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1. INTRODUCTION

The problem of determining the thermodynamics of a Heisenberg

ferromagnet, as a function of the temperature and the magnetic

field, has been rigorously studied in the low temperature regionI-5

T
where a series expansion in powers of yc (where To is the Curie

Temperature) is valid. Similarly, at high temperatures the thermo-

dynamic perturbation theory 6-9MX .000used to evaluate the free

energy as a power expansion in TC/T. These methods, however, are

applicable only far from the transition region and therefore

approximate theories, such as the Weiss molecular field ltheory
11-16

and the various cluster theories, have been proposed which

give quakitatively good results near and beyond the transition

temperature. The Curie temperatures can also be estimated from

these methods. The best estimates, however, are obtained by extra-

polating the high temperature results to the transition region.6-9

All these methods suffer from the drawback that their appli-

cability is limited to a particular range of temperatures.

Recently the technique of double time-temperature dependent

Green functions17-22 has been successfully applied to the ferro-

magnetic problem. The virtue of this method is that it provides

the temperature and the magnetic field dependence of the magneti-

zation over the entire temperature range with reasonable accuracy.

Furthermore, the Curie temperatures provided by this theory seem

to be in.close agreement with the best estimates to date (compare

references 8 and 21). However these approximate Green function
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theories suffer from the weakness that they lack a detailed agree-

ment with the exact low temperature and the high temperature

expansions. For example, the low temperature result for the magneti-

3zation differs from the spin wave theory result in the order (T/Tc)

Similarly, at high temperatures, the susceptibility disagrees with

the exact result in the order (Tc/T)

The problem of improving on the Bogolyubov and Tyablikov17-18,
21

and Tahir-Kheli and ter Haar, approximation has recently been

235
studied by Callen . In his method the higher order Green functions,

occuring in the equations of motion of the Green functions of the

spin operators, are decoupled by a plausible physical criterion.

Callen's ingenious approximation consists essentially in taking

into account the fluctuations of the operator Sz i.e. the z-com-
g

ponent of the spin operator referred to lattice site g, around
z

its statistical average <S>. These fluctuations were neglected

in the earlier work. Callen's theory successfully predicts the

correct spin wave energies at low temperatures and also leads to

an accurate estimate of the Curie temperatures in the limit of

large spin values. For low spins, however, the results are less

accurate and for the particular case of S = 1/2 the expression

for the low temperature magnetization is still found to contain

the anomalous (T/Tc)3 term.

At high temperatures, Callen's theory behaves rather similarly

to the random phase theory*, and the susceptibility agrees with the

*Here and henceforth we shall refer to the Tyablikov 18, and Tahir-
21

Kheli and ter Haar, approximation as the'random phase' approxi-

mation (R.P.A.) because of its equivalence to Engelert's 2approximation.
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2
exact results up to order (Tc/T)

From a formal point of view both the random phase approxi-

mation 2 1 and the Callen approximation2 23 assume that the spin Green

function obeys the Dyson equation, the higher order Green function

being written as a product of a mass operator and a lower order Green

function. These theories differ in the form that they postulate for

the mass operator.

In a recent study of the problem, Wortis5 has shown that the

Green functions of a Heisenberg ferromagnet, in common with those

pertaining to condensed Bose systems 2 5 , do not obey a Dyson equation

with a simple mass operator; alternatively, if an "effective mass

operator" is defined by a Dyson equation, it is found to possess an

anomalous structure. It is our purpose here to investigate the form

of the effective mass operator. We find that a particularly convenient

representation of the "effective mass operator" is such that the

higher order Green function is the sum of an anomalous additive term

plus the product of a simple mass operator and a lower order Green

function. Knowing the detailed form of the spin wave dispersion law,

4,26,27, and keeping in mind the results of the R.P.A.21 and the

Callen theory 23, we infer the form of the anomalous term and of the

remaining mass operator. Similarly, at high temperatures, we invoke

the series expansions for the susceptibility and the magnetic energy,

derived by Rushbrooke and Wood 8 and Domb and Sykes 9 .

We find that the mass operator is almost exactly that proposed

by Callen2 3 . At low temperatures, the anomalous term is quite important

for spin ½ , but it becomes insignificant for higher spins. Again, at



high temperatures, we find that the anomalous term contributes only

weakly, i.e. in the order (TC/T)4, to the susceptibility and is less

important the larger the spin S. Near the Curie point, however, the

anomalous term makes a significant contribution even for moderately

large S, i.e. S•IO. For S>>l, the anomalous term is again small

and our results are identical with those of Callen2 3.

The Green function theory here obtained provides an inter-

polation scheme between high and low temperatures. The results for the

estimates of Domb and Sykes and Rushbrooke and Wood to about 1% for all

spins. The critical behavior of the susceptibility, as T approaches

Tc from above, and of the magnetization, as T approaches Tc from below,

is investigated. It is found that within the callen and the random
21

phase approximations , the susceptibility Just above the Curie tem-

perature has a formc= const.(l - To/T)-2 whereas the magnetization

Just below the Curie temperature approaches zero as (1 - T/Tc)l/2.

