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A Class of Energy Levels for the Heisenberg Linear Chain. II.

Levels near the Antiferromagnetic Ground State.

Robert B. Griffiths

Abstract

The distribution of "unbound" states in the Bethe formalism for the
linear chain of spin -L atoms with a Heisenberg exchange interaction between
nearest neighbors is investigated in the vicinity of the antiferromagnetic
ground state, utilizing the spin wave states discovered by des Cloimaﬁx
and Pearson. An upper bound is obtained for the free energy of the anti-
ferromagnetic chain at very low temperatures. Plausible a.rguinents are pre-
sented to show that the "unbound" states actually make a negligible contri-
bution to the partition function of an infinite cbain, at least in the

absence of a magnetic field.

National Science Foundation Postdoctoral Fellow
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I. Introduction.

The Hamiltonian

N
#s yRog §.i'§.i+l

sel

émo = é'
for a linear chain of spin ﬁ atoms closed upon itself (§ 1 is the spin

operator for the 1'th atom and J the "exchange integral") has been the
subject of several invesjtigations. The entire spectrum for a few

fairly short chains (up to N=10 or 11) has been calculated by Orba.chl,
Bonner and Fishera, and the author3. For the infinite chain very little
is known about the distribution of levels lying between the ferromagnetic
(7 < 0) ground state and the antiferromagnetic (J > 0) ground state. The
energy of the latter was calculated by Hulthénu using a formalism Qque to
Bethe®.

In a previous report6, hereafter referred to as CELI, we derived the
maximum and minimum energies as a function of the total spin of the state,S,
for levels velonging to the class C of "unbound states" in the Bethe
formalism. (For a brief summary of Bethe's procedure and a precise defini-
tion of class C, see CELI, Sec. II.) Recently, des Cloizeaux and l?eev.rson7

have calculated the energies of the lowest lying states in the antiferro-

magnetic chain as a function of wave vector q. These "epin wp.i'e" states,

as well as the ground state, belong to class C. The present report is an
extension of des Cloizeaux and Pearson's work to a detailed study of the
distribution of levels in class C near the antiferromsgnetic ground state.
When we began the calculation, we hoped to derive the low tm.c‘utm
properties of the chain using only states in class C. This uﬁmry contains

(1)
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a smll fraction of all the states (20'69“ vs a total of 2‘), but a

sufficient number to yleld a free energy proportionmal to N. Furthermore,

some of the lowest levels of the antiferromagnetic chain belong to C.
However, our calculations lead to the conclusion that, in the absence of a
magnetic field (and in the limit of an infinite chain), the thermal proper- .
ties are determined entirely by the levels in class B, the complement of C,
at all temperatures.

This essentially negative conclusion is reached via two routes.
Section VII contains the direct route: a very plausible argument based
upon magnetic susceptibility. The more leisurely route begins in Section II
with an "educated guess" for the enmergy of the chain at low temperatures,
wvhich is compared with the usual spin-wave theory. Section III begins the
discussion of class C with an extension of des Cloizeaux and Pearson's
results to states containing several spin waves. The free energy for the
modified spin-wave theory thus obtained is calculated in ﬁction IV and
shows fair (though spurious!) agreement with the results of Section II.

An unsatisfactory feature of spin waves--the introduction of spurious
states--is remedied in Section V. Several independent checks indicate that
the "balls in pockets” model there introduced provides a very good approxi-

mation to the lowest levels in class C. By means of the model, the contri-

. bution of states in class C to the total partitien function at low temperatures

is estimated in Section VI. The resulting upper bound on the free energy
(lower bound on its absolute value) is definitely in excess of the estimate
in Section II, but may still be useful for some purposes. Section VIII con-

tains & summary of our canclusions.
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II. Low Temperature Properties from Finite Chains
For short chains the various thermal properties may be obtained by
inserting the eigenvalues of the Hamiltonian (1) (obtained by use of a

high speed computer) into a partition function

Z = Trace (€~ 7+/hT) (2)

Bonner and I"i.al'xer2 calculated the energy and magnetic susceptibility for
N=2, 3, . . ., 11; the results for N=2, 3, . . ., 10 were also obtained
by the a.uthor.3 We are much indebted to Dr. Fisher for sending us his
results for the case N=11 prior to publication, and we have made use of
these in Figs. 1, 2, and S.

