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A Class of Energy Levels for the Heisenberg Linear Chain. I1.

Levels near the Antiferromagnetic Ground State.

Robert B. Griffiths

Abstract

The distribution of "unbound" states in the Bethe formalism for the

linear chain of spin j atoms with a Heisenberg exchange interaction between

nearest neighbors is investigated in the vicinity of the antiferromagnetic

ground state, utilizing the spin wave states discoyered by des Cloizeaux

and Pearson. An upper bound is obtained for the free energy of the anti-

ferromagnetic chain at very low temperatures. Plausible arguments are pre-

sented to show that the "unbound" states actually make a negligible contri-

bution to the partition function of an infinite chain, at least in the

absence of a magnetic field.

National Science Foundation Postdoctoral Fellow
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I. Introduction.

The Hamiltonian

for a linear chain of spin j atoms closed upon itself (Si is the spin

operator for the i'th atom and J the "exchange integral") has been the

subject of several investigations. The entire spectrum for a few

fairly short chains (up to N=lO or 11) has been calculated by Orbach1,

Bonner and Fisher2, and the author 3 . For the infinite chain very little

is known about the distribution of levels lying between the ferromagnetic

(J < 0) ground state and the antiferromagnetic (J > 0) ground state. The

energy of the latter was calculated by Hulthen using a formalism due to

Bethe5.

6In a previous report , hereafter referred to as CELI, we derived the

maxium and minimum energies as a function of the total spin of the state,Si

for levels Lelonging to the class C of "unbound states" in the Bethe

formalism. (For a brief sumiary of Bethe's procedure and a precise defini-

tion of class C, see CELI, Sec. II.) Recently, des Cloizeaux and Pearson7

have calculated the energies of the lowest lying states in the antiferro-

magnetic chain as a function of wave vector q. These "spin wave" states,

as well as the ground state, belong to class C. The present report is an

extension of des Cloizeaux and Pearson's work to a detailed study of the

distribution of levels in class C near the antiferromegnetic ground state.

When we began the calculation, we hoped to derive the lov temper•ture

propeities of the chain using only states in class C. This category contains



a Small fraction8 of all the states (20*694N vs a total of 2N), but a

aufficient number to yield a free energy proportional to N. Furthermore,

some of the lowest levels of the antiferromagnetic chain belong to C.

However, our calculations lead to the conclusion that, in the absence of a

magnetic field (and in the limit of an infinite chain), the thermal proper-

ties are determined entirely by the levels in class B, the complement of C,

at all temperatures.

This essentially negative conclusion is reached via two routes.

Section VII contains the direct route: a very plausible argument based

upon -manetic susceptibility. The more leisurely route begins in Section II

with an "educated guess" for the energy of the chain at low temperatures,

which is compared vith the usual spin-vave theory. Section III begins the

discussion of class C with an extension of des Cloizeaux and Pearson's

results to states containing several spin waves. The free energy for the

modified spin-wave theory thus obtained is calculated in Section IV and

shows fair (though spurious.) agreement with the results of Section II.

An unsatisfactory feature of spin waves--the introduction of spurious

states--is remedied in Section V. Several independent checks indicate that

the "balls in pockets" model there introduced provides a very good approxi-

mation to the lowest levels in class C. By means of the model, the contri-

bution of states in class C to the total partition function at low tenperatures

is estimated in Section VI. The resulting upper bound on the free energy

(lover bound on its absolute value) is definitely in excess of the estimate

in Section II, but may still be useful for some purposes. Section VIII con-

tains a sumary of our conclusions.



II. Low Temperature Properties from Finite Chains

For short chains the various thermal properties my be obtained by

inserting the eigenvalues of the Hamiltonian (1) (obtained by use of a

high speed computer) into a partition function

Z - Tr .(2)

Donner and Fisher2 calculated the energy and magnetic susceptibility for

N=2, 3, 1 1., U; the results for N-2, 3, . ., 10 were also obtained

by the author.3 We are much indebted to Dr. Fisher for sending us his

results for the case N=U_ prior to publication, and we have made use of

these in Figs. 1, 2, and 5.