The present theory, however, can be set to achieve agreement of with

the high temperature series result of Domb and Sykes, i.e k = const.

S(I-TC/T)-4/3. If this is done we find that Just below the Curie tem-

perature the magnetization, M(T), obeys a relation of the form M(T)

= const. (1-T/Tc)l/3
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2. THE GREEN FUNCTION

The mathematics of the retarded and advanced-double time-

temperature dependent Green functions has been given by Zubarev 1 9,

and by Bonch-Bruevich and Tyablikov2 0 to whom we refer for details.

We outline here those features of this technique which are relevant

to the present work.

The Green function of operators A and B, <<A(t); B(t'>>, is

defined as follows:

/ ftt. L tA0)- >

<<A(+-;~t) -.5+< ()

(2.1)

where A(t) is the Heisenberg operator referred to time t, i.e.

(2.2)

and where H is the system Hamiltonian, 2A the Planck constant,

A the Schroedinger (time independent) operator, square brackets

denote a commutator, and single pointed brackets denote an ensemble

average 7 "

(2.3)

9(x) is the step function

S1 )x (°
a(n o ; T a tx t e ) (2.4)

and fl-BT--(kB: Boltzmann's constant; T: absolute temperature).
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Differentiating the Green functions given in (2.1) with respect

to t we get

LIAL4C (At)iB0:4), = 9(týA[ACAN +<M ,13 ;IS(%W4
(2.5)

where 6(m') denotes the Dirac delta function and the superscripts

ret. and adv. have been dropped because (2.5) is the same for either

of the two cases. The Green function <<[A(t),H]: B(t')>> in

general involves Green functions of higher order than the original

<<A(t); B(t')>>» except, of course, for the trivial cases of non

interacting systems where exact solutions can be obtained. One

has therefore to linearize the equation (2.5) by a suitable de-

coupling approximation. Once (2.5) has been solved for

<<A(t); B(t' )>>, the spectral theorems 1 9 - 2 0 may be invoked to get

the time correlation functions,

ef (2.6)

where <<A;B>>(E) denotes the energy Fourier transform of

<<A(t); B(t')>>. Equations (2.5) and (2.6) are the only two

equations required for our calculations here.
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3. CORRELATION FUNCTION OF THE TRANSVERSE COMPONENTS OF SPINS

We shall assume the ferromagnetic spin system to be desoribed

by a Heisenberg type interaction with isotropic exchange and in the

presence of a spatially homogeneous time independent magnetic field,

B, directed along the positive z-axis. The Hamiltonian, H, therefore

is

(3.1)

where E0 = + , p is the magnetic moment per ion, Sfx0y'z the

cartesian components of the spin operator for the site f and I(f-m)

the exchange integral between ions at sites f and m. As usual, we

assume that the self-exchange terms vanish i.e. I(f-f) 0 0. We

shall consider here the following Green functions:

+ A (3.2)

where '4 (3.3

and

C' co ~ ~ (3.4)

where n is a positive integer or zero.

From equations (2.5) and 3.1) we find the equation of motion

oG(n)(t~tI),4

r~d.J CS ~C-e) W

where

Cv.= s %) '1t5,,) , -,• +(3.6)



-8-

In order to solve Eq. (3.5) for the Green function G(n), it must

first be linearized. The simplest approximation for this purpose

is the R.P.A.l18,21,24 which neglects the dynamical correlations

between Sz(t) (or Sz(t) and the remaining operators and re-
z

places it by the statistical average <S>. In order to take into

account the fluctuations of around its average<sZ>, Callen23

g
has recently suggested a decoupling scheme of the following type:

4÷(+.,•,) , CL• > ~

(tQ.)o ((LLA W i ft

(3.7)

Callen chooses a on the grounds that since the random phase ap-
the

proximation, represented here by A choice a = 0, affords a reason-

able first approximation, the additional part Sz - <SZ> introducedg

here must be self consistently small at all temperatures. This

requirement can be satisfied if a I at low temperatures and2f

if a decreases at least as fast as <S > at high temperatures.

Callen's choice of a = <SZ>/2S2 incorporates both these features.

In order to look for an improvement over these approximations,

we proceed as follows. Rather than decoupli Green functions

zcS(t) S+(t); C~n)(t,»an s()S(tt'aaeliw

notice that in equation (3.5) the relevant expression, p(n), to

be decoupled is a function of the difference of these Green

functions, i.e.

0%11.
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Because of the translational and the time invariance of the

Hamiltonian and the translational invariance of the lattice, P(n)

must be a function of the vector spatial separation (g-L) and the

time difference (t-t'), i.e.