The calculated thermodynamic quantities for finite chains show a very
regular behavior as a function of N. If the regularities present for
N < 11 peresist for N > 11, the calculations provide: 1. Very good esti-
mates for energy, entropy, and magnetic susceptibility at temperatures
above J/k. 2. Upper and lower bounds for the same gquantities at all
temperatures.

The energy U of the linear antiferromagnetic chain varies as '.I.‘2 at

9

low temperatures according to the usual spin-wave theory.” Let us assume,

more generally, the behavior:

U= «T" | (3)

wvith o and n to be determined by calculations on finite chains.

&
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The corresponding entropy is:
She = naT""/Cn-1) (%)

We shall henceforth assume that all extensive thermodynamic variables
have been normalized by dividing them by the number of spins in the chain.
In Fig. 1, energy (measured from the exact ground state of the infinite
chain) is plotted as a function of entroby for chains containing 10 and 11
atoms. Note that for N odd the ground state is degenerate and hence the
entropy is not zero at zero temperature. The energy vs. entropy curve for
N=8 (not shown in Fig. 1) lies below the curve for N=10, that for N=6 below
that for N=8, etc. The curve for N=9 lies above the curve for N=11, that
for N=7 above that for N=9, etc. These regularities suggest that the
energy vs. entropy curve for a.n-infinite chain lies between the curves for
N=10 and 11.

The dotted curve in Fig. 1 represents the function

u/rs =119 (s/u)"’ (5)

Curves with the exponent in (5) equal to’l.8 or 2.0 which pass midway between
the N=10 and 11 curves at S/k=.20 in Fig. 1 are definitely low and high,
respectively, at S/k=.30. Let 7, the normalized temperature, be equa;l to
KT/J. The estimates
Uu/r = .01 7%
S/k = 407 (6)
follow immediately from (3), (4), (5) and provide an "educated guu‘a" for

S, S e e e e v e g s SNE AT A8 G o




the lov temperature behavior of these quantities.

Fig. 2 shows the energy as a function of temperature for chains con-
taining 10 and 11 spins. The dotted curve is a plot of Eq. (6). The
curve for N=8 (not shown) lies below that for N=10; the curve for N=9 above
that for N=11, etc. This suggests that the energy for an infinite chain
should lie between the curves N=10 and 1l.

Eq. (6) shows surprisingly good agreement with tke i dependence for
the energy predicted by spin-wave theory. We do not regard the difference
in exponents--2.1 instead of 2--as very significant, since (6) has been
obtained by extrapolating results which are less precise as the temperature
decreases. The calculations in Section VI below indicate that if (3) is
the correct asymptotic form for the energy, the exponent n must be iess
than or equal to 2. Hence it seems likely that the T2 -1 behavior predicted
by (6) is gradually replaced by a T° behavior for very low temperatures.
The followling values for energy, entropy, and free energy are then not

unreasonable

U/s =~ .18 7%
Sk = 367

F/7 =~ -8 7* . (n

The coefficients have been chosen to make the energy predicted by (6) and
(7) approximately equal in the vicinity of 7T = .2 or .3. It should be
emphasized that (7) represents an educated guess, and the values must be

used with caution. Nevertheless, it appears that the prediction of spin-wave '
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theory9 for the coefficient of -r2 in the expression for the energy at
low temperatures, /6 = .52, is definitely too large by a factor of
2 or 3. This is borne out by Figs. 1 and 2 wvhich show the spin-wave

predictions for energy as a function of entropy and temperature.




