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ABSTRACT

The available experimental data on the mechanical behavior of the body
centered cubic (b.c.c.) transition metals at low temperatures (< 0.25 Tm)
are reviewed and analyzed to establish the rate-controlling mechanism
responsible for the strong temperature and the strain-rate dependence of

the yield and flow stresses. The activation energy, H, activation volume,
v*, and frequency factor, v, were determined as a function of the thermal
component of the stress, t*. It was found that Ho (%=1 kg/mmz) ~0,1 pb3,
where p is the shear modulus and b the Burgers vector; v¥ = 50 b™ at

3

TR = 2 kg/mmz, increasing rapidly to values in excess of 100 b~ at lower

stresses and decreasing to 2-5 b3 at high stresses (50-60 kg/mmz); and

v = 106 - 10lz sec-l, the higher values of v generally being associated with
the purer materials. H and v*, as a function of stress, were independent of
structure. This along with other observations indicates that the thermally-
activated overcoming of the Peierls-Nabarro stress is the rate-controlling
mechanism. The values of Ho and the change in H with stress at low
stresses are in agreement with those predicted by Seeger's model for the
nucleation of kinks. The Peierls-Nabarro stress and kink energy derived
from the experimental data are approximately lO'Zp and 4 x 10-2 p,b3,

respectively.

The experimental data suggest that the yield point in the b.c.c. metals is
associated with the sudden multiplication of dislocations by the double
cross-slip mechanism, which in turn is controlled by the motion of disloca-
tions through the lattice. Stress-strain curves for mild steel calculated on
the basis of this mechanism are in good agreement with the experimental

curves.
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I. INTRODUCTION

A distinguishing feature of the body centeredcubic (b.c.c.) metals, as
compared to the close packed hexagonal (c.p.h.), and face centered cubic
(f.c.c.) metals, is the strong effect of temperature and of strain rate on

the yield stress at low temperatures (T <0, 2 Tm’ where T is the test
temperature and Tm is the melting temperature), Figs. 1 and 2. An
understanding of this difference is of technological, as well as of scientific
interest, because the ductile-to-brittle transition in the b. c.c. metals is
related to the strong temperature and to the strong strain-rate dependence of

the yield stress.

A number of thermally-activated dislocation mechanisms have been proposed
to account for the strong temperature and for the strong strain-rate dependence

of the yield stress of the b.c.c. metals. In chronological order, these are:

a) breaking away from an interstitial atmosphere (Refs. 1-4)
b) overcoming of the Peierls-Nabarro stress (Refs. 5-9)'f

c) nonconservative motion of jogs (Refs. 11-13)

d) overcoming of the interstitial precipitates (Ref. 14)

e) cross-slip (Ref. 15)

There is some experimental support for each of these mechanisms, which
makes it difficult to decide which one is actually rate-controlling. From a
review of the experimental data for iron available at the time, Conrad
(Ref. 6) concluded that the best overall agreement was for the thermally-

activated overcoming of the Peierls -Nabarro stress. Subsequent research

THeslop and Petch (Ref. 10) first suggested that the strong temperature
dependence of the yield and flow stress in iron might be due to a high
Peierls-Nabarro stress. However, they attributed the temperature
dependence to a change in width of the dislocation with temperature rather
than the contribution of thermal fluctuations to overcoming of the Peierls-
Nabarro stress. Their suggestion does not account for the strong effect
of strain rate on the yield stress.
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on iron (Refs. 8, 16) supported this conclusion. Recently, Conrad and
Hayes (Ref. 9) analyzed the available data for the Group VA (V, Nb, Ta)
and Group VIA (Cr, Mo, W) metals and again concluded that the rate-
controlling mechanism at low temperatures was overcoming the Peierls-
Nabarro stress. A similar conclusion was reached by Basinski and
Christian (Ref. 5) for iron and by Christian and Masters (Ref. 7) for the
Group VA metals.

In the present paper, pertinent data for all the b.c.c. transition metals
are reviewed (including some of the more recent data, Refs. 7, 13, 17-19),
and the rate-controlling mechanism during low temperature deformation is

re-examined.
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II. EXPERIMENTAL DATA

A. EFFECT OF TEMPERATURE ON YIELD AND FLOW STRESSES

1. Microdeformation

6 1

and a strain rate of ~10"> gec”},
Brown and Ekvall (Ref. 15) found that the stress-strain behavior of ultrapure
(~0.004 wt % interstitials) and impure (~ 0. 04 wt % interstitials) iron con-
sisted of three distinct regions, Fig. 3.