= F_ (Ca--L tt) (3.8)b

In the R.P.A. the function F(n) takes the following simple form21

F'KO-Lt~tt) Ct3! (3-9)

In view of the fact that the R.P.A. constitutes a reasonable

first approximation, we propose to investigate a decoupling scheme

of the form:

- t -t (.10)

2

where A(n) represents the corrections to the R.P.A.

Introducing (3.10) into (3.5) we get the equation of motion

in the following form: £G'4 •- E.3 (jc-t•) -

-+.- > L-U% (3. 1 )
IiLf SIL t

The translational invariance dictates Fourier transformation

with respect to the inverse lattice, i.e.

KC

N

-W)
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where N is the total number of sites in the lattice and the inverse

lattice sums are restricted to the first Brillouin zone. Fourier

transformation with respect to the energy E is also possible, i.e.
L •t , (3.15)

4, (3.16)

Using (3.12) - (3.17), equation (3.11) takes the form

T1K i q E) =~ Aýn KE (3.18)
K

where Ek is the elementary excitation energy obtained in the R.P.A.

(compare equation (3.11) of reference 21.), i.e.

E K = • ÷ <( > 0(o, K) (3.19)

Here we have used the notation

- ,,(3.20)

UCK) - ;(IK') = (L C) (3.21)

It is clear that in a simple mass operatorjapproximation, the

correction A(n) will be of the form:

(3.22)
A ta ý,Ca)

K ThiK
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where E(n)(E), in general, would be complex and would not involve

terms proportional to the inverse of (n)(,). Recently, Wortis 5

has carried out a careful diagrammatic study of the structure of

the Green function approximations in the context of thermodynamic

perturbation theory relevant to the low temperatures. He observes

that the Green function pertaining to the spin problems does not,

in general, have the structure common to Green functions for

normal particle systems and consequently, the mass operator - the

generalized analogue of (n) (E) defined in (3.22) - has an anomalous

structure unique to the spin systems. In fact, Wortis notes that

whereas in the case of the normal particle systems the mass operator

is a functional of the Green function G(n)- for the spin systems an

effective mass operator must be considered to be a functional also

of the inverse of the Green function. (Compare argument leading to

equation (5.5) of reference 5). For the present purposes, it is

convenient to extract the part proportional to the inverse of

G(n)(E) from the generalized, effective mass operator, i.e.

k (3.23)

Here D(n) is a function of the system temperature and of the

variables n, k and E, and M(k;E) is the analogue of the usual mass

operator. In order to gain some insight into the form of D(n), we

Fourier transform (3.23) as follows:

- ~;i*~.s /sc \
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A convenient starting approximation for D(n) can now be arrived at

if we refer to equations (3.10) and b.ll). It is reasonable to

assume that because of the discontinuous nature of the Green function

in the time variable (t-t') - refer equations (2.1) - (2.4) - A(n)

will also be a discontinuous function of (twt'). The first term on

the r.h.s. of equation (3.24) already incorporates this discontinuity

because of the presence of the Green function G(n). A delta function

dependence would therefore seem to suggest itself for the remaining

term D(n), i.e.

.L •t-•) -- 4 't•- , -), (•,CT) (3.25)

where Y(T) is an arbitrary function of the temperature T, R(g-l) is

a suitable function of the vector g-• and the temperature. Here

Q(n) has been introduced for convenience in later calculations

and is the same as in (3.6). Equations (3.25), (3.10) and (3.8),.

contain the essentials of the form of the basic approximation of

our theory. Introducing these into the equation of motion (3.5)

and carrying out the Fourier transformations described in (3.12) -

(3.17) we finally get:

. - M 003 &,(K) -. (' &)[1,t Yet) , (Y .3 (3.26)

(compare, equation (3.18).

In view of the fact that the Fourier transform of the Green

function, G(n)(E), has poles at E - + N(E), we may recognize
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it to be the analogue of the elementary excitations of the system

(see ref. 20 for a discussion of this point). In generak MN(E),

which represents the shift of the true energy spectrum from that

obtained in the R.P.A., will be complex. For the present purposes,

however, the imaginary part of Mk(E) will be ignored. It should be

emphasized that strictly speaking the damping is a very important

parameter of the system excitation. It determines, in fact, the

limits of the applicability of the concept of quasi-stationarity

with regard to the elementary excitation. One cannot, therefore,

claim with any certainty that the excitation Ek thus chosen re-

presents the true elementary excitation of the system until it

can be ascertained that the associated damping can be neglected.

