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Abstract

Assumption of the uniform gravity field was justified by
computing crrors due to this assumption and establishing the
limits within which the simplified computations should be
performed. Vertical take-oif and ascent was analyzed for
different values of a constant propellant flow. The analysis
of the vertical descent and landing was extended to the cases
of a constant propellant flow and thrust, to the moduiated and
intermittent thrust. Typical numerical examples were computed
without embarkirg on a generalized optimization probiem, but
indicating the ways of minimizing the propeliant consumption.
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CHAPTER 1

Physical Conditions

1.1 The Moon is not an exactly spherical body. It has an
equatorial bulge pointing towards the Earth, hence its shape can
be approximated as an tri-~axial ellipsoid.

In the present report. however, the Moon is considered as
a spherical body of a radius R. There is no sea-level on the
Mooh and lunar ground level gravity acceleration corresponds to
the level of large maria, like Mare Imbrium. The slow axial
rotation of the Moon allows to neglect the centrifugal effect on
the gravity. The following data have been accepted for
computations:

Earth's true equatorial gravity ge' = 32.2284 ft/sec?

Earth's standard gravity measured

at A = 46° g, = 32.174 ft/sec?
The mass of the Moon My = 0.0123 M,
Lunar ground gravity acceleration go = 0.164 ge'

5.3 ft/sec2

Lunar ground gravity acceleration 9,

Lunar mean radius R = 1080 stat. miles 1740 km.

n

Sidereal period of axial rotation T 27.32166 days

Angular velocity of rotation w = 27 0.23 rad 2.66 x 10_6 rad
T day sec
Tow velocity at the equator wR = 2.88 x 10-3 miles _ 15.2 feet

sec. sec.



3
1.17 x 103 (miles)

Gravity constant gonz = kM =
sec

Square of ground circular velocity ch = goR = 1.084 E%E!

5500 ft/sec.

Lunar ground circular velocity V., = 1.041 mi/sec

7770 ft/sec.

Lunar ground escape velocity V . = 1.472 mi/sec



2.1

CHAPTER II

Errors Due To Uniform Field Assumption

Assumption of a uniform gravity field for the final phase of

the lunar landing or for the initial phase of the take-off, can

be justified if we establish the volume within which the error

due to

this o

ssumption is negligi

If

nur

we extcend the simplifying

assumptions beyond this volume a method should be provided to find

easily the corrections for computed values of range, velocity etc.

Let us examine first the variation

acceleration in the vertical direction.

value for

this acceleration,

what we

may not have the same value on the lunar

of the lunar gravity
As there is no sea-level

call a ground value 9

surface. In the present

paper these local divergencies are neglected and the ground level

of g

is assumed to be g, = 5.3 ft./sec

2

Assuming sphericity of

Ahe Moon and concentric density distribution we express the gravity

variation

n

Assume as

maximum relative error

with the altitude y over a hypothetical ground level.

R 2 y
9 | ¥ y 9o R
2
-0l + 2317 -
9| 1= 25 *7 R

a mean lunar radius R =

do

)

value g, up to the aititude y = 10.8 st.

(z)%(z)“a.
R 1.2.3.4 R

1080 stat. miles and find the

Ag in veplacing the variable g by a constant

miles = 57,000 ft.



2 3
- 3 5
é§=g° g:g! 1-:.(!)4-2(!)--(!) -
0, 0, R 2\ R R 2\ R
if we take I = ’
100
Ag 2 ( 3 2 5 \
—_= — |1 - - F — - + .. |
9, 100 | 2 x 102 104 2 x 10° |
=2 |1-0.015 + 0,002 - 0.0000025 +...| = -2« 0.9852 = 0.0197
100 100

hence the error is slightly less than 2 percent of the initial
value. By accepting this error we should investigate the time and

altitude errors due to this approximation.

2.2 Now let us consider the errors in horizontal motion (range
error).

In the uniform gravity field we assume also that a planet has
an infinite radius, and hence its surface is an infinite plane
passing through the point selected as an origin. The sphericity of
the planet produces the inclination of local vertical with respect
to OY at the origin. The range is measured along the plane tangent
to the surface at 0, and the curvature of the surface may increase
it as shown on Figure 1. The point P where a landing may
theoretically occur is actually at an altitude Ay above the ground
level. For any arbitrary horizontal distance x let us compute

the angular (Ay) and altitude (Ay) errors.



