "driving force,"

T, = (3-4)

and a flux, in this case the heat flux J . If a linear
phenomenological law is assiued, i.e.,

J= L X, (3-5)

=-' TVi

we obtain Fourier's Law of heat conduction, usually written in
the form

J*--kT, (3-6)

L
The conductivity k is, therefore, identified with T a
Equation (3-6) has been used in the derivation of the temperature
field equation (2-25).

The local, or internal entropy production is a measure of
the irreversibility of the process. It is a positive definite
quantity. We see from equation (3-2) that the production of
entropy in the case of thermoelasticity originates from the
presence of a temperature gradient. The cause, and the only
explicit cause, of dissipation is, therefore, the flow of heat
from a higher temperature toward a lower temperature.

In a stationary state (7), the entropy, being a function of
state remains constant. The first member of equation (3-3)
vanishes. Since the same amount of heat is entering the system
at a higher temperature as is leaving at a lower temperature,
more entropy is flowing out of the sy stem and this amount must
be made up locally in order to fulfill equation (3-3).
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We shall direct our attention to a specific aspect of the
general analysis of irreversible processes involving elastic
solids. This is the area which may be loosely described by the
term thermoelastic damping. To distinguish it from the study of
damping in real materials, we remark that thermoelastic damping
does not include the study of the many known causes or mechanisms
of "conversion" of work into heat flow, for which bridged micro-
scopic and macroscopic theories are needed. Rather it comprises
a study of what happens during heat flow due to mechanical de-
formations in an idealized, perfect continuum. Looking at it
from a different viewpoint, this study is directed toward an
answer to the question: How much of the total damping capacity
is due to microscopic imperfections in a given, real material?

To be more specific, let the volume occupied by an elastic
body, and bounded by the surface S, be V. Let this body be
initially in thermodynamic equilibrium, i.e.,

•IjEj=] -0 ,

and T =To

at time t =0

For t > 0, periodic bodily forces and surface tractions are ap-
lied. If the boundary conditions for the temperature are time-
ndependent, and if steady-state response can eventually be

reached, we shall attempt to determine the net amount of mechan-
ical energy required for each cycle to maintain this steady-state.

The system defined above is analogous to a "heat pump."
The working medium, the elastic solid, is adjoined to an infinite
reservoir at constant temperature To through conducting and
insulating boundaries. When this system is being "operated" by
the action of the applied forces, a temperature field different
from To will be observed in V, inducing heat flow and increasing
the total entropy of the system plus the reservoir.

Hence, any operation of this pump, excepting pure shear,
will be an irreversible process. A net amount of positive work
must be done on the system even in steady-state operations where
the temperature and the strains return to their respective
values after each cycle. From the first law, we may conclude that
a net amount of heat must be "pumped" out of the system for each
cycle. Therefore, we can iimmediately deduce that that the average
temperature over a cycle must be raised above To . This is
accomplished, of course, during the transient stages before the
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steady-state is achieved.

The work done by the applied body forces and surface trac-
tions per cycle is given by

Wo=f [fpFa,jdv+f 4, 1 ds]dtWO ÷• fv., T ,+, •,"t V S

t Ft ij "J 2at 1 ji(3-7)

2T

-( 3)X+2p.)a86  Iddt f + f-L(p 6i1 ) dv dt

Also

Ti =-a-- 1j 'I on S (3-8)

In the above equations w is the angular frequency of excita-
tion and Vi is the unit normal vector on S, pointed outward.
By the divdrgence theorem,

f 0'ij O UI V/ ds-=-fv(O'ij 61 i),j dv

"-•if 0 ,j dv +fCT0jj i dv

and by the equations of motion the last term may be combined with
the integral of the work done by the body forces,

f Fudv + dv ( i ) dv (3-10)

~~V P I fV i0i U1 = at



The equations of state have also been used in deriving equation
(3-7).

Assuming the deformations are small, V and S may be consid-
ered independent of time, and the order of integration may be
interchanged in equation (3-7),

+2dv

t + (L- + 3-11)

f( +2-L)a& - dt dv +-(P • 1 )dt dv

Because of periodicity, the first and the last integrals vanish
and

SOX +v 2 ) ae dv dt (3-12)

The total heat flow out of V per cycle, Ho, can be evalu-
ated by keeping account of the flow across S. It is given by the
expression

Ho=-f f 1 ', IV, ds dt (3-13)

Using the divergence theorem again, we obtain

Ho- k e, dv dt . (3-14)

From equations ý2-25) and (3-14),
pt + 7?•

Ho = J ff [(3X+2/p)a(Tor+ e) t +0 C -]ldv dt (3-15)

12



or

t +,

HO (3 -X + 2ý .)ae - dv dt . (3-16)

Thus we have the identity

WO -- Ho (3-17)

as expected.