The calculated thermodynamic quantities for finite chains show a very

regular behavior as a function of N. If the regularities present for

N - 11 persist for N > 11, the calculations provide: 1. Very good esti-

mates for energy, entropy, and magnetic susceptibility at temperatures

above J/k. 2. Upper and lower bounds for the sam qxantities at all

temperatures.

The energy U of the linear antiferromagnetic chain varies as T2 at

low temperatures according to the usual spin-wav theory. 9 Let us assume,

more generally, the behavior:

U a oT" (3)

with a and n to be determined by calculations on fnite chains.
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The corresponding entropy is:

S/il - ' (4)

We shall henceforth assume that all extensive thermodynamic variables

have been normalized by dividing them by the number of spins in the chain.

In Fig. 1, energy (measured from the exct ground state of the infinite

chain) is plotted as a function of entropy for chains containing 10 and 11

atoms. Note that for N odd the ground state is degenerate and hence the

entropy is not zero at zero temperature. The energy vs. entropy curve for

N-=8 (not shown in Fig. 1) lies below the curve for N=0, that for N=6 below

that for N=8, etc. The curve for N=9 lies above the curve for N=ll, that

for N=7 above that for N=9, etc. These regularities suggest that the

energy vs. entropy curve for an infinite chain lies between the curves for

N=10 and 11.

The dotted curve in Fig. 1 represents the function

U/.T - (s (5)

Curves with the exponent in (5) equal to 1.8 or 2.0 which pass midway between

the N=10 and iU curves at S/k=.20 in Fig. 1 are definitely low and high,

respectively, at S/k=.30. Let , the normalized temperature, be equal to

kT/J. The estimates

U/3" = .3
5/& = .,IO'r. '1

(6)

follow imediately from (3), (4), (5) and provide an "educated guase" for

I ~~...
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the low temperature behavior of these quantities.

Fig. 2 shows the energy as a function of temperature for chains con-

taining 10 and 11 spins. The dotted curve is a plot, of Eq. (6). The

curve for N=8 (not shown) lies below that for N=10; the curve for N=9 above

that for N=ll, etc. This suggests that the energy for an infinite chain

should lie between the curves N=l0 and 11.

Eq. (6) shows surprisingly good agreement with the dependence for

the energy predicted by spin-wave theory. We do not regard the difference

in exponents--2.1 instead of 2--as very significant, since (6) has been

obtained by extrapolating results which are less precise as the temperature

decreases. The calculations in Section VI below indicate that if (3) is

the correct asymptotic form for the energy, the exponent n must be less

than or equal to 2. Hence it seems likely that the 2" behavior predicted

by (6) is gradually replaced by a T2 behavior for very low temperatures.

The following values for energy, entropy, and free energy are then not

unreasonable

S/k. 3 73~

F/ -. ig (r)

The coefficients have been chosen to make the energy predicted by (6) and

(7) approximetely equal in the vicinity of 'r= .2 or .3. It should be

emphasized that (7) represents an educated guess, and the values nmt be

used with caution. Nevertheless, it appears that the prediction of spin-wave

SWW



7

theo& for the coefficient of 2 in the expression for the energy at

low temperatures, n/ 6 = .52, is definitely too large by a factor of

2 or 3. This is borne out by Figs. 1 and 2 which show the spin-wave

predictions for energy as a function of entropy and temperature.
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III. Spin-Wave Model for Class C.

In Bethe's 5 formalism, an eigenstate of the Hamiltonian (1) with

total spin S and wave number q is associated with a set of ½N-S

integers A; satisfying

O<AJ <' h/ (8)

AV (9)

where

(food w (10)

The class C contains "unbound" states which correspond to sets of integers,

no two of which differ by less than 2; all other states are in class B.

(For a more detailed discussion, see CELI, Section II.) The ground state4

(S=O) corresponds to the set of integers

1, 3, 5, • N-1.

Recently des Cloizeaux and Pearson7 have shown that the lowest excited

state (S=I) of wave number q corresponds to the set:

l,3,5,...,(N-2m-1), (N-2m.2), (N-2mi.-),..., (N-2) for q> 0
(ii)

2,4,6,...,(21j1-2), (21.1+1), (2j-1+3),..., (N-1) for q,< 0

where q and m are related by (9). The energy of the state (11) minus

I
S.. '"-ImI dim Il
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10
the energy of the ground state is:

r I Isin 12)

provided N is large.