Employing a strain sensitivity of 4 x 10°

o'ET is the stress where a hysteresis loop is first observed upon loading and
unloading and represents the first evidence of dislocation motion. op was
only observed after previous straining (¢ = 10'4 to5x lO'z)u

Ta is the stress at which a permanent strain first occurs, i.e., the lowest
stress at which the hysteresisloop does not close. This is generally the
same as the stress at which a deviation from linearity can be measured and
is usually called the proportional limit.

Tp is commonly called yield or flow stress.

Brown and Ekvall (Ref. 15) found that op Was independent of temperature
(between 300° and 78°K) for the impure and pure irons. The variation of ¢ A
with temperature is shown in Fig. 4. ¢ A for the locked state (undeformed
impure iron) here exhibits about the same temperature dependence as that
previously reported (Refs. 20, 21) for the lower yield stress (of annealed or
strain-aged states) and the nubnec}uent flow stress of various impure irons
(C+N >0.015 wt %) and -teell.T On the other hand, Th for the unlocked
(deformed) state has a lower temperature dependence than for yielding or for

TThroughout the present paper ¢ will be used to designate tensile stress and
v shear stress. It will be assumed that v = 1/2 ¢. Similarly, ¢ is the
tensile strain rate and y the shear strain rate; v = 0.7 ¢.

"Data on the other b.c.c. metals also indicate that the proportional limit
of annealed impure (> 0.02 wt % interstitials) material has a temperature
dependence similar to that for the subsequent yisld and flow stresses
(Refs. 9, 20).
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subsequent flow. Additional evidence that the proportional limit, ¢ A after

prestraining has a weaker temperature dependence than the flow stress, Tps
of iron has been reported by Conrad and Frederick (Ref. 8), Fig. 5, and by

Kitajima (Ref. 22).

2. Macrodeformation

The yield or flow stress, T, of b.c.c. metals can be considered to consist
of three components (Refs. 6, 10, 20, 21):

o TETHT) 4T 4 Ka~1/2 (1)

% is the thermal component which depends on temperature, T, and strain
rate, y, and is associated with thermally-assisted overcoming of short-
range obstacles. T represents the athermal component associated with
long-range stress fields, is independent of strain rate, and varies with
temlln;;ature only through the temperature variation of the shear modulus, .
Kd~

of the plot of the yield or flow stress versus the reciprocal of the square

is the component representing the grain size effect. K is the slope

root of the grain size, d, and for annealed impure material it is relatively
independent of temperature and strain rate when compared to v* (Refs. 21,
23-26). When K is independent of grain size, Kd~1/2 gives the Hall-Petch
relation (Refs. 27, 28). However, there are indications (Ref. 29) that K,
for both the lower-yield stress and flow stress, is a function of the grain
size, and therefore the effect of grain size is not given by the simple
Hall-Petch equation.

In the present discussion, we are principally concerned with the effect of
temperature on the thermal component, t*, and wish to separate it from
the others. This is accomplished by subtracting the stress at a given
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temperature, T, from that at some reference temperature ° (Refs. 6, 20),
assuming that K is relatively independent of temperature, i.e.,

Ty - Tpo = THT,Y) - THTC, ) = ATH(T,Y) (2)
Typical results on iron and tungsten are shown in Figs. 5 and 6. Similar
plots have been developed previously for iron (Ref. 20) and the Group VA
and VIA metals (Refs. 9, 20). t%* as a function of temperature is then
derived from such plots by taking % = 0 at the temperature TO’ obtained

by extrapolating plots of log (31%/87) versus T to a value of ~5 x 10°3
kg/(mm? - °K), where [(1/7)(d+/dT)]®[(1/1)(d/dT)] and hence T .
(d1%/9T is obtained by graphical differentiation of average curves ai:aila.r
to those in Figs. 5 and 6.) Plots of v* for yielding versus temperature for
a strain rate of ~10'4 sec"1 derived in this manner from the available
experimental data are given in Figs. 7-9. It is seen here that for the

Group VA metals the variation of % with temperature is relatively independ-
ent of purity and grain size (i.e., whether the specimen is single or
polycrystalline), while for the Group VIA metals and iron, T% as a function
of temperature is clearly dependent on purity and grain size. For the

Group VIA metals and iron, the upper limit of v* at a given temperature is
for polycrystals with interstitial contents 2 0.02 wt %; the lower limit is

for single crystals and polycrystals with less than 0.005 wt % interstitials.
Single crystals and polycrystals with intermediate impurity levels exhibited
a variation of T* with temperature between these two limits. In general,

for the impure materials, t* at a given temperature was less for single
crystals than for polycrystals of the same impurity content. Figures 5 and
10 show that previous thermal treatment and deformation may also influence

the temperature dependence of r*.