An interesting point has been brought out in the above
derivatfion. We note that if equation (2-25), the heat conduction
relationship had been linearized, i.e., if

kT:jj =p c L- + (3X+2/.L)aTo (3-18)

is used in equation (3-15), we obtain, instead of equation (3-16),

HO=O . (3-19)

The value of Wo is not affected by such linearization. We are led
to an apparent contradiction to the first law,

SHo . (3-20)

In equations (3-18), (3-19), and (3-20) the prime is used to
associate the quantity in question to T' the temperature field
defined by the linearized equation (3-185. Since the absolute
temperature T is not expected to vary appreciably from T , (as
the thermal boundary conditions are time independent), t9e non-
linearity in equation (2-25) is indeed small, and T' should be
a good approximation for T. But as just point out, one must
exercise care if the energy dissipation per cycle of steady-state
vibration is sought.
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IV. AN EXAMPLE

The exact evaluation of thermoelastic energy dissipation re-
uires solving simultaneously for the stress and temperature
ields from the coupled equations of motion and heat conduction.

We shall demonstrate some of the typical procedures involved in
such an evaluation with the aid of a one-dimensional example of
an infinite plate with uniform normal pressures applied sinus-
oidally on both flat surfaces. From the solution of this example
some important principles are deduced, leading to the development
of a general theory in Section V.

Let us choose the coordinate system such that the plane
X =O coincides with the mid-plane of the plate. If the plate

thickness is 2h and the applied pressure is P sin w t, the plate
will be deforming in an extension-contraction mode perpendicular
to the plate. The lowest natural frequency of the plate vibrating
in this mode, determined by assuming isothermal conditions, is
given by the well-knowna expression

W 0f= - L (4-1)
2h P

In the example, we will assume that the temperatures on both
surfaces of the plate are to be kept at the constant reference
temperature T for all time. Since all the quantities are func-
tions of time and X1  only, and since

U2 =u 3 -- 0 , (4-2)

the strains

E 2 2 E 3 3 fiE 2 3 fiE 3 1 E 1 2 =-0 , (4-3)

and ElI =U1'i (4-4)

The cubical dilatation is, therefore, simply

0 C -- El '(4-5)

The stresses are

14



Y

'12 = 0"2.3 = o'31 ==0 ,(4-6)

a. -* 3 3 =X a - (3X+2L) a 8, (4-7)

and a, II =(X+2jL)I-(3>+2,2)a8. (4-8)

The equations of motion(2-2) are reduced to only one,

ao" =P U (4-9)

in which the variation of the density is assumed small. By
limiting ourselves to the case where the exciting frequency w is
well under wo , say wS 0.1wo , the right-hand side of equation
(4-9) is extremely small, implying that o11 is almost inde-
pendent of X, . Let us assume that

a11,1 = 0

Since crll is equal to the applied loads on the boundary, it
must be so everywhere within the plate thickness,

ar1 1If=Psinwt . (4-10)

This means, from equation (4-8), that

P_ sin wt + a 8 (4-11)S+ 21L X, + 21L

The heat conduction equation (2-25) can now be reduced to

k e =PC -t- +(3X+21L)a(T°+8) Pw Coswt

3)+2jat o
+ U+2p& J (4-12)
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The solution 8 must also satisfy the boundary conditions

8 (:h,t) =- 0 (4-13)

for all t. Since we are seeking for the steady-state solution of
6 , the condition of periodicity

8(X 1 ,t) =8(XI,t+ 2v/w) (4-14)

must be applied for all values of X, within the plate.

We may non-dimensionalize equation (4-12) by introducing the
dimensionless variables r , T and * which are defined as
follows:

1i (4-15)
h

r = W t (4-16)

and 8 (4-17)TO

Upon substitution, we obtain the equation

4 -- 0- +.bll + lCOS T + a,(l+ 4) (4-18)

The coefficients C1 , , and b, are also non-dimensional and

P aw

k (4-19)

P(3X+2pa t
b -= I+)ah w (4-20)( X+ 21L) k

and 01 (X+2fa'Th' (4-21)
( X + 2p)k (

The boundary condition (4-13) in terms of the new quantities is

16



(4-22)

and the periodicity condition (4-14) is nov

#((,r) = (,r +2') (4-23)

for all and r .