P

III. Spin-Wave Model for Class C.
In Bethe's’ formalism, an e.genstate of the Hamiltonian (1) with
total spin S and wave number q 1s associated with a set of %N-S

integers A:, satisfying

0LA; <N (8)
g = 2mm/N (9)

vhere
m=Z A (mod W) (20)

The class C contains "unbound" states which correspond to sets of inteéers,
no two of which differ by less than 2; all other states are in class B.
(For a more detailed discussion, see CELI, Section II.) The ground stateh

(8=0) corresponds to the set of integers

l’ 3, 5, . . ey N'lo

T

Recently des Cloizeaux and Pearson have shown that the lowest excited

state (S=1) of wave number q corresponds to the set:

1,3,5...,(N-2m-1), (N-2m2), (N-2m+h),..., (N-2) for ¢ > O
' (11)
2,’4,6,...,(2'!!!'-2), (2|m|+1), (2|m|+3):“': (¥-1) for <O

wvhere q and m are related by (9). The energy of the state (11) minus




the energy of the ground state is :10
E, = T T lsingl (12)

%

provided N 1is large.

Fig. 3 1llustrates the nature of the sets {Aj | for N<16. Each row
corresponds to one eigenstate of the chain. When some A is equal to an
integer k, a box is placed in the k'th column. Columms in which no box
appears contain dots or "spacers."” Each pair of boxes is separated by ut
least one spacer for states belonging to class C. State A is the ground.
state. State B, the lowest excited state for m=3 (or g=3(2r/16)), may de
produced from A by inserting a spacer in column 11 and displacing the
pattern in columns 11 to 15 one step to the right, discarding the portion
displaced to the right of column 15. An anlogous procedure results in
state D, the lowest excited state for m=-3.

If one inserts an additional spacer in column T of state D and shifts
the pattern in columns 1 to 7 one step to the left, the resulting state E .
corresponds to two "spin waves" >w1th m=-3. The second spin wave also
corresponds to m=-3 (and not, for emmplé, m=-4) because three boxes were
shifted to the left when the spacer was added in colum 7. See Eq.. (10).
States with several spin waves are obtained by repeating the procedure Jjust
described.

The energy of a state containing two spin waves is equal t. *he sum

of the energies of the corresponding single spin-wave states (given by -

(12)), plus a correction term of order l/H. An amalogous result holds :qr -
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a state containing several spin waves, provided the total number is small
compared to N. Conslider, for example, a state with two spin waves and
assume the wave numbers q, and g, are both negative. Eq. (19) of reference T
is replaced by:

M) = X+’;:,[6(%' -x) - @( l?{' -x)- @(%ﬁ' +%-x)] (13)
The reader may verify that des Cloizeaux and Pearson's procedure applied
to the modified A(X) in (13) ylelds the result stated above.

States produced from different combinations of spin waves are not
necessarily independent. With reference to Fig. 3 suppose that, starting
from the ground state we add one g in wave with m=8 (state F) and another
with m=5. The end result, state G, is identical to state D, which contains
a single spin wave with m=-3. A little reflection shows that, in fact, all
states in class C may be produced by superimposing only spin waves of posi-
tive (or, if one prefers, negative) q. Roughly speaking, we can produce a
state with q negative by superimposing two states of positive ¢, one of
which has wave number nearly equal to .

From this point on we shall restrict our considerations to spin waves
with positive q. Even such states need not be independent. State H in
Fig. 3, for example, may be thought of as composed of either two spin waves
with m=1 and one with m=2, or four spin waves with m=1l. Howe\.rer, if there
are only a few spin waves present, there is an approximate agreement between
the number of spin-wave states and the numwber of states in class C, as we

now show.




.

1

The number of states in class C with a given total spin S, correspond-

ing to %N-S non-zero A values, is given by:8

nh)=(xsﬂ)‘£zzs) (%)

States with one or two spin waves present are specified by %N-l non-zero
A 's and hence correspond to S=1; states with three or four spin waves to

S=2, etc. For a given S the number of spin-wave states is thus:

n(s)= F(2s)+ F(25-1) (15)
where
AN+ -
fl) = . (16)

is the number of states containing b spin waves, assuming the spin waves
obey Bose statistics.