Figure 1



tan Ay = g

(R + a2 = B2 # %
or 2 éz + s%f = E;
neglecting the higher powers of ( gl ) we finally have

Ay _ x2

R 2R2

TABLE I

X 4 6 8 10 12 14 Stat.Mi.
g x 103 |1.85 |3.70 | 5.56 |7.41 |9.26 |11.11]12.97
Ay 0°06' | 0°13' | 0°19' | 0°25* | 0°32" | 0°38' | 0°45°
21 x 10%]1.71 |6.85 | 15.45 |27.45 [42.87 |61.72 | 84.11
Ay x 103|1.848 | 7.4 16.69 129.62 | 46.28 | 66.62 | 90.90 St.Mi.
Ay 9.8 39.1 | 88.1 [156.5 | 244 352 480 Ft.

From the Figure 2 an approximate extension of the range due to

sphericity can be estimated as

o« = 180° - o,

«r is the fall angle.

Ax = Ay cot «,

where
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Figure 2
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2.3 The errors in the estimation of time and velocity are computed
only for the case of a free vertical fall.

In a uniform gravity field

.

y=~-9, i

or d?y , dy
——::y—-:-gc.
dte dy

The integration yields

2 .42
ye -y
_0_-=-go(y-yo).

2
If the initial speed y, = O, and if y = O that is the fall

ends at ground level we obtain the impact velocity

Consider now a free fall in a variable gravity field, obeying

inverse square law.

dy R2
y — = - g, ———
dy (R + y)2
hence s .
¥2 - ¥42 2 1 1 2 Yo - Y
= gOR - = goR
2 R +y R + y, (R + y)(R + y,)

If y = O and io = 0, we obtain

=2 g R Yo
o R+yo

The difference between the vertical impact speed ;, of variable

field and that of the uniform one will be found from the equation
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2

R ] _ 2 907,

&2 - §v2 = (y - &v)(j +y,) = 2 gyY, { 1 -
R + Yo R + Yo

Hence the error due to simplified assumption is of the order

s s 2 goyo2
Ay =y -y, = — =
(R + vy [2 qy 1 + WV/ R ]
\ °V oo R‘FyoJ
Yo 2 Yo
Yo 2 9,7, _ R . 9oR R™
R yo 1
R+ y, 1 +° 1 + e 1 +
R+ y R 1+ gB
3/2
R
= 2 gR . -

By using serial expansion the error function can be given

the following form
- =1

' (Yo )3/2 ( Yo )- 1/2[ ( Yo ) 1/2J
Ay = 2g R | — 14+ — 1+ 1 + =
R R R
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For the Moon 2 goR =

= 7770 ft/sec.

The following table of impact velocity errors has been prepared

escape velocity from the ground level

assuming a free fall from the altitude y, with the initial zero

velocity.,

also been computed from the formula

yo/R
~/2gR e
v [
1 + yo/R

e
]

The correct values of impact vertical velocity have

and the relative error estimated ...

Ay 1

R A

¥y 2 R 0

TABLE II

Yo 2.7 5.4 8.1 10.8 | 16.2 | 21.6 St.Mi.
Yo 14280 | 25560 | 42800 | 57100 | 85500 | 114000 | Ft.
%2 .0025 | .0050 | .0075 | .0100 | .015 .02

y0

1+ — | 1.00125|1.00250(1.00374|1.00499(1.00747(1.00995

R
Ay -3
- 1.25 [2.51  [3.77 [|5.03 [7.56 10.1 x 10
Yv
Yy 386 548 670 774 945 1090 Ft/sec
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So the velocity error is usually less than one percent for

yo £ 100,000 ft. If slide rule is used the difference Ay should

be estimated from the formula and not from the difference y - iv.

In the latter case the subtraction of two almost equal numbers

greatly magnifies the error.

2.4 The time of free fall from the altitude y, in the uniform

gravity field is estimated from the formula

2y, 1 1
= 8/ Yo = —— Yo = 0.614 j/ Yo
g \ 2.65 1.628 V

in seconds if the initial zero vertical velocity is assumed, and

-
1]

if Yo is given in feet.
In the variable gravity field the time t, is estimated from

the Kepler's equation applied to a rectilinear ellipse, that is
with an eccentricity e approaching unity: e —1.0. An assumption
is made that in the vicinity of ground level the velocity is less
than its escape value, then t and E are measured from the apofocus

of an elliptic orbit

n(t, - to) = E + e sin E,

where
g, R2
2 _ 7o
N = ¢ and
ad
the semi-major axis a can be defined from the initial conditions
g R2
0
a = '
R 2
2 g,R -V

R + yo
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R +y
and as V, = 0, we obtain a = 5 2 , that is the perifocus
at the Moon's center.
o 8 goR2 2 R 2 g,
n® = i on= =
(R+yo)3 (R+y°‘ V. R+ y,

2 \/2 9,

\/R_(”’J)m

R

Substitution of numerical values yields

-3/2
_2 "\/ 10.60 (1 L Yo ) _
: R
‘\/ (1080 szeo)\
yo )‘"3/2 1

2.727 x 1073 x ( 1+ 22 1

=]
!