Fig. 3 illustrates the nature of the sets (A. • for N-16. Each row

corresponds to one eigenstate of the chain. When some A is equal to an

integer k, a box is placed in the k'th column. Columns in which no box

appears contain dots or "spacers." Each pair of boxes is separated by at

least one spacer for states belonging to class C. State A is the ground

state. State B, the lowest excited state for mn=3 (or q=3(2rr/16)), my be

produced from A by inserting a spacer in column U1 and displacing the

pattern in columns 11 to 15 one step to the right, discarding the portion

displaced to the right of column 15. An anlogous procedure results in

state D, the lowest excited state for m=-3.

If one inserts an additional spacer in column 7 of state D and shifts

the pattern in columns 1 to 7 one step to the left, the resulting state E

corresponds to two "spin waves" with m=-3. The second spin wave also

corresponds to m=-3 (and not, for example, m=-4) because three boxes were

shifted to the left when the spacer was added in column 7. See Eq. (10).

States with several spin waves are obtained by repeating the procedure just

described.

The energy of a state containing two spin waves is equal t, th.e sum

of the energies of the corresponding single spin-wave states (given by

(12)), plus a correction term of order 1/N. An analogous result holds for

L.
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a state containing several spin waves, provided the total number is walli

compared to N. Consider, for example, a state with two spin waves and

assume the wave numbers q, and 2 are both negative. Eq. (19) of referene' T

is replaced by:

The reader my verify that des Cloizeaux and Pearson's procedure applied

to the modified W) in (13) yields the result stated above.

States produced from different combinations of spin waves are not

necessarily independent. With reference to Fig. 3 suppose that, starting

from the ground state we add one spin wave with m=8 (state F) and another

with m=5. The end result, state G, is identical to state D, which contains

a single spin wave with m=-3. A little reflection shows that, in fact, all

states in class C my be produced by superimposing only spin waves of posi-

tive (or, if one prefers, negative) q. Roughly speaking, we can produce a

state with q negative by superimposing two states of positive q, one of

which has wave number nearly equal to T.

From this point on we shall restrict our considerations to spin waves

with positive q. Even such states need not be independent. State H in

Fig. 3, for example, may be thought of as composed of either two spin waves

with m=l and one with m=2, or four spin waves with mal. However, if there

are only a few spin waves present, there is an approximate agreement between

the number of spin-wave states and the number of states in class C, as we

now show.
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The number of states in class C with a given total spin 3, correspond-

ing to iN-s non-zero A values, is given by: 8

(S) (s+,) •L+5 (14)

States with one or two spin waves present are specified by JN-l non-zero

A 's and hence correspond to S=1; states with three or four spin waves to

S=2, etc. For a given S the number of spin-wave states is thus:

where

(iN + (16)

is the number of states containing b spin waves, assuming the spin waves

obey Bose statistics.

Let S-4pN. One obtains by use of Stirling's approximation:

I10 "(S) a- [1 I- o,• 2e +. a'(f,)] + a(Is. N)

0ij ;its) = eN [,-11. e e+¢ O(f,&)] + o{ ) (T

Eq. (17) shows in what sense n(S) and 1(S) are "approximately eIlal" for

small Values of S.II
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IV. Partition Function for Class C: Spin-Wave Model

One can estimate the contribution of states in class C to the total

partition function using the spin-wave approximation developed in Section

III. Before doing so we make a slight digression to discuss the signifi-

cance of such a calculation. The partition function for the antiferromug-

netic chain,

Z --- (-18)

where 0 1/kT and the En are the energy levels of the chain, my be

written as

Z ZLZe + zC (19)

where ZB is that part of Z which comes from a sum over states in class B,

and Z that part coming from a sum over states in class C. The total

number of states in class C is very much less than the total number of

states for the chain. On the other hand, as noted above, certain states

in class C are lower in energy than the corresponding states in class B,

and hence it is not immediately evident whether or not ZC makes a signifi-

cant contribution to the total partition function Z.