Let S=kpN. One obtains by use of Stirling's approximation:

Ie, n(S) = (oN [l- IoJ 1‘9 + 0'((1)] + 0'(’0, N)

Ioj ﬁ(S):pN [l-l., 2, +‘,+0(P;)]+U("’ N) , ‘17)

Eq. (17) shows in what sense n(S) and H(S) are "approximately equal" for

small wmlues of S.J"1




IV. Partition Function for Class C: Spin-Wave Model

One can estimate the contribution of states in class C to the total
partition function using the spin-wave approximation developed in Section
III. Before doing so we make a slight digression to discuss the signifi-

cance of such a calculation. The partition function for the antiferromag-

netic chain,
Z=3 e FEn
- (18)
vhere § = 1/kT and the E_ are the energy levels of the chain, may be
written as
Z=Zy + Z, (129)

where Z.13 is that part of Z which comes from a sum over states in class B,
and Zc that part coming from a sum over states in class C. The total
number of states in class 08 is very much less than the total number of
states for the chain. On the other hand, as noted above, certain states
in class C are lover in energy than the corresponding states in class B,
and hence it is not immediately evident whether or not Z, mekes a signifi-
cant contribution to the total partition function Z.

The free energy (per spin) for the chain is given by:
Fe ~(NB)" log 2 | (20)
Define:

Fo==(Ng)" log 2, - (@)
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Clearly,

F2F (22)

or, in other words, Fc provides an upper bound on the free energy. Under
certain circumta.nc'eé ’ Fc might be equal to F in the limit of large K;
for example, if there were a constant | independent of N such that

Zc/z Z M 740

as N becomes infinite. In the remainder of this report we shall occasion-
ally use l"c as a convenient measure for the magnitude of ZC’A and fefer_ to
it loosely as the "free energy.”

Let us calculate Fc using the spin-wave approximation. The prdhlem
is merely that of obtaining the free energy for & set of N/2 uncoupled
harmonic oscillators with energies given by Eq. (1.2);""2 hence

/2

F. =(‘R@)"]' lo,[l-c;p(""ﬁjf‘"\)." de, (23)

Let the normalized temperature 7 be equal to (aJ)'l. Then for small 7
the asymptotic value of (23) is: .

/T ~ -7/ o (24)
At T =6, By (24) gives /3 = -.06, vharées nuserical integretion of

_(23) yields -.062, At lowr temperatures the asymptotic estimate is -ﬁn
better. | ' ‘




pL

The oocefficient of T 2 (n (24k) is sowevhat less, in absalute

. sagnitude, than the coefficient in (7). However, ss we shall show in
Section VI, the spin-wave approximation actuslly lesds to a significant
overestimte of the Qontubutionvof states in class C to the partition
function, and hence even the approximate agreement between (24) and (7) is

spurious.
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V. "Balls in Pockets" Model for Class C

The spin-wave approximation to the states in class C, discussed
in Sections III and IV, suffers from at least one serious defect: the
introduction of spurious states. It is true that ifkt‘;he number of spin
vaves is small the "overcounting" is not large; this is showm by Eq. (17).
Nevertheless, one suspects that the most serious overcounting occurs for
states in which the spin waves all have 16w energies, and these states,
of course, make an important contribution to the partition function at
low temperatures. We introduce the following model to avoid overcounting.

Consider a potential

Vi) = =27 T sinx (25)

for x between O and n. Let the interval from n/2N to n(1-1/2N) be
divided into N-1 equal subintervals or "pockets," as shown in Fig. i for
the case N=16. Some of the pockets contain balis, which correspond to
the boxes of Section III and Fig. 3. Each set of m A 's for a state in
class C corresponds in an obvious manner to a distribution of m balls

in pockets satisfying the two rules: 1. Each pocket is empty or contains
one ball. 2. Two adjacent pockets cannot both contain balls.