For an idealized elastic material having physical properties
similar to the common carbon steels, the ratios among Ci , 01 *
and b, assine the proportionalities

c,: a,: b1- 400 :1 :I (4-24)

when the pressure a-plitude, P, is as high as 14,000 psi, actually
equivalent to more than a half of the stress magnitude needed to
cause the material to yield. Notice that equation (4-24) holds
independently of the quantities k, h, and w . Since the induced
temperature change, 8 , is not expected to be large, it is
convenient to make the transformation

b, b(4-25)
C,

in equation (4-18) for the purpose of comparing relative magnitudes
of the terms on the right-hand side of the equation. The magnitude
of * is now of the order unity. Then

act C 1 +4 C1( + ) COS + a( I+A*) L- (4-26)

where b = -b (4-27)
C1

has been used. The boundary and periodicity conditions are now,

respectively,

( -I,T)=, 0 , (4-28)

17



and r(Cr)-*(C,r+2r) . (4-29)

Since

all non-linear terms in equation (4-26) may be considered small.

The non-linear boundary value problem defined by equations
(4-26), (4-28), and (4-29) will be solved by a perturbation
scheme. The method will depend on the smallness of the two
quantities 0 and 01i (as compared to unity). Let us expand*

C,
into a power series of the parameter ;

nOD n

nuo

and then substitute into both sides of the differential equation
(4-26) to obtain

a2 2

a a *(4-31)
2 0 2

C -L$ ( *0o +A 4r. +. . . ....... )+cosr

+1T-(01 2* +0 *2OiI~, 2 ++ CIO(*,o+ ,+$*I,+p 2.. )_P. CO+ ST •2$+...

Terms containing like powers of 6 on both sides of the last
equation may be collected and equated, giving a set of linear
differential equations for the coefficients of the power series.

ar(Cl+a) r +CI COST (4-32)

18



at *uM(C,+OI) a*,+ CI*COSy +0 1* 0 a* (4-33)

a r or I

(4-34)

The problem is therefore reduced to solving the above set of dif-
ferential equations in the given order. The boundary and perio-
dicity conditions are, respectively,

'n (±1Ir)-0 (4-35)

and *n (tr) n (C, r+2= ) (4-36)

for each of the coefficients.

For n - 0, the solution *o may be found by writing

0 O(tr)=fo (V)COSr +[g°(o) -- Ci1] sinr , (4-37)

where

C -- C+0 1 c (4-38)

and substituting into equation (4-32). Equating terms which
contain the comnon factor cos T , we get

f()-C g( - 0 (4-39)

equating terms which contain the common factor sin r we get

go () + C' fo 0 (4-40)

19



The boundary conditions are

fo(l)=0 ,(4-41)

go{+I) =--- (4-42)
C;

The solutions for fo and go are

fog=oi sin -Bocos Calcosh, g
fo(C) = Aosin 2<~ Csfh/a~C B4  C csAKi

(4-43)

and

go(•l=Aoco - cos h - +8osin C sinh 1" ,(4-44)SN 2 i2 2 2

with

cI coJ 'El cosh
Ao - 2 (4-45)

and

C1 sin sinh 2

Bo 2(4-46)

C'(sinh +C

which may be verified by direct substitution.

In the case of low carbon steel, we find for the non-dimen-
sional coefficient C1  the value of 4.5 x 105, taking h - 1 inch
and w - 30% wo . Based on this knowledge, we can make the

20



following estimate of the magnitude of fo ( C )

(dC+Bcoshi/'
Ifo(C)I 4 IAoI sinhv/, +1Bo1 2

coshv/i.i sinh,/E1" +sinh,,/E.i coshV•'

_sinh', //' • 2 ; (4-47)

and, similarly, for go ( C )

(4-48)

also c

*.e f.'(C) + go(V-C) 4

_sfo'(c) + I:(C) + 2, LI10o(C)1+ 1 1 4+4+4+1=131(4-49)
0C II CII

or 1 *o S 3.36 approximately.

The magnitude of
e
TO

is, therefore, limited to

13.36xPI 9 0.0084,
or 8 :50.0084X273*=2.2*F .