The free energy (per spin) for the chain is given by:

F's -(r s)" I 1 (20)

Define:

am( N O Y , 1o. 9 C£
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clearly.,

(22)

or, in other vords, FC provides an upper bound on the free energy. Under

certain circumstances, FC might be equal to F in the limit of large N;

for example, if there were a constant 1 independent of N such that

zo/ z ,, > 0

as N becomes infinite. In the remainder of this report we shall occasion-

ally use FC an a convenient measure for the magnitude of ZC, and refer to

it loosely as the "free energy."

Let )as calculate FC using the spin-wave approximation. The problem

is merely that of obtaining the free energy for a set of N/2 uncoupled

harmonic oscillators with energies given by Eq. (12);12 hence

(TI

F lei)' [I - Oep(iv53suijk j (23)'

Let the norm d temperature b be e% .l to (pJ)". Then for small

the asymptotic value of (e3) is:

Fc /7~ -"r/6(4

At 7'-.6, Eq. (214) gives 7,/J -. 06,. vliszgs ziueriosi integrationi of

(23) Yield. -. 062-. At lowar temperatures the asymptotic estimate is even

better.

7o , .



ase ooeffioent of IT2 in (24) is somewhat loe., in absolute

mgnitudie than the coefficient In (T). aowyer, to we sall shov in

SeOtion V1, the spin--va sap ox3.tion actually lemis to a significant

overestialte of the Qontribution of states in class C to the partition

function, ad benoe even the approxUate agreemnt between (24) and (7) is

spurioous.
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V. "Balls in Pockets" Model for Class C

The spin-wave approximation to the states in class C, discussed

in Sections III and IV, suffers from at least one serious defect: the

introduction of spurious states. It is true that if the number of spin

waves is small the "overcounting" is not large; this is shown by Eq. (17).

Nevertheless, one suspects that the most serious overcounting occurs for

states in which the spin waves all have low energies, and these states,

of course, make an important contribution to the partition function at

low temperatures. We introduce the following model to avoid overcounting.

Consider a potential

V 0)= - 2 X (25)

for x between 0 and TT. Let the interval from n/2N to n(1-1/2N) be

divided into N-1 equal subintervals or "pockets," as shown in Fig. 4 for

the case N-16. Some of the pockets contain balls, which correspond to

the boxes of Section III and Fig. 3. Each set of m A 's for a state in

class C corresponds in an obvious manner to a distribution of m balls

in pockets satisfying the two rules: 1. Each pocket is empty or contains

one ball. 2. Two adjacent pockets cannot both contain balls.

A ball in a pocket centered at x shall have a potential energy

V(x), and'we define the energy of a state to be the totma potential energy

of the corresponding distribution of balls in pockets. The ground state

of the system (illustrated in Fig. 4 for N1.16), for which N/2 pockets ane

filled, has the energy
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4 ~-zrA/(26)

if N is large.

A state in class C characterized by r = iN-S A values has a

degeneracy 2S+l, whereas it corresponds to a single state in our model.

However, the factor 2S+1 is of no consequence in computing the partition

function in zero magnetic field (see the appendix for further remarks)

and hence, for this purpose, the model provides essentially exact counting

of states.

The separation between the highest and lowest energy states in our

"balls in pockets" model is 2JN, whereas in class C (which contains both

the highest and the lowest levels of the linear chain) it is 1.386 JN.

Thus the spectrum of the model cannot coincide exactly with the spectrum

of class C. Nevertheless, the model appears to give a good approximation

for the low-lying levels in class C, as we shall now show.

In the first place, as the reader may verify, the model correctly

reproduces the energies (see Eq. (12)) of the single spin-wave states

discussed by des Cloizeaux and Pearson;7 in fact, the potential (25) was

chosen for just this reason. Similarly, for a state where only a few spin

waves are present, the model shows the approximate additivity of spin-wave

energies discussed in Section III.

In addition, certain other energy levels in our model can be coapared

with exact calculations for the corresponding states in class C. For this

purpose it is convenient to introduce the abbreviation

SIN (26a)



17

We shall be interested in states near the antiferromgnetic ground state;

i.e., those for which p1  is small.