A ball in a pocket centered at x shall have & potential energy

" V(x), and we define the energy of a state to be the total potemtial energy

of the corresponding distribution of balls in pockets. The ground state
of the system (illustrated in Fig. 4 for N=16), for which N/2 pockets are
filled, has the energy




. .<.-—@m'ﬁ’ﬂ’ﬁ

M"&W&m—'ww, e

16

E, =-2TN (26)

if N is large.

A state in class C characterized by r = #N-S A values has a
degeneracy 25+1, whereas it corresponds to a single state in our model.
However, the factor 25+1 is of no consequence in computing the partition
function in zero magnetic field (see the ;a.ppendix for further remarks)
and hence, for this purpose, the model provides essentially exact counting
of states.

The separation between the highest and lowest energy states in our
"balls in pockets" model is 2JN, whereas in class C (which contains both
the highest and the lowest levels of the linear chain) it is 1.386 JN.‘
Thus the spectrum of the model cannot coincide exactly with the spectrum
of class C. Nevertheless, the model appears to give a good approximation
for the low-lying levels in class C, as we shall now show.

In the firet place, as the reader may verify, the model correctly
reproduces the energies (see Eq.‘ (12)) of the single spin-wave states
discussed by des Cloizeaux and Pearson ;7 in fact, the potential (25) was
chosen for Just thié reason. Similarly, for a state where only a few spin

waves are present, the model shows the approximate additivity of spin-wave

* energies discussed in Section III.

In addition, certain other energy levels in our model can be compared
with exact calculations for the corresponding states in claes C. For this

purpose it is convenient to introduce the abbreviation

p=S/N | o "(asa)
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We shall be interested in states near the antiferromagnetic ground state;

1i.e., those for which p, 1s small.

Consider the state with the lowest energy for a given Pyt the
pockets are empty for 0 < x < mp, and ﬂ(l-pl) < X < 7, vhereas in the
interval mp, < X < n(l-pl) every other pocket contains a ball. (Compare

this with CELI, (16)). Our model predicts an energy:

E=2NT [i- cos (me)] +E, (27)
or, for small values of Py’

E-E, ~ NT z2p? (28)
The exact energy for the corresponding state in class C (see CELI, Fig. 1)
lies below the prediction (27) for finite py; the asymptotic formula (28)
is, however, correct, at least to within .S per cent. See CELI, Eq. (Sol).l3
For a given Py’ the state with maximum energy in the model corresponds
to empty pockets in the interval n(%-pl) S x< ﬂ('é'fpl), wheress in the rest
of the interval every other pocket contains a ball. (Compare this with

CELI (18).) The model predicts an energy:

E= INT sin(rp) + E, (29)

- and for small Py’

E-E, ~ 27N Tp, (30)

Again, the exact energy for the corresponding state in class C (see CELI,

Fig. 1) lies below the prediction (29); but the asymptotic formula ‘(30)
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is correct. See CELI, Eq. (58).

A "uniform density" state shall be one in which for every interval
b < x sd such that d-b>>1/N, a total of (d-b)pN/m pockets contain
balls. The "density" p 1s equal to % for the ground state (in which
every other pocket is filled) and the quantity p, 1s equal to 4-p. For

such states our model predicts an energy:
E=4NTp +E (31)

The exact energy for the corresponding state in class C is easily obtained
by a straightforward modification of the Hulthén integral equation, (III.35)

in reference 2, with the result:
E-E, = LNT lo (1+2p) (32)

Clearly (31) is larger than (32) for finite py» and asymptotically equal
to (32) as py 8oes to zero.

On the basis of the three categories of states discussed above--
minimum energy, maximum energy, and "uniform denmsity"--it is tempting to
speculate that for any given state the balls-in-pockets model always yields
an energy higher than the exact energy. Of this we have no proof. In any
case, the fact that the model gives the correct asymptotic form for the
energy vhen Py is small, for all three categories, as well as 'for the des
Cloizeaux and Pearson spin waves, gives one confidence that it provides a
good description of the energy level structure of class C near the anti-

ferromagnetic ground state.
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VI, Partition Function for Class C: Balls-in-Pockets Model

The balls-in-pockets model discussed in Section V appears to provide
u good approximation to the low-lying energy levels of class C. In this
section we shall use the model to estimate the contribution of the levels
in class C to the total partition function of the antiferromagnetic chain.
The problem becomes that of computing the partition function for a system
of balls in pockets, as chown in Fig. h,vsubject to rules 1 and 2 of Section
V and with a potentiul cnergy glven by Eq. (25).