Values of T, (to the nearest 50°K) for a strain rate of 1074 sec! are given

in Table 1. For the Group VIA metals and iron, To for the pure materials
is less than that for the impure materials, whereas for the Group V metals



there is no significant effect of impurity content on TO‘ This difference and
the difference in the effect of impurity content on the temperature dependence
of T* may be related to the higher solubility of interstitials in the Group VA
metals compared to the Group VIA metals and iron.

Table 1. Values of T, and the Ratio of TO/ T, for
Pure and Impure B.C.C. Metals

o T, °K To/ T

Metal T K Pure . Impure Pure . rJI.?mpure
v 2137 - 500 c—ew 0.23
Nb 2741 500 500 0.18 0.18
Ta 3269 600 600 0.18 0.18
Cr 2148 -——- 500 - 0.26
Mo 2883 450 700 0.16 0.24
w 3683 500 850 0.14 0.23
Fe 1810 300 350 0.16 0.19

Pure b.c.c. metals (< 0,005 wt % interstitials)

Impure b.c.c. metals (> 0.02 wt % interstitials)

Strain rate 107 gec~

From Table 1 it is seen that the ratio TO/Tm is 0.22 = 0.04 for all impure
polycrystalline b.c.c. metals. In a previous paper (Ref. 9) it was shown
that the yield stresses of all the impure polycrystalline b.c.c. metals
correlate rather well on a single curve when t% is plotted versus the

parameter (T - To)/Tm.

Values of 'rg obtained by extrapolating the curves of Figs. 7-9 to 0°K are
given in Table 2. Because of the rapid increase in t* at very low tem-
peratures, there is some uncertainty associated with these values. However,
if one plots the logarithm of v#* versus temperature, an approximately linear
region occurs at low temperatures (Fig. 11) allowing for an easier
extrapolation, Extrapolation of this linear region to 0°K gives values of 'rz
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slightly higher than those based on the linear plots, Table 2, Both methods
yield values of ¥ of the order of 1072y,

Table 2. Values of -r; Obtained by Extrapolating 7* to 0°k

B 'r:. kg/mmz -rg(Avg)/p.
Metal 3 2 -
x 107 kg/mm” | 1% vs T|log v* vs T |H ve log % | Avg x 10
\'4 5.2 60 65 60 62 1.19
Nb 4.0 58 65 60 61 1.52
Ta 7.0 60 67 80 69 0.99
Cr 11.4 79 90 80 83 0.73
Mo 12.7 78 105 85 89 0.70
w 15.7 100 165 100 22 0.78
Fe 7.4 49 65 60 J158 0.78
un = 3/8 E, where E is Young's modulus at 300°K (Tietz and Wilson,
Ref. 30).

B. EFFECT OF STRAIN RATE ON THE YIELD AND FLOW STRESSES

In Fig. 2 the typical variation of the strain-rate parameter, Ao/Aln ¢

(Ao is the incremental increase in yield or flow stress for an increase in
strain rate from il to € z), with temperature for the b.c.c. metals is
shown.T It initially increases with decrease in temperature below TO’ goes
through a maximum, and then decreases again, approaching zero as the
temperature goes to absolute zero. It depends on structure (i.e., on
impurities and on thermal and mechanical history) in a similar manner, as
does the parameter AT*/AT; e.g., compare the effect of strain on
Ac/Alné and on AT*/AT for iron in Figs. 2 and 5.

TMore detailed data on the variation of Ac/Aln i with temperature are
found in Refs., 5, 7, 8, and 13,




Another type of experiment which also gives the relationship between the
yield stress and strain rate is the so-called delay~time test employed by
Wood and Clark (Ref. 31) and Kraft and Sullivan (Ref. 32). In general, the
parameter Ag/Alnt g Where t, is the delay time for yielding, obtained
from such tests has a similar value and exhibits the same trends as does
the parameter Ag/Aln é.