Consider the state with the lowest energy for a given pl: the

pockets are empty for 0 s x ! TPl and n(l-pl) < x Tr, whereas in the

interval lTp1 s x ; Tr(1-pl) every other pocket contains a ball. (Compare

this with CELI, (16)). Our model predicts an energy:

E IVN [T - Cos ( ?,)I + ED (27)

or, for small values of PI'

E - E. -,, N -T"- XILt (28)

The exact energy for the corresponding state in class C (see CELI, Fig. 1)

lies below the prediction (27) for finite Pl; the asymptotic formula (28)

is, however, correct, at least to within .5 per cent. See CELI, Eq. (51).13

For a given pI, the state with maximum energy in the model corresponds

to empty pockets in the interval T(½-Pl) ! x ! rr(J+pl), whereas in the rest

of the interval every other pocket contains a ball. (Compare this with

CELl (18).) The model predicts an energy:

E = NT s.N " (1re,) + E (29)

and for small pI:

E-Eo % IVT , (30)

Again, the exact energy for the corresponding state in class C (see CELI,

Fig. 1) lies below the prediction (29); but the asymptotic formula (30)



18

is correct. See CELI, Eq. (58).

A "uniform density" state shall be one in which for every interval

b : x i d such that d-b >>/N, a total of (d-b)pN/Tr pockets ccotain

balls. The "density" p is equal to j for the ground state (in which

every other pocket is filled) and the quantity p1  is equal to ½-p. For

such states our model predicts an energy:

E = 4-A/T , + E0 (31)

The exact energy for the correiponding state in class C is easily obtained

by a straightforward modification of the Hulthdn integral equation, (111.35)

in reference 2, with the result:

E-E. 0 ZN "oj (=+ 2 /,,) (32)

Clearly (31) is larger than (32) for finite pI, and asymptotically equal

to (32) as p1 goes to zero.

On the basis of the three categories of states discussed above--

minimum energy, maximum energy, and "uniform density"--it is tempting to

speculate that for any given state the balls-in-pockets model always yields

an energy higher than the exact energy. Of this we have no proof. In any

case, the fact that the model gives the correct asymptotic form for the

energy when p1 is small, for all three categories, as well as for the des

Cloizeaux and Pearson spin waves, gives one confidence that it provides a

good description of the energy level structure of class C near the anti-

ferromagnetic ground state.

I
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VI. Partition Function for Class C: Balls-in-Pockets Model

The balls-in-pockets model discussed in Section V appears to provide

u good approximation to the low-lying energy levels of class C. In this

section we shall use the model to estimate the contribution of the levels

in class C to the total partition function of the antiferromagnetic chain.

The problem becomes that of computing the partition function for a system

of balls in pockets, as shown in Fig. 4, subject to rules 1 and 2 of Section

V and with a potentiul -nergy given by Eq. (25).

One approach, motivated by a procedure used with the Ising linear

chain,!4 is as follows. Let the pockets be numbered consecutively from 1

to N-I and denote the state of the i'th pocket by an index:

0 if the pocket ic empty.

Pi = 1 if the pocket contains a ball.

The energy of a state shall be ,;ft equal to:

M-()

where

E (p, p,) pý V(,,) -(p, p,.,)
4(L),L) 4 ( o, ) = -f vbo) = )

-F, (=)1)

(34)

A state for which two adjacent pockets both contain balls will have an
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infinite energy due to the function f and therefore will not contribute

to the partition function. The partition function for the model, ZM, is

given by:

I ~j -L

PI 0 %' Z ecp- '3 .

where 0 = i/kT.

Let Q(i) be a 2 x 2 matrix with rows and columns labeled by the indices

Pi and pi+l' respectively:

S(36)

where

Let T be the column vector

f-A P V(38)

Eq. (35) may now be rewritten as:

z• 1) 07 ('.q• . 0 ••.T39)

I"
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where the products are to be understood as matrix products and E denotes

the sum of the two elements in the resulting column vector.

If the matrices Q(i) were all equal to the same matrix Q with

eigenvalues of uneqjual magnitude, the evaluation of (39) would be straight-

forward. One could diagonalize Q by means of a similarity transforma-

tion:

Q=S SDS'

o V, (40)

0,1 > IV/

The product of the Q(i) would be Q raised to the (N-2)nd power:

qm-9 - D W-Z 5"1  (41)

But for large N, IXIN-2>>JuIN-2 , and the partition function would be

equal to the (N-2)nd power of the largest eigenvalue of % times a constant

independent of N.

