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Couette and Rayleigh flow is investigated. In the model, the molecular ve-

The application of a simple discrete velocity model to low Mach mmber

locities are restricted to a finite set and in this study only eight equal
speed velocities are allowed. The Boltzmann equation is reduced by this
approximation to a set of coupled differential equations which are shown to
be identical in form to those produced vhen the same approximation is applied
to the Krook equation. The fluid velocity and shear stress in Couette flow
are in approximate accord with those of Wang Chang and Uhlenbeck and of Lees
over the complete range of Knudsen numbder.
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INTRODUCTION

In & previous report (1), an approximate description of low Mach number
rarefied shear flov vas obtained by restricting the moleculsr velocities to
a finite, prescribed set, an approximation which reduces the governing integro-
differential equation to a set of coupled differential equations. That study
wvas based on the Krook approximation to the Boltzmann equation and eight, egual
magnitude, molecular velocities were allowed, It is the purpose of this
report to show that when the sswe approximation is applied to the Boltgmann
equation itself, the resulting set. of differential equations is identical
in form to that obtained from the Krook model; the only difference is in the
magnitude of the relaxation time, In the Krook model this parameter was set
equal to the mean time between collisions, )‘/85 here it is shown that it is
approximately A/.68 ¢. The Couette flow results of Ref. 1 are brought into
approximate quantitative sgreement with those of Wang Chang and Unlenbeck (2)
and of Lees (3) by the use of the new relaxation time. There is also significant
improvement in the Rayleigh flow solutions.
THE DISCRETE VELOCITY MODEL

The Boltzmann equation may be written

?r: +u-g—:- +V +ws; -%) =G=-1 (1)

in which £ is the distribution function depending on the time and space

variables t, x, ¥, z and on the molecular velocity ¥ with camponents u, v, w.

-1-



The rate of change of £ due to collisions is written as the gain minus the
loss, G - L. Now if the molecules occupy, between collisions, a finite set

of cells located at 'v’:l in velooity spece, Eq. (1) can be written

3N, AN N
3%_"“1&- V1% *V z '(#)c-ai'l'i (2)
in vhich N, is the nusber of molecules per unit volume with velocity v,
Before evaluating (G -L, ) for eight cells, consider as & simpler exsmpls
the two - dimensional gas lying in the u, v plane with four velocities as
sketched in Fig. la.
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The speed is taken to be the mean thermal speed, c. The rate of change of
Nl, for instance, due to collisions is determined as follows. loss of mole-
cules from cell 1 occurs only vhen these molecules collide with those in
cell 4, for collision with cell 2 or 3 occupants results only in an exchange
of cells (see Figs. 1b and 1c). Thus the loss fram cell 1 can be written

L=V 8N K =2c8 N K
vhere A is the relative speed, equal to 2 ¢, and 8‘ is the eftective col-
lision cross section, i.e., the cross section which deflects collision
partners from cells 1 and 4 to 2 and 3. These same arguments show, of

course, that molecules are thrown into cell 1 from collisions 2 - 3; there-

fore

al!l -
(Et—c-acse (nans- “1“:."
The expressions for the other cells can be written in the same way,
When there are eight cells, symmetrically placed in the eight velocity
quadrants (see Fig. 2), and the flow is independent of z and symmetrical
about the w = O plane,

Nl-NS, Na-l6gﬂ3-37;lu-le
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('aTl'c" [ 2/3 (1+2/J§)Es(n2n3-nln,‘?

whezje 8 is the mutual collision cross section.

Anticipating the application
Couette and Rayleigh flow, let us divide Eq. (2) by the mmber density, N,

Under these conditions and with the assumption that the molecules are hard
elastic spheres, it is shown in the Appendix that

of these equations to low Mach number
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assumed constant. Then making use of Eq. (3) and corresponding expressions

for the other cells we get,

anl bn an

a— q'5?+qa -29(112 3 nl nl&) (u‘)
ana ane ana
.s-t—--c-q's{--o-qa-y—--Ze(nlnh-nans) (hb)
n on dn
ﬁj'qﬁi'qﬁa'ae(nlnh'%%) (be)
3n, on dn )
.a_’i-f-qaxh q-a-—h-29(n23-n1nh) (ka)

vhere n, is the fraction cf molecules in cell i, q = 3//?, and

i
l . -
0 me=== (1+2//3)c8N
/6 /3
Several general features of these equations are worth noting. First,
vhen they.are multiplied successively by the collisional 1nva.r.1.nnta, m,

mu,, BV, (m 1s the molecular weight) and sumed, the right hand sides

i
vanish, a consequence of the fact that the collisions sketched in Fig. 1
conserve the nmumber of molecules and satisfy the equations of motion.
(Bnergy is autamatically conserved since the speed is constant.)

The equilibrium condition is

nl nh = na n3



a remnunt of the general equilibriwm condition
r(v1 ) r(v2 ) r(vl) r(#a).
If the n, 's are independent of x and y it is easy to shov with the help of

1
Bgs. (4) that the E function, defined by

H-Zni lnni’

i
obeys the equation.