One approusch, mytivated by a procedurc used with the Ising linear
chain,lh {5 as follows. Let the pockets be numbered consecutively from 1
to N-1 and denote the ctate of the 1'th pocket by an index:

O if the pocket ic empty.
1T 1 if the pocket containg a ball.

The energy of a state shall be set cqual to:

N-2
E = Z E(Pi, PL-H) +t Py V(XN-t) (33)
{=
where
E(P.’, PH-I) = P V(x;) + ‘F(Pi, Pt'n)

Floo) = § (o) = fl1,0) =0
-I:(‘,I)-': + oo
X, = ’,‘(l//\/ (34)

A state for which two adjacent pockets both contain balls will have an
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infinite energy due to the function f and therefore will not contribute
to the partition function. The partition function for the model, ZM’ is

given by:

Z, = 532 exp{-g] ‘Zs:;lE(Pi,Pm)+p~_'V{"u-,)]}(35)

Rzo P2 Pu-

where g = 1/kT.
Let Q(i) be a 2 Xx 2 matrix with rows and columns labeled by the indices

Py and Pyiq0 respectively:

Gl _
q w0 (36)

where

m; = erp [-gVI] (37)

Let T be the column vector

I

exp eV ]/ . | (38)

T =

Eq. (35) may now be rewritten as:

ZN =3 Qm. qm. .. Q("'”-T' - (39)
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where the products are to be understood as matrix products and I denotes
the sum of the two elements in the resulting colummn vector.

If the matrices Q')

were all equal to the same matrix Q with
eigenvalues of unequal megnitude, the evaluation of (39) would be straight-
forward. One could diagonalize Q by means of a similarity transforma-

tion:

Q= SDS”!

A 0

0O Vv (ko)
I > vl

The product of the Q(i) would be Q raised to the (N-2)nd power:

QN—Z = S DN"l 5" (l}l)

But for large N, IAIN-2>>I VIN-Q

, and the partition function would be
equal to the (N-2)nd power of the largest eigenvalue of Q times a constant
independent of N.

In our case, unfortunately, the matrices Q(i) depend on the index 1.
Nevertheless, the Q(i) are nearly constant for 1 restricted to a range
m<1i<n vhere n-m<< N. If N is very large we can also have n-m> 1.

The considerations of the preceding paragraph then make it reasanable to

assume that in the limit of large N the partition function (39) is equal to:

v
Z,= BT ) -
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where B is a constant independent of N and A; is the larger (in magnitude)
of the two eigenvalues of Q(i).

We have given an intultive Jjustification for (42); in fact, it is not
difficult to prove the result rigorously under certain restrictions (which
the Q(i) satisfy) on the class of matrices involved. Since the proof is a
bit detaliled and adds no further insight into the problem, we shall not

reproduce it here.

The largest eigenvalue of (36) is:

A= 4+ L0+ 4p)” (43)
whence
-2 +
by 2= 5y 400 e 4p004]
t=1
v s L .
= = A lo, ';‘.{“’ LI +4 exp (l'n‘ﬁfsanx)] * }Jx (4k)

At this point it is convenient to introduce the renormalized partition
function Zm which differs from ZM in that all energles are measured from

the ground state of the model. Thus Zm should provide, at low temperatures,

~ a good approximation to ZC’ the contribution of states in class C to the

partition function of the linear chain when energles are measufed. from the

exact ground state. Using (26) we obtain immediately:

“NBF =log Z,, = log 2,y ~26TN L )

s e N O e W 8 B ds
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which becomes for low temperatures (large B):l5
lo’ ZM i ydy = N
2wt (”' (1+4ev)T  10BT (46)

The normalized temperature 45” is equal to (BJ )'l. For small 7° the free

energy (per spin) corresponding to (46) is:

E/T ~ -7/ (s)

The coefficient of 7¥in (47) is significantly smaller (in magnitude)
than the coefficient in (24). In our opinion the disagreement indicates
that the overcounting of states in the spin-wave model used in Section IV
leads to a significant error.