In our case, unfortunately, the matrices Q(i) depend on the index i.

Nevertheless, the Q(i) are nearly constant for i restricted to a range

m < i s n where n-m << N. If N is very large we can also have n-m>o 1.

The considerations of the preceding paragraph then make it reasonable to

assume that in the limit of large N the partition function (39) is epal to:

W,-2 (42)

ZMi,--I
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where B is a constant independent of N and is the larger (in magnitude)

of the two eigenvalues of Q(i).

We have given an intuitive justification for (42); in fact, it is not

difficult to prove the result rigorously under certain restrictions (which

the Q(i) satisfy) on the class of matrices involved. Since the proof is a

bit detailed and adds no further insight into the problem, we shall not

reproduce it here.

The largest eigenvalue of (36) is:

whence

1/2.I

- fi. + [1. +- ,4.Io-.r d .Js÷is J• ,

At this point it is convenient to introduce the renormalized partition

function Zm which differs from ZM in that all energies are measured from

the ground state of the model. Thus Zm should provide, at low temperatures,

a good approximation to ZC, the contribution of states in class C to the

partition function of the linear chain when energies are measured from the

exact ground state. Using (26) we obtain immediately:

-N Ff 1 Az ZM - ZO Y (45)
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which becomes for low temperatures (large 5):15

( (146)

The normalized temperature T is equal. to (OJ)-1. For small r the free

energy (per spin) corresponding to (46) is:

F / J -- - -1'2/ Ao (47)

The coefficient of 71 in (47) is significantly smaller (in magnitude)

than the coefficient in (24). In our opinion the disagreement indicates

that the overcounting of states in the spin-wave model used in Section IV

leads to a significant error.

The quantity FC, determined by numerical integration of (44), is

plotted in Fig. 5 together with the free energies for short chains con-

taining 10 and 11 spins. This figure together with the observation that

the coefficient of r2 in (47) is only half the coefficient in (7) lends

support to the conclusion that even at low temperatures the actual free

energy of the antiferromagnetic linear chain, F, is strictly less than

(in absolute magnitude strictly greater than) FC. If this last inference

is correct, the discussion at the beginning of Section IV allows us to

conclude that ZC makes a negligible contribution to the partition function

as N becomes infinite. Further evidence for this result is found in

Section VII.
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VII. Class C and the Magnetic Susceptibility

In CELl, Section IV, we computed the magnetic susceptibility of the

antiferromagnetic chain at T=O utilizing only states in class C, and only

a small fraction of such states. The method there employed cannot be

extended to finite temperatures. In fact, by considering the contribution

of the states in class C to the susceptibility at finite temperatures, one

obtains rather conclusive evidence that ZC is a negligible fraction of the

total partition function for long chains.

The number of states in class C with total spin S is: 8

(s)-= (Is + 1) IS(8

including the degeneracy factor 2S+I. Define:

(s>= ( ZCe 5M )/(Zc e(49)

where S is the total spin and E the energy of the n'th state, and then n

summation goes over all states in class C. The fact that n(s) is very

sharply peaked around S=N/(2/5) leads one to suspect that

(S)oc N (50)

On the other hand, the magnetic susceptibility (per spin) of the

chain in the limit of zero magnetic field is given by

X. A < 52'>IN (51)
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where A is a constant independent of N, and the angular brackets denote

an average as in (49), but with summation extending over all energy levels

of the chain. If (S 2 in (51) were replaced by (S 2>C, one would expect,

on the basis of (50), to findXeCN; i.e., an infinite susceptibility for a

chain of infinite length.

The foregoing considerations my be made more precise as follows.

The calculations in CELI, Section III (compare with Section V above) indi-

cate that the energies of all states in class C with total spin S lie

within the bounds: 1 3

O0 E 2 2 YS (52)

For the considerations which follow, the weaker condition

0:!5 E 5- N .; (,S/N) (53)

is sufficient, where f denotes any positive, continuous, monotone func-

tion of x such that f(0)=O.

