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ERRATA,
P. 16, Equation (1.23)s
Add factor of (l+n) on right-hand side of equation, viz.:

v =‘A(H-U|)\1,Ll+<'-‘é'v" v!e-:;ﬁ?-)\zﬁ-\n]

P. 21, Equation (2.8):
., pt o . a
6th line; omit R™ in lenominatee. of 1st ani 2nd terms ; change R to P\

in denominatpe:. of 3rd and 5th terms:
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7th line; omit R® in Jenominatborn of 1st, 2nd, Lth anl Sth terms,

viz.s
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8th line; change density derivative in last term:
n—1 Y 9 Sy
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P. 22, Equation (2.13):

2nd line; change 2nd term from X to '3 derivative:

‘Lsr (7 ) e SP' —
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P. 65, 4th line from bottom:
Insert j , viz.s
sessesss terms with thej subscript see...
P. 65, 2nd 1line from bottom: <
Insert K, and Ke s Viz.s
essesescess Of proportionality K\ and KC e The ceveveessns



P. 95, Equation (F.11):

In right-hand side of 2nd and 3rd expressions, replace h (enthalpy)

by g (viscosity), viz.s

£0)= K t" £l

‘hT'
- &-E w !
f,co KLM %} Tw 4,00

P. 95, Equation (F.12):

last line refers to function F,:, , Viz.:
\
M~ oo F\‘(’z)—s(n'i)'z

P. 103, Equation (H.2):

Ra on right=hani side has subseript | , viz.:

............ - ,‘U;.'(‘:)-Rit (| +.2 &)“7

P. 105. In line above equation (H.7), referemnce is made to (H.3) instead

of (h.3), viz.s

(H.3), are presented ....

P. 108. In definition of ¢ , replace W ani V by p and U , viz.s

v shear parallel to surface 1;-).,?2



ABSTRACT

1

Steady, viscous, two-dimsnsional and axially symmetric
stagnation-point flows of a gas are considered for the ease when the
Reynolds mumber 1s too low for the applicabllity of the elsssieal
boundary-layer theory. It is assumed that the low-density gas is still
a contimious fluid, permitting the use of the Mavier-Stokes and
associated equations as the basis of the problem. The effects of
low Reynolds mumsber are determined by spplying sn expsasion procedure
(simtlar to Lagerstram and Cole's(®®) 1n terms of & paremster,
essentially  Vfm , to the fluid-dymamienl equations. The
highest-order equations in this expsnsion are the M]mr
equations; the next-order equations, vhiech therefore imvalve first-order
low-Reynolds-mumber correcticn tems to the.boumdary-layer quantities,
are presented and discussed in detall, together vith the appropriate
boundary conditions. The boundary comditions are of two types; at
the vall they are derived from the kinstic theoxry of gases, far from
the wall the flow must "merge” into the inviscid salution.

It is shown that the fallowing quantities are necessary
to define the inviscid flow rear the stagmation poimt: the stagmation
properties of the gas, & velocity gxwdient, a nose redius, snd &
vorticity parsmeter. The latter is present in the sxially symmetric
case only; it defines the slope of the inviscid shear flow near the
stagnation point of the sxially symsetric body. It is shown that
further gensralization of the inviscid flow by considering additiomal
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paremeters necessary to define the flow over larger regioms in the
vicinity of the stagnation point is 2ot necessary, because any
additional paremsters will not affect the first-order corrections
considered in the analysis of the vissous flow.

The result of the snalysis is that the following correction
effects to boundary-layer theory are defined: curvature effect,
displacement effect, velocity slip and tempersture-Jump effect,
vorticity effect (this last ome for the axially symmetric case only).
The magnituds of these effects depend on the following paremeters,
respectively: the retio of the bandm-lqtr thickness to nose
redius, the change in lt@uon-pdnt velocity gredient from the
inviscid value due to the displacement effect of the boundary layer
around the body, the ratio of the mean free path to the boundary-
layer thickness, and finally the retio of the slopes of the inviscid
.sheareflow profile (in axially symmetric flow only) to the averege
slope of the boundary-layer velocity profile.

Scneuppn.catioumdimsud, in particular the case of a
blunt bdbody flying through the atmosphere is considered in detail.
Bal-gas properties are used to calculate the expansion parwmeters for
this case; the results are plotted in chu't form. The region of best
:WMW of the expansion procedure is where the expansion
paremeters are less than 1 and are about the same order of magnitude.
m-mmmmmﬁuwmamawm

Bamearical sclutions of the eguations are then preseated using
. the properties of undissociated air corresponding to this speed range
(perfect gas, constant Prendtl mmber, variation of specific heat,
viseosity, heat conductivity with povers of sbsolute tempersture).