At low temperatures, the applicability of this concept is not in

doubt because the associated damping4 is much smaller than

Bearing in mind this conditional interpretation of Ek, we may

proceed as follows:

From equations (3.26) and (2.6) and the identity that for

real E and Ek

L;.1 (3.27)

we get the following expression for the static correlation function

of C(n) and S:
Z g

09(KYT)t (3.28)

where4%
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-- (3.30)

and

E' - -C(E) (3.31)

Considering the fact that

S'SL s - - s- (S' (3.32)

when 9. g, equation (3.31) contains both on the left and right-

hand sides a sum of averages of powers S z. We can therefore write
z

down 2S independent, simUltaneous linear equations in <S>,

<(SZ)i, ...... , <(SZ )2S> by putting n in equation (3.28) equal to

1, 2, 3, ... , 2S consecutively. The equations with n>2S are

not independent of the earlier ones because of the following

operator relation satisfied by the spin operators:

1TTr. a4ý) 0 (3.33)

where r takes on integral or half-odd-integral values according

as S is integral or half-odd-integral.

The results for the average <S can be written as follows:*

where

1=1

*Similar expressions were empirically arrived at28 after solving

explicitly the 2S simultaneous equations for several different

values of S. Callen" has since derived these results by a much

more elegant method.
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The expression for the average <(Sz) 2> can also now be easily

obtained from the relation (3.32).

On i proceeding from equations (3.28) and (3.29) to equations

(3.34), (3.35) we made the following choice for the function R(K):

(3.36)

The reasons for this choice become clear if we study the form of

the transverse correlation function of the spins, L(°)(t-g).

Putting n=O in (3.28) we get:

C; O, . t (3.37)

1XK) t

At low temperatures, where it has already been arguet that of

equation (3.31) will represent the true spin wave dispersion law,

the form of the correlation function L(o)(,t -g) is known from the

spin wave theory. It is known 29 that for2,4 g, this correlation

function is, to a good approximation, given by the first term on

the right-hand side of (3.37). Therefore, a convenient choice

for R(k) is given in (3.36) because then the remaining term in

(3.37) contributes only when t . g, i.e. L(°)(A-g)

= < R + < Y(T) .- (3.38)

N
Having thus specified, up to an arbitrary temperature

dependent parameter y(T), the form of the function D(n) of

equation (3.24) we investigate the function mk(k). Once again

we invoke a result known from the rigorous spin wave theory that

at low temperatures

^0 T.
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(compare equation (3.7) of reference 4). This suggests the

following form for M(Ek):

C E_ oo TjK) 06 (3.40)

where 0-(T) is to be a temperature dependent parameter such that in

the limit of low temperatures cr(T) approaches unity. Equations

(3.28) -(3.31), (3.34)- (3.35) and (3.40) constitute a set of

coupled equations which must be solved self consistently to determine

the magnetization and the transverse correlation function.

The formalism developed so far is valid irrespective of the

lattice structure and the spatial dependence of the exchange integral

I(g-f). In order to facilitate the comparison with the results of

other theories we shall, in what follows, restrict consideration

to lattices of cubic symmetry with nearest neighbor exchange inter-

action.

-I , if f and g are nearest neighbors,

So, (3.41)

With these simplifying assumptions, the elementary excitation energies

Ek, of equations (3.31) and (3.40),take the following simple form;

old*

t St(.2
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4. THE LOW TEMPERATURE REGION

In this section we analyze the results appropriate to tern,

peratures low compared to the Curie temperature.

At these temperatures the magnetization is close to the

saturation value and the average <A is little different from S.

The function • therefore is small compared with unity and equation

(3.34) can be expanded in powers of i to give

.a, 10VSX,%.S+3, (%.+ )
~i$÷ A aS~iA • as*2.a+$

So far the arbitrary function y'(T) remains unspecified. It is

clear from the definition of 1 (see eqns. (3.30, (3.42) with

T(T) = 1) and eqn. (3.35) that at low temperatures-it is the

strict analogue of the thermodynamic average of the number of

spin waves excited per lattice site. This requires

T << Tc

and therefore y'(T) is completely specified:

%S (4.4)
'. . A A

As expected, y'(T) is small and decreases rapidly with the inorease

in S. In fact, y'(T) is significant only for S'-.l. Thus the simple

mnss operator approximation, which ignores y', is sufficient for

large S.



- 18 -

The calculation of E involves an integration (or rather a

summation) over the inverse lattice vector k'. The integrand,

I(k') J(k'), on the other hand, depends on the form of'".

Therefore an iteration process has to be used. We first calculate

<L, and the integral over k' in equation (3.42), in the R.P.A.

The second iteration is obtained by introducing these results into
z

the expression for Ekand then recalculating <S> and the integral -! IITt1

At low temperatures, this iteration process converges very fast and

it turns out that no further iteration is necessary beyond the first

iteration cycle because the terms not included in the first cycle

contribute in a higher order in the ratio (T/Tc) than the ones

retained.

The results for the spin wave energies, Ek, and the magneti-

zation M(T) are found to be as follows:

M1(T) = 1(0) (5)/s4 (4.6)

where

1 - 1, for simple cubic lattice

- (3/4f)(2)2/ 3 , body-centered cubic

- (2)1/3, face-centered cubic (4.8)

z (4.9)
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O = (3/2 i VZ v.Z%' /

and S , simple cubic

=- , body-centered cubic

288

= 1 5/16, face-centered cubic (4.11)

These results are the same as obtained by Dysonl(neglecting

the small correcticns arising from the 2nd, and the higher, Born ;L

approximation spin wave scattering). The results for the average 0

are obtained in a similar fashion and we get:

S_ 1.(;+) t (. + ÷, 0% tw oi A,4.2

+ 0-

For the case S = 1/2, the r.h.s. of equation (4.12) is exactly

equal to e/4.

Combining equations (3.38), (4.4)-(4.11), we can find the

correlation function of the transverse components of spins appropriate

to the low temperatures,

K
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It will be noticed that (4.13) is actually an improvement on

the spin wave result in that for g -A, it also includes the term

(last one on the r.h.s. of 4.13) which helps fulfill the stringent

requirements of the spin kinematics. For example, for the simplest

case S = 1/2, we have the exact equality

This equality is satisfied by (4.13) whereas the usual spin

wave result, comprising only the first term on the r.h.s. of (4.13),

does not satisfy it.



5. THE HIGH TEMPERATURE REGION

In this section we consider the high temperature expansions

for the susceptibility and the magnetic specific heat.

In the presence of a small magnetic field B, the magneti-

zation, M(T) t is small and is proportional to B. In the limit

B =0, the energy k(see equation 3.42) is therefore proportional

to 0"(T)/B as long as a-(T) does not go to zero faster than B2. It

is clear from the results of references 18, 21, 23 that the correct

high temperature behavior of the zero field susceptibilityp%)re-
zquires the proportionality of Ek toS >. Therefore, it is con-

venient to put

0- T ) = Z~ N(Ti) (5.1)

where A(T) is a function of the temperature and is to be non-

infinite, i.e. small compared with (1/B). The energies Ek thus are

(see 3.42) of the following form:

^F a, = 1  A• (,> :"C04X) A(IJ+ X(T. (5.2)

where ( .)

XCT) = P (i T(K)/7e ) (5.3)

and L(o)(k') is the Fourier transform of the transverse correlation

function L(O)(1-g) given in (3.38). As the self exchange integral

I(f-f) has been taken to zero, the sum ZJ(k') vanishes and

therefore (5.3) is independent of any explicit dependence on y(T).
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In this temperature range the quantity lis large compared with

unity. Therefore equation (.3i3) can be expanded in inverse

powers of to give

<•>- 44 sc y ][I-( -i)'.

The zero field susceptibility, X, is therefore given by the

following a

6 L (5.6)
Sao

where we have assumed that a reasonable choice of y' will be such

that
I -1
(T)• (5.7)

The quantity (.B- 1 ) can be expanded in inverse powers of V
where

Introducing the quantities to and tl,

to a tanh (PEo/2) (5.9)

' tla tPAk9S> T(Oj k )(I + X(cer))/*A 3c.) (5.10)

and using equation (5.2) we can write equation (3.30) as rollowst

-, ,,.
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Expanding the hyperbolic tangent t 1 and ignoring terms pro-

portional to B in comparison with unity we get:

-1 1' (5.12)N V.
*.) Foo

where

F - I_ IT~ ~o,~/,) (5.13)
F Ic

Before discussing further the evaluation of • , we recall that the

R.P.A. (represented here by putting X = 0 and y = 0) yielded the

correct high temperature expansion for the susceptibility, up to,

2and including, terms proportional to ( l/). Therefore y must

involve terms which decrease with temperature at least as fast

as l/T3.

£n order to determine the correct expressions for the two

parameters A(T) and y'(T), we need also to consider the correlation

function L(° 0 (L-,). A general expression for L(o)(t-g) is not

available but the system energy and the magnetic specific heat,

for which exact expansions are known,8,9 depend sensitively on

L(°)(J-g). The computation of the magnetic energy requires know-

ledge of the correlation functions of the transverse as well as the

longitudinal components of spins. In the paramagnetic region,

spatial isotropy requires that in the limit B - 0 the longitudinal

correlation be equal to the transverse one, i.e.

W (5-141)
(>T. ) it
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Thus the magnetic energy, <1>, takes the following simple form

<H (7 312.' Q C*%~)(< .> ý M WE. (5-l5)a

(T ,>TC %ano) f~v^

Combining eqns. (3.38) and (5.2) we get the average magnetic energy

per ion

Thus the magnetic energy is explicitly independent of the parameter

Y'(T) and depends only the parameter A(T) (or X(T) ).

The procedure for the determination of A(T) and Y'(T) is now

clear. We choose A(T) first to achieve agreement of eqn.

with the result of the known high temperature expansion for the

magnetic energy. y'(T) is to be chosen next by fitting the sus-

ceptibility expansion of eqns. (5.6), (5.12) with the exact one.

Using eqn. (5.11), eqn. (5.15)b can be expanded in inverse

powers of Y to give

where

L= (5.17)

and F(r) is as in (5.13).

The sums F(r) depend only on the crystal structure and can

be calculated easily for r>O. (see Appendix A.) The quantity

is proportional to the zero field susceptibility for which the

exact expansion is known.
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After a little tlgebra one can now determine the high tem-

perature expansion for X(T) such that agreement between eqn. (5.15)b

and the exact expansion for the magnetic energy is obtained. Below

we give the results for the two leading terms in the expansions for

X(T) and the related quantity A(T). (f..eqns. 5.1 and 5.3)

X()0 1 (5.18)

where

S- (5.19)06

(5. IS) t

(iO3),,: 29.630 f.c.c.; 52.778 b.c.c; 69.136 simple cubic

(5. I9)r

and where z denotes the number of nearest neighbors. Similarly,

we have

t At/, " (5.20)

A. • - 9 /a ,te S+I,, .,

W \. f.l,.,, a.rw€•i .m,+ Ir (5.211
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These expansions are sufficient to achieve agreement for the
4

magnetic specific heat calculated from (5.15) to the order (1/0f)

The susceptibility expansion (see eqns. 5.6 and 5.12) can now

be similarly derived by using the above results for X(T). An in-

teresting fact observed is that agreement of the leading three terms

in the 1/y expansion for ) is obtained without any assistance from

the parameter Y'(T). The fourth term is in agreement with the exact

results only for large values of S.

This, once again, demonstrates that the simple mass operator

type approximation, y'li~ is sufficient to describe the behavior

of spin Green functions in the limit of large spins. For general

S the y•'(T) necessary to achieve agreement for the susceptibility

up to and including the term proportional to (1/,y) 4, are as follows:

3 3 ii.)~~~.I~Sc, (5.23)

As long as the exact results for the susceptibility and the magnetic

specific heat are available for comparison, the fore-going procedure

can be used to determine X(T) and y'(T), and thus the dynamical

spin correlation functions, to any order in 1/Y.
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6. Temperatures Close to Tc

Unlike the case of the very low or the very high temperatures,

no rigorous expansions for thermodynamic functions exist for the

range of intermediate temperatures in the vicinity of the Curie

point. It is therefore difficult to construct a formalism which

relies on the knowledge of these expansions for the determination

of the arbitrary constants *(T) and %(T).

A number of results are, however, known for the transition

temperature itself. For instance, the high temperature series

extrapolation techniques8,9 provide fairly accurate estimates for

the Curie temperature, Tc, as a function of the exchange integral,

I. Similarly, the magnetic energy at the critical point, <1>c, can

also be estimated by these methods. It turns out that these

estimates can be used to get information about the functions a(T)

and Y(T) in this temperature range. This investigation forms the

contents of the present section.

In the absence of applied magnetic field,(i\1 B - 0, the

magnetization M(T), and therefore <SZ>, is small and # (being,

under these conditions, proportional to the inverse of <SZ>)is

large. Eqn. (3.34) can therefore again be expanded in inverse

powers of f . The most convenient expansion, it turns out, is the

following (compare eqns. 5.4 and 5.5):

5 ~ a cw. .j. -- (, -.A~4~)~ 61)

where

+I, S +SP 6 3

I o
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The energies k can once again be written in the form (5.2). However 1

the parameters A(T) and X(T), defined in equations (5.1) and (5.3),

will in general have different temperature dependence from that

determined in the previous section. The appropriate expansion for

equation (3.30) is now the following (compare (5.11) ):

45-

where

AAý -M e~> ý*-Jb (6.5)

Combining equations (6.1)-(6.5) we get:

La sc•fl),k - Fc- T - ;&P c-r)]
2 ÷,XC~ +t 0. ¢, + ,

*i- T F ' "(6.6)

where we have used the notation:

TC) - 45> . Y(T) (6.7)
The fummation F(-l) (see equation 5.13) is well known 30 and has

the following values:

F(-l) = 1.34466, f.c.c.; 1.39320, b.c.c.; 1. 51638, s.c. (6.8)

The Curie temperature, Tc, is obtained by requiring that (since
z

B - *) <S>-4 0 as T approached Tc from below. Thus (6.6) gives:

"& k-L)3 -,) -,

We find, empirically, that an extremely good fit of the results

following from (6.9) with those known from references 8 and 9 oan

be obtained (refer Tables I, II, III) if we have:
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A 113I 3.T I k3S(6.10)

Eqn. (6.10) contains two constants, X(Tc) and T(Tc). In order to

specify these completely, we also need the expression for the critical

value of the magnetic energy• <H>T.Tc* Using eqns. (5.15)a,b, ex-

panding ((k) in powers of <S- (cf., eqn. 5.16), and proceeding to
z

the limit <S> = o we get:

__= 3, !"] (.i

EC - ,

If the results for (MA/ITC) were available for all values of S and

z, equations (6.10) and (6.11) would determind X(Tc) and r(Tc).