The quantity F,, determined by numerical integration of (Lu4), is
plotted in Fig. 5 together with the free energies for short chains con-
taining 10 and 11 spins. This figure together with the observation that
the coefficient of ﬁ'e in (47) is only half the coefficient in (7) lends
support to the conclusion that even at low temperatures the actual free
energy of the antiferromegnetic linear chain, F, is strictly less than
(in absolute magnitude strictly greater than) FC. If this last inference
is correct, the discussion at the beginning of Section IV allows us to
conclude that Zc makes & negligible contribution to the partifion function
as N becomes infinite. Further evidence for this result is found in

Section VII.
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VII. Class C and the Magnetic Susceptibility

In CELI, Section IV, we computed the magnetic susceptibility of the
antiferromagnetic chain at T=0 utilizing only states in class C, and only
a small fraction of such states. The method there employed cannot be
extended to finite temperatures. In fact, by considering the contribution
of the states in class C to the susceptibility at finite temperatures, one
obtains rather conclusive evidence that Z, is a negligible fraction of the

C
total partition function for long chains.

The number of states in class C with total spin S 1s:8
S ) ( iNv+ S
= A5 +1
n () = 25 (18)

including the degeneracy factor 25+1. Define:

(53, = (2,675 5,) /(2 &) o

where Sn is the total spin and En the energy of the n'th state, and the
summation goes over all states in class C. The fact that n(S) is very

gsharply peaked around S=N/(2/5) leads one to suspect that

(S)c o N (50)

On the other hand, the magnetic susceptibility (per spin) of the

chain in the limit of zero magnetic field is given by

X = ALSD/N (51)

_ . - . S et e et et Rn S &
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" where Z

25

where A is a constant independent of N, and the angular brackets denote
an average as in (49), but with summation extending over all energy levels
of the chain. If (5°) in (51) were replaced by (5°), one would expect,
on the basis of (50), to find X N; i.e., an infinite susceptibility for a
chain of infinite length.

The foregoing considerations may be made more precise as follows.
The calculations in CELI, Section III (compare with Section V above) indi-
cate that the energiles of all states in class C with total spin S lie

within the bou.nds:13

0L EL 27 TS (52)
For the considerations which follow, the weaker condition

0< E < N £(S/N) (53)

is sufficient, where f denotes any positive, continuous, monotone func-
tion of x such that £{0)=0.
Let us assume that in some temperature region there is a constant

(independent of N) such that

Z,/Z 2 m>0 (54)

c is the contribution of states in class C to the total partition

function. Further assume that the susceptibility is finite in the same

temperature region where (54) holds:

x €A (55)

A



where A1 is a constant independent of N. We shall now show that the
inequalities (53), (S4), and (55) lead to the result that the free energy
of the chain is constant, and therefore the entropy is equel to zero, in
the temperature region for which (54) and (55) hold. Since this result
is highly unlikely, we conclude that one of the three inequalities from
which it is derlived must be invalid. Of these three, the most likely to
be at fault is (54). That is, it appears highly probable that the contri-
bution of states in class C to the total partition function is negligible
as N becomes infinite.

The proof of the result claimed in the preceding paragraph is obtained

as follows. Since both the quantities
—(SE” _@E
ZC Sh e Qnd ZB S" e "

(where the second sum extends over all states in class B) are positive, the

inequality (54) implies that

(Y 2ulsy, [ (1+a) (56)

From (51), (55), (56) and the fact that (S°) » (8)° it follows that

[

(S)c <A N* (57)
' where A, is independent of N. Define

}
T=2A,N* (58)

7
and let ZC and Zé denote sums over states for which S is less than T or
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greater than T, respectively.