Let us assume that in some temperature region there is a constant

(independent of N) such that

/(54)

where ZC is the contribution of states in class C to the total partition

function. Further assume that the susceptibility is finite in the same

temperature region where (54) holds:

.(55)
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where A, is a constant independent of N. We shall now show that the

inequalities (53), (54), and (55) lead to the result that the free energy

of the chain is constant, and therefore the entropy is equal to zero, in

the temperature region for which (54) and (55) hold. Since this result

is highly unlikely, we conclude that one of the three inequalities from

which it is derived must be invalid. Of these three, the most likely to

be at fault is (54). That is, it appears highly probable that the contri-

bution of states in class C to the total partition function is negligible

as N becomes infinite.

The proof of the result claimed in the preceding paragraph is obtained

as follows. Since both the quantities

Zc S. e - " E3.F ao "En

(where the second sum extends over all states in class B) are positive, the

inequality (54) implies that

(s> 1A <S (56)

From (51), (55), (56) and the fact that (S2 > (S)2 it follows that

(5 N (57)

where A2 is independent of N. Define

T A2N- (58)ziA'
and let and denote sums over states for which S is less than T or

C
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greater than T, respectively.

A consequence of these definitions and Eq. (49) is the inequality:

<5% •T (Z' e- (el ) (71 • ÷ - e (59)

Then (57), (58), and (59) imply that

C T- (6o)

or

Define n by:
T

Me 7- M is) (62)

Combining (53), (54), and (61) one obtains (note that ZC has been replaced

by Z):

1• 4 (63)

We may make a crude estimate:

N T) (64)
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By use of Stirling's approximation for n(T) and the inequalities (64),

one may easily verify that (1/N) log no goes to zero as N becomes infinite.

The inequalities (63) then imply that the free energy is identically zero

in the limit of infinite N. This completes the proof.
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VIII. Conclusion

The balls-in-pockets model introduced in Section IV appears to provide

a very good description of the energy level structure in class C near the

antiferromagnetic ground state. Unfortunately, this does not enable one

to conclude very much about the low temperature thermal properties of the

chain, because the partition function is dominated by the contributions

from levels in class B. The upper bound on the free energy, (47), may not

be entirely useless. For example, it rules out the possibility that

-F o Tc (65)

at very low temperatures, a form suggested by Eq. (6).

Equations (47) and (7), taken together, indicate that

- </ f

A(-*.o W At-* P (66)

for T > 0. The calculations in Section VII, on the other hand, show that

S"2 0 (67)

for T > 0, on the basis of very plausible assumptions. Strictly speaking,

the result (66) is stronger than (67). But the arguments leading to (66)

are much more tenuous; in particular (7) is based on an extrapolation of

results for short chains at temperatures on the order of 4J/k and above.

In any case, the conclusion is the same: namely, an adequate discussion
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of the thermal properties of the antiferromagnetic chain at low tempera-

tures, if based upon the Bethe formalism, must take into account the

"bound" states in class B.
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Appendix

In Sections V and VI we disregarded a certain difference in the

counting between class C and the "balls-in-pockets" model. Associated

with a single state in the model is a set of 2S+1 states in class C

forming a single multiplet with total spin S. It is easy to show that

this "counting error" has no effect upon the thermal properties in zero

magnetic field.

Let Z be the contribution of states with a given total spin S to

the partition function of the model. Thus the model partition function

Z is given by:m

z.~ Z5z (Al)
SXO

If, on the other hand, we used the "correct" counting of levels, the

partition function would be

/ /h.

Clearly,

S(v/÷) ,;7 (A3)

and hence

N IV N (A4)

That is, in the limit of large N the free energy corresponding to Z' ism

identicl with that corresponding to Z.-

S' 17I -o



Figure Captions

Fig. 1. Energy vs. entropy for the antiferromagnetic chain. The

solid curves are from calculations on finite chains; the dotted curve

represents Eq. (5). The dot-dash curve is the prediction of spin-wave

theory (reference 9).

Fig. 2. Energy vs. temperature for the antiferromagnetic chain.

The solid curves are from calculations on finite chains; the dotted curve

represents Eq. (6). The dot-dash curve is the spin-wave prediction

(reference 9).

Fig. 3. Some sets of integers [} for the case N=16 (see text).

Fig. 4. Balls-in-pockets model for N=16 (see text).

Fig. 5. Free energy vs. temperature for the antiferromagnetic chain.

The dotted curve is FC, determined by Eq. (44).
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