0I I
Since the fraction al is about , and with the above

limitations on the mA itude of 4$ , the differential equation
for #1 may be simnplified by omitting ter=s which are proportional
to a1 when the same functions appear with C as a factor.
Remembering that the solution for *, will be lultiplied by the
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factor P in the final solution * , it is reasonable to as-
sume that this approximation will not introduce serious errors in
the total solution. With this simplification, equation (4-33)
becomes

- , + -*,C (4-51)

The solution is

* -- "*,0 sin r + f, (f) cos 2r + sin 2r (4-52)
C!, 4c'

where

f, (0) = A, sin%(c, C sinh%/1 - B, cosI', t coshV/- ; (4-53)

g,(C)= A, cos%/,C cosh'1C + B, sin c, C sinhIF, C (4-54)

with

Ca CosR' cosh,/'Vr
Al = (4-55)

4c,( sinh t , + cosVAl)

B, C• sinVF' sinhl; (4-56)

4 C'l( sinh'/Vl + cosVCl )

Additional perturbations may be obtained in like manner. They are
not necessary, however, due to the rapid convergence of the series
of powers of ' . The magnitudes of T1  , 1  , and 11 can be
et s tted and are conparable to to and o. We may sumar ize by
stating that the solution is very accurat•y represented by taking
only the leading term of the series (4-30), and that there appears
to be no need to go beyond a two-ter, approximation for the
solution.
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The work done during a cycle is given by the general expres-
sion derived in Section III:

Wo -(3X +2) a ff dv dt (4-57)

Choosing the volume with a unit area perpendicular to the X, -axis
as the volume V, and inserting expression (4-11) for a into the
above, we have

(3X+2)aPw t+ 2r ;h

W+2o ? dxj dt

t f,

=-/h+T (4-58)
( + ~ Phf cos r ( (,r)dt dr(X +2;f~p C "r -

It is seen that only those terms which contain the factor cos r
in the solution for * contribute toward damping, excluding all
terms except 46 ) cos r The energy dissipation is,
therefore, given Dy

(3X+2/f)a? To Ph r +2.,w I
Wo=( P + 2 /A)p P j cos'r fof(C) dt dr

(3X+2jL)a'TO Phvr C. (sinh,/2" -- sin,/'•c)

(3) +2pL)'a= T0 P'hwr (4-59)
( X+2 j.) PCO e/r

23



As a check, formula (3-14) may be used to compute the heat
flow across the two unit surface areas,

Ho =-kft f 8,1i dv dt

-kTo 91 df dr

h w f-df Ia

By equation (4-30),

H= 0 T ( aa of

Using equations (4-32), (4-33), (4-34), etc.,

•o/! k ORr7 [* 0oH "rI (c+ 01 ) -+c COST df d

h0 !kT I aU a

k f"T.,.' (4-60)00 [r CI ( + a1) 6*"2'

Since the functions 4'0, , ... are all periodic, we see that
Ho will be zero unless at least a two-term approximation for *

is used, in which case, the net heat flow out wvuld be exactly
equal to the work done in a cycle. To arrive at a basis of com-
parison with the actual damping capacities of a real material in
this mode of deformation, we express W. as a percentage of the
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maximum stored strain energy, E, which is reached during a
cycle

Pa h
== h(4-61)

hence

2c?W0  (3X,+2p.)2a To w
WO A OX +(4-62)

(X + 2 1A) POC

which is approximately O.02% for h - 1" and w - 30% wo
This is less than the damping which would occur in a real, imper-
fect material. An interesting problem would be to formulate a
phenomenological law of internal damping in terms of the entropy
production, which would probably lead to a heat conduction equa-
tion with additional source terms. The solution might not be any
more difficult if the same kind of approximation which is used
in our example is made. Care must, of course, be exercised so as
to maintain the same stress-strain-temperature relationship.

Let us return to the expression for thermoelastic damping,
equation (4-59). We note that WO is dependent of 5he frequency
of excitation only through the parameters CI and CI , and that

lrm Wo nlim WO = 0 (4-63)
W_.0 w-CX)

Wo is a positive, continuous function of the exciting fre-
quency. This means that there exists a frequency at which the
energy dissipated per cycle is at a maximum. The factor

sinh/.S cosh/ -- sinV 2 COs/2

1tnha 25
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is shown in Figure 1 on page 31. We see that the maximum is reached
at a very low frequency, w/wo s 0.01 for this example, and
that it is reached within a very narrow frequency band.

V. GENERAL THEORY

Within the range of linear thermodynamics, the dilatation a
may be written as the sum of two parts: the fractional change of
volume due to the temperature and the fractional change of volume
due to the stresses, i.e.,

S= -- '() + 4" . (5-1)

It is known that c'( 8 ) is linearly related to 8 :

S(5-2)

where 8 is the average temperature over the entire volume at
any given instant; and ) and P' are constants containing the
elastic moduli.

