63-3-4

AFOSR 2981

X

404 488

CORNELL UNIVERSITY

GRADUATE SCHOOL OF AEROSPACE ENGINEERING

STAGNATION POINT OF FLOW OF A VARIABLE PROPERTY FLUID AT LOW REYNOLDS NUMBERS

> by Michael Lenard M JUNE, 1962

Ithaca, New York

STAGNATION POINT FLOW OF A VARIABLE PROPERTY FLUID

*

.

٠

.

AT LOW REYNOLDS NUMBERS

Michael Lenard

Submitted to the Office of Scientific Research of the Air Research and Development Command, in partial fulfillment of contract number AF 49(638)-544.

W. R. Sears

-

BIBLIOGRAPHICAL CONTROL SHRET

- 1. Originating agency and/or monitoring agency
 - 0.A.: Graduate School of Aerospace Engineering, Cornell University, Ithaca, New York
 - N.A.: Mechanics Division, Office of Scientific Research
- 2. Originating agency and/or monitoring agency report number

0.A.: None N.A.: AFOSE 2981

- 3. Title and classification of title: "Stagnation Point Flow of a Variable Property Fluid at Low Reynolds Numbers" (Unclassified)
- 4. Personal author: Michael Lenard
- 5. Date of Report: June, 1962
- 6. Pages: 170

- 7. Illustrative Material: Figures and Tables included in text
- 8. Prepared for Contract No: AF 49(638)-544
- 9. Prepared for Project Code and/or No: None
- 10. Security Classification: Unclassified
- 11. Distribution limitations: None
- 12. Abstract: See page 1.

FOREHORD

man stanps at the second

The present report is a part of the research program on boundary layer problems being pursued at the Graduate School of Aeronautical Engineering under the provisions of contract AF 49(638)-544. This contract is financed by the United States Air Force Office of Scientific Research and is monitored by the Mechanics Division. The intent of this investigation has been to cast light on some details of boundary layer flow at stagnation points in flow of air at high speeds.

This investigation was proposed by Professor Micholas Rott and the investigator, Mr. Lenard, has worked under the direction of Professor Rott and Professor S. H. Lam. The research carried out under this contract is under the general direction of Professor W. R. Sears, Director of the School.

. . . .

.

ماري المراجع المراجع المراجع المراجع المراجع المراجع

ERRATA.

P. 16, Equation (1.23):

Add factor of (i+n) on right-hand side of equation, viz.:

P. 21, Equation (2.8):

6th line; omit R^2 in denominators, of 1st and 2nd terms; change R^2 to R in denominators, of 3rd and 5th terms:

$$-\frac{V_{mn}h_{m}}{(1+\frac{\pi}{4})^{2}} + \frac{V_{m}h_{m}}{(1+\frac{\pi}{4})^{2}} - \frac{v_{m}}{R^{2}(v_{m}+\frac{\pi}{4})^{2}} - \frac{v_{m}h_{m}}{(1+\frac{\pi}{4})^{2}} - \frac{v_{m}h_{m}}{R^{2}(v_{m}+\frac{\pi}{4})^{2}} - \frac{v_{m}h_{m}}{R^$$

$$-\frac{Y_{lensefer}}{(1+\frac{2}{4})^2} + \frac{2\frac{y_{res}}{1+\frac{2}{4}}}{(1+\frac{2}{4})^2} \frac{S_{r}}{3} - \frac{y_{r}}{R^2} \frac{y_{refer}}{(1+\frac{2}{4})^2} + \frac{y_{refer}}{(1+\frac{2}{4})^2} \frac{S_{ref}}{3} - \frac{2\frac{y_{ref}}{1+\frac{2}{4}}}{(1+\frac{2}{4})^2} \left(\frac{S_{r}}{3}\right)^2 - \frac{y_{r}}{y_{r}} \frac{y_{r}}{y_{r}} + \frac{y_{r}}{(1+\frac{2}{4})^2} \frac{S_{ref}}{3} - \frac{2\frac{y_{r}}{1+\frac{2}{4}}}{(1+\frac{2}{4})^2} \left(\frac{S_{r}}{3}\right)^2 - \frac{y_{r}}{y_{r}} \frac{y_{r}}{y_{r}} + \frac{y_{r}}{(1+\frac{2}{4})^2} \frac{S_{r}}{3} - \frac{y_{r}}{(1+\frac{2}{4})^2} \frac{y_{r}}{y_{r}} + \frac{y_{$$

8th line; change density derivative in last term:

$$+\frac{n-1}{R}\frac{\psi_{xy}\mu}{1+\frac{2}{K}}+\psi_{xy}\mu\frac{s_{x}}{s}+\psi_{xy}\mu\frac{s_{x}}{s}+\psi_{y}\mu\frac{s_{xy}}{s}\right\}$$

P. 22, Equation (2.13):

2nd line; change 2nd term from \times to y derivative:

$$-\psi_{3}^{2}\frac{s_{r}}{s} + \psi_{3}\psi_{xy} - \frac{y_{1}}{R}\frac{\cos \frac{x}{k}}{\sin \frac{1}{k}}\psi_{3}^{2} + \frac{s_{1}}{1+\frac{1}{k}} =$$

P. 65, 4th line from bottom:

Insert j , viz.:

..... terms with the j subscript

P. 65, 2nd line from bottom:

Insert K, and K2 , viz.:

..... of proportionality K, and K. The

P. 95, Equation (F.11):

In right-hand side of 2nd and 3rd expressions, replace h (enthalpy) by مر (viscosity), viz.s

P. 95, Equation (F.12):

Last line refers to function F_{1c}^{1} , viz.:

$$\eta \rightarrow \infty = f_{u_{c}}^{\prime}(\eta) \rightarrow (n-1)\eta$$

P. 103, Equation (H.2):

Re on right-hand side has subscript |, viz.: $= \frac{\widetilde{U}_{\underline{e}}^{(0)} R_{\underline{e}}}{4} (|+.2 M_{\underline{max}}^{2}|)^{1/7}$

P. 105. In line above equation (H.7), reference is made to (H.3) instead of (h.3), viz.:

(H.3), are presented

P. 108. In definition of \mathcal{C} , replace \mathfrak{h} and \vee by $\mathfrak{\mu}$ and \cup , viz.: \mathcal{C} shear parallel to surface $\mathcal{C} = \mathfrak{\mu} \stackrel{\partial \mathcal{U}}{\partial \mathfrak{u}}$ ABSTRACT

Steady, viscous, two-dimensional and axially symmetric stagnation-point flows of a gas are considered for the case when the Reynolds number is too low for the applicability of the classical boundary-layer theory. It is assumed that the low-density gas is still a continuous fluid, permitting the use of the Havier-Stokes and associated equations as the basis of the problem. The effects of low Reynolds number are determined by applying an expansion procedure (similar to Lagerstrom and Cole's⁽²⁰⁾ in terms of a parameter, , to the fluid-dynamical equations. The 1/10essentially highest-order equations in this expansion are the boundary-layer equations; the next-order equations, which therefore involve first-order low-Reynolds-number correction terms to the boundary-layer quantities, are presented and discussed in detail, together with the appropriate boundary conditions. The boundary conditions are of two types; at the wall they are derived from the kinetic theory of gases, far from the wall the flow must "merge" into the inviscid solution.

It is shown that the following quantities are necessary to define the inviscid flow near the stagnation point: the stagnation properties of the gas, a velocity gradient, a nose radius, and a vorticity parameter. The latter is present in the axially symmetric case only; it defines the slope of the inviscid shear flow near the stagnation point of the axially symmetric body. It is shown that further generalization of the inviscid flow by considering additional

parameters necessary to define the flow over larger regions in the vicinity of the stagnation point is not necessary, because any additional parameters will not affect the first-order corrections considered in the analysis of the viscous flow.

The result of the analysis is that the following correction effects to boundary-layer theory are defined: curvature effect, displacement effect, velocity slip and temperature-jump effect, vorticity effect (this last one for the axially symmetric case only). The magnitude of these effects depends on the following parameters, respectively: the ratio of the boundary-layer thickness to nose radius, the change in stagnation-point velocity gradient from the inviscid value due to the displacement effect of the boundary layer around the body, the ratio of the mean free path to the boundarylayer thickness, and finally the ratio of the slope of the inviscid shear-flow profile (in axially symmetric flow only) to the average slope of the boundary-layer velocity profile.

Some applications are discussed, in particular the case of a blunt body flying through the atmosphere is considered in detail. Real-gas properties are used to calculate the expansion parameters for this case; the results are plotted in chart form. The region of best applicability of the expansion procedure is where the expansion parameters are less than 1 and are about the same order of magnitude. This occurs in the flight-speed range of Mach 2 to 7.

Inmerical solutions of the equations are then presented using the properties of undissociated air corresponding to this speed range (perfect gas, constant Prandtl number, variation of specific heat, viscosity, heat conductivity with powers of absolute temperature).

Results are tabulated for five values of wall-to-free-stream temperature ratio; examples of low-Reynolds-number velocity and temperature profiles are given. The effect of temperature ratio on wall shear and wall heat-transfer rates are shown in both table and graph forms. The behavior of the shear and heat-transfer corrections due to velocity alip and temperature jump is especially significant; the results clearly indicate that, in spite of the much smaller mean free path at the wall for strongly cooled boundary layers, the reduction in heat transfer due to this effect is determined by the mean free path in the (hot) inviscid flow at the stagnation point. This conclusion is the result of including the effects of variable fluid properties in the analysis.

The predicted stagnation-point heat-transfer reductions for a cylinder in a supersonic airstream at low Reynolds numbers are compared to the experimental results of Tewfik and Giedt^{(40),(41)}. Both theory and experiment indicate reductions in heat transfer at low Reynolds numbers; but the measured reductions, while agreeing in trend, are considerably larger than the predictions.

INTRODUCTION

The flow in the vicinity of forward stagnation points has long been of special interest to acrodynamicists. The reasons for this interest are both theoretical and practical. Theoretically, the flow impinging on an "infinite" flat plate provides one of the few exact solutions of the Navier-Stokes equations; furthermore the solution of boundary-layer flow around bodies always "begins" at the stagnation point. Practically, heat-transfer rates are usually at a maximum in the stagnation region; furthermore, stagnation properties of the flow are often the easiest to measure by means of various probes and measuring instruments. In addition, in recent times, the reentry problem has generated renewed interest in this problem, especially in the low-Reynolds-Number flow regime. The purpose of the present investigation is to reexamine this problem in this low-Reynolds-number flow regime for the steady-flow case and for the plane two-dimensional and axially symmetric flow patterns; due to their similarities a unified treatment of the two types of flow will be possible.

Implicit in the aerodynamicist's solution of flow problems is the assumption of a continuous fluid. The classical equations of Navier-Stokes, together with the continuity and energy equations, and additional equations, which relate the thermodynamic and transport properties of the fluid, form the basis of continuum aerodynamics. This approach will be maintained in the present investigation; though it must be duly noted that it imposes a very definite limitation on the applicability of the results on gases (which are principally of interest) in terms of a Knudsen number, which cannot exceed a "reasonably small" value. What this limitation means can be inferred from the kinetic

theory of gases. It is well known that the properties of a fluid flow field for a gas can be obtained if the (molecular) velocity distribution function is given, by taking the appropriate statistical averages. Solutions of the Maxwell-Boltzmann equation, which is the conservation equation for this distribution function, can be obtained in terms of an iteration procedure, which results in successive sets of "continuum" differential equations; i.e., equations in terms of the "locally average" quantities. It has been pointed out by a number of authros (e.g. Sherman⁽³⁹⁾, Schaff and Chambre⁽³⁶⁾, etc.) that this iteration procedure is roughly equivalent to an expansion in terms of the mean free path between molecules. The successive sets of equations are: Euler's (inviscid) equations, the Navier-Stokes and associated equations (which will be used in the present work), the Burnett equations, and equations of still higher order. It can be seen then that the present analysis neglects the Burnett and higher-order terms, which implies that only "small" changes in local flow quantities are permissible over distances equal to the mean free path. Actually it has been found (Schaaf and Chambre ⁽³⁶⁾) that even for some specially simple and well understood problems in gasdynamics, such as the structure of normal shocks and the propagation of high-frequency sound waves, where the Burnett terms were clearly non-negligible, their inclusion in the theory gave less satisfactory agreement with experimental results than the theory based on the Navier-Stokes equations only. Furthermore, the Burnett terms include derivatives of higher order than are present in the Navier-Stokes equations, which indicates the necessity for additional boundary conditions. There is no agreement at the present as to what, if any, these additional boundary conditions should be. A

- 5

more detailed discussion of these and other difficulties involved in the use of the Burnett equations can be found in reference 36.

The present work is then an application of the Navier-Stokes equations to the stagnation-point problem for a gas with known thermodynamic and transport properties. A perfect gas will be assumed, with the specific heat, viscosity, and heat conductivity proportional to arbitrary powers of the absolute temperature. (These assumptions regarding the properties of the gas will be justified in another section.) The classical solution of this problem for very large Reynolds numbers has two phases: first, the solution of the inviscid-flow problem with slip around a given body is obtained; this gives the location of the stagnation point and the velocity gradient there. The second phase completes the calculation of the flow by applying these results to the well known solutions of the stagnation-point boundary-layer equations in the two-dimensional and axially symmetric cases respectively (e.g. Cohen and Reshotko⁽⁵⁾, Brown and Donoughe⁽³⁾, Howe and Mersman⁽¹⁶⁾, etc.). It is shown by Lagerstrom and Cole⁽²⁰⁾ that these two steps can be looked upon as the first steps in an expansion procedure for obtaining approximations to the solution of the Navier-Stokes equations for high Reynolds numbers. This procedure consists of expanding the stream function in To. powers of a Reynolds-number parameter, (in this case) in terms of two parallel series, the so-called "inner" and "outer" expansions. Successive terms in the two series are solved for alternatingly. In this manner first the inviscid flow around the body is obtained (the first term in the "outer" expansion), then the complete boundarylayer problem solved (the first term in the inner expansion), then a correction to the external-flow follows (usually due only to the

displacement effect of the boundary layer); and then a correction to the boundary-layer solution, etc. It is apparent from physical considerations that the formal mathematical procedure developed in this reference is rigorously applicable only to certain very special types of problems. It entirely fails to account for such universally present phenomena as turbulence, and the possibility of separation, for example.

In the following, a treatment of this second approximation to the "inner" flow for these two types of stagnation-point flows is presented. The formal mathematical procedure of reference 20 will not be followed; still the above comments indicate that a complete treatment of this second approximation, which is essentially an improvement of boundary-layer theory for low Reynolds numbers, would require a solution of the second approximation to the "outer" flow. This implies that in addition to a superimposed external velocity gradient of arbitrary magnitude (which is the result of the solution of the first approximation to the "outer" flow, i.e., the inviscid flow) one should have an additional arbitrary external-flow parameter, which influences the second "inner"-flow approximation, and which should properly be the result of calculating the improvement to the outer flow due to the displacement effect of the boundary layer. Obviously such a calculation cannot be made within the framework of calculating the flow at the stagnation point only. Thus one has to accept the presence of an additional arbitrary parameter in the problem, due to an undetermined "displacement" effect.

CHAPTER I

Inviscid Flow near the Stagnation Point

Let R be the radius of curvature of the body near the stagnation point. Then the "polar" coordinate system of Appendix A (A.6) can be transformed into the conventional boundarylayer coordinate system by the transformation:

where

y=0 defines the body contour, as shown in the sketch.

Using transformation (1.1) in (A.8) and (A.9) the inviscid momentum equations can now be written down. In the y direction;

$$\frac{1}{\left(1+\frac{y}{2}\right)^{2n}R^{2n}\left(\sin\frac{y}{R}\right)^{2n}}\left\{\frac{1}{\left(1+\frac{y}{R}\right)^{2}}\Psi_{y}\Psi_{x}\frac{S_{x}}{S}-\frac{1}{1+\frac{y}{R}}\frac{\Psi_{y}^{2}}{R}-\frac{1}{\left(1+\frac{y}{R}\right)^{2}}\Psi_{y}\Psi_{x}x+\right.$$

$$+ \frac{n \cos \frac{\pi}{R}}{\sin \frac{\pi}{R}} \frac{1}{(1+\frac{\pi}{R})^2} \frac{\psi_w \psi_x}{R} - \frac{1}{(1+\frac{\pi}{R})^2} \psi_x^2 \frac{s_s}{s} + \frac{1}{(1+\frac{\pi}{R})^2} \psi_x \psi_{xy} - \frac{1}{(1+\frac{\pi}{R})^2} \frac{\psi_x}{R} + \frac{1}{(1+\frac{\pi}{R})^2} \frac$$

Similarly, in the \times direction

$$\frac{1}{(1+\frac{1}{k})^{2n}R^{2n}(\sin\frac{\pi}{R})^{2n}} \left\{ \Psi_{x} \Psi_{y} \frac{S_{y}}{S} + \frac{n-1}{1+\frac{\pi}{R}} \frac{\Psi_{x} \Psi_{y}}{R} - \Psi_{x} \Psi_{yy} - \frac{\Psi_{x} \Psi_{yy}}{R} - \frac{\Psi_{x} \Psi_{xy}}{R} - \frac{\Psi_{x}$$

function by using (A.6) and (1.1) in (A.3):

$$\upsilon = \frac{1}{\left(1 + \frac{w}{R}\right)^{n} R^{n} \left(\sin \frac{w}{R}\right)^{n}} \frac{\Psi_{v}}{9}$$

$$\sigma = -\frac{1}{\left(1+\frac{w}{R}\right)^{1+n}R^{n}\left(\sin\frac{w}{R}\right)^{n}}\frac{\psi_{R}}{s}$$
(1.4)

Since flow in the free stream is uniform, and the flow is steady, the "iso-energicity" condition can be written as:

$$\frac{u^{2}+u^{2}}{2}+h-h_{s}=\frac{\psi_{s}^{2}+\frac{1}{(1+\frac{y}{k})^{2}}\psi_{x}^{2}}{2g^{2}(1+\frac{y}{k})^{2n}R^{2n}(\sin\frac{y}{k})^{2n}}+h-h_{s}=0$$
(1.5)

where the subscript 3 refers to stagnation conditions. For the assumption of temperature-dependent specific heat the enthalpy can be expanded about the stagnation condition in a Taylor series, as follows:

$$h - h_s = 4_s (T - T_s) + 4_s \left(\frac{T - T_s}{2}\right)^2 + 4_s \left(\frac{T - T_s}{6}\right)^3 + \cdots$$

4

(1.6) where the dots signify perivatives with respect to temperature.

(1.3)

The symmetry of the problem, and the boundary condition that $\tau = 0$ on the body y = 0 can be used to write down the following expansions for the various quantities:

$$\Psi = g_{s}A \times^{1+n} \left[w + a_{1} \times^{2} + a_{2} \times^{3} + \dots + b_{1} \times^{2} \times + b_{2} \times^{2} \times^{2} \times^{2} + \dots \right]$$

$$g = g_{s} \left[1 + a_{T1} \times + a_{T2} \times^{2} + \dots + b_{T1} \times^{2} + b_{T2} \times^{2} \times^{2} \times + \dots \right]$$

$$T = T_{s} \left[1 + a_{T1} \times + a_{T2} \times^{2} + \dots + b_{T1} \times^{2} + b_{T2} \times^{2} \times^{2} \times + \dots \right]$$

$$P = P_{s} \left[1 + a_{P1} \times + a_{P2} \times^{2} + \dots + b_{P1} \times^{2} + b_{P2} \times^{2} \times + \dots \right]$$

The perfect-gas law can be used to relate the pressure, density, and temperature expansions:

$$\frac{P_s}{Q} = S_s T_s$$

.

.

 $a_{p_1} = a_{T_1} + a_{r_1}$

$$b_{r_1} = b_{r_1} + b_{\tau_1}$$

$$b_{p_{2}} = b_{r_{2}} + b_{\tau_{2}} + a_{r_{1}} b_{\tau_{1}} + a_{\tau_{1}} b_{r_{1}}$$
(1.8)

(1.7)

Now expansions (1.6) and (1.7) will be substituted into equations (1.2), (1.3), and (1.5). Coefficients of like powers of the independent variables will then be equated, giving a succession of additional relations, similar to (1.8). The results of this procedure will be that many of the coefficients in expansions (1.7) will be expressed in terms of a smaller number of independent ones. This will show the truly significant independent parameters necessary to describe the inviscid stagnation-point flow that we are considering. The details of the procedure follow. Substituting the expansions (1.6) and (1.7)into the emergy equation (1.5), coefficients of the $\frac{1}{2}$ term give:

$$2 s_s^2 c_s T_s a_{\tau_1} = 0$$

 $(1+n)^2 g_s^2 A^2 + 2 g_s^2 (g_s T_s a_{T_s} = 0)$

. thus

$$a_{\tau_1} = 0 \tag{1.9}$$

Using this result, the \times^2 , y^2 , and $\times^2 y$, terms give: $g_5^2 A^2 + c_5^2 c_{p_5} T_5 l_{T_1} = 0$

$$-\frac{2m}{R}g_{s}^{2}A^{2} + 4g_{s}^{2}A^{2}a_{1} + 4g_{s}^{2}c_{s}T_{s}b_{T_{1}}a_{r_{1}} + 2g_{s}^{2}c_{s}T_{s}b_{T_{2}} = 0$$

from which -

$$b_{T_1} = -\frac{\Lambda^2}{2\epsilon_{\varphi_1}T_s}$$
(1.10)

$$a_{T_{e}} = -\frac{(1+n)^{e} A^{e}}{2c_{p_{s}} T_{s}}$$
(1.11)

$$\frac{h}{2R} - \alpha_1 z - \frac{\alpha_{r1}}{2} + \frac{\alpha_s T_s}{2 A^2} b_{Te} \qquad (1.12)$$

A similar substitution into the $\sqrt{2}$ momentum equation (1.2), and grouping coefficients of the constant, $\sqrt{2}$, and x^4 terms gives:

$$(1+n)^2 A^2 s_5^2 + 2 s_5 P_5 a_{P2} + s_5 P_5 a_{r1} a_{P1} = 0$$

$$-\frac{S_{s}^{2}A^{2}}{R} + S_{s}P_{s}(v_{e2} + b_{r_{1}}a_{e_{1}}) = 0$$

from which

$$\alpha_{p_1} = 0 \quad . \tag{1.13}$$

$$a_{P2} = -g_{s} \frac{A^{2}(1+n)^{2}}{2 q_{s}}$$
(1.14)

$$U_{P2} = \frac{J_s A^2}{P_s R}$$
(1.15)

Finally the \times momentum equation (1.3) is used

in a similar way, grouping coefficients of the constant and y terms:

$$\frac{g_{s}^{2}A^{2}}{2} + g_{s}P_{s}b_{r_{1}} = 0$$

$$g_{s}^{2}A^{2}\left[(1+n)a_{r_{1}} + \frac{n^{2}-1}{R} - 2(1+n)a_{1} + 4a_{1} - \frac{2n}{R}\right] + 2g_{s}g_{s}\left[b_{r_{1}}a_{r_{1}} + b_{r_{2}}\right] = 0$$

hence,

$$b_{p_1} = -\frac{s_s A^2}{2 p_s}$$
(1.16)

Now use (1.8) together with (1.9), (1.10), (1.11), (1.13), (1.14), and (1.16) to get:

$$a_{r_1} = 0$$

$$a_{r2} = -\frac{A^{2}}{2\epsilon_{0}T_{s}}(1+n)^{2} \frac{\epsilon_{0s}-R}{R}$$

$$b_{r_{1}} = -\frac{A^{2}}{2\epsilon_{0}T_{s}} \frac{\epsilon_{0s}-R}{R}$$
(1.17)

These results make it possible to determine the coefficient of the second term in the expansion for the stream function, a_1 : $J_{s}^{2}A^{2}\left[2(1-n)a_{1} + \frac{n^{2}-2n-1}{R} + \frac{2}{R}\right] = g_{s}^{2}A^{2}(1-n)\left[2a_{1} + \frac{1-n}{R}\right] = 0$

Thus:

for n=0 $\alpha_1 = -\frac{1}{2R}$ for n=1 α_1 is arbitrary

An expression for the vorticity near the stagnation point can be found by using (1.1) in (A.13):

+
$$\frac{n \cos \frac{x}{2}}{(1+\frac{x}{2})^2 R \sin \frac{x}{2}}$$
 + $S \Psi_{33} + (1-n) \frac{S \Psi_{33}}{R(1+\frac{x}{2})}$ (1.18)

Substituting expansion (1.7) into (1.18) the expression for the vorticity is:

$$\Omega = -A_{x}\left[2\alpha_{1} + \frac{1-n}{R}\right] + \cdots$$

Thus, for the two types of stagnation-point flow:

for n = 0 $\int f = O(x y_0)$

for
$$n = 1$$
 $\int \int = -A_{x}[2\alpha_{1} + \delta(x_{2})] = -A_{x}[V + ...]$

where the above expression defines a vorticity parameter \vee . Coefficient a., can then be written as

$$a_{1} = \frac{n-1}{2R} + \frac{nV}{2}$$
 (1.20)

This result can now be used, together with (1.8), (1.12), (1.15) and (1.17) to determine

 $b_{TE} = -\frac{A^2}{C_{0S}T_S} \left[nV - \frac{1}{R} \right]$

4

$$b_{re} = \frac{A^{2}}{\varphi_{s}T_{s}} \left[nV + \frac{1}{R} \frac{\varphi_{s}-Q}{Q} \right]$$
(1.21)

....

The above intermediate results can be summarized by writing expansions (1.7), using the derived values of the coefficients:

(1.19)

$$\Psi = g_{s} A_{x}^{l+n} \left[\Psi + \left(\frac{n-l}{R} + nV \right) \frac{\Psi^{2}}{2} + \cdots \right]$$
(1.22)

$$g = S_{5} - \frac{3\epsilon^{2}}{c_{0}T_{5}} \left[\frac{c_{0}-R}{R} (1+n)^{2} \frac{y^{2}}{2} + \frac{c_{0}-R}{R} \frac{x^{2}}{2} - \left(\frac{c_{0}-R}{R} + nV \right)^{4} + \frac{1}{2} \right]$$
(1.23)

$$T = T_{s} - \frac{A^{2}}{4s} \left[(1+n)^{2} \frac{y^{2}}{2} + \frac{x^{2}}{2} - (\frac{1}{R} - nV) x^{2} y + \cdots \right]$$
(1.24)

$$p = \rho_s - s_s A^2 \left[(1+n)^2 \frac{y^2}{2} + \frac{x^2}{2} - \frac{x^2 y_s}{R} + \cdots \right]$$
(1.25)

From these expressions the parameters for the symmetrical inviscid stagnation-point flow can be ascertained. Velocity gradient A is a fundamental parameter; it is determined by solving the inviscid flow around the entire body. It will be of the order of magnitude of free-stream velocity, U , divided by a "significant body size," L , perpendicular to the flow direction. Two more parameters appear in the stream function; nose radius R, and vorticity parameter V . It has been pointed out previously (e.g. Bott and Lemard⁽³⁵⁾) that there is an important difference in this respect between two-dimensional and axially symmetric stagmation-point flows; the latter admitting a vortical term but showing no effect of nose curvature to the order of terms that are considered here (i.e., 4^{L}). whereas the two-dimensional flow is irrotational, but has a curvature , <u>s</u>, T₁, term. Stagnation thermodynamic properties, Ps l and 4s are the additional arbitrary parameters. Had

subsequent terms in the expansion (i.e., higher-order terms in \times^2 and \Im than included in (1.22) through (1.25)) been considered, additional parameters would have appeared. These parameters will be arbitrary, or identifiable as the rate of change of the noise radius with \times^2 , etc. The possible effect such additional arbitrary parameters may have on the viscous flow near the stagnation point will be discussed in the latter part of Chapter II.

As expected, the expansions for the thermodynamic properties exhibit Crocco's relation. On the stagnation streamline the flow is isentropic; isentropicity is maintained off the stagnation streamline also, with the exception of the rotational term V. The pressure term shows no effect of rotationality; the $\times^2 \Im$ term is the centrifugal pressure gradient due to curvature.

To complete the treatment of the inviscid flow, the velocities can be written down by substituting (1.22) into (1.4)

 $\upsilon = A \times \left[1 + \left(n \nabla - \frac{1}{R} \right) + \cdots \right]$

 $\sigma = -A_{y}\left[1 + \left(\frac{nV}{2} - \frac{n+3}{2R}\right)y + \cdots\right]$ (1.23)

CHAPTER II

Viscous Flow near the Stagnation Point

General Considerations

The basis of considering the viscous flow near the stagnation point is Lagerstrom and Cole's expansion procedure (reference 20), as described briefly in the Introduction. The essence of this procedure is a magnification of both the independent coordinate and the velocity component perpendicular to the solid surface in inverse proportion to a "significant viscous length" (i.e., the boundary-layer thickness) and a velocity based on it. As the limit of very large Reynolds mumber is taken, viscous effects will be limited to a very thin layer near the body surface, and these magnifications then permit an analytic investigation of the structure of this very thin layer. This layer is of course the classical boundary layer of Prendtl; and lagerstrom and Cale's (20) procedure consists of improving the boundary-layer result by expanding all flow quantities in powers of the inverse square root of a Reynolds number based on some significant length. Thus, immediately as this improvement is considered the question has to be reised what this significant length should be. There is no such length inherent in the classical boundary-layer solution itself. Another way to formulate this same question is: what length should the boundary-layer thickness at the stamation point be compared. to in order to decide whether or not a correction term to the boundarylever solution is necessary, when considering the viscous flow near the stagnation point. This is a crucial question, which will affect the formulation of the entire problem.

One such length that suggests itself is the radius of curvature at the nose. That this may be a suitable length can be seen by considering a stagnation point located on a curved nose. For very large Reynolds numbers the boundary-layer thickness becomes negligibly small compared to the nose radius, which, (by geometric intuition) is equivalent to taking the "infinite" radius limit. In this limit then the classical solution of flow imminging on an "infinite" plate is recovered. On the other hand it is easy to see (relying again on intuition) that, as the Reynolds number becomes smaller, and hence the boundary-layer thickness larger when compared to the nose radius, it may become necessary to consider a correction to the classical result due to the curvature of the boundary layer near the stagnation point. (Subsequent analysis will show later that these intuitive considerations are essentially correct.) If, however, the nose radius is taken as the sole length which could be of significance in the problem, then no correction terms whatsoever can be admitted for a flat-nosed body. This is certainly contrary to expectation, and in direct contradiction to the presence of a "boundary-layer displacement effect," as discussed in the introduction. Actually, it is not necessary, or even possible, to decide beforehand what the proper reference length should be. It is clear that the proposed procedure could be applied with the reference length left arbitrary, and whatever the important reference length of lengths may be they will appear in the solution upon proper expansion of the equations of motion and proper application of the boundary conditions. In the subsequent analysis, the nose radius will be used as the reference length; in the light of the above remarks, this choice is one of convenience only and cannot affect the validity

of the outcome of the analysis. At the end of this chapter, it will be possible to identify all the low-Reynolds-number effects in terms of several reference lengths to which the boundary-layer thickness has to be compared when considering the necessity of a low-Reynolds-number correction to the boundary-layer result.

Development of Theory

The procedure for investigating the viscous flow near the stagnation point will then consist of writing the full viscous equations of motion, as derived in Appendix A, in the curvilinear boundary-layer coordinate system of equation (1.1). Magnification of the independent coordinate $\frac{1}{2}$ is accompliahed by replacing it with the boundary-layer variable:

$$\gamma = \sqrt[4]{\frac{A}{y_s}}$$
(2.1)

Magnification of velocity U, and the desired expansion of the velocities is accomplished by writing the stream function in terms of the following expansion:

$$\Psi = S_{s} \overline{I_{s}A} \times^{1+n} \left[t_{s}(\eta) + \frac{1}{n} \left[\overline{I_{s}} + t_{i}(\eta) + \dots + \times^{2} g_{s}(\eta) + \frac{x^{2}}{n} \sqrt{\frac{1}{n}} g_{i}(\eta) + \dots \right]$$
(2.2)

Using the symmetry of the problem analogous expansions can be written down for the thermodynamic properties:

$$T = T_{s} \left[\frac{1}{16} \left(q \right) + \frac{1}{R} \frac{1}{14} \frac{1}{16} \frac{1}{1$$

$$g = g_{s} \left[f_{a}(q) + \frac{1}{R} \left[\frac{1}{A} f_{a}(q) + \dots + x^{2} g_{r}(q) + \frac{x^{2}}{R} \int_{A}^{x} g_{r}(q) + \dots \right]$$
(2.4)

$$P = P_{s} \left[\frac{1}{2} P_{s}(\eta) + \frac{1}{2} \sqrt{\frac{3}{4}} + P_{s}(\eta) + \cdots + x^{2} g P_{s}(\eta) + \frac{x^{2}}{2} \sqrt{\frac{3}{4}} g P_{s}(\eta) + \cdots \right]$$
(2.5)

As in (1.6), the fluid properties are assumed to be temperature dependent, and can be expanded in a Taylor series about the leading term in expansion (2.3). The dots again signify derivatives with respect to temperature; the subscript 0 indicates evaluation at infinite Reynolds number and $\times = 0$;

$$c_{p} = (e_{0} + \dot{c}_{0} (T - T_{s} H_{0}) + \frac{\dot{c}_{e_{0}}}{2} (T - T_{s} H_{0})^{2} + \cdots$$

.

$$\mu = \mu_{0} + \dot{\mu}_{0}(T - T_{s} H_{0}) + \frac{\dot{\mu}_{0}}{c} (T - T_{s} H_{0})^{2} + \cdots$$

$$k_{0} = k_{0} + \dot{k}_{0}(T - T_{s} H_{0}) + \frac{\dot{h}_{0}}{2} (T - T_{s} H_{0})^{2} + \cdots$$
(2.6)

Using expansion (2.3) these expressions can be written:

$$\varphi = (\varphi_{0} + \frac{1}{R} \prod_{i} \zeta_{i_{0}} \frac{1}{H_{1}(\eta)} + \dots + x^{2} T_{i_{0}} \zeta_{i_{0}} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} + \frac{1}{X^{2}} \frac{\zeta_{i_{0}}}{2} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} g_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}(\eta)} + \frac{x^{2} \sum_{i_{0}} \frac{1}{H_{1}(\eta)} + \dots + x^{2} T_{i_{0}} \xi_{i_{0}(\eta)} + \dots$$

The y momentum equation can be written down by considering (1.1) in (A.7)

$$\frac{1}{(1+\frac{1}{K})^{2n}} \left\{ \frac{1}{(1+\frac{1}{K})^2} \Psi_{3} \Psi_{x} \frac{5x}{3} - \frac{1}{1+\frac{1}{K}} \frac{\Psi_{x}}{R} - \frac{\Psi_{y} \Psi_{xx}}{(1+\frac{1}{K})^2} + \frac{1}{(1+\frac{1}{K})^2} + \frac{1}{(1+\frac{1}{K})^2} \frac{\Psi_{x}}{R} - \frac{\Psi_{x}}{(1+\frac{1}{K})^2} + \frac{1}{(1+\frac{1}{K})^2} + \frac{1}$$

substituted into this equation, and the results grouped according to powers of \times^2 and $\frac{1}{R}\sqrt{\frac{N}{A}}$. The coefficients of the $R\sqrt{\frac{A}{N_s}}$, constant, $\times^2 R\sqrt{\frac{A}{N_s}}$, and \times^2 terms are $g_s P_s (tr_o t P_o) = 0$ $e_s R (tr_b t_a' + tr_b t_a') = 0$

$$s_{s}P_{s}(t_{1},gp_{o}' + gr_{o}tp_{o}') = 0$$

$$s_{s}P_{s}(t_{1},gp_{o}' + t_{1},gp_{o}' + gr_{1}tp_{o}' + gr_{0}tp_{1}') - g_{s}^{2}A^{2}t_{o}'^{2} = 0$$

22

hence:

1

.

$$4p_{1}^{\prime} = 0$$
 (2.10)

$$g p_0' = 0$$
 (2.11)

$$\frac{P_{s}}{P_{s}} \frac{P_{s}}{A^{2}} \frac{P_{s}}{P_{s}} = \frac{\frac{1}{V_{s}}^{2}}{\frac{1}{V_{s}}}$$
(2.12)

The \times momentum equation is obtained by using (1.1)

$$\frac{1}{\left(1+\frac{1}{R}\right)^{2n+1}R^{2n}(\sin\frac{\pi}{R})^{2n}} \left\{ \Psi_{x} \Psi_{y} \frac{\frac{2}{5}x}{\frac{5}{5}} + \frac{n-1}{R} \frac{\Psi_{x} \Psi_{y}}{1+\frac{1}{K}} - \Psi_{x} \Psi_{y} \frac{1}{x} - \frac{1}{4} \frac{\Psi_{x}}{4} \frac{1}{y} - \frac{1}{4} \frac{\Psi_{x}}{\frac{1}{K}} \frac{1}{x} - \frac{1}{4} \frac{1}{\frac{\pi}{K}} \frac{1}{1+\frac{\pi}{K}} - \frac{1}{4} \frac{1}{\frac{\pi}{K}} \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}} - \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}} - \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}} - \frac{1}{K} \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}} - \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}} - \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}} - \frac{1}{\frac{1}{K}} \frac{1}{\frac{1}{K}}$$

Repeating the former procedure, coefficients of the \times

term give the following equation:

$$(1+n)$$
 to to $\frac{1}{4n} - (1+n)$ to to $\frac{1}{4n} + \frac{1}{4n} + \frac{1}{2n} + \frac{1$

$$+ \frac{\mu_{0}}{\mu_{0}} \left[t_{0}^{"'} - 2t_{0}^{"} \frac{t_{0}}{t_{0}} - t_{0}^{'} \frac{t_{0}}{t_{0}} + 2t_{0}^{'} \left(\frac{t_{0}}{t_{0}} \right)^{2} \right]$$
(2.14)

Terms $\frac{\mu_{0}}{\mu_{5}}T_{5}$ and $\frac{\mu_{0}}{\mu_{5}}$ in the above expression are functions of $\Psi_{0}(\gamma)$ only, the exact functional form depending on the viscosity vs. temperature law that is assumed. The next equation is obtained by collecting coefficients of the $\frac{\times}{R}\sqrt{\frac{2k}{A}}$ term in the \times momentum equation (2.13):

Finally, the energy equation (A.11) is written down in coordinates (1.1): $\frac{1}{R^{n}(\sin \frac{\pi}{R})^{n}} \left[c_{p}(\psi_{x}T_{x} - \psi_{x}T_{y}) + \frac{1}{5} (\psi_{x} P_{y} - \psi_{y} P_{x}) \right] = (1 + \frac{\pi}{R})^{(1+n)} k T_{yy} + (1 + \frac{\pi}{R})^{(1+n)} k T_{yy} + (1 + \frac{\pi}{R})^{(n-1)} k T_{xx} + (1 + \frac{\pi}{R})^{(n-1)} k T_{xx} + (1 + \frac{\pi}{R})^{(n-1)} k T_{xx} + (1 + \frac{\pi}{R})^{(n-1)} k T_{x} + \mu \Phi$ $+ (1 + \frac{\pi}{R})^{(n-1)} k_{x}T_{x} + \frac{n\cos\frac{\pi}{R}}{R\sin\frac{\pi}{R}} (1 + \frac{\pi}{R})^{(n-1)} k T_{x} + \mu \Phi$ (2.16)

The dissipation function \oint in the above expression has not been expanded, because, to the order of terms considered, it will not contribute to the equations. In order to ascertain this, one has to consider the form of the dissipation function given in (A.10) in terms of the general coordinate system. Each term will be of the form of the stream function occurring twice, and four derivatives occurring in like pairs. In order to contribute to the stagnation-point term, at least two of these derivatives have to be

derivatives (otherwise the term will be of order \times^2). X D. is of order 3 Since Ψ and derivatives $\frac{1}{\sqrt{2}}$, the largest term in the dissipation function of order will be of order viscosity times two stream functions and two y derivatives, which is altogether of order $\gamma_{\mathbf{x}}$. But only terms of order 1 and order V. are of interest.