This, however, is not the case.

It is convenient, at this point, to establish a correspondence

between the present work and that of ref. 23. Callen achieves a

mass operator type solution which, in our notation, is equivalent

to putting (at all temperatures):

F(T) ~~ - 'a '' Y(T) I § (6.12)

At low temperatures, our results were obtained by choosing

A(T) =(I/2Slf. eqns. 3.40 and 5.1) and y(T)a*(T/Tc)3S+3/2.

Encouraged by this correspondence we postulate

A~C)a (6.13)

However, unlike Callen we retain the anomalous contribution of the

mass operator~y(T). Inserting eqn. (5.1) into (5.3) and putting

T = To we now get
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=T F-)-1 (6.14f)

The quantity(8(BT) can easily be calculated from eqns. (6.11)

and (6.14) and the results are listed in Tables IV, V, and VI.

We notice that these results are in good agreement with those

available from reference 9 and are a considerable improvement on

those following from the R.P.A.

The parameter rTc) is now completely determined and may

easily be obtained with the use of equation (6.10) and X(Tc) given

in Tables IV-VI.

We shall consider next the behavior of the parallel suscepti-

bility at temperatures Just beyond the Curie point. It is con-

venient here to recast equation (6.1) into the following form:

'I~"CS*I) > s~¶.s(i)2.] jd (6.115)
' > A S- (si

Let us put

X (6.16)

where C is proportional to the zero field susceptibility X;

(6.17)

Introducing (6.17) into (6.1S), expanding • , and proceeding to

the limit E0 o we get:

.~. j~ssti)- ~~c~r~ -(6.18)
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Eqns. (6.9) and (6.10), which define the Curie temperature, To,

can be rewritten as follows:

scw N (6.19)

Subtracting (6.16) from (6.19) and carrying out the summations over

k (see Appendix B) we find that just beyond To the susceptibility

Shas the following form:

+ &51 PrT (6.20)

where

If we follow the R.P.A. and the Callen assumption and put r(T) - o,

or alternatively, if we make the approximation that in the vininity

of Tc, r(T) is equal to r(Tc), we find that (6.2o) leads to the

folluwing

(6.22)

This result is similar to that of the spherical model31 and was

earlier obtained for the spin 1/2 case by Englert21 and by .Ka~asaki

and Mor 3 2 . Within the above approximation we can also 'find)Just

below the Curie temperature from eqn. (6.6).

P. 1 -IT/.) 0.0(23
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where

____3 (6.24)

(compare ref. 21).

The above result is similar in form to that of the molecular field

approximation (M.F.A.)

ES L

where9O is the Curie temperature in the M.F.A.

Recently Domb and Sykes9 have reported, after a painstaking

examination of the systematics of the extrapolation of high tem-

perature series, that Just beyond To the zero field susceptibility,

obeys a relation of the form
.4/s(6.26)

where A is a constant independent of the temperature. It is there-

fore clear that the approximation r(T) = LITc), which led to the

result (6.2?), is unsatisfactory. In order to secure agreement of

our result of eqn. (6.0) and the above result, (6.Lt), the function

AT), in the immediate vicinity of Tc, has to satisfy the following

relation

,3scs )[L PPT) (6.
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which is equivalent to putting:
P(T-,-) = 'l -,(,/,(6.1-7)b

3 S Ott)

where C is a constant independent of the temperature and n > 4/3.

Having thus inferred the form of r(T) close to Tc, we utilize

it in the determination of the magnetization Just below the Curie

temperature. Inserting eqn. (6 .27)b into (6.6) we get:

Sc S-1) G:ti)U-Rm XCt-•J -,+ 4C.,] (6.28)

Using eqns. (3.35), (3.38), (5.3), (6.4) and (6.131),
- Z

X(T) can easily be expanded in powers of <S> and we'get:

(T T/ 1)- - 4 )(6.29)

(compare eqn. 6.14). or L" •

and thereforp 2

""-L - (6.30)

Thus to the leading power in the difference (1-T/Tc) we may replace

X(T) by X(Tc) in (6.28). Eqn. (6.28) now easily leads to the result
.'> = k + (,-r,/(6.31)

where K is to be a real quantity and is related to the constant C

of eqn. (6 .27)b by the relation:

S <. =5 e )K., -.. (6.32)
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APPENDIX A

The inverse lattice sums in equation (5.13) have to be re-

stricted to the first Brillouin zone. It is convenient therefore

to transform the function J(o,k)/J(o) to a system of coordinates

such that the integration limits are simplified (the boundary of the

Brillouin zone in the cases of b.c.c. and f.c.c. lattices is somewhat

complicated being respecively similar in structure to f.c.c. and

b.c.c. lattices). This is done by choosing the coordinate axes in

the direction of the basis-vectors of the reciprocal lattice space,

(for the basis vectors see reference 33). It turns out that

7(0K)/yc,) 0.= L5 - Cosk C~OS k?, - Coks3K

4-C CC.