The general heat equation (2-25) may now be written in terms
of C' and a"

k 8,1 j-pc -O8+ (3X\+2p)aTo (AL1 + -i a .f."+ A.A+± Lag
, ct To t at To t (5-3)

We shall regard all terms in the parentheses as heat sources.
The solution 8 is known to be small. Let us examine the equa-
tion:

kV'8=Pc' 1t-+(3X+2t40aTo La1 + +o t at +-)
at[t To a oat ](5-4)

in which 8' denotes a known function of small magnitude when com-
pared to To . The steady-state solution, 8 , of equation (5-4)
will be mainly due to the first of the heat sources,

8a"(3),+2/•1aTo--

By neglecting all other sources, we obtain an approximate heat
equation
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keil ==pc -ý8- +(3X+Z/u)aTo Ol
S at (5-5)

which is linear, and which is uncoupled from the equations of
motion.

The energy dissipation per cycle is a steady-state condition
is given by the double integral (equation (3-12)]

j = ( 3)+2P) a f 8a's dv dt (5-6)

+ f8 a ( a' + h") dv dt
(3 + 1L at "fV a

since

t +2irAo

8 L dt = 0 from periodicity considerations ,
a t+2w/wJ •,

Wo -( 3 X+ 2 2) 8 f -Ldv d t (5-7)

Multiply both sides of equation (3-5) by OfTO and integrate
over V and 2w /w . We see that the last integral becomes

(382)a 6 dv dt --- f fee,i 1 dv dt(3X + 2P)= f • ' vd

t V t(5-8)

By the use of the divergence theorem,

fv 81, dv =Jf ael Il ds -f (81 )2dv * (5-9)
Equation (5-8) is transformed into an approximate formula for the

quantity of work done per cycle of steady-state deformation:
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wo- ok-ft C
* T*f (oi (9 dv dt (5-10)

Since either 8 or 9, vanishes on the boundary S by the
stationary boundary condition assumption.

By means of equation (5-10), the computation of thermo-
elastic damping in the general case is reduced to a) finding the
dilatation by assuming Isothermal conditions b) determining the
temperature field from equation (5-5), and c evaluating the work
done by formula (5-10). This is a considerable simplification
over the "exact method" which has been illustrated by the example
in Section IV. In that exImple it may be shown easily that the
above approximate formula will lead to a rsult which is the
same as the "exact" formula except that CI is replaced by C,
in equation (4-59). It may, therefore, be said that equation
(5-10) furnishes a much simplified route to calculating the
amount of energy dissipation for small deformations.

VI. CONCLUSIONS

The following conclusions are reduced from observing the re-
sults and their derivations in the above discussion:

(1) The field equations of thermoelasticity are derived by
considering the conservation of mass, momentum, and
energy In addition, a second law postulated for perfect
elastic materials is found necessary. These equations
represent a phenomenological theory consistent with the
notions of continuum mechanics in the study of elastic
deformations and heat flow.

(2) Thermoelastic damping in idealized materials is the
explicit result of the irreversible character of heat
conduction only.

(3) For real materials, it is suggested that the numerous
macroscopically observed damping laws may be represented
by source terms in the heat conduction equation.

(4) The heat conduction *-uation for perfect materials is
non-linear although a linear thermodynamic process has
been considered.
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(5) An inconsistency will appear between the solutions of the
field equations and the first lar if the heat equation is
linearized in the mntner o f the usual thermoelasticity
theories in the literature.

(6) In processes where thermal boundary conditions are sta-
tionary in time, the general expression for the energy
dissipation for a steady-state cycle of deformation il
derived.

(7) A simple one-dimensional example is given in Section IV.
The equations of motion (equilibrima) are solved in terms
of the Unperature field, which is in turn solved from the
non-linear heat conduction equation by a perturbation
scheme. For an idealized elastic material having prop-
erties similar to low carbon steel, the said non-linarity
is shown to be unnecessary only if the energy dissipation
is computed by the work done on the system.

(8) In the given example the induced temperature variation
is smal (less than 1.2oF for a maximum stress of 14,000
psi, and at a frequency which is 30 percent of the first
natural frequency of the system). The amount of energy
dissipated during a cycle is also extremely small (about
0.* 02 ecent of the maximmt strain energy reached during
a cycle). Based on these facts the heat equation is
linearized and uncoupled by neglecting all source terms
except that representing the rate of change of dilatation,
calculated by assuming Isothermal deformations.

(9) The above simplification is generalized to derive an
expression for the energy dissipation in arbitrary bodies
under elastic deformations.
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Figure 1. -Thermoelastic Dampirg vs Exciting Frequency

31



*• ... .i 

Il .. it lt* -
, , ,I,, ; o
* ,.j ,,jj .; • Ijj ,:jjI

* I • v

S* 

- -

•N -

* ~*I

* 

4,,# 
k Ii ,I

* 
u <.!*It 1 '1I I

i -•~~ ~ - -•a~ i ~ • " "I, 
-SI " .

-, 1 • I

* I • I II~

* I