Results are tg,buhted for five values of wall-to-free-stresa temperature
reatio; ;mlu of low=Reynolds-mmber velocity and temperature
profiles are given. The effect of temperature ratio om wall shear
and wall heat-transfer rabes are shown in both table and grsph forms.
The behavior of the shear and heat-transfer corrections due to
velocity slip and tempersture jump is especially significsnt; the
results clearly indicate that, in spite of the much smaller mean free
path at the wall for strongly cooled boundary layers, the reduction
in heat transfer due to this effect is determined by the mean free
path in the (hot) inviscid flow at the stagnation point. This
conclusion is the result of including the effects of variable fluid
properties in the analysis.

The predicted stagnation-point heat-trunsfer reductions for
& cylinder in a supersonic airstresn at low mymms mmbers are
campared to the experimental results of Tewsik and ateat(*0)s(¥1),
Both theory and experiment indicate reductions in heat tremsfer at low
Reynolds mumbers; but the mesasured reductions, vwhile sgreeing in
trend, are considersbly larger than the predictions.



INTRODUCTION

The flow in the vicinity of forwaxd stegnation points has long
been of special interest 1o eaerodynamicists. The reasons for this
interest are both theoretical and practical. Theoretically, the flow
impinging on an "infinite" flat plate provides one of the few exact
solutions of the Navier-Stokes equations; furthermore the solution of
boundary=-layer flow around bedies always "begins" at the stagmation
point. Prectically, heat-transfer rates are usually at a maximm in
the stagnation region; furthermore, stagnation properties of the flow
are often the easiest to measure by means of various probes and measuring
instruments. In addition, in recent times, the reemtry problem has
generated renewed interest in this problem, especially in the low
Reynolds-Rumber flow regime. The purpose of the present investigation
is to reexamine this problem in this low=Reynolds-mmber flow regime
for the steady-flow case and for the plane two~-dimensional and axially
symnetric flow pattems; due to their similarities a unified treatment
of the two types of flow will be possible.

Implicit in the aerodynamicist’'s solution of flow problems
‘is the assumption of a continuous fluid. The classical equations of
Navier-Stokes, together with the continuity and energy equations, and
additional equations, which relate the thermodynsmic and trensport
properties of the fluid, form the besis of continuum aerodynamics.

This approach will be maintained in the present ﬁwoﬂption; though

it must be duly noted that it imposes & very definite limitation on the
applicability of the results on gases (which are principally of interest)
in terms of a Knudsen muber, vhich cannot exceed s "reascushly small'
value. What this limitation mesns can be inferred from the kinetic

L



theory of gases. It is well lmown that the properties of a fluid flow
field for a gas can be obtained if the (molecular) velocity distribution
function is given, by taking the appropriate statistical aversges.
Solutions of the Maxwell-Boltzmenn equatiom, which ia the conservation
equation for this distribution function, can be obtained in terms

of an iteration procedure, vhich results in successive sets of
"contimum" differential equations; i.e., equations in tems of the
"locally average” quantities. It has been pointed out by a mumber

of authros (e.g. Bhem.n(39), Schasf and Chambre(36), etc.) that this
iteration procedure 1s roughly equivalent to an expsnsion in terms of
the mean free path between molecules. The successive sets of equations
are: Euler's (inviscid) equations, the Navier-Stokes and associated
equations (which w11l be used in the present work), the Burnett equatioms,
and equations of still higher order. It can be seem then that the present
analysis neglects the Burnett and higher-order terms, which implies that
only "small' changes in local flow quantities are permissible over
distances equal to the mean free path. Actually it has been found
(Schaaf and Chambre (35)) that even for scme specially simple and

well understocd problm‘ in gasdynamics, such as the structure of

nommal shocks and the propegation of high-frequency sound waves, where
the Bumett terps were clearly non-negligible, their inclusion in the
theory gave less satisfactory sagreement with experimental results

than the theory based on the Navier-Stokes equations only. Furthermore,
the Bumett temms includé derivatives of higher order than are present
in the Navier-Stokes equations, which indicates the necessity for
additional boundary conditions. There is no agreement at the present

as to what,if any, these additional boundary conditions should be. A



more deta:}led discussion of these and other difficulties involved in
the use of the Burnett equations can be found in reference 36.