Now (2.1) through (2.7) can be substituted into energy equation (2.16), and terms grouped in powers of $\frac{1}{R}\sqrt{\frac{3}{A}}$ and \times^2 . The leading term is

$$-\frac{c_{0}}{c_{p_{s}}}(1+n)\frac{1}{10}\frac{1$$

where the terms $\frac{k}{l_s}$ etc., are again given, but as yet unspecified function of $\frac{1}{l_s}(\gamma)$. An additional relation between the variables is given by the perfect-gas law, which was assumed

$$t_{P_0} = \frac{1}{4} \cdot t_r \cdot t_$$

How the formulation of the differential equations is complete. Equations (2.9) through (2.12), (2.14), (2.15), and (2.17) through (2.19) define two coupled sets of ordinary differential equations, in the zero-th and first-order variables respectively. The zeroth-order set is nonlinear; it is essentially the boundary-layer equation at the stegnation point. The first-order set is linear, with the coefficients and inhomogeneous terms composed of the known boundary-layer solution. In order to proceed with the solution of these equations suitable boundary conditions have to be specified. Two types of boundary conditions are available; at the mild-fluid interface (i.e., the "wall") and in the inviscid flow, where the viscous solution has to "merge" into the inviscid solution specified earlier. The boundary conditions at the wall are derived in Appendix B, and are repeated here.

$$f_{o}(o) = 0$$

$$f_{o}(o) = W$$
(2.20)

and

 $f_1(0) = 0$

$$H_{1}^{1}(0) = \frac{2-4}{6} \sqrt{\frac{1}{12}} \frac{AR}{R_{s}} \frac{\mu_{w}}{\mu_{s}} \frac{1}{W} \frac{+0(0)}{H_{0}(0)} = K_{1} \frac{AR}{R_{s}} \frac{\mu_{w}}{\mu_{s}} \frac{1}{W} \frac{+0'(0)}{H_{0}(0)}$$

$$H_{1}(0) = \frac{2-4}{4} \sqrt{\frac{1}{12}} \frac{2\pi_{w}}{V_{s}} \frac{1}{V_{s}} \frac{AR}{W} \frac{\mu_{w}}{H_{0}(0)} \frac{1}{W} \frac{H_{0}^{1}(0)}{H_{0}(0)} = K_{2} \frac{AR}{W} \frac{\mu_{w}}{W} \frac{1}{H_{0}^{1}(0)} \frac{H_{0}^{1}(0)}{H_{0}(0)}$$

$$H_{1}^{1}(0) = \frac{2-4}{4} \sqrt{\frac{1}{12}} \frac{2\pi_{w}}{W_{s}+1} \frac{1}{2\pi_{w}} \frac{AR}{W_{s}} \frac{\mu_{w}}{W} \frac{1}{H_{0}^{1}(0)} = K_{2} \frac{AR}{W_{s}} \frac{\mu_{w}}{W} \frac{1}{H_{0}^{1}(0)} \frac{H_{0}^{1}(0)}{H_{0}(0)}$$

$$(2.21)$$

where constants K_1 and K_2 are defined by the above expressions. In order to determine the boundary conditions in the inviscid flow, one can use "the inner-flow" independent variable (2.1) in the expressions for the inviscid flow given by (1.22) through (1.25). Furthermore, as explained in the introduction, a correction will be necessary in the inviscid ("outer")-flow parameters, due to the displacement effect of the boundary layer around the body. This effect will change the velocity gradient A, which is a fundamental parameter of the problem, by an unknown amount. This change can be expressed as follows:

$$A\left(\frac{1}{k}\left[\frac{1}{k}\right] = A\left[1 + \frac{1}{k}\left[\frac{1}{k}C_{0} + \cdots\right]\right]$$

$$(2.22)$$

The other parameters of the inviscid flow will not be changed to the order of terms considered here. (A more detailed discussion of these correction terms, and their significance will be given in a later section). The inviscid stream function can now be written in terms of the viscous (i.e., "inner") expansion as

$$\Psi = \S_{s}\sqrt{\nu_{s}A} \times^{i+n} \left\{ \gamma + \frac{1}{R} \sqrt{\frac{\nu_{s}}{A}} \left[C_{\mathfrak{D}} \gamma + \frac{n-1+nRV}{2} \gamma^{2} \right] + \cdots \right\}$$
(2.23)

Similarly, the expansions for the thermodynamic properties in the inviscid flow become ;

$$S = S_{s} \left[1 + O\left(\frac{y_{s}}{R^{2}A}\right) + O(x^{2}) + \cdots \right]$$

$$T = T_{s} \left[1 + \sigma \left(\frac{v_{s}}{R^{2} A} \right) + \sigma \left(x^{e} \right) + \cdots \right]$$

$$P = P_{s} \left\{ 1 + U\left(\frac{y_{s}}{R_{A}}\right) + x^{2} \left[-\frac{y_{s}A^{2}}{2P_{s}} + \frac{1}{R} \left[\frac{y_{s}}{A} + \frac{y_{s}A^{2}}{P_{s}} \left(q - \zeta_{s} \right) \right] + \cdots \right\}$$
(2.24)

Expressions (2.23) and (2.24) in conjunction with (2.2) through (2.5) can now be used to define the boundary conditions necessary for the proper "mergence" of the viscous "inner" flow into the inviscid "outer" flow. As γ becomes very large

and

.

.

$$\begin{aligned} f_{1}(\eta) \longrightarrow G_{\eta} + \frac{n-1+nRV}{2} \eta^{2} \\ f_{1}(\eta) \longrightarrow O \\ f_{1}(\eta) \longrightarrow O \\ f_{1}(\eta) \longrightarrow O \\ f_{1}(\eta) \longrightarrow O \\ \frac{P_{2}}{P_{1}R^{2}} g_{1}(\eta) \longrightarrow \eta - G_{3} \end{aligned}$$

$$(2.26)$$

S, " Using these boundary conditions three of the differential

equations, namely (2.9) through (2.11), can be integrated immediately

 $t_{P_{\circ}(\gamma)} = 1$

 $t_{P_i}(\eta) = 0$

$$\frac{2 P_{s}}{s_{s} A^{2}} g_{P_{o}}(\gamma) = -1$$
(2.27)

.

These results can be combined with the perfect-gas law (2.19) to obtain

.

٠

.

$$t_{\tau_0} = \frac{1}{4t_0}$$

$$t_{\tau_1} = -\frac{4t_1}{4t_0^2}$$
(2.28)

The remaining differential equations can now be simplified by using the above intermediate results. Using (2.27) and (2.28) equation (2.14) becomes

$$(1+n) \left\{ 0 \left\{ 0 & \frac{\mu_{0}}{\mu_{0}} + (1+n) \left\{ 0 \left\{ 0 & - \right\} \right\}^{1/2} + \frac{1}{\mu_{0}} + \frac{\mu_{0}}{\mu_{0}} + \frac{\mu_{0}}{\mu_{0}} \right\} = 0$$

$$+ \left\{ 0 & \frac{\mu_{0}^{1/2}}{\mu_{0}} \right\} + \frac{\mu_{0}}{\mu_{0}} \left[\left\{ 0 & + 2 \left\{ 0 & \frac{\mu_{0}}{\mu_{0}} + 1 & \frac{\mu_{0}}{\mu_{0}} \right\} \right\} = 0$$

$$(2.29)$$

The
$$\times$$
 momentum equation for the correction term, (2.15),
is similarly modified. Grouping homogeneous and inhomogeneous terms on
the left- and right-hand sides respectively, the equation becomes

$$\left[(1+n) f_{0} \frac{\mu_{0}}{\mu_{0}} + (1+n) f_{0} \right] f_{1} + \left[(1+n) f_{0} \frac{\mu_{0}}{\mu_{0}} - 2 f_{0} \right] f_{1}^{\prime} + (1+n) f_{0} f_{1}^{\prime} - \frac{1}{\mu_{0}} \frac{2}{2} \frac{p_{2}}{p_{2}} 2P_{1} + \frac{1}{\mu_{0}} T_{2}^{2} \left[f_{0}^{\prime} \frac{\mu_{0}^{\prime}}{\mu_{0}^{\prime}} + f_{0}^{\prime} \frac{\mu_{0}^{\prime}}{\mu_{0}^{\prime}} \right] \mu_{1} + (1+n) \frac{f_{0} f_{0}^{\prime}}{\mu_{0}^{\prime}} \frac{\mu_{0}^{\prime}}{\mu_{0}^{\prime}} + \frac{1}{\mu_{0}^{\prime}} \frac{p_{1}^{\prime}}{\mu_{0}^{\prime}} + \frac{1}{\mu_{0}^{\prime}} \frac{\mu_{0}^{\prime}}{\mu_{0}^{\prime}} + \frac{1}{\mu_{0}^{\prime}$$

$$+ (1+n) t_{0} t_{0}^{"} - t_{0}^{12} + \frac{1}{H_{0}} + (n^{2}-1) t_{0} t_{0}^{1} + \frac{L_{0}}{H_{0}} T_{s} \left\{ \eta n \left[H_{0}^{1} t_{0}^{*} + t_{0}^{1} + t_{0}^{1} t_{0}^{*} \right] + (1+n) t_{0}^{1} H_{0}^{1} \right\} + \frac{L_{0}}{H_{s}} \left\{ \eta n \left[t_{0}^{"} + 2 t_{0}^{"} + \frac{H_{0}^{1}}{H_{0}} + t_{0}^{1} + t_{$$

The same substitutions can be made in the energy equations;

(2.17) becomes

$$P_{T_{5}} \frac{c_{\rho_{0}}}{c_{\rho_{5}}} (1+n) \frac{1}{4} \cdot \frac{1}{4} \frac{1}{6} + \frac{1}{4} \cdot \frac{1}{5} + \frac{1}{6} \cdot \frac{1}{5} + \frac{1}{6} \cdot \frac{1}{5} = 0$$
(2.31)

Similarly, grouping homogeneous and inhomogeneous terms

(2.18) becomes

$$\mathcal{R}_{s}\left[\frac{\dot{q}_{0}}{\epsilon_{s}}T_{s}\left(1+n\right)+\frac{h}{2}h_{0}^{\prime}H_{1}^{\prime}+\frac{q_{0}}{\epsilon_{s}}\left(1+n\right)\left(h,H_{1}^{\prime}+H_{0}^{\prime}+I_{1}^{\prime}\right)\right] + \frac{h}{2}\left(h_{0}^{\prime}T_{s}^{\prime}+H_{0}^{\prime}+\frac{h}{2}h_{0}^{\prime}+\frac{h}{2}$$

Equations (2.29) and (2.31) now constitute a system of two coupled non linear differential equations in the two variables 4_{\circ} and 4_{\circ} . The order of the combined system is 5, thus 5 boundary conditions are needed. Equations (2.20) give 3 at the wall;
thus two more are needed "at infinity." The proper boundary conditions are then from (2.25)

These are the boundary-layer equations; their solutions can be obtained (numerically) as soon as the dependence of fluid properties upon temperature is specified. The wall-to-free-stream stagnationtemperature ratio, W, will be a parameter of the solution. After these results are obtained the solution of coupled equations (2.30) and (2.32) can be considered. Variable $9P_1$ in equation (2.30) can be eliminated by integrating equation (2.12), which can be done directly because, using (2.29)

$$\frac{P_{s}}{S_{s}A^{2}}gp'_{i} = f_{0}^{2}H_{0} = \frac{1}{2+n}\frac{d}{dy}\left[(1+n)f_{0}f_{0}H_{0} + y + \frac{h}{h_{s}}(f_{0}H_{0} + f_{0}^{*}H_{0})\right]$$

The boundary condition for $q p_i$, as given in (2.26), can be used to determine the unknown constant of integration. Let the behavior of $\frac{1}{2}$ far from the wall be described by

$$\eta \longrightarrow \infty \quad f_{0}(\eta) \rightarrow \eta - \eta^{*}$$
 (2.34)

where η^* is determined from the solution of the boundary-layer equations. Then, far from the wall

$$\frac{P_s}{s_s A^2} g_{I} = \frac{1}{2+n} \Big[(1+n) \frac{1}{2+n} \frac{1}{2} \frac{1}{2+n} \frac{1$$

$$K = \frac{1+n}{2+n} \gamma^* - C_3$$
 (2.35)

and the expression

$$\frac{P_{s}}{P_{s}A^{2}}g_{P_{1}} = \frac{1}{2+n} \left[(1+n)f_{0}f_{0} \#_{0}^{+} (1+n)\eta^{*} + \eta + \int_{L_{s}}^{\infty} (f_{0}^{+} \#_{0}^{+} + f_{0}^{+} \#_{0}) \right] - G$$
(2.36)

can now be used in (2.30).

 $\frac{1}{4}(0) = 0$

Before proceeding with the discussion of the solution of equations (2.30) and (2.32), result (2.28) can be used to modify the boundary conditions at the wall for $\frac{1}{4}$, and $\frac{14}{4}$, as given in (2.21)

$$f_{1}^{\prime}(0) = K_{1} \stackrel{AR}{\textcircled{\text{lot}}_{s}} \stackrel{hw}{\swarrow} \overline{W} \quad f_{0}^{\prime}(0)$$

$$f_{1}^{\prime}(0) = K_{2} \stackrel{AR}{\textcircled{\text{lot}}_{s}} \stackrel{hw}{\longleftarrow} \overline{W} \quad f_{0}^{\prime}(0)$$

$$(2.37)$$

The two constants (or rather combination of constants) that appear in the above boundary conditions are arbitrary in magnitude; their ratio K_1 / K_2 is also arbitrary, depending partly on empirically determined solid-gas interaction properties σ and \ll_{e_1} . Additional arbitrary constants appear in the boundary conditions for \oint_1 "at infinity" as given in (2.26), namely C_D and V (this latter only for the N = 1 case). The linearity of the equations suggests that it will be possible to construct a solution of the equations for any combination of the above arbitrary constants in terms of a sum, where the arbitrary constants appear as coefficients. Each of the functions, associated with any one of the arbitrary constants, can be solved for once and for all. The solutions of the equations could then be written in the form

$$\begin{aligned} \dot{f}_{1} &= \dot{f}_{1c} + \frac{AR}{RET_{s}} \frac{h_{w}}{\mu_{s}} W \left[K_{1} \dot{f}_{0}^{'}(0) \dot{f}_{1} + K_{2} \dot{H}_{0}^{'}(0) \dot{f}_{12} \right] + (\Im \dot{f}_{1D} + nRV \dot{f}_{1V} \\ \dot{H}_{1} &= \dot{H}_{1c} + \frac{AR}{RET_{s}} \frac{h_{w}}{\mu_{s}} W \left[K_{1} \dot{f}_{0}^{'}(0) \dot{f}_{1} + K_{2} \dot{H}_{0}^{'}(0) \dot{f}_{12} \right] + (\Im \dot{H}_{1D} + nRV \dot{H}_{1V} \\ (2.38) \end{aligned}$$

where the functions with subscript د are associated with the solution of the inhomogeneous equation, subject to the boundary conditions with all arbitrary constants vanishing; whereas the other functions represent solutions of the homogeneous equations, subject to boundary conditions associated with the respective constants. Result (2.38), above, then implies the existence of 5 different pairs of functions (4 pairs for n = 0), each pair being a solution of two coupled linear equations, and subject to the respective boundary conditions. A simplification is possible if one deserves that the pair of functions 4, and 14, identically satisfies the homogeneous equations (2.30) and (2.32), (because the left-hand sides become merely the derivatives of the corresponding boundary-layer equations (2.29) and (2.31). This pair of functions, multiplied by an arbitrary constant, also satisfies the slip and temperature-jump boundary conditions at the wall, (2.37) provided the two constrance K_1 and K, are equal. This solution is completely equivalent to

Lin and Schaef's⁽²³⁾ boundary-layer perturbation solution due to alip, or the alternate method used by Mangler⁽²⁴⁾ of "depressing" the position of the solid-fluid interface in the boundary layer by a length proportional to the mean free path, in order to account for the alip. Monweiler⁽²⁷⁾ pointed out that depressing the true position of the wall in order to account for the slip, will not, in general, account correctly for the effect of the temperature jump. Only if this "depression" times the local temperature gradient is equal to the temperature jump will this approximation be correct; this case is equivalent to the special case $K_1 = K_2$ in the terminology of the present analysis. For the general case, $K_1 \neq K_2$, a correction function can then be determined, which accounts for the fact that the two constants are not equal. Expressions (2.36) can then be regritten as follows

$$f_{1} = f_{1c} + \frac{AR}{RT_{5}} \lim_{J \to s} \sqrt{W} \left[K, f_{0} + (K_{2} - K_{1}) H_{0}(n) f_{1M} \right] + C_{3} f_{13} + nRV f_{1V}$$

$$H_{1} = H_{1L} + \frac{AR}{RET_{5}} \frac{L_{10}}{M_{5}} \overline{W} \left[K_{1} H_{0} + (K_{2} - K_{1}) H_{0}(0) H_{10} \right] + (5H_{10} + nRV H_{1V}$$
(2.39)

Thus, to determine the effect of alip and temperature jump, only one pair of functions, f_{1M} and f_{1M} , has to be determined, instead of the two pairs in (2.38).

The differential equations and boundary conditions for each of the functions appearing in (2.39) can now be summarized. First of all, the governing differential equations (2.30) and (2.32) can be modified and written in shortened operator notation as follows:

$$M(t_{1}, H_{1}) = M_{c}(t_{0}, H_{0}, \eta) - 2 \frac{h_{s}}{h_{0}} \frac{c_{0}}{H_{0}}$$
$$E(t_{1}, H_{1}) = E_{c}(t_{0}, H_{0}, \eta) \qquad (2.40)$$

where the symbols M and E denote the respective differential operators for the momentum and energy equations; and M_c and E_c denote the respective inhomogeneous terms appearing on the right-hand sides of the equation. From (2.30) and (2.32), the above operators are:

$$\begin{split} \mathcal{M}(t_{1}, t_{1}) &= \frac{h_{10}}{\mu_{0}} \left[(1+n)t_{0}^{\dagger} \frac{H_{0}^{\dagger}}{H_{0}} + (1+n)t_{0}^{\dagger} \right] t_{1} + \left\{ \frac{h_{10}}{\lambda_{0}} \left[(1+n)t_{0} \frac{H_{1}^{\dagger}}{H_{0}} - 2t_{0}^{\dagger} \right] + \frac{h_{10}}{\mu_{0}} \right] t_{1} + \left\{ \frac{h_{10}}{\mu_{0}} T_{5} \frac{H_{10}}{\mu_{0}} + 2t_{0}^{\dagger} \frac{H_{10}^{\dagger}}{\mu_{0}} \right\} t_{1}^{\dagger} + \left\{ \frac{h_{10}}{\mu_{0}} (1+n)t_{0} + \frac{h_{10}}{\mu_{0}} T_{5} \frac{H_{10}}{\mu_{0}} + 2t_{0}^{\dagger} \frac{H_{10}^{\dagger}}{\mu_{0}} \right\} t_{1}^{\dagger} + t_{1}^{\dagger} + \left\{ -\frac{h_{10}}{\mu_{0}} \left[\frac{1}{\mu_{0}} + (1+n)t_{0}t_{0} \frac{H_{10}^{\dagger}}{\mu_{0}} \right] + \frac{\lambda_{10}}{\lambda_{0}} T_{5}^{2} \left[t_{0}^{\dagger} \frac{H_{10}}{\mu_{0}} \right] + \frac{\lambda_{10}}{\mu_{0}} T_{5} \left[t_{0}^{\dagger} \frac{H_{10}^{\dagger}}{\mu_{0}} \right] + \frac{\lambda_{10}}{\mu_{0}} T_{5} \left[t_{0}^{\dagger} \frac{H_{10$$

.

$$E(t_{1}, t_{1}) = P_{T_{5}} (v_{0}, t_{1}) = (1+n) t_{0} t_{1} + [P_{T_{5}} (v_{0}, T_{5}, t_{0}) (1+n) t_{0} t_{0} + t_{0}$$

Also

$$M_{2}(\frac{1}{4}, \frac{1}{4}, \frac{1}{9}) - 2\frac{c_{0}}{\mu_{0}} \frac{h_{1}}{\mu_{0}} \equiv \sqrt{\frac{h_{0}}{h_{0}}} \left\{ (1+n) \left\{ (1+n) \left\{ 0, \frac{1}{9}, \frac{1}{9} \right\} + \frac{1}{\mu_{0}} \left\{ (1+n) \left\{ (1+n) \left\{ 0, \frac{1}{9}, \frac{1}{9} \right\} + \frac{1}{\mu_{0}} \left\{ \left[(n-1) + \frac{2(1+n)}{2+n} \right] \left\{ 0, \frac{1}{9}, \frac{1}{9} \right\} + \frac{1}{\mu_{0}} \right\} + \frac{1}{\mu_{0}} \left\{ \left[(n-1) + \frac{2(1+n)}{2+n} \right] \left\{ 0, \frac{1}{9}, \frac{1}{9} \right\} + \left[(n-1) + \frac{2}{2+n} \right] \left\{ 1, \frac{1}{9}, \frac{1}{9} \right\} + \frac{1}{\mu_{0}} \left\{ (1+n) \left\{ 1, \frac{1}{9}, \frac{1}{9} \right\} + \frac{1}{\mu_{0}} \left\{ 1, \frac{1}{9} \right\} + \frac{1}{\mu$$

$$E_{c}(t_{0}, t_{0}, \eta) \equiv -(1+n) \left[\eta \left(t_{0}^{\mu} + \frac{t_{0}}{t_{0}}, T_{s} t_{0}^{\mu} \right) + t_{0}^{\mu} \right]$$
(2.44)

Now let all the arbitrary parameters in (2.39) vanish. Then the differential equations to be solved are

$$M(t_{ic}, t_{ic}) = M_{c}(t_{0}, t_{0}, \eta)$$

$$E(t_{ic}, t_{ic}) = E_{c}(t_{0}, t_{0}, \eta)$$
(2.45)

The boundary conditions at the wall are

$$f_{1c}(0) = 0$$

$$f_{1c}'(0) = 0$$

$$f_{1c}(0) = 0$$

(2.46)

36

.

while, very far from the wall

$$\begin{aligned}
& \psi_{ic}(\gamma) \rightarrow 0 \\
& \eta \rightarrow \infty \quad \text{for } n = 0 \quad \{ \psi_{ic}^{"}(\gamma) \rightarrow -1 \\
& \text{for } n = 1 \quad \{ \psi_{ic}^{"}(\gamma) \rightarrow 0 \\
\end{aligned}$$

Now the correction terms due to the slip and temperaturejump effects can be considered. The equations are

$$M(f_{im}, H_{im}) = 0$$

 $E(f_{im}, H_{im}) = 0$
(2.48)

In agreement with (2.37) and (2.39), the boundary conditions at the wall are

$$\begin{aligned}
\xi_{1M}(0) &= 0 \\
\xi_{1M}'(0) &= 0 \\
\xi_{1M}'(0) &= 1
\end{aligned}$$
(2.49)

The "outer" boundary conditions are

..

Using (2.45) the equations for the terms multiplied by () are

$$M(t_{10}, t_{10}) = -2 \frac{h_{10}}{h_{10}} \frac{1}{t_{10}}$$
$$E(t_{10}, t_{10}) = 0$$
(2.51)

The boundary conditions at the wall are homogeneous

$$\begin{aligned}
t_{1D}(0) &= 0 \\
t_{1D}(0) &= 0 \\
t_{1D}(0) &= 0
\end{aligned}$$
(2.52)

At "infinity", using (2.26)

$$\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$$

Correction functions $+_{0}$ and $+_{0}$ can be written down in terms of the boundary-layer solutions $+_{0}$ and $+_{0}$ directly. To obtain these expressions one has to observe that coefficient C_{D} appeared in the inviscid boundary conditions because velocity gradient

A was expanded, as shown in (2.22). This very same expansion of A can be applied to the original expressions for the stream-function and temperature, as given in (2.1) through (2.3). Not considering terms with subscript | , the expansion of A yields the following expressions

$$\Psi = S_{s} \overline{I_{3}A} \times^{1+n} \left\{ \frac{1}{4} \circ (\gamma) + \frac{1}{2} \frac{1}{8} \sqrt{\frac{3}{4}} \circ \frac{1}{4} \circ (\gamma) + \frac{1}{2} \frac{1}{8} \sqrt{\frac{3}{4}} \circ \frac{1}{4} \frac{1}{8} (\gamma) + \frac{1}{2} \frac{1}{8} \sqrt{\frac{3}{4}} \circ \frac{1}{8} \sqrt{\frac{1}{8}} \left(\frac{1}{2} \gamma \sqrt{\frac{1}{8}} \left(\frac{1}{2} \gamma \sqrt{\frac{1}{8}} \right) \right) \right\}$$

$$T = T_{s} \left[\frac{1}{8} \circ (\gamma) + \frac{1}{2} \frac{1}{8} \sqrt{\frac{3}{4}} \left(\frac{1}{2} \gamma \sqrt{\frac{1}{8}} \right) \right]$$

$$(2.54)$$

Comparing with (2.39), one can immediately identify

$$\begin{aligned}
\mathbf{f}_{ib} &= \frac{1}{2} \left[\mathbf{f}_{0} + \gamma \mathbf{f}_{0}^{i} \right] \\
\mathbf{f}_{ib} &= \frac{1}{2} \gamma \mathbf{f}_{0}^{i} \end{aligned} (2.55)$$

Substitution into (2.51) through (2.53) verifies these

solutions. Expressions (2.39) can now be written

$$\begin{aligned} t_{1} = t_{1c} + \frac{AR}{RE_{5}} \sum_{h_{s}}^{h_{w}} W \left[K_{1} t_{0}^{l} + (H_{2} - K_{1}) H_{0}^{l}(0) t_{1M} \right] + \frac{C_{2}}{2} (t_{0} + \eta t_{0}^{l}) + nRV t_{1V} \\ t_{1} = t_{1c} + \frac{AR}{RE_{5}} \sum_{h_{s}}^{h_{w}} W \left[K_{1} H_{0}^{l} + (K_{2} - K_{1}) H_{0}^{l}(0) H_{1M} \right] + \frac{C_{2}}{2} \eta t_{0}^{l} + nRV H_{1V} \end{aligned}$$

$$(2.56)$$

Finally, the equations for the terms proportional to \vee

are

.

4

.

$$M(f_{iv}, \mu_{iv}) = 0$$

E(f_{iv}, \mu_{iv}) = 0 (2.57)

The boundary conditions at the wall are again homogeneous

$$\begin{aligned}
& \downarrow_{iv}(0) = 0 \\
& \downarrow_{iv}^{i}(0) = 0 \\
& \downarrow_{iv}^{i}(0) = 0
\end{aligned}$$
(2.58)

while far from the wall

$$\begin{array}{cccc}
\eta \rightarrow & & \\
\eta \rightarrow & & \\
& & & \\
& & & \\
& & & \\
\end{array} (2.59)
\end{array}$$

Expressions (2.45) through (2.50) and (2.57) through (2.59) give the differential equations and the associated boundary conditions that are necessary to determine the five pairs of functions (two for n = 0 and three for n = 1) that occur in expressions (2.56) for the boundary-layer correction terms that are under consideration in the present investigation. The solution of these equations is contingent upon solution of the stagnationpoint boundary-layer equations (2.29) and (2.31) subject to boundary conditions (2.20) and (2.33). In order to complete formulation of the theory, it is only necessary now to specify the dependence of fluid properties upon temperature. This dependence can now be stipulated as follows (cf. Chapter III)

$$\mu \propto T^{\omega}$$

$$\mathbf{t} \propto T^{\varepsilon}$$

$$\varphi \propto T^{\alpha}$$
(2.60)

Hence, using the definitions of (2.6)

$$\frac{h_{o}}{\mu_{s}} = \mu_{o}^{\omega}$$

$$\frac{h_{o}}{h_{s}} = \mu_{o}^{\varepsilon}$$

$$\frac{\eta_{o}}{\eta_{e}} = \mu_{o}^{\omega}$$
(2.61)

The temperature derivatives occurring in the equations then

become

$$\frac{k_{o}}{\mu_{s}}T_{s} = \omega \#^{\omega-1}_{o}$$

$$\frac{k_{o}}{\mu_{s}}T_{s}^{2} = \omega (\omega-1) \#^{\omega-2}_{o}$$

$$etc.$$
(2.62)

Using (2.61) and (2.62), the boundary-layer equations and the operators occurring in the equations for the correction terms can now be written down explicitly. In order to isolate the highestorder derivatives the expressions will all be divided by the appropriate powers of μ_o . Boundary-layer equations (2.29) and (2.31) become

$$(1+n) t_0 t_0' \frac{H_0'}{H_0'''''''} + (1+n) \frac{t_0 t_0''}{H_0''''} - \frac{t_0''}{H_0''''} + \frac{1}{H_0'''''} + t_0'''' + (\omega+2) t_0''' \frac{H_0'}{H_0} + \omega t_0' \frac{H_0'''''}{H_0'''} + t_0' \frac{H_0'''}{H_0''} = 0$$

$$P_{T_s}(1+n) t_0 t_0''' - \frac{t_0'}{H_0''} + \frac{H_0''}{H_0''} + \varepsilon \frac{H_0''}{H_0} = 0$$

$$f^{(0)} = 0$$

 $f^{(0)} = 0$

η-

$$\begin{array}{c} & & & \\ &$$

where unchanged boundary conditions (2.20) and (2.33) have been appended for the sake of convenient reference. These equations are completely equivalent to those originally presented by Brown (2), and then solved for the two-dimensional case by Brown and Donoughe (3), Brown and Livingood (4), and for the axially symmetric case by Howe and Mersman (16). The apparent differences are due to the slightly different normalizations of the temperature and stream functions.

For the correction terms $\{1, n, n\}$ and $\{4, n\}$ operators (2.41) through (2.44) can now be written down

$$\begin{split} M(t_{1,1},t_{1,1}) &\equiv \left[(1+n) t_{0}^{i} \frac{H_{0}^{i}}{H_{0}^{i}} + (1+n) \frac{t_{0}^{i}}{H_{0}^{i}} \right] t_{1}^{i} + \left[(1+n) t_{0}^{i} \frac{H_{0}^{i}}{H_{0}^{i}} - \frac{2 t_{0}^{i}}{H_{0}^{i}} + \omega \frac{H_{0}^{i}}{H_{0}^{2}} + \frac{H_{0}^{i}}{H_{0}^{i}} \right] t_{1}^{i} + \left[(1+n) \frac{t_{0}}{H_{0}^{i}} + (\omega+2) \frac{H_{0}^{i}}{H_{0}} \right] t_{1}^{i} + t_{1}^{ii} + \left[- \frac{1}{4t_{0}^{i}} + \omega \frac{H_{0}^{i}}{H_{0}^{i}} + \frac{H_{0}^{i}}{H_{0}^{i}} + \omega \frac{H_{0}^{i}}{H_{0}^{i}} + \omega \frac{H_{0}^{i}}{H_{0}^{i}} + (\omega^{2}+\omega-2) t_{0}^{i} \frac{H_{0}^{i}}{H_{0}^{i}} + \left[- \frac{1}{4t_{0}^{i}} + (\omega^{2}-2\omega) t_{0}^{i} \frac{H_{0}^{i}}{H_{0}^{i}} + (\omega^{2}+\omega-2) t_{0}^{i} \frac{H_{0}^{i}}{H_{0}^{i}} + (\omega+2) \frac{H_{0}^{i}}{H_{0}^{i}} + \left(- \frac{1}{4t_{0}^{i}} + (\omega^{2}-2\omega) t_{0}^{i} \frac{H_{0}^{i}}{H_{0}^{i}} + \left(- \frac{1}{4t_{0}^{i}} + (\omega+2) \frac{1}{4t_{0}^{i}} + \frac{1}{4t_{0}^{i}} + \frac{1}{4t_{0}^{i}} + \frac{1}{4t_{0}^{i}} \right] t_{0}^{i} + t_{0}^$$

$$E(\{1, 1, 1, 1\}) \equiv \mathbb{P}_{r_{s}}(1+n) \downarrow_{0}^{u^{-s}} \downarrow_{0}^{u^{-s}} \downarrow_{1}^{u^{-s}} + [\mathbb{P}_{r_{s}}(1+n) \land t_{0}^{u^{-s}} \downarrow_{0}^{u^{-s}} + \\ + \varepsilon(\varepsilon^{-1}) \frac{\mu_{0}^{i^{2}}}{\mu_{0}^{s}} + \varepsilon \frac{\mu_{0}^{u^{-s}}}{\mu_{0}}] \downarrow_{1}^{u^{-s}} + [\mathbb{P}_{r_{s}}(1+n) t_{0}^{u^{-s}} \downarrow_{0}^{u^{-s}} + \\ + \varepsilon \varepsilon \frac{\mu_{0}^{i^{s}}}{\mu_{0}}] \downarrow_{1}^{u^{1}} + \downarrow_{1}^{u^{1}} \qquad (2.63)$$

$$E_{c}(t_{0}, \mu_{0}, \eta) \equiv -(1+\eta) \Big[\eta \left(\varepsilon \frac{\mu_{0}^{\prime}}{\mu_{0}} + \mu_{0}^{\prime} \right) + \mu_{0}^{\prime} \Big]$$
(2.65)

Discussion of Theory

This completes the presentation of all the differential equations and associated boundary conditions that are necessary for obtaining the boundary-layer and first-order boundary-layer correction terms for stagnation-point flow. The consequences of R arbitrarily choosing nose radius as the reference length in the Reynolds number that forms the basis of the asymptotic expansions for all the flow and thermodynamic quantities in the R problem, can now be discussed. Let the viscous length. which is indicative of the boundary-layer thickness at the stagnation 8 point, be denoted by . The expansion parameter that was ŝ used in the above analysis is then ; the ratio of the boundary-R layer thickness to the nose radius. As becomes very large \$ compared to , the first of the correction terms in (2.56), the term without any coefficient and labelled by subscript (

and

will become negligibly small compared to the boundary-layer term. This term is then indeed due to the curvature of the nose; it will not be present for a flat-nosed body, for instance.

In order to investigate the physical significance of the remaining correction terms, the expansion parameter $\frac{\delta}{R}$ has to be considered together with the coefficients of the respective terms. For the slip and temperature-jump terms, the parameter that is significant is

音麗 hu w = A hu hu an = A R an 1 hu = constant 2

where the constant is of order 1. The above shows that this correction arises when the mean free path at the wall becomes significant compared to the boundary-layer thickness. Since ζ here is in the denominator the behavior of this term is quite different from the former one.

The displacement effect arises due to a change in velocity " A" at small Reynolds numbers. Therefore, the length gradient that will be significant in this Reynolds number is the length that plays a determining role in establishing the magnitude of "A" could be the "size" of the body This reference length perpendicular to the free stream for the case of the body in a steady subsonic stream. Or, for a blunt body in hypersonic flow, it is actually the nose radius, as will be shown in a later section. The correction "A" arises when the boundary-layer thickness 8 to is large enough compared to this reference length L . Unknown constant 6 is then of the order of the ratio of R to L, which

could be quite insignificant if, for example, the stagnation point is located on a "small bump" on a much larger body. This shows that the curvature and displacement effects can arise independently from each other. (See sketch below.)

Finally, the last term in (2.56), due to the vorticity effect in axially symmetric flow, can be considered. It is clear from inspecting the coefficient of this term that radius R cancels out; instead δ is compared to length $\checkmark \vee$. A physical interpretation of this length can be obtained from the linear velocity profile in the inviscid flow given in (1.23), as indicated in the sketch below.

The ratio of the boundary-layer thickness to this length is actually identical to Kemp's⁽¹⁹⁾ vorticity parameter; the ratio of the vorticity in the inviscid flow to the "average" vorticity in the boundary layer.

These considerations show that the first-order correction terms to the stagnation-point boundary-layer solution, which are discussed in the present investigation, arise due to four different effects; namely the curvature, velocity slip and temperature jump, displacement, and vorticity effects. Each of these effects is associated with a different low-Reynolds-number flow parameter. Three of the parameters arise from a comparison of the boundary-layer thickness with three different, and in general, independent, significant lengths; nose radius R, length \bot (indicative of body size) which determines velocity gradient A, and length

 $1/\sqrt{}$ which is associated with the slope of the uniform inviscid shear flow that can be present in axially symmetric stagnation-point flows. The fourth parameter is essentially a Knudsen number based on the mean free path near the wall and the boundary-layer thickness. In order that the expansion procedure of the above analysis be applicable to a practical problem it is necessary then that all four independent parameters described above be an order of magnitude smaller than one. This implies then that the smallest one of the three reference lengths be considerably larger than the boundary-layer thickness. It also implies that the mean free path near the wall be considerably smaller than the boundary-layer thickness. This last requirement is actually implicit in the use of the

Mavier-Stokes equations, because, as pointed out in the introduction, these equations do not permit large changes in flow properties (such as occur across a boundary layer) to take place within distances of only a few mean free paths long. This shows that the use of the slip and temperature-jump boundary conditions as first-order corrections to the boundary-layer equations is consistent with the use of the Navier-Stokes equations. If λ_{max} is off order 1 the expansion procedure of the present analysis and the Navier-Stokes equations break down similtaneously.

If all four of the expansion parameters are sufficiently small (i.e., smaller than of order (), so that it is meaningful to apply the Reynolds-number-expansion procedure described in the above analysis, it is interesting to consider what type of terms may arise if the next term in the expansion is considered. The energy and momentum equations are again used, as in (2.8) through (2.18) now terms to the second power of expansion variable $\frac{1}{5} \int_{-\infty}^{y_3}$ are collected. On the left-hand side of the equations, terms involving the new (second-order) variables f_2 , f_2 , f_7 , etc. will appear. These terms will all be linear, with the coefficients composed of the zero-th-order (1.e., boundary-layer) terms. The linearity of the equations again permits splitting the second-order of correction terms into a number of separate, mutually independent effects. These effects will arise due to various parameters that appear in the inhomogeneous terms and in the boundary conditions.

The inhomogeneous terms will be composed of various combinations of the gero-th and first-order terms. At most two first-order functions can be combined in each term. Since the

first-order functions can have either of three arbitrary coefficients or no coefficient at all, the second-order terms that arise can be associated with combinations of any two of the three arbitrary coefficients or no coefficient at all, the second-order terms that arise can be associated with combinations of any two of the three arbitrary coefficients, or any one of the coefficients, or no coefficient at all (thereby giving rise to seven different effects for the axially symmetric and five for the plane flow cases). Another new effect will also appear among the inhomogeneous terms due to the presence of boundary-layer terms that are one order higher in \times^2 expansion about the $\times = 0$ point than the stagnationthe point boundary-layer terms (i.e., terms like q_0 , q_2^4 , etc.). Thus, to this second order, the description of the body has to include, in addition to the nose radius and nose wall temperature, also the rate of change of these quantities with \times^2 in order to specify the stagnation-point flow (implying the appearance of two more arbitrary parameters). As mentioned in Chapter I, additional arbitrary parameters will undoubtedly appear in the "outer" (i.e., inviscidflow) boundary conditions to the second-order correction terms. These considerations show that a full treatment of the second-order correction terms would be very laborhous and complicated indeed. These correction terms will not be considered in the present analysis, except a word of caution has to be added. It is possible that coefficients of some of the new second-order terms are so large that the expansion procedure of the present analysis (which is based

on the nose radius as the significant length) is not applicable, even though the first-order correction terms are all sufficiently small. This implies that there are new physical parameters, which show up only in the second (or possibly higher)-order terms in an expansion procedure based on nose radius, but which are of the same order as the boundary-layer term itself, thereby precluding the possibility of this type of asymptotic-expansion procedure. For example, the rate of change of curvature at the stagnation point could be so large that this effect dominates the viscous flow near the stagnation point, even though the curvature itself is not large.

For those cases when one of the expansion parameters is so large that the expansion procedure outlined in this chapter is not applicable any more, yet the Navier-Stokes equations are still applicable, different methods of solution have to be considered. One method, which is feasible under certain circumstances, is solution of the full Navier-Stokes equations, with the Reynolds number based on radius as a parameter. Such solutions have been obtained for hypersonic flow around a sphere, with a constant-density fluid and concentric shock wave, by Probstein and Kemp⁽³¹⁾, and Hoshizaki⁽¹³⁾. Later Hoshizaki (14) included the slip effect for this case, as a separate parameter. Another method is solution of the boundarylayer equations, with the particular strong low-Reynolds-number effect as a parameter. The vorticity effect for incompressible fluid is considered in this manner by Kemp⁽¹⁹⁾. A somewhat different approach, again for the axially symmetric hypersonic-flow case, is used by Oguchi⁽²⁸⁾ and Herring⁽¹¹⁾. Their method consists of using the bow shock wave as an "outer" boundary condition for the boundary-layer

equations, thereby accounting for both the vorticity and displacement effects; the former for a g = constant, the latter for a Ag = constant fluid. More recently Oguchi⁽²⁹⁾ presented an analytic solution for this same axially symmetric constant-density hypersonic-flow case, in terms of an expansion in shock density ratio e. This analysis includes the curvature, displacement, and vorticity effects simultaneously. Finally, the method of Probstein and Kemp⁽³¹⁾ has also been applied to a variable-property fluid by Probstein and Ho⁽³²⁾, again, for the case of a sphere in hypersonic flow.

In the present analysis the restriction to small values of the parameters was accepted, as this disadvantage was compensated by the possibility of identifying the four first-order low-Reynoldsnumber effects and comparing them on an equal footing. The validity of the present approach can be extended by constructing "hybrid" or "composite" solutions, including only the largest of the above effects in the nonlinear solution, and accounting for the remaining low Reynolds-number effects by the perturbation procedure of the present analysis. For example, Kemp's (19) parametric solution of the boundary-layer equations subject to a vortical outer boundary condition could be "perturbed" with respect to slip and or curvature; etc. Such a solution could be useful in a flow regime with large vorticity interaction effect but comparatively small slip and curvature parameters. The most useful approach will be different for each problem, and can be determined by estimating the orders of magnitude of the various low-Reynolds-number flow parameters.

CHAPTER III

Examples of Stagnation-Point Flows

In order to apply the results of the foregoing theory to flows around specific bodies, the flow parameters that are inherent in the stagnation-point flow problem have to be determined for the specific flow example. Some simple examples and applications will be considered in the following paragraphs. In some cases, it may be more appropriate to use experimental results to determine the parameters under consideration.

Subsonic flow around circular cylinder and sphere.

At low Mach numbers, the results of incompressible flow around these bodies can be used. The stream functions are given for the cylinder

$$\Psi = \varsigma_s U \left(r - \frac{R}{r} \right) \sin \theta \tag{3.1}$$

and for the sphere

 $\Psi = S_s \frac{U}{2} \left(r^2 - \frac{R^3}{r}\right) \sin^2 \Theta$

Using the boundary-layer coordinate system of (1.1) and expanding about the stagnation point, these expressions become

$$\Psi = s_{s} \frac{2U}{R} \times \left[y - \frac{y^{2}}{2R} + \cdots\right]$$
$$\Psi = s_{s} \frac{3U}{2R} \times \left[y + O(y^{3}) \cdots\right]$$

51

(3.2)

for the cylinder and sphere respectively. Comparing with (1.22), for the cylinder

$$A = \frac{2V}{R}$$
(3.3a)

and for the sphere

$$A = \frac{3V}{2R}$$

Due to the presence of turbulence and the possibility of separation, displacement constant ζ_D has to be left undetermined for this type of flow. The remaining parameters are essentially arbitrary thermodynamic properties.

Hypersonic flow around circular cylinder and sphere.