C. ACTIVATION ENERGY, ACTIVATION VOLUME, AND FREQUENCY
FACTOR FOR DEFORMATION

1. General

It is now generally accepted that the deformation of metals may be thermally
activated, and if a single mechanism is rate-controlling one can write for
the shear strain rate vy

v = pbs = pbsv* exp[- E%i,—'r)-] (3)

where p is the density of dislocations contributing to the deformation, b the
Burgers vector, § the average velocity of the dislocations, s the product of
the number of places where thermal activation can occur per unit length of
dislocation and the area swept our per successful thermal fluctuation, v*
the frequency of vibration of the dislocation segment involved in the thermal
activation, and H the activation enthalpy (energy) which may be a function
of the shear stress, T, and the temperature, T. For the b.c.c. metals, it
has been established (Refs. 6, 8, 9, 16) that H is primarily a function of the
effective shear stress, 7% (i.e., the thermal component of the yield or flow
stress) given by the difference between the applied stress, T, and the long
range internal stress T4, i.e., 1% = v = Tp. Further, one can show that
(Ref. 33)



_ 9 1ln y/v ) [(0r*
el e) () >

Rearranging Eq. 3 and differentiating

dH _ {0 1n y/v
arr—Raltl )T (5)

_kin (y/
= ——-}}—l( a:; T‘;? (5b)

where v = pbgv* and -dH/dr* is defined as the activation volume, v*. The

value of v can be obtained from the relations

H=kT In (%) (6a)
or
A9 ) n(s)

i.e., from the slope of a plot of H versus T or a plot of (a-r*laT)q versus
(1/T)O7/d In \'()T. If v is relatively independent of temperature and stress
per se, the values of H, v*, and v can then be derived from the relationships
between stress, temperature, and strain rate obtained from the usual

R CRIEEI R S —
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mechanical testtl.T For polycrystalline b.c.c. metals (and also single
crystals), a reasonable assumption is that + = 1/2 ¢, and y = 0.7 ¢, where

o is the tensile stress, and ¢ is the tensile strain; also, (81-*/3T)? is approxi-
mated by (81-/3T)\.(. because d-rp./aT is small compared to (81%/8T).

2. Activation Ener gY» H

The variation of H with 7% obtained from the available experimental data

is shown in Figs. 12-18. Identical results were obtained from the use of
either Eq. (4a) or (4b), supporting the validity of the assumptions inherent
in these equations. The curves drawn in these figures represent the
author's interpretation of the variation of H with t* indicated by the data
points. However, there is some doubt as to whether a change in curvature
actually occurs at the low stress, and for the most part the data suggest
equally well a rather rapid increase in H as v* approaches zero. Of
particular significance in Figs. 12-18 is that, within the scatter of the

data, H as a function of t% is independent of the yielding or flow phenomena ‘
considered (microcreep, delay time, proportional limit, upper yield stress,
flow, and dislocation velocity) and of the structure (impurity content, grain
size, and previous thermal or mechanical history) for a given metal. In
Fig. 19, it is seen that H,, the value of H at v* = 1 kg/mm"”, is approxi-

mately equal to 0.1 ub3, when comparing the various b.c.c. metals. Al

A number of investigators (Refs. 2, 6, 34-36) have reported that the
activation energy for yielding in iron decreases in a linear manner with
the logarithm of the total applied stress, v. For comparison, plots of H

versus log t* are given in Fig. 20 for the various impure polycrystalline

TThe values of H, v*, and the product sv* can also be obtained from
measurements of the effect of stress and temperature on dislocation
velocity by replacing the strain rate, ¢, in Eqs. 4-6 with the velocity, &.

11The shear modulus values were derived from the relation p=3/8E,
where E is the Young's modulus at To. (Ref. 30).

-10-




-

b.c.c. metals.? It is seen here that for such plots there appears to be

two linear regions, one at very low stresses and the other at high stresses,
with a transition region in the vicinity of v* = 1-5 kg/mmz. The slope in
the high stress region is about 10 times that in the low stress region.
Extrapolation of the straight lines at high stresses to H = 0 gives values of
13 in reasonable agreement with those obtained by the other two methods,
Table 2.

3. Activation Volume, v¥*

Typical variation of v* with v* is shown for Ta, W, and Fe in Figs. 21-23,
There was agreement between values obtained from Eq. (5a) and Eq. (5b)
and from graphical differentiation of the curves of Figs. 12-18, except at
the lowest values of t#. Tt It is shown in Fig. 24 that the activation volume
as a function of stress is similar for all the b.c.c. metals. The values
given here were taken from average curves, such as those drawn in

Figs. 21-23. It is seen from Fig. 24 that, for all of the b.c.c. metals, v*
is about 50 b3 at T = 2 kg/mmz, increasing rapidly to values in excess of
100 b3 at lower values of stress and decreasing with stress to values as low
as 2-5 b3. Again, as for H, v* as a function of stress is independent of the
yielding or flow phenomena considered and of the structure, i.e., of

mechanical and thermal history.

4. Frequency Factor, v

Typical proportionality between H and temperature obtained for the b.c.c.
metals is shown in Fig. 25. Plots of the average curves of H vs T for all
the impure polycrystalline b.c.c. metals are given in Fig. 26. Average
values of v derived from such plots for pure (< 0.005 wt %) and impure

(> 0.02 wt %) materials are given in Table 3.

YThe values of H and v+ plotted in Fig. 20 were taken from the average
curves drawn in Figs. 12-18.

T This disagreement will be discussed in a subsequent section.

-11-
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Table 3. The Frequency Factor, v, for the B.C.C. Metals
Obtained from Yield or Flow Stress Measurements

v, sec”!
Metal Authors
Pure Single Impure
or Polycrystals| Polycrystals
v Conrad, Present - 106
Christian and Masters (Ref. 7) c=- 10m
Nb Conrad, Present 106 106
Christian and Masters (Ref. 7) - 108
Ta Conrad, Present 108 108
Chambers (Ref. 39) 107 ——
Christian and Masters (Ref. 7) —— 1011
Mordike (Ref. 13) 107 -
Cr Conrad, Present - 109
Mo Conrad, Present 10ll 106
w Conrad, Present 1011 107
Fe Conrad, Present 1011 108
Basinski and Christian (Ref. 5) —-- 108
Conrad (Ref. 6) - 108 - lO9
Lean, Plateau,and Crussard 8 10
(Ref. 38) - 10° - 10

Additional evidence of the proportionality between H and temperature is

provided by the variation of the ductile-to-brittle transition temperature

in the b.c.c. metals with strain rate.

Generally, a straight line is

obtained when the logarithm of the strain rate is plotted versus the

reciprocal of the transition temperature (Refs. 37, 38), suggesting a rate

equation of the form ¢ = Ae

-H/kT

Taking the logarithm of both sides of

this equation and rearranging, one obtains H = kT In A/é (Fig. 27), which




agrees with Eq. 6 when A = v. This is consistent with the analysis of

Egs. 3-6, if the transition from ductile-to-brittle behavior occurs at a

constant stress. The values of v derived from the effect of strain rate

on the ductile-to-brittle transition are given in Table 4. They are in

reasonable agreement with those obtained from the yield and flow stress

measurements listed in Table 3, indicating that the ductile-to-brittle

transition temperature is determined by the dynamic motion of disloca-

tions, as has been proposed by Cottrell (Ref. 40) and Petch (Ref.

Table 4. Values of v Derived from the Effect of Strain
Rate on the Ductile-to-Brittle
Transition Temperature
(Refs. 37 and 38)

Metal v, sec
Cr 1010
Mo 108 - 1012
W 1012
Fe 108 - 1012

-13-
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III. DISCUSSION

A, RATE-CONTROLLING MECHANISM

The fact that the various relationships of Eqs. 3-6 gave the same values of
H, v¥*, and v indicateé that the postulated assumptions are valid, at least to
a first approximation. Specifically, this supports the contention that during
the low temperature deformation (< 2.0 Tm) of the b.c.c. transition metals,
a single dislocation mechanism is rate-controlling and that v is relatively
independent of stress and temperature per se. Furthermore, the fact that
identical values of H and v* were obtained for all yielding and flow
phenomena (and the ductile-to-brittle transition) indicates that the same
dislocation mechanism is controlling in all cases and that this is associated
with the motion of dislocations through the lattice, as distinct from a genera-
tion mechanism, such as breaking away from an interstitial atmosphere.
Finally, the fact that H and v* as a function of stress were independent of
structure (i.e., thermal and mechanical history) strongly suggests that the
rate-controlling mechanism is overcoming the inherent resistance of the
lattice, i.e., overcoming the Peirls-Nabarro stress. Further support for
the Peierls-Nabarro mechanism is that dislocations in the b.c. c metals are
often observed to lie along the close-packed directions (Ref. 41-43). A
summary of the experimental evidence negating the other mechanisms

mentioned in the Introduction is given in Table 5.

A possible thermally-activated mechanism for overcoming the Peierls-
Nabarro stress (energy) is that mechanism originally proposed by Seeger
(Ref. 44) to explain the Bordoni peak in f.c.c. metals, which is shown in
Fig. 28. It involves the formation of a pair of kinks in a dislocation line
lying in a close-packed direction by the combined action of thermal fluctua-
tions and the applied stress, and the subsequent lateral propagation of the
kinks along the dislocation line, resulting in the forward motion of the

-14-
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dislocation. Seeger (Ref. 44) calculated the activation energy for this
process at low stresses to be

1 16+° t
H=Hygll +log = (7)

where HK is the energy of a single kink, and 'r: is the Peierls-Nabarro
stress at 0°K. Futhermore, Seeger gives

24 [2E,ab7° 1/2
Hg = +|——F (8)

and

1-°a.b2

Hpy = —B5— (9a)

f{nzb

T —_— (9b)
16alE
o

where ZHPN is the Peierls-Nabarro energy per atomic length, a is the
distance between close-packed rows, b is the Burgers vector, and E is
the line energy of a dislocation. Takmg the average value of 1'* (from
Table 2) for TS

Hj (% =1 kg/mm y=0.1 p.b3, which is in good agreement with measured

P and taking E =1/2 p.b , one obtains from Eqs. (7) and (8),

3
values of Ho. Table 6. Furthermore, from Eqgs. (7) and (8),HK = 3-4x 10 -2 ub

T

The thermal component of the stress T* has been substituted for the total
stress T in Seeger's equation.

-16-
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and from Eq. 9, H p.b?’, Table 6. Taking the derivative of

PN © 1-2x 10
Eq. 7 with respect to T* gives

H
dH 1 'K
—yR = s
dr* M 4 T* (10)

Values of Hy derived from the values of v* at 7% =1 kg/mmZ are also given
in Table 6 and are in agreement with those obtained from Eqs. (7) and (8).

For comparison, values of H,, derived from the slope of the plots of H vs

log t* (Fig. 20) at low stressl:s (<1 kg/mmz) are approximately 1/6 to 1/3
those calculated using Eqs. (7) and (8), while those derived from the slope
at high stresses (> 10 kg/mm ") are about 3 to 4 times larger. Agreement
occurs in the intermediate stress range (t* = 1-5 kg/mm ), where the plots
show curvature.

The good agreement between the values of Ho and HK obtained from the
various relationships, Eqs. (7)-(10) indicates rather strongly that the
nucleation of kinks is the rate-controlling mechanism during low temperature
deformation of the b.c.c. metals. Although the derived values of -ro, HK
and HPN are somewhat higher than those usually given for close-packed
metals (Ref. 45), they are in accord with those calculated using the original
Peierls-Nabarro equations (Ref. 46) and the more recent calculations of
Kuhlmann-Wilsdorf (Ref. 47) and Hobart and Celli (Ref. 48). The good
agreement between the values of Ho and Hg obtained using only experimental

2

data and those obtained using Eo = 1/2 pb® indicates that the line energy in

the b. c.c. metals is very nearly 1/2 p.bz.

According to Seeger (Ref. 44) the width, w, of a kink is given by

E b\l/2"°
w =.%.a. H° (11)
PN

-17-
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and the critical separation, £*, of the kirks during thermal activation is

32H
1% =¥ 10g PN (12a)
v Tp3
H-H
= K (12b)
ZHpN

The values of w and of f*(at 7 =1 kg/mmz) obtained from Eqs. (11), (12a),
and (12b) using the average values of HK, HPN' and H (v* =1 kg/mmz) from
Table 6 and taking Eo = l/Zpr, are given in Table 7. It is here seen that

w = 7-10 b and £*(t* = 1 kg/mm?) = 12-22 b, which are quite reasonable.
Again, of significance is the good agreement between values of £* from

Eqs. (12a) and (12b).

Table 7. Values of w and % Derived from
the Experimental Data

Center w/b £*/b
Eq. (12a) | Eq. (12b)

v ' 8 15 14

Nb 8 15 12

Ta 9 17 13

Cr 10 19 20

Mo 11 21 20

w 10 21 18

Fe 10 18 19

-19-




For the Peierls-Nabarro mechanism, the frequency factor can be given by

]

where p is the density of dislocations participating in the deformation, b the
Burgers vector, £* the length of dislocation segment involved in the thermal
activation, L the maximum lateral spread of the kinks, and vq the Debye
frequency. The first term within the brackets represents the number of
places per unit dislocation length where thermal fluctuations may nucleate a
loop of length £%*; the second term is the area of the slip plane swept out per
successful thermal fluctuation; the third term is the frequency of vibration of
a segment of length £*. Taking p = 10’ cm™2, % =10b, L = 10"% cm and

v, = 1013 sec'l, one obtains v = 108 sec-l, which is in agreement with that

d
observed experimentally for many materials, Tables 3 and 4.

Since H and v* as a function of % were independent of structure, the effect (
of impurities, precipitates, grain size, dislocations, and other aspects of
previous thermal or mechanical history on the temperature dependence of

the yield or flow stress is then due to a change in the frequency factor, v,
i.e., in the number of dislocations, p, participating in the deformation or

in the lateral distance, L, a kink can move before encountering an obstacle,
In this regard, Conrad and Frederick (Ref. 8) investigated the effect of
straining and of interstitial precipitates in iron on the temperature dependence
of T*. Some of their results are given in Fig. 3, which shows that a weaker
temperature dependence results from straining and from the presence of
precipitates. In Figs. 29 and 30 (from Ref. 8) it is shown that the weaker
temperature dependence is associated with a larger value of v, given by the
slope of the plot of H vs temperature. From the relation v = pbsy* and

taking the value of sv* derived from the dislocation velocity measurements

of Stein and Low (Ref 49), they obtained values of P, and their increase with
strain (Table 8) in agreement with dislocation densities determined by Keh



and Weissman (Ref. 42) by thin-film electron microscopy, indicating that

the increase in v was due primarily to an increase in p.

They further con-

cluded from their results that precipitates represented good sources for

dislocations, which is in agreement with observations of Leslie (Ref. 50)
and Van Torne and Thomas (Ref. 51).

Table 8. Effect of Strain on the Dislocation Density Participating in
the Plastic Flow of Iron Determined from the

Frequency Factor v (Ref. 8)

Material Strain v, Sec”! p, cm”

Vacuum Melted Electrolytic lx 10'3 2.1 x 107 8.4 x 108
Iron,Water Quenched from .2 2 9

920°C 5x 10 8.2x10 3.3x 10
Ferrovac, Decarburized 2 x 10'2 3.8 x 106 1.5 x 108
10 x 1072 1.7x10% | 6.6 x10°
20 x 1072 5.3 x 107 2.1x10!!
-2 9 11

Ferrovac, Annealed >5x 10 5.3 x 10 2.1x10

From Table 3 it is seen that the weaker temperature dependence of t* for

single crystals or pure polycrystals, as compared to impure polycrystals
in the Group VIA metals and iron, is associated with a frequency factor that

is larger by 3 to 5 orders of magnitude.

These larger values of v cannot be

due entirely to a greater dislocation density, p, because this would require

unreasonably large values for p. Rather, it appears that this difference in

v is primarily due to larger values of L for the pure as compared to the
impure materials, suggesting that interstitial atoms or precipitates influence
the extent to which the kinks can spread before encountering an obstacle.
Besides acting as obstacles to kink motion, the interstitial atoms or precip-
itates may induce cross-slip, which in turn limits the dislocation loop length



on the slip plane. Of interest in this regard are the observations of Schadler
and Low (Ref. 19}, who report that under some conditions dislocations in
tungsten crystals can move long distances without multiplying, in agreement

with the high values of v given in Table 3 for single crystals of tungsten.

All of the above supports overcoming the Peierls -Nabarro stress by
thermally-activated nucleation of kinks as the rate-controlling mechanism

in the b.c.c. metals at low temperatures. However, explanation is needed
for the fact that in the vicinity of T0 (i.e., v* =0) H, for the most part,

does not increase as rapidly with decrease in stress (or increase in temper-
ature) as is expected from the values of v¥* or the straight line portion of the
H versus temperature curves at lower temperatures. As indicated earlier,
the scatter in the data allows for a more rapid increase in H than is indicated
by the curves drawn in Figs. 12-18. The low values of H for stresses only
slightly greater than zero may then simply reflect the difficulty in defining
1% = 0 exactly. Also, v may actuallydecrease with increase in temperature (
(or decrease in stress).T On the other hand, a different mechanism may .
become rate-controlling in the very low stress range. Additional work is

needed to resolve this problem.

Finally, one needs to explain the much smaller temperature dependence of
the proportional limit after straining and the fact that cp s defined by
Brown and Ekvall (Ref. 15), is independent of temperature. Also, in recent
investigations on the determination of H as a function of stress in Ta by
creep tests, Chambers (Ref. 39) found a spectrum of activation energies

- - -1
for very small strain rates (10 6. 10 n sec ) rather than a single

?The change in v may be the result of straining at different temperature
(or stresses) rather than the effect of stress or temperature per se.
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activation energy. ! There are two possible explanations for these various

effects:

First, these phenomena represent the motion of those specific dislocations
located in the most favorable internal stress fields, and the applied stress
primarily gives direction to the motion of these dislocations and does not

contribute significantly to the thermally-activated process.

-Second, another less difficult mechanism is rate-controlling at the very low

stress levels, for example the lateral motion of kinks, as proposed by
Brailsford (Ref. 52), or the lateral motion of jogs as suggested by
Chambers. 11

In both cases the easiar motion would soon die out, and to obtain gross macro-
scopic flow the more difficult mechanism of nucleating kinks would become
rate-controlling. The rapid strain hardening associated with the early part of
the stress-strain curve would then be an exhaustion hardening rather than an
interaction hardening, which occurs subsequently during macroflow. Here,

also, additional research is needed to resolve this question.
B. YIELD POINT AND WORK HARDENING

The fact that K in Eq. (1) is relatively independent of temperature and that
the activation energy and activation volume as a function of stress are the
same for all deformation phenomena suggests that the yield pointinthe b.c.c.
metals is pot due to the thermally-assisted unpinning of dislocations from
their interstitial atmosphere, as proposed by Cottrell (Ref. 1), but resulte
from the sudden multiplication of dislocations by the double cross-~slip
mechanism of Koehler (Ref. 53) and Orowan (Ref. 54), as proposed by
Johnson and Gilman (Ref. 55) for LiF. In this latter model, the multiplication

A
of dislocations'is controlled by their motion through the lattice, which agrees

’

TAs an upper limit, Chambers (Ref. 39) reported an H versus stress relation-
ship in agreement with that given in Fig. 14.

1'TR.C. Chambers, private communication.
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with the experimental facts. As mentioned previously (Ref. 16), three

factors favor the occurrence of such a yield point in the b.c. c. metals:

First, there exists only a small number of dislocations which can contribute
to the plastic flow, due to the pegging of the available dislocations by inter-

stitial precipitates (as distinct from pinning by an interstitial atmosphere).

Second, the dislocation density contributing to the plastic flow increases
very rapidly with strain. This is inherent in the double cross-slip mechanism
for multiplication and has been observed experimentally in iron by Keh and

Weissman (Ref., 42) and in molybdenum by Benson.T

Third, the change in stress for a given change in dislocation velocity,

(80/8 In 3) or (8¢ /8 In €), is relatively large, Fig. 2.

To check the proposed interpretation of the yield point, stress-strain

curves formild steel were calculated (Ref. 16) using Eqs. (1) and (3) and

the available information on the activation energy as a function of stress (
(Fig. 18), the value of sv* derived from etch pit measurements in silicon-

iron (Ref. 16), the increase in dislocation density with strain (Ref. 42), and

the increase in flow stress associated with the increase in dislocation density

(Ref. 42). The good agreement between the calculated and experimental

curves is shown in Fig. 31. Since only plastic strain was considered, the

upper yield point was taken as the stress at a plastic strain of 10°4, which

is approximately the observed pre-yield microstrain in iron and steel.

TR. Benson, private communication.
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