‘%-20 (n2n3- nlnh) (lnnlnu- lnnens)

and hence
a8 in the exact equation
COUETTE ARD RAYLEIGH FILOW EQIATIONS

To apply Eqs. (k) to Couette and Rayleigh flow we assume, as was done
in Ref. 1, that the fluld velocity in the y direction, V, is negligible
(the walls are parsllel to the x - axis) vhen the lhch number is low enough.
Thens:l.ncev-}:niv, »

1 i

n1+n5+n2+n6-n3+n7 + oy ‘”’8'%
and from the symmetry about w = O,

nl +n2-n3+nh -%o
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These relations make Egs. (4b) and 4d), say, superfluous and allow the others
to be written

3n on
a_1=.l+qu-;--%(-nl+n3) (5‘)
on on 9

-qy---a-(-nl+n3) (Sb)

when the terms depending on x are dropped. These are Bqs. (18e) and (18¢)
of Ref, 1 with 8 appearing in place of o, quantities which dirfér only by-
e numerical factor.”

This is the result stated above, namely, that to the present approxi-
mation the Boltemann and Krook equations lesd to differentisl equations
describing Couette and Rayleigh flow which are identical in form. This
could perhaps be taken as simply an indication of the crudity of the eight
cell model were it not for the many points of agreement, discussed in the
following, between the results given by this simple model and those of much
more rigorous analyses.

In the Krook model the magnitude of the effective collision rate must
be chosen arbitrarily - it is of the order of the inverse of the mean time
between collisions - and in Ref. 1 it was set equal to this quantity, i.e.,

# 1In Ref, 1, n, represents the sum ot the fraction of molecules in cells
1land 5, 1.c., 2 n,; n, repesents 2 nas ete, Bgs. (5), being linear, can
be similarly interpreted.



to 0 = ¢c/A, It is shown in the Appendix that © = ,68 ©/A. With this de-
gree of arbitrariness removed from the discrete velocity model, it is
worthwhile to compare the solutions, qmntitutivcl&, with those of Wang
Chang and Uhlenbeck (2) and of lees (3). Only Couette flow will be dis-
cussed here; the Rayleigh flow lolution;, ;le:cribed in Ref, 1., are also
w when O replaces ¢ but the details will be given in a later report.
COUETTE FLOW SOLUTION

-a/2 uJa

Figure 3.

Consider the steady Couette flow sketched in Fig. 3. For this problem
Equations (5a) and (5b) can be written

«8-



dn

;% -a(-nl+n3) (6a)

dn

;—-& =a(= n, + n3) (6v)
b 4 ,

*
vhere y =y/d end o = d /2 q

When the reflection from both walls is diffuse and n = ns, n, = ng
etc,, the boundary conditions are

¢ [- na(i) + nh(i] U,

o [ +nd |

& [- n (- 4) + ny(- iil

v

7
q [n1<- B + ny- &)]
vhere Uw is the difference in the wall velocities. These equations state
that the average x - component of velocity of the molecules leaving the

upper wall is - UJa at the uypper wall and that of the vpward flowing
1
particles is u‘/a at the lower wall. Then since n, +n, = ng + oy =,

n (- 3) = 1 - ,/2q), ny(3) = 51 + v, /2q)

Solutions to Equations (6a) and (6b) satisfying these conditions are
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o * 1 v
nl'é[!a-fl,—qu +1'2‘0’+1,‘-a]

U U
1 o ¥  * 1 v
3 '3[10' +1) ¢ ) Y1t ) »q]
From these 'distribution funttions' the fluid velocity in the x
direction, U, is found to be

U-fuini-aq [- zil+n2-n3+nu]-4[1-h(nl+n3?]

== la:l, v, y* (7)

and the shear stress, pyx’ is given by

pyx-pfuivini-2pq2[-n1+n2+n3-nh]-hpqa[-n1+n3]

~seay 1Y (8)
Defining the viscosity, u, by B/ £ we have from Bquations (7) wna (8)§
bepqgdfa=pqfe
and vith @ = .68 T/A and q-E/\/E’
b dgpe A

compared with the classical value of 499 p ¢ A,
Next the fractional slip velocity, 2 4 u/uw, defined dy

=10-



U, =-U
w/2 -
2av/y, = 5

is, from Equation (7),

1 1 '
20U, = 5T * SSan el (9)
lees finds, for Maxwell molecules, '
1

280U, = —5In T3
These expressions are shown in Figure 4, together with the results of Wang
Chang and Uhlenbeck who also treated Maxwell molecules.
Finally, the ratio of the shear stress to the free molecule value;;
p”/(pyx)f.m., can be found from Bquation (8) to be given, also, by

Pl Bpdtm, * THT " AN (20)
Similarly, Lees' expression is

pyJ(pyx)f.u. - 5 ch. A+l
In Figure 4 the Wang Chang and Uhlenbeck values are compared with these two
equations. Equation (10) lies below those of the other investigators at
large d/x because the value for the free molecuh’ shear stress is given
incorrectly by Bquation (8) - it is approximately 15 percent too large.
With this correction the shear stress is seen f;o be in sqod agreement with
the Reference 2 value at large d/A.