Inviscid solutions for hypersonic flow around circular cylinder and sphere were given by Whitham⁽⁴³⁾ and also Hayes and Probstein⁽⁹⁾ for the cylinder, and Lighthill⁽²²⁾ for the sphere. Both of these solutions are predicated upon three assumptions; shock shape that is concentric with the body, incompressible fluid behind the shock, density ratio across shock is a constant. The stream functions are, for the cylinder

$$\psi = s_{i}^{U} R_{sure} \operatorname{ind} \left\{ \left[K_{i} \left(\frac{-\varepsilon}{\varepsilon} \right) - (v \cdot \varepsilon) K_{i} \left(\frac{-\varepsilon}{\varepsilon} \right) \right] I_{i} \left(\frac{\varepsilon}{\varepsilon} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \right) - \left[I_{i} \left(\frac{\varepsilon}{\varepsilon} \right) - (v \cdot \sigma) I_{i} \left(\frac{\varepsilon}{\varepsilon} \right) \right] K_{i} \left(\frac{\varepsilon}{\varepsilon} + \frac{1}{2} \frac{1}{$$

$$= g_{S} U R_{Shark} \sin \theta \left\{ (I_{2}(e) I_{1}(e^{-1} \frac{1}{n_{max}}) - (I_{R}(e) K_{1}(e^{-1} \frac{1}{n_{max}}) \right\}$$
(3.4e)

which defines $\zeta_{\Gamma}^{(e)}$ and $\zeta_{\kappa}^{(e)}$; and for the sphere

$$\Psi = \zeta_{j} U + \frac{1}{2} \left\{ \frac{e}{2} + \frac{(1-e)(1-6e)}{15e} \left(\frac{R_{3k,i,k}^{3}}{r^{3}} - 1 \right) - \frac{(1-e)^{2}}{10e} \left(1 - \frac{r^{2}}{R_{3k,i,k}} \right) \right\}$$
(3.4b)

where e is the density ratio across the shock $\frac{g_{ee}}{s_{shock}}$, and R_{shock} the radius of the shock. Let the inviscid shock stand-off distance be A, so that

$$R_{\rm shick} = R + \Delta \tag{3.5}$$

In the boundary-layer coordinate system of (1.1) then, and considering the leading power in \times only, the expressions for the respective stream functions become, for the cylinder:

$$\Psi = \varsigma_{s} U_{\kappa} \left(I + \frac{\Delta}{R} \right) \left\{ c_{I} T_{i} \left(\frac{e-1}{e} \right) + \frac{1+k}{1+\frac{R}{e}} - c_{\kappa} K_{i} \left(\frac{e-1}{e} \right) + \frac{1+k}{1+\frac{R}{e}} \right\}$$

(3.6.)

and for the sphere:

$$\Psi = g_{s}Ux^{2}(1+\frac{\pi}{2})\left\{\frac{e}{2} + \frac{(1-e)(1-6e)}{15e}\left[\left(\frac{1+\frac{\pi}{2}}{1+\frac{\pi}{2}}\right)^{3} - 1\right] - \frac{(1-e)^{2}}{10e}\left[1 - \left(\frac{1+\frac{\pi}{2}}{1+\frac{\pi}{2}}\right)^{2}\right]\right\}$$
(3.6b)

Since the body outline is part of the stagnation streamline, the expressions in brackets in (3.6) are equal to 0 at y=0This relates $\frac{d}{R}$ to e

$$C_{I}(e) \overline{I}_{i} \left[\frac{e^{-1}}{e^{(1+\frac{1}{2})}} \right] - C_{k}(e) K_{i} \left[\frac{e^{-1}}{e^{(1+\frac{1}{2})}} \right] = 0$$
(3.7a)

$$\frac{3(1-e)^2}{(1+\frac{4}{5})^4} - \frac{5(1-4e)}{(1+\frac{4}{5})^2} + 2(1-e)(1-6e)(1+\frac{4}{5}) = 0$$
(3.7b)

(3.10b)

$$V = \frac{1}{R} \frac{2}{1 - (1 - 4\epsilon) \left(\frac{1 + \frac{2}{R}}{1 - \epsilon}\right)^{2}}$$

$$A = \frac{U}{R} \frac{1}{2e} \left[\left(\frac{1-e}{1+\frac{e}{R}} \right)^2 - 1 + 4e \right]$$

$$A = \frac{V}{R} \stackrel{1-e}{=} \left\{ c_{\mathrm{T}} \mathcal{I}_{\mathfrak{o}} \left[\frac{1-e}{e(1+\frac{e}{k})} \right] + c_{\kappa} \mathcal{K}_{\mathfrak{o}} \left[\frac{1-e}{e(1+\frac{e}{k})} \right] \right\}$$
(3.10a)

the cylinder becomes

.

$$\Psi = g_{s} \frac{V}{R} \frac{1-e}{e} \left\{ (r_{r} I_{\bullet} \left[\frac{1-e}{e(1+\frac{e}{R})} \right] + C_{k} K_{\bullet} \left[\frac{1-e}{e(1+\frac{e}{R})} \right] \right\} \times \left[u_{s} - \frac{u^{2}}{eR} + \cdots \right]$$

$$\Psi = g_{s} \frac{V}{R} \frac{1}{2e} \left[\left(\frac{1-e}{1+\frac{e}{R}} \right)^{2} - 1 + 4e \right] \times \left[u_{s} + \frac{1}{1 - (1-4e) \left(\frac{1+\frac{e}{R}}{1-e} \right)^{2}} \frac{4^{2}}{R} \cdots \right]$$
(3.9a)
$$(3.9b)$$

Again, comparing with (1.22), the velocity gradient for

.

Now stream functions (3.6) can be expanded in powers of
$$4$$
;

$$\frac{1}{R} = \frac{1}{2} \left[l_{m} \frac{4}{3e} + \frac{1}{2} \left(l_{m} \frac{4}{3e} \right)^{2} + e l_{m} \frac{1}{3e} + \frac{1}{12} \right]$$

$$\frac{1}{R} = e \left[1 - \frac{1}{3} \frac{1}{12} + 4e + \cdots \right]$$
(3.8a)
(3.8b)

for small e (cf. Hayes and Probstein⁽⁹⁾

$$\frac{A}{R} = \frac{e}{2} \left[lm \frac{4}{3e} + \frac{b}{2} \left(lm \frac{4}{3e} \right)^2 + e lm \frac{4}{3e} + \cdots \right] .$$
(3.8e)
$$\frac{A}{R} = e \left[l - \frac{b}{2} \left[e + 4e + \cdots \right] \right]$$

These implicit relations can be expanded in a series form

. .

In this case, the displacement effect can also be ascertained; the shock stand-off distance will be changed from the inviscid value due to the presence of the boundary layer, without (to this order) affecting the shape of the shock surface. It will then appear as if the nose radius were increased by the boundary-layer displacement thickness $\int_{-\infty}^{\infty}$. Then, in the velocity gradients in (3.10) above

$$\frac{1}{R+s^{*}} = \frac{1}{R[1+\frac{1}{k}]\frac{R}{2}\gamma^{*}} = \frac{1}{R}\left[1-\frac{1}{k}\left[\frac{R}{2}\gamma^{*}+\cdots\right]\right]$$

Comparing with (2.22), it is apparent that

$$L_{\rm D} = -\gamma^{*} \tag{3.11}$$

the corresponding low-Reynolds-number correction to the shock stand-off distance is also of interest

$$R_{\text{Shech}} - R = \Delta + \int_{A}^{B} \eta^{*}$$
(3.12)

For small e expressions (3.10) can be expanded; the

leading terms are

$$A = \frac{\nabla}{R} \left[\sqrt{3} \sqrt{e} + \cdots \right]$$
(3.13a)

for the cylinder, and

$$A = \frac{\nabla}{R} \left[\int_{1}^{\frac{1}{2}} \sqrt{e} + \mathcal{O}(e^{\frac{3}{2}}) \cdots \right]$$
$$V = \frac{1}{R} \left[\int_{\frac{1}{2}}^{\frac{1}{2}} e^{\frac{1}{2}} + \mathcal{O}(e^{-\frac{1}{2}}) \cdots \right]$$

(3.13ъ)

for the sphere respectively. Graphs of stand-off distance $\frac{4}{R}$, velocity gradient A'', and vorticity parameter V are shown in Figures 1 and 2, for the sake of convenient reference. The corresponding numerical computations are shown in Appendix C.

Empirically determined stagnation point velocity gradient vs. free-stream Mach-number curves are given by Reshotko and Beckwith⁽³³⁾ for circular cylinders, and by Crawford and McCauley⁽⁶⁾, and Romig⁽³⁴⁾ for spheres.

Flight of a Blunt Body through the Atmosphere.

An especially interesting and practically significant application of low-Reynolds-number stegnation-point flow occurs in the case of a body flying at high altitudes. In order to determine whether any of the four correction terms described in the analysis of Chapter II are necessary or appropriate, one has to estimate the magnitude of the four respective parameters at various flight speeds and altitudes for a body of given size. In order to determine the boundary-layer thickness at the stagnation point the stagnation kinematic viscosity \mathcal{Y}_{k} and velocity gradient "A" have to be known. The former can be determined unequivocally for a given altitude and flight speed. Velocity gradient A will be proportional to ∇_{\perp} . where L is some significant length, usually indicative of body size. Leaving this body length unspecified, boundary-layer thickness will be 175 proportional to quantity . which is a function of altitude and flight speed only. In order to determine whether the curvature and displacement correction effects are important, the quantity

should be divided by the square root of the respective length. If the two lengths "R" and "L" are of different orders of magnitude $\frac{\sqrt{L}}{R} = \frac{\sqrt{2}}{\sqrt{2}}$ is the proper parameter to determine the significance of the survature effect, which is then different from the displacementeffect parameter $\sqrt{\frac{2}{2}}$.

To assess the significance of the slip and temperature-jump effects, the mean free path at the stagnation paint has to be compared to the boundary-layer thickness. The former can be eximilated from the thermodynamic properties, and thus can be determined as a function of \mathcal{V} and \mathcal{H} only. Thus the ratio

$$\frac{\lambda_{s}}{s} = \frac{\lambda_{s}}{12}$$

depends on a parameter, which is a function of \mathcal{V} and \mathcal{H} only, divided by the square root of reference length \bot . (For a strongly cooled body, the mean free path at the wall may be considerably smaller than the mean free path at the stagnation condition, the effect of this will be discussed in detail in Chapter IV).

For axially symmetric blunt bodies in supersonic flow, the vorticity correction effect may have to be considered due to the presence of a curved shock wave. At high Mach mumbers, Lighthill's approximation (discussed in the previous section) is reasonably accurate if the nose outline and the shock are concentric. If this is not the case, an empirically (cr otherwise) determined shock radius can be used instead of the nose radius. Equation (3.10) shows, that in addition to radius R , vorticity parameter \vee is also dependent on shock density ratio , which is a function e af U and H only. Thus the parameter that determines the magnitude of the vorticity effect

VS=VER=VRER

is then completely dependent on V and H with the exception of a factor of $\frac{1}{\sqrt{\nu}}$.

These considerations show that it is possible to plot on a ∇ vs. H chart families of lines showing the magnitude of all four of the significant parameters, leaving out the effect of body size as a multiplicative fastor of arbitrary magnitude. Such a plot is shown in Figure 3. The following families of lines are shown

(3.14)

The plot is based on the ARDC model atmosphere (reference 42); real-gas effects are included in the calculations. The procedure and numerical details are given in Appendix D.

For a given size body, the lines of Figure 3 can be used to delineate the region of applicability of the expansion procedure of the present analysis. All four of the expansion parameters have to be less than 1.0 (actually unless they are less than about 0.3,

the error committed in neglecting the second-order terms may be more than 105). Inspection of the figure shows that at low subscrite flight speeds the curvature (and displacement) correction effects become significant at a much lower altitude than the slip and temperature-jump effects. On the other hand, at hypersonic speeds the slip correction occurs at a somewhat lower altitude than the curvature and displacement corrections. For spheres at hypersonic speeds the vorticity correction effect is larger by orders of magnitude than the other terms, especially as the shock density ratio becomes small. Also, it appears, that as the boundary-layer and shock-layer thicknesses become of the same order of magnitude, the altitude is already too high (and hance the Reynolds number is too low) for the applicability of the example procedure. A very detailed and thorough discussion of the suscessive flow regimes at hypersonic flow has been given recently by Probatein and $\operatorname{Kemp}^{(31)}$; there is no need to reiterate these results here except to point out that the parameters plotted on figure 3 clearly indicate this succession. The expansion procedure of the present analysis is applicable near the high-Reynolds-maker (i.e., low-altitude) end of this spectrum; especially for the axially symmetric case, where the vorticity "correction" becomes as large as the boundary-layer term itself at comparatively low altitudes, where the other corrections are still small. At hypersonic flow then either the "exact" solutions for a sphere by Probstein and Kemp⁽³¹⁾ or by Hoshizaki⁽¹³⁾ should be used (because the vorticity parameter is too large for the applicability of the present expansion procedure); or, at low enough altitudes,

where the expansion procedure is applicable, only the vorticity correction is significant, and therefore the "modified boundary-layer solutions" (where the vorticity boundary condition is a parameter) of Kemp⁽¹⁹⁾, Oguchi⁽²⁸⁾, and Herring⁽¹¹⁾ are equally practical (this is the "vorticity-interaction regime" of Probstein and Kemp⁽³¹⁾). Figure 3 indicates that the flow region where all four of the correction effects are about equally large occurs in the supersonic regime (betweenabout 2000 and 6000 ft/see). It is on this basis that the fluid properties used in the solution of the equations, as presented in the next chapter, were chosen. The procedure for obtaining these properties is shown in Appendix E. The body size will shift the flow regimes on the altitude scale, but not on the velocity scale, since all parameters are divided by the square root of the significant length.

CHAPTER IV

Mumerical Results

Presentation of Results

The differential equations presented in Chapter II, with fluid properties given in Appendix E, were solved mamerically at the Cornell Computing Center by means of a Burrows 220 electronic computer. Some details of the computing procedure are given in Appendix G. The results of the computations are determinations of "zeroth-" and first-order terms (i.e., boundary-layer and first-order terms) for the non-dimensional stream function + and temperature function . In addition to the functions, their derivatives, up to an including the highest that occur in the differential equations (i.e., the first three for $\frac{1}{2}$ and the first two for $\frac{1}{2}$), were also computed. The obtained solutions were then used to determine some additional quantities of practical interest. These quantities are the two velocity components, the two mass-velocity components, temperature and density profiles, and the variation of vorticity, shear (parallel to the wall), and heat-transfer rate (normal to the wall) in the viscous layer.

Recalling the definitions given in (2.2) and (2.3), one can write

$$\frac{\Psi}{3\sqrt{13A}\times^{Hn}} = \frac{\Psi}{W_{ef}} = \frac{\Psi_{o}}{W_{ef}} + \frac{1}{8} | \frac{1}{4} | \frac{\Psi}{W_{ef}} = \frac{1}{6} + \frac{1}{8} | \frac{1}{2} | \frac{1}{1} | \frac{1$$

which defines Ψ_{ref} , Ψ_0 , Ψ_1 , T_0 , T_1 . Similar expression can be written for the density, by using result (2.36) in (2.4)

All the other quantities of interest can be written down in like manner by using the above expressions and the relations developed in Appendices A and B between the stream function and the various flow quantities. Thus

$$\frac{U}{4\pi} = \frac{U}{U_{rd}} = \frac{U_{0}}{U_{rd}} + \frac{1}{2} \left[\frac{3}{4}, \frac{U_{1}}{U_{rd}} = \frac{1}{2} \frac{1}{4} + \frac{1}{2} \left[\frac{3}{4}, \frac{(3v)}{(5v)_{rd}} = \frac{1}{2} \left[\frac{3}{4}, \frac{(3v)}{(5v)_{rd}} = \frac{1}{4} + \frac{1}{2} \left[\frac{3}{4}, \frac{(3v)}{(5v)_{rd}} = \frac{1}{4} + \frac{1}{2} \left[\frac{3}{4}, \frac{(3v)}{(5v)_{rd}} \right] \right]$$

$$\frac{9U}{(1+1)} \frac{1}{2} \left[\frac{9U}{(5v)_{rd}} = \frac{(3v)_{0}}{(5v)_{rd}} + \frac{1}{2} \left[\frac{3}{4}, \frac{(3v)}{(5v)_{rd}} = \frac{1}{4} + \frac{1}{2} \left[\frac{3}{4}, \frac{1}{4}, -\frac{1}{4} + \frac{1}{4} \right] \right]$$

$$\frac{9U}{\frac{9}{4}\pi} = \frac{9U}{(5v)_{rd}} = \frac{(3v)_{0}}{(5v)_{rd}} + \frac{1}{2} \left[\frac{1}{4}, \frac{(3v)_{0}}{(5v)_{rd}} = \frac{1}{4} + \frac{1}{2} \left[\frac{3}{4}, \frac{1}{4}, -\frac{1}{4} + \frac{1}{4} \right] \right]$$

$$\frac{9U}{\frac{9}{4}\pi} = \frac{9U}{(5v)_{rd}} = \frac{2}{(5v)_{rd}} + \frac{1}{2} \left[\frac{1}{4}, \frac{(3v)_{0}}{(5v)_{rd}} = \frac{1}{4} + \frac{1}{2} \left[\frac{3}{4}, \frac{1}{4}, -\frac{1}{4} + \frac{1}{4} \right] \right]$$

$$\frac{1}{\frac{9}{4}\pi} = \frac{9U}{(5v)_{rd}} = \frac{2}{1} + \frac{1}{2} \left[\frac{3}{4}, \frac{9}{(5v)_{rd}} = \frac{1}{4} + \frac{1}{$$

Í.

A further breakdown of the above expressions occurs when the different effects which make up the first-order correction term (as derived in Chapter II) are considered separately. To facilitate this process, let the terms due to velocity slip and temperature jump be redefined as follows

$$K(t_{0}^{\prime} + (K_{2} - K_{1}) H_{0}^{\prime}(0) f(m) \equiv K([t_{1SL} + (K_{1}^{\prime} - 1) + 1])$$
(4.4)

(It may be noted that the term marked by subscript 51 is due to both the velocity-slip and temperature-jump boundary conditions, and the term marked by _______ arises not due to the temperature-jump boundary condition alone, but rather due to the difference between the constants of proportionality for the velocity-slip and temperaturejump boundary conditions to the respective gradients at the wall). Using this definition and the results of Chapter II the stream function can be expanded as

$$= \underbrace{\psi_{ref}}_{\psi_{ref}} + \underbrace{\psi_{ref}}_{W_{ef}} + \underbrace{\psi_{ref}}_{W_{ef$$

All the quantities in (4.3) can be written down in like manner. E.g.

No. . . .

.

-

$$\begin{aligned} \dot{\nabla}_{ver} &= \dot{\nabla}_{ver} + \frac{1}{2} \left[\dot{\mathcal{R}} \quad \dot{\nabla}_{ver} + \dot{\mathcal{R}} \quad \dot$$

(4.5)

r . .

$$= t_{0} H_{0} + \frac{1}{2} \left[H_{1} + \frac{1}{2} + \frac{1}{2} H_{12} - nq \frac{1}{2} \frac{1}{2} \right] + \frac{1}{2} \left[H_{0} + \frac{1}{2} + \frac{1}{2} H_{0} + \frac{1}{2}$$

etc.

The results of the numerical calculations are given in Tables I and II. Table I gives the "incompressible" (i.e., constantfluid-property) results; the boundary-layer term (given for reference only), curvature-correction term, displacement-correction term, velocity-slip and temperature-jump term, and the vorticity-correction term are tabulated in that order. For each term, the two-dimensional

(n = 0) and axially symmetric (n = 1) results are tabulated subsequently, except for the vorticity correction term which exists only for the axially symmetric case. The appropriate differential equations, boundary conditions, and formulae expressing all the quantities listed in (4.3) are given as a convenient reference at the appropriate sections of the table.

A similar tabulation for the "compressible" (i.e., variablefluid-property) case is given in Table II. Results are shown for the W = 0.75, 0.5, 0.25, and 0.1 cases. The W = 1.0 case is identical to the "incompressible" result (cf. Appendix F). To illustrate these results, velocity and temperature profiles have been computed and are plotted in Figures 4 and 5. Shown are the uncorrected boundary-layer profiles. boundary-layer profiles corrected due to the effect of curvature only, displacement effect only, velocity slip and temperature jump only, and vorticity effect only. For each case, the pertinent expansion parameter was assumed to be 20%; e.g., for the curvature correction only profile $U = U_0 + 0.2 U_{ic}$ etc. For the velocity slip and temperature jump correction term the parameter was assumed to be 1.0, which is the right order of magnitude. To emphasize the effect of compressibility, cooling ratio W=0./was chosen in these examples. The obtained curves are shown in two separate groupings. In figures 4a and 5a, the velocity and temperature profiles respectively are grouped together according to the type of correction that is (or is not) considered. Thus, separate groups are given for the boundary-layer profiles only, for boundary-layer profiles corrected for curvature only, for displacement effect only, etc. Each group of four curves then brings out the difference between the two dimensional and axially symmetric profiles for both the incompressible and compressible (i.e., constant- and variable-fluid-property) cases. In the second grouping (Figures 4b and 5b), the profiles are grouped together according to the type of flow, i.e., all two-dimensional incompressible profiles are shown in the same group, etc. This growing then brings out the differences between the various correction effects, compares them to each other and the uncorrected (i.e., boundary-layer) profiles. The large increases in fluid velocity and temperature at the wall due to the velocity-slip and temperature-jump boundary conditions are especially noteworthy for the compressible case. This large increase is due mainly to the terms with the subscript in equation (4.4), i.e., to the terms arising from the difference between . The resulting velocity constants of proportionality and and temperature values at the wall are (according to the curves of

Figures 4, 5) nearly equal to, or slightly exceeding the free-stream values; also, the profile slopes at the wall appear to reverse sign. Such a large change cannot be expected to occur in the actual flow; it shows that for the parameters that were assumed W = 0.1, $\frac{W_{12}}{W_{1}} = 1$ the expansion procedure of the present analysis cannot be used any more if the velocity-slip and temperature-jump expansion parameter

 $\sqrt{\frac{m_{\rm e}}{R_{\rm e}}} \frac{h_{\rm e}}{h_{\rm e}} \sqrt{m_{\rm e}} \frac{h_{\rm e}}{h_{\rm e}} \sqrt{m_{\rm e}} \frac{h_{\rm e}}{h_{\rm e}} \frac{18}{m_{\rm e}} \frac{20\%}{m_{\rm e}} \text{ or larger.}$

The quantities that are of the most practical interest are the shear and heat-transfer rate at the wall (y=0) . Table III gives these quantities for the range of cooling ratios that were employed in the calculations. The heat-transfer rates are expected to be very much dependent on the temperature difference between the free stream and the wall, $T_c - T_w$. A direct proportionality of wall heat-transfer rate to this temperature difference is usually assumed; then, in order to properly normalize the non-dimensional wall heat-transfer rates, they should be divided by the quantity 1-W . The heat-transfer rates are therefore given in this normalized form; they are equivalent to the usual boundary-layer-heat-transfer parameter Nu /Jy. where

We is the Musselt number. A plot of shear and heat-transfer rate versus cooling ratio W is given in Figures 6 and 7 respectively. For the boundary-layer term, it is well known (e.g. $\text{Lees}^{(21)}$) that the shear is not very sensitive to the presence or absence of cooling, and the normalized heat-transfer rate is even less so. This is true in spite of the fact that there is a sharp increase in the slopes of the velocity and temperature profiles near
the wall for the variable-property-fluid case, but there is a correspondingly large decrease in viscosity and heat conductivity in the cold-gas layer near the wall. The net effect is a moderate decrease in shear for small \vee (i.e., strong cooling), and an insignificantly small decrease in heat-transfer rate.

Miscussion of Results

Among the correction effects that were considered, the behavior of the displacement term parallels that of the boundarylayer terms, as could be expected from the close relationship between them. Both the shear and heat-transfer rate are increased; this is in accordance with the sign convention that was adopted, which implies that the increase is due to the increase in velocity A . (It may be noted that in most cases gradient Α vill decrease due to the displacement effect of the boundary layer, thus the sign of the displacement coefficient will be negative, and in reality there will be a decrease in shear and heat-transfer rate. For very strongly cooled compressible boundary layers, it is, however, possible to have negative displacement thicknesses, implying an apparent "shrinkage" of the body, thereby increasing and the shear and heat-transfer rates likewise.)

The curvature effect tends to decrease the shear at the stagnation point; this decrease becomes smaller for small cooling ratios. The heat-transfer rate is affected differently by curvature for the two-dimensional and axially symmetric stagnationpoint flows. In the former case, the heat transfer is decreased, and almost completely unaffected by the cooling ratio. On the other hand, for the axially symmetric case the heat-transfer rate is increased by curvature; this increase becomes smaller for small cooling ratios. There is no simple explanation for these curvature effects; they arise from the inhomogeneous terms in the expanded differential equations, and also from the modified boundary conditions in the inviscid "outer" flow. For example, it is apparent by inspection of the velocity profiles of Figure 4, that the negative slope of the inviscid profile has an effect on the entire viscous layer. Another effect is the different pressure gradients experienced by adjacent layers of fluid in the viscous layer, due to the contrifugal pressure rise across the thick curved layer. There are many other terms in the Navier-Stokes equations that contribute to this effect; no attempt has been made to identify them separately since the effects always occur simultaneously.

Direct comparison of these curvature results with other theories cannot be made for the sphere, because the fully viscous shock-layer theories (references 13, and 31) include the displacement, curvature, and vorticity effects simultaneously, and for the shock density ratios employed the vorticity effect predominates. However, for cylinders, where the vorticity effect is of second order, Hoshizaki's⁽¹⁵⁾ theory shows an increase in heat-transfer rate at all Reynolds numbers, even the large ones (where presumably the secondorder effects should be insignificant). This is contrary to the predictions of the present analysis, according to which the first-order corrections that were implied in the fully-viscous-layer theory,

namely the displacement and curvature effects, are both negative, i.e., they will tend to reduce the heat transfer instead of increasing it. Expansion of Hoshizaki's equations in the expansion parameter of the present analysis, $\frac{1}{14\epsilon}$, resulted in the same equations that were derived in Chapter II, above. It was not possible, therefore, to resolve this discrepancy between the theories. Comparison with the experiments of Tewfik and Giedt^(40,41) seems to imply that a reduction in heat transfer due to curvature, rather than an increase, is in better agreement with experimental results. (A more detailed discussion of comparison with experiments follows in a subsequent paragraph.)

In agreement with previous reports (references 13, 19, 31, etc.), the existence of vorticity in the inviscid flow (to the first order present in the axially symmetric case only), tends to increase both the shear and heat-transfer rates. This increase is appreciably larger at small cooling ratios.

The behavior of the term due to slip and temperature jump at the wall is especially interesting. The expansion parameter for this term (cf. Chapter II) is essentially $\lambda_{\rm w}$, the mean free path at the wall divided by the boundary-layer thickness parameter. The term contains two separate effects; one effect arising when $K_{\rm c} = K_2$, the other arising due to the difference between these two constants. Considering the

 $K_1 = K_2$ effect first it has already been noted (cf. equations (2.39) and subsequent paragraph) that this term leaves the wall heat-transfer rate unaffected. Similarly, using the known identities for the correction functions (e.g. 4.4) in the

expression for the shear correction (4.3), and comparing with boundary-layer equation (2.63) one immediately observes that $\frac{v_{ijk}}{T_{of}} = -1$ at the wall irrespective of W.

The other slip and temperature-jump effect, the term proportional to $(k_{2} - k_{1})$, affects both the shear and the heat-transfer rates at the wall. The shear is increased; the increase varies from 0 to large values as Wvaries from 1 to small values. (The uncooled wall also represents the constant-propertyfluid case, in this case K_2 can have obviously no effect on the shear since the momentum and energy equations are not coupled). becomes small, the mean free path near the wall, W But, as which determines the amount of slip, and which appears in the expansion parameter, also becomes small, since the cooled gas near the wall is more dense. It is of interest to find the combined effect of strong cooling on the two competing effects: the increased correction function and the decreased mean free path. Since

 $\lambda \propto \frac{\mu}{s^{\alpha}}$ one may write

 $\frac{2}{5} \mathcal{Z}_{13} = \frac{2}{5} \frac{2}{5} \mathcal{Z}_{13} = \frac{2}{5} \frac{4}{5} \mathcal{L}_{13} = \frac{3}{5} \frac{4}{5} \mathcal{L}_{13} = \frac{2}{5} \mathcal{W}^{\frac{3}{2}+\omega} \mathcal{Z}_{13}$

The quantity $W^{\frac{1}{2}+\omega} \mathcal{X}_{i_1}(0)$ is plotted in Figure 6; the graph shows that as W changes from 1.0 (no cooling) to 0 (strong cooling), the quantity increases from 0 and then appears to approach a constant value for very small W. The combined effect on shear of the "slip and jump" term is then an increase for strong cooling, because as $W \rightarrow 0$, the $W^{\frac{1}{2}+\omega} \mathcal{X}_{i_1}$ term dominates; whereas in the region near W = 1 the only significant effect is the term $\frac{\mathcal{X}_{i_2i_1}}{\mathcal{T}_{vel}} = -1$, and the shear is thus decreased. The wall-heat-transfer-rate correction effect, $Q_{11}(0)$,

shows a behavior similar to 21, (0) . The effect tends to decrease the heat-transfer rate; as W becomes very small the decrease becomes excessively large. But if the quantity $W^{\frac{1}{2}+\omega}Q_{1,1}(s)$ is plotted, it remains reasonable in magnitude throughout the entire range of \mathcal{W} . These observations indicate that for the effect that is under consideration, namely, the correction arising due to the difference in the constants of proportionality for the velocity slip and temperature jump, K_1 and K_2 , the proper parameter that determines the order of magnitude of this effect $\lambda_{w/\chi}$, as was formerly supposed (e.g. references 9, 31, is not etc.) but rather $\frac{\lambda_{1/2}}{\lambda_{1/2}}$. This implies that the reduction in heat transfer at the stagnation point of a blunt body due to slip could be significant even for the case of strong cooling in hypersonic flow. Just how large this reduction may be in different flight regimes is indicated by the lines of constant $\frac{\lambda_s}{f}$ plotted in Figure 3.

Comparison of Results with Experiments

It is finally of interest to compare the numerical results presented in this chapter to experimentally determined properties of low-Reynolds-number stagnation-point flow. For a particular experiment, it is necessary that the appropriate flow parameters, Reynolds number, stagnation-point velocity gradient, mean free path, etc., be known, and then the results of the present analysis can be applied to predict the flow properties. In one series of experiments Neice, Rutowski, and Chan⁽²⁶⁾ measured heat-transfer rates at the blunt nose of a hemisphere cylinder placed into a low-density hypersonic shock tunnel. But these experimental results are not too well suited for comparison with the present analysis. The reason for this is partly the difference between the fluid properties of the present analysis and those of the high temperature dissociated air of the shock tunnel. This difficulty could be overcome by taking ratios of the theoretical low-Reynolds-number and boundary-layer results, and then applying this ratio to available dissociated-air boundary-layer solutions to obtain a reasonable theoretical prediction, which could then be compared to the experimental results. (This was the scheme used by the authors of the experiments, who compared their results with the constant-fluid-property, "exact," viscous shock-layer solution of reference 13.) A more serious difficulty in using these experiments as a basis of comparison is the predominance of a very large vorticity effect, which puts the results beyond the reasonable validity of the expansion procedure of the present analysis.

For cylinders, an extensive series of low-Reynolds-number flow measurements were performed by Tewfik and Giedt^{(40),(41)}. These experiments were performed in the Mach-number range of 1.3 to 5.7, and with low temperature (and therefore non-dissociated) air. Thus the fluid properties that were used in the present analysis are exactly those that are applicable to these experimental conditions. Furthermore, for the range of flow parameters that were employed in these tests, all significant low-Reynolds-number effects are about equally large, sufficiently large to be important, yet not large enough to preclude reasonable applicability of the expansion procedure of the present analysis. For these reasons, a comparison of

.

the experimental results with the present theory seemed especially appropriate, and was undertaken in detail. The pertiment calculation procedure is described in Appendix H; the results of the calculations are presented in Table IV.

Mao The free-stream Mach number , Reynolds number Re 20 (ranging from 37 to 4100), and the wall-to-stagnation-temperature W (ranging from 0.24 to 0.74) are the independent parameters ratio which are the input necessary for application of the theory. In addition, the stagnation-point velocity gradients were also measured and recorded; from these the significant Reynolds number, $\frac{A_{c}R^{2}}{\sqrt{2}}$ (based on stagnation fluid properties) could be calculated. The inverse square root of this quantity is the expansion parameter of the present theory; it determines the size of the curvature correction. Both of these quantities are tabulated in the table, the former ranging from 25 to 930, the latter from 3.3% to 20%. The quantity that is significant for the velocity-slip and temperature-jump 1 w V×s/s effect, , is also tabulated; it ranges from 1.8% to 14%.

Based on the above information, the theoretical results discussed earlier in this chapter were used to predict stagnationpoint heat-transfer rates. Predictions were based both on the constant-fluid-property and the variable-fluid-property theories. Curvature and velocity-slip-temperature-jump corrections were considered. No other low-Reynolds-number effects occur since there is no first-order vorticity correction for cylinders, and the effect of boundary-layer displacement on the external flow has already been

accounted for by using the experimentally measured velocity gradients. The predictions are presented in terms of a comparison to the heattransfer rate based on uncorrected constant-fluid-property boundarylayer theory, viz.

$$\frac{Q_{0inc}(0)}{(1-w)k_{c}T_{s}/\sqrt{\frac{3}{2}}} = 0.5123$$

All the corrections that were calculated, are shown in Table IV, as a fraction of the above number, in the following order: incompressible curvature correction, incompressible temperaturejump correction, total incompressible correction, compressible boundary-layer correction, compressible curvature, temperature-jump, and total compressible corrections. The experimental results are presented on the same basis, as a deviation from the prediction of incompressible boundary-layer theory.

The tabulated predictions indicate a reduction in heat transfer due to all the effects that were considered; the reduction is larger in the compressible case, especially for the temperaturejump term. However, the experimentally measured heat-transfer rates uniformly differ from the incompressible boundary-layer prediction by significantly larger amounts than either combination of correction terms predict. In order to investigate the possibility of a relation between this discrepancy and the displacement effect, displacement coefficients ($_D$ were calculated for all the points. The calculations were based on comparing the experimentally obtained velocity gradients with the high-Reynolds-number velocity gradients given by Reshotko and Beckwith⁽³³⁾ (cf. Appendix H.) There appears to be no relation, nor do the observed discrepancies show any other obvious regularity. The discrepancies then remain unexplained, pending further comparison with other experimental results. Nevertheless, it can at least be ascertained that the predictions of the theory show the same trend as the experimental results; namely a reduction in heat transfer. This is significant when compared to the predictions of references 15 and 31, which show an increase in stagnation-point heat-transfer rate for a cylinder at low Reynolds numbers (these calculoations meglected the decrease due to velocity slip and temperature jump.)

APPENDIX A

Derivation of the Equations of Motion

The Navier-Stokes (momentum) equations for steady flow can be written down in vector form

A general orthogonal coordinate system can be defined by

the directions

$$\dot{e}_1, \dot{e}_2, \dot{e}_3$$

with coordinates

and metric functions

h, he, hz

Let $x_{i} = \text{constant define the planes of symmetry of}$ the flow field, so that the derivatives $\frac{\partial}{\partial x_{i}}$ of all quantities vanish. For this case, a compressible stream function can be defined by

$$g = cult_2 = \begin{bmatrix} -\frac{e_1}{h_2} & \frac{\partial \psi}{\partial x_3} \end{bmatrix}, 0, \frac{e_2}{h_1} & \frac{\partial \psi}{\partial x_1} \end{bmatrix}$$

(A.3)

which identically satisfies the continuity equation for steady flow. Substituting (A.2) and (A.3) into (A.1) and using vector algebra, the ē, component of the momentum equation can be written down

.

$$\frac{1}{3^{2}h_{1}h_{2}h_{3}} \frac{1}{h_{1}h_{2}h_{3}} \frac{\partial \psi}{\partial x_{1}} \frac{\partial \psi}{\partial x_{1}} \frac{\partial \psi}{\partial x_{1}} \frac{\partial \psi}{\partial x_{2}} \frac{\partial \psi}{\partial x_{3}} \frac{1}{\partial x_{3}} \frac{\partial \psi}{\partial x_{3}} \frac{\partial$$

For the special case of a "polar" coordinate system the coordinates and metric functions are

$$x_1 = r$$
, $x_2 = (1-n)Z + n\varphi$, $x_3 = \vartheta$
 $h_1 = 1$, $h_2 = (r \sin \vartheta)^n$, $h_3 = r$

(1.6)

where n = 0 is the plane two-dimensional, and n = 1 the axially symmetric case. (These are the conventional cylindrical and spherical polar coordinate systems respectively). Using (A.6) in (A.4) and (A.5), and performing all the algebra, the two momentum equations become

$$\frac{1}{g(r \sin \theta)^{2n}} \left\{ \frac{\Psi_{r}\Psi \ast 5e}{r^{2}} - \frac{\Psi_{r}^{2}}{r} - \frac{\Psi_{r}\Psi \ast e}{r^{2}} + \frac{v \cos \theta \Psi_{r} \Psi_{\theta}}{r^{2}} - \frac{\Psi_{r}^{2}}{r^{2}} + \frac{v \cos \theta \Psi_{r} \Psi_{\theta}}{r^{2}} - \frac{\Psi_{r}^{2}}{gr^{2}} + \frac{1}{r^{2}} + \frac{\Psi_{\theta}\Psi \ast 5r}{r^{2}} - \frac{(1+n)\Psi \ast^{2}}{r^{3}} \right\} + p_{r} = \frac{1}{(r \sin \theta)^{n}} g_{r} \left\{ \frac{4}{3} \frac{\Psi_{\theta}\Psi \ast 5r}{g} - \frac{8}{3} \frac{\Psi_{\theta}\Psi \ast 5r}{gr^{2}} - \frac{8}{3} \frac{\Psi_{\theta}\Psi \ast 5r}{gr^{2}} - \frac{1}{3} \frac{1}{gr^{2}} + \frac{1}{2} \frac{\Psi_{r}}{r^{2}} \frac{V_{r}}{s} \frac{V_{r}}{s} \frac{g_{r}}{s} + \frac{2}{3} \frac{\Psi_{r}}{gr^{2}} \frac{g_{r}}{s} + \frac{2}{3} \frac{\Psi$$

in the r direction, and

$$\frac{1}{r_{s}(r \sin n)^{2}n} \left\{ \frac{\Psi_{r}\Psi_{r}S_{r}}{S} - \frac{(1-n)\Psi_{r}\Psi_{r}}{r} - \Psi_{s}\Psi_{r} - \frac{\Psi_{1}^{2}S_{r}}{S} + \frac{\Psi_{r}\Psi_{r}}{S} - \frac{\pi \cos^{2}\Psi_{r}}{\sin^{2}S} + \frac{1}{2}\Psi_{r}H_{s} - \frac{\pi \cos^{2}\Psi_{r}}{\sin^{2}S} + \frac{1}{2}\Psi_{r}H_{s}S_{r} + \frac{1}{2}\Psi_{r}H_{s}$$

respective partial derivatives.

Now the energy equation for steady flow can be considered. In vector notation

$$s c_{p} \vec{q} \cdot qrad T - \vec{q} \cdot qrad p = dir & qrad T + \mu \left[\nabla^{2}(q^{2}) + \left(curl_{\vec{q}} \right)^{2} - 2 dir \left(\vec{q} \times url_{\vec{q}} \right) - 2 \vec{q} \cdot qrad \left(dir \vec{q} \right) - \frac{2}{3} \left(dir \vec{q} \right)^{2} \right]$$
(A.9)

.

.

Expanding in terms of the general coordinate system of (A.2), the energy equation (A.9) becomes $\frac{4}{h_1h_1h_2} \begin{bmatrix} \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \end{bmatrix} = \frac{1}{h_1h_2h_3} \begin{bmatrix} \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \end{bmatrix} =$ $=\frac{1}{h_{1}h_{2}}\left[\frac{\partial}{\partial x_{1}},\frac{h_{2}h_{3}}{h_{2}},\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{3}},\frac{h_{2}h_{1}}{h_{1}},\frac{\partial}{\partial x_{3}}\right]+\mathcal{A}\left\{\frac{1}{h_{1}h_{2}h_{3}}\left[\frac{\partial}{\partial x_{1}},\frac{h_{2}h_{3}}{h_{1}},\frac{\partial}{\partial x_{1}}+\frac{\partial}{h_{2}h_{3}}\right]+\mathcal{A}\left\{\frac{1}{h_{1}h_{2}h_{3}}\right]$ $+ \frac{\partial}{\partial x_{s}} \left[\frac{h_{s}}{h_{s}} \frac{\partial}{\partial x_{s}} \right] \frac{1}{h_{s}} \frac{1}{e} \left[\left(\frac{h_{s}}{h_{s}} \frac{\partial x_{s}}{\partial x_{s}} \right)^{2} + \left(\frac{h_{s}}{h_{s}} \frac{\partial x_{s}}{\partial x_{s}} \right)^{2} \right] + \left(\frac{1}{h_{s}} \frac{h_{s}}{h_{s}} \frac{\partial}{h_{s}} \frac{h_{s}}{h_{s}} \frac{\partial x_{s}}{h_{s}} + \left(\frac{h_{s}}{h_{s}} \frac{\partial x_{s}}{h_{s}} \right)^{2} \right] + \left(\frac{1}{h_{s}} \frac{h_{s}}{h_{s}} \frac{\partial}{h_{s}} \frac{h_{s}}{h_{s}} \frac{\partial x_{s}}{h_{s}} + \left(\frac{h_{s}}{h_{s}} \frac{\partial x_{s}}{h_{s}} \right)^{2} \right] + \left(\frac{1}{h_{s}} \frac{h_{s}}{h_{s}} \frac{\partial}{h_{s}} \frac{h_{s}}{h_{s}} \frac{\partial x_{s}}{h_{s}} \right)^{2} + \left(\frac{h_{s}}{h_{s}} \frac{h_{$ $+\frac{1}{2}$ $\frac{h_{2}}{h_{1}}$ $\frac{3}{2}$ $\frac{1}{2}$ $-\frac{2}{1-1}$ $\left[\frac{3}{2},\frac{h_{2}}{2},\frac{3}{2},\frac{h_{1}}{2},\frac{h_{1}}{2},\frac{h_$ $+\frac{\partial}{\partial x} \frac{h_2}{\partial h_1} \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \frac{h_1}{\partial h_1} \frac{\partial}{\partial x} \frac{h_1}{h_1} \left(\frac{\partial}{\partial x} \frac{h_1}{\partial h_1} \frac{\partial x}{\partial x} + \frac{\partial}{\partial x} \frac{h_2}{\partial h_1} \frac{\partial y}{\partial y} \right) -\frac{5}{100}\left[\frac{3x}{34},\frac{3x}{3},-\frac{3x}{34},\frac{3x}{3},\frac{3x$ $-\frac{2}{3}\left(\frac{1}{(h,h,h)^{2}}e^{\frac{1}{2}}\left[\frac{\partial\psi}{\partial x}\frac{\partial s}{\partial x}-\frac{\partial\psi}{\partial x}\frac{\partial s}{\partial x}\right]^{2}\right\}$ (4.10)

Expanding in the "polar" coordinates of (A.6), the equation bacomer $(\psi_r T_{\varphi} - \psi_{\varphi} T_r) + \frac{1}{2} (\psi_{\varphi} P_r - \psi_r P_{\varphi}) = (sin \theta)^n [r^{i+n} & T_{rr} + r^{i+n} & T_r + T_r + T_r + T_r + T_r & T_r + T_r + T_r + T_r + T_r + T_r & T_r + T_r + T_r + T_r & T_r + T_r + T_r + T_r + T_r & T_r + T_r + T_r + T_r + T_r + T_r & T_r + T_r + T_r + T_r + T_r + T_r & T_r + T_r$ + (1+n) r & Tr + r + 1 & Tas + r + 1 & Ts + 1 was r + 1 & Ts] + J.] (A.11) Φ is the dissipation function.

where

For future reference, the expression for vesticity in the general coordinate system is

$$\Omega_{2} = \operatorname{curl} \overset{i}{q} = \operatorname{curl} \overset{i}{\underbrace{s}} \operatorname{curl} \overset{i}{e} \overset{i}{h_{2}} = -\frac{1}{5^{2}} (\operatorname{qrad} g) \times (\operatorname{curl} \overset{i}{e} \overset{i}{\underbrace{h_{2}}}) + \frac{1}{5} \operatorname{curl} \operatorname{curl} \overset{i}{e} \overset{i}{\underbrace{h_{2}}} = \frac{1}{5^{2}} \frac{1}{h_{1}h_{2}h_{3}} \left[\frac{h_{1}}{h_{1}} \frac{\partial \psi}{\partial x_{1}} + \frac{\partial g}{\partial x_{1}} + \frac{h_{1}}{h_{3}} \frac{\partial \psi}{\partial x_{3}} \right] - \frac{1}{5h_{1}h_{3}} \left[\frac{\partial}{\partial x_{3}} + \frac{h_{1}}{h_{2}h_{3}} \frac{\partial \psi}{\partial x_{3}} + \frac{\partial}{\partial x_{1}} + \frac{h_{1}}{h_{1}h_{2}} \frac{\partial \psi}{\partial x_{1}} \right]$$

$$(A.12)$$

For the special case of the "polar" coordinate system of

.

$$\Omega = \frac{1}{s^2 (r \sin \theta)^n} \left[\frac{4}{r_r} \frac{s_r}{s_r} + \frac{4}{r_c} \frac{s_c}{s_c} - \frac{s_r}{r_c} \frac{4}{r_c} + \frac{n \cos \theta}{r_c^2} \frac{s_r}{s_c} - \frac{s_r}{r_c^2} + \frac{n \cos \theta}{r_c^2} \frac{s_r}{s_c} \right]$$

$$- 5 + (n - 1) = \frac{5 + 2}{7}$$

(A.	13)	Ì
		,

APPENDIX B

Derivation of Boundary Conditions at the Solid-Gas Interface.

The boundary conditions for a gas flowing along a solid body can be derived from the kinetic theory of gases, and are given by many authors, e.g. Schaaf and Chambre $\binom{(36)}{as}$

$$U(0) = \frac{2-\delta}{\delta} \lambda \frac{\partial u}{\partial y} \Big|_{y=0} + \frac{3}{4} \frac{h}{ST} \frac{\partial T}{\partial x} \Big|_{y=0}$$
(B.1)

$$T_{(0)} - T_{w} = \frac{2 - \alpha_{*}}{\alpha_{*}} \frac{2T}{s+1} \frac{1}{2r} \frac{1}{2s} \frac{1}{s=0}$$
(B.2)

where the same reference gives the mean free path in terms of the fluid properties, as follows:

$$\lambda = \begin{bmatrix} r & h \\ sa & = \\ za & sf \\ sf \\ (B.3) \end{bmatrix}$$

In addition, the no-through-flow boundary condition can be used

$$\sigma(o) = 0 \tag{B.4}$$

These expressions can be applied to the stagnation-point flow that is being considered by substituting into them changes of variables and expansions (2.1) through (2.7). To find \cup (2.2) and (2.4) can be substituted into (1.4).

$$U = A \times \left\{ \frac{t_{0}}{t_{0}} + \frac{1}{R} \left[\frac{t_{1}}{A} \left[\frac{t_{1}}{t_{0}} - \frac{nyt_{0}}{t_{0}} - \frac{t_{0}}{t_{0}} \frac{t_{1}}{t_{0}} \right] + \cdots \right\}$$
(B.5)

Differentiating once one obtains

$$\frac{\partial u}{\partial y} = \frac{A_{x}}{R} \left\{ R \int_{\frac{A}{2}}^{\frac{A}{2}} \left[\frac{t_{0}^{u}}{t_{0}} - \frac{t_{0}^{u} t_{0}^{u}}{t_{0}^{2}} \right] + \frac{t_{1}^{u}}{t_{0}} - \frac{t_{1}^{u} t_{0}^{u}}{t_{0}^{2}} - \frac{n(t_{0}^{u} + yt_{0}^{u})}{t_{0}} + \frac{n \eta t_{0}^{u} t_{0}^{u}}{t_{0}^{2}} - \frac{t_{0}^{u} t_{1} + t_{0}^{u} t_{1}^{u}}{t_{0}^{2}} + \frac{2 t_{0}^{u} t_{0}^{u} t_{0}^{u}}{t_{0}^{2}} + \frac{1}{t_{0}^{2}} + \frac{1}{t_{0}^{2}}$$

Similarly, the expression for \lor becomes

$$J = -(1+n)\sqrt{3}a \left\{ \frac{t_{0}}{t_{0}} + \frac{1}{R}\sqrt{A} \left[\frac{t_{1}}{t_{0}} - \frac{(1+n)\eta t_{0}}{t_{0}} - \frac{t_{0}t_{1}}{t_{0}^{2}} \right] + \cdots \right\}$$

$$(B.7)$$

The $\frac{\partial T}{\partial x}$ term in the slip velocity is of order γ_5 , and hence, will not contribute to the order 1 and order $\sqrt{\gamma_5}$ that are being considered. Equation (2.3) can now be used to find

$$\frac{\partial T}{\partial \lambda} = \frac{T_s}{R} \left[R \left[\frac{\Lambda}{J_s} \mathbf{H}_{o}^{\prime} + \mathbf{H}_{1}^{\prime} + \cdots \right] \right]$$
(B.8)

and finally equations (2.3), (2.4) and (2.7) to express

$$\lambda = \sqrt{\frac{\pi}{20}} \frac{y_{s}}{\sqrt{\tau_{s}}} \left\{ \frac{h_{o}}{h_{s}} \frac{1}{t_{o}} \frac{1}{t_{o}} + \frac{1}{R} \int_{A}^{y_{s}} \left[\frac{h_{o}}{h_{s}} - \frac{H_{o}}{t_{o}} \frac{H_{o}}{H_{o}} - \frac{H_{o}}{h_{s}} \left(\frac{t_{r}}{t_{o}} \frac{H_{o}}{H_{o}} + \frac{1}{2} \frac{H_{o}}{t_{o}} \frac{H_{o}}{H_{o}} \right) \right] + \cdots \right\}$$

$$(B.9)$$

Using (B.5), (B.6) in (B.1), and equating like powers of Reynolds-number parameter $\frac{1}{R}\sqrt{\frac{\gamma_s}{A}}$, one obtains

84

$$\frac{t_{0}^{'}(0)}{t_{0}(0)} = 0$$
(B.10)

and (using this result)

8

$$f_{1}^{\prime}(o) = \frac{2-d}{d} \sqrt{\frac{1}{2}} \frac{AR}{\sqrt{RT_{s}}} \frac{h_{0}(o)}{h_{s}} \frac{f_{0}^{\prime}(o)}{f_{0}(o)} \frac{f_{0}^{\prime}(o)}{f_{0}(o)}$$
(B.11)

.

Similarly, using (B.7) in (B.4)

$$f_{0}(0) = 0$$

 $f_{1}(0) = 0$ (B.12)

Finally, (B.8) and (B.9) are used in (B.2)

$$\begin{aligned}
\mathcal{H}_{0}(o) &= \overline{T_{s}} = W \\
\mathcal{H}_{1}(o) &= \frac{2-4\epsilon}{\kappa_{s}} \int_{\overline{c}}^{\infty} \frac{AR}{|\overline{c}|^{2}} \frac{2\pi}{|\overline{c}|^{2}} \frac{i}{|\overline{c}|^{2}} \frac{\mu_{s}(o)}{|\overline{c}|^{2}} \frac{\mathcal{H}_{0}(o)}{|\overline{c}|^{2}} \frac{\mathcal{H}_{0}(o)}{|\overline{c}|^{2}} \frac{\mathcal{H}_{0}(o)}{|\overline{c}|^{2}} \frac{\mathcal{H}_{0}(o)}{|\overline{c}|^{2}} \\
\text{Since (B.13) above that } \quad \mathcal{H}_{0}(o) = \mathcal{H}_{0} \quad , \text{ the last}
\end{aligned}$$

expression can be rewritten as

$$\frac{4}{4}_{1}(0) = \frac{2 - \alpha_{e}}{\alpha_{e}} \int_{\overline{2}}^{\overline{1}} \frac{AR}{10T_{s}} \frac{2}{T_{w} + 1} \frac{1}{R_{r_{s}}} \frac{k_{w}}{k_{s}} \frac{4}{4_{w}} \frac{1}{10} \frac{4!(0)}{4r_{s}(0)}$$
(B.14)

APPEIDEX C

Mumerical Solution of Inviscid Hypersonic Flow Mear Stagnation Points of Sphere and Cylinder.

The first step in the numerical solution is the solution of equation (3.7), which relates $\frac{A}{R}$ to e. For the case of the cylinder, the solution can be obtained graphically by writing the equation in the form

$$\frac{C_{\rm I}}{C_{\rm K}}(e) = \frac{K_{\rm I}}{T_{\rm I}} \left[\frac{e-1}{e\left(1+\frac{A}{R}\right)} \right]$$
(C.1)

The functions on the two sides of (C.1) were found numerically as functions of their respective arguments with the aid of Bessel-function tables and then plotted on the same graph. Corresponding values of the two arguments were then found graphically, from which the corresponding values of $\frac{A}{R}$ and e were computed. These results were then used in (3.10a) to calculate the velocity-gradient parameter.

For the sphere a similar procedure was followed, except here a graphical solution was not necessary since (3.7) is a quadratic in e, and can be solved analytically

$$e = \frac{6 - 20(1 + \frac{A}{R})^{2} + 1 + (1 + \frac{A}{R})^{5} + (1 + \frac{A}{R})\sqrt{400(1 + \frac{A}{R})^{2} + 100(1 + \frac{A}{R})^{8} - 320(1 + \frac{A}{R})^{5} - 180}}{6 + 24(1 + \frac{A}{R})^{5}}$$
(c.2)

The result of this solution was again used in (3.10b) to obtain $\frac{AR}{V}$ and VR for the sphere.

APPENDIX D

Calculations of Flow Parameters at Various Flight Speeds and Altitudes in the Atmosphere.

In order to calculate the flow parameters that are of interest, the following three quantities have to be calculated at various flight speeds and altitudes; kinematic viscosity \mathcal{V}_s and mean free λe , both at the (inviscid) stagnation point, and nath (for supersonic flight) e , the shock density ratio. The altitudes were chosen at 50,000 ft. intervals, starting at 150,000 up to and including 400,000 ft. The flight speeds were grouped into three regimes: (1) perfect-gas regime, 10, 100, 1,000 ft/sec., (2) nondissociated regime, 3,000 ft/sec., and (3) real-gas regime, 7,000, 10,000, 20,000 ft/sec. The ARDC model atmosphere (42) was used to find the free-stream density, temperature, and speed of sound (the latter by extrapolation at the two highest altitudes). The standard reference temperatures and densities of T standard = 518.69°R and P standard = 2.3769 x 10⁻³ $\frac{16}{44}$ sec² were used. Different calculation procedures were used in each of the three

regimes, as follows.

In the perfect-gas regime, the free-stream Mach number was determined first; then, using Y = 1.4, standard compressible-flow tables (e.g. reference 1) were used to find stagnation thermo-dynamic properties.

. 86

At 3,000 ft/sec. Kaufman's⁽¹⁸⁾ tables (based on the Beattie-Bridgeman equation) were used to determine the quantities of interest. The tables give shock density, temperature, and pressure ratios, shock Mach number, stagnation temperature, and pressure directly as functions of free-stream Mach number and altitude. Perfect-gas relations were then used behind the shock to determine the stagnation density from the known shock thermodynamic properties and the stagnation pressure and temperature.

In the real-gas regime, Hochstim's⁽¹²⁾ chart was used to find the temperature behind the shock, and the density ratio across, and hence density behind, the shock at the various flight conditions. Feldman's⁽⁷⁾ Mollier diagram for air was used to determine the effect on these thermodynamic quantities of the isentropic compression behind the shock. The enthalpy change during this compression could be determined since the velocity after the shock was known from continuity considerations. (Some care had to be exercised in using this multiplicity of charts, since both Hochstim's and Feldman's reference conditions are slightly different from those of the ARDC atmosphere). Compressibility factor

Z at the stagnation point could also be determined from the Mollier diagram.

Hansen's⁽¹⁰⁾ calculations were used to determine the viscosity at the stagnation point as a function of temperature and (at high temperatures) of pressure. (A graph of stagnation pressures at various flight velocities and altitudes is given in the same reference). Schaaf⁽³⁷⁾, and also Maslen⁽²⁵⁾ use the following expression to calculate the mean free path

 $\lambda = 1.255 \frac{\lambda}{RT} = 0.0303 \frac{\lambda}{\sqrt{2T}} \text{ for air}$ where λ and T are in units of ft^2/\sec . and R respectively. Constant 1.255 = $\sqrt{\frac{R}{2}}$ above is less than 2% different from 1.278 = $\frac{14}{5\sqrt{2T}}$, which is used by Hansen⁽¹⁰⁾ and Patterson⁽³⁰⁾.

Using the above procedures to determine ν_5 , λ_5 , and e; and using Figures 1 and 2, all the parameters given in equation (3.14) could now be calculated at the various altitudes and flight speeds. The curves of Figure 3 were then obtained by means of cross plots.

APPENDEX E

Calculation of Power Laws for Variable Fluid Properties.

Hansen's⁽¹⁰⁾ tables were used to determine the specific heat, viscosity, and heat conductivity as functions of temperature. These results were plotted on log-log graph paper, and tangents to the curves were drawn at various temperatures. The results were as follows:

> For specific heat, $c_{\alpha} \propto T^{\alpha'}$ $\propto = 0.144$ For viscosity, $h - T^{\omega}$ at 500 °K ω **= 0.661** ω **= 0.608** at 1000°K at 2000 °K ω = **0.562** For heat conductivity, $b \propto T^4$ at 500°K E=0.785 **٤= 0.702** at 1000°K at 1500 °K $\epsilon = 0.674$

The Prandtl number at four representative temperatures is

given as

T°K	Pr	
500	0.738	
1000	0.756	
1500	0.767	
2000	0.773	

Considering 1200 %K as the desirable median temperature for the range under consideration, and neglecting the small variation in Prendtl number, the following properties represent an optimum "fit;"

$$Pr = 0.76$$

 $\alpha = 0.11, \omega = 0.58$ $\mathcal{E} = 0.69$

...

J

APPENDIX F

Derivation of Equations for Constant Fluid Properties For the case of constant fluid properties, the analysis of Chapter I and II is modified. The perfect-gas equation of state is replaced by $\beta = \text{constant}$, and the temperature-dependent viscosity, heat conductivity, and specific heat are replaced by constants. Thus there will be no coupling between the momentum and energy equations; the momentum equation can then be solved first, and, using this solution, the energy equation subsequently.

In the inviscid-flow solution of Chapter I result (1.9)was derived from the energy equation only, and hence remains unchanged; likewise results (1.13) through (1.20) are all derived from the momentum equations only, and therefore also remain unchanged. The former determines the first term in the temperature expansion, the latter all the terms that were considered in the stream-function and pressure expansions. These results can then be used unchanged, as they are presented in equations (1.22), (1.24), and (1.25); these furnish all the boundary conditions that are necessary for solution of the viscous flow

$$\Psi = g A x^{1+n} \left[y_{3} + \left(\frac{n-1}{R} + nV \right) \frac{y^{2}}{2} + \cdots \right]$$

$$T = T_{5} - \frac{A^{2}}{4} \left[\left(U(y_{3}^{2}) + U(x^{2}) \cdots \right) \right]$$

$$p = p_{5} - g A^{2} \left[(1+n)^{2} \frac{y^{2}}{2} + \frac{x^{2}}{2} - \frac{x^{2} y_{3}}{R} + \cdots \right]$$
(7.1)

For the viscous flow the differential equations have to be modified in accordance with the constancy of fluid properties

$$r_{0} = 1$$
, $r_{1} = 0$, $qr_{0} = 0$, etc.
 $\frac{h_{0}}{h_{s}} = 1$, $\frac{h_{0}}{h_{s}} = 0$, $\frac{h_{0}}{h_{s}} = 1$, etc.
(#.2)

These results can be used throughout the analysis of Chapter.

The first three of these equations can be integrated immediately as in (2.27), since the boundary conditions given by (F.1) remain unchanged

$$\frac{dP_0}{dP_1} = 0$$

$$\frac{2P_1}{SA^2} = -1$$
(F.4)

Using (F.2) and (F.4), boundary-layer equations (2.14) and

(2.17) become

$$(1+n)$$
 4_0 $4_0^n - 4_0^n + 1 + 4_0^n = 0$

$$P_{r(1+n)} \neq \psi_{0} + \psi_{0} = 0$$
 (3.5)

The boundary conditions at the wall were obtained from kinetic theory, and remain unchanged, as given in (2.20). Since the inviscid flow, given by (F.1), is unchanged, (2.25) is equally applicable. Summarizing the boundary conditions then

$$t_{0}(v) = 0$$

$$t_{0}'(v) = 0$$

$$H_{0}(v) = W$$

$$\eta \rightarrow \infty$$

$$\frac{H_{0}(\eta) \rightarrow 1}{t_{0}'(\eta) \rightarrow 1}$$
(F.6)

The solution of (F.5) subject to (F.6) can be performed in two steps; the momentum solution is Hiemenz's and Homann's classical result for the two-dimensional and axially symmetric cases respectively, as given for example by Schlichting⁽³⁸⁾. The energy equation is linear, and can be normalized with respect to the arbitrary temperature ratio, by setting

$$\{ \varphi(\eta) = W + (1 - W) \mathcal{D}_{\varphi}(\eta)$$
(F.7)

so that

$$P_{r}(1+n) \neq_{0} \vartheta_{0}' + \vartheta_{0}'' = 0$$

$$\vartheta_{0}(0) = 0$$

$$\gamma \rightarrow \infty \quad \vartheta_{0}(\gamma) \rightarrow 1$$
 (F.8)

The solutions of (7.8) can be written down in the form of the following integral

$$f_{o}(y) = \frac{\int_{0}^{t} e^{-(1+n)R_{r}} \int_{0}^{t} f_{0}(\xi) L\xi}{\int_{0}^{\infty} e^{-(1+n)R_{r}} \int_{0}^{t} f_{0}(\xi) L\xi} dt$$
(F.9)

Tabulated values for $\Im_{\rho}(\gamma)$ are given for a range of Prandtl numbers by Goldstein ⁽⁸⁾ and Yih⁽⁴⁴⁾ for the two-dimensional and axially symmetric cases respectively.

The equations for the correction terms are obtained by using (F.2) in (2.15) and (2.18). Considering momentum equation (2.15) first

$$(1+n) \mathbf{t}_{0} \mathbf{t}_{1}^{"} + (1+n) \mathbf{t}_{0}^{"} \mathbf{t}_{1} - 2\mathbf{t}_{0}^{'} \mathbf{t}_{1}^{'} + \mathbf{t}_{1}^{"} = \gamma \left\{ (2n+1) \left[(1+n) \mathbf{t}_{0} \mathbf{t}_{0}^{"} - \mathbf{t}_{0}^{(2)} \right] + 1 + n \mathbf{t}_{0}^{"} \right\} + (n-1) \mathbf{t}_{0}^{'} \mathbf{t}_{0}^{'} + (n-1) \mathbf{t}_{0}^{"} + \frac{2 \mathbf{p}_{s}}{2\mathbf{A}^{2}} \mathbf{q}_{1},$$

Using (2.47) and (2.49), the above expression becomes

$$M_{inc}(\mathbf{t}_{1}) \equiv (1+n) \mathbf{t}_{0}^{"} \mathbf{t}_{1} - 2\mathbf{t}_{0}^{'} \mathbf{t}_{1}^{'} + (1+n) \mathbf{t}_{0} \mathbf{t}_{1}^{"} + \mathbf{t}_{1}^{"} = M_{cinc}(\mathbf{t}_{0} \mathbf{\eta}) - 2\mathbf{t}_{0} \equiv$$

$$\equiv \gamma \left[\frac{2-6n}{2+n} - (n+1) \mathbf{t}_{0}^{"} \right] + \frac{2}{2+n} \left[n \mathbf{t}_{0}^{"} + 2n \mathbf{t}_{0} \mathbf{t}_{0}^{'} + (1+n) \mathbf{\eta}^{*} \right] - 2\mathbf{t}_{0}$$
(F.10)
which defines operators M_{inc} and M_{cinc}

The remark made above concerning the boundary conditions for the boundary-layer terms is equally applicable to the first-order correction terms f_i and $f_i t_i$; bot the wall and "outer" boundary conditions are unchanged from the variable-fluid-property case. At the wall, from (2.35)

$$f_{1}(o) = 0$$

$$f_{1}'(o) = K_{1} \frac{AR}{RRT_{s}} \frac{\lambda_{w}}{\Lambda_{s}} \sqrt{w} f_{0}''(o)$$

$$f_{1}'(o) = K_{2} \frac{AR}{\sqrt{RT_{s}}} \frac{\lambda_{w}}{\Lambda_{s}} \sqrt{w} f_{0}''(o)$$
(F.11)

As for the variable-fluid-property case, the linearity of the equations can be used to separate the various "effects," implied by the arbitrary constants appearing in the boundary conditions. Using the results of Chapter II then, the equation and boundary conditions for the curvature term are

$$M_{ime}(f_{ie}) = M_{lime}$$
$$f_{ie}(0) = 0$$
$$f_{ie}'(0) = 0$$

. .

(F.12)

 $m \rightarrow \infty$ $(m) \rightarrow (n-1)m$ For the slip term

$$M_{ine} \left(f_{isL} \right) = 0$$

$$f_{isL}(0) = 0$$

$$f_{isL}^{'}(0) = f_{0}^{'}(0)$$

$$\eta \rightarrow \infty \quad f_{isL}(\eta) \rightarrow 0$$
(F.13)

96

The solution of (F.13) is

 $\frac{1}{1} = \frac{1}{2}$ (F.14)

The displacement effect is determined by

 $M_{\text{tine}}(f_{10}) = -2$ $f_{10}(0) = 0$ $f_{10}'(0) = 0$ $\chi \rightarrow \infty$ (F.15)

which has the solution

 $f_{1D} = \frac{1}{2} \left(f_0 + \gamma f_0^{\dagger} \right)$ (F.16)

Finally, for the vorticity effect one can write

Finally, for the vorticity effect one can write

....

$$M_{inc}(f_{iv}) = 0$$

$$f_{iv}(o) = 0$$

$$f_{iv}(o) = 0$$

$$(\eta - \eta^{*})$$
(F.17)

The correction term for the stream function can then be written

$$f_1 = f_{1c} + \underset{RT_s}{\overset{AP}{\longrightarrow}} \underset{M}{\overset{W}{\longrightarrow}} VW K, f_0 + \overset{Q}{\overset{Q}{\Rightarrow}} (f_0 + \eta f_0) + nRV f_{1V}$$
(P.18)

The equation for the temperature-function correction term is obtained by using (F.2) in (2.18)

where the function ψ_1 , as given by (F.18), is now a known function obtained from the solution of the momentum equation. Defining

$$(1 - w) \vartheta_1 = \psi_1$$
(1.19)

and using (F.7), the following differential equation is obtained for ϑ_1 , (permitting solution for all values of W)

$$\mathcal{P}_{+}(i+h)\left\{\partial_{i}\partial_{i}^{\prime}+\partial_{i}^{\prime\prime}\equiv\overline{E}_{in}(\partial_{i})=-(i+h)\left[\eta\partial_{o}^{\prime\prime}+\partial_{o}^{\prime}+\partial_{o}^{\prime}\partial_{o}^{\prime}+i\right]$$

(7.20)

which defines operator E_{unc}^{i} . The boundary conditions for A_{i} , are obtained from (7.11)

$$\vartheta_{1}(0) = \frac{AR}{\sqrt{RT_{s}}} \xrightarrow{\mu_{w}} \sqrt{W} K_{2} \vartheta_{0}^{\prime}(0)$$

$$\eta \rightarrow \infty , \quad \vartheta_{1}(\eta) \rightarrow 0$$
(F.21)

Due to the linearity of (F.20), the four "effects" can again be separated. The equation and by many conditions for the curvature term are

$$E_{inc} (\vartheta_{ic}) = -(i+n) [\eta \vartheta_{0}^{u} + \vartheta_{0}^{i} + \vartheta_{0}^{i} + \vartheta_{0}^{i} + u]$$

$$\vartheta_{ic} (0) = 0$$

$$\eta \rightarrow \infty \quad , \quad \vartheta_{ic} (\eta) \rightarrow 0$$

(F.22)

For the slip and temperature-jump effects

$$E_{inc} (\vartheta_{15}) = -Pr(1+n) K (\vartheta_0 \vartheta_0')$$

$$\vartheta_{15} (0) = K_2 \vartheta_0'(0)$$

$$\eta \rightarrow \infty \quad \vartheta_{15}(\eta) \rightarrow 0$$

(F.23)

The solution of (F.23) can be written down by inspection

$$\vartheta_{15} = K_1 \vartheta_0' + (K_2 - K_1) \vartheta_0'(0) (1 - \vartheta_0)$$
(1.24)

The equation and boundary conditions for the displacement effect

term are

$$E_{inc}(\theta_{ip}) = -Pr(i+n)\vartheta'_{o}\frac{2t'_{o}+t_{o}}{2}$$

$$\vartheta_{ip}(o) = 0$$

$$\eta \rightarrow \infty , \quad \vartheta_{ip}(\eta) \rightarrow 0$$
 (F.25)

which has the solution

$$\vartheta_{,\mathfrak{g}} = \frac{\gamma \vartheta_{\bullet}'}{2}$$
(**r**.26)

Finally, for the vorticity term

$$E_{inc}(\vartheta_{iv}) = -2nPr \vartheta_{o}^{'} 4_{iv}$$
$$\vartheta_{iv}(0) = 0$$
$$\gamma \to \infty \quad , \quad \vartheta_{iv}(\gamma) \to 0$$
(F.27)

The entire temperature-function correction term can then

be written

.

This completes the presentation of the differential equations
and boundary conditions for the constant-fluid-property case. It is of
interest to observe that these constant-fluid property solutions are
actually identical to the variable-fluid-property solutions for the
special case of
$$W > 1$$
. This is observable by inspecting (2.66),
and noting that $\{H_{n} = 1\}$ is the solution for this special case.

. .

Using this result in the equations of Chapter II reduces these equations to those of the present appendix.

APPENDIX G

Machine-Computation Procedure

The differential equations with boundary conditions that were solved by the Eurroughs 220 computer can be described as a two-point boundary-value problem. For the boundary-layer case the equations are nonlinear, for the correction terms linear. The computer's first-order simultaneous-differential-equations routine (which uses the Runge-Kutta method) was applied to the problem. Three pairs of starting values (for $\frac{1}{4}$ (o) and $\frac{1}{4}$ (o) were assumed, and then the (inviscid asymptotic) behavior of the functions at $\gamma = 7$ was used to obtain successively better and final starting values by means of double interpolation, which was programmed on the machine. This procedure was then successively repeated with the decrements of γ halved, until the final starting values did not change.

APPENDIX H

Comparison of Theory with Experiments of Tewfik and Giedt (40), (41)

The two references that describe the above experiments are (40) and (41); in this appendix they will be referred to as Parts I and II respectively. The following calculation procedure was used to compare the present theory with the experimental Musselt numbers presented in Table XI, p. 55, Part I. First, the velocity gradient at the stagnation point had to be determined. This was done by using the experimentally determined values given in Table A6, Part II. Using the definitions given on p. 9, Part II, the relation between the nomenclature of the present analysis, and of Tewfik and Giedt is the following

$$\frac{AR}{U} = \frac{e}{2} \widetilde{U}'(0)$$

(H.1)

is the density ratio across the shock. In the Machwhere e number range considered (1.3) to 5.7), and around free-stream pressures of 10⁻⁵ atmospheres (in agreement with the "low" stagnation pressures of 80-120 microns, mentioned on p. 14 Part I) Kaufman⁽¹⁸⁾ indicates that the perfect-gas formulae are sufficiently accurate to $\gamma = 1.4$ can be assumed, and then calculate the flow. For air

e and the Mach number after the shock can be obtained from M_ . Furthermore after the shock an isentropic compression 1 a T TH = T LE takes place, for which , and the variation of viscosity with temperature can be assumed to be $\mu \sim T^{0.8}$ Then the Reynolds number that is of interest in the present analysis can be related to Re, given by Tewfik and Giedt as follows:
$$\frac{AR^{2}}{V_{s}} = AR^{2} \frac{R_{ei}}{2ReV} \frac{R_{sheck}}{M_{s}} \frac{P_{s}}{P_{sheck}} = \frac{\widetilde{U}_{e}^{\prime}(0)\overline{R}_{ei}}{4} \left(\frac{T_{s}}{T_{sheck}}\right)^{2} = \frac{\widetilde{U}_{e}^{\prime}(0)\overline{R}_{e}}{4} \left(\frac{H_{s}}{2M_{sheck}}\right)^{7}$$
(H.2)

Table V of Part I shows that the recovery factor is always almost exactly 1.0 at the stagnation point, indicating that the adiabatic wall temperature, $T_{a.w}$, which forms the basis of the experimental Musselt numbers that are presented, is almost exactly the same as the stagnation temperature, T_s , which forms the basis of the heat-transfer formulae of the present analysis. Then the non-dimensional heat-transfer rate of the present analysis can be related to N_{w_1} of Tewfik and Giedt as follows:

$$\frac{Q_{exp}}{(1-W)h_{s}T_{s}} = \frac{N_{w_{1}}h_{1}}{2R} \frac{(T_{s}-T_{w})}{(1-W)h_{s}T_{s}/P_{A}} = \frac{N_{w_{1}}}{2}\frac{1}{R}\sqrt{A} \frac{1}{(1+0.2M_{aun}^{2})^{0.85}}$$
(H.3)

where it was assumed that during the isentropic compression from the shock to the stagnation condition $\lambda \propto T^{0.85}$. The experimental result obtained in (H.3) can then be compared to the theory of the present analysis, as given in Chapter IV. The displacement-correction term will not have to be considered because the experimentally measured velocity gradients already include this effect. The parameter defining the magnitude of the curvature correction is the inverse square root of the Reynolds number given in (H.2). For the slip and temperaturejump correction term, the parameter that is significant is the ratio of the mean free path at the wall to the boundary-layer thickness:

$$\frac{\lambda_{u}}{\sqrt{N/A}} \stackrel{2-2}{=} = \begin{bmatrix} \frac{\lambda_{u}}{2} & \frac{2-2}{3} & \frac{1}{\sqrt{N/A}} \\ = \frac{1}{2} \begin{bmatrix} \frac{\lambda_{u}}{2} & \frac{\lambda_{u}}{2} \end{bmatrix} \stackrel{2-2}{=} \frac{1}{3} \begin{bmatrix} \frac{\lambda_{u}}{\sqrt{N/A}} & \frac{N}{2} \end{bmatrix} \stackrel{2}{=} \frac{1}{2} \begin{bmatrix} \frac{\lambda_{u}}{2} & \frac{\lambda_{u}}{\sqrt{N/A}} \end{bmatrix} \stackrel{N}{=} \frac{1}{2} \begin{bmatrix} \frac{\lambda_{u}}{\sqrt{N/A}} \end{bmatrix} \stackrel{N}{=} \frac{1}{2} \begin{bmatrix} \frac{\lambda_{u}}{\sqrt{N/A}} & \frac{\lambda_{u}}{\sqrt{N/A}} \end{bmatrix} \end{gathered} \stackrel{N}{=} \frac{1}{2} \begin{bmatrix} \frac{\lambda_{u}}{\sqrt{N/A}} & \frac{\lambda_{u}}{\sqrt{N/A}} \end{bmatrix} \stackrel{N}{=} \frac{1}{2} \begin{bmatrix} \frac{\lambda_{u}}{\sqrt{N/A}} & \frac{\lambda_{u}}{\sqrt{N/A}} \end{bmatrix} \stackrel{N}{=} \frac{1}{2} \begin{bmatrix} \frac{\lambda_{u}}{\sqrt{N$$

Temperature ratio W in the above expressions is tabulated in Table A5, p. 56, Part II. Viscosity ratio $\frac{\mu_{V}}{\mu_{S}}$ was related to W by using the viscosity vs temperature variation given by Hansen⁽¹⁰⁾ and (at the low temperatures) by Jakob⁽¹⁷⁾. For a stagnation temperature of $T_{S} = 300$ °K (p 3, Part I) a good approximation for this viscosity variation is $\mu \sim T^{0.13}$ near W = 0.3 and $\mu \sim T^{0.79}$ near W = 0.7. Now all quantities in (H.4) are known except K_{1} . A reasonable guess (e.g. references (36) and (27)) is

$$K_{1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 (i.e. $d = 1$)
 $K_{2} = 1 \cdot 8$ (H.5)

Now all quantities that are necessary to apply the theoretical results of Chapter IV have been determined. Using the results of this theory (Table III), the heat-transfer rate at the stagnation point can be writen for the constant-fluid-property case

$$\frac{Q}{(1-W)k_{s}T_{s}/A} = \frac{Q_{0inc}}{(1-W)Q_{ref}} + \frac{1}{R\sqrt{A}} \frac{Q_{10in}}{(1-W)Q_{ref}} + \frac{2}{\sqrt{2}s/A} \frac{Q_{10in}}{0.8} = 0.5123 - \frac{1}{R\sqrt{A}} \frac{Q_{10in}}{0.135} - \frac{2}{\sqrt{2}\sqrt{A}} \frac{0.8 \cdot 0.2624}{\sqrt{2}\sqrt{A}}$$

(**H**.6)

The corresponding numbers for the variable-fluid-property case can be determined as functions of W by using the graphs of Figure 7. The results of these calculations are presented in terms of the difference between the calculated result and the heat-transfer rate based on constant-fluid-property boundary-layer theory, as a fraction of the latter. The experimental results, as calculated in (h.3), are presented in the same manner, e.g.

$$\frac{\Delta Q_{c imp}}{Q_{o im}} = \frac{\frac{1}{R} \int_{A}^{\frac{1}{2}} Q_{ic imp}}{0.5123 Q_{ref}} \quad \text{or} \quad \frac{\Delta Q_{exp}}{Q_{o im}} = \frac{Q_{emp} - Q_{o im}}{Q_{o im}} \quad (H.7)$$

etc. Finally displacement effect parameter ζ_{D} is also tabulated for the sake of reference. The calculation of it is based on an empirical relation between stagnation-point velocity gradients for circular cylinders and Mach number, as presented by Reshotko and Beckwith⁽³³⁾. (This is the "infinite"-Reynolds-number case). Using these and the experimentally determined velocity gradients of Tewfik and Giedt (H.1) in expression (2.22) ζ_{D} is determined as follows

$$C_{D} = \frac{A_{\text{Tem + in + Gledt}} - A_{\text{Reshothold Backwith}}}{A_{\text{Reshothold Backwith}} + B_{\text{Reshothold Backwith}}}$$

A T. M. MARK PORT & THE PROPERTY OF THE PLANE AND A COMPLEX AND A

(**H**.8)

NOMENCLATURE

a	speed of sound
a	(with subscript) constant coefficients (Chapter I only)
A	stagnation-point velocity gradient; $u = A_{\times}$
r	constant coefficients (Chapter I)
CD	displacement-effect parameter (equation 2.22)
(z , (_K	combinations of Bessel functions (equation 3.4a)
Ge	specific heat at constant pressure
e	density ratio across (normal) shock;
ē, ē, t,	base vectors in orthogonal system (Appendix A)
E()	energy-equation differential operator (equation 2.40)
E()	inhomogeneous terms in energy equation (equation 2.40)
4,8	functions in expansion of viscous flow about stagnation point, \times° and \times^{2} terms respectively. Without adscript stream function, with adscripts $?$, r , \pm pressure, density, and temperature respectively. (E.g. $\#_{\circ}$ is temperature-function, \times° term, etc., equations 2.2 through 2.5)
h	enthalpy
h, he, ha	metric functions in orthogonal coordinate system (Appendix A)
н	altitude, ft.
I,()	Bessel function of () (Chapter III and Appendix C)
k	heat conductivity
K	constant of integration (equation 2.35)
K, , K.	proportionality constants (equation 2.21)
K,()	Bessel function of () (Chapter III and Appendix C)
L	reference length indicative of body size, determines A ; A = $\frac{v}{L}$

•

·

•

Μ	Mach number
M()	momentum-equation differential operator (equation 2.40)
Min	inhomogeneous terms in momentum equation (equation 2.40)
n	0 for two-dimensional, 1 for axially symmetric flow
Nu	Nusselt number
σι)	Order of ()
P	pressure
P-	Prendtl number
9	velocity vector
Q	heat-transfer rate normal to surface $Q = \frac{\theta^T}{3}$
r	radial coordinate
R	nose radius of curvature
R	gas constant
Re	Reynolds number
Т	absolute temperature
U, J	velocity components in \times and $& & & & & & & & & & & & & & & & & & &$
V	free-stream velocity, ft/sec
V	Vorticity parameter for axially symmetric stagnation-point flow (equation 1.19)
W	cooling ratio; $W = \overline{T}_{s}$
×, y	boundary-layer coordinates (equation 1.1)
æ	exponent of temperature for specific heat; $\phi \prec T^*$
d _a	accommodation coefficient for energy transfer at solid-gas interface
r	ratio of specific heats
8	boundary-layer thickness parameter 5 = 🔀
Δ	inviscid shock stand-off distance

107

.

.

- ϵ exponent of temperature for heat conductivity; $\mathcal{A} \propto \mathcal{T}^{\epsilon}$
- η boundary-layer coordinate (equation 2.1) $\eta = \chi / \frac{\Lambda}{V_{e}}$
- m^{r} displacement number (equation 2.34)
- & (without subscript) angular coordinate
- (with subscripts) temperature function in constant-fluidproperty flow (equations F.7 and F.20)
- λ mean free path in gas
- μ viscosity
- V kinematic viscosity
- ρ density
- δ fraction of diffusely reflected molecules
- τ shear parallel to surface $\tau \cdot h \frac{dv}{dv}$
- Ψ compressible stream function
- ϕ dissipation function in energy equation
- ω exponent of temperature for viscosity $\mu_{\alpha} \mathcal{T}^{\omega}$
- Ω vorticity Ω = curl 7
- ~ proportional to

Subscripts;

- 9.12...successive terms in Reynolds-number expansion; boundary-layer 1st order, 2nd order, etc. correction terms; also (in Chapter I) successive coefficients in y expansion of inviscid quantities.
- c correction due to curvature effect

comp result of compressible (variable-fluid-property) analysis

D correction due to displacement effect

UXY EXPERIMENTAL FER	SULT
----------------------	------

- \int correction due to temperature jump $(K, \neq K_2)$
- result of incompressible (constant-fluid-property) analysis
- M correction due to finite mean free path (equation 2.39)
- ρ refers to pressure
- refers to density
- r partial derivative with respect to r (Appendix A only)
- ref reference quantities (see Chapter IV), equations (4.1) and (4.3) (except (F.23) and (F.24).
 inviscid stagnation value
- shock condition after shock
- SL correction due to velocity slip
- standard conditions at standard atmosphere
- t refers to temperature
- V correction due to vorticity effect
- W condition at solid surface ("wall")
- \times_{1} partial derivatives with respect to \times and γ_{2}
- \mathcal{F} partial derivative with respect to \mathcal{F}
 - ∞ free-stream

Superscripts

-) derivative with respect to 9
 - derivatives with respect to temperature

Reference Index

1. Ames Research Staff: "Equations, Tables, and Charts for Compressible Flow." MACA Rep. 1135, 1953.

Beckwith, I.E. see Reshotko and Beckwith.

- 2. Brown, W.B.: "Exact Solutions of the Laminar Boundary Layer Equations for a Porous Plate with Variable Fluid Properties and a Pressure Gradient in the Main Stream." Proc. 1-st U.S. National Congress of Applied Mech., Chicago, June 1951.
- 3. Brown, W.B. and Donoughe, P.L.: "Tables of Exact Laminar Boundary Layer Solutions when the Wall is Porous and Fluid Properties are Variable." NACA TH 2479, Sept. 1951.
- 4. Brown, W.B., and Livingcood, J.N.B.: Solutions of Laminar Boundary Layer Equations which Result in Specific Weight Flow Profiles Locally Exceeding Free Stream Values." NACA TH 2800, Sept. 1952.

Chambre, P.L. see Schaaf and Chambre

Chan, K.K., see Neice Rutowski, and Chan.

5. Cohen, C.B. and Reshotko, E.: "Similar Solutions for the Compressible Laminar Boundary Layer with Heat Transfer and Pressure Gradient." NACA Rep. 1293, 1956.

Cole, J.D. see Lagerstrom and Cole

6. Crawford, D.H., and McCauley, W.D." "Investigations of the Laminar Aerodynamic Heat-Transfer Characteristics of a Hemisphere-Cylinder in the Langley 11 Inch Hypersonic Tunnel at a Mach Number of 6.8." NACA TN 3706, July 1956.

Donoughe, P.L. see Brown and Donoughe.

7. Feldman, S." "Hypersonic Gas Dynamic Charts for Equilibrium Air." AVCO Res. Rep. #40, Jan. 1957.

Gledt, W.H. see Tewfik and Gledt

- 8. Goldstein, S. (Editor): Modern Developments in Fluid Dynamics." Oxford Press, 1938.
- 9. Hayes, W.D., Probstein, R.F." "Hypersonic Flow Theory." Academic Press, New York, 1959.
- 10. Hensen, C.F." "Approximations for the Thermodynamic and Transport Properties of High Temperature Air." NACA TN 4150, March 1958.

 Herring, T.K.: "The Boundary Layer near the Stagnation Point in Eypersonic Flow Past a Sphere." Journal of Fluid Mechanics, v.7, Part 2, p. 257, Feb. 1960.

Ho, H.T. see Probatein and Ho.

.

- Hochstin, A.R." "Gas Properties behind Shocks at Hypersonic Velocities.
 I. Normal Shocks in Air." Convair, San Diego Rep # Z ph (GP)-002. Jan. 30, 1957.
- Hoshizaki, H." "Shock Generated Vorticity Effects at Low Reynolds Numbers." Lockheed Technical Report LMSD 48381, pp. 9-43, Jan. 1959.
- Hoshizaki, H.: "The Effect of Shock Generated Vorticity, Surface Slip, and Temperatue Jump on Stagnation Point Heat Transfer Rates." J.Aero.Sc. v. 27 #2, Feb. 1960; also Lockheed Technical Report LMSD 288139 Vol. I, Part 1, #5. Jan. 1960.
- 15. Hoshizaki, H." "On Mass Transfer and Shock Generated Vorticity." Lockheed Technical Report LMSD 288139, Vol. 1, Part 1, 44, Jan. 1960.
- Howe, J.T. and Mersman, W.A.: "Solutions of the Laminar Compressible Boundary Layer Equations with Transpiration which are Applicable to the Stagnation Regions of Axisymmetric Blunt Bodies." NASA TN #-12, Aug. 1959.
- 17. Jakob, M.: "Heat Transfer." Vol. I. John Wiley & Sons, 1949.
- Kaufman, L.G. II.: "Real Gas Flow Tables for Nondissociated Air." WADC Tech Rep #59-4, Jan. 1959.
- 19. Kemp, N.H.: "Vorticity Interaction at an Axisymmetric Stagnation Point in a Viscous Incompressible Fluid." J.Ac.Sc. vo. 26 48, Aug. 1959.

Kemp, N.H. see Probstein and Kemp

- 20. Lagerstrom, P.A. and Cole, J.D.: "Examples Illustrating Expansion Procedures for the Mavier Stokes Equation." Jour. of Rational Mech. and Analysis, v. 4, 46, 1955.
- 21. Lees, L.: "Laminar Heat Transfer over Blunt Nosed Bodies at Hypersonic Flight Speeds." Jet. Prop. v. 26 #, p. 259, Apr. 1956.

Lenard, M. see Rott and Lenard

- 22. Lighthill, M.J.: "Dynamics of a Dissociating Gas, Part I, Equilibrium Flow." J. of Fluid Mech. v. 2, Jan. 1957.
- 23. Lin, T.C. and Schaaf, S.C.: "Effect of Ship on Flow near a Stagnation Point and in a Boundary Layer." NACA TN 2568, Dec. 1951.

Livingood, J.N.B. see Brown and Livingood.

- 25. Maslen, S.H.: "Second Approximation to Leminar Compressible Boundary Layer on Flat Plate in Slip Flow." MACA TH 2818, Nov. 1952.

McCauley, W.D. see Crawford and McCauley.

Mersman, W.A. see Howe and Mersman.

- 26. Meice, S.E., Rutowski, R. W., Chan, K.K.: "Stagnation Point Heat Transfer Measurements in Hypersonic Low Density Flow." Lockheed Technical Report LMSD 288139, Vol. I, Part II, #7, Jan. 1960.
- 27. Nonweiler, T.: "The Leminar Boundary Layer in Slip Flow." College of Aeronautics, Cranfield, Rep #62, Nov. 1952.
- 28. Oguchi, H.: "Hypersonic Flow near the Forward Stagnation Point of a Blunt Body of Revolution." J.Aer.Sc. v. 25, #12, pp. 789-790, Dec. 1958; also Aero.Res.Inst. Tokyo, Rep. #337, 1958.
- 29. Oguchi, H.: "The Blunt Body Viscous Layer Problem with and without an Applied Magnetic Field." Brown Univ. WADD IN 60-57, Feb. 1960.
- 30. Patterson, G.N.: "molecular Flow of Gases." John Wiley & Sons, 1956.
- Probatein, R.F., Kemp, N.H.: "Viscous Aerodynamic Characteristics in Hypersonic Rarefied Gas Flow." J.Aer.Sc. v. 27, #3, pp. 174-192, March 1960; also AVCO Res.Rept. #48, March 1959.
- 32. Probatein, R.F., Ho, H.T.: "The Compressible Viscous Layer in Rarefied Hypersonic Flow." Second International Symp. on Rarefied Gas Dyn. Abstracts, Berkeley Cal., Aug. 3-6, 1960. Detailed report to be published later.

Probstein, R.F. see also Hayes and Probstein

33. Reshotko, E., Beckwith, I.E.: "Compressible Laminar Boundary Layer over a Yawed Infinite Cylinder with Reat Transfer and Arbitrary Prandtl Number." MACA Rep 1379, 1958.

Reshotko, E. see also Cohen and Reshotko

- 34. Rounds, M.F.: "Stagnation Point Heat Transfer for Hypersonic Flow." Jet Prop. v. 26, #12, p. 1098, Dec. 1956.
- 35. Rott, H., and Lenard, M.: "Vorticity Effect on the Stagnation Point Flow of a Viscous Incompressible Fluid." J.Aer.Sc. v. 26, 48, Aug. 1959.

Rutowski, R.W. see Neice, Rutowski, and Chan.

- 36. Scheaf, S.A. and Chambre, P.L.: "Flow of Rarefied Gases. Vol. 3, Section H., High Speed Aerodynamics and Jet Propulsion." Princeton Univ. Press, 1959.
- Scheaf, S.A.: "Theoretical Considerations in Rarefied Gas Dynamics." Heat Transfer Symposium 1952. Univ. of Michigan 1953.

Schaaf, S.A. see also Lin and Schaaf.

- 38. Schlichting, H.: "Boundary Layer Theory." Pergamon Press.
- Sherman, F.S.: "Transport Phenomena in Low Density Gases." from "Transport Properties in Gases." Proc. of the 2nd Riennial Gas Dyn. Symp. ARS and Northw. Univ.; A. B. Cambel and J. B. Fenn Edit. Northw. Univ. Press 1958.
- 40. Tewfik, O.K., Giedt, W.H.: "Heat Transfer, Recovery Factor, and Pressure Distribution around a Cylinder Normal to a Supersonic Rarefied Air Stream. Part I." Univ. of Cal. Tech. Rep. HE-150-162, Jan. 30 1959.
- 41. Tewfik, Q.K.: "Heat Transfer, Recovery Factor, and Pressure Distributions around a Cylinder normal to a Supersonic Rarefied Air Stream. Part II." Univ. of Cal. Tech. Rep. HE-150-169, May 15, 1959.
- 42. USAF Cambridge Research Ctr., Geophysics Research Directorate: "Handbook of Geophysics for Air Force Designers." Cambridge Mass. 1957.
- 43. Whitham, G.B.: "A Note on the Stand-Off Distance of the Shock in High Speed Flow past a Circular Cylinder." Comm. on Pure and Appl. Math. v 10 #4, p. 531, November, 1957.
- 44. Yih, C.S.: "Temperature Distribution in Leminar Stagnation Point Flow with Axisymmetry." J.Aer.Sc. v 21, #1, p. 37, Jan. 1954.

Additional References:

.

Ferri, A., Zakkay, V., Ting, Lu: "Blunt Body Heat Transfer at Hypersonic Speed and Low Reynolds Mumbers." Polyt. Ins. Brooklyn A.L. Rept #611, June, 1960.

Lunkin, Y.H.: "Boundary Layer Equations and their Boundary Conditions in the Case of Motion at Supersonic Velocities in a Moderately Rarefied Gas." HASA TT F-28, May 1960.

Cheng, H.K.: "Hypersonic Shock Layer Theory of the Stagnation Region at Low Reynolds Mumber." Cornell Aero. Lab. Rep. #AF-1285-A-7, April 1961.

FIGURE 1.

Inviscid Hypersonic Stagnation Point Flow Parameters for Sphere 119

FIGURE 2.

Low Reynolds Number Stammation Point Flow Velocity Profiles (W=0.1). 117

FTRURE 4a.

FIGURE 4b.

Low Reynolds Number Stagnation Foint Flow Temperature Profiles (W=0.1). 119

FIGURE 5a.

Low Reynolds Number Stagnation Point Flow Temperature Profiles (W=0.1). 120

FIGURE 5b.

Wall Shear Parameters.

FIGUPE 6.

Wall Heat Transfer Rate Parameters.

1:

FIGURE 7.

TABLE I. CONSTRUT-FLUID-PROPERTY SOLUTIONS Incompressible Boundary-Layer Solution. Two-Dimensional Case (n=0), $f_0 f_0^{\mu} - f_0^{\mu} + 1 + f_0^{\mu} = 0$ 0.76 f. $\mathbf{x}_0^{\mu} + 9_0^{\mu} = 0$

 $f_0(0) = f_0'(0) = \vartheta_0(0) = 0$; $\gamma \to \infty$, $f_0'(\gamma) \to 1$, $\vartheta_0(\gamma) \to 1$

		A					
7	fo	fړ'	f,"	En	9 8	9 .	9°
0	0	0	1.2326	-1.0000	0	0.5123	0
0.5	0.1336	0.4946	0.7583	-0.8565	0.2550	0.5034	-0.0611
1.0	0.4592	0.7779	0.3980	-0.5775	0.4960	.04518	-0.1576
1.5	0.8873	0.9162	0.1770	-0.3175	0.6983	0.3505	-0.2364
2.0	1.3620	0.9732	0.0658	-0.1423	0.8431	0.2288	-0.2368
2.5	1.8544	0.9929	0.0202	-0.0517	0.9301	0.1242	-0.1750
3.0	2.3526	0.9984	0.0051	-0.0150	0.9735	0.0559	-0.0998
3.5	2.8522	0.9997	0.0010	-0.0035	0.9915	0.0208	-0.0450
4.0	3.3521	0.0000	0.0002	-0.0006	0.9977	0.0064	-0.0163
4.5	3.8521	1.0000	0.0000	-0.0001	0.9995	0.0016	-0.0047
5.0	4.3521	1.0000	0.0000	0.0000	0.9999	0.0003	-0.0011
5.5	4.8521	1.0000	0.0000	0.0000	1.0000	0.0001	-0.0002
6.0	5.3521	1.0000	0.0000	0.0000	1.0000	0.0000	o 0.0000

$$\eta^{*} = 0.6479$$

$$\frac{v_{0}}{\sqrt{3}A} = \frac{(s \cdot v)_{0}}{-9_{s}\sqrt{3}A} = f_{0}$$

$$\frac{u_{0}}{A \cdot x} = \frac{(s \cdot v)_{0}}{s_{s}A \cdot x} = f_{0}^{1}$$

$$\frac{\Omega_{0}}{-A \cdot x} = \frac{2}{A_{s}A \cdot x} = f_{0}^{1}$$

$$\frac{\overline{\Omega}_{0}}{T_{s}} = W + (1 - W) \vartheta_{0}$$

$$\frac{Q_{0}}{\sqrt{3}} = (1 - W) \vartheta_{0}^{1}$$

ţ

Incompressible Boundary-Layer Solution, Anially Symmetric Case (n-1). $2f_0f_0^{H} - f_0^{H} + 1 + f_0^{H} = 0$ $152f_0\theta_0^{H} + \theta_0^{H} = 0$ $f_0(0) = f_0(0) = 0$; $\eta \to \infty$, $f_0^{L}(\eta) \to 1$, $\theta_0(\eta) \to 1$

7	f.	f,'	fo"	f, "'	90	2	\$°
Ò	0	0	1.3119	-1.0	0	0.6867	0
0.5	0.1432	0.5316	0.8182	-0.9515	0.3401	0.6614	-0.1439
1.0	0.4924	0.8299	0.3959	-0.7008	0.6418	0.5244	-0.3924
1.5	0.9441	0.9552	0.1357	-0.3431	0.8501	0.3050	-0.4375
2.0	1.4330	0.9919	0.0310	-0.1044	0.9537	0.1237	-0.2692
2.5	1.9313	0.9990	0.0045	-0.0193	0.9897	0.0345	-0.1009
3.0	2.4311	0.9999	0.0004	-0.0022	0.9984	0.0066	-0.0241
3.5	2.9311	1.0000	0.0000	-0.0001	0.9998	0.0009	-0.0038
4.0	3.4311	1.0000	0.0000	0.0000	1.0000	0.0001	-0.0004
4.5	3.9311	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000

$$\eta^{*} = 0.5689$$

$$\frac{u_{0}}{-2l_{3}A} = \frac{(s_{1}v)_{0}}{-2s_{1}\sqrt{3}A} = f_{0}$$

$$\frac{u_{0}}{A_{A}} = \frac{(s_{1}v)_{0}}{s_{1}A_{A}} = f_{0}^{1}$$

$$\frac{\Omega_{0}}{-A_{A}} = \frac{2}{s_{1}A_{A}} = f_{0}^{1}$$

$$\frac{\Omega_{0}}{-A_{A}} = \frac{2}{A_{3}A_{A}} = f_{0}^{1}$$

$$\frac{T_{0}}{T_{5}} = W + (1-W) \vartheta_{0}$$

$$\frac{Q_{0}}{\frac{1}{s_{1}T_{5}}} = (1-W) \vartheta_{0}^{1}$$

Case (n=0).	
Two-Dimensional	
Ten.	
Ourvature-Correction	۲ + ۲ = ۵ (- ۱۰) + ۲ = ۲
ncompressible -	39 - 7 2 C + E E

0.365.94 + 91 = - [38' + 9' + 0' + 3'54] $F_{L_{1}}(0) = F_{L_{1}}(0) - 3_{L_{1}}(0) = 0$

	_
	-
	÷
	. 8
	•
	-
	-
	1
	1
	-
	-
	-
2	
	<i>.</i> .
۰.	
	-
	-
	•
	1
	1
	-
	~
	-
•	
	<u></u>
	~
	-
	~
	•
	=
	- .
	<u>م</u>
	7 7
. 1	
۰.	
	~
	•
	-
	- 4
	.2
	-
	-
	~
	Ξ.
	ت ،

0 †

8-	fĸ	ر. لر-	و نب ^ع	ر ار ا	Ð.	- 3	* * *	فرالج	il s
0	0	0	-1.9133	0.6479	0	-0.1350	-0.5123	0	-1.9133
0.5	-0.2216	8418 0-	-1.4330	1.0989	-0.1286	-0.3660	-0.3558	-0.2884	1966.0-
1.0	-0.8018	-1.4339	1646.0-	0.7498	-0.3386	-0.4323	0.1320	-1.2610	-0.1712
1.5	-1.6247	-1.8389	-0.7190	0.1804	-0.5160	-0.2378	0.5972	-2.9557	+0.1972
2.0	-2.6326	-2.1938	-0.7299	-0.1698	-0.5541	0.0867	0.6128	-5.3565	0.2433
2.5	-3.8250	-2.5947	-0.8361	-0.2237	-0.4474	0.3083	0.2396	-8.4610	0.1548
3.0	-5.2264	-3.0287	-0-9307	-0.1387	-0.2803	0.3296	-0.1244	-12.2840	0.0677
3.5	-6.8595	-3.5076	-0.9779	-0.0567	-0.1387	0.2267	-0.2468	-16.8420	0.0218
0.4	-8.7364	-4.0016	1466.0-	-0.0166	8450.0-	0.1136	-0.1889	-22.2145	0.0053
4.5	-10.8618	-4.5003	0666-60	-0.0036	+1210.0-	0.0436	-0.0946	-28.1960	0.0010
5.0	-13.2369	-5.0001	-0.9999	-0.0006	-0.0045	1510.0	-0.0346	0196.46-	1000.0
5.5	-15.8619	-5.5000	-1.0000	0.0000	6000.0-	1500.0	-0.0096	-42.5479	0.0000
6.0	-18.7369	-6.000	-1.0000	0.0000	-0.0002	0.0006	-0.0021	- 50.8488	0.000
6.5	-21.8619	-6.5000	-1.0000	0.0000	0.0000	0.001	-0.0004	-59.8996	0.0000
7.0	-25.2369	-7.0000	-1.0000	0.0000	0.0000	0.0000	0.0000	-69.7003	0.000

 $f_{1}^{*} = 0.(4)$ $f_{2}^{*} = \frac{(2i)_{11}}{(2i)_{11}} = f_{12} - e_{1} + e_{1}$ $f_{12}^{*} = \frac{(2i)_{12}}{(2i)_{12}} = f_{12}^{*} + f_{0}^{*}$ $f_{12}^{*} = \frac{(2i)_{12}}{(2i)_{12}} = f_{12}^{*} + f_{0}^{*}$ $f_{12}^{*} = (1 - w) h_{12}^{*}$ $f_{12}^{*} = (1 - w) h_{12}^{*}$

125

÷.

Case (n=1).	
y Symmetric F.F.+ 3 9*	
Term. Axiall	۴ _{اد}]
-Correction 	4 7 L 0 + °R +
Le Curvature	د د - ۲ (ما م ۲ - ۲ - ۲
Lncompressibi 24° fu - 25° fu	152 + 4 + 4

•

.

-1-0000	0000	-5.5000	-2-00-3	0.000	0.0000	0.0000	0.0000	0.000	0.000	-0.6624	5.5
0000.1-	0000.0	-5.0000	-44.9733	-0.001	0.0000	0.0000	0.000	0.0000	0.0000	-0.6624	5.0
-1.0000	0.000	-4.5000	-36.0420	-0.0017	0.0003	0.0000	0.0000	0.0000	0.000	-0.6624	4.5
6666.0-	0.000	-4.0000	-28.1111	ま10.0-	0.0036	-0.3008	-0.0004	0.0001	0.0000	-0.6624	0.4
6966.0-	0.001	-3.5002	-21.1800	-0.0855	0 02.20	-0.0065	-0.006)	0.0012	-0.0002	-0.6624	3.5
-0.9888	0.011	-3.0024	-15.2485	-0.2601	1201.0	-0.0350	-0.0516	0.0124	-0.0027	-0.6619	3.0
-0.9353	0.0637	-2.5184	-10.3137	-0.3157	0.2669	-0.1282	-0.2273	0570.0	-0.0209	-0.6573	2.5
-0.8024	0.1895	-2.0614	-6.3635	0.2602	0.3058	-0.2840	-0.4479	0.2513	-0.0976	-0.6313	5.0
-0.7333	6122.0+	-1.7069	-3.3745	1.0274	+150.0-	-0.3638	1760.0+	0.4253	-0.2740	-0.5422	1.5
100.1-	-0.1715	-1.2684	-1.3398	0.3718	+124.0-	-0.21%	0.9356	0.2244	-0.4585	-0.3549	1.0
-1.3759	-0.8443	-0.6848	-0.2649	-0.919	-0.2972	+0.0022	1.1569	-0.4353	0614.0-	-0.1217	0.5
-1.2452	-1.2452	0	0	-1.3734	0.3362	0	1.6332	-1.2452	0	0	
بران بران	<u>0</u> 14	داد داد	51. ⁸	- 1 17	ي. ډل	1. 57	-بو - بو	<u>د</u> .		لل الا	8

 $\gamma^{*} = 0.56.89$ $\frac{\sigma_{\text{eff}}}{\sigma_{\text{eff}}} = \frac{(0.016.5)}{2.81 \text{ MeV}} = 1.6.29 \text{ F}_{0}$ $\frac{\sigma_{\text{eff}}}{\Delta \mu_{\text{eff}}} = \frac{(0.016.5)}{2.81 \text{ MeV}} = 1.6.-29 \text{ F}_{0}$ $\frac{\sigma_{\text{eff}}}{\Delta \mu_{\text{eff}}} = 1.6.-9 \text{ F}_{0}$ $\frac{\sigma_{\text{eff}}}{\Delta \nu_{\text{eff}}} = 1.6.-9 \text{ F}_{0}$ $\frac{\sigma_{\text{eff}}}{\Delta \nu_{\text{eff}}} = 1.6.-9 \text{ F}_{0}$ $\frac{\sigma_{\text{eff}}}{\Delta \nu_{\text{eff}}} = 1.6.-9 \text{ F}_{0}$

Å

Incompressible Displacement-Correction Term. Two-Dimensional Case (n = 0). $f_{ij} = \frac{1}{2} (f_0 + \eta f_0^{-1})$ $f_{ij} = \frac{1}{2} \eta f_0^{-1}$

7	Fa	£,	f,	A.,	8'0
0	0	0	1.8489	0	0.2561
0.5	0.1905	0.6842	0.9233	0.1258	0.2389
1.0	0.6185	0.9769	0.3082	0.2259	0.1470
1.5	1.1308	1.0489	0.0272	0.2629	-0.0020
2.0	1.1654	1.0390	-0.0438	0.2288	-0.1224
2.5	2.1683	1.0181	-0.0344	0.1553	-0.1567
3.0	2.6739	1.0060	-0.0150	0.0838	-0.1219
3.5	3.1756	1.0015	-0.0046	0.0364	-0.0684
4.0	3.6759	1.003	-0.0011	0.0128	-0.0294
4.5	4.1760	1.0000	-0.0002	0.0036	-0.0099
5.0	4.6760	1.0000	0.0000	0.0009	-0.0027
5.5	5.1760	1.0000	0.0000	0.0002	-0.0006
6.0	5.6760	1.0000	0.0000	0.0000	-0.0001
6.5	6.1760	1.0000	0.0000	0.0000	0.0000

$$\frac{F_{12}}{185A} = \frac{(9^{+})_{12}}{-\frac{5}{18}\sqrt{19}_{5}A} = F_{12}$$

$$\frac{U_{19}}{A_{11}} = \frac{(9^{+})_{12}}{5_{5}A_{12}} = F_{12}^{1}$$

$$\frac{\Omega_{19}}{-\frac{4}\sqrt{15}} = \frac{2}{5_{5}A_{12}} = F_{12}^{0}$$

$$\frac{\Gamma_{19}}{T_{5}} = (1-W) \overline{\vartheta}_{13}$$

$$\frac{Q_{19}}{L_{1}T_{5}/\frac{5}{16}} = (1-W) \overline{\vartheta}_{13}^{1}$$

•

-

·· ·

,

Incompressible Displacement-Correction Term. Axially Symmetric Case (n-1). $f_{13} = \frac{1}{2} (f_0 + \gamma f_0^{-1})$ $\widehat{\nabla}_{13} = \frac{1}{2} \widehat{\gamma} \widehat{\nabla}_0^{-1}$

.

7	fŋ	f,'	fŋ.	N ₁₀	\$'0
0	0	0	1.9679	0	0.3434
0.5	0.2045	0.7361	0.9893	0.1653	0.2947
1.0	0.6611	1.0278	0.2433	0.2622	0.0659
1.5	1.8885	1.0570	-0.0543	0.2287	-0.1758
2.0	1.7084	1.0228	-0.0584	0.1237	-0.2076
2.5	2.2144	1.0047	-0.0176	0.0431	-0.1092
3.0	2.7154	1.0006	-0.0027	0.0099	-0.0331
3.5	3.2155	1.0000	-0.0002	0.0015	-0.0062
4.0	3.7155	1.0000	0.0000	0.0002	-0.0008
4.5	4.2155	1.0000	0.0000	0.0000	ാ റ.0000

$$\frac{\nabla \cdot 3}{-2 \sqrt{3}} = \frac{(3 \tau)}{2 \sqrt{5} \sqrt{3}} = F_{13}$$

$$\frac{\nabla \cdot 3}{\sqrt{5} \sqrt{5}} = \frac{(3 \tau)}{2 \sqrt{5} \sqrt{5} \sqrt{5}} = F_{13}^{1}$$

$$\frac{\nabla \cdot 3}{\sqrt{5} \sqrt{5}} = \frac{(3 \tau)}{\sqrt{5} \sqrt{5}} = F_{13}^{11}$$

$$\frac{\Omega \cdot 3}{\sqrt{5} \sqrt{5}} = \frac{2 \cdot 3}{\sqrt{5} \sqrt{5} \sqrt{5}} = F_{13}^{11}$$

$$\frac{\Omega \cdot 3}{\sqrt{5} \sqrt{5}} = (1 - W) \sqrt{5} = \frac{1}{5}$$

$$\frac{Q \cdot 3}{\sqrt{5} \sqrt{5}} = (1 - W) \sqrt{5} = \frac{1}{5}$$

.

.

-

.

,

.

.

$f_{is_i} = f_i$	i i ; $\vartheta_{153} =$	₹ + (^K	-1) 20 (0) [1-20]
•	\$ (0 [1- 3]	2'(0) 2	
0	0.5123	0.2624	
0.5	0.3816	0.2579	
1.0	0.2582	0.2314	
1.5	0.1546	0.1796	
2.0	0.0864	0.1172	
2.5	0.0358	0.0636	
3.0	0.0136	0.0286	
3.5	0.0044	0.0107	;
4.0	0.0012	0.0033	
4.5	0.0003	0.0008	
5.0	0.0000	0.0002	
5.5	0.0000	0.0001	
6.0	0.0000	0.0000	
$\frac{U_{ij}}{-V_{ij}A} = -$	$\frac{(s_{\sigma})_{1S_{J}}}{(s_{J}\sqrt{s_{S}}A)} = f_{1J}$	5	
U.5.3 Ax	$\frac{(\varsigma u)_{1SJ}}{s_{s}A\times} = F_{1S}$.	
AN/ 12	$=\frac{\mathcal{L}_{153}}{\lambda_{5}\Lambda_{2}/\nu_{5}}=$	f ^N is,	
T _{ISJ} =	(1-w) オ ₁₅₁		
Q115	= (1-w) J'	l.	

.

.

•

.

Incompressible Velocity-Slip and Temperature-Jump Correction Terms, Two-Dimensional Case (n=0).

Incompressible Velocity-Slip and Temperature-Jump Correction Terms. Axially Symmetric Case (n = 1)

$$f_{151} = f_{0}^{1} \quad \begin{array}{c} \lambda_{161}^{1} = \lambda_{0}^{1} + \left(\frac{u_{1}}{u_{1}} - 1\right) \lambda_{0}^{1}(0) \left[1 - \frac{1}{2} \sigma\right] \\ \hline \eta & \frac{1}{2} \left[m \left[1 - \lambda_{0} \right] \right] \quad \begin{array}{c} \lambda_{0}^{1}(m) \lambda_{0}^{1} \\ \hline 0 & 0.6867 & 0.4716 \\ \hline 0.5 & 0.4532 & 0.4542 \\ \hline 1.0 & 0.2460 & 0.3601 \\ \hline 1.5 & 0.1029 & 0.2094 \\ \hline 2.0 & 0.0318 & 0.0849 \\ \hline 2.5 & 0.0071 & 0.0237 \\ \hline 3.0 & 0.0011 & 0.0045 \\ \hline 3.5 & 0.0001 & 0.0006 \\ \hline 4.0 & 0.0000 & 0.0001 \\ \hline 4.5 & 0.0000 & 0.0001 \\ \hline \frac{\sqrt{1}{51}}{\sqrt{1}} = \frac{(s_{0} - \overline{1}_{15})}{(s_{0} + \lambda_{1})} = f_{151}^{1} \\ \frac{\sqrt{1}}{\sqrt{15}} = \frac{2 \ln \omega}{1 + 3^{3} \pi / \frac{5\pi}{15}} = f_{151}^{1} \\ \frac{\sqrt{1}}{\sqrt{15}} = (1 - w) \lambda_{151}^{1} \\ \hline \frac{Q_{151}}{\sqrt{15}} = (1 - w) \lambda_{151}^{1} \end{array}$$

\$

, ...

I

.

Incompressible Vorticity-Correction Term, Axially Symmetric Case Only (n > 1).

 $2f_0^*f_W - 2f_0'f_W' + 2f_0f_N^* + F_W' = 0$

.

1.52 fo the + the = - 1.52 to fiv

 $f_{i\nu}(0) = f_{i\nu}(0) = \vartheta_{i\nu}(0) = 0 \quad ; \qquad \eta \to \infty , f_{i\nu}(\eta) \to 1 \quad ; \vartheta_{i\nu}(\eta) \to 0$

r							T .
9	F.v	f.	f.v"	F. M	วัพ	₹.	37
0	0	0	0.6491	0	0	0.1956	0
0.5	0.0812	0.3249	0.6523	0.0257	0.0951	0.1748	-0.1196
1.0	0.3262	0.6586	0.6932	0.1521	0.1586	0.0629	-0.3070
1.5	0.7460	1.0298	0.8005	0.2535	0.1516	-0.0841	-0.2249
2.0	1.3661	1.4605	0.9164	0.1862	0.0922	-0.1317	0.0308
2.5	2.2142	1.9368	0.9787	0.0692	0.0365	-0.0830	0.1285
3.0	3.3059	2.4318	0.9968	0.0138	0 .00 95	-0.0295	0.0762
3.5	4.6466	2.9311	0.9997	0.0015	0 .00 16	-0.0064	0.0225
4.0	6.2372	3.4311	1.0000	0.0001	0.0002	-0.0009	0.0039
4.5	8.0777	3.9311	1.0000	0.0000	0.0000	-0.0001	0.0004
5.0	10.1683	4.4311	1.0000	0.0000	0.0000	0.0000	0.0000

$$\frac{J_{W}}{-2\sqrt{3}A} = \frac{(9V)_{1V}}{-2\varsigma_{s}\sqrt{3}A} = F_{1V}$$

$$\frac{U_{1V}}{A \times} = \frac{(9V)_{1V}}{\varsigma_{s}A \times} = F_{1V}^{1}$$

$$\frac{\Omega_{1V}}{A \times} = \frac{\varsigma_{1}(0)_{1V}}{\varsigma_{s}A \times} = F_{1V}^{1}$$

$$\frac{\Omega_{1V}}{-A \times \sqrt{\frac{12}{5}}} = \frac{\Sigma_{1V}}{A_{s}A \times \sqrt{\frac{12}{5}}} = F_{1V}^{11}$$

$$\frac{\overline{\Omega}_{1V}}{\overline{T}_{s}} = (1 - W)\overline{J}_{1V}$$

$$\frac{Q_{1V}}{\frac{Q_{1V}}{\frac{12}{5}}} = (1 - W)\overline{J}_{1V}^{1}$$

	00	1.0	0 1005	0.1064	5770.0	0.0468	0.0276	0.009	4600.0	0.0010	0.0002	0.0000	0.000
	1	1 3333	1616	8461-1	1.0618	1.0308	1.0126	1.0044	1.0013	1.0003	1.0001	1.6000	1.0000
	اتع .	1 305	0 6754	0.3470	0.1568	0.0621	0.0214	0.0064	0.0016	0.004	0.0001	0.000	0.000
	व	1 2466	0.7555	0.377	0.1627	0.0632	0.0216	0.0064	0.0016	9.0004	1000.0	0.0000	0.000
	31	,0	0.5177	0162.0	0.9187	61/6-0	1166.0	1166.0	0.9995	1.0000	1.000.1	1.0000	1.0000
	çı	>0	0-1464	3.5045	0.9749	1.4899	2.0122	2.5279	3-0357	3.5388	4*0397	1-5400	5.0400
	1. L	•	-0.0380	-0.0636	-0.0710	-0.0584	-0-0374	-0.0191	-0.079	-0.026	-0.007	-0.001	0.000
	-3	0.1548	0.1412	ま…0	0.0803	0.0478	0.0238	0.0099	4£00.0	0.0010	0.0002	0.000	0.000
	ft,	0.75	0.8244	0.8891	0.9382	0.9701	0.9876	9566-0	0.9987	1666.0	6666.0	1.0000	1.000
	3 .9		-1.4368	-0.6571	-0.2480	-0.0727	-0.0118	+0.028	0.0032	0.0015	0.0005	0.001	0.000
	.	1.7954	0.8089	9206.0	0.0891	0.0158	-0.0023	-0.0035	-0.0018	-0.006	-0.002	-0.000	0.000
-	fe'	0	0.6281	0.8897	1616*0	1.0018	1.0039	1.0021	1.0008	1.0002	1.0001	1.0000	1.0000
	£	0	0.1775	0.5675	1.0390	1.5358	2-0375	2.5391	3.0397	3.5400	4.0400	894	5.0400
	•	0	0.5	1.0	1.5	2.0	2.5	9.0 M	3.5	0. #	÷-2	2.0	5.5

W = 0.75, $\eta^* = 0.4600$

 $\frac{\Delta g}{M_{A}} = f_{1} f_{1} , \quad \frac{V_{0}}{\Lambda_{A}} = f_{1} \left[\frac{(1 - 1)}{\Lambda_{A}} = f_{0} \right] , \quad \frac{\Omega_{A}}{\eta_{A} \sqrt{T_{2}}} = f_{0}^{*} \left[f_{1} , \cdot f_{1} + f_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^{*} H_{1} , \cdot f_{1}^{*} H_{1} \right] , \quad \frac{1}{\Lambda_{A}} = f_{1}^{0.00} \left[f_{1}^$

 $f_{n}(0) = f_{n}^{1}(0) = 0$ $f_{n}^{1}(0) = W$; $\eta \to \infty$; $f_{n}^{1}(\eta) \to 1$; $f_{n}^{1}(\eta) \to 1$

20

Compressible Boundary-Layer Solution. Two-Dimensional Case (n=0).

TABLE II. VARIABLE-FLUID-PROPERTY SOLUTIONS

 $f_{0}f_{1}\frac{f_{2}}{f_{2}} + \frac{f_{2}f_{3}}{f_{2}} - \frac{f_{2}}{f_{2}} + \frac{1}{h_{1}} + f_{0}^{1} + 2.58f_{1}\frac{f_{2}}{t_{0}} + 0.58f_{1}\frac{f_{2}}{h_{2}^{2}} + f_{1}^{1}\frac{f_{2}}{h_{2}} = 0$

 $0.76 \frac{f_0}{t_1^{0,56}} f_1^{1,0} + f_1^{0,0} + 0.69 \frac{t_1^{1,0}}{t_1^{0,0}} = 0$

.

= N	0.50	. mx = 0	0.2573			:							•
•	2	-10	10 14	*	ţi.	ت ة	£.	र स्थ	312	वान	גייג ד	ي الله	313
0	•	0	3.1080		0.5 0	0.4060		0	0	1.5540	1.0396	2.0000	0.2517
0.25	0.0768	0.5974	1.1484	-4.3048	0.5952	0.3575	-0.1763	0.0457	0.3258	1.0788	0.7985	1.6802	0.2499
8.0	0.2506	6118-0	0.7173	-2.1090	0.6791	0.3139	-0.1750	0.1702	0.5509	0.7418	0.5927	1.4725	0.2404
0.75	0.4712	0.9376	0.3363	-1.0610	1257.0	0.2695	-0.1805	0.3543	0.7051	0.5056	0.4286	1.3297	4122·0
1.0	0.7137	6466-0	0.1444	-0.5327	0.8138	0.2243	-0.1797	0.5808	0.8097	0.3406	0.3023	1.2268	0.1945
1.5	1.2212	1.0236	+0.00 1 3	-0.1153	0.9042	0.1399	-0.1526	1.1042	0.9256	1721.0	0.1387	1.1059	0.1305
2.0	1.7320	9210-1	1610.0-	-0.0046	0.9570	0.0750	-0.1054	1.6574	0.9739	0.0578	0.0564	1.0450	0.0728
2.5	2.2385	1.0067	-0.0146	+0.0161	0.9833	0.0342	-0.0596	2.2011	6166.0	0.0201	0.0199	1.0169	0.0338
0. 0	2.7413	1:0034	100.0-	0.0124	0.9945	0.0131	-0.0275	2.7262	0.9978	0.0060	0.0060	1.0055	0.0131
3.5	3.2423	1.0010	-0.0026	0.0059	0.9985	0.0042	-0.0103	3.2373	0.9995	0.0015	0.0015	1.0015	0.0042
•••	3.7426	1.0003	-0.0008	0.0021	0.9996	0.0011	-0.0032	3.7413	6666-0	0.0003	0.0003	1.0004	1100.0
* •5	1-2427	1.0000	-0.0002	0.006	0.9999	0.0002	-0.008	4.2424	1.0000	0.0001	0.001	1.0000	0.000
0° 2	1-7427	1.0000	0.000	1000.0	1.0000	0.000	-0.001	4.7427	1.0000	0.000	0.000	1.0000	0.000
52	5.2427	1.0000	0.0000	0.000	1,0000	0.0000	0.000	5.2427	1.0000	0.000	0.000	1.0000	0.000
			TEAD										

*	0.25) = **	7.0337	ĺ									
•	0	0	8.3164		0.25	0.9738		0	0	1670.5	40£6*0	4.0000	0.3741
0.125	6440.0	0.6103	2.8241	-19.9039	0.3566	0.7600	-1.1648	0.0160	0.2176	1.4708	0.8087	2.8045	0.3730
0.25	0.1382	4128.0	1.2846	-7.4120	0.4438	0.6442	-0.7536	0.0613	0.3778	1.1185	0.6983	2.2533	0.3678
8.0	0.3776	1.0256	0.3282	-1.8116	0.5850	0.4963	-0.4849	0.2209	0.6000	1102.0	0.5137	1.7094	0.3429
0.75	0.6407	1.0680	0.0606	1085.0-	0.6952	0.3891	-0.3842	たまっ	0.7424	0.4577	0.3706	1.4385	0.3027
1.0	0.9084	1.0702	0-0570	-0.1870	0.7811	0.3014	-0.3203	9602.0	0.8359	0.3014	0.2612	1.2802	0.2541
1.5	6454-1	1.0459	-0-0541	1710.04	0.8963	0.1677	-0-2170	1.2687	0.9374	0.1269	1611.0	1.1157	0.1555
2.0	1.9547	1.0228	-0.0366	0.0411	0.9568	0.0819	-0.1296	1.8703	0.9786	0.0487	0.0475	1.0451	4670.0
2.5	2.4623	1.0093	-0.0184	0.0295	0.9845	0.0342	-0.0654	2.4242	0.9936	0.0164	0.0162	1.0157	0.0338
3.0	2.96%	1:0031	#Loo-o-	0.0151	0.9953	0.0120	-0.0273	2.9512	0.9984	0.0047	0.0047	1.0047	0.0120
0.4	3.9662	1.0002	-0.0006	0.0018	9666.0	6000.0	-0.026	3.9654	6666-0	0.002	0.0002	1.0002	6000-0
0.5	h. office	1.0000	0.000	0.000	1.0000	0.000		L office	1.000	0.000	0.000	1.0000	0.000

n=0 W=0.50 , m*

n= 0													
0 = M	-10 - 7*	= -0.11(65										
	÷.	ميآ	.	د	Ę.	4	, .	sus	517	diq	ي. ندائړ	ي يوايغ	340
		0	22.6929		0.1	2.1875	-33.0178	0	0	3.2693	0.8599	10.0000	0.4466
0 03125	0.0103	0.5510	9.7816	-267.8290	0.1575	1.5983	-11.2275	0.0016	0.0868	2.4214	0.8289	6.3485	0.4465
0.065	2120-0	0.7661	4. 8655	-90.5900	0.2030	1.3399	-6.1826	0.0064	0.1555	2.0143	0.7989	4.9256	0.4459
0.195	0.0861	0.970	3616.1	-23.7405	0.2775	1.0735	-3.0135	0.0239	0.2658	1.5608	0.7120	3.6042	0.432
0.1875	0.1180	teto.1	0.9574	-9.8012	0.3395	0.9037	1.9297	0.0506	0.3593	1.2008	0.6969	5.94	0.4384
X.O	0.2157	1.0880	92.120	4.9936	0.3939	0.8210	-1.4118	6480.0	0.4285	1.0971	0.6391	2.5389	0.4317
)	2425.0	1.1290	1141.0+	-1.7410	0.4870	0.6791	-0.9311	0.1726	0.5479	0.8327	0.5486	2.0533	1614.0
2.0	0.4057	1.124	0.00	-0.7291	0.5653	0.5779	-0.7108	0.2802	0.6401	0.6528	0.489	0692.1	0.3899
× ×		9211-1	0.0914	-0.1261	0.6902	1064-0	-0.500	0.5366	0.7714	0.4176	0.3368	1.4488	0.3330
	1.0538	0000	1001-0-	9.00.04	4697.0	402.0	0.3860	0.8256	0.8562	0.2715	0.2356	1.2764	0-2707
		1.6401	-0.011	6010-0	0.9023	0.1674	-0.2360	1.4334	0.9466	0.1115	0.1050	1.1083	0.1559
0.0	2,1057	1.0220	-0.0389	0.0544	0.9613	0.0773	-0.1308	2.0241	1285.0	0.0415	0.0406	1.0403	0.0752
0	3.1154	1.0027	-0.0665	E410.0	0.9962	0.0102	-0.0242	3-1035	0.9988	0.0037	0.0037	1.0038	0.0101
	1.110	1.0002	-0.00	0.0015	9,000	0.0006	-0.0020	4.1157	0000-1	0.0002	0.0002	1.0002	0.006
2.0	5-1165	1.0000	0.000	0.000	1.0000	0.000	0.000	5-1165	1.0000	0.000	0.000	1.0000	0.000
2													

ħ

•

.

•

٠

-

8	00100	8630		505.	.3359	1		800	8	8	0615	.1183	1615	01/1									135					
ð	ò				• •	• 	ļ	• -					。 	。 —												•		
1.000	1.0002	1.0098	1.1315	K95.1	8865.1	2.000		1.000	1.0002	1.0078	1.0287	1.0802	1.1788	1.3333	210											•		
0.000	0.003	0.0189	0.40%	0.6749	0.9143	1.1635		0.000	4000.0	0,0251	0.1126	0.3443	6147.0	1.2394	and Celly													
0,000	0.003	0.0100	1/11/2 0	0.8085	1.1995	1.7393		0.0000	0.0004	0.0252	0.1145	0.3601	0.8228	1.4644	ala	, ,) "	۲ ار							
1.0000	6666.0	0051	0.7760	0.6119	0.3633	•		1.0000	6666.0	0.9933	0.9629	0.8527	0.5659	0	317	5 ti.		- f		י ו י י	ייי ני ני	Case (n=1).						
3.7416	2.7409	t to	0.4000	0.1932	0.0518	0		3.5807	2.580	1.5677	1.0509	0.5544	0.1613	0	512		•	→ 1 El. (9).		Fi , ¹ 0 30	. <u>-</u> + 058	y Symmetric						
0.000	-0.0041	- 1. Juno 2. OBor 0	-0.3295	-0.3242	-0.3135			0.000	-0.0036	-0-047	-0.1075	-0.1303	-0.0840		ţ,	ين ب ب ب ب ب ب	•	- (-)		2 0 1 1 + 0	" + 2·50 %	ton. Artall				-		
0.000	0.0010	(332.0	0.3024	0.3847	0.4639	0.5501		0.0000	0°000	0.0223	3.0627	0.1248	0.1809	0.2086	ħ,	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲.	-	5	1) <u>11</u> = 0	5	4 + -1	Layer Solut				•		
1.0000	8666.0	0.00.0	0.8183	0.7324	0.6262	0.5		1.0000	9666-0	0.9923	0.9721	0.9258	0.8484	0.75	Ę.	540 F. F.		W = (0).	FA" + 0.	1 2 2	ء ابن ⁷ ابنا	Boundary-						
0,000	0.028	0#/.#*0-	-1.0243	-2.1619	-4.8002			0.000	+0.0018	-0.0318	-0.2081	-0.7005	-1.6181		*	= f4 ⁸⁻⁵⁸ (f,		f,(0)=0 , El	52 Fo F1 50 +		1. 25.5 ·	Ampreset ble						
0.0000	L000.0-	1201.0+	0.2847	0.6652	1.4857	3.4787	*	0.000	-0.0005	0.0029	0.0538	0.2648	0.8277	1-9526		- Style		F .(0) =		54.6		U						
1.0000	1.0002	2166.0	0.9483	0.8355	0.5801	0	* <i>=</i> '0.2584	1.0000	1,0001	1100-1	0.9905	1120.0	0.6671	, , ,					-									
3.7416	2.7415	0.7325	0.4888	0.2638	0,0827	0	1.50 · 7	3.5807	2.5807	1.5799	1.0810	0.5988	1061.0	c	- 													
0	3 9		52.0	0.5	0.25	0	0=M	4.0	3.0	2.0	1.5	0-1	0.5													•	•	-

.

135
	- - - - - - - - - - - - - -	; ; ,	0.0										
	÷.	ئ و	• •	8 . 24	ф.	f 4 0	£4,5			ala	ي. در الح	شاند	ી
0	0	0	6969°6		0.25	1.3289	-4.8742	0	0	2.4242	61/80.1	4.0000	0.5106
0.0625	9410.0	0.4173	4.6058	-45.7226	0.3254	1.1068	-2.6448		0.1358				
0.125	0.0482	0.6365	2.6621	-20-9050	0.3901	0.9776	-1.7928	0.0188	0.2484	1.6569	0.9598	2.5635	0.5075
0.25	4641.0	0.8564	1.1337	-6.9436	0.4998	0.7963	-1.1350	2170.0	0.4280	1.2485	0.8350	2.0010	4664.0
0.5	0.3805	1.0057	0.2690	-1.5792	0.6687	0.5705	-0.7526	0.2544	0.6725	0.7537	0.5968	4564.1	0.4322
0.75	0.6372	1.0388	+0-0396	-0.4815	0.7897	0.4039	-0.5912	0.5032	0.8204	0.4509	0.3932	1.2664	0.3432
1.0	0.8972	1.0383	-0.0296	-0.1308	0.8736	0.2726	-0.4608	0.7838	0106-0	0.2572	0.2378	1.1448	0.2483
1-5	4114.1	1.0182	-0.0372	1140.04	0.9624	0.1019	-0.2310	1.3583	0.9799	0.0679	0.0665	1650-1	0.0993
2.0	1.9168	1.0052	-0.0153	0.0360	2166-0	0.0278	-0.0818	6006-1	0.9968	9210.0	0.0127	1.0084	0.0276
3-0	2.9183	1.0001	-0.0005	0.0023	6666-0	0.0007	-0.0031	5.9179	10000	0.0001	0.0001	1.000.1	1000.0
4.0	3.9184	1.0000	0.000	0.0000	1.0000	0.000	0.000	3.9184	1.0000	0.000	0.000	1.0000	0.000

0 0.03125 0.03125 0.0625 0.0326 0.125 0.0326 0.125 0.2156	0 0.5766 0.5766											
0.03125 0.0112 0.0625 0.0326 0.125 0.0866	0.5766	39.4740		1.0	3.0023	-62.1939	0	•	*2な・8	1-0383	10.0000	0.6130
0.0625 0.0326 0.125 0.0866 0.35 0.216	O TKOK	1190.6	-278.1610	0.1754	2.0360	-16.3994	0.0020	0.1011	2.7634	0200-1	5.7005	0.6126
0.125 0.0866	<u> </u>	4.2390	-83.6390	0.2327	1.6710	6174.8-	0.0076	1621.0	2.2723	0*9755	4.2970	0.6111
0.95 0.2116	0-9336	1.6198	-20.3090	0.3246	1.3130	-3-9971	0.0281	0:3030	1.7516	9545.0	3.0809	0.6082
	1.0432	0.4306	-4.1618	0.4651	0.9769	-1.9055	0.0984	0.4852	1.2231	0.7846	2.1500	0-5760
0.5 0.4793	1.0815	+0.0003	-0.6256	0.6628	0.6392	-1.1066	1716.0	0.7168	0.6915	145.0	1.5008	0.4813
0.75 0.7486	1.0696	-0.0751	-0.1004	0.7945	0.4268	-0.7133	0.5947	0.8497	0.3968	0.3472	1.2987	0.3642
1.0 1.0135	1.0496	1620.0-	4040.04	0.8811	0.2745	-0.5141	0668,0	0.9948	0.2184	0.2029	6461.1	0.2516
1.5 1.5297	1.0183	4E40.0-	0.0762	0.9673	1160.0	-0.2293	1.4797	0.9850	0-0538	0.0528	1.0338	0.0920
2.0 2.0348	1.0047	-0.6112	48E0.0	0.9935	0.0235	4C20-0-	2.0215	0.9982	0.0095	0.005	1-0065	0.0234
3.0 3.0363	1.0004	-0.6003	0.0018	0.9995	0.0005	-0.0023	3.0360	1.0000	0.002	0.0002	1.0004	0.005
4.0 4.038	1.0000	0.000	0.000	1.0000	0.000	0.000	4.0368	1.0000	0.0000	0.0000	1.0000	0.000

•

•

.

•

•

n=1 W=0.25 , #*=0.0816

	-0.0325	-0.0633	-0.0873	-0.0920	1960-0-	£4E0.0+	0.0648	0.0185	0.0018	0.000
31.5	0	0.0229	0.0522	0.1080	0.1336	0.1219	0.0497	0.0083	0.0006	0.000
نوالي ترالي	-1.6057	-1.440B	-1.2315	-0.8864	-0.7483	-0.7719	+636 · 0-	-0.9913	-0.9995	-1.0000
đ	-1.8973	-1.3476	-0.8408	-0.1373	+0.1540	0961.0	0.0661	0.0085	0.0005	0.0000
	0	-0.0853	-0.3549	-1.4554	-3.2626	-5.7510	-12.8374	-22.8745	-35.9131	-61.0980
	0	-0.4443	-0.8193	-1.3001	-1.7933	-2.1749	-3.0338	-4.0031	-5.0001	-6.5000
 ۱۴۱۶	0	-0.0679	-0.2989	-1.3424	-3.1834	-5.7554	-12.9059	-22.8963	-35.9154	-61.0980
÷.,		-0.1163	-0.0628	+0.0763	0.1504	+0.1119	-0.0412	-0.0338	-0.0051	0.0000
	-0.0397	-0.0727	-0.0956	1260.0-	70€0.0-	6860.0+	0.0653	0.0185	0.0018	0.000
<u>ध</u> र 1	0	-0.0142	-0.0355	-0.05	-0.1176	-0.1147	-0.0492	-0.0083	-0.006	0.0000
ڊ : ت		2.4019	1.9303	+0.6668	-0.1001	-0.3138	-0.1100	+0.6040	e.0028	0.000
د ۲ الب	-2.5298	-1.924	-1.3748	-0.7325	-0.6179	-0.7390	-0.9719	-1.0064	-1.0011	-1.0000
-	•	-0.5570	-0.968	-1.4669	-1.7885	-2.1234	-2.9977	-3.9961	-4.9996	-6.5000
ب ب	0	-0.0728	-0.2662	-0.8879	-1.7041	-2.6794	-5.2202	-8.7146	-13.2129	-21.8377
٤	- 0	0.25	0.5	0.1	1.5	2.0	0.0	0.4	5.0	6.5

0050	0	-0.1022		0	0	0	-1.9750	-1.3212	0	-0.0634
7.5923 -0.0149		-0.1356	-0.2402	-0.0170	-1.2349	-0.0303	-1.6049	-1.2735	0.0495	4460-0-
5.3449 -0.0336		-0.1618	-0.1763	4ET0.0-	-0.4459	-0.1190	-1.2698	-1.2071	6460-0	-0.123
2.4881 -0.0781		-0.1877	-0.0298	-0.3292	-0.8035	-0.4560	-0.7294	-1.0624	0.1693	-0.163
0.9734 -0.1244		-0.1773	1001.04	-0.7993	9660.1-	-0.9848	-0.3512	-0.9365	0.2200	21.0-
1191-0- 2561-0+		-0.1363	0.2107	4164.1-	-1.3384	-1.6888	-0.1027	-0.8489	0.2479	-0.145
-0.3457 -0.2019		-0.0107	0.2569	-3.4972	-1.7576	-3.5999	00£1.0+	-0.7684	0.2W69	0:0-0-
-0.3568 -0.1789		+0.0926	+0.1390	-6.2121	-2.1559	-6.1676	0.1621	4466.0-	0.0658	60.05
-0.0704 -0.0651		0.0965	-0.0835	13.5372	-3.0315	-13.4326	0.0606	4466.0-	0.0658	60-0
+0.0145 -0.0094		0.0224	- 6440.0-	23.6941	-4.0028	-23.6673	0.0080	-0.9918	1600.0	0.02
0.0033 -0.0006		0.0018	-0.0055	36.9106	-5.0001	-36.9083	0.0004	-0.9996	9000*0	0.0010
0.000 0.0000		0,000	- 0000 - 0	1202.00	-6. 5000	-62.3974	0.000	-1,0000	00000	0.000

Compressible Curvature-Correction Term. Two-Dimensional Case (n = 0).

•

$$M(f_{L_{1}}|\mathbf{f}_{L_{1}}) = M_{L}(p_{1}, f_{2,0}) = E(f_{2,0}, f_{3,0}) = (q_{1}, f_{2,0}) = (q_{1}, f_{2,$$

ι

5	57													
~	f.u.	ار ا	د ۲	f."	r T	ŕ4.	,"; ; ;	2.1 F	د ا	5 Pice	مارند مدرود	د. دراند دراند	ية الم يواري	ili
	0	0	-9.5183		•	-0.2346		0	0	0	-2.3796	-1.0649	0	1060.0-
0.0625	-0.0149	-0.4312	-5.0004	44.1867	-0.0144	-0.2287	-0.0262	-0.0050	-0.1377	-0.0157	-1.9330	-1.0568	0.1530	-0.1133
0.125	-0.0501	-0.6756	-3.0527	21.7080	-0.0288	-0.2331	-0.0938	-0.0212	-0.2585	-0.0557	-1.6079	9140.1-	0.2265	-0.1352
0.25	-0.1530	-0.9380	-1.4302	7.4461	-0.0586	-0.2439	-0.0611	+160.0-	-0.4662	-0.1876	1441.1-	-1.0036	0.2978	-0.1728
0°-20	1614.0-	-1.1556	-0.5484	11-3577	-0.1198	-0.2384	+0.1066	-0.4009	-0.7989	-0.6079	-0.5783	-0.9244	1055.0	-0.2132
0.75	-0.7228	-1.2681	4604.0-	+0.0722	-0.1745	4661.0-	+0.2442	-0.9483	-1.0679	-1.2033	-0.2485	-0.8565	0.3611	-0.2030
1.0	-1.0526	-1.3718	-0.4423	-0.3121	-0.2143	-0.3185	0.3185	-1.7265	-1.3009	-1.9610	-0-0474	-0.8070	0.3512	-0.1507
1.5	7108.1-	-1.6420	-0.6483	-0.4405	-0.2346	+0.0374	0.2814	-3.8852	0217.1-	-3.9985	1321.0+	-0.7732	0.2920	+0.0066
2.0	-2.7125	-2.0178	-0-8451	-0.3269	-0.1875	0.1358	+0.1027	-6.7025	-2.1224	-6.6218	0.1505	-0.8126	0.2048	0.1210
3.0	-5.1956	-2.985	-1.0097	-0.0310	-0.0524	0.0986	-0.1081	-14.178	-3.009	-14.089	0.0570	939	0.0529	6160-0
4.0	8.8 8.9	-3.995	-1.008	+0.015	-0.006	0.015	10.0- 0-	-24.5	-4.00	-24.53	0.07	đ,	0.0058	0.0186
5.0	-13.185	- 4 -998	-1.0005	0.003	-0.001	0.001	-0.0 <u>-</u>	-37.5	-5.00	-37.5	0.0007	9666	1000-0	0.0013
6.5	-21.810	-6.30	-1.00	0.0	0.000	0.0	0.0	-62.6	-6.50	-62.6	0.00	-1.0	0.000	0.0000
						• •								

	1
-	
Ó	
1	
>	ł

0	0	0	-35.8013		0	-0.5622	-	0	0	0	-3.5801	2176.0-	•	9111.0-
0-0312	5010.0- Si	-0.5504	-8.9839	267.7206	-0.0136	-0.3649	2.5838	-0.0019	-0.0942	6010.0-	-2.5423	-0.9416	0.5488	-0.1286
0.0625	1120-0-1	-0.7436	-4.2905	82.1489	1120.0-	-0.3161	0.9126	-0.0075	-0.1694	-0.0331	4170.5-	-0.9383	0.5853	-0.1418
0.125	-0.0837	1210-0-	-1.7200	19.7564	-0.0428	-0.2876	0.2086	-0.0299	-0.2942	-0.0945	-1.5487	-0.989	0.5557	-0.1698
0.25	-0.2070	-1.0390	-0.6062	3.6172	-0.0778	-0.2752	6.90.0	-0.1196	-0.4939	-0.2610	-1.0029	0.9070	0.5015	-0.2035
0.375	-0.3408	-1.0953	-0.3584	1466.0	-0.1116	-0.2639	0.1211	-0.2702	-0.6592	-0.4737	-0.6835	-0.8842	0.4704	-0.2259
0.5	-0.4804	-1.1361	-0.3017	+0.1096	-0.1434	-0.2443	1361.0	-0.4828	-0.8046	-0.7282	-0.4632	-0.8615	0.4488	-0.2331
0.75	-0.7740	-1.2151	-0.3495	-0.3710	-0.1972	1191.0-	0.3033	-1.0900	-1.0591	-1.3571	-0.1769	-0.8206	0.4139	-0.2059
1.0	-1.0698	-1.3156	-0.4588	-0.4764	-0.2323	-0.0982	0.3492	11,92.1-	-1.2846	-2.1435	-0.0086	-0.7912	0.3785	-0.1383
1.5	-1.8150	-1.6051	+969.0-	-0.4444	-0.2392	+0.0633	0.2636	-4.1677	-1.6992	-4-1979	+0.1329	-0.7828	0.2938	HOE0"0+
2.0	-2.7132	-2.003µ	-0.8842	-0.2955	-0.1825	0.1468	+0.0673	-7.oto7	-2.1124	-6.9246	0.0416	-0.8329	0.1976	0661.0
3.0	-5.1937	-2.9795	-1.0201	-0.0155	1050.0-	0.0887	-0.1098	-14.6404	-3.0184	-14.5398	0.0416	-0.9553	0.0505	0.0881
4-0	-8.6824	-3.9954	+L00-1-	+0.0155	-0.0053	9410.0	-0.0340	-25.1655	-4.0011	-25.1479	0.0049	-0.9951	0.0053	0.0146
5.0	-13.1796	6166-4-	-1.0000	0.0020	-0.001	6000.0	-0.0029	-38.7635	-5.0002	-38.7624	0.000	9666.0-	0.001	6000.0
6.5	-21.8010	-6.5000	-1.0000	0.000	0.0000	0.0000	0.0000	-64.8106	-6.5000	-64.8108	0.000	-1.0000	0.000	0.000

•

.

n = 0 W=025

Compressible Gurvature-Correction Term. Axially Symmetric Case (n = 1)

$$M(f_{L_{i}}, H_{i_{L}}) = M_{L}(f_{0}, F_{10}, \eta) \quad ; \quad E(f_{L_{i}}, H_{i_{L}}) = E_{L}(f_{0}, f_{10}, \eta) \quad \text{ (F. EQUATIONS (2***) AND (2*5).}$$

$$F_{L_{i}}(0) = F_{L_{i}}(0) = G_{1}, \quad \gamma \to \infty \quad F_{L_{i}}(\eta) \to 0 \quad H_{L_{i}}(\eta) \to 0$$

$$\frac{\sigma_{1c}}{-2\ln\lambda} = \Omega_{1c} + \Omega$$

 $\frac{2\pi}{\lambda_{c}^{R}/\lambda_{r}^{R}} = f_{4}^{0} \left[f_{5} e_{1}^{L} + f_{6}^{L} e_{1}^{L} + f_{5}^{R} u_{+}^{L} + 150 t_{1}^{L} u_{+}^{L} - 6^{2} b_{1}^{L} \frac{2}{40} + 3 \left[f_{1}^{L} v_{0} + e_{1}^{L} u_{0}^{L} - 5^{2} u_{0}^{L} + 10^{2} \right] - \frac{1}{5} + \frac{$

W = 0.75

F	f.	f,	f.	بر ۲	£1.,	Бi.	يد بر	قوراني ^ي وراني	ي. د اند	5	(<u>e.v)</u> (<u>e.</u> v).ee	वौष	ייי גיי גי	م زار	ن. ترانی
0	0	0	-1.6958		0	+0.0859		0	0	0	0	-1.2718	-1.0764	0	+010.0+
0.2	2 -0.0454	-0.3318	-0.9528	2.9631	+00.82	-0.0169	-0.3630	-0.0574	-0.3432	-0.0723	-0.4326	-1.1063	-1.2508	-0.0128	-0.0133
0.5	-0.1506	-0.4821	-0.2747	2.3735	-0.0059	-0.0893	-0.2044	-0.2902	-0.6959	-0.3408	-0.8156	-0.7961	-1.2412	+0.0082	-0.0805
1.0	-0.3860	-0.3993	+0 4485	+0.5256	-0.0595	-0.0933	+4.1656	-1.5017	-1.2771	-1.5837	-1.3204	+960.0-	4026.0-	0.0694	-0.0937
1.5	-0.5260	-0.1652	0.4032	4064.0-	-0.0795	+0.0165	0.2055	-3.7500	-1.6837	-3.7691	-1.6509	+0.2220	-0.7343	0.0841	+0.0127
2.0	-0.5692	-0.0299	+0.1446	-0.1380	-0.0532	0220.0	+0.0123	-6.9198	-2.0696	-6.8891	-2.0321	0.1642	-0.8262	0.0540	0.0708
0.	+1172-0-	+0.0027	-0.0060	+0.0018	-0.0052	0.0169	-0.0455	-16.0655	-3.0023	-16 0555	-2.9977	0.0098	-0.9900	0.0052	0.0169
4.0	-0.5705	0.001	-0.0003	0.0015	1000.0-	1000.0	-0.0020	-29.2167	-4.0001	-29.2164	-4.0000	1000.0	-0.9999	0.0001	1000.0
5.0	-0.5705	0.000	0.000	0.000	0.000	0.0000	0.0000	46.3780	-5.0000	-46.3780	-5.0000	0.000	-1.0000	0.000	0.000

W = 0.5

0 +0.1101	-0.0233 -0.0534	0.0519 +0.1664	0.1539 -0.1302	0.1405 +0.0606	0.0761 0.1195	0.0057 0.0197	1000.0	0.000 0.0000
-0.9308	-1.1212	-1.1167	-0.84H	-07379	-0.8530	-0.9927	-1.e000	-1-6000
-1.3914	-1.1178	-0.7081	-0.0037	+0.2225	0.1382	0.0072	0.000	0,000
•	-0.5946	-0.9516	-1.2965	-1.5084	-1.9997	-2.9968	-4-000	-5.0000
0	-0.1073	-0.4582	+178.1-	-4.2080	1024.7-	-16.9487	-30.4313	-47.9148
•	-0.3671	-0.7202	-1.2653	-1.6578	-2.0553	-3;0018	-4.0002	-5.0000
0	-0.0665	9-0.3429	5 -1.7433	5 -4.2047	-1-2411	3 -16. 9605	9-30.4315	8#162# C
	-0.7318	-0.221	+0-397	+0.275	5.0-	-0.05	5100.0-	0.00
117.04	-0.0785	-0.1963	-0.1209	+0.0712	0.1218	0.0197	0.004	00000*0
0	±0.0092	-0.0279	-0.1202	-0.1298	-0.0746	-0.0057	-0.001	0.000
	5.8449	+2.6652	-0.1979	-0.6538	-0.3114	+0.0265	0.0015	0.6000
-2.7828	9.9 8	+0.1148	0.5776	0.3062	+0.0531	-0.0118	-0.003	0.000
•	-0-1496	-0.5339	-0.3023	-0.0723	+0.0100	0.0038	0.000	0.000
0	-0.0660	-0.19h3	-0.4124	-0.5001	-0.5104	-0.4995	-0.4985	+0.4985
	0.25	0.5		1.5	2.0	3.0	0.4	2.0

•

•

.

* 14 MA

.

5	22.2	····									. 1.1.00.	0,00	-0 0755 :	145 10.0-
4	ş	-1 AEDE	31 2850	+0.0115	510.0-	-1.6023	-0.01%	-0.2154	-0.0501	10.70-	····			
	2		202.1		-0.1800	-0.7955	-0.0912	-0.4159	-0.1813	-0.8251	-1.0742	-1.0087	+0.01 <i>6</i> 8	1021.0-
P P	0110			1990	-0 2746	+0.0295	-0.4508	-0.74-1	-0.636	-1.0284	-0.5384	-0.9932	0.1484	-0.2376
ġ	ŝ	(0#0.0	6101.4			C had	-1-1257	-1.0253	-1.3214	-1.1285	-0.1474	-0.8811	0.2071	-0.2172
ġ	5642	2.0		1631-0-		0 5511	1700 6-	1.2455	-2.2266	1.2284	-0.0972	-0.7749	0.2176	-0.1061
٩	1061.	0.5554	-0-7440		000.0-		1 7770	1 6067	- 4 TOB1	-1.5352	0.2132	-0.7557	0.1582	+0.1158
የ	9000	+0.1855	-0.6136	99 1	0621.04	0/12.0		1000		3580 1	0 1070	-0.88%	0.0733	0.1369
Ŷ	.0269	-0.0082	-0.1717	-0.0721	0.1390	C021.0-	0.05.0-	- <	<u> </u>	100	0100 0		in the second seco	0.0155
0	0E00-0	-0.0107	-0.0327	1400-0-	0.0155	-0.0512	-17.9702	-3.0010	-17.9609	-2.9913	6+00-0	((44)-		0.000
	.0000	0.0	0.0	0.0000	0.000	0.000	-40.2153	-4.5000	-40.2153	-4.5000	00000	000.1-		
		an entry		c	10 1007	•	0	0	0	0	-2.9575	-0.7779	•	0.0863
		0+10.42-			a lot o	- 0180	-0 mt6	-0.0B04	9600.0-	-0.4812	-2.2027	-0.8163	-0.2268	0.0483
1	0.#032	03(S.)-	CC22.2422	200	5	~~~~~			1000	0 6610	CI48 1-	-0.8k72	-0.1529	+0.0114
1	0.6131	-3.0167	78-8663	0.0083	-0.0100	-2.7655	-0.0067	<2.+1.0-	1050.0-	2100.0=				0.0573
1	0.7015	-0.4961	19.8130	40.00.0+	0.1340-	-1.4605	-0.0288	-0.2636	-0.0897	-0.8218	-1.4253	162.0-	20.0-	5100-0-
	<i>1</i>	y cy u	1.5015	-0.0219	-0.2525	-0.5698	-0.1263	-0.4595	-0.2616	-0.9387	-0.9518	-0.9433	+0.1012	-0.1676
۱ 	110.0			0 DECC	0000		10.3027	-0.6269	-0.4932	-0.9858	-0.6339	-0.9448	0.1715	-0.2355
1	Ř		25.2	2							•			00000

0.000 0.1317 0.0118 -0.2025 -0.0681 1141.0+ -0.2002 0.2420 0.2317 0.1508 0.0638 0£00-0 0.000 0.2116 -0.9080 -0.3871 -0.9144 -0.9981 -0.8165 -0.7765 -1.0000 +0.1515 -0.7426 0.0025 0.000 0.1980 0.0870 -0.0391 -1.179 -2.9996 -1.0795 -0.7736 -0.7804 -1.0159 1186.1--4.5000 -1.5121 -5-0534 -1.5172 -2.4708 -8.5817 -18.6561 6422.14--1.0209 -3.0029 -4.5000 -1.2266 -1.6064 -2.0314 +0.2163 -0.5618 -0.1597 -8.6618 -0.0041 -18.6670 0.0000 -41.2749 1615.1- 6742.0 +0.1434 -5.1041 0.5690 -2.3594 0.0012 0.1333 -0.1807 -0.0357 -0.2837 0.000 +0.1538 -0.4751 2.8579 -0.2764 -0.0930 -0.0030 -0.8180 -0.1527 -0.8769 -0.1799 -0.5294 -0,1411 -0.0629 0.000.0 -0.0956 4/20.0+ 0.000.0 0.4861 +0.1184 -0.0296 -0.0086 0.000 -0.2773 +0.0153 2100.0 0.000.0 0.0284 -0.1283 - 010 - 010 - 0 -0.3942 -0.4438 -0.4643 1051-0--0.43B0 -0.4382 0.5 0.75 -----1.5 2.0 0.1 3.0

l

W= 0.25 1=0

.

40

•

.

-0.1015 +0.0476

0.1111 ; ¦¦¦

> -1.8295 -0.8187 0 -1.6114 -0.8915 -1.4129 -0.9458

> > -0.3576

-0.0134

-0.0042

-2.4539

0.0107

-0.3315 -3.70000 42.1826

-7.3182 "u_"

o ^و ب

u³ 0

10.2831

-0.0454 18/0.0+

-0.0115

0.0625 0.125

-0

-0.2184 -0.1119

÷ *

د ساند

. Ч

1.1.5) 0

5 0

313 0

110

<u>्</u>र दः

т. Т 0

<u>ت</u> 4-

-0-0134 -0-0134

Compressible Displacement Correction Term. Two-Dimensional Case (n = 0).

$$f_{1,3} = \frac{1}{2} \left(f_{0} + \gamma f_{0}^{-1} \right) ; \quad f_{4}_{1,3} = \frac{1}{2} \gamma f_{4}_{0}^{1}$$

$$\frac{\sigma_{1,3}}{\sigma_{1,3}} = f_{4,0} f_{1,3} + f_{0} f_{4,13} ; \quad \frac{\sigma_{1,3}}{\sigma_{1,3}} = f_{4,0} f_{1,0}^{-1} + f_{0}^{1} f_{4,13}$$

$$\frac{(g_{1,1})_{1,3}}{\sigma_{1,5}} = f_{1,3}^{-1} ; \quad \frac{(g_{1,0})_{1,3}}{g_{1,5}} = f_{1,3}^{-1} ; \quad \frac{\sigma_{1,3}}{\sigma_{1,5}} = f_{4,0} f_{1,0}^{-1} + f_{0}^{1} f_{4}^{-1} + f_{0}^{1} f_{4}^{-1} + f_{0}^{-1} f_$$

W = 0.75

W =	0.15			_					
7	f.,	fi	FL.	3151 24	5 (5 2	dla	215	5 IS	9.5 9.5
0	0	0	0	0	0	2.0199	1.7094	0	0.0635
0.25	0.0719	0.5297	0.0186	0.0576	0.4244	1.3923	1.2249	-0.0300	0.0626
0.5	0.2458	0.8303	0.0353	0.2089	0.7066	0.8883	0.8109	40.05 19	0.0571
1.0	0.7286	1.0410	9. 0577	0.6805	0.9768	0.2720	0.2671	-0.0730	+0.0286
1.5	1.2539	1.0460	0.0606	1.2394	1.0407	+0.0282	+0.0330	-0.0688	-0.0089
2.0	1.7696	1.0175	0.0478	1.7902	1.0350	-0.0327	-0.0304	-0.0508	-0.0322
2.5	2.2736	1.0010	0.0297	2.3059	1.0183	-0.0293	-0.0288	-0.0305	-0.0341
3.0	2.7727	0.9968	0.0148	2.7981	1.0073	-0.0151	-0.0150	-0.0149	-0.0236
3.5	3.2713	0.9977	0.0060	3.2851	1.0023	-0.0058	-0.0058	-0.0960	-0.0121
4.0	3.7704	0.9990	0.0019	3.7761	1.0006	-0.0017	-0. 00 17	-0 .00 19	-0.0048
4.5	4,2701	0.9997	0.0005	4.2719	1.0001	-0.0004	-0.0004	-0.0005	-0.0015
5.0	5.2700	1.0000	0.0000	5.2700	1.0000	0.0000	0.0000	0.0000	0.0000

n=0W. 0.5

.

•

<u> </u>	<u> </u>								
η	fn	f.	f1.,	5.0 4		Dy Ant	た。 た。	5 ia 5 j	90 4 1
0	0	0	0	0	0	2.3310	1.5594	0	0.1258
0.25	0.1068	0.7329	0.0447	0.0670	0.4607	1.4185	1.0846	-0.1261	0.1225
0.5	0.3281	0.9906	0.0785	0.2425	0.7364	0.8318	0.7043	-0.1702	0.1059
0.75	0.5872	1.0637	0.1011	0.4892	0.8947	0.4637	0.4264	-0.1787	0.0756
1.0	0.8543	1.0671	0.1121	0.7753	0.9800	0.2372	0.2346	-001693	+0.0378
1.5	1.3783	1.0269	0.1049	1.3745	1.0359	+0.0262	+0.0340	-0.1283	-0.0311
2.0	1.8836	0.9983	0.0750	1.9326	1.0317	-0.0278	-0.0246	-0.0819	-0.0619
2.5	2.3801	0.9904	0.0428	2.4362	1.0170	-0.0264	-0.0257	-0.0492	-0.0557
3.0	2.8757	0.9926	0.0197	2.9138	1.0069	-0.0141	-0.0140	-0.0199	-0.0344
3.5	3.3730	0.9964	0.0073	3.3916	1.0022	-0.0055	-0.0055	-0.0073	-0.0159
4.5	4.3715	0.9997	0.0005	4.3735	1.0002	-0.0004	-0.0004	-0.0005	-0.0016
5.5	5.3714	1.0000	0.0000	5.3714	1.0000	0.0000	0.0000	0.0000	0.0000

W=0.25

.

0	0	0	0	0	0	3.1187	1.3956	0	0.1871
0.125	0.0606	0.7868	0.0475	0.0237	0.3095	1.9864	1.1547	-0.3736	0.1851
0.25	0.1755	1.0119	0.0805	0.0890	0.5177	1.3933	0.9432	-0.4088	0.1761
0.5	0.4452	1.1076	0.1241	0.3073	0.7752	0.7438	0.6082	-0.3626	0.1379
0.75	0.7204	1.0907	0.1459	0.5946	0.9140	0.3991	0.3683	-0.3019	0.0831
1.0	0.9893	1.0567	0.1507	0.9096	0.9867	0.1996	0.2022	-0.2469	+0.0258
1.5	1.5033	1.0053	0.1258	1.5283	1.0326	+0.0185	+0.0271	-0.1566	-0.0581
2.0	2.0001	0.9862	0.0819	2.0738	1.0273	-0.0261	-0.0231	-0.0894	-0.0813
2.5	2.4927	0.9862	0.0428	2.5595	1.0141	-0.0232	-0.0225	-0.0441	-0.0630
3.0	2.9872	0.9920	0.0181	3.0267	1.0054	-0.0118	-0.0117	-0.0182	-0.0347
4.0	3.9835	0.9989	0.0017	3.9894	1.0004	-0.0012	-0.0012	-0.9017	-0.0048
5.0	4.9832	1.0000	0.0000	4.9832	1.0000	0.0000	0.0000	0.0000	0.0000

W=0.1

•

1	۴.	fo	FL.,	Jis Jest	4.3 Vre+	an Tart	te o East	9.0 5.	<u>Q.y</u> Q.ct
0	0	0	0	0	0	4.9039	1.2899	0	0.2233
0.03125	0.0138	0.7038	0.0250	0.0024	0.1246	3.3649	1.2281	-1.0066	0.2231
0.0625	0.0396	0.9182	0.0419	0.0093	0.2185	2.7061	1.1689	-1.0158	0.2221
0.125	0.1029	1.0779	0.0671	0.0343	0.3633	2.0066	1.0580	-0.8716	0.2178
0.1875	0.1723	1.1331	0.0950	0.0937	0.4751	1.5984	0.9561	-0.7033	0.2105
0.25	0.2438	1.1527	0.1026	0.1182	0.5656	1.3145	0.8623	-0.6615	0.2006
0.375	0.3882	1.1515	0.1273	0.2342	0.7041	0.9297	0.6957	-0.5368	0.1750
0.5	0.5310	1.1316	0.1445	0.3718	0.8033	0.6740	0.5537	-0.4521	0.1438
0.75	0.8078	1.0833	0.1613	0.6830	0.9280	0.3547	0.3317	-0.3386	0.0750
1.0	1.0733	1.0427	0.1602	1.0097	0.9919	0.1732	0.1783	-0.2610	+0.0105
1.5	1.5811	0.9958	0.1255	1.6261	1.0302	+0.0117	+0.0195	-0.1592	-0.0719
2.0	2.0748	0.9830	0.0773	2.1571	1.0239	-0.0251	-0.0226	-0.0836	-0.0855
3.0	3.0617	0.9929	0.0153	3.0975	1.0044	-0.0096	-0.0096	-0.0154	-0.0310
4.0	4.0585	0.9993	0.0013	4.0628	1.0005	-0.0008	-0.0008	-0.0013	-0.0037
5.0	5.0583	1.0000	0.0000	5.0583	1.0000	0.0000	0.0000	0.0000	0.0000

Compressible Displacement-Correction Term. Axially Symmetric Case (n-1).

$$\begin{aligned} \mathbf{f}_{13} &= \frac{1}{2} \left(\mathbf{f}_{0} + \mathbf{\eta} \mathbf{f}_{0}^{1} \right) \quad ; \qquad \mathbf{f}_{A_{13}} &= \frac{1}{2} \mathbf{\eta} \mathbf{f}_{A_{0}}^{1} \\ &- \frac{\sqrt{3}}{2 \mathbf{h}_{3}^{2} \mathbf{A}} &= \mathbf{f}_{A_{0}} \mathbf{f}_{13} + \mathbf{f}_{0} \mathbf{f}_{A_{13}} \quad ; \qquad \frac{\sqrt{3}}{\mathbf{A}_{X}} = \mathbf{f}_{A_{0}} \mathbf{f}_{13}^{1} + \mathbf{f}_{0}^{1} \mathbf{f}_{A_{0}} \\ &- \frac{(\mathbf{g} \mathbf{v})_{0}}{2\mathbf{h}_{3} \mathbf{A}} &= \mathbf{f}_{13} \quad ; \qquad \frac{(\mathbf{g} \mathbf{v})_{13}}{\mathbf{h}_{3} \mathbf{A}} = \mathbf{f}_{13}^{1} \mathbf{f}_{13}^{1} + \mathbf{f}_{0}^{1} \mathbf{f}_{A_{13}} + \mathbf{f}_{0}^{1} \mathbf{f}_{A_{13}} \\ &- \frac{(\mathbf{g} \mathbf{v})_{0}}{2\mathbf{h}_{3} \mathbf{A}^{2}} = \mathbf{f}_{13} \quad ; \qquad \frac{\Omega_{0}}{\mathbf{h}_{3} \mathbf{A}^{2}} = \mathbf{f}_{4}^{1} \mathbf{f}_{0}^{1} + \mathbf{f}_{0}^{1} \mathbf{f}_{13}^{1} + \mathbf{f}_{0}^{1} \mathbf{f}_{A_{0}}^{1} + \mathbf{f}_{0}^{1} \mathbf{f}_{A_{0}} \\ &- \frac{2\mathbf{h}_{3}}{\mathbf{h}_{3} \mathbf{h}^{2} \mathbf{h}^{2}} = \mathbf{f}_{13} \quad ; \qquad \frac{\Omega_{0}}{\mathbf{h}_{3} \mathbf{h}^{2}} = \mathbf{f}_{4}^{1} \mathbf{f}_{0}^{1} + \mathbf{f}_{0}^{1} \mathbf{f}_{13}^{1} + \mathbf{f}_{0}^{1} \mathbf{f}_{A_{0}}^{1} + \mathbf{f}_{A_{0}}^{1} \mathbf{f}_{A_{0}}^{1} + \mathbf{f}_{0}^{1} \mathbf{f}_{A_{0}}^{1} + \mathbf{f}_{0}^{1} \mathbf{f}_{A_{0}}^{1} + \mathbf{f}_{A_{0}}^{1} \mathbf{f}_{A_{0$$

W=0.75

		_							
7	fo	f	€L _{1⊅}	V. Ver	Uis Uret	D as	tu trot	9.00 8.1	Q:st Q:st
0	0	0	0	0	0	2.1967	1.8591	0	0.0855
0.25	0.0773	0.5668	0.0247	0.0633	0.4639	1.5367	1.3687	-9,0385	0.0829
0.5	0.2618	0.8740	0.0452	0.2307	0.7716	0.9946	0.9272	-0.0628	0.0679
1.0	0.7599	1.0535	0.0624	0.7409	1.0327	0.3011	0.3014	-0.0728	+0.0028
1.5	1.2834	1.0309	0.0474	1.2985	1.0488	+0.0389	+0.0414	-0.0498	-0.0463
2.0	1.7911	1.0040	0.0223	1.8124	1.0186	-0.0081	-0.0078	-0.0226	-0.0424
3.0	2.7906	0.9993	0.0014	2.7936	1.0005	-0.0008	-9.0008	-0.0014	-0.0050
4.0	3.7904	1.0000	0.0000	3.7904	1.0000	0.0000	0.0000	0.0000	0.0000

W=(0.5
-----	-----

0	0	0	0	0	0	2.6090	1.7453	0	0.1705
0.25	0.1139	0.7658	0.0580	0.0761	0.5132	1.5891	1.2605	-0.1479	0.1610
0.5	0.3408	1.0017	0.0962	0.2750	0.8140	0.9409	0.8368	-0.1793	0.1179
0.75	0.6000	1.0551	0.1134	0.5464	0.9709	0.5196	0.4997	-0.1694	+0.0492
1.0	0.8634	1.0468	0.1112	0.8495	1.0357	0.2567	0.2603	-0.1424	-0.0200
1.5	1.3760	1.0063	0.0722	1.4117	1.0401	+0.0326	+0.0357	-0.0782	-0.0883
2.0	1.8748	0.9935	0.0300	1.9089	1.0141	-0.0051	-0.0048	-0.0306	-0.0644
3.0	2.8711	0.9991	0.0015	2.8745	1.0004	-0.0005	-0.0005	-0.0015	-0.0057
4.0	3.8709	1.0000	0.0000	3.8709	1.0000	0.0000	0.0000	0.0000	0.0000

n	-	I.	
M	1 =	0.	25

•

7	f.»	fia	fi n	5-3-1 5 -	r L	D. B. C.	234	510 14	C.g Gret
0	0	0	0	0	0	3.6364	1.6273	0	0.2553
0.125	0.0639	0.8029	0.0607	0.0278	0.3518	2.2363	1.3620	-0.3991	0.2497
0.25	0.1788	0.9981	0.0995	0.1036	0.5840	1.5767	1.1509	-0.3985	0.2260
0.5	0.4417	1.0730	0.1426	0.3496	0.8609	0.8445	0.7426	-0.3190	0.1372
0.75	0.7082	1.0536	0.1515	0.6557	0.9894	0.4390	0.4265	-0.2429	+0.0286
1.0	0.9677	1.0235	0.1363	0.9677	1.0356	0.2062	0.2122	-0.1786	-0.0590
1.5	1.4693	0.9902	0.0764	1.5219	1.0308	+0.0234	+0.0260	-0.0825	-0.1137
2.0	1.9636	0.9899	0.0278	2.0005	1.0096	-0.0036	-0.0034	-0.0282	-0.0670
3.0	2.9593	0.9993	0.0010	2.9619	1.0002	-0.0003	-0.0003	-0.0010	-0.0043
4.0	3.9592	1.0000	0.0000	3.9592	1.0000	0.0000	0.0000	0.0000	0.0000

W	=	٥.	۱
		_	_

VV - U ·V									
0	0	0	0	0	0	5.9211	1.5574	0	0.3065
0.03125	0003460	0.7181	0.0318	0.0029	0.1443	3.8128	1.4953	-1.0337	0.3059
0.0625	0.0403	0.9019	0.0522	0.0111	0.2501	3.0446	1.4340	-0.9642	0.3033
0.125	0.1017	1.0348	0.0821	0.0401	0.4125	2.2662	1.3137	-0.7790	0.2925
0.25	0.2362	1.0980	0.1221	0.1357	0.6381	1.5017	1.0628	-0.5644	0.2519
0.5	0.5100	1.0816	0.1598	0.4146	0.8897	0.7640	0.6780	-0.3638	0.1294
0.75	0.7754	1.0414	0.1601	0.7358	0.9985	0.3825	0.3753	-0.2536	+0.0045
1.0	1.0315	1.0100	0.1373	1.0480	1.0339	0.1729	0.1790	-0.1768	-0.0827
1.5	1.5285	0.9057	0.0706	1.5865	1.0254	+0.0178	+0.0197	-0.0754	-0.1175
2.0	2.0221	0.9905	0.0235	2.0568	1.0077	-0.0025	-0.0024	-0.0238	-0.0610
3.0	3.0187	1.0000	0.0007	3.0213	1.0008	-0.0002	-0.0002	-0.0007	-0.0032
4.0	4.0184	1.0000	0.0000	4.0184	1.0000	0.0000	0.0000	0.0000	0.0000

Compressible Velocity-Slip and Temperature Jump Correction Terms. Two-Dimensional Case. (n = 0).

$$M(f_{1M_1} | E_{1M_1}) = 0 \quad ; \quad E(f_{1M_1} | E_{1M_1}) = 0 \quad c_F = equation (2.64).$$

$$f_{1M_1}(0) = f_{1M_1}(0) = 0 \quad ; \quad F_{1M_1}(0) = 1 \quad ; \quad p \to \infty \quad ; \quad f_{1M_1}(\eta) \to 0 \quad ; \quad F_{1M_1}(\eta) \to 0$$

$$f_{1M_1} = f_0' \quad ; \quad E_{1M_1} = E_{1}' \quad ; \quad E_{1M_1} = E_{1}' \quad ; \quad E_{1M_1} = E_{1}'(0) \quad ; \quad E_{1M_1} = E_{1}'(0) \quad E_{1M_1} = E_{1}'(0) \quad E_{1M_1} = E_{1}'(0) \quad E_{1M_1} = E_{1}'(0) \quad ; \quad E_{1$$

 $\frac{c_{151}}{h_{4}h_{3}/\frac{1}{2}} = \overline{R}_{0}^{0.50} \left[\overline{f}_{0}^{*} \overline{L}_{1}^{0} + \overline{2} \cdot \overline{5} \overline{F}_{0}^{*} + \overline{6} \cdot \overline{5} \overline{h}_{0}^{*} + 0.50 \overline{h}_{1}^{*} \overline{h}_{0}^{*} \right] ; \frac{9.5}{5} = -\frac{64}{44^{2}} ; \frac{1.5}{7} = \overline{E}_{1}^{0} ; \frac{9.5}{45} \overline{h}_{1}^{*} = \overline{E}_{1}^{0} \cdot 0.03 \overline{h}_{1}^{*} \overline{h}_{1}^{*}$

$$\frac{V_{U}}{164} = 42.6r_{13} + 5.44_{13} + 5.44_{13} + 5.45_{13} + 5.45_{13} + 5.45_{13} + 5.10_{13} +$$

 $\frac{z_{11}}{\lambda_{4}x_{1}x_{1}^{2}} = H_{0}^{0.56} \left[f_{1}, f_{1}^{1} + R_{0}^{1}, f_{1}^{1} + f_{1}^{1}, R_{1}^{1} + 1^{15}, B_{1}^{2}, H_{1}^{1} + 0.5, B_{1}^{1}, \frac{H_{1}}{R_{0}}, \frac{1}{S_{1}} = -\frac{H_{1}}{S_{1}}; \frac{T_{1}}{T_{0}} = H_{1}, \frac{G_{1}}{S_{1}} = H_{0}^{0,0} \left(P_{1}^{1} + 0.6, \frac{H_{1}}{R_{0}}, \frac{H_{1}}{R_{0}} \right)$

_	Ť	بر الد	- <u>1</u>	\$ <u>r</u> 4-	at at	£2¦	Б."	51.5 1.5 1.5	1 <u>, 1</u>	11:11 11:11	ي. ترانو
	•	0	-3.1760		1.0000	-0.7564		0	1.3466	-1.342B	-1.0000
-25	-0.0743	-0.5076	-1.0906	6.0251	0.8189	-0.6967	0.2460	0.3034	1.0275	-1.1921	1046-0-
0.5	-0.2220	-0.6298	1120.0-	4167-34	0.6523	-0.6296	0.2935	0.5428	0.7555	-0.9799	-0.8090
0.	1205-0-	-0.4483	+0-5194	-0.001	0.3780	-0.4621	0.3608	0.8564	7175.0	-0.5710	-0.5072
5.1	-0.6656	-0.2194	4396.0	-0.4335	0.1914	-0.2876	0.3210	1.0026	0.1627	-0.2879	-0.2696
5.0	-0.7385	-0.0882	0.1746	-0.2933	0.0838	-0.1512	0.2202	1.0452	0.0632	-0.1275	-0.1235
0.0	0.17.0-	-0.0091	4620.0	-0.0544	0.0099	-0.0246	0.0539	1.0228	0.0064	-0.0165	-0.0164
0.1	-0.7781	-0.0005	0.0016	-0.0049	0.0006	-0.0018	0.0055	1.0033	0.004	-0.0041	1100.0-
5.5	-0.7782	0.000	0.000	0.000	0.0000	0.000	0.0000	1.0000	0.000	0.000	0.0000
							_	L			[
	z, z	đ	ر لواتي	, i)	(50)ee	(<u>9</u> 0) U (<u>9</u> 0) me	nd.	۲	31.7	شاڭ	il.
•	-0.2753	0	0	0	0	0	-0.0908	0.0596	-0.2753	8451.0	6110-0-
5	-0.2401	-0.0055	-0.0027	+100.0-	-0.0115	-0.0786	1620.0-	0.0581	-0.2041	0.1267	-0.0775
5.0	-0.2078	-0.0187	-0.0104	01.10-0-	-0.0344	-0.0975	0100.01	0-0516	-0.1486	0.101.0	6140.0-
0.1	-0.1460	1640.0-	-0.0359	-0.0096	-0.0778	-0.0694	0.0175	0.0296	-0.0740	0.0585	1190.0-
1.5	-0.091 3	-0.0633	-0.0659	-0.0029	-0.1031	-0-0340	0.0090	0.0115	-0.0337	0.0296	6040-0-
5.0	-0.0708	-0.0556	0160.0-	-0.0002	-0.1140	-0.0137	0.0023	0.0028	-0.0138	0.0130	-0.0225
3.0	-0.0100	-0.0190	-0.1156	1000.0-	-0.1200	₩100.0 -	0.0002	0.0002	-0.0015	0.0015	-0.0038
0.1	-0.0010	-0.0026	-0.1201	0.000	-0.1205	-0.0001	0.000	0.000	1000.0-	1000'0	-0.0003
5.5	0.000	0.000	-0.1205	0.000	-0.1205	0.0000	0.000	0.000	0.000	0.000	0.000

....

0 = U

W = 0.75

147

.

•

•

•

•	J.	- <u>1</u>	1 4 1 1	• 4 4-	F I	Ę,	1	ر <u>ت</u> ا بچ	ž į	A	ڈ انچ
0	0	0	-8.5746		1.0000	-1.3576		0	1.5540	-2.2267	-1-0000
0.125	-0.0501	6069.0-	-3.1702	28 .6963	0.8441	-1.1486	1.4318				
0.25	-0.1535	1116-0-	-0.6728	13.1494	0.7108	-0.9830	1051-1	0.3533	1.0788	-1.5979	-0.9045
0.5	-0.3786	-0.8280	+0.8826	+1.8800	0.4960	1172-0-	0.8674	0.6296	0.7418	-1.1236	6961.0-
0.75	-0.5557	-0.5862	0.9480	-0.6936	0.3359	-0.5468	0.6948	0.8321	0.5056	-0.7859	-0.5771
1.0	-0.6749	-0.3771	0.7122	-1.0262	4612.0	-0.3914	0.5507	0.9697	0.3406	-0-5476	-0.4376
1.5	0462.0-	1461.0-	4662.0	-0.5818	0.0819	-0.1786	0-3120	1.0965	1741.0	-0.2593	-0.2321
2.0	-0.8336	-0.0402	0.1047	-0.2368	+0.0239	-0.0669	0.1479	1.1036	0.0578	-0.1146	-0.1091
3.0	-0.8468	-0.0014	0.0067	-0.0233	-0.001	-0.0029	+0.0145	1.0338	0,0060	-0.0155	-0.0154
4.0	-0.8469	1000.0+	0.0002	-0.0003	-0.0002	+0.0005	-0.0006	1,0041	0.0003	-0.0011	1100.0-
5.5	-0.8468	0.000	0.0000	0.000	0.0000	0.0000	0.0000	1.0000	0.000	0.000	0.0000
۴	żli	10	الال م	1 1 1	100 m	(11)10 (11)10	ald	ي. بوانو	313 813	تواتر	ગુરુ
0	-1.6240	•	0	0	0	0	-0.4788	0.1693	-1.6240	0.4060	-0.2007
0.125			-0.038	-0.0431	-0.0204	-0.2805	-0.2319	0.1678	-1.1366	0.3427	-0.2001
0.25	1600.1-	-0.0197	-0.0149	-0.0622	-0.0623	-0.3699	-0.0864	0.1606	-0.8147	0.2006	1161.0-
0.5	-0.6008	-0.0573	-0.0539	6190-0-	-0.1537	-0.3362	+0.0382	4251.0	-0.4367	0.2014	-0.1812
0.75	-0.4764	-0.0935	-0.1054	1150-0-	-0.2256	-0.2380	0.0631	0.0985	-0.2411	1361.0	-0.1547
1.0	-0.1693	-0.1189	-0.1594	-0.0360	-0.2740	-0.1531	0.0557	0.0686	-0.1345	1680.0	-0.1232
1.5	11/1.0-	-0.1284	-0.2509	-0.0152	-0.322t	-0.0544	0.0282	0.0296	-0.0406	0.0332	-0.0644
2.0	-0.0819	-0.0983	1706.0-	-0.0057	-0.3384	-0.0163	0.0116	0.0117	-0.0106	0.007	-0.0026
3.0	-0.0132	-0.0273	1546.0-	-0.0006	-0.343B	-0.0006	0.0015	0.0015	1000.0+	1000-0-	-0.0012
4.0	-0.0022	-0.032	-0.344	0.0000	-0.3439	0.0000	0.0001	0.0001	0.000	1000-0-	+0.002
5.5	0000.0	0.000	-0.3438	0.0000	-0.3438	0.0000	0.0000	0.000	0.000	0.000	0.0000

n= 0 W= 0.5

				-	-				-	10	-	
نړان ړ	-1.0000		-0.9333	-0.8329	-0.6494	-0.5003	-0.3792	-0.2022	1160.0-	-0.0125	-0.008	0.000
The second	-6.9316		-3-5154	-2.2760	-1.2313	-0.7664	-0.5051	-0.2592	6660-0-	-0.0125	-0.008	0.000
17 17 17	1670.5	,	1.4708	1.1185	1102.0	0.4577	4105.0	0.1269	0.0487	0.00MT	0.0002	0.000
₹ <mark>1</mark> €	0		0.2517	0.4669	0.7874	7166.0	1.1097	1.1786	1.1386	1460.1	4600.1	1.000
E.,.		14.3214	8.1316	3.7655	1-5374	0.8560	0.5199	0.1849	1010.01	-0.0143	+E00-0-	0.000
Edin.	-3.9510	-2.6177	-1.9438	-1.2557	-0.6606	-0.3735	-0.2055	-0.0411	+0.0104	1010.0	0.0013	0.000
ħ	1.0000	0.8002	0.6597	0.4652	0.2367	6.1109	+0.0402	-0.0145	-0.0193	-0.0047	0.0000	0.000
1 1 1 1		276.1018	1058-17	+2.8705	-5.2328	-2.9440	-1.5377	1054.0-	-0.1246	-0.0001	0200-0+	0.000
• • •	-48.4672	+6+6-6-	-0.2442	+3.1840	2.1504	1-1374	0.5961	0.1601	HAE0.01	+0.0038	6000-9-	0.000
fur n	0	-1.5361	-1.7923	-1.5187	-0.8206	-0.4218	-0.2124	-0.0455	-0.0033	+200-0+	0-0000	0.000
J.	0	-0.0600	-0.1671	-0.3781	-0.6644	-0.8145	-0.8909	-0.9466	-0.9562	-0.9539	6256-0-	-0.9533
*	•	0.0625	0.125	0.25	0.5	0.75	1.0	1.5	2.0	3.0	•••	5.5

•	支	ale ele	ي. يواحد	EIE E	નુ કુર્યું કુર્યું કુર્યુ કુર્યું કુર્યું કુર્યું કુર્યું કુર્યું કુર્યું કુર્યુ કુર્યું કુર્	(11)11 (50%at	वौर्व	نواني نواني	تداتة	1 31 12	فاق
•	-15.5805	0	•	•	0	0	-3.7007	0.4459	-15.5805	0.9738	-0.kT27
0.0625			-0.0076	-0.1582	-0.0585	-1.4959	-1.6627	0544.0	-8.2928	0.7792	+L1+-0-
0.125	-5-9174	-0.0232	-0.0292	-0.2303	-0.1627	-1.7453	-0.7522	0.4314	-5.0525	0.6424	-0.1654
0.25	-3.2707	-0.0619	-0.1008	-0.2707	-0.3682	-1.4789	-0.0359	0.3910	-2.2999	0.4530	1654.0-
0.5	-1.4502	-0.1343	-0-2915	-0.2311	-0.6470	1667.0-	+0.2H43	0.2964	-0.6733	0.2304	-0.3512
0.75	-0.8051	-0.1820	-0.1822	-0.1702	-0.7931	7014.0-	0.2283	0.2183	-0.2234	-0.1080	-0.2506
1-0	-0.4939	-0.2025	-0.6421	-0.1196	-0.8676	-0.22	0-1760	0.1601	-0.0642	36E0-0 +	-0.1599
1-5	-0.2088	-0.1811	-0.8465	-0.0545	-0.9217	-0.0493	0.0912	0.0045	+0.0176	-0.0142	-0.0388
2.0	-0.0894	-0.1210	-0-2677	-0.023	-0.9312	-0.0032	3.042B	0.0412	0.0205	-0.0187	+0.0088
3.0	-0.0122	-0-0271	-0.9382	-0.0023	6826.0-	-0.0023	0.0062	0.0062	0,0047	-0.0046	0.0098
h. 0	-0.009	-0.0026	-0-9277	0.000	6126.0-	0.000	0.000	1000.0	0.000	0.000	0.0013
5.5	0.000	0.000	-0.92	0.000	-0.9272	0.000	0,0000	0.000	0.000	0.000	0.000

n=0 W=0.25

<u>64</u>1

-1.0333	1234141	-27.739	1.0215	02.10.4 -	-9.362	9064.0-	-0.8201	-0.0638	-0.067	. 20. 2053	0.0655
2.10.1-	1.84	172.05-	1.0428	-10.1617	-9-0912	-0-2141	-0.61 58	-0.0184	-0.0102	-64.4192	0.03125
-1-0510	2.1875	-218.7509	1.0502	-37.4864	0	0	0	0	0	-218.7509	0
રાહે	مهاثم	SI.S	r Hill	ian an a	(<u>5.0)</u> (2.0)e	ners)	ۍ او _د	ي. چواني	43	رابر	•
					1					-	
0.000	0.000	0.000	1.0000	0.000	0.0000	0.000	0.000	0.000	0.000	-1.0545	5.5
-0.006	-0.0006	0.0002	1.0027	0100.0-	0.0014	-0.0005	0.0026	-0.0010	0.0003	-1.0545	4.0
0.0102	-0.0101	0.0037	1.0305	-0.0264	0.0145	-0.0065	4010-0+	-0.0076	0.0039	-1.0561	0°E
-0.0835	-0-0874	0.0415	1.1450	-0.0273	0.0504	-0.0385	-0.0538	-0.0017	4610.0	-1.0649	2.0
-0.1841	-0.2074	0.1115	1.2125	+0.0631	+0.0462	-0.645	-0.2637	+0.0664	#100-0 +	-1.0700	1.5
10.320	-0.4680	0.2715	9661.1	0.3336	-0.0415	-0.0712	-1.1815	0.3680	-0.0890	-1.0542	1.0
-0.1626	-0.7245	0.4176	1.1098	0.6398	-0.1590	-0.0477	-2.8277	0.8342	-0.2309	-1.0166	0.75
1965.0-	-1.2206	0.6528	0.9266	1.3416	-0.3921	+0-0176	-8.2638	2.0730	6995-0-	-0.92	0.5
-0.6788	-1.7037	0.8327	0.7086	2.1996	-0.6065	0.0789	-16.1918	3.5311	-0.9070	-0.8329	0.375
1012.0-	-2.6489	1.0971	0.6056	4.4693	-0.9965	0.1763	-37.1028	6.6344	-1.5157	-0.6855	0.25
-0-8798	-5.3531	1.5608	0.3582	15.6127	-2.0323	0.3522	-94.1339	14.4408	-2.7561	-0.4285	0.125
65.45.0-	-10.0898	2.0143	0.1975	51.3076	-3.8040	0.5237	+121.8958	1886-71+	-3.8229	-0.2244	0.0625
-0.9772	-17-1054	2.4214	0.1033	139.0825	-6.4547	0.5772	2276.9452	-6.7940	-4.1560	6160-0-	0.03125
-1.0000	-45.2812	3.2693	0		-17.4469	1.0000		-498.2952	0	0	0

સહ	-1-0510	2.10.17	-1-0333	-0.9862	-0-8545	-0-1065	- 500 - 500	0406-0-	-0.1138	-0-0172	0.1028	0.031	1£00°0	0.000
13the	2.1875	1184-1	124141	0.7704	0.3856	1211.0	+0-0385	-0.1043	-0.1557	1141.0-	-0.0812	-0-0143	-0.0010	0.000
3I.X	-218.7509	1482-06-	-27.7939	-10.0085	-2.4853	-0.7280	-0.1206	+0.2190	0.2537	0.1733	1160-0	0.0144	0.0010	0,0000
E.e.	1.0502	1.0428	1.0215	0.9633	0.3418	1961.0	0.6472	59.0	0.3937	0.2237	0.1100	0.0152	6009"0	0.000
na Ta	-37.4864	-10.1617	02.10-4 -	-0.4875	+0.8222	0.9461	0.8752	0.6632	0.4848	0.2475	0-1146	0.0153	6009.0	0,0800
(1)	0	-9-0912	-9.3627	-6.8291	-3-3157	1486-1-	-1.2402	0.995	-0.1946	+0.0031	3620.0	0.0086	2000-0	0.0008
n in the second s	0	1412-0-	9061.0-	-0.9374	-1.4995	-1.8220	-2.0194	-2.238	-2.3060	-2.3406	-2.3296	-2.3101	-2.3067	-2.3066
z la	0	-0.6158	-0.8201	-0.9348	-0.8865	-0.7720	-0.6574	-0.4651	-0.3227	-0.1452	-0.0579	-0.0058	-0.003	0.000
ب ² اي ⁹	0	-0.0184	-0.0638	-0.1938	-0.5075	-0.8261	-1.1225	►1 .6160	-1.9707	-2.3360	-2,4166	-2.3458	42.3105	-2.3066
33	•	-0.0102	-0.0267	-0.0610	-0.1215	-0.1690	-0.2045	-0.2440	-0.2498	-0,1998	-0.1231	-0.0241	-0.0020	0.000
ui k	-218.7509	-64.4192	-32.5053	-13.9449	-5.2921	-2.8632	-1.8086	-0.9028	0.220	-0.2056	-0.0836	-0-0183	-0.0006	0.0000
•	0	0.03125	0.0625	0.125	0.25	0.375	0.5	5.0	0	1.5	5.0	3.0	9	5.5

-1.0000

1.2812

313 E

5150

17

-17.4469 . Та

1.0000 يد الل

۰. ب

τ₊Ξ

-#<u>1</u>0

4 o

6. 0

N=0 W=0.1

 $\frac{z_{U}}{\lambda^{4}\nu/E} = H_{0}^{0.00} \left[u_{0} t_{1}^{\dagger} + H_{1}^{\dagger} t_{1}^{\dagger} + F_{1}^{\dagger} t_{1}^{\dagger} + F_{1}^{\dagger}$ $\frac{\tau_{u_1}}{\lambda_{sh'r}/k} = f_{1,0}^{0.60} \left[f_0^{u} f_{1,0} + 2.58 f_0^{u} t_{1,0} + 5/54 t_{1,0}^{u} + 0.58 f_{1,0}^{u} \right] ; \quad \frac{1}{5!} = -\frac{44 t_{1,0}^{u}}{4t_{2,0}^{u}} ; \quad \frac{Q_{1,u_{1}}}{T_{2}} = 54 t_{1,0}^{u,u_{2}} (44 t_{1,0}^{u} + 0.63 \frac{12t_{1,0}^{u}}{4t_{1,0}^{u}}) ; \quad \frac{1}{5!} = \frac{1}{4t_{2,0}^{u}} ; \quad \frac{Q_{1,u_{1}}}{T_{2}} = 54 t_{1,0}^{u,u_{2}} (44 t_{1,0}^{u} + 0.63 \frac{12t_{1,0}^{u}}{4t_{1,0}^{u}}) ;$ $\frac{J_{12}}{2J_{12}} = E_{10}F_{10} + F_{0}E_{10} + \frac{J_{10}}{A_{10}} = E_{10}F_{10}^{1} + F_{0}^{1}E_{10} + \frac{(5J_{10})}{23J_{10}} = F_{10} + \frac{1}{3} + \frac{1$ $f_{i,n}(0) = f_{i,n}^{1}(0) = 0$, $f_{i,n}(0) = 1$; $\eta \to \infty$, $f_{i,n}(\eta) \to 0$, $f_{i,n}(\eta) \to 0$ CF. EQUATION (2.64). $f_{ij} = \mathbf{x}_{\mathbf{0}}^{\dagger}(\mathbf{0}) f_{in} , \quad \mathbf{x}_{ij} = \mathbf{x}_{\mathbf{0}}^{\dagger}(\mathbf{0}) \mathbf{z}_{in}$ $M(f_{i_1}, g_{i_1}) = 0 \quad ; \quad \vec{E}(f_{i_1}, f_{i_1}) = 0$ fier = f , Eliz = El'

Compressible Velocity-Slip and Temperature-Jump Correction Terms. Axially Symmetric Case (n=1).

0 # 5	.15										1
		-	• <u>•</u>	Ļ	5	ي لك	17.	; *],	: •••••		ũ.,
•	ŗ	5							1 1.644	-1.4178	-1.0000
	c	0	-3.6460		1.000	-1.0232		>			
>			2 000	T Daha	0.7578	TE 10.0-	0.4661	0.3338	1.1261	-1.2193	-0.9302
6.95 0	+190.0-		CI44.0-				0 5875	0.6002	0.8228	-0.9586	-0.7789
0.5	-0.2323	-0.6152	+0.2237	+2.8982	5.7.0	-0. (061	()A			<u>.</u>	5 t 10
		1926 0	1619.0	-0.4538	0.2336	-0.4599	0.6304	0.7409	0.3601	-0.4 01	(n(+-n-
<u>.</u>	011+-0-			0107 0	0 0753	-0.1037	0.4023	1.0307	0.1145	-0.1771	-0.1700
1.5	-0-3829	-0.1102	6062.0	6ino-n-					0 0050	-0 0460	-0.0455
0	-0.6122	-0.0244	0.0827	1642.0-	0.0175	-0.0572	0.1610	1.0000		3	
}		- more		-0.008	0.0003	-0.0015	0.0068	1.0024	0.00	6000.0-	6000.0-
0. M	1010.0-		(100-0		0.0000	0.0000	0.0000	1.0000	0.000	0.000	0.000
• •	-0.6187	0.000	~~~~								

ئۇلغ	-0.1122	-0.1404	THE 1 0-		1990.0-	6960.0-	8110-0-	-0.0003	0.000
نوا تي	0.2086	0.1580	2011.0	1011-0	0.0487	0.0157	0.0037	0.0001	0.000
31.5	-0.3708	-0.2464	00.0	7041-0-	-0.0568	9910.0-	-0.0037	1000.0-	0.000
Tric .	0.0619	0.0617		0.0596	0.0430	1610-0	0.0051	1000.0	0.000
-da	-0.1631	-0.0537		+0.0017	0.0339	0.0184	0.0051	0.001	0.000
(10)1	0	0011 0	-0. IC3	-01203	-0.0705	-0.0230	-0.0051	-0.0001	
1	0		2 5.0-	-0.0484	-0.0996	-0.1216	-0-1277	0-1200	
515	c		1020.0-	-0.C330	4020-0-	-0.06	4100.0-	0.000	
515	c	,	-0.0051	-0.0195	-0.0631	- 101 0-		-0.120	
		>	-0-0-	-0.0513	yerr o-	0,100	-0.100	-0.035	-0.03/
<u></u> .	3		-0.3083	-0.9613	0 1666		1000°n-	-0.0220	6000.0-
		•	0.25		;;;	.	<u>.</u>	0.0	0. m

•

.

	L										2
.0 ■ N	<u>م</u>						-		-		ţ
•	Ť.	÷,Ŧ	• <u>.</u> ‡		" I	т. Т	Fi	/].ĵ;	113	13	13
0	0	0	-10.0661		1.0000	-1.8536		0	1.7393	-2.6047	-1.0000
0.125	-0.0552	-0.7363	-2.8780	33.9869	0.7928	-1.4865	2.4147			1	
0.25	-0.1609	-0.8982	1241.04	12.9671	0.5242	-1.2220	1.8799	0.4016	1.1995	-1.6808	-0-8884
2	-0.2685	-0.7123	1.1406	+0.6561	0.3713	-0.8224	1.3743	1617.0	0.8085	-1.0875	-0.7021
22.0	-0-5113	48.4-0-	11/6.0	-1.3472	0.20-6	-0.5236	1.0240	0.9238	1615.0	4669.0-	-0.5181
	2402-0-	-0.2391	0.6267	-1.2803	0.1026	-0.3073	0.7127	1.0416	1415.0	-0.4289	-0.3565
	-0.6580	-0.0529	0.1826	-0.525	+0.0163	-0.0758	0.2567	1.0904	1160.0	0011.0-	-0.1316
0	-0.6690	-0.0069	0.0337	-0.1339	-0.0023	9100.0-	+0.0518	1240.1	0.0190	-0.0336	-0.0331
0	-0.6711	1000.0+	0.002	-0.0002	-0.0002	1000.0+	-0.0021	1.0027	0.0003	-0.006	-0.006
0.4	-0.6710	0.000	0.0000	0.000	0.00.0	0,0000	0.0000	1.0000	0.000	0.000	0.000
					يۇر ئەمۇر.						
	ادً	ەلق مەلق	دات <u>ہ</u>	33155		fewlus (without	ala	ي. نوا تو	21.5	يراني راي	10-
	-2.2M2	•	0	0	0	0	-0.8551	5011.0	-2.2003	0.5501	-0.3732
2 125			-0.0069	-0.0762	-0.03)4	-0.4051	-0.4089	0.1705	-1.3624	0.4361	-0.3710
	-1,1828	-0.0554	-0.0270	-0.1102	-0.0835	1767-0-	1851.0-	0.1702	-0.8756	0.3434	-0.3596
2	-0-7172	1641.0-	-0.0946	-0.1163	-0.2027	-0.3918	1990.04	0.1646	-0.3808	0.2042	-0.30%
5.7.0	-0.4516	-0.2198	-0.1751	-0.0905	-0.2813	-0.2412	0.1231	0.1466	-0.1683	11211.0	-0.2258
0.1	-0.2899	-0.2444	-0.2475	-0.0601	-0.3269	-0.1315	0.1132	0.1162	-0.0723	0.0564	-0.1462
1.5	-0.1043	-0.1802	-0.3368	-0.0189	-0.3620	1620.0-	0.0515	0.0508	-0.007	0600*0+	0010-0-
2.0	-0.0306	-0.0793	-0.3653	-0.0040	-0.3685	-0.0038	0110.0	0.0139	+0.0002	-0.0002	-0.0042
3.0	-0.0010	-0.0041	#69E°0=	-0.0001	-0.3691	1000.04	0.0003	0.0003	0.0001	-0.0001	+000.0+
4.0	0.000	0.0000	-0.3691	0.000	1692.0-	0.000	0.0000	0.000	0.000	0.0000	0.000

*		-1.0000		-0.9218	-0.8126	-0.6104	-0.9352	1682.0-	-0.0983	-0.0225	-0.003	0.000	ele is
	अ भ् य दाव	-9.7087		-3.9850	-2.3688	-1.1438	-0.6328	-0.3593	-0.1047	-0.0238	-0.003	0.000	برا تقر
	115	2.4242		1.6569	1.2485	0.7537	0.4509	0.2572	0.0679	0.0128	1000.0	0.0000	재도
	41 to to	0		0.2951	0.5422	0.8896	1.0777	1.1516	1.1237	1020-1	1.0020	1.0000	ړما _{تو} د
			21.3804	11.0113	4.7842	1.8964	0.9673	0.4837	40.0524	-0.0362	-0.0052	0.000	ू क वीन
	F4.m	-5-4367	-3.2071	-2.2502	+1.3514	-0.6047	-0.2616	-0.0658	0120-0+	0.0228	0.0014	0.000	(teku (teku
	Бин	1.0000	0.7417	0.5749	0.3571	0.1268	+0.0233	1210.0-	-0.0235	-0.0093	-0.003	0.000	(13) (13) (13)
	7 F 14		285.0744	57.9560	4.055	5.4212	2.6647	1.3122	0.338	0650-0	0.0033	0.000	515
	• 1	-58,4500	-7.1667	+1.6796	3.4715	1.8776	0.8973	0.4208	9010	0.0005	0.0010	0.0000	رواني الاراني
	- <u>, </u>	0	-1.5617	-1-6620	-1.2691	9109 0-	90%0-	1011.0-	-0.0045	6000 14	0.0002	0.000	đ
,	۔ تب	0	4450-0-	-0.1670			2010-0-		-0.757	0.750		-0.7495	The second se
			D AGE	y set	<u> </u>		. ł		, u	2		0	

	Jes	al.	لواتر. ا	313	(1)19 (1)19	Jene Sector	भ े वीन	يو کيا ٿي	لماته	بي ايم	
				c	c	•	-6.5324	0.4215	-21.2627	1.3289	-0.9032
0	1702.12-	>			D DBEK	-2 754	-2.6352	0.4219	-9,3075	0.9856	-0.8962
0.0625		ļ	\$0.0-				-1 1477	0.4245	-5.0164	0.7633	-0.8766
0.125	-6.3852	-0.0642	-0.0503	-0.5/06	-0.4531		1000	מיוביו ט	-1 mm	0.4745	-0.7895
0.25	-3.1883	-0.1609	-0.1664	-0.9364	-0. 1 698	-1.0005	-0.03/4	0*6+•0			
	-1.2798	-0.3157	10440-	-0.3652	-0.7684	-0.7995	1444.0+	0.4389	-0.3768	6991.0	
		-0.3812	-0-6041	-0.2511	-0.9065	-0.3586	0.4370	0.3900	-0.0496	60£0.0+	-0.2861
2.			O BKEE	-0.1545	-0.9667	-0.1489	100.3301	0.3015	10.0308	-0.0235	-0.1085
0. 1	-0.37(3		-1-0043	0440.0	1166-0-	-0.0127	0.1269	0.1229	9660-0	-0.0313	1250-0+
•••	0.1101		-1-0135	-0.0066	-0.9980	+0.0039	0.0314	0.0312	0.0126	-0.0124	0.0298
	1000.0-	-0.031	1/66-0-	-0.001	-0.9961	-0.003	0.0005	0.0005	0.0004	-0.000	0.0018
	0000-0	0.000	-0.9960	0.000	-0.9960	0.000	0.000	0.000	0.0000	0.000	0.000

++	-1.0000	-0.9726	-0.9363	-0.8698	-0.7527	-0.5562	-0.3883	-0.2508	-0.0794	-0.0166	-0.0003	0.0000	, -	Gret	-2.0496	-2.0351	-1.9900	-1.8465	-1.4712	-0.7161	-0.1708	+0.1256	0.2172	1960-0	0.0039	0.000
d G	-72.5385	-21.2709	-11.64k2	-5.7784	-2.6632	6 3 60° l =	-0.5673	-0.3093	-0.0840	-0.0168	-0.0003	0.000		<u>1</u> 1 1	3.0023	1.8248	1.3293	7562.0	+0.2678	7641.0-	-0.2558	-0.2331	0,1170	64E0-0-	6000.0-	0.000
U.M. U.M.	3.97	2.7634	2.2723	1.7516	1.2231	0.6915	0.3968	0.2184	0.0538	0.0095	0.0002	0.000		a a	-300.2268	-59.2958	-24-54-10	- 7-5502	-1.2380	604E-0+	0.4053 1	0.3080	0.1250	0.0354	6000.0	0.000
Y.et		0.1239	0.2335	0.4168	0.6919	1.0232	1.1692	1.2030	1.1269	1.0460	1.0020	1.0000		74 čet	0.9026	0.9053	0215.0	0.9586	رغزن.1	1.113	1016.0	0.7252	0.2736	0.0642	0.0010	0.000
مر بر مر		171.8742	51.3524	16.6993	4.9153	1.5009	0.6179	+0.2109	-0.0765	-0.0750	-0.0054	0.0000		dd	-65.3052	-14.1877	-5.3920	-0.6487	+1.232,	1.5013	1.1831	0.8148	0.2827	0.0647	0.0010	0.000
fe'n	-24.0595	-7.1201	-4.0062	-2.0764	-0.9603	-0.2836	-0.0351	+0.0628	0.0766	0.0332	0.0013	0.000		(Ju) +1	٥	11.4205	9.6826	6.5511	3.421	1.1765	0.414.0	0.1166	0.0262	0.0179	0.0005	0.000
ft	1.0000	0.6078	0.4428	0.2649	0.0892	0.0499	0.0852	0.0796	0.0390	0.0116	0.0003	0.0000		(Pr)	0	-0.2915	-0.6235	-1.1229	-1.7178	-2.2369	-2.4207	-2.4814	-2.4905	-2.4780	-2.4719	-2.4721
1 1 1		+1516.9879	-76.2834	-104.9624	-31.7467 -	- 6.3878 -	-2.2536 -	-0.9335	-0-1562-	- 1500.0+	0.0038 -	0.000		Un Vrei	0	-0-9513	-1.2305	-1.3037	-1.3118	-0.9417	-0.6029	-0-3537	8660.0-	EL 10.0-	-0.003	0000"0
t"	-612.2595	+9.2184	20.6219	12-8118	5-3459	1.5953	0.6094	0.2382	0.0141	-0.0122	-0.0010	0.000		V.u Vret	0	7050.0-	-0.1018	-0.2956	-0.7423	-1.5543	-2.1147	-2.4387	-2.5881	-2.5329	-2.4748	-2.4721
£	0	-3.8040	-3.2251	-2.1821	-1.1395	6196.0-	-0.1380	-0-0388	+0.0087	0.0060	0.0002	0.000		<u>Q 151</u> Q ref	0	-0.0286	-0-0705	-0.1528	-0.2889	-0.4451	-0.4735	1214-0-	-0.2180	-0.0727	-0.0023	0.000
fin	•	-0.0971	-0.90TT	-0.3740	-0.5722	-0.7451	-0.8063	-0.8265	-0.8296	-0.8254	-0.8233	-0.8233		P.	-300.2268	-66.1597	1458-06-	-12.4633	-4-5155	-1.4552	-0.6763	-0.3536	-0.1005	-0.0238	-0.0005	0.000
e	•	0.03125	0.0625	0.125	0.25	0.2	\$2.0	0.1	5.1	5.0	3.0	0		. 6	0	0.03125	0.0625	0.125	0.25	0.5	0.75	0.1	1.5	5.0	3.0	0.4

.

.

•

.

.

•

n= / W= 0. /

Compressible Vorticity-Correction Term. Axially Symmetric Case Only (n=1).

•

•

.

$$\frac{v_{V}}{-245\pi} = 42_{0}f_{V} + f_{0}f_{1}_{V} ; \frac{v_{V}}{A_{X}} = f_{1}f_{V} + f_{0}^{2}f_{1}_{V} ; \frac{(9,0)_{V}}{-2s_{1}t_{2}t_{1}} = f_{1}_{V} ; \frac{(9,0)_{V}}{s_{1}A_{X}} = f_{V}^{V}$$

$$\frac{\Omega_{1/V}}{-4x/12} = E_{4}e_{5}E_{4} + F_{4}e_{5}E_{1/V} + F_{6}E_{4/V} + F_{6}E_{4/V} = \frac{2x_{1/V}}{k_{2}4x/12} = E_{4}e^{0.56} \left[F_{2}e_{1/V}^{*} + F_{1}e_{1/V}^{*} + F_{1}E_{4/V}^{*} + F_{1}E_{4/V}^$$

$$\frac{2u}{3_{3}} = -\frac{E4u}{E2}; \quad \frac{T}{T_{3}} = E4u ; \quad \frac{Q_{1}u}{17/T_{3}} = E40^{0.09} \left[E_{1}^{1}u_{1} + 0.69 \frac{E4}{210} E_{1}u_{1}^{2} \right]$$

٠

•

٠

W= 0.	75												
	," 1			<u>م</u>	Ed.v	ţı'.	F1w	فوافر	313	बौबै	<u>ب</u> ال	ورز	313
0	0	0	1.0817	-0.9633	0	0.0627	-0.0179	0	0	0.8112	0.6866	0	1150.0
0.25	1160-0	0.2387	0.8489	-0.6976	0.0149	0.0560	-0.0341	0.0257	0.1972	1691.0	0.6969	-0.0232	0.0502
0.5	0.1157	0.4333	0.7229	-0.3248	0.0276	0.0443	-0.0602	0.1034	0.3860	0.7440	0.6904	-0.0382	0.0432
1.0	1614.0	0.7782	0.6972	+0.1605	0.0404	6400.0+	-0.0652	0.4121	0.7576	0.7578	0.7334	1740.0-	-0.0083
1.5	9668.0	1.1554	0.8212	0.2801	0.0337	-0.0277	-0.0362	1116.0	1.1565	0.8451	0.8338	-0.0356	-0.0257
2.0	1.9856	1.5976	0.9382	0.1692	0.0180	-0.0302	+0.0204	1.6017	1.6032	0.9364	0.9425	-0-0183	-0.0298
3-0	3.6699	2.5802	1.0000	0.0045	0.0015	-0.0049	0.0139	3.6728	2.5813	1166.0	0.9972	-0.0015	-0.0049
4.5	8.6658	4.0 0 07	1.0000	0.000	0.0000	0.000	0.000	8.6658	4.0807	1.0000	1.0000	0.0000	0.000

0.7347 0.7347 0.7368 0.7368 0.7368 0.7368 0.99662 0.99662 0.99662 1.00000 1.0983 0.9925 0.9226 0.8426 0.8152 0.8152 0.8157 0.87516 0.1302 0.2496 0.4689 0.8777 1.2995 1.7584 2.7420 2.7420 2.7420 4.2416 0 0.0088 0.0353 0.1408 0.5326 1.1119 1.8707 4.0881 0 -0.1931 -0.1791 -0.1925 -0.1565 -0.0288 +0.0547 0.0187 0.0000 0.1755 0.1478 0.1248 0.1248 -0.0786 -0.0786 -0.0786 -0.07616 -0.0511 -0.0050 0.0000 0.0201 0.0371 0.0780 0.0780 0.0780 0.0264 0 -4.3247 -2.1727 -0.5091 40.2555 0.2887 40.1394 -0.0016 0.0000 2.1965 1.3890 0.9997 0.7051 0.7012 0.8509 0.9600 1.0016 0.2176 0.3642 0.5688 0.5688 0.5688 1.2889 1.2989 1.2988 1.2416 2.7409 0 0.0515 0.1696 0.5380 1.0844 1.8426 4.0845 4.0845 9.3216 0.0146 0 W= 0.5 0.125 0.25 0.5 1.6 2.0 3.0 0

,

0.1088 0.1081

-0.0628 0

.

0.1041 0.00817 -0.0006 -0.0562 -0.0502 -0.0502 0.00059

-0.0947 -0.1168 -0.0610 -0.0610 -0.0269 -0.0269 -0.0000-0

1.0000

9.3216

N = 0	. 25												
•	f.v	- <u>+</u> 2	F.	، در ۳	f1.,	F4.v	Ъ.	,ł.	3]5	म् दवि	(المانج	<u>ت</u> اري	୍ୟୁ
0	0	0	7.1604		•	0.4546		0	0	1062-1	1108.0	•	0.1747
0.0625	0.0100	0.2769	2.7765	-31.8570	0.0237	0.3224	-1.3682	0.0036	0.1000	1.4535	0.8010	-0.2235	0.1742
0.125	7150.0	0.4061	1.5655	-11.3674	0.0416	0.2572	-0.8118	4410.0	0.1849	1.2797	0.8007	4612.0-	2171.0
0.25	0.0922	0.5466	0.8530	-2.5908	0.0686	0.1811	-0.4833	0.0559	0.3319	1.0944	1961.0	-0.2746	0.1590
0.5	0.2515	0.7189	0.6189	7551.0-	0.1008	0.0819	-0.3445	0.2065	0.5821	0.9334	0.7913	-0.224	0.1070
0.75	0.4506	0.8750	0.6449	+0.2517	0.1112	6400.0+	-0.2694	0.4267	0.8065	0.8722	9362.0	-0.1784	+0-0375
1.0	0.6902	まる・1	0.7223	0.3443	0.1050	-0.0512	-0.1766	0.6971	1.0222	0.8597	0.8114	-0.1376	-0.0261
1.5	1.3104	1044.1	0.8861	0.2737	0.0657	-0.0900	+0.0123	1.3538	1.4614	4906-0	0.8891	6010.0-	-0.0830
2.0	2.1505	0616-1	0.9792	0.1215	0.0268	-0.0593	0.0860	2.1840	1.9300	0.9643	6656.0	-0.0272	-0.0985
3.0	4.5673	2.9176	1.0018	0.0043	0.0013	6400.0-	1/10.0	4.5703	2.9184	9966.0	0.9987	-0.0013	6400.0-
4-5	10.0696	1814.4	1.0000	0.0000	0.000	0.000	0.0000	10.0694	4.4181	1.0000	1.0000	0.000	0.000
≪ = 0.													
	0	•	32.6317		0	1.0782		0	0	3.2632	0.8583	0	0.2201
0.03125	0.0078	0.3811	4.8328	+120.7214	0.0229	たちの	-6.7277	0.0016	0.0800	2.1464	0.3582	-0.7425	0.2198
0.0625	0.0215	0.4809	2.1774	-40.3301	0.0375	1114-0	-2.8945	0.0062	0.1408	1.7857	0.8578	-0.6928	0.2183
0.125	7420.0	0.5717	1.0348	-7.7047	0.0591	0.2959	-1.2340	0.0229	0.2407	1.4585	0.8558	-0.5611	0.2120
0.25	0.1327	0.683	0.6352	-1.0976	0.0888	0.1903	-0.6297	0.0805	0.4035	1.1857	0.8475	-0.4103	0.1881
0.5	0.3183	0.8142	0.5788	+0.1725	0.1199	+0.0673	-0.4053	0.2694	0.6693	0.9768	0.8266	-0.2728	2011.0
0.75	0.5405	6996-0	0.6498	0.3522	0.1253	1610.0-	-0.2861	0.5232	0.9021	9999	0.8186	-0.1985	4620.0+
1.0	0.8035	1.1408	0.7431	0.3793	0.1129	-0.0752	-0.1624	0.8223	1.1236	0.8801	0.8328	-0.1454	-0.0467
1.5	1.4743	1.5563	0.9084	0.2543	0.0647	-0.1000	+0.0445	1.5251	1.5714	0.9206	0.9051	1690.1-	1660.0-
2.0	2.3704	2.0344	0.9887	+0.0768	0.0242	-0.0578	0.0974	2.4041	2.0455	0.9717	0.9682	-0.0245	-0.0572
0°E	4.9046	3.0355	1.0017	-0.00M7	0.0010	-0.0039	0.0142	4.9080	3.0368	#666-0	0-9995	-0.0010	-0.039
4.5	10.5835	4.5360	1.0000	0.000	0.000	0.000	0.000	10.5956	4.5369	1.0000	1.0000	0.000	0.000

8

4

•

-	
TANE	

.

.