X

R sec
For e = 1 the ellipse is reduced to a straight line, the

eccentric anomaly E is computed from the Figure 4.

jwo

Perifocus a =R+ y, N Apofocus

lies

o }‘h____yo__,]

Figure 4

—Y



At the ground level

R+y R -y
ON®' = g =~ Yo = > 2 - Yo = 0 H

ON R ~ y,
a R + vy,

2
R -y 2 y.R
1 - cos® E = -\/[71 - ( °) = 0

2 \/ yq/R .
1+ yg/R

E = arc sin H
1+ yq/R.

Substitute into the Kepler's equation, taking ty = 0, and e = 1,

cos E =

sin E

ty =

Sl

2 y 3/2
E+ e sin E| = 3.667 x 10° x| 1 + El E + sin E

The error due to the uniform field assumption is given by

the difference.

yo |3/2
At = vy, -t = - 0.614 '\/;: 3.667 x 10% x ( 1+ == E + sin E

The results are given in the Table III.
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2.5 Having established the limits of errors due to the
assumption of.a uniform gravity field we may consider a cylindrical
box whose base is resting on the lunar surface. The initial point
of any trajectory lies on the vertical axis of symmetry of the
box; whose radius is 14 stat. miles = 74000 ft., its height = 22
stat. miles = 114000 ft. If the initial and end point of a
trajectory lie within this box the errors due to simplifying
assumptions are limited by the following values:

Ay < 0°45°

Ay < 480 feet (altitude of the impactfor horizontal range)

<1 x 1072

'<'I>
- e
A\

<2 x 1072

If a further sacrifice of accuracy is permitted by extending the
dimensions of the box, the following formulas enable us to

estimate the order of magnitude of the error.

Ay x2
R 2R2

Ax = (Ay) cot (180° - «f)

v 1 Yo 3/2 Yo 3/2

Ay = = R | 22 = .
y 5 2 9, 5 3885 ft/sec
. y

g: -l- _0 1 + {9.
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where

= 5, in feet and At in seconds

Figure 5



CHAPTER II1l

Powered Ascent

3.1 The total thrust of a rocket engine is given by the
expression
F=1u+ Ay P~ Pg (3-1)
where m is the mass flow of the propellant in slugs per sec
u the actual exhaust velocity in ft/sec measured
relative to the rocket at the exit

the exit area in ft2

>
i

the exit pressure in 1b/ft2.

-]
n

surrounding pressure

o
[~
1]

In the vacuum p, 0 and the thrust assumes a value

F

]

mu+ A, pg (3-2)
which can be replaced by

F=mugep,

where u s is the effective exhaust velocity found from the equation

_ e Ae Pe
Uegr = U ¥

(3-3)

m
In further development the index eff. will be dropped and u will

always mean an effective velocity. Hence F = mu.
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The expression for the specific thrust I of a rocket is

obtained from the equation:

F=musIw=mggl ; (3-4)
where?
F -= the total thrust of the rocket engine in pounds.
u -=- the effective exhaust velocity at the nozzle's
exit 1n ft/sec. The term m u includes the exit
pressure term,
m -- the mass flow of the propellant =
fuel + oxydizer in slugs/sec.
I -~ specific thrust in b _(Thrust) = sec.
lb/sec (propellant)
w -- the propellant consumption in 1b/sec.
hence .
w=1¥%=12% .1, (3-5)
m m e

ge == is a constant coefficient giving the ratio

between the specific thrust and exhaust velocity

(I = E—), it is not affected by varying gravity
Je

field.
9. is not the true gravity acceleration but is the standard NACA
gravity acceleration corresponding to that measured on the
surface of the Earth at approximately A = 46°N, hence it
corresponds to the conditions at which rocket fuel weight is

measured on the Earth. Its value = g, = 32.174 ft/sec?.
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3.2 Consider now the vertical ascent of a rocket in airless
conditions. The forces acting at every instant on the remaining

mass M of the rocket are those of the thrust and weight, hence

dv
M e =F =« M
dt g

In this problem a constant g = g, is assumed, provided the

altitude is below an imposed value, the exhaust effective speed

u is also assumed to be constant, hence:

dv .
M e = nm - M
at u dos
or
dav dM dM
" T E My o F
hence
dM

The integration yields:

M, M,
V - VO = u ln T - go t =1 ge Ln - go t (3-6)

If V, = 0, the equation assumes the form:

M
v=uldn 2 -4 t. (3-7)
M 4]

where 4n is the natural log, = 2.3026 log;5 , go has been
defined as the local ground gravity, M, is the initial mass of

the rocket at time t = 0, M is the terminal mass of the rocket

at time t = t. The ratio of masses can be replaced by the ratio



TR 63-2, Pg. 20

of weights whatever the gravity field is.

g w
=2 =0 (3-8)
g W

= '°=
=

Insofar no assumptions have been made as to the rate of the
propellant consumption, and so the equation (3-6) and (3-7) can be
applied to the cases of constant or variable fuel flow. Only
a constant u and consequently a constant I has been postulated.

If the rate of the fuel flow is constant and equal to

a fixed fraction of the initial mass, we write

m=K M,, and the mass M after t seconds since

the ignition becomes

M=M (1 - Kt), conversely W= W, (1 - Kt)

[+ 0

3.3 Assume now that the rocket ejects a constant mass
m= K Mo per second, where M, is the initial mass of the rocket,

Let M; be the mass of the empty rocket, hence M, = M; + fuel.

Show which conditions must be fulfilled:
a) that the rocket can rise at once after the ignition.
b) that it can rise at all.

If it can rise vertically at once find its maximum velocity

and maximum height, assuming a constant gravity acceleration g,.

A rocket can rise at once if its thrust is greater than the
initial weight

F > W,

or

K Mg u > My go



g g
Ku>gyorlIge? Eg y I ge = EB >0

It can rise after some time, if its thrust is at least greater

than its empty weight

KMy u> M g
Ku> =g .
Mg 0

Assuming K u > g,, we can compute the ascension from the moment

of ignition. From the previous sections, the vertical speed is

at any moment

M
0
V=Vs=-got+ou In " ;

If Vo= 0and M = Mg - K Mg t

then
V=n=-g,t-udn(1-Kt)

]

-got -1 g, Ln (1-Kt)

(3-9)
The acceleration at any time t of powered flight is
and the
second 2 2
av _ g + Ku derivative v + K- v
_—, _— =
dt ° 1 - Kt 8f dt2 (1 - Kt)2
The mathematical extremum of velocity is attained when
dv
5; = 0, the corresponding value of t is
) K Ku
= Kty = —
do

1 u
th = P this value corresponds, however,
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to a minimum value of V, as the second derivative of V shows: this

is apparently contradictory to the fact that g% is positive and

increasing with t.
The paradox is explained by taking notice that t, is
1 u 9o = K u

negative, because = = o= = < 0. So this minimum V lies
K g0 Kgg

in the past time before the ignition (and motion) started.

During the ascension, insofar K u > g, the velocity and

acceleration (in the vacuum) are both increasing until the
exhaustion of fuel, hence the maximum value of the velocity will

be attained at a certain time t;, when M, (1 - Kt;) = M;, therefore

My
1 - Kt = -
1 M;
and
1 M 1 W
n=ta-y ol My
K Mo K W,
Hence
9 1 Mo
Vmax = - (1 - -;) +uln —1 =
9o W) Wo
| -S4 (1 - ——) + I ln —
K wo ge wl (3-10)

The value of the acceleration at this moment also attains its

maximum value:

dv K M, u
(=) =-g + L

K W,
= - go+ —21 g, (3-11)
W



Hence
(dV/dt)l W,
ge W

Since this moment the positive term of the acceleration

vanishes and its value becomes

av _
dt 9
3.4 The computation of a trajectory consists of two parts:

powered flight and coasting. Assume the initial conditions
Yo = 0, Vo = 0.

In powered flight:

T ;i assuming that the

take off was at the ground level, i.e., y = 0O, we obtain the

altitude y at any time t after the ignition.

2
g,t t 1
y=s - 2 + u I In (—~—) dt,
2 0 1 -~ Kt
t t t -Kt
J'Ln(l—Kt)dt:t{n(l-Kt)]-J‘ dt =
[V} 0 1 = Kt
t 1
=t&n(1-Kt)-t+J‘ dt =
o 1= Kt
1 t
=t£n(1-Kt)-t—i£n(1-Kt)} =
0
=(t-l-lé)£n (1-Kt)~t=-t-(l;xt)ln(l-Kt);
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hence

t2 1
y = - E%__ su |- dn(1-Ke) 4 (3-12)

Let the altitude at burn-out be y,i the value of y, can be found

by setting
M
t=tl=l(1-_l) ’
K M,
M
= -1
1 - Kt1 i, H
hence

goty2 1 - Kt
y°=-01+u[t1+—E-_1£n(l-Ktl) =

2
9o | ! ( "1) 2 v Ml) M, ! M,
|~ .4 - - — + - - s ) e omce -
- g 1K 2 1 i P | 13)

Taking now the moment of burn-out inturn as t = 0, the velocity at

any time t after the burn-out is given by the expression

The maximum height is attained at the time ty, after the burn-out

v 1 M u M
to = 23X = _ - o(q -y 4 ooy 0 (3-14)
9o K Mo 9o My

The value of this height, beyond the burn—-out point is
2
v

AY2=
29
0

Substitute the value of Vmax'

1 M M 2
Ay, = e uLn_°_g(1.._1) (3-15)
2
24, M, K M,

the total maximum height will be: y, + A yjp.
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Hence 0
go | ! My u My
o w— - a  — ¥+ - - e—— -
Ymax =~ 3 | K " W, k-
Bt R
K Mo M
2 2 2
u M g M
+— (I 2 + 21 .0 - A -
29, M, 2 M,
St gt g B
Mo M)
2 2
M u M u M
= o (n =) 4 u (- =) oo dn 2,
29, M) K o K My
or,
2 2 2
I W I ] W
ymax = Se (‘tn 2) 4 ———ge 1 - _l - 4n __2] (3-16)
2 49, W, K W, W,
3.5 As an example the ascent equations have been applied to

the computation of the take—off from the ground level for a lunar
excursion module (LEM) of weight 4 tons. All weights in this
problem are measured at the standard conditions on Earth.

Assume I = 300 sec, burning time t, ~ = 40 sec, a

constant propellant flow W=c= 20 1b/sec;

w=1g, = (300)(32.174) = 9652 ft/sec.

. koS o1 1 W 00O W _ 7200
ence ® = W, ~ 700 sec® W, 7200 ' W, 8000

[<]



Bura-out conditions:

W
—n e +
WI gO tboOo

11
]
-3
it

- % -9
2 (1 wo) +1g, In

W
+ 1 go (2.306) log,, W?

- (40)(5,3) + (300)(32.174)(2.3026) loglo (1,111)

- 212 + (9650)(2.3026)(0.04571) = - 212 + 1017

805 ft/sec.

Altitude Yb.o attained at burn-out:

2
=_ 9ot 1 Yo
(5.3)(1000)
= - > + (9650) | 40 - (400 - 40) In 1.111

i

-~ 4240 + (9650) [ 40 - (360)(.1052)] =

- 4240 + (9650)(40 ~ 37.9) = - 4240 + 20260

16020 ft.

n

Maximum acceleration attained at burn-out

.y_=—g_°.+l(!21=

Je Je L]

w
(=)

00 W
-0.164 + o= 2

n
n

[
o
—

n

0.670

¥ = (0.670)(32.174) = 21.55 ft/sec?



The time of coasting to the maximum altitude

At = -D8X - ___ = 152 sec.
9, 5.3
total time of ascent t =t + At = 40 +# 152 = 192 sec.
max b.o

extra height beyond the b.o.

Vmax> _ (805)% 648025

A = = - = .
Y= 25 10.6 To.e ~ ©1100 ft

total y =y + Ay = 16020 + 61100 = 77120 ft.
max

b.o
This result is checked by using the equation (3-16) which now

assumes the form
2
6

- Yo
Ymax = (8.78) x 10" (In WI) +

w
+ (3.86) x 10° (1 M1 _ g, 2oy
W W,

_ (9650)2

2
= (.1052) + (9650)(400)(1 - 0.9-0.1052)
max 10.6

(9.312) x 10° x 1.1067

10.6 x 102

6 3

(9.65) x (4) x 10° x (5.2) x 10~

4

=9.72 x 104 - 2.06 x 10% = 76600 ft.

W
The same pattern is applied to other values of—w2 and
1

the results are presented in the Table IV. All computations have
been performed with slide rule accuracy, this explains the small

discrepancy in the values of Ymax*
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CHAPTER IV

Vertical Descent and Lgnding Constant Thrust

4.1 The problem is not a simple reversal of the take-off problem,
but presents some different aspects.

Assume that at a certain altitude y, the horizontal velocity

of the vehicle has been killed, but it still possesses a vertical
velocity y,. This velocity plus the velocity acquired in the free
fall from the altitude y, must be reduced to zero at the altitude
just above the ground.

A particular case is when y, = 0. It is shown in the next

Chapter that in order to minimize the propellant comsumption it
would be advisable to let the vehicle to drop freely for considerable
time, and then to apply one or few bursts of thrust. This, however,
implies a re-ignition of the engine and the safety considerations
require the avoiding of such procedure, as the failure of the
engine to ignite would be fatal, this consideration has precedence
over the fuel economy. Hence we examine first the descent under
continuous thrust, which may or may not be modulated.

Consider first the case of constant thrust and a constant

propellant flow W= K Wo. Initial conditions are y, and io =V,
Final conditions are: ygy = 0, y = 0. More properly yg is a small
altitude above the ground, at which the vehicle may hover, giving
to the pilot the opportunity to select another landing place if

necessary. At any time t since the beginning of the maneuver we

have

(1)
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First and second integrations yield

L] 1
y = Vv - g t + I g Ln ——— L] (2)
(1] [V} e 1 - Kt
2
go t [ 1 1 ]
= - + - - - +
y = Vot > I gef t (K t) 4n T
+ Yo 3

The substitution of final conditions into the equations (2) and
(3) yields two equations which theoretically can be solved to find

K and t, that is the rate of fuel consumption and the time of

descent.
Let 4n 2o = x ’
1 - Kt
Vo - got +I1 goX=0 , (4)
v g t2 + I (1 )
ot - G|t - (z- X[+
+ Yo = 0 (5)
Note that X > O
Vo - t
From (4) X = - 2 - 90! (6)
1 Je
Substitute into (5)
Vo t - 20 2 + + I , (s ) (V ) =
ot = T Yt lget g mgyt) =0
Solving (6) and (7) with respect to K (7
gotz
2 - (I g + Vglt =y,

o ~ %
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2
9 * + 1 t +
12 Ge Yo
K go t - Vo
g .t -V
K= — 2 = £(t) (8)
2
go t
+Iget+yo
and from (6)
g t -V
0 0
1 I
1 - Kt
9 t - Vo
1 I
k=:|1-e Oe = $(t). (9)

Plotting curves K = f(t) and K = $(t) their intersections yields
the values for t and K. The method is illustrated by considering

e vehicle descending from the altitudes y, = 5,000 ft, 10,000 ft,

20,000 and 40,000 ft, to the lunar surface. In all cases it has

been assumed V, = - 400 ft/sec and I = 300 sec. The curves for

the solution of equation (7) have been computed in Tables V,
VI, VII and VIII, and the results presented on the Graph A, where

the solutions have been obtained.
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The Tables V, VI, VII and VIII provide data for graphical
solutions of equations (4) and (5). For all altitudes one common
curve K = 9(t) is plotted, which does not depend on y,. Then for
any value of yo a curve K = f(t) shown by equation (8) is plotted.
The intersection of ¢(t) and f(t) yields the value of K and that
of t] -~ time of descent. Some obtained results have been checked

by substitution into the equations.

(1) t 134 i1l 98 sec.
-4 1
(3) Kt 0.109 0.0992 0.0921
(5) : 1.1223 1.1101 1.1014
1 - Kt
6) | log o — 0.04999 .04532 .04198
1 - Kt
(7) (2.3026)(6) 0.1151 0.1043 0.0967
(8) t 710 588 520
9o ft/sec
(| g, t =V, 1110 988 920 £1/sec
(9)
(10) — 0.1150 0.1024 0.954
I ge

This table served to check the graphical solutions by substitution

into the equation (6)written as

Ln 1 - gy t =V,
1 - Kt I ge

Line (§) yields the values for the ieft side and the line (10) for

the right side of this equation.
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Check of the equation (5), written as:

2
go t - l - Kt 1
.—-—2 - Yo = Vot =1 ge[ t - 7 in (1'—KT)

we obtain for the left side in the case y, = 10000 ft.

(5.3) (12321)
2

= 32630 - 10,000 + 44400 = 67030 ft;

- 10,000 + 400 x 111 =

and for the right side:

I S Tl L TS Y
fe T 7K R Y -

1 - 289 x 104 (0.1043) | =
8.93 ’ -

[i]
0
o
(4]
N

8.91 3
965 111 = == 10 0.104 =
2 7795 X ( 3)]

I

9652 (111 - 104.07) =

(9652) (6.93) = 68200 ft.
The agreement is fairly good for the slide rule accuracy. The
results of the computations are summarized in the following table

and graph, where t is the time of descent from the initial
Wo - W

altitude y, to y = 0, Kt = m
0

is the ratio of the propellant

consumed during the maneuver to the initial weight of the vehicle
at ¥y = yo- The magnitude of the initial and final accelerations

are computed from the equation



W

°
L = . 0.164 + KI —
Je LS}
where
Wp = Wy (1 -Kt),
[id
for t = 0, %— = - 0.164 + KI = initial acceleration in terms of the
e

Earth standard gravity ge. .
{1 o/_

For each landing case theYfuel consumption and the thrust
are constant. This implies that whatever is the fuel flow, the

specific thrust I remains constant. The ratio of thrust to the

®
F W
initial weight is -2 = ;— I = KI. The weight here is the standard
0 0

Earth weight of the vehicle.
The results obtained for descent from different altitudes are
summarized in the Table IX and presented graphically on the

Graph B.
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Note that the thrust F, is compared to the initial weight of

the vehicle at the Earth's standard gravity. If the lunar initial

weight is considered, then

Fo = Fo ?—E = (ig) !
(wo)e (wo)E 9 w, 0.164

We have investigated the cuse of a descent from different altitudes,
with the same initial vertical velocity. Consider now the case of

a vertical descent from the same altitude but with different

initial velocities V,. For an example the altitude yo = 10,000 ft

has been selected, and for V, the downward values 0, -400, -800,

-1000 ft/sec assumed. The equations (8) and (9) have been used for
plotting the curves K = f(t) and K = $(t); the coordinates for
these curves are computed in the Tables X, XI, XII and V, the
curves are plotted on Graphs C and D, yielding graphical solutions.

The results are summarized on the Table XIII; then K, Kt, and

final acceleration %- are plotted versus the initial velocity V,

e
on the Graph E, which shows that for each initial altitude there is

an initial V, yielding a minimum propellant consumption

- propellant weight
initial weight

Kt

In the considered example this minimum

occurs for y, = 10,000 ft, Vo = - 570 ft/sec.
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CHAPTER V

Intermittent and Modulated Thrust
5.1 Assume that the horizontal velocity of the vehicle has been

killed at the altitude y,. Its vertical velocity is § = Vo9 which

may be zero in particular cases. In the previous chapter a
vertical descent under a constant continuous thrust has been
considered, without the stalling and restarting the engine. Assume
now that the engine has been switched off, the vehicle in free fall

will reach the altitude

2
Jgo ¢t
Y1=yo+vot-§— ,

with a vertical velocity ;1 =V, =9, t. At this altitude the

engine will be again ignited, then the rate of the propellant flow
will be computed as it has been shown in the Chapter IV in order
to reach the ground with zero velocity.

Without embarking on a generalized optimization problem let
us compare two methods of descent from the point of view of

propellant economy. Consider a descent from the altitudes

Yo 20,000 ft and y, = 40,000 ft, assuming the initial vertical

Vo - 400 ft/sec for both cases. Assume that the ignition occurs
when the vehicle reaches the altitude y; = 10,000 ft. Graph on

Figure E enables us to find K and fuel consumption

Wo - W)
Wo

= Kt required to reach the ground.
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Powered descent from 20,000 ft: (as given in the Table IX)

Propellant consumption Kt 0.109 of the initial weight

Time of descent t 134 sec.

Maximum acceleration 112 ge

Drop from y, = 20,000 ft to y; =

10,000 ft., time of the fall is

computed from

the equation

g, t2
2
where
Ay = Yp = ¥o = - 10,000 ft.
Hence 2
go t -2V, t +2Ay=0;
V. + ‘N/ v.2 . 2¢g Ay
o - 0
t = At =
90
Considering only the value At > O, we obtain

At

- 400 +"\/ 4002 + 2 x 5.3 x 10,000

5.3

116.3 _
5.3

21.95 sec.

The velocity attained is

Vi

= - "\/ V02 - 29, Ay = - 516.3 ft/sec.



In the subsequent powered descent we obtain from the Graph E

based on Table XIII.

t = 81 sec. ’ t + At = 103 sec.
= -4 _1
Kt = 0.0935 K= 12.1 x 10 ——
sec

Max. accel. 0.24 g¢
Both methods are compared in the following table:
Table XIV

Descent from y = 20,000 ft., V = - 400 ft/sec.

I = 300 sec.
Constant Intermittent

Thrust Thrust
t Total 134 103 sec
time of
descent
é! = Kt 0.109 0.0935
Wo
/g .112 .24

-4 1
K 8.2 12.1 x 10 ——
sec

Hence the second method shows a not negligible fuel economy, with

an acceleration well below the Earth's gravity.

109 - 93'5 1605
fuel = =
economy 109 109

= 15.1 p.c.
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The similar computation applied to a powered descent from the

altitude 40,000 ft. yields:

At = 56.8 sec. V; = 691.4 ft/sec.

Table XV

Descent from y, = 40,000 ft., V, = - 400 ft/sec.
I = 300 sec.

Constant Intermittent
Thrust Thrust
t 168 56.8 + 50 = 106.8 sec.
é! = Kt .125 .096
Wo
Y/ ge .092 0.54
X 7.44 20.8 x 1074 L
sec

In this case the economy of propellant is even better, being

. - 009 . 9
Lﬁ = .2_ = 23.2 p.c.

.128 125

The max. acceleration is still only about half of the Earth's

gravity.

5.2 Modulated Thrust
In order to avoid the stalling of the engine and to obtain
some fuel economy in conditions similar to those with the

intermittent thrust, a modulated thrust can be used. Modulation



is obtained by varying the flow of propellant. This involves
extra difficulties, as this flow should be continuously
modulated. Besides we assume a constant specific thrust which
is the measure of conversion of the thermal energy released in
a chemical reaction into the Kinetic energy of the mass flow.
This conversion is optimum for a certain value of the mass
flow corresponding to a given size and shape of the nozzle and
combustion chamber. The value of I may drop if these conditions
are not fulfilled, hence an adjustable nozzle will be
required. This entails extra complexity of design, which should
be rather avoided.

So we have either to assume that I = const., or provide
the diagram of iis variation with the mass flow. 1In this
section we assume I = const = 300 sec., irrespectively of the
magnitude of ﬁ or of the size of the nozzle.

The variation of the thrust F is assumed to follow the law

[i]

il'ﬂ
o lo

= const; where W is the weight of the vehicle at a given

=IT

time t. Since the gravity acceleration is assumed to be

constant, the decrease of the weight is due only to the propellant
flow. Wy is the weight of the vehicle at the beginning of the
maneuver, that is at y = yo. Its value is the initial weight

of the vehicle measured on the lunar surface, (not on the Earth).

For a given altitude y, and vertical velocity V, we have to find

the time of descent t) , the modulation of K = g— as a function
°

of time and the ratio of the propellant consumed to the initial
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t
weight of the vehicle: %! = f ! Kdt. We start with the equation
° o
of motion
w .o
— y=F - W
Jdo y
or
oo F Fo
y*© (w - 1) 9, =(§; - ) g, = const. (5-1)
The first and second integrations yield
. Fo . Fo
Y = do (i; - l) t +yo= (i; - 1) go t + V, (5-2)
_|F go t2
y—(‘-'—-l) > +tV,tFy, (5-3)

At the ground level we ought to

y=0, y=20 and obtain
unknowns
t] and 59 .
L
From (5-2)
v
t = - :
F
0

have

two equations with the

2 2
Vo Vo -
- +yo_0
Fo . Fo
2| —=-1]¢ - -1
hence
Fo . Ve ). Fo oy oV
Yo 2y, 9, Yo 2 Y 9
and
'}
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°
W
The rate K = W of the fuel flow can be found from the equation
0

tow
W= Wy = f - dt , K is variable in this case
() )
’ aw
F=1IN22 ; but W= - —
9 dt
so0
ge dW .
F=-1«x— { divide both sides by W.
go dt
F _ Fo _ I Je dw
oW, g, dt W
EE . _%o 1 Fo dt
geI w0

for any given time t which elapsed since the beginning of the

maneuver we have

1F
and ?_0 1 w-o t
N =W, e “¢ °

The amount of the propellant consumed since t = O till t =t

is go Fo t
!E:wo-w=1_egewol
Wo Wo
and
90 F° t
1 dw _ e w; I

PRUERpRT A
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As an example we compute the descent from Yo = 40,000 ft,
Vo = - 400 ft/sec)for I = 300 sec and compare the results with

those for constant and intermittent thrust.,

2y, 2x4x 104

ty, = = = = 200 sec.
! Vo 4 x 102
4
F V,2 4x4x10
_2 = —o——.— + 1 =1 4+ =
Wo 217,49, 2 x 4x 10%x 5.3

4
—t 1 = 1,377
10.6

The final value of the variabie thrust

9o Fo t;
oM Fp M _Fp "8 HT
Wo 1 Y 0 L Wo
F, 1 1 - 1
90 0 C = (0.164)(1.37T)( — ) = 7.53 x 10~ L.,
300 sec
ge Wo I

for t; = 200 sec, we have

- 7.53x 1074 x 2 x 102 _ - 1.506 x 10~ _
e = @ =

= ¢ 0:1506  _ 4 8602

Hence

e i & st < e

F
;l = (1.377)(.8602) = 1.184

o

—
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Propellant consumed in the descent

W w -0.
YF .y . em0-1506 _ ) | 0.8602 = .1398; 20 = ¢~0-1506 _ , 10s
L %
. ; - Fo 9o
Acceleration is constant in this case: = = = 0,164 + == == I:=
9e Wo Ge
= - 0.164 + 0.226 = 0,062.
TABLE XVI
K= 7.53 x 10-4 x e=7.53 x 1074 ¢
t 0 50 100 150 200 sec
7.53 t x 1074 ] 0 0.03765| 0.0753| o0.1130| o0.1506
-4
e=7.53 x 107°Y 0.9630 | .9275| .8932| .8602
W
K = 7.53 | 7.25 6.99 6.73 6.48 x 1074 L
Wo sec

the descent from y = 40,000 ft.
thrust I =
conditions in the nozzle and combustion chamber.

is not constant, its variable values provided by the engine data

The table provides the programming of the fuel flow during

300 sec.

remains constant in spite of the varying

If, however, I

must be introduced in the expressions for thrust and rate of

propellant flow.

The results of the present investigation can be summarized

in the following table.

It is valid only if the specific

et i
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Hence a modulated thrust did not produce an expected reduction

in propellant consumption, because the lower rate of fuel flow
was offset by the length of the descent time. Besides,this case
would require a continually adjustable nozzle in order to maintain
a constant specific thrust. This would entail extra complexity

of the design and a decrease in reliability. So, at least for

the given initial conditions, the choice would be rather between

the cases A and B.