In sumeary, _the simple discrete velocity model gives a reasonably accu-
reate description of lowv Mach number Couette flow over the complete range of
d/A. It should be remembered, however, that the calculations of the col-
lision cross sections in the Appendix can only be dcrende‘a a8 being reasonable.



A further study of this flov with more molecular velocity cells is roqu’:l.rof
before ve can be sure that the accuracy of the oiéht cell solution is not
simply fortuitous.
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APPENDIX

To find the rate of change of N, due to collisions ve must first do-.
termine vhich of its possible collisions cause a net loss or gain from cell
1 as distinguished from those in which the collision pertners simply exchange
cells. Refer to Teble 1 in which the aign of the velocity components ars

listed. Molecules may Jump only between pairs of cells in which there 1is

vl b

i cell

N |1 2 3 | & 5 6 | 1 8
u - + - + - + - +
v + + - - + + - -
w + + + + - - - -

Table 1. 8ign of velocity components

the same combination of signs for u, v, and w. Thus the collision 1-4 »-2-3
is possible but the collision 1-2 has no effect..

The collisions in which Nl is depleted are:

lfh-02-3 1-6+2-5 1-7-+3=5
1-8+2-7 1-8+3-6 1-8 k=5

and the rate of loss, I“l’ is
Lev®s (N8 +X N +N n.,} v, 80 (n na?



vhere the superscript a refers to the relative velocity and effective cross
section of collision partners disgonally opposed on the faces of the velocity
cube in Fig. 2 and b to those on the cube d1lagonals.

From symetry, moieculn from & collision 1-8, for instance, are equally
distributed to 2-7, 3«6, and U4=5, and therefore the rate of addition to cell
lis

a_ 8
G, =v, 8, (l!2 N3+N2N5+N3 l!s)

l_b_.bd
+3 7% 8, (!2"7*’3’6+“l;1'5)

The relative velocities are given by

a - b -
A\ -2/20 v, =2c.

The effective collision cross sections are determined :for hard elastic.
spheres as follows. Consider first an encounter of the kind 1-4, which
takes place in the w = constant plane, as sketched in Fig. 1b. The question
is vhat fraction of those molecules that collide should be assigned to cells
2amd 3 (witﬁ the others being returned to 1 and 4), 8ince the scattering
has circular symmetry the most reasonable assumption is that half of the
colliding molecules are deﬂected, i.e., that

[
| B, = 4 8.
vhere 8 is the mutual collision cross section. The corresponding assumption

for collisions such as 1-8, in vhich there is scattering in three dimensioms,
lesds to the result



® .y f2s.
Finally, making use of the symmetry about w = O, i.e.,, of the condition
Nl =N., Na = N6’ etc., and dividing Gl and 1‘1 by N, we get

anl

(52, = -3 - /2/3(1+2/J_)csn(n23-n n;)
-20(n2n3-n1nh)
where
e--—(1+-csu E ‘

The solutions of Egs. (5a) and (5b) or Eqs. (18a) and (18c) of Ref. 1
and hence quantities such as viscosity, velocity slip, etc., are given
directly in terms of 6 but the fluid mechanical results are usually stated
in terms of the mean free path, A, To introduce this perameter we have to
assume that the gas is close to equilibrium and that the velocity gradients

are small, i.e., that in our case the Ni's are nearly equal.

The collision rate of all the molecules of cell 1, for instance, is
given by

.cs[a/f(nlna+uln +N n)+2ﬂ( K, +N K+ N n,,)

+ 2 Nl NB]

- (6/3+643+2)Tsna1037T 8N 2

=16~



Then the collision frequency per molecule, o, 1is

a-iﬂ—-10.37231«1-2531331!-1.3'631,

1

Now recall that
0-%(1+2/J§)Esn-.8823n

and therefore

o :
0--1-:3—0'.680-.68)‘-



H m Qe % o ol

mean thermal speed

distance between wvalls in Couette flow

distribution function

gain in £ due to collisions

Boltzmann H function

loss in f due to collisions

molecular weight

number of molecules per unit volume

number of mélecules per unit volume with velocity 'v’i
fraction of molecules per unit volume with velocity 'v’1
shear stress '

free molecule shear stress

E/f;, component of ¢ along coordinate axes

wutual collision cross section

effective collision cross section

time

x component of fluid velocity

difference in wall velocities

velocity slip

x component of molecular velocity



SYMBOLS (Cont'd.)

v Yy component of fluid velocity

v y camponent of molecular velocity

v molecular velocity

Ve relative molecular velocity

v z canpgnent of molecular velocity

xyz coordina\te axes

y y/a

o a6/2q )

] effective collision rste, % (1 + 2/J_3) T8 N= .68¢c/h

] collision rate of occupants of one velocivy cell, per unit
volume

A mean free path

" viscosity

p density, m N

¢ collision frequency per molecule , c/A

Superscripts

a refers to collision partners on same face of velocity cube, '
Figure 2 .

b refers to collision pertners on velocity cube diagonals,
Figure 2
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