EFFECT OF COOLING RATIO ON WALL-SEEAR AND REAL-TRANSFEA-MATE PARAMETERS

	*	61.4	8	53	337	165		88	193	Ŕ	816	368
		9.0	•	0.2	0.0	°.		0.5	4.0	0.2	0.0	9 9
	()		1			1		9561.0	0.2056	0.2176	0.2329	0.2446
	(1) (1-1) (1) (1-1)	-0.2624	-0.2284	-0.1899	0141.0-	-0.0971		9174.0-	6914.0-	-0.3531	-0.2695	-0.1894
	Q., 10) (-0.2624	-0.3116	101-0-	-0.6302	-1.1677		-0.4716	-0.5688	-0.7464	-1.2043	-2.2773
	(a)	0	•	0	•	0		0	0	•	0	0
	Q10 (0)	0.2561	0.2540	0.2516	0.2495	0.2481		4646.0	0.3420	0.3410	0.3404	0.3405
	<u>(</u>	-0.1350	-0.1300	-0.1268	-0.1201	-0.1275	•	0.3362	0.2816	0.2202	0.1481	0.0959
	Q. (0) (1-w) Quet	0.5123	0.5080	4602.0	0.4988	0.4896		0.6867	0.6840	0.6820	0.6808	0.6811
	2 nd (0)	•	•	•	•	•		1649.0	0.6866	0.7347	0.8011	0.8583
	+** 2 (9) 1/2 == 1 M	0	0.0437	0.0801	9660-0	0.0873		•	ます。	0.0807	0.0943	1570-0
	2,1 (0) 7 ref	0	0.0596	0.1693	0.4459	1.0502		0	0.0619	0.1705	0.4215	0.9026
	7. mt (0)	-1.0000	-1.0000	-1.0000	-1.0000	-1.0000		-1.0000	-1.0000	-1.0000	-1.0000	-1.0000
	$\frac{\chi_{n}(o)}{\chi_{ref}}$	1.8489	1602.1	1.5594	1.3956	1.2899		1.9679	1.8591	1.7453	1.6273	1.5574
	Zref	-1,9133	-1.6057	-1.3212	6190-1-	-0.9417		-1.2452	-1-0764	-0.9308	-0.8187	6111.0-
	2.(0) 2	1.2326	1.1396	1-0396	4066-0	0.8599		1.3119	1.2394	1.1635	1.0849	1.0383
	1, 1, 00	1.8	6262-0	0674.0	0.238	0.08317		1.0	0.7329	0.7430	0.2238	0.08317
0=u	3	1.0	51.0	0.5	6.5	0.1	/-u	1.0	61.0	0.5	0.25	0.1

..

. •

.

14

•

1 59

.

TABLE IV

ł

CAMPE IN STACKATION-FOURT NAMETER PATES DUE TO CORRESSIBILITY AND LOW REPORTS, NUMBER REFECTS FOR CIRCULAR CILINDERS. CORPARISON WITH EXPERIMENTS OF TEMPS, AND GIZDE (460), (41)

								_										
-0.217	đ T	87	-0.856	-1.28	'9'	-2.40	 89:	-2.71	-3.68		-1.265	1.1.	-1.28	 	-2.13	-2.73	-3. 6 9	-6.42
-0.1991	-0.1 <u>7</u> 89	-9-53 -9-53	-0.3390	-0.2893	-0.2113	-0.1466	-0.2487	-0.1128	-0.2109		-0.2738	-0.1895	-0.2669	-0.2235	-0.1138	887.9	- 4121.0-	-0.0829
-0.1254	-0.1095	-8:8915	6120.0-	-0.0614	-0.0531	55.0-	-0.0615	-0.0554	1240.0-	-0.1185	166c-0-	-0.710	-0.0574	-0.0475	-0.0380	-0.0498	-0.0414	-0.0318
0240.0-	0.00.0-	-8.8346	-0.0247	-0.0219	-0.0179	-0.0138	-0.0207	-0.0179	4410.0-	-0.085	-0.0536	-0.0395	-0.0318	-0.0253	-0.0197	-0.0265	-0.0211	-0.0148
-0.0486	-0.0411	-0:0205	-0-0197	-0.0155	-0.0124	-0.0095	-0.0158	-0.0135	-0.0105	-0.0401	-0.0299	-0.0219	-0.0160	-0.0128	-0.0097	-0.0139	-0.0109	-0.0084
-0.0298	-0.0254	-8:8560	-0.0275	-0,0240	-0.0228	-0.0224	-0.0250	-0.0240	-0.0228	-0.0099	-0.0099	-0.00%	-0.0096	-0.001	-0.0006	1600.0-	-0.001	-0.0086
-0.0716	-0.0642	-0.048	-0.0323	-0.0279	-0.0287	-0.0176	1120.0-	-0.0238	-0.0189	-0.1001	0110.0-	-0.0546	-0.0427	-0.0342	-0.0267	-0.0363	-0.0287	-0.0213
-0.0192	-0.0200	-8.8183	-0.0110	-0.0112	1600.0-	-0.0076	-0.0101	-0.0093	-0.0076	-0.0586	-0.0459	-0.0319	-0.0261	-0.0209	-0.0167	-0.0222	-0.0174	-0.0126
-0.0524	-0.0442	-0.0323	-0.0213	-0.0167	-0.0133	-0.0100	0.0170-	-0.0145	-0.0113	-0.0415	-0.03h	-0.0227	-0.0166	-0.0133	1010.0-	-0.0141	-0.0113	-0.0087
69140.0	0.0488	8.8399	0.0269	0.0273	0.0230	0.0181	0.0248	0.0225	0.0185	0.1432	d.1116	0.0778	0.0636	0.0511	0.0406	0.0453	0.0425	0.0305
0.1988	0,1678	8.3848	0.000	0.0632	0.0505	0.0387	0.0045	0.0551	0.00.0	0.1583	0.1181	0.086	0.0631	1050.0	0.0383	0.0110	0.0010	0.0328
25.3	35.5		153	250	8	89	S.	ŝ	5	39.9	7.17		251	d,	255	335	5	66
0.24	00		8	0.35	0.37	9.0	0.33	0.35	0.37	2.0	2.0	0.71		0.72	0.74	2.0	0.72	0.74
37	38	8	300	610	1030	1870	38	1230	2.12	8	8	210	610	1010	1870	1230	2120	1100
	_			-												-		
	37 0.24 25.3 0.1988 0.0469 -0.0524 -0.0192 -0.0716 -0.0298 -0.0466 -0.0470 -0.1254 -0.1991 -0.217	37 0.24 25.3 0.1988 0.0469 -0.0524 -0.0132 -0.0716 -0.0258 -0.0486 -0.0470 -0.1254 -0.1991 -0.217 56 0.30 35.5 0.1678 0.0488 -0.0442 -0.0200 -0.0642 -0.0254 -0.0411 -0.0430 -0.1095 -0.1568 -1.04	37 0.24 25.3 0.1988 0.0469 -0.0524 -0.0152 -0.0156 -0.0486 -0.0470 -0.1254 -0.1991 -0.217 56 0.30 35.5 0.1678 0.0488 -0.0442 -0.0200 -0.0642 -0.0254 -0.0411 -0.0430 -0.1095 -0.1568 -1.04 2408 8:31 155.5 8.1858 28.0328 -8.0352 -8.0353 -8.0358 -8.0355 -8.0325 -8.0325 -8.0325 -8.0325 -1.04	37 0.24 25.3 0.1968 0.0469 -0.0524 -0.0192 -0.0716 -0.0258 -0.0476 -0.0470 -0.1254 -0.1991 -0.217 56 0.30 35.5 0.1678 0.0468 -0.0442 -0.0200 -0.0642 -0.0254 -0.0411 -0.0430 -0.1095 -0.1568 -1.04 200 8:33 159,5 0.1678 0.0468 -0.0442 -0.0202 -0.0545 -0.0411 -0.0430 -0.1895 -1.04 330 0.28 153 0.0669 0.0269 -0.0213 -0.0110 -0.0323 -0.0575 -0.0197 -0.0347 -0.0719 -0.3390 -0.656	37 0.24 25.3 0.1998 0.0469 -0.0716 -0.0716 -0.0486 -0.0470 -0.1254 -0.1991 -0.217 56 0.30 35.5 0.1678 0.0442 -0.0220 -0.0642 -0.0254 -0.0411 -0.0430 -0.1254 -0.1991 -0.217 200 833 155/5 0.1678 -0.0442 -0.0224 -0.0411 -0.0430 -0.1568 -1.04 200 833 155/5 0.1678 -0.0442 -0.0224 -0.0411 -0.0430 -0.1568 -1.04 200 0.33 155/5 0.1678 -0.0212 -0.0233 -0.0216 -0.0234 -0.0411 -0.0430 -0.1568 -1.04 200 0.33 -0.0223 -0.0213 -0.0213 -0.0233 -0.0233 -0.0375 -0.0375 -0.0393 -1.26 201 0.35 -0.0212 -0.02110 -0.0233 -0.0217 -0.0393 -1.26 201 0.35 -0.0212 -0.02	37 0.24 25.3 0.1998 0.0469 -0.0716 -0.0716 -0.0486 -0.0470 -0.1254 -0.1991 -0.217 56 0.30 35.5 0.1668 0.0442 -0.0229 -0.0411 -0.0430 -0.1254 -0.1991 -0.217 200 35.5 0.1668 0.0442 -0.0220 -0.0612 -0.0411 -0.0430 -0.1568 -1.04 200 333 0.355 0.1668 0.0442 -0.0223 -0.0411 -0.0430 -0.1568 -1.04 200 0.33 20.0259 -0.0213 -0.0223 -0.0213 -0.0213 -0.0117 -0.0217 -0.03157 -1.04 200 0.335 20.0223 -0.0213 -0.0223 -0.0213 -0.0223 -0.02157 -0.02157 -0.1356 -1.04 200 0.355 20.0223 -0.0213 -0.0223 -0.02167 -0.0157 -0.0233 -0.2339 -1.26 300 0.357 -0.0277 -0.0277	37 0.28 25.3 0.1958 0.0469 -0.078 -0.012 -0.0716 -0.0288 -0.0470 -0.1254 -0.1991 -0.217 260 35.5 0.1678 -0.0486 -0.0430 -0.0156 -0.035 -0.1254 -0.1991 -0.217 260 8:31 125.5 0.1678 -0.0442 -0.0220 -0.0642 -0.0254 -0.0410 -0.1995 -0.1995 -0.217 260 8:33 -0.0542 -0.0220 -0.0223 -0.0237 -0.0411 -0.0430 -0.1995 -0.1996 -1.04 270 0.3535 -8.0332 -8.0332 -8.0332 -8.0333 -9.0313 -1.04 330 0.28 153 -0.012 -0.0223 -0.0227 -0.0175 -0.0211 -0.2330 -1.28 300 0.35 -0.0121 -0.0223 -0.0227 -0.0175 -0.0211 -0.0313 -1.28 300 0.35 0.0181 -0.0124 -0.0175 -0.0175 <th< td=""><td>37 0.28 25.3 0.1998 0.0469 -0.078 -0.0176 -0.028 -0.0486 -0.124 -0.1991 -0.217 260 35.5 0.1678 0.0469 -0.078 -0.018 -0.0486 -0.1264 -0.1991 -0.217 260 8:31 155.5 0.1678 -0.0442 -0.0224 -0.0410 -0.1266 -1.04 270 8:31 155.5 0.1678 -0.0442 -0.0223 -0.0254 -0.0411 -0.0430 -0.1568 -1.04 370 0.28 153 0.0642 -0.0233 -0.0231 -0.0377 -0.0197 -0.0339 -0.1568 -1.04 370 0.28 133 0.0642 -0.0233 -0.0233 -0.0277 -0.0197 -0.0393 -1.28 -1.28 1030 0.37 329 0.0622 0.0112 -0.0233 -0.0233 -0.0233 -0.0213 -0.0213 -0.0213 -0.0213 -0.0213 -0.0213 -0.0213 -0.0213 -0.0</td><td>37 0.28 25.3 0.1958 0.0469 -0.0724 -0.012 -0.0456 -0.0470 -0.1254 -0.1991 -0.217 266 0.30 35.5 0.1678 0.0469 -0.0324 -0.0126 -0.0430 -0.1254 -0.1991 -0.217 266 0.30 35.5 0.1678 -0.0442 -0.0224 -0.0411 -0.0430 -0.1995 -0.1991 -0.217 260 8:33 153.5 0.1678 -0.0412 -0.0224 -0.0411 -0.0430 -0.1995 -0.1993 -0.217 330 0.28 153 20.0323 -0.0112 -0.0231 -0.0247 -0.0197 -0.1971 -0.2333 -1.04 330 0.28 133 -0.0012 -0.0224 -0.0197 -0.0213 -1.04 1670 0.38 133 -0.0212 -0.0224 -0.0177 -0.0213 -1.04 1670 0.33 -0.0274 -0.0213 -0.0213 -0.02133 -1.28</td><td>37 0.28 25.3 0.1958 0.0469 -0.0716 -0.0258 -0.0476 -0.127 -0.1991 -0.127 200 8.33 155.5 0.1678 -0.0442 -0.0254 -0.0411 -0.0430 -0.1258 -0.1991 -0.217 200 8.33 155.5 0.1678 -0.0442 -0.0224 -0.0411 -0.0430 -0.1258 -0.1368 -1.04 200 8.33 153 0.1678 -0.0213 -0.0215 -0.0411 -0.0430 -0.1268 -1.04 200 0.33 153 0.1678 -0.0213 -0.0213 -0.0213 -0.0215 -0.137 -0.2333 -0.2417 -0.0173 -0.2313 -0.2617 -0.0373 -0.2133 -1.0417 -0.2313 -1.104 200 0.33 229 0.0652 0.02213 -0.0177 -0.0213 -0.0279 -0.0279 -0.0179 -0.2313 -1.104 203 0.33 280 0.0652 0.02112 -0.0274</td><td>37 0.28 25.3 0.1998 0.0469 -0.078 -0.012 -0.0470 -0.124 -0.1991 -0.217 200 35.5 0.1678 0.0469 -0.032 -0.012 -0.0430 -0.124 -0.1991 -0.201 200 35.5 0.1678 0.0469 -0.032 -0.0325 -0.0430 -0.1995 -0.1991 -0.2330 -0.217 200 35.5 0.1678 0.0462 -0.0323 -0.0275 -0.0411 -0.0430 -0.1995 -0.1991 -0.2333 -1.04 310 0.2673 -0.0313 -0.0323 -0.0273 -0.0275 -0.0177 -0.0731 -0.2333 -1.104 310 0.35 28.0633 -8.0333 -0.0112 -0.0271 -0.0271 -0.0175 -0.2333 -1.104 310 0.35 28.0635 -0.0121 -0.0271 -0.0271 -0.0773 -0.0773 -0.0713 -0.2333 -1.128 -1.128 -1.128 -1.128 -1.128 -1.128</td><td>37 0.28 25.3 0.1958 0.0469 -0.075 -0.012 -0.0470 -0.124 -0.1991 -0.1991 -0.1991 -0.217 260 0.30 35.5 0.1678 0.0469 -0.076 -0.035 -0.1991 -0.1991 -0.1991 -0.217 260 8:31 153 0.1678 0.0462 -0.0357 -0.0410 -0.127 -0.1995 -0.1991 -0.1991 -0.2339 -0.217 370 0.35 28.0873 -8.0832 -8.08157 -8.0875 -8.0875 -8.0875 -8.0339 -9.1641 -0.1991 -0.2339 -1.041 370 0.35 2.200 -0.0377 -0.0377 -0.0377 -0.0779 -0.0779 -0.1733 -0.2313 -0.2313 -0.0719 -0.2313 -1.28 -1.28 -1.28 -0.2313 -0.2173 -0.2173 -0.2173 -0.2173 -1.28 -0.2113 -0.2113 -0.2133 -0.2113 -0.2113 -0.2113 -0.21133 -0.21339 -0.21133</td><td>37 0.28 25.3 0.1958 0.0469 -0.0716 -0.0254 -0.0410 -0.1254 -0.1991 -0.1274 200 0.39 35.5 0.1678 0.0469 -0.0224 -0.0171 -0.0430 -0.1274 -0.1991 -0.127 200 0.35 0.1678 0.0469 -0.0224 -0.0111 -0.0430 -0.1274 -0.1995 -0.1278 200 0.35 290 0.0625 -0.0312 -0.0312 -0.0279 -0.0271 -0.0279 -0.1971 -0.0213 -1.047 310 0.35 290 0.0625 -0.0112 -0.0279 -0.0217 -0.0213 -0.0213 -1.0471 310 0.35 290 0.0264 -0.0112 -0.0224 -0.0179 -0.0213 -1.0457 -1.104 310 0.35 290 0.0264 -0.0112 -0.0214 -0.0213 -0.0213 -1.0457 -1.104 310 0.35 0.0264 -0.0112 -0.0224 -0.0179<!--</td--><td>37 0.28 25.3 0.1958 0.0469 -0.078 -0.012 -0.0470 -0.124 -0.1991 -0.217 208 8:33 0.1668 0.0469 -0.032 -0.0127 -0.0430 -0.124 -0.1991 -0.1991 -0.217 208 8:33 0.1668 0.0469 -0.032 -0.0430 -0.127 -0.1991 -0.1991 -0.1991 -0.1991 -0.2370 -0.197 -0.1991 -0.1991 -0.2370 -0.1768 -1.04 -0.1791 -0.1991 -0.2370 -0.197 -0.1971 -0.1991 -0.2370 -0.1768 -1.104 370 0.28 270 0.0652 0.00161 -0.0271 -0.0271 -0.0271 -0.0271 -0.0373 -0.177 -0.0373 -0.177 -0.0373 -0.1733 -0.173 -0.1733 -0.2173 -1.128 -1.128 -1.128 -1.128 -1.128 -0.2133 -0.0173 -0.0273 -0.0173 -0.20713 -0.2133 -0.2113 -1.128 -0.2133 -0.211</td><td>37 0.1988 0.0469 -0.078 -0.012 -0.0470 -0.124 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1191 -0.1991 -0.1191 -0.1991 -0.1991 -0.1991 -0.1991<</td><td>37 0.38 25.3 0.1958 0.0469 -0.075 -0.076 -0.025 -0.047 -0.125 -0.1991 -0.127 260 33.5 0.1678 -0.0462 -0.0254 -0.0411 -0.0430 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.199</td><td>37 0.28 25.3 0.198 0.0469 -0.0736 -0.0716 -0.089 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199</td><td>37 0.28 25.3 0.1988 0.0469 -0.078 -0.013 -0.0410 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193</td></td></th<>	37 0.28 25.3 0.1998 0.0469 -0.078 -0.0176 -0.028 -0.0486 -0.124 -0.1991 -0.217 260 35.5 0.1678 0.0469 -0.078 -0.018 -0.0486 -0.1264 -0.1991 -0.217 260 8:31 155.5 0.1678 -0.0442 -0.0224 -0.0410 -0.1266 -1.04 270 8:31 155.5 0.1678 -0.0442 -0.0223 -0.0254 -0.0411 -0.0430 -0.1568 -1.04 370 0.28 153 0.0642 -0.0233 -0.0231 -0.0377 -0.0197 -0.0339 -0.1568 -1.04 370 0.28 133 0.0642 -0.0233 -0.0233 -0.0277 -0.0197 -0.0393 -1.28 -1.28 1030 0.37 329 0.0622 0.0112 -0.0233 -0.0233 -0.0233 -0.0213 -0.0213 -0.0213 -0.0213 -0.0213 -0.0213 -0.0213 -0.0213 -0.0	37 0.28 25.3 0.1958 0.0469 -0.0724 -0.012 -0.0456 -0.0470 -0.1254 -0.1991 -0.217 266 0.30 35.5 0.1678 0.0469 -0.0324 -0.0126 -0.0430 -0.1254 -0.1991 -0.217 266 0.30 35.5 0.1678 -0.0442 -0.0224 -0.0411 -0.0430 -0.1995 -0.1991 -0.217 260 8:33 153.5 0.1678 -0.0412 -0.0224 -0.0411 -0.0430 -0.1995 -0.1993 -0.217 330 0.28 153 20.0323 -0.0112 -0.0231 -0.0247 -0.0197 -0.1971 -0.2333 -1.04 330 0.28 133 -0.0012 -0.0224 -0.0197 -0.0213 -1.04 1670 0.38 133 -0.0212 -0.0224 -0.0177 -0.0213 -1.04 1670 0.33 -0.0274 -0.0213 -0.0213 -0.02133 -1.28	37 0.28 25.3 0.1958 0.0469 -0.0716 -0.0258 -0.0476 -0.127 -0.1991 -0.127 200 8.33 155.5 0.1678 -0.0442 -0.0254 -0.0411 -0.0430 -0.1258 -0.1991 -0.217 200 8.33 155.5 0.1678 -0.0442 -0.0224 -0.0411 -0.0430 -0.1258 -0.1368 -1.04 200 8.33 153 0.1678 -0.0213 -0.0215 -0.0411 -0.0430 -0.1268 -1.04 200 0.33 153 0.1678 -0.0213 -0.0213 -0.0213 -0.0215 -0.137 -0.2333 -0.2417 -0.0173 -0.2313 -0.2617 -0.0373 -0.2133 -1.0417 -0.2313 -1.104 200 0.33 229 0.0652 0.02213 -0.0177 -0.0213 -0.0279 -0.0279 -0.0179 -0.2313 -1.104 203 0.33 280 0.0652 0.02112 -0.0274	37 0.28 25.3 0.1998 0.0469 -0.078 -0.012 -0.0470 -0.124 -0.1991 -0.217 200 35.5 0.1678 0.0469 -0.032 -0.012 -0.0430 -0.124 -0.1991 -0.201 200 35.5 0.1678 0.0469 -0.032 -0.0325 -0.0430 -0.1995 -0.1991 -0.2330 -0.217 200 35.5 0.1678 0.0462 -0.0323 -0.0275 -0.0411 -0.0430 -0.1995 -0.1991 -0.2333 -1.04 310 0.2673 -0.0313 -0.0323 -0.0273 -0.0275 -0.0177 -0.0731 -0.2333 -1.104 310 0.35 28.0633 -8.0333 -0.0112 -0.0271 -0.0271 -0.0175 -0.2333 -1.104 310 0.35 28.0635 -0.0121 -0.0271 -0.0271 -0.0773 -0.0773 -0.0713 -0.2333 -1.128 -1.128 -1.128 -1.128 -1.128 -1.128	37 0.28 25.3 0.1958 0.0469 -0.075 -0.012 -0.0470 -0.124 -0.1991 -0.1991 -0.1991 -0.217 260 0.30 35.5 0.1678 0.0469 -0.076 -0.035 -0.1991 -0.1991 -0.1991 -0.217 260 8:31 153 0.1678 0.0462 -0.0357 -0.0410 -0.127 -0.1995 -0.1991 -0.1991 -0.2339 -0.217 370 0.35 28.0873 -8.0832 -8.08157 -8.0875 -8.0875 -8.0875 -8.0339 -9.1641 -0.1991 -0.2339 -1.041 370 0.35 2.200 -0.0377 -0.0377 -0.0377 -0.0779 -0.0779 -0.1733 -0.2313 -0.2313 -0.0719 -0.2313 -1.28 -1.28 -1.28 -0.2313 -0.2173 -0.2173 -0.2173 -0.2173 -1.28 -0.2113 -0.2113 -0.2133 -0.2113 -0.2113 -0.2113 -0.21133 -0.21339 -0.21133	37 0.28 25.3 0.1958 0.0469 -0.0716 -0.0254 -0.0410 -0.1254 -0.1991 -0.1274 200 0.39 35.5 0.1678 0.0469 -0.0224 -0.0171 -0.0430 -0.1274 -0.1991 -0.127 200 0.35 0.1678 0.0469 -0.0224 -0.0111 -0.0430 -0.1274 -0.1995 -0.1278 200 0.35 290 0.0625 -0.0312 -0.0312 -0.0279 -0.0271 -0.0279 -0.1971 -0.0213 -1.047 310 0.35 290 0.0625 -0.0112 -0.0279 -0.0217 -0.0213 -0.0213 -1.0471 310 0.35 290 0.0264 -0.0112 -0.0224 -0.0179 -0.0213 -1.0457 -1.104 310 0.35 290 0.0264 -0.0112 -0.0214 -0.0213 -0.0213 -1.0457 -1.104 310 0.35 0.0264 -0.0112 -0.0224 -0.0179 </td <td>37 0.28 25.3 0.1958 0.0469 -0.078 -0.012 -0.0470 -0.124 -0.1991 -0.217 208 8:33 0.1668 0.0469 -0.032 -0.0127 -0.0430 -0.124 -0.1991 -0.1991 -0.217 208 8:33 0.1668 0.0469 -0.032 -0.0430 -0.127 -0.1991 -0.1991 -0.1991 -0.1991 -0.2370 -0.197 -0.1991 -0.1991 -0.2370 -0.1768 -1.04 -0.1791 -0.1991 -0.2370 -0.197 -0.1971 -0.1991 -0.2370 -0.1768 -1.104 370 0.28 270 0.0652 0.00161 -0.0271 -0.0271 -0.0271 -0.0271 -0.0373 -0.177 -0.0373 -0.177 -0.0373 -0.1733 -0.173 -0.1733 -0.2173 -1.128 -1.128 -1.128 -1.128 -1.128 -0.2133 -0.0173 -0.0273 -0.0173 -0.20713 -0.2133 -0.2113 -1.128 -0.2133 -0.211</td> <td>37 0.1988 0.0469 -0.078 -0.012 -0.0470 -0.124 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1191 -0.1991 -0.1191 -0.1991 -0.1991 -0.1991 -0.1991<</td> <td>37 0.38 25.3 0.1958 0.0469 -0.075 -0.076 -0.025 -0.047 -0.125 -0.1991 -0.127 260 33.5 0.1678 -0.0462 -0.0254 -0.0411 -0.0430 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.199</td> <td>37 0.28 25.3 0.198 0.0469 -0.0736 -0.0716 -0.089 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199</td> <td>37 0.28 25.3 0.1988 0.0469 -0.078 -0.013 -0.0410 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193</td>	37 0.28 25.3 0.1958 0.0469 -0.078 -0.012 -0.0470 -0.124 -0.1991 -0.217 208 8:33 0.1668 0.0469 -0.032 -0.0127 -0.0430 -0.124 -0.1991 -0.1991 -0.217 208 8:33 0.1668 0.0469 -0.032 -0.0430 -0.127 -0.1991 -0.1991 -0.1991 -0.1991 -0.2370 -0.197 -0.1991 -0.1991 -0.2370 -0.1768 -1.04 -0.1791 -0.1991 -0.2370 -0.197 -0.1971 -0.1991 -0.2370 -0.1768 -1.104 370 0.28 270 0.0652 0.00161 -0.0271 -0.0271 -0.0271 -0.0271 -0.0373 -0.177 -0.0373 -0.177 -0.0373 -0.1733 -0.173 -0.1733 -0.2173 -1.128 -1.128 -1.128 -1.128 -1.128 -0.2133 -0.0173 -0.0273 -0.0173 -0.20713 -0.2133 -0.2113 -1.128 -0.2133 -0.211	37 0.1988 0.0469 -0.078 -0.012 -0.0470 -0.124 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1191 -0.1991 -0.1191 -0.1991 -0.1991 -0.1991 -0.1991<	37 0.38 25.3 0.1958 0.0469 -0.075 -0.076 -0.025 -0.047 -0.125 -0.1991 -0.127 260 33.5 0.1678 -0.0462 -0.0254 -0.0411 -0.0430 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.1991 -0.199	37 0.28 25.3 0.198 0.0469 -0.0736 -0.0716 -0.089 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199 -0.199	37 0.28 25.3 0.1988 0.0469 -0.078 -0.013 -0.0410 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193 -0.193

* Takulated from References 40 and 41.

ADDENDUM

February 1962

Since completion of the research work presented in the foregoing report several new developments in low-Reynolds-number boundary-layer (A1,A2) theory came to the author's attention. In particular VanJyke and (A3) aaslen utilized a Lagerstrom-Cole type expansion procedure to calculate second-order terms (i.e. first-order correction terms) to stagnation-point and other boundary-layer problems. The purpose of this Addendum is to clarify a shortcoming of the foregoing analysis which became apparent in comparison with these new developments, and which was brought to the author's attention by Professor JanJyke in private conversation. In addition, an important detail regarding the application of the foregoing theory to experimental low-Reynolds-number stagnation-point measurements will also be clarified; this was brought to the . thor's attention by (Ai) in a different context. Prof. Rott

Let the external flow be described by a streamfunction of the form;

$$\Psi = s_{s} A x^{1+n} \left\{ y_{t} + \left(\frac{n-1}{R} + nV\right) \frac{y^{2}}{2} + \dots + \frac{1}{R} \int_{A}^{V_{s}} \left[a_{n} + \left\{ \frac{1}{n} y_{t} - \dots \right\}^{n} \right\} \right\}$$
 (Ad.1)

where the equation above replaces (1.22). The first-order correction terms appearing in the above expression are not necessarily related to the nose radius, rather (as explained in the introduction to Chapter II.) a is merely a convenient reference length. The pressure, temperature, and density expansions can be related to the streamfunction by means of the procedure described in Chapter 1. (This is permissible for the firstorder correction terms because the viscous terms in the equations are of

ADDENDUM

February 1962

Since completion of the research work presented in the foregoing report several new developments in low-Reynolds-number boundary-layer (A1,A2) theory came to the author's attention. In particular VanJyke and (A3) utilized a Lagerstrom-Cole type expansion procedure to calculate haslen second-order terms (i.e. first-order correction terms) to stagnation-point and other boundary-layer problems. The purpose of this Addendum is to clarify a shortcoming of the foregoing analysis which became apparent in conparison with these new levelopments, and which was brought to the author's attention by Professor /analyke in private conversation. In aldition, an important detail regarding the application of the foregoing theory to experimental low-ileynolds-number stagnation-point measurements will also be clarified; this was brought to the author's attention by (A4) Prof. Rott in a different context.

Let the external flow be described by a streamfunction of the form;

$$\Psi = g_{s} A \times^{1+n} \left\{ y + \left(\frac{n-1}{R} + nV\right) \frac{y^{2}}{2} + \dots + \frac{1}{R} \int_{A}^{y_{s}} \left[a_{n} + k_{n} + \frac{1}{2} \right]^{n} \right\}$$
 (Ad.1)

where the equation above replaces (1.22). The first-order correction terms appearing in the above expression are not necessarily related to the nose radius, rather (as explained in the introduction to Chapter II.) a is merely a convenient reference length. The pressure, temperature, and density expansions can be related to the streamfunction by means of the procedure described in Chapter 1. (This is permissible for the firstorder correction terms because the viscous terms in the equations are of

order $\frac{1}{R_{n}}$.) Only the pressure expansion is of interest here;

$$P = P_{s} - s_{s}^{A^{2}} \left\{ (1+n)^{2} \frac{s^{2}}{2} + \frac{x^{4}}{2} - \frac{x^{4}}{R} + \dots + \frac{1}{R} \sqrt{\frac{N_{s}}{A}} \left[(1+n)^{2} \alpha_{s} y + (k_{s} - nV \alpha_{s}) x^{2} + \dots \right] \right\}$$
 (i.1.2)

The "inner" expansions of the same variables are as given in Chapter 11. Matching the two expansions requires that as $\eta \rightarrow \infty$ the "inner" expansion approach the external flow described by (Ad.1) and (Ad.2). This implies that the solution for fp, gp, fr, ft, f, and fp, are as given in Chapter 11. Furthermore, using the boundary-layer solution in the matching requirement one obtains that;

$$\lim_{p\to\infty} \psi(p) = S_s A x^{1+n} \left\{ y - \sqrt{\frac{y_s}{A}} p^* + \frac{1}{p \to \infty} \frac{1}{R} \sqrt{\frac{y_s}{A}} + \frac{1}{(p)} + \cdots \right\}$$
(Ad.3)

Since any constant that might appear in the limiting behaviour of $f_1(\phi)$ or higher-order corrections would be of order $\frac{1}{4}$ or smaller, it is apparent that the constant a_{11} in (Ai.1) can be identified by comparison with (Ai.3) as;

$$\mathbf{x}_{\mathbf{w}} = -\mathbf{R} \boldsymbol{\varphi}^{\bigstar} \tag{Ad.4}$$

It is likewise apparent that to determine constant b_{ij} the limiting behaviour of $f_{ij}(q)$ must be known. However equation (Ad.2) shows that b_{ij} appears as a boundary condition necessary for the integration of gp_i(q), which in turn is necessary for the solution of $f_{ij}(q)$. This shows that b_{ij} can not be determined within the framework of stagnation-point flow alone; it can then be defined as the undetermined "displacement constant", i.e.;

(For further discussion on the somewhat ambiguous nature of defining the displacement effect reference is made to (A4).) Using results (Ad.4) and (Ad.5) in (Ad.1) and (Ad.2) the

"outer"-flow expressions become;

$$\psi = g_{A} x^{1+n} \left\{ y_{a} + \left(\frac{n-1}{R} + nV \right) \frac{y^{2}}{2} + \dots + \frac{1}{R} \sqrt{\frac{N}{A}} \left[-R_{0} + (3y_{a} + 1) \right] \dots \right\}$$
(Ad.6)

$$p = p_{s} - g_{s}A^{2} \left\{ (1+n)^{2} \frac{y^{2}}{2} + \frac{x^{2}}{2} - \frac{x^{e}y}{R} + \dots + \frac{1}{R} \sqrt{\frac{N_{s}}{A}} \left[-(1+n)^{2} R \eta^{*} y + (G + nRV\eta^{*}) x^{2} + \dots \right] \right\}$$

Corresponding to (Al.6) the constant of integration in integrating $gp_1(\eta)$ (cf. pp. 31-32) becomes;

$$K_{corr} = \frac{1+n}{2+n} \, \gamma^* - C_D - n R V \eta^*$$
 (Ad.7)

which now replaces (2.35). Then the corrected form of (2.36) becomes;

$$\frac{P_{s}}{s_{s}A^{2}}g_{1}(\eta) = \frac{1}{2+\eta} \left[(1+\eta)t_{0}^{*} t_{0}^{*} + (1+\eta)\eta^{*} + \eta + f_{s}^{*}(t_{0}^{*} + t_{0}^{*} + t_$$

Thus it is clear that the momentum equation for the vorticity correction term is not homogeneous as given in (2.57), but rather;

$$M\left(\mathbf{t}_{W_{corr}},\mathbf{t}_{W_{corr}}\right) = -\frac{2m^{*}}{4}\frac{\mu_{s}}{\mu_{o}} \qquad (AJ.9)$$

is the correct equation. Now the behaviour of the momentum equation for the correction term as $\eta \rightarrow \infty$ can be observed;

$$\lim_{q \to \infty} M(t_1, H_1) = -2t_1' + (1+n)(q - q^{*})t_1'' \qquad (Ad. 10)$$

Thus it is clear from (2.57) that;

$$\lim_{\eta \to \infty} f'_{i\nu}(\eta) = \eta - \eta^*$$
(Ad.11)

On the other hand (A1.6) and (A4.9) imply that;

$$\lim_{\eta \to \infty} f_{iv}(\eta) = \eta \qquad (A1.12)$$

Finally, the limiting behaviour of the displacement correction term consistent with (2.55), (Ad.6) and (Aj.10) is;

$$\lim_{\eta \to \infty} f'_{10}(\eta) = 1$$
 (2.53)

Observing that the energy equation and all the remaining boundary conditions for the displacement and vorticity correction terms are identical;

$$E(t_{1}, t_{1}) = t_{1}(0) = t_{1}(0) = t_{1}(0) = t_{1}(0) = t_{1}(0) = t_{1}(0) = 0 \quad (A1.13)$$

ani using the five foregoing expressions, it is easy to see that;

$$f_{iv}(\eta) = f_{iv}(\eta) + \eta^{*} f_{is}(\eta) \qquad (Ai.14)$$

satisfies both the correct momentum equation (Ad.9) and boundary condition (Ad.12). The energy equation and the remaining boundary conditions are automatically satisfied by (Ad.14). Equation (Ad.14) is then the correct vorticity term; the temperature function $ft_{W_{corr}}$ is correspondingly modified. The correction to the vorticity effect described by (Ad.14) has become known in the literature as the "vorticity-(A5) (A1) induced pressure-gradient" effect (e.g. Li , VanJyke , etc.); and the present result and the results of the above mentioned investigations are thereby in agreement. One may now consider an application of the foregoing theory to experimental measurements of low-Reynolds-number stagnation-point flow. Let the velocity gradient A be tased on pressure distribution data obtained at a "low" Reynolis number, so that;

$$s_{s}A_{exp}^{2} \equiv -\frac{2^{2}p}{\partial x^{2}}\Big|_{\substack{x=0\\y=0}}$$
(A4.15)

Using (A1.8) and (2.5) in the above expression one obtains;

$$s_{s}^{A} = -\left\{ 2g p_{0}(0) + \frac{2}{R} \sqrt{\frac{N_{s}}{A}} g p_{1}(0) + \cdots \right\} p_{s} = g_{s}^{A} A^{2} \left\{ 1 - \frac{2}{R} \sqrt{\frac{N_{s}}{A}} \left[\frac{1}{2+n} \left(\frac{1}{10} \left(0 \right) \frac{1}{4} \left(0 \right) + \frac{1}{4} \left(1+n \right) \eta^{*} \right) - \left(g_{s} - n R \sqrt{\eta^{*}} \right] + \cdots \right\} \right\}$$
(Ad.16)

where A corresponds to an "infinite" Reynolds number.

Now, considering only the highest-order corrections, A can be expressed in terms of A

$$A = A_{exp} \left\{ 1 + \frac{1}{R} \int_{A}^{b} \left[K_c - (D - nR \sqrt{\eta^*}) \right] \right\}$$
 (Au.17)

where constant K_c is defined by;

$$K_{c} \equiv \frac{1}{2+n} \left[\frac{1}{4} (0) \frac{1}{4} (0) \frac{1}{4} (0) + (1+n) \frac{1}{4} \right]$$
 (Ad.18)

If now A is to be used to predict physical quantities in exp

the boundary layer, and if the Reynolds number is sufficiently low to necessitate consideration of the first-order correction terms, then the change described by (Ad.17) and the effect of this change on the boundary-layer term must also be included for a consistent theoretical prediction to this order. The effect on the boundary-layer quantities of changing A to the first order is already known (cf. pp. 38-39); it is the displacementeffect term. Thus expressions of the form given in Chapter 1V.,

$$\begin{array}{c} \textbf{e.g.} (4.6); \\ \underline{U}_{ref} = \underline{U}_{e} + \frac{1}{R} \int_{A}^{K} \frac{U_{1c}}{U_{ref}} + \frac{C_{3}}{R} \int_{A}^{K} \frac{U_{10}}{U_{ref}} + \frac{2-3}{3} \frac{\lambda_{W}}{\sqrt{k}} \left[\frac{U_{uc}}{U_{ref}} + \binom{K_{1}}{K_{1}} - 1 \right]_{U_{ref}}^{U_{11}} \right] + \\ + n \sqrt{\frac{N_{3}}{R}} \frac{U_{1Vcorr}}{U_{ref}} \end{array}$$

$$(Ad.19)$$

must now be revise: in accordance with (Ad.17);

$$\frac{U}{U_{ref}} = \frac{U_{o}}{U_{ref}} + \frac{1}{R} \sqrt{\frac{U_{i}}{A}} \frac{U_{ic}}{U_{ref}} + \frac{C_{2} + K_{i} - C_{2} - nRV_{2}^{*}}{R} \frac{U_{i2}}{U_{ref}} + \frac{2 - \delta}{\delta} \frac{\lambda_{w}}{\sqrt{2}\sqrt{A}} \left[\frac{U_{is}}{U_{ref}} + \frac{1}{K} \left(\frac{V_{is}}{V_{ref}} + \frac{1}{\delta} \right) \frac{V_{is}}{\sqrt{2}\sqrt{A}} \right] + \frac{1}{NV} \sqrt{\frac{N_{i}}{A}} \frac{U_{iv}}{U_{ref}} = \frac{U_{o}}{V_{ref}} + \frac{1}{R} \sqrt{\frac{N_{i}}{A}} \frac{U_{ic} + K_{c}U_{i2}}{U_{ref}} + \frac{1}{K} \frac{V_{is}}{\sqrt{2}} \frac{U_{ic} + K_{c}U_{i2}}{U_{ref}} \frac{U_{ic}}{U_{ref}} + \frac{1}{K} \frac{V_{is}}{\sqrt{2}} \frac{U_{ic}}{U_{ref}} \frac{U_{ic}}$$

The two expressions above differ because (Ad.19) uses a velocity gradient A calculated from inviscid theory, or measured at an equivalent "infinite" (i.e. very high) Reynolds number, whereas (Ad.20) is based on A_{exp} obtained from pressure measurements at the particular ("low") Reynolds number corresponding to V_{μ} . The former method must therefore account for an unietermined change in A due to the displacement effect, whereas the latter has already taken this into account, but must also account for the changes in surface pressure gradient due to the centrifugal pressure rise and vorticity interaction effects.

Constant K_c (Ad.18) is a function of W and is tabulated below, as a supplement to Table III.

TABLE Ad. I. Values of K.

	К _с						
N	n=0	n=l					
1.0	0.9402	0.8166					
0.75	0.7998	U. 6927					
0.5	0.6484	0.5601					
0.25	U.4820	0.4160					
0.1	0.3717	0.3216					

The experimental comparison presented in Chapter IV. and Table IV. and carried out in Appendix H must also be revised in accordance with (Ai.20). Values of K_c and $Q_{1,i}(0)$ clearly indicate that the theoretical heat-transfer rate will be somewhat higher than the predictions presented in Table IV., thereby making the agreement between experiment and theory less favorable than implied by that Table.

Subscripts:

Corr corrected vorticity term due to induced pressure effect

References.

- Al) VanJyke, M.J. : "Higher Approximations in Boundary Layer Theory."
 Lockheed Technical Report LLSJ-703097, Oct. 1960.
- A2) VanDyke, L.D. : "Second Order Boundary Layer Theory for Blunt Bodies in Hypersonic Flow." ARS Preprint #1900-61, August 1961, also Stanford University SUDAER Rep. No. 112, July 1961.
- A3) Laslen, S.H. : "Second Order Effects in Laminar Boundary Layers."
 ARS Preprint #2208-61, October 1961, also Lartin Research Report
 RR. 29, Feb. 1962.
- Au). Rott, N. : "On the Definition of the Displacement Effect in Second Order Boundary Layer Theory." (To be published.)
- A5) Li, Ting Yi : "Effect of Free Stream Vorticity on the Behaviour of Viscous Boundary Layer on Blunt Body." Rensselaer Poly. Inst. TR AE 6103, Feb. 1961.