The present work is then an applicetion of the Navier-Stokes
equations to the stagnation-point problem for a gas with known thermo-
dynamic and trensport properties. A perfect gas will be assumed, vith
the specific heat, viscosity, and heat conductivity proportional to
arbitrary powers of the absolute temperature. (These assumptions
regarding the properties of the gas will be Jjustified in another section.)
The classical solution of this pro'blem for very large Reynolds mumbers has
two phases: first, the solution of the inviscid-flow problem with slip
around & given body is obtained; this gives the location of the
stagnation point and the velocity gradient there. The second phase
completes the calculation of the flow by applying these results to the
well known soluﬁicm of the stagnation~point boundary-layer equations in
the two-dimensional and axially symmetric cases respectively (e.g. Cohen
and Reshotko'®), Brown and Donoughe'3), Hove and Mersman('®), ete.). It
1s shows by Lagerstrom and Cole'2®) that these two steps can be looked
upon as the first steps in ‘a.n expansion procedure for obtaining approxi-
mations to the solution of the Navier-Stokes equations for high Reynolds
mmbers. This procedure consists of expanding the stream function in
powers of & Reynolds-mumber paremeter, (in this case '/F':_ )
in terms of two parallel series, the so-called "inner"and "outer"
expansions. Successive terms in the two series are solved for alternating-
ly. In this mammer first the inviscid flow around the body is obtained
(the first term in the "outer" expansion), then the coamplete boundary-
iayér problem solved (the first temm in the inner expansion), then
& correction to the external-flow follows (usually due only to the



displacement effect of the boundary layer); and then a correction to
the boundary-layer solution, etec. It is apparent fram physical
considerations that the formal mathematical procedure developed in
this reference is rigorously applicable only to certain very special
types of probtlems. I% entirely fails to account for such universally
present phenamena as “urbulence, and the possibility of separation, for
example . )

In the following, & treatment of this second a.pproxl.maf.ion to
the "inner" fiow for these two types of stagnation-point flows is
presented. The formal mathematical procedure of reference 20 will

not be foilow?d; still the above comments indicate that a camplete
treatment of this secornd approximation, which is essentially an
improvement of boundary-layer theory for low Reynolds mumbers, would
raquire & soiution of the second approximation to the “outer" flow.
This implies that in addition to a superimposed external velocity
gredient of arbitrary mag:ttude (which is the result of the solution
of the first aspproximetion to the "outer" flow, i.e., the inviscid
fiow) cme should have an additionai arbitrary external-flow perameter,
which influences the second "inner"-flow approximation, and which
should properiy be the resuit of calcuiating the improvement to the outer
flow due to the dilsplacement effect of the boundary layer. Obviously
suck a calcuiation cannot be made within the framework of calculating
the flow at the stagnation point only. Thus one has to accept the
presence of an additional arbitrary parsmeter in the problem, due to
an undetermined "displacement" effect.



CHAPTER 1

Inviscid Flow near the Stagnation Point
Let R

be the radius of curveature of the body near
the stagnaticn point.

Then the "polar" coordinate system of
Appendix A (A.6) can be transformed into the conventional boundary
layer coordinate system by the transformation

w=r-R
= RS
(1.1)
where $y=0 defines the body contour, as shown in the sketch
R u
o
R
X
Q N
]

Using transformation (1.1) in (A.8) and (A.9) the inviscid

momentum equatione can now be written down. In the W  directiom;

S
| L vy, o
e Lep P T Gp e
L W 3:
Ny te - v 2 o Ve Ve
* g (43N R (“’Rf (‘ ¥
I+n y

(1.2)



S8imilarly, in the X direction

| 8y . M=) We Wy _
("!)EQRI.(Ma ln{\v' W‘ ’ + l*{ R WK W“

. x 2
""’;;*Vt%:—hwi -‘*;-1 } + 8P, =0

e X

(1.3)
The velocities can be related to the campressible stream

function by using (A.6) and (1.1) in (A.3):

{ Yo

v = (|*%)“R"(V“‘§“ 3

2. v,
SRR R 3

(1.%)
Since flow in the free stream is uniform, and the flow is
steady, the "iso-energicity" condition can be written as:

i 2
ot q,: M ("{)‘Y‘

2 sz(|‘ {)Zh Rln (% {)2'\

+ h-hs= O

(X
;\r +‘\-ks=

(1.5)
vhere the subscript refers to stegnation conditions. For the
assumption of temperature-dependent specific heat the enthalpy cen be
expