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I. ABSTRACT

I A time-varying random linear system model is hypothesized for

the communication medium. The fundamental parameters and analysis

Iitechniques for the linear system are described, and applied in a multiple

alternative communication mode with Rayleigh fading. A comparison of

several receiver types is then effected. Finally some measurement

limitations and shortcomings are indicated.
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1. Introduction

The detection and correct identification of weak signals in the presence

of strong noise backgrounds, intentional and otherwise, is an important pro-

blem in many fields. In particular, it has held the rapt attention of communica-

tions engineers for some time now. Many important situations and problems

have been analyzed and solved, and used as guides for dealing with other more

complicated, but similar, cases, and much of this wealth of information and

analysis can be applied to the problems of underwater detection, classification,

and communication.

In order to determine the applicability of existing techniques and

solutions to improvement of ASW system performance, as well as to assess

the needs for new theory and techniques, it is of first importance to know

f whether it is valid to consider that source, medium (channel), and receiver

can be distinguished and separately characterized in a one-way system, as it

can in the usual communications application. This separation is desired in

such a way that the receiver output due to an arbitrary source signal can be

predicted from knowledge of its output due to a previously applied source signal

of different characteristics. In other words, can a model of the system be

derived which will permit source and channel to be independently varied in

analysis, or are the two so inextricably tied together, that results for one

signal and set of environmental conditions are useless for predicting results

for other signals and other channel conditions? We doubt that the latter situation

is the one given to us by nature; in fact, this is our basic working assumption in

the following.

Even when separability is possible, there are still substantial questions

to be answered concerning the channel; e. g., whether it is stationary, deter-

ministic, etc; what is the detailed structure and effect on transmitted signals;

[
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and last, but far from least, what measurements should be made in order to

answer these questions? In the following we shall discuss a general linear

model which seems suitable for a first try at characterizing the channel and

answering these questions. There are several reasons for choosing a linear

model of the channel. First, and perhaps most important, the actual medium

is believed to behave linearly for limited excitations. Second, the analysis of

a linear model, although not simple, is fairly tractable for certain quantities

of interest. And last, optimization of the performance of the linear model is

often possible; this is not always so for other models which include nonlinearities.

[• The importance of the last reason can not be overstressed, for it often provides

methods and suggests guidelines to be considered in the physical application to

I improve performance.

In this report we shall present some of the fundamental techniques

available for studying and analyzing random time-varying linear systems with

both qualitative and quantitative results, and also indicate some important

limitations on measurements. It is felt that this work will furnish an adequate

"I background with which to delve deeper into additional topics of particular

interest.
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2. Linear Model; Generalities

I One important theme running through virtually all current communica-

tion work is the recognition and acceptance of the transmission medium as being

a linear system, although perhaps random and time-varying. Since the trans-

mission medium has been space itself, it is easily observed and measured, and

tested for specific applications. Even when communication is over long ranges,

through ionospheric disturbances, or via moving reflectors, the linear model

of the transmission medium is an excellent one.

j. Furthermore, the degree of randomness of the linear medium is usually

relatively small in comparison with the deterministic component. That is, in

j most cases of interest, the impulse response of the medium h(t),(taken time

invariant for the moment), expressed as a sum of a deterministic and a random

j part,

h(t) = d(t) + r(t),

I has negligible energy in the random part compared with that in the deterministic

I part. Mathematically this is expressed by

I •rt dt << Sd2(t) dt,*

with probability near unity. Even in those cases where the impulse response

varies with time, as for a moving transmitter or receiver, or for communica-

tion through the ionosphere, the deterministic part of the impulse response

(that part which can be predicted from recent measurements) dominates the

random part.

Integrals without limits are taken over the range of non-zero integrand.
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The communications engineer makes great use of the deterministic

components of both radiated signal and medium impulse response by utilizing

matched filters (time varying in some cases) at the receiver. These filters

add the signal portion of the received waveform in direct proportion to the

processing time, while building up the noise only as the square root of the

processing time. Hence, for long processing times, the output signal-to-noise

ratio of the matched filter can be made quite large, provided that the receiving

filter can be kept matched all this time. Mathematically, if s(t) is the received

signal in the absence of additive noise (known quite accurately to the receiver),

and n(t) is the additive (white) noise from other sources, such as receiver

i noise, environmental noise, or jamming, the output of the optimum receiver is

r(T) = a 8(t) [s(t) + n(t)] dt,

T

where T is the processing time or duration of the signal. This quantity has

a mean value of E, and a variance NdE, giving a (power) signal-to-noise

ratio of

E S
"E= ZTW S
WdN

E is the received signal energy, Nd is the double-sided spectrum level of

the noise, W is the bandwidth of the signal-, S is the average received signal

power over T, and N is the average received noise power in the band W. The

possibilities of improved performance are well evident from this formula; a

large TW product signal can combat noise very well.

i -4-



The situation for underwater transmissions is nowhere near as

amenable. The validity and utility of the linear model of the transmission

medium has apparently not been verified to any high degree of certainty.

And the percentage of useful deterministic component (much less than the

corresponding figure for space communication), may even be less than the

percentage of random component.

To further complicate the situation, the radiated "signal" does not

maintain a high degree of consistency from trial to trial, whether the source

j be friend or foe. Even for a friendly submarine repeating a run at the same

range, speed, bearing, etc., the movement of water over the transducers

j and hull, and the vibrations of the auxiliary machinery and the submarine

itself, add substantial random effects to the intentionally radiated communica-

[. tion signal. The percentage of total radiated signal which is deterministic is

apparently not known with any great degree of accuracy.

In order to be able to combat the underwater environment, and

corroborate or disprove the linear model of the medium, some quantitative

measurements should be undertaken. The guide as to which measurements

may be furnished by considering the model of the complete communication

system given in Figure I below. This model is felt to be a fairly reasonable

characterization of the actual situation. s(t) is that portion of the transmitted
s (t) + a (t) i h(,r,t) = d(,r,t) + r(,r,t) [ y(t) _ , W(t)

Trans- I Linear Time- Additive Received
mitted I Varying Filter Noise Waveform
Waveform I

I4 •Medium

Figure 1. Model of the Communication System
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waveform which is identical from trial to trial, under precisely the same

environmental conditions, and is called the transmitted signal. a(t) is the

random component of the transmitted waveform and is unpredictable.

The medium is characterized by a linear time varying filter with

impulse response h(7', t). That is, h('r, t) is the response (with external noise

n(t) = 0) at time t due to an impulse excitation time r ago. The response is

measured at the receiving point of interest. (If the medium is time invariant,

h(7', t) = h(-'). ) d(7', t) represents the deterministic portion of the impulse

response (predictable from recent past measurements) and r(7', t) the random

component. The output y(t) of the filter (in the absence of external noise)

for an input x(t) is given by

y(t) f x(t-T) h(T, t) dT

i = 5 x(t-r) d(T, t) dT + 5 x(t-r) r(7, t)dT,

and is composed, likewise, of a deterministic and a random part (if x(t) is

known). Notice that the random component, S x(t-'r) r(T, t) dT, consists of a

linear operation on the input waveform x(t), and represents therefore not

merely an additive noise component, but more like an averaged multiplicative

noise effect on the input x(t). If x(t) were zero, this random term disappears---

quite different from the case where an additive noise effect is still present when

the signal is absent.

This portion of the waveform is not useless. Random signals for
communication and detection have recently attracted the attention of several
investigators [ 1], [2] and have possibilities. In fact, this is the only wave-
form on which detection and classification can be attempted when the submarine
is not transmitting a known communication signal, as for example, while
hovering. However, for the present, in order to retain simplicity, we shall
attempt to analyze only the non-random component s(t), and save the generali-
zations for the future.
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Since the ocean is not aM all-pass linear-phase network, the received

signal for a single path will not be an impulse at the appropriate delay even

if the excitation were an impulse. Rather it will be a smeared out pulse

centered at the appropriate range delay. For example, if the (time invariant)

linear filter has a frequency domain representation approximated by

- af -i2wbf f > O,
H(f) = e",fŽ0

the impulse response would be approximately

2a

a2 + (2w)2 (t-b)

which is peaked at b, with a width of a/w at the half amplitude points. (The

bandwidth of the filter is 21n 2/a at the half amplitude points. )

Depending on the particular geometry, range, water temperature, etc.,

there may be one or more major contributions to the medium impulse response.

Thus, for a situation where there is one bottom bounce, the impulse response

on one trial may appear as in Figure 2.

direct path bottom bounce

Figure 2. Possible Impulse Response

And if 1he difference in any two paths is small enough, their pulse outputs will

overlap. But there is still no need for an excitation which is narrower than

the inverse bandwidth of the medium, because the two pulse outputs can never

be resolved any finer than this quantity in any event.

*Extremely short duration excitations are not necessary to measure the

impulse response; rather, any excitation with an effective duration less than
approximately a/w in the example above is acceptable for measuring the
impulse response.
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An equivalent way of characterizing the medium, if linear, is to

measure the amplitude and phase characteristics in response to pure single

tone excitations. The function givingthis information is called the instantaneous

transfer function and is defined by

H(q,t) = h('r,t) exp (-i2w7')

= D(T1 , t) + R(n, t)

and contains both deterministic and random components. If a sinewave

A sin 2rf1it

ii is transmitted, the received waveform (without noise) would be approximately

A I D(fl, t) sin [Znf t +/D(f ,t)],

provided D(f 1 , t) changes very slowly over times approximately 1/f 1 seconds

ji in duration.

The final response of the system is given byF
w(t) = [s(t- r) + a(t-'r)] [d(,, t) + r(', t) ] d7- + n(t)

= S s(t-r) d(r, t) dT

+ 5 s(t-r) r(', t) dr

+ a(t-,r) d(7, t) dT

+ a(t-ir) r(r, t) dr + n(t)

i w1 (t) + wz(t) + w 3 (t) + w4 (t).

With noise present, this expression represents the mean of the
received waveform.
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The first component of the response, w (t), the (desired) well be-
I haved deterministic component of the received waveform, -and is the one upon

Component w2 (t) is a multiplicative noise term resulting from the

passage of a deterministic signal through a random filter. Component w3(t)

is deterministically filtered random noise. These two noise components may

be used in some cases to improve performance above that of w1 (t) alone.

Whether or not this will be fruitful depends on the relative magnitudes,

compared with the first component.

Component w4 (t) is noise which is useless and should be suppressed

jas much as possible. Whether or not this goal can be adequately reached again

depends on the relative magnitudes involved.

I It is impossible to measure separately any of the components { wk(t)}

or their averages. Rather, they come in an inseparable bundle, and statements

about each type can be obtained only through measurements of s, a, d and r.

Once these measurements have been made, however, we can obtain many

statistical quantities of interest in terms of them. For example,

w k(t) = 0, k = 2, 3, 4.

2w(t) = 55 s(t-T•) s(t-7 2 ) r(Ti' t) r(T 2 t) dT dT 2

If r(t) is stationary such that

r(7"I, t) r(" 2 , t) = R(t-r'I) R(t-T 2 ),

we have

(t2 M [ a(t) R (t) dt] I

= [G(f) S*(f) df] 2- 9.



where S(f) and G(f) are the Fourier transforms of s(t) and R(t) respectively.

Also

3wt 2 a(t-r 1 ) aft-T)2 d( . (,trd ,t) d71l d7-,

If a(t) is stationary,

a(t_-rI) a(t-T2 ) = A("l- 2),

11 and
Wa3 (t) = 2 

A(T - 2 ) d(T'lVt) d(T2 8 t) dTI dT2IT
= j (f) ID(f,t)12 df

where ct (f) is the Fourier transform of A(t).

Lastly, using the independence of the three noise terms r(T, t), a(t),

and n(t), we have

w2(t) S= S at(t '2 ) r(T7t) r(Ir2,t) a0 dr d + n2 (t)

S-T
A ( -1 T '2 ) R (t-T"1 ) R (t-T "2) dT 1ld7,"2 + n 2

= (f I IG(f)12 df +n 2

in the case of stationary statistics.
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Combining all the results above, we have

W(t) * s(t-'r) d(O, t) d"

a 2 [w(t)J = G(f) S*(f) df] + Sal) ID(f, t) I df

+ 3 a(f) IG(f)I df +n2

from which the receiver input signal-to-noise ratio can be determined. The

major contributions to the receiver input noise can be readily evaluated from

this equation. The areas of investigation and possible improvement are then

more easily ascertained. Other moments of interest can also be derived,

provided the higher order correlation functions of the random components

are known.

The statistics described above are function of time in general, due

to the non-stationary character of the random fluctuations. However, it is

possible to perform time averages on these statistics and relate their long

term averages. Depending on the duration of the tests, this procedure, a

quasi-stationary one, may be the only alternative open for computation.

A more complete statistical description of w(t) is afforded by its

p. d. f. Is and not just its moments. However, the relation of the p. d. f. 1 '

of w(t) to those of a, d, etc. is extremely difficult except in special cases.

One of those special cases is when the random component r(T, t) of h(T, t) is

negligible in comparison with the deterministic component d(,r, t). Then, if

no signal is transmitted

w(t) = " a(t-Tr) d(-r, t) d7" + n(t)

Ii
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where we recall that a(t) is the random emission of the submarine. If

I furthermore, d(O, t) arises due to just two paths, such as

I d(O', t) - P1 6( 1"-I) + P2 6(2Or-).

where PI, P 2 0 As A 2 may be varying slowly with time, then

I w(t) = P1 a(t-A l + P 2 a(t-A2 ) + n(t).

j The first order p. d. f. of w(t) is then given by

Sp(wt) = 0 S Pa(XIS t-A1 ; x2 , t-A2 ) pn(w'PlXl " P2xZ2 t) dxldx2

where the second-order p. d. f. of a and the first order p. d. f. of n are

1 necessary. Therefore if the first order p. d. f's of w and n and the second

order p. d. f. of a are measured, they may be substituted above and checked.

For second order statistics, or higher, of w, the analytical approach is

fraught with integrals of still higher order p. d. f. 's of a and n. Furthermore,

if d(T, t) does not contain just impulses, the problem is almost completely

intractable except in very special cases.

In the above, we have tried to briefly indicate some of the statistical

quantities of interest and importance, and how they may be interrelated.

In the following sections, we shall delve much deeper into particular aspects

of the communication model and obtain quantitative results.

-12-

I.



3. Fundamental Parameters of a Time Varying Linear System

In section 2 we defined the filter impulse response of a general time-

varying (random) linear system as h(-r, t), the response of the system at time

t to a unit impulse applied r ago. Also, the instantaneous transfer function

of the system was defined as

H(,i, t) = h, hirt) exp (-i2wnr) di-

j and was indicated to measure the response of a system to pure tone excitations.

It will prove convenient to define two more equivalent system functions

(characterizations) for later use. They are the conditioned spreading function

of the filter

A A(r, f) S h(7r, t) exp (-iZift) dt

and the bi-frequency function

o (ff) = H(j, t) exp (-2rt)dt

= S A(T, f) exp (-i2w¶nr) dT

= $5 h(T, t) exp [-iZw(Tj r + ft) ] dr dt.

Suppose h(T, t) is substantially confined within'a rectangle L by D

in the T, t plane; that is, h(T, t) is approximately zero outside the rectangle.

L is called the "memory time" or delay spread" of the filter, while D is the

"duration" or "existence time" of the filter. For an RC filter, for example,

D = a and L Z 3RC.

-13-



Since H(•, t) is the Fourier transform on r of h(', t), H(,I, t) is

confined to a strip of width D on the t-axis, just as h(,r, t) is. Furthermore,

for t in this strip, suppose H(i, t) is substantially confined within a band of

width F in q. F is called the "bandwidth" of the filter. Then H(71, t) is

significantly non-zero only within a rectangle F by D in the ?1, t plane. For

the RC filter mentioned above, F Z 3/RC.

Also, since A(7', f) is the Fourier transform in t of h(T, t), A(T, f)

is confined to a strip of width L on the r-axis, just as h(Q', t) is. Further-

more, for -r in this strip, suppose A(T', f) is substantially confined within a

band of width B in f. B is called the "frequency spread" of the filter. Then

A(,r, f) is significantly non-zero only within a rectangle L by B in the r, f plane.

Again for the RC filter, B = 0 (no spreading).

Lastly, since ý+ (Ti, f) is the Fourier transform in t of H(tI, t), and

the Fourier transform in -r of A(7', f), % (i, f) is confined within a rectangle

FbyB in the n,f plane.

The four diagrams in Figure 3 depict "slices" of the functions in

the various domains. A fundamental property of Fourier transforms has

been used extensively here; namely if

G(y) = S g(x) e-i2 xy dx

and g(x) has extent X on the x-axis, then G(y) can change significantly in a
1

distance no smaller than . on the y-axis, provided g does not have large

alternating values; i. e., we do not consider "superdirectivity".

A couple of comments should be made about Figure 3. If the filter

is physically realizable, h(T, t) = 0 for r < 0, and the rectangle will not

extend to the left of the t-axis. Also, for a time invariant network (and many

others), D = co; for this case, the wiggles in f of A(7', f) and *(ti, f) occur

infinitely fast. Figure 3 is drawn for the most general case.
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By way of illustration of the parameters defined above, consider that

a sine wave of frequency qo is fed into the filter described by Figure 3.

From 3(a), the output would be significantly non-zero only for approximately

the D seconds indicated on the t-scale (D + L seconds, more accurately. )

From 3(b), there would be no output at any time unless q lies in the pass

band F of the filter. And even when v lies in this region, the amplitude of

the output sine wave is scaled by the factor IH(- , to4 and therefore varies

with the input frequency 'o" And from 3(c), the spectrum of the output

signal would not be an impulse, as for the input, but rather, spread out on

I the f-scale over a range B wide.

To summarize,

D = existence time

j L = delay spread

F = bandwidth

f. B = frequency spread

I
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II
4. Narrow-Band Linear Systems

In Section 3, general definitions of linear system characterizations

were given. However, these characterizations are not convenient for using in

situations where the systems are narrow-band, i. e., pass only a small band of

frequencies about some high center frequency. (In terms of Figure 3(b) or 3(d),

this means the rectangle would be displaced far to the right on the T1- scale.)

Such a situation can arise naturally when a narrow band excitation passes through

a broad-band medium, for reception would then reasonably consist of filtering

out only that portion of the spectrum where the signal is expected to lie. Alter-

nately, a piece of reception equipment may be inherently narrow-band and able

only to accept a restricted region of input signal spectrum, even though the

input is broad-band. In this section, therefore, we specialize the results of

Section 3 to narrow-band systems, and indicate some of the more usual types.

This material is used extensively in Section 5 for deriving performance in the

presence of noise.

We had*

H(f, t) = h(V, t) exp(-i2 -•r') dT

as the instantaneous transfer function of a linear system. For an input i(t),

the output r(t) may be obtained as

r(t) = h(, t) i(t - r) dr

SS H(f, t) 1(f) exp(iZwft) df

where I(f) is the voltage density spectrum (Fourier transform) of the input. The

latter expression in the frequency domain is a neat generalization of the usual

time-invariant result.

*We use the more conventional symbol f in this section, rather than 71, because

there is no chance of confusion as there was in Section 3, where a bi-frequency
function was defined. f is only a labeling index, and is not a fundamental parameter.
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Since h(T, t) and i(t) are real, we can easily show that

r(t) w Re H(f, t) I(f) exp(iZrft) d310
(We drop all irrelevant scale factors in order to facilitate computations. Our

result will be proportional to the actual output, and will be sufficient.) Defining

*(f) = I(f) (I + sgn(f)]
H M(, t) = H(f, t) [ I + sgn(f)I

+

wf r(t) = RefS H+(f, t) *(f) exp(iZwft) df (1)

Now for a narrow-band system, H+(f. t) will be significantly non-zero only near

one frequency fh (for all t), and we express it as

H+(f, t)= HLF( - fh' t)

where HLF(f, t) has a filter characteristic centered about zero frequency--a low-

pass filter. Then letting*

TM(f)= Z(f -

we findwe fin r(t) = Re {exp(i2f.fht) H LF(f, t) Z(f) exp(i2rft) df}

= Re { exp(iZrfht)5 hLF (r, t) z(t - 7) dr}

where

hLF(r, t) = 5 HLF(f, t) exp(i2 WfT) df

The "center frequency" of *(f) need not be fh" Thus Z(f) need not be

centered at zero frequency. In fact, Z(f) = TLF (f - f + f h), where f is the

input signal center frequency.
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and

z(t) = Z(f) exp(i2ift) df

a 4(t) exp[12w(f - fh)t]

where 0(t) is the "complex low frequency envelope"* of the input (Fourier

transform of %LF(f)). Therefore the complex low frequency envelope of the

response r(t) is proportional to

E(t) = hLF(Tr, t) z(t - r) dT. (2)

h (LF(7, t) is the complex low frequency impulse response. A block diagram

relating the complex envelopes is shown in Figure 4.

Linearj Time- Varying
Z(t) j ~hhLF(I, t)I E(t),

Figure 4. Equivalent Complex Envelope SystemI
Summarizing, we have

r(t) = Re {E(t) exp(i2wf.ht)}

E(t) = h LF(', t) z(t - 7) dT

z(t) = 4 (t) exp[ i2r(fs - fh) t]

i(t) = Re {f (t) exp(i2wfst)} (3)

The only quantity not completely tied down here is hLF(Tr t). We now proceed

to relate hLF to h: let i(t) = 6(t - t ); then, using (1),

r(t) = h(t - too t)

=Re (S H+(fi t) expfi2wf(t - t)] df}

See [2], Ch. 2. -19-
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. Re HLF(f - f.h, t) exp[ i2wf(t - to)] df}

a Re (exp[12wh(tt-to) S HLF(TI, t) exp[i2w•l(t-t 0 )] dv }

= Re {exp[t2wfh(t-to)] h LF(t-to, t)}

Letting t - t = a" (to eliminate t ), we obtain finally0 0

h(', t) = Re {hLF(-r, t) exp(i2wh'r)} (4)

(which checks with intuition). This relation allows us to obtain hLF easily from

h. (It is interesting to note that we cannot derive (4) directly from (2) because

f = a for the impulse, and we get an uninterpretable result.)

Special Cases

In (2), hLF(Tr t) is a complex function, and furthermore, can be random

or deterministic. For example if

h LF(7, t) = G(t) 6(,r)

where G(t) is a complex random process, then

HLF (f, t) = G(t)

which is independent of f! This describes a frequency non-selective medium with

random gain G(t). The complex envelope of the received signal is, from (2),

E(t) = G(t) z(t).

The block diagram of this system (a special case of Figure 4) is depicted in

Figure 5.

G(t)

Figure 5. Frequency Non-Selective System
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From (4),

h(7, t) = 6(,r) Re {G(t))

and the impulse response of the system is merely a time varying impulse with

no delay--a variable gain system. For a time-invariant system, G(t) = 4, and

the usual simpler results follow.

An alternate form of (2) is given by

E(t) = S HLF(f, t) Z(f) exp(i2wft) df

Now if, for all t, HLF(f, t) is roughly independent of f in the range where Z(f)

is non-zero, then

E(t) 2' HLF(fs - fh' t) z(t)

and we have frequency non- selective fading. Thus we obtain the reasonable

result that HLF(f, t) need not be independent of f for all f, but only over the

signal bandwidth, in order to realize frequency non-selective fading.

As a second example, suppose

h LF (r, t) = G(t) a(T).

Then

HLF(f, t) = G(t) 614f)

where Q(f) is the Fourier transform of a(•). This is a frequency selective

(random) system. There follows that the complex output envelope is given by

E(t) = G(t) $ a(T) z(t - T) dT

= G(t) 12(f) Z(f) exp(i2irft) df

The block diagram of Figure 6 depicts this system, in terms of the complex

envelopes.
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Linear G(t)

Time-Invariant E t

Figure 6. Frequency Selective System

The input signal passes through a filter of characteristic O(f) (which may be

random) followed by a "gain control" G(t). For G(t)rl, we hae the time-dispersive

medium. For more general G(t), we have a time- and frequency-dispersive

medium (L, B > 0). If a(T') is not random, an important statistical quantity of

hLF (r, t) is the correlation function of the medium fading G(t):

G(t 1 ) G*(t 2) = ý(tI - t2)

for stationary fading.

I
As a last example, consider

J hLF(,t) = 1 Gk(t) ak('T)

k

for which

HLFf, t)" 0 Gk(t) -k(f)

k

and

E(t) G Gk(t) S ak (f) Z(f) exp(iZirft) df

k

which is a parallel combination of the building block depicted in Figure 6. For

ak(7-) = 6(,r - 7-k),

E(t) ZI Gk(t) z(t - Tk)

k

which is the multipath spreading model often met in practice.

It is thus seen that Figure 4 depicts a very general situation for narrow-

band communication; we shall analyze a special case of it in the next section.
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5. Analysis of a Fading Medium

d r In this section, results of an early study of the performance of several

Sdifferent receiving structures are summarized. The pertinent derivations are

presented in Appendices A, B, and C.

The model to be studied is still the one depicted in Figure 1 of Section 2.

However, several specializations have been made. First, there is no random

component in the transmitted waveform: a(t) = 0. Furthermore, s(t) should more

properly be replaced by sk(t) where 1 < k < M; that is, the transmitted signal is

one of M (equi-probable) alternatives. Second, h(T, t) will be of the form des-

cribed in Section 4, i. e., narrow-band. Specifically, the first special case

described there, Figure 5, will be utilized, and G(t) will be assumed to be a

complex Gaussian process. * Thus the fading is assumed to be Rayleigh distri-

buted and non-frequency selective. Third, the additive noise n(t) is assumed to

be white Gaussian. These restrictions have been introduced mainly to simplify

the analysis; however, they do represent a very reasonable state of affairs.

The three receiving systems to be compared here are the M-ary

Weighted Radiometer, ** the so-called M-M-ary System, and the M-ary Linear

Filtering System. The first system is the optimum system (from the standpoint

of minimizing bit error probability using an M-ary alphabet) when the signal

energy-to-noise power density ratio is small over a coherence interval, i. e.,

ST
when a << 1. T" is the length of time over which it is possible to reasonablyN o

0
predict the amplitude and phase of the medium output given the input. In terms

of the correlation function of the medium fading introduced in Section 4, we define

T , the coherence interval, such that0

*[3]
**[1

(4]
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The M-M-ary method of reception is related to the Weighted Radiometer,

and produces only slightly higher bit error probabilities. The third technique con-

sists of the optimum system for use in a non-fading channel, and has been included

in this early investigation to illustrate the fact that it is extremely hazardous to

presume that a system optimized for combatting one type of disturbance in the

transmission medium will provide near-optimum, or even good performance,

against another type of disturbance.

It has been demonstrated* for a non-fading medium that as M-- so, for

jboth phase-coherent and phase-incoherent receivers, the probability of error

P --- +0 if the source information rate H is less than the capacity C of thee go

infinite bandwidth medium:

C limr W Ig 1 + a lg e -- ' bits/sec.GoW--+w No

where N is the single-sided noise power density level, and S is the averageIo a

signal power. Since such systems are theoretically almost 100 9o efficient in

j the usage of the channel, at least in the non-fading environment, their wide-

spread usage for other environments is suggested. However, some method of

combatting or tolerating fading, fast or slow, must be incorporated, for present

designs perform miserably in the presence of fading, as will be shortly demon-

strated.

Basically, it is anticipated that M-ary systems designed for fading

should be near optimum in channel usage. This feeling is based on the fact

that adequate communication through a fading channel is possible only if some

averaging of instantaneous medium fluctuations is effected, thereby deriving

(3, 5, 6, 7]
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the benefits of the average medium characteristics. M-ary signals, by their

very nature, tend to occupy sizeable portions of the time axis, and experience

multiple fades during transmission of a single message of Ig M bits. There-

fore we have concentrated in this section on modifications of the basic coherent

M-ary receiver in an attempt to combat fading and achieve reliable efficient

performance; it is believed this has been accomplished.

We now embark on a detailed description of the M-ary systems con-

sidered in this report. If the usual M-ary system is used in a fading environment,

j_ and orthogonal signals are used, a simple generalization of some past work*

shows that the probability of correct decision per (M-ary) word is given by
i M-1

Pc = -I [1+ n(l ) + -)

n= I

whe re

S (l - .l ) I (u) 12 du

and 4 is the correlation function of the medium fluctuations. For a linear

correlation function

2 7 0u<2T"0

it is readily demonstrated that

1 - T-•- , T< 2Tr
S T 0

aN:•- 2° I ,r" Ir
0 0 01 " - T' [ T > 2 ,ro

*[8]
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Thus even as T-.--4, 8 saturates at 2 , and the error probability does
0

not tend to zero. This is the severe limitation of the standard M-ary technique.

An M-ary system of great generality and potentiality, not suffering the

above limitations is realized by transmitting a sequence of one of q(< M) wave-

forms n times, and employing linear weighting to realize M different possibilities.

For example, with q = 2, and Hadamard matrix weighting of size M, M orthogonal

signals are realized; yet only two possible signals need be generated. Another

special case is realized when q = M; this case is called M-M-ary transmission.

Here, one of M waveforms is repeated several times, and the outputs of corres-

ponding matched filters appropriately combined to yield the set of M decision

variables. A timing diagram of the waveforms in such a system is indicated

below in Figure 7.

|r

I "

Figure 7. Timing Diagram

T" is the pulse width, A is the pulse spacing, and T is the message duration.

The probability of correct decision (per M-ary word) is derived in Appendix B

and is, for Y -th envelope combining, and for A >> , T T <«< T
0 0
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PC • S €(x) 0M_' [a. +01 dx*

where

0(x)= I+-() dy

-o

(u+ a 1 op ( +I

1/2,- Sa_,

SThe limitations on A nd' above ensure thtindependent fading occurfo

each pulse, and negligible fading occur within a pulse. These assumptions
I allow averaging of medium characteristics over many coherence intervals.

S~For a peak power limitation on the transmitter, it may be impossible

to realize the large pulses required by the M-M-ary system. In such a case,

i the space between pulses should be filled with signal power, and efficient use

made of such waveforms. For the limiting case of peak-equal-average power,

S =f S , a continuous transmission of signal power over the message interval
p a

T is dictated. If also

a o<< 1,N

0

the optimum receiver is knownon, and is called the weighted radiometer. One

o This integral is tabulated for a few selected values of v and c in
TR-63-3-BF, "A Multiple Alternative Error Integral", by Albert H. Nuttall,

April 30, 1963. 2.

to realiz th-ag2uss7-urdb h MM ysse. nsc ae
th1pc ewe usssol efledwt inlpwr n fiin s



of M possible signals is generated at the transmitter; at the receiver, M

branches, of which the j-th is depicted below in Figure 8, are constructed,

and the M decision variables {D.) compared, a decision being made in favor

of the largest variable.

Figure 8. Weighted Radiometer

The bandwidth of H(f) is chosen so as to match the spreading of the medium.

The probability of correct decision is derived in Appendix A and is

wr c S O(x) -M-I (x +8) dxS~wher e

I•TSa [TS (u)IZdu

For a linear correlation function,

ST a a o

3 N N0 0

a o a
Now since - << 1 by assumption, we see that >> 1 is required for

0 0

good performance. Thus extremely large message durations are required

for this system to achieve a high degree of reliability.

To illustrate the degree to which these M-ary systems (with M > 2)

are superior to binary systems, four binary systems have also been evaluated:

-28-



tI
the binary Weighted Radiometer, the 2-2-ary system, a binary linear filtering

system, and a delay autocorrelation technique. The first three of these systems

are derived from the M-ary systems with M = 2. The weighted radiometer

system is the optimum binary system for low signal-to-noise energy density

ratios. The fourth binary system represents one of the many different ways

that fairly good performance can be attained with somewhat less complex equip-

ment than is required for an optimum system; it is analyzed in Appendix C.

Because of the widespread reliance on binary digital representations

of information, performance is measured by the bit error probability, P., for

each system, i. e., the long term average probability of a single binary information

digit being assigned the wrong value.

The bit error probability for each of the four binary systems is plotted

in Figure 9 as a function of the quantity P = N , where H is the information
0

rate in bits per second. These curves are applicable to the case where the

short-term (peak) power limitation, S , is equal to the long-term averageP

power capability of the transmitter, S . Also it has been assumed that the

fading is such that T H = - for each system. The most striking characteristic

of Figure 9 is the extremely poor performance of the linear filtering system;

although optimum for use in a non-fading medium (under phase incoherent

operating conditions), its performance in the presence of fading is quite un-

satisfactory. Another feature of interest is that the weighted radiometer, which

is the optimum binary system for small values of p, is the best system of the

four for all values of p.

Turning to the multiple alternative systems, the performance of the

M-ary Weighted Radiometer, M-M-ary and M-ary Linear Filtering systems is

-29-
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indicated by the curves in Figures 10, 11, 12, and 13. The weighted radio-

meter has been evaluated for any value of M, under the constraint of peak-

equal-average power. Curves are drawn in Figure 10 relating the bit error

probability to p, for M = 2, 4, 8, and 16, assuming that the fading is such

that r H . As expected, the bit error probability is reduced significantly

as the value of M, the alphabet size is increased. As M tends to infinity, if the

M-th order Gaussian approximation involved in the evaluation of error proba-

bility is valid, * then the limiting performance of this system is indicated by

the dashed curve in Figure 10. This suggests (but doesn't rigorously prove)

that the limiting performance of an uncoded M-ary weighted radiometer achieves

approximately 13 percent of the medium capacity, C , under the S = SS•p a

constraint.

Analogous curves are plotted in Figure 11 for the M-M-ary system,

under the same constraints. These curves indicate that the M-M-ary system

Jis approximately 0. 6 db poorer than the M-ary radiometer for any value of M.

The curves in Figure 12 represent the performance of the M-M-ary system

when essentially no constraint on peak power exists, i.e., S > 10 S . Underp-- a

these conditions a method of averaging over many independent fading coherence

intervals can be implemented with the M-M-ary system to improve its perfor-

mance significantly, as indicated by the curves. Again, if the M-th order

Gaussian approximation is valid in the limit, the limiting performance of the

M-M-ary system (indicated by the dashed line) achieves approximately 56

percent of the medium capacity, C. Although time has not permitted the

evaluation of the M-ary weighted radiometer under the no peak power con-

straint, its slightly better performance than the M-M-ary system under the

S = S constraint suggests that the former system may be capable of achieving
p a

nearly 100 percent of the medium capacity, even in the presence of fading.

*Although this approximation is believed to be valid, time has not permitted
the completion of a rigorous proof.
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The M-ary Linear Filtering Performance curves are plotted in

Figure 13 for both peak power constraints, i. e., S = S , and S > 10 Sp a p- a
The dashed curves correspond to the constraint S = Sa, and the solid curves

P I
apply when S > 10 S . As before, the fading is characterized by r H = -

p- a o 0.

Although increasing the alphabet size does provide some improvement in the

system, basically it is unable to cope with a fading medium.

The performance of each of these three M-ary systems is plotted in

Figure 14 for M = 16, under the peak-equal-average power constraint, and
assuming r H = I'0

j The curves presented in Figures 9-14 suggest strongly that higher

order alphabets hold the key to satisfactory performance at high information

I rates. Further, the use of systems optimized for a non-fading medium can

produce extremely poor performance in a fading medium. Therefore, it is

1 of prime importance to place major emphasis on the determination of optimum

system structures for fading media, and the development of implementable

I block diagrams which exploit these structures with a large alphabet.

1.

!*

These are based on the work reported in [81.
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6. Some Measurement Considerations

Many of the results presented earlier have presumed knowledge of

the pertinent medium responses and average behavior. In this section, we

shall consider some of the problems in attempting to determine these quantities

from measurements.

6. 1 Direct Measurement of a Non-Random Time-Variant System

Let us consider the direct measurement of h(7, t). If we excite this

filter with an impulse at time t , the response is h(t - t , t) and we have ao 0

"slice" of h along a 450 line in the 7, t plane. Since this function has duration

L seconds on the t-axis (see Figure 3(a)), we cannot re-excite the filter with

an impulse to get another "slice" until L seconds later than the first excitation;

otherwise, the outpatswould overlap, thereby generating ambiguities. Thus we

can measure, in succession, h(t - t , t), h(t - t - L, t), h(t - t - 2L, t), etc.

In order that we not be missing any significant changes in h(T, t) by this technique,

there should be little change in the sequence of h-functions so obtained. That is,

h(t - to, t) delayed by L seconds should look like h(t - t - L, t) for all t, t where
o 00

the h-functions are not small. Thus we want

I - L, t- L) h(t - t - L, t)

for all t, t giving h arguments in the L by D rectangle of Figure 3(a). Alter-

nately this can be written ;

h (T, t - L) ý h(r, t0

in the L by D rectangle. Since for fixed 7, h(r, t) can change in a distance1
B

seconds on the t-axis (see Figure 3(a)), this requirement of slow change is

satisfied only if

1

or

BL< 1.
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When this condition is satisfied, interpolation from the 450 {h(t - t - k L, t)}0

slices to the entire h('T, t) function for all r, t ie then possible.

If BL > 1, it is still possible to get slices of h(r, t) as above. How-

ever, the slices may differ significantly, and it is no longer possible to inter-

polate, and obtain the entire function h(7, t)'. This is the limitation of over-

spread (BL > 1) filters.

Notice, however, that if the filter could be "reset" to an earlier time

I.( (as for example with a network with a switch), we could interleave additional

slices of the h(,r, t) function, each set of slices necessarily being separated by

L seconds to avoid overlap, of course. This resetting procedure could be con-

tinued until the density of slices was sufficient to interpolate to the entire function.

Thus if, for example, the impulse response were desired known over the inter-

val of D seconds on the t-axis, a processing time of BLD seconds would be

necessary to evaluate the entire h(T', t) function.

It might be supposed at first that the limitation BL < 1 is due to the

particular method of measurement of the system, namely impulse excitation.

However, we run up to the same identical relation when we consider the direct
i2iri] t

measurement of H(TI, t). If we excite this filter with a pure tone e o

starting at time to, the output is, for t > t .00

i~rl t-t0 zn7

eh•lot S t) e o d"

•.i2wi1 °t

e H(0o, t)

This situation is similar to sampling a function band-limited to W cps,

slower than the rate of 2W per second. It is not possible to interpolate to the
entire function from the "sparse" samples.

[9
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for t - t sufficiently large, i. e., outside the region of L seconds on the ir-axis.

Thus by exciting the filter sufficiently long ago, we can evaluate H on any line

?lot t in the -q, t plane. However, in order to be able to evaluate H at other

values of t1, we mwu t excite the filter simultaneously with a set of pure tones.

(This procedure is the exact dual of the measurement of h(T', t). There, we

excited with a set of impulses in the time domain. Here, we excite with a set

of impulses in the frequency domain.) In order not to miss significant changes
1

of H(vi, t) in *I, we must space the pure tones by no more than . cps (see

Figure 3(b)). If the pure tones are at frequencies {,n k), the response, after

sufficient time, is approximately

a H(ijk, t0.

In order to be able to evaluate each H(1ik, t) separately, significant changes

j in H(lk, t) must not occur in less than L seconds; otherwise it would be

impossible to separate the individual filter output tones. From Figure 3(b),

we see this is possible only if

L<

or
BL< 1.

If this condition is satisfied, H(i, t) may be interpolated from the slices

{ H(, k, t)}. From the complete H-function, h(T, t) could of course be

obtained by Fourier transformation.

Both measurement methods above require BL < 1 in order that

complete measurement of the filter be possible. Undoubtedly if other test

procedures for the direct evaluation of the A- and * 4 functions were proposed,

they too would require BL < 1 for unambiguous filter evaluation. The re-

striction EL < I is a fundamental restriction on ability to measure completely

a filter's characteristics. Furthermore, we repeat that this filter had no

random variation whatsoever; random variations can only generate tighter

restrictions.
41_ -40-



6.2 Measurement of a Random System

Measurements of the two components d(T, t) and r(r, t) of a general

system h(7r, t) could be accomplished (for a particular geometry, thermocline,

known range, etc. ) by using an explosive source, and measuring the response

at the desired receiving site, provided the external noise n(t) is small in

comparison with the random component r(Tr, t). The signal source (in the

submarine) must be turned off for this measurement. In fact, the source

should probably be removed from the area because its random output affects

the measurements.

Since an explosive source is itself random, the response of the

medium will contain a random component due to the source. However, if

A is the effective duration of the "impulse", estimates of d and r up to frequencies
less than I/A will be okay. Equivalently, estimates of D and R will be valid for

ff <1/4.

These measurements should be repeated as rapidly as possible in

succession a number of times, before any important parameters have changed,

such as temperature of the water. Of course, a new explosion and measurement

must not be undertaken before all the multiple echoes from the different possible

bottom bounce reflections (multipaths) have been received from the past explosion,

as discussed in Section 6. 1. These measurements should be made at a great

enough distance from the source of the explosion in order to avoid near field

effects, and yet not so far away that the external noise n(t) dominates r(t). The

tests should be monitored by measuring the intensity of the explosion as close

to the source as reasonable and practical.

In order to ascertain the degree of non-stationarity of h(T, t) (more

particularly d(T', t)), the series of measurements of h(,r, t) should be divided
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into groups, the members of each of which have been determined under sub-

stantially the same conditions. The size of each group should be large enough

so as to be able to determine d(O, t) accurately (by averaging the measure-

ments), and yet not so large that time varying items, such as water temperature,

have made any significant change during that time. For example, suppose time

is separated into intervals {T.} such that during each interval T., h(T, t) 2 h.('r)

for t * T.. (Also, of course, d(T', t) • d.(') for t e T.. This is the mathematical

way of saying that the time variant parameters change little during T . ) Then

suppose a series of measurements f w Ak(t)} of the impulse response were re-

corded, where, for j fixed, t3k e T., k = 1, 2,..., n. That is, n measurements

of the impulse response were made during the time interval T.. Then an approx-3

imation to the deterministic component of the impulse response is realized

according to

n

d.(( ) W. (T+ ).
3 n W k

k=l

The shift t aligns all the impulse responses at "zero" time, which is chosen

for convenience. As j progresses through its values, local averages of d(-, t)

in intervals of length T. on the t-scale are obtained. That is, the quantity

. S d(T', t) dt

J T.

is approximated in this fashion. The difference quantities

rjk (T +t) - dC(T), k I, 2 .... n,

for j fixed, are then available for evaluating parameters of the random component

of the impulse response, such as statiornarity, average power, etc.

-42-
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Independent measurements of d(T, t) and D(f, t) would yield information

as to the validity of the linear model, for only in this case are these expressions

related by a Fourier transform. Also, if corroborated, the easier of the two

measurement techniques can be selected and recommended for future measure-

ment programs. (Notice that we can only relate d and D, and not h and H; the

latter are noisy, including n(t), and would be impossible to relate. d and D are

approximately related by a Fourier transform because they are the means,

respectively, of h and H.)

The only remaining item of importance in Figure 1 is the additive

noise n(t). This can be observed with no signal transmitted, either determin-

istic or random, its average behavior and power determined, its low order

p. d. f's approximated, etc. This noise arises from water and wave movement,

fish, and other ships.

Although measurement of the transmitted signal is not directly related

to measurement of the medium characteristics, a few words about it are appro-

priate at this point, in view of the background developed above. In order to

evaluate the amount of deterministic component s(t) present in the transmitted

waveform, and least contaminate the results, and obtain the most consistency,

initial measurements of this quantity should probably be done with a stationary

submarine using an absolute minimum of auxiliary equipment in a quiet envir-

onnieua. A long duration "close aboard" measurement should be conducted,

repeating a basic signal (- 100 times). (The "close aboard" feature eliminates

medium effects; however the measurement should be conducted far enough away

that near-field effects are negligible. ) The total duration of the run should not

be so long, however, as to allow any important parameters to change. An

estimate of s(t) is then realized by averaging the 100 runs, properly aligned

in time. The difference between the transmitted waveform and the estimate
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of s(t) is the random component a(t), and can itself be analyzed to find the

average power, degree of stationarky, and first, second, or higher order

p. d. f. Ie (probability density functions). Evaluation of low-order p. d. f. 's

may indicate what type of process the random component is, such as Gaussian.

From the above, among other things, quantitative estimates of the percentage

of deterministic component in the transmitted waveform will be available, and

decisions as to whether to attempt to use the random component in detection

and communication can be made.

6.3 Effects of Non-Stationarity

Measurements of the statistical parameters of a random process are

virtually always determined through time averages, and the ergodic theorem

employed to relate these to corresponding ensemble average. However, for

a non-stationary process, these two averages are not equal. It is therefore

of interest to see what effect non-stationarity has on some of the typical time

averages often computed.

Consider first a process in which the non-stationary character has a

bandwidth Wn; i. e., significant changes in statistical parameters occur in a

""time 11W n. Also, suppose the bandwidth of the process itself is W. Now if
n

"- W W'
n

$ many independent samples of the process are available in a time constant

(l/W n) of the non-stationary fluctuations. In this case, estimation of local]n
process parameters is possible from a single member function of the ensemble.

For example, an estimate of the mean, from the j-th member function of an

ensemble, is
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SoS (t) dt (T i/Wn)
T 2IWT

r xO) (tn

2WT IW x (tn
n=1

(This choice of T guarantees that x" (t) is quasi-stationary in the averaging

interval T.) If 2WT >> 1, (W >> Wn), we have a reasonably good estimate

of the local mean.

If, on the other hand, W and W are comparable, good estimates ofn
local parameters are not possible from a single member function. However,

good estimates of average local parameters may or may not be, depending on

the particular parameter. Let us illustrate this contention. Consider a random

discrete voltage, which at time k seconds, can take on voltage values k, k + 1,

f k + 5, with equal probability ( a non-stationary die). Suppose we attempt to deter-

mine the average mean* of the voltage over an interval of N seconds according

to the rule

N
Y.. I I x k

k=l

where xk is a voltage sample at time k. Now

k+5
xk 2

giving
- N
y T-+3

Therefore
N N

- (xk1k- 5)a

k=l k= 1

*The word "mean" indicates an ensemble average; the word "average"

indicates a time average.

-45-



I

5 3 1 1 3 5
But the distribution of zk is uniform over the values - , - ., - , 1 1

2 2
and is independent of k. Therefore a (zk a= , and

a2 1y Ia2 N z1 u2

Therefore since the variance of y tends to zero as N increases, y tends to the

average mean of the random process over any (large) interval. Thus the pre-

sence of non-stationarity does not preclude obtaining some useful average local

parameters from a single member function. (Of course, x could not be

evaluated in this manner.)

On the other hand, if we attempt to estimate the average mean-square

j of the voltage according to the rule

N

k=--

we find a different result altogether. We have

2 1 k2 2  2
xk T [ + (k + 1) +...+ (k + 5)

k2 55k +5k+ --

1* Therefore

N N
t"W-• v Z ( - k 2- 5k-"5-) = ! I ,

= 1 7 (x k 2  55-) 1~ t

where 
k=l 

kzl

2 2
k xk xk*

Therefore
2

2 (f 4 2
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4 , [k 4 +(k+l) 4 +...+(k+5) ]
xk T

2
Combining this result with the above one for xk D we obtain

2 35 k2 1 7 5 k 5
°(ak) 3 3 36

and
N

a2( M (- k 2 + 7k +79 )
N1 3 3 36
k=l

which tends to infinity as N does. Thus the variance of the estimate gets

arbitrarily large as the averaging interval (N seconds) increases. * Here we

would require many member functions to obtain a good estimate of the average

mean-square voltage over a long interval.I
In general, when obtaining an average of a random variable according

to N

y I x xk#

k= I

then

N= I'"' 1
J k-l

if { xk} are uncorrelated. Then if

x1) a2(xk) = c, 2(y) --- O

2) a2 (xk) = ck, a (yY) c

3) a (xk) = ckl, c < a,

as N increases. Thus the rate of increase of variance of {xk} is of paramount

importance in the adequacy of the end result.
t*

It should be noted, however, that W/ol(W) approaches zero as N increases.
Thus the relative error in estimation of Wdecreases.
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In considering an estimate of an average local parameter of a process,

the merit of the estimate depends heavily on its variance. If the variance is

small (in some sense), there will be little difference in estimates obtained with

different member functions. And, indeed, this observation allows for a relatively

simple check on the adequacy of a particular estimate: two estimates of the

desired parameter are calculated from two different member functions. If the

estimates are reasonably close (in some sense), either estimate is adequate.

If they are widely different, the method of obtaining the estimate is totally

inadequate.

We have said nothing about stationarity in the above paragraph. The

estimate will be an approximation to a time average of some statistical para-

meter. This parameter may or may not be appropriate, depending on the

problem under investigation. For example,

t 2

y -- S x(t) dt
t 2 

tl

is an unbiased estimate of the average mean of x(t) over the interval (t,, t 2 ).

(This follows because the ensemble mean of y is

t2

t $ m(t) dt

tI

where m(t) is the ensemble mean of x(t).) If 2(y) is small, any two member

functions will yield essentially the same value for y, with probability near unity.
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6.4 Recommended Measurements

In view of the relative simplicity of the linear model approach to

underwater communications, it is recommended that a concerted measure-

ment program be conducted to verify the model and ascertain its utility in

typical applications. It may turn out that although the model is correct, the

random fluctuations in the transmitted waveform, the medium, and the en-

vironmnent are so large that satisfactory communication and detection beyond

certain ranges and in certain geometries is impossible, even with the so-called

optimum receiver. This fact of life, if true, could be determined by this

program.

The end products of the measurements should be the following items:

1. Non-random signal component of transmitted waveform when

communication is taking place.

2. Random component of transmitted waveform: mean, mean

square, correlation function, second-order correlation function, first,

second, and third order p. d. f. 's. (These quantities may vary with time.)

3. Non-random component of impulse response of medium.

4. Random component of impulse response of medium: same

statistics as under 2.

5. Additive noise: same statistics as under 2.

6. Non-random component of received waveform.

7. Random component of received waveform: same statistics

as under 2.

8. Non-random component of medium transfer function, amplitude

and phase.

9. Crosscorrelation of random radiated signal with received signal

(no deterministic signal transmitted).

-
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In order to determine the quantities above, continuous recordings of

the waveforms "close aboard" and at the receiving site should be obtained.

The pertinent processing can be done later. If other statistics are deemed

important later, they can be computed from the tape records.
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7. Discussion

The model of the communication system suggested here is probably

the simplest one bearing any reasonable resemblance to the actual situation.

How accurate it can be made will have to be borne out by measurements. If

measurements indicate that the model is a poor one, other possibilities will

have to be investigated. One simple alternative is a combination of a linear

filter with memory in cascade with a nonlinear filter without memory (although

perhaps time varying). However the analysis and optimization problems will

probably be unwieldly except by lengthy computer effort. Very little useful

analytical work on nonlinear networks has been accomplished thus far.

A method of circumventing the whole model problem is suggested by

likelihood ratio detection and communication. A high order density function

of a set of samples is obtained for each communication signal and for noise

alone. The decision as to which signal, if any, was transmitted is reached

by computing the likelihood ratios and choosing the largest as corresponding

to the actual situation. This approach requires a great amount of data

acquisition and reduction, mainly because the number of samples necessary

to accurately estimate high order p. d. f. Is is enormous. However it benefits

from the fact that source, medium, and receiver need not be separable, as

they were considered above, but may be treated as an entity with merely one

input and one output.

A model of a communication channel, similar to that suggested in

Section 2 has recently been considered* and solved for the optimum receiver.

However, the relative amount of improvement afforded by the optimum receiver,

as contrasted with the usual simpler matched filter for the deterministic com-

ponents, has not been determined, due to mathematical intractabilities. Further

analytical work along this line is necessary for the underwater application, where

the random components of signal and medium are very substantial in comparison

with the deterministic components.

*[11, 12]



II
I

The program of study underway presently is now outlined. For the

linear time-varying stochastic model:

a) Relate the statistical properties of components {wk(t)l of the

received waveform to those of the medium and transmitted signal. These

properties will include ensemble mean, power, correlation function, structure

function, higher order moments, and first order probability density function.

Calculate the signal-to-noise ratio of the received wave. Investigate the

validity and effect of any approximations used.

b) On the basis of the results of a), decide which components are

useful and what form of receiver is desirable for detection and/or communi-

ji cation. This approach will be limited to linear filters and simple nonlinear

operations.

c) For a linear receiver, relate the statistical properties of the

output to those of the transmitted signal, medium, and receiver impulse

Jresponse. The properties to be investigated are;the same as listed under a).

d) Maximize the linear receiver output signal-to-noise ratio by

choice of impulse response.

e) Evaluate the detection probabilities at the output of the receiver

for several impulse responses; choose those cases that are most easily

realized first.

f) For known transmitted signal and receiver response, determine

what target characteristics can be deduced from the processed echo. Deduce

what form of sounding signal is optimum.

g) For assumed statistical forms of medium and noise, deduce the

optimum receiver. Evaluate the performance of this receiver and/or approx-

imations to it in terms of signal-to-noise ratio, detection probabilities, and

error probabilities.
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h) In all the above, determine how the receiver should adapt to

time-varying changes in the medium and noise. Determine what additional

measurements are necessary to track the changes, and whether the improve-

ment is significant compared to an average design.

i) Investigate generalizations of the model and results to include

spatial parameters.

I Almost all the tasks cited above deal with the analysis of a cascade

of two linear (time-varying) filters on a transmitted stochastic signal. The

second linear operation need not be a strict match to the transmitted signal,

however; as such, it could be called a generalized correlation receiver.

That is, a more general "multiplier-integrator" form is allowed than con-

4 ventionally. Results on this configuration will constitute a very worthwhile

addition to the signal processing problems of several fields.

-
!
!
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APPENDIX A

M-ARY WEIGHTED RADIOMETER

The optimum detection of small (fading) signals in the presence of
noise has been considered extensively* in terms of structure and signal-to-
noise ratio. Here we wish to extend the analysis to communication and
accompanying error probabilities. Furthermore, the communication mode
will not be limited to binary, but rather, to general multiple alternative
(M-ary) detection.

To be specific, one of M equiprobable alternatives is transmittedL over the time interval (t , tb). Letting T = th - ta, the source information
rate is

H= TlgT

where lg x a log~x. The transmitted signal, without loss of generality, will

be denoted by s 1 (t):

s 1 (t) = Re {6 1 t) e 0

where g (t) is the complex envelope of the signal, and is non-zero only over
(t , tb). At the receiver, the "signal" component of the received waveform is

iW t
Re ( 1 (t) G(t)e 01

where G(t) is the complex (low pass) medium (fading) gain (see section 4). The
total received waveform, including noise, is

iW t
Re {[6 1 (t) G(t) + N(t)] e 0

The optimum receiver is an M-fold duplication of the basic weighted
radiometer, ** the only difference being the pre-multiplication function in each
branch. A block diagram of the j-th branch of the M-ary weighted radiometer
is shown below.

* [4]

Ibid, p. 49 -55-



The output of this branch is readily demonstrated to be given by*

r r. = YY[ I l(tl) G(t 1) + N(tl1) 1 [ g *l(ty G *(t2Z) + N*(t 2) ] g(tI) 9 j( t 2)1 @*(tI -t 2) dt I Ct 2

for all 1 < j < M. (Infinite limits are allowed on the integrals since 9 .(t) is
identically zero for t not in (ta, tb).) *(') is the complex low pass corlelation
of the medium.

Now we shall make two reasonable assumptions about the transmitted
signals; first, the bandwidth of all the product functions {t.(t) • k(t)}, j j k,

will be much wider than B, the "spread" of the medium. Since B = 1/T, where
Sis the coherence interval of the medium fading, this first assumption is
equivalent to many "wiggles" of the product functions in time To" Secondly,
the transmitted signals will have flat amplitude distribution in time; i. e.,

I[•(t) j = • ta < t < tb, allj,

where S is the average power of the received signal. Sincea

S a - I 1 l(t) G(t) 1 2 -j l(t) I JG(t)I

we must have

2
IG(t) I = 1

which is no more than a choice of normalization. More generally, we have

SI(tl-t 2 ) = G(t 1) G*(t 2 )

*Ibid, pp. 50-54.
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the correlation function of the medium fading. Using the above assumptions,
we have

tb

r 55 2SaG(tO)+ g (t )N(tl)] [2S G*(t 2 )+• 1 (t 2 ) N*(t)] 0*(t - t2 ) dtI dt 2

ta

and

tb

r. jjN(t I) N* t 2 ) (t 1 ) (t 2 ) *(t 1 - t2 ) j > 2.

ta

Utilizing the Gaussian and white properties* of N(t), we find

1. 2
rI = 2 S a)2 12 + 8 Sa TNd

where

T/2 T

I 12 1 OS@(tl t 2 )12 dt 2 dt2 (T- Jul)I(u)I du

-T/2 -T

and Nd is the double-aided noise power density level (No = 2Nd).

Also,

"r= 8 S TNd# >2.

Continuing, it is tedious, but not difficult, to show that

rI r. = rI r. , j > 2

r r= r rkr j j k

aZ(r)= (2 S ) (4 Nd)2 12' j > 2

.2 2 2a (r) = (2 Sa) (4 Nd) 2a

*[3]
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where

+ S 1 3 Sa( 2 1.4

N I N

! u =1+ Nd' 2 2d / 2

T/2

1 3 CSYS -(t "t 2 ) *(t2 -t 3 ) 03 "t dtI dt2 dt3

-T/2

T/2

14 = SYSSS tl - t2) (t 2 - t3) *(t 3 - t4) *(t 4 - t1 ) dt1 dt2 dt3 dt4"

-T/2

Now if T >> 'r, many independent segments of input signal will be added together

(with noise) to form the variables {r. }. Therefore { r I will satisfy a joint
Gaussian distribution. The probability of correct dete~tion is then readily demon-
strated to be*

PC• -- 3 exp(-y 2/2) *M-1 [M y+]1dy

where

N (T- Jul) I.(ufl du] /

Now since the Gaussian approximation holds only when T >>,ro we find

00-• N T i.(u)Il u 1/2

For a linear correlation

(u)= - lul ,I2ul <2T
27 0

0

S,4J S aT Saro
ST a o

3 N N
0 0

*[9]
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Also a = 1 if S 7•/N << 1. Therefore,
a 0

This result is used extensively for plots given in the main body of the report.
For M = 2, a special case results:

o 2o

1..
If the source data rate is kept fixed, and M increases without bound,

we can use the result that

iM M x + r, 1. -- 1, all x, if y > I
I ~M--•00

to show that S S
P --*1 as M--)co if H < lge a i( I C ~u) du "-

0c

0 O

Thus, analogous to the non-fading case, zero error probability can be obtained
in the limit, with a non-zero source rate. Thus, the capacity of a fading
medium (infinite bandwidth) is bounded by

Cf > lge a I-O(u) 12 du )
N 0 No

0

This relation, and the others in this appendix, hold if

Sa
S a- 0 10(u)1 du << 1.

0 0

Furthermore, in this case, and an S = S power limitation, this is the optimum
obtainable performance. p a
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APPENDIX B

MULTIPLE ALTERNATIVE RECEIVER

This appendix will be concerned with the derivation of the error
probabilities of a multiple alternative receiver, where the same alternative
(message) is repeated sequentially for the entire message interval T. The
derivations are conveniently broken into two main parts: the first part deals
with the case of no peak power limitation, whereas the second part considers
a peak-equal-average power limitation.

B. I No Peak Power Limitation (S pk 10 Sa)

Without a peak power limitation, it might appear at first that the
signal energy should be packed into a time interval short compared with the
coherence interval, T 0o, so as to avoid noncoherent fading throughout the
message interval T. However, an immediate and obvious drawback to this
proposed technique is that communication is too heavily dependent on the
instantaneous fading of the medium. A much more desirable alternative
would be to split the total signal energy into several pulses, each of duration
less than To$ and then add the components after detection. * This method per-
forms some averaging over several fading intervals. Specifically, a possible
partitioning of the signal energy is depicted in the figure below.

J JI •.(t)

1[0]
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There are n pulses in the message interval T, of equal height A. For an
average power constraint S , we must have

a

tS 2 tb 2

Sa = 1 S . 14I(t) G(t)I dt= 2T I•(t)J dt

a 1T 2

t' t
a a

= -A7 nT

Li Therefore,

A2= 2S T s
a nT a r

Here we are allowed to vary A and T as we please, and choose A so as to
satisfy the power constraint. The received waveform is

iW t1

Re M[ l(t) G(t) + N(t) ] e

We define R as the envelope of the output of the filter matched to the j-th
message duing the k-th pulse. Here, 1 5 j .5 M, I . k.-- n. Then

(k- l)&r

j R jk= S 6.*(t) [I (t) G(t) + N(t)] dt , all j.

(k- 1)A

Now for constant amplitude orthogonal signals over the interval of duration r,

(k- l)A+r (k-I)A+T

Rlk= 2 5 a A $ G(t) dt + S •l*(t) N(t)dt

(k-l)A (k-l)A

= 2A5 G[t+(k-l)A]dt + gl*(t)N[t+(k-l)&] dt

-61-
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where we have set

(t + (k-I) A (t), 0 < t < r , all j,

corresponding to the repeated signal assumption. Also

R jk I S o,*(t) eI(t) G ~t +(k-1)&] dt + Se*(t)N[t+(k-l)A]dt

0 0

Now we consider adding the v -th powers of the envelopes of the j-th message,
to form the decision variables:

[. n
yj ', lj -<M.

k 1

j The source information rate is given by

H=lgM= 1gM
T nA

For fixed A and H, as M.--•o, so also must n. Therefore, each of the yj
variables approaches a Gaussian variable, and we can compute the probability
of error providing we can evaluate y. and o2 (yA). We start with

n

k= 1

But

R jk= IZ jk = Ix ik +iyjkI

where
T

Zjk = 5 { 1 (t) G [t +(k-)])A + N[t+(k-I) A]} dt, all j

0
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Due to the linear operation on 0 and N, both of which are Gaussian, x and

Yjk are Gauseian. Furthermore,

Zjk Z1m =0

and, after simplification,

Z'kZ*m = S •(t) 1£t) tz l2t1)1 (t ) [t'2 + (k'm)A] dtI dr 2

0

+ 4 Nd(A2 -) 6km r6j

using the orthogonality of the signals. In order to make further substantial

progress, we assume that A > 47r and r" 7 physically this corresponds
0•2 0

to uncorrelated fading between pulses and negligible fading within a pulse,
respectively. With these assumptions, there readily follows

Zjk Z* m = (A2 r)2 6km 6jl 6.t + (A2r) 4Nd 6kn 6jA

This formula indicates that all the statistical variables in different pulses are
independent ! Therefore we need confine our analysis to a single pulse and
later scale the means and variances by n. Dropping (unnecessary) second
subscript, we have, expressly,

SZI Z* 1 (A 2)i + (A2r) 4Nd

zz Z , 2 jo, '

Z. Z*. = (A 2 T) 4N, j 1.

Therefore

2 2 (A2T) 2 2Xl - Y, -- 2 + (A27) 2Nd a a
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2 2 2x. = yj. u (A7 )ZNd dz a 2 2

xj x y j 33

and22

Z (2 o y 2 1 ") ex p ' +_ _ _ _

p(x1. yj) z 2= 2 -1 j~ 2.~
, 2 2

- Therefore since

R V2 2I ~= (xj.+ y.)

I 3 : .1< 3> ÷
Rx+r) 2 x2+(2a exp2 dx. dy

R2= a.2 2 e x

2 1/2 r +

Also, immediately,,

R v = 2v 2. r (v +1)

Therefore

yn2 2a v. r +I3 3d
and 

2
or (yj) n [R "j

1- [4- -

-64-



n2V a2 r (v ÷1) - r 2I

Therefore the signal-to-noise ratio, upon which error probabilities critically
depend, is

2 2 IV

Ia Y? r (v + I)- r +

and the corresponding probability of correct decision is

P exp (-x 2/2) 0M-l I (y 1 ) +yT - ;y2c S (y) c7(y2 )

I Simplifying, we have

S-(y " + a

and

I --- ~sA~ /2
T1 y2) 1

j where

In order to obtain numerical results, let us now choose A = I/H; that is, let
the pulse repetition period equal the bit interval. Then since

H IgM = IgelnM

T ru

we must have

n= Ig e In M -65-
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Then V/2

[ ( + 
V ~ ) / 2

and

P 0 1x(. /2 -2M-l [xl +) / dx

This is the general expression for the error probability as a function of M,
signal-to-noise ratio, v, and information rate. We now use the fact that

lir M [ ••
M--v M [y+ 'V = 1, ally, ify> 1,

to show that

P l as M ---- wPo if
c

SSa/N° l E

2 + I /V

The right-hand side of this last equation is a lower bound on the capacity of a
fading channel. The representative numbers given in the table below indicate
that

V1 1. 5 2 2. 5 3 4 16 18 110 12

7 .62 .75 .85 .93 1.0 1.1 1.2 1.23 1.23 1.22 1.0

a o

the capacity of a fading channel is approximately lg e Sa/No = 1. 443 Sa/No,

just as though no fading were present. This topic deserves much further
analysis, particularly regarding the applicability of the Gaussian form as n and
M simultaneously tend to infinity. However, the above results hint that proper
use of a fading channel can lead to almost the same performance as in the
absence of fading.
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B. 2 Peak-Equal-Average Power Limitation (S p S )

Using the same notation as before, in this case we must have A a r,
and A 2 25 ; therefore,

a

z jk Z*.1m - C (t1)4(t2)4 l(t1)4 (t2), [t. -t2+(k-m). ']dt, dt2

0

+ 4 Nd (2 SaT) 6nkm 6 M

Now, restricting r to be smaller than I " , we getZo

Z.jk Z*' m= (2 S ar) 6 j 621 5 ((k-m),r) + 4 Nd (2 Sa7') 6 krn 6 16

Now we introduce the restriction v = 2. In this case,

n n

y. = R. 2 =I jk jk jk

k= 1 k=1
Sand

n

y. = n= n(2 S) [(2 SaT) 6i +4Nd]
k=i ZI jk a a ji
k=1

Also,

-2 nnY Zý z z*
L jjk Ak jm jZm

kI=l m-

n n
•ZkJ Z 'kJ j. Z. +jk Z k Zj m)

. ~ ~~k=l mzl J mj
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since Z s Gaussian with zero mean. Using the expression for Z Z' above,
jk 2 jk im

we get ZjkZn Z* kjm (2 Sal') 2 Sa r 6 j +4Nd]

and

jk m Zjk Zjm (2 Sa T)2 [ 2 SaT 7 ((k-m)7) 6d 1 + 4Nd6km]

Thus,

y 2 (2 Sa7) n [2 S 6 + 4 Nd 1
j a I t a dj

[2 Sa- ((k-m)T) 6j + 4Nd 6kl2

Sk-- m --

=(2 S a7)2 n2 [2 S a -6j +4Nd 2

|~ .n
+( 2 ST)2  I I *2 ,((k-m)T) 6j,

I k=l m-1

+ 16nS Nd ji
,+16 a Nj 1

I Now, making use of the approximation,

n n nT

" ) S (nT-x) f(x) dx,

jl= I j 2 =1  0
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we got

=2 (2Sa) 2  n2 2 S 5. 6. + 4Nd 2

Yj a t j

flT

+2 (2 S )? S InTr-x) b2 (x) dx 6 jl

0

+ 16 nS a 7 Nd 6 j + 16 nNd

*2 2 2

j = Yj - Yjisa 2 T

n(2 S N N 16 S (njn-x) I2 (x) dx
d) 0

+ a i]6l+ IJN dn

Thus,

F0 2 n ST )
P S "-- e xp -1 SnT-x)€( (x) dx

-00

+4"• -•o dx

This expression is maximized by letting T = T 0/2 (the largest value allowed by the
ST0

analysis) thus giving (for <<),
N

p ff 1 exp 21 @M-Ix +rn - a j dx
c S o-
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APPENDIX C

DELAY CORRELATION SYSTEM

o The block diagram of the system to be considered here is depicted
below.

J In this system, the quantity D is compared with a zero threshold:

D < #(Mark I transmitted.> Space

D2
To evaluate the performance of this system, we will derive R = - ,2I a7D

which will provide the. bit error probability for Hr << 1. In terms of the
received signal, v(t), and the linear filter impulse response, h(t), the decision
variable, D, is given byJT

D= yt) dt

0

where y(t) = x(t) x(t-,r)

n

and x(t) = x.(t)
j=l

x F(t) = Fj(t) v V(u) h(t-u) du f
Uj -01-)
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t I

where it is assumed that h(t) = 0 for t < 0 and t > -r.

and Fi(t) = I j" < t < (j+i)'"

= 0 otherwise

Substituting the explicit form of y(t) in the first equation, we obtain

n-I (j+l)T" t t

D- $ dt$ du 1 $du 2 '(U ) V(u 2 -T )h(t-u )h(t-u 2 )

j=1 jr jT jT

n-i (j+l)T

I S dt A .(t) B (tM
"j=l jT

t

where A.(t) = Re (a (t)} = du V(U) h(t-u)

jT
t

B.(t) = P(t)= du Y(u-') h(t-u)

jT

j t
i2ff to

and a.(t) = 0 S V(u) H(t-u) du
jT

i2wf to t

(t)lt0= S V(u-T) H(t-u) du,

jT

and V(t), H(t) are the complex envelopes of the received signal v(t), and filter
impulse response, h(t), respectively.
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Now for the mean value of D,

n-I (j+1)7

I y dt Aj(t)Bj(t)

j=l jT

But

A. Bt(t) B M Re {a.(t) M .(t) + a (t) ý.*(t)M
.J 1 81 .

Now,

t( td

I•jti (t1 t 2) = 21 2 1 2 1S(t1U)(t 2 -u 2 )

j2.

But, since V(t 1 ) V(t 2 ) = 0 for all t,, t 2 when V(t) is Gaussian,

a.(t = 0

Consider next a. 1 (tl) .2 *(t 2 ) (with ti, t 2 , il, and j2 general, since we will need

the general result later for D ):

i2irf(t i -t 2 ) )CIji (t1)P P 2Nt 2) e duI 1 du 2 40(u -u 2 +T) •(U 1 : u 2 T)

H(tl-Ul) H*(t2"u2):

2 2t I t 2

+(2N0) Y du 1 y du2 6(ul-U12+) H(tl-U11H*(t2-u2)

j 1 T j2 T

See (2], p. 53.

-72-



where +(u) i G(t) Gw(t-u). Since N(t) is derived from white Gaussian noise, *

N(tI) N*(t 2) = 2 N 6(tI - t 2 ),

and Nis the single aided noise power density.

Now, setting jI = J2andt 1 = t 2 , we obtain

t t

C1j(t) j'(t) = 3 du1 I du 2 +(u 1-u 2 + T) ((ud)*(u2 -T) H(tl-ul) H*(t 2 -u 2 )
j~r jT

We now let (for the remainder of the appendix),

= 0 otherwise

and

H(t) = FM(t)

so thatJ n-l (j+l)T t t

D= (2Sa) I dt Y $dul Sduz Re {*(ul-u 2 +T)) Fl(t-u,) Fl(t-u2 )

j=l j'T jT jr

- (2Sa) n-l (j+l)i" t tS dt dul S du2 Re {4(ul "u 2 +r)}

j=l j• j "T j"

Now, using the identity

a+b

SYf(x-y+c) g(x-y+d) dxdy

a b

= 5 (b - lul) f(u+c) g(u+d) du,

-b

*I bid, p. 55.

-
II



we get t t t-ir

5dul Idu 2 *(uI-u 2 +•7) 5 du*(u+T) (t-j "- lul]

i• jT -(t-jT)

Substituting this integral in the expression for D, and transforming the
variable of integration, t, each term in the sum can be made independent of the
index j, giving

T x

D (n-1) S 5 dx 5 du(x-u) Re {('r+u) + 41(-'-u)}

1. 0 0

The region of integration is the u, x-plane is shown in the diagram.Iu

I xT€

T T

Integration over this region can be performed in the form • du S dx; using
this order, D becomes o u

0 U

T T

I4 Sa S Sd
-' •(n-I) a du d(x-u) Re{ * (7r+u) +* (7-u))

o u

T T-U

= (n-1) SaS duRe { *('+u) + *(T-u)} dy. y

0 0
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1 () S5 du(Tr-u)2 Re { * (r+u) + *+(r-u))

0

- (n-1) S C-0

where 4,, (i') = du u2 Re {(2--u) + (u)}

0

For the second moment we have

. n-i n-i 0 1 +1)'r (j2 +1)r

D2  I I S dt, SdA,(l Bj,(t1) Aj 2 (t 2 Bj2 (t 2 )

jl=i j2=1 j 1'T j2 T

But

A.l(t 1) Bj (t 1) Aj 2 (t2 ) Bj 2 (t2 )
1i 1 1i I122 J

Re {fa 1 (tl)1 . Re { ji(tl)} I Re {a.j 2 (t 2 )} 2Re 1j2t2)

-- Re f*a +)a Re a 0 + a

2 6  l 1 ~ 1 2~ {22 + 2 2

I7 Re (alei8 *a221 + l1 101* 82* + a II* a2 * 0}
7

where •1 ajtSt), and O a Ojj(t) 1,2

(Averages of all terms not containing an equal number of conjugated and
unconjugated factors are zero, since the a Is and 8's involve the same
Gaussian process, V(t) ).

_



Now, *

a 1 0 1 *a 2a 2  = 2 al1la 2•2B2 + a 1 82 a 2 0*

a 1 0 1 a 2  2  a I •1 2* aI 82 * +Qa1 02* a 2 *8 1

a 01* a2 02 a a a 2  BI 02 + a01* £t2* 82

In the remainder of this appendix, we shall assume that the signal-to-
noise ratioiat the output of the linear filter is small, so that only terms
involving N-0 are significant. With this assumption, we have, from the
expression derived earlier,

____ iZwf 0(t I- t 2 )

2 " e2 t (2N) N du1  5 du 2 6(u 1 - u2 +)

j 1  j 2 T

Similarly,

al C1i2 012*

ei2f (t 1- t2  {1dUl d du2  (u u2)

tI t2

[ t2l otltt 2

+(2 No) e 0du 1  du2 
6 (u1- u2 )

*3]
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Therefore,

1I * C12,a2* (2 N 0)2  55'5 6(uC-w, + 7) 6(u 2 w 2 + T)

I + (2 N)•o2 555 6(u, u? + 7) 6,(W- w + •)
I ti t2

I '2

where S S 5 du I dw, 55 du2 dw2
SjlT J2T

But both of these terms are zero, since Iu- wz I < T for 2=1,2. In

the first term, the 6 -functions are zero unless I u1 - wZ I > T, and in the

ji second term, at least one of the 6 -functions is zero unless I u 1 - wI :

u2- T w2-= T u2- w.- 2271, in which case u"1- w-l.> 7.

I Similarly,

I1 1I a 2 "2 = I a 2* 01 a2* + •102W a 2 *l 1

Z(a a 2 ) + 0

2 i2 e f 2 (w 1 - w 2 )

=2No)2  i2ro2(tl" t 2 )2

(2 e (t 2 -j") 2ifjl =j 2 j

= 0 otherwise

and

aC1l *at8 2  a ala 2 * 01* 02 + al 1 * a 2 "8 2

1 ~ ~ 1 122 1a* 2 + 1 o
+ 0

= (2 No)2 (t2- j) if j j

0 2 1
= 0 otherwise
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Therefore,

1 2 rl2 0 2(t 1 -t2 )~
Ajl(t1 ) B j(t 1 ) AJ 2 (t2 Bj 2 (t 2 ) = Re 12 N) 2 (t 2 - Jr) 1 +eJJ

= 0 otherwise

Substituting in the expression for D2, we get

n-I 0j+1)r (j+l),"
2 5• dtI Sdt2 -L- (2No)2 (t2 -j-r) 2 [1 +cos 4,o(tl "t 2 )]

j=1 jT j7I"

u = t 2 -j P, 1=I, 2 5

N 2 n-I r" "

N2  I dUl Sduu2  [1 + cos4wfo(Ul -. )

2 j=l o

I N 2 4 7 7 •

0 (n-1) T + cos 4rfou dul u cos 4wfo u2 du22" 5 3 S0 1 1 22

o o

+ Sin 4f 0udu u sin 4wf u2du2
I 4o o

2 400
N (n-l) T"

0if f is much larger than -
3.2-

Now, combining the results for D and D, using the latter as an estimate for

22a2(valid for low signal-to-noise ratio), we obtain

2 3.2 (n- 1)2 Sa2  2('")
2 2 4R D N (n-l)rI7 o
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EI

3 (n-i) S • )
a

2 4
2ZN7

0
T

Substituting n = this can be rewritten

and if T> >, then

:1- 312ý (Tis a T\ S '
2 (-) (SN

0

The triangular form of 40 (u1) will now be examined; i. a- let -0 (u) U

Then 0

R ' _

This expression can be maximized by setting " Making this substitution

I. we get

Rt (4 (ST) (S ) ~

, 1

Now, since this is a binary system with S p S a we have T : and therefore

the quantity R may be written a

R= (.14 ~ Sa i ro)
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*(ý)4 ( S ar)

= (2)4 2(
,,.I 4P (,roH)

0SFor (Hr'o) >> 1, the decision variable, D, is Gaussian, and the bit error

probability may be written

I pe

S2- exp 2 dD

r

I

For 7 = 2/3 -,
0

ii where, as before,
2

x u

S( e du.

I.
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