(A.1)

where, since the Jacobian is unity for the above transformation, we

use the following •scription for changing sums into integrals:

- , -ZKI -A4
fI3 (A.2)

The sums F(r) of equation (S13) are now elementary. The results

for the first several cases are tabulated below:
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F(r) f.c.c. b.o.. B.o.
*- 1 1.000 000. 1.000 000 1.000 000
*. 2 1.083 333 1.125 000 1.166 667
r - 3 1.222 222 1.375 000 1.500 000
r - 4 1.414 931 1.802 734 2.069 444
r - 5 1.668 403 2.513 672 3.013 889
r - 6 1.995 049 3.696 533 4.581 533
r - 7 2.412 423 5.684 326 7.209 619
* - 8 2.943 934 9.066 343 11.670 664
*=1 9 3.620 184 14.892 007 19.338 445
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APPENDIX B

In the vicinity of Tc, the difference between X(T) and X(To) is of

the order <S2 (see Eqn. (6.3,0 Therefore, subtracting eqn. (6.20)

from eqn. (6.21) we get for temperatures Just above the Curie tempera-

ture

. SCSt' 1)/33t Cf - ptV'Žt2) '(pcr),T) (Tc'/T']

7-P N' 7I cj)] LV.+ 'jcaj]cOj.ak) (B-i)

where

V|
V AO: [I+.K T)3k(B-2)

The inverse lattice summation in (B-i) can be approximately

performed as follows. As the susceptibility X is largeV 4j2 is

small compared with unity. The dominant contribution to the summation

therefore comes from small values of k. As a rough approximation we

may therefore extend the integration limits to the whole of the

k-space and also use the long wave length approximation for J(o,k),

i.e.

J(O,k) - I(ja 2 ) + O0Ika) 4  (B-3)

where the nearest neighbor distance has been taken to be 6i(/z-J(z

is the coordination number). In this manner we have:

where v is the volume per ion (v - a3, A.0.; a3/2, b.c.c.; a3/40

f.c.c.).

Therefore, eqns. (B-i) and (6.20) give -4

t~) . . . ... . .... .. . . "T .. .. ... . ... . . . . . . ....
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TABLE II THE BODY-CENTED CUBIC LATTICE

1'KBc Rushbroolce ETO LK K..A
S and ,Ou,,B') 0allon

(iT Wood

1/2 2.60 SL60 A.*87 3.7

1 7.55 7.66 7.66 9.1

3/2 14.7 14.81 14.36 16.6

2 23.9 24.05 22.97 26.2

5/2 35.2 35.39 33.50 37.9

3 48.5 48.82 45.94 51.7

S-" 2(3 TCO = 0.752, Rushbrooke and Wood

0 )s( S+1), = 0,785, (Ours and Callen's)

= 0.718, Random phase Approx.

TABLE III THE SIMPLE CUBIC LATTICE

T0  Rushbrooke /KBTO \K (IO) enS and C Ours 3;h)R.P.A. c alln
Wood t ) (ýA

1/2 1.7 1.75 1.98 2.7

1 5.25 5.28 5.28 6.5

3/2 10.2 10.27 9.89 11.8

2 16.65 16.73 15.83 18.5

/2 24.75 24.65 23.08 26.8

3 33.9 34.04 31.65 36.4

Lim 3 KBTc
S-.. - 0.716, Rushbrooke and Wood

23(0)S(S+1) - 0.734, (Ours and Callen's)

- 0.659, Random phame approx.



TABLE IV THE FACE-CENTEED LATTICE

I- - 0.517, for all SKBTc R.P.A.

_ c ours ( Domb and Sykes X(Tc)

1/2 0. 433 0.4f39 0.195

1 o.450 0.449 0.150

3/2 o.456 - 0.130

2 0.463 - o.116

5/2 o.465 - 0.113

3 o.467 - 0.108

o.476 o.474 0.085

TABLE V THE BODY-CENTERED CUBIC LATTICE

(-ETc R.P.A.= 0.590, for all S.

sK X(Tc)

1/2 o.487 0.211

1 0.508 0.160

3/2 0.517 o.141

2 0.522 0.130

5/2 0.525 0.123

3 0.528 o.118

0.539 O. 094



TABLE VI THE SIMPLE CUMIC LATTICE

(-E C/KBT) R.-P._A. 0.775

s (-E C/BT) X(Tc)

1/2 o.626 0.237

1 0.651 0.190

3/2 o.664 o.167

2 o.671 0.155

5/2 0.674 o.149

3 0.678 o.142

0.695 o.114
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