A consequence of these definitions and Eq. (49) 1s the inequality:
(Y, 2T (3L e BE)/ (3 e+ 3 e ™)
Then (57), (58), and (59) imply that

T e B > 7. e~ (60)

or

T 2 €11 e B (61)

c

Define n, by:

T
n‘ = Z n(S) (62)
S=| A

Combining (53), (5%), and (61) one obtains (note that Z, has been replaced

by Z2):

xie

/ /
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We may make a crude estimate:

| £ n, £ Nn(T) (64)

£ Ao o e b €A
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By use of Stirling's approximation for n(T) and the inequalities (64),
one may easily verify that (1/N) log n, goes to zero as N becomes infinite.
The inequalities (63) then imply that the free energy is identically zero

in the limit of infinite N. This completes the proof.
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VIII. Conclusion

The balls-in-pockets model introduced in Section IV appears to provide
a very good description of the energy level structure in class C near the
antiferromagnetic ground state. Unfortunately, this does not enable one
to conclude very much about the low temperature thermal properties of the
chain, because the partition function is dominated by the contributions
from levels in class B. The upper bound on the free energy, (47), may not

be entirely useless. For example, it rules out the possibility that
2.1 '
-F T (65)

at very low temperatures, a form suggested by Eq. (6).
Equations (47) and (7), taken together, indicate that

lim /o’ Z < lim ,’z_z_
N> oo N—>oo N ’ (66)

for T > 0. The calculations in Section VII, on the other hand, show that

for T > 0, on the basis of very plausible assumptions. Strictly speaking,
the result (66) is stronger than (67). But the arguments leading to (66)
are much more tenuous; in particular (7) is based on an extrapolation of

results for short chains at temperatures on the order of %J /k and above.

" In any case, the conclusion 1s the same: m.mely; an adequate discussion
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of the thermal properties of the antiferromegnetic chain at low tempera-
tures, if based upon the Bethe formalism, must take into account the

"bound" states in class B.



Acknowledgments

Professor W. Kohn brought to my attention the work of des Cloizeaux
and Pearson; I am also indebted to him for several helpful discussions.
I wish to thank Dr. M. E. Fisher for sending me the results of calcula-

tions for a chain of 11 atoms prior to publication.



Appendix

In Sections V and VI we disregarded a certain difference in the
counting between class C and the "balls-in-pockets" model. Associated
with a single state in the model is a set of 2S+1 states in class C
forming a single multiplet v.ith total spin S. It is easy to show that
this "counting error” has no effect upon the thermal properties in zero
magnetic field.

Let ZS be the contribution of states with a given total spin S to
the partition function of the model. Thus the model partition function

Zm is given by:

N/2

£.= 2 Z (A1)
S=0

If, on the other hand, we used the "correct” counting of levels, the

partition function would be

, Nf2
2. = 2 las+1) Z, (42)
$=0
Clearly,
/
Z. ¢ 2, ¢ (V) Z, (43)
and hence
lin log 2. ~ lim log 2o
Nowe N Ndos - (Ak)

That 18, in the limit of large N the free energy corresponding to z! is
identical with that corresponding to Z .

e s — . st I———




Figure Captions

Fig. 1. Energy vs. entropy for the antiferromagnetic chain. The
solid curves are from calculations on finite chains; the dotted curve
represents Eq. (5). The dot-dash curve is the prediction of spin-wave

theory (reference 9).

Fig. 2. Energy vs. temperature for the antiferromagnetic chain.
The solid curves are from calculations on finite chains; the dotted curve
represents Eq. (6). The dot-dash curve is the spin-wave prediction
(reference 9).

Fig. 3. Some sets of integers i/\ ,’}for the case N=16 (see text).

Fig. 4. Balls-in-pockets model for N=16 (see text).

Fig. 5. TFree energy vs. temperature for the antiferromagnetic chain.

The dotted curve is F,, determined by Eq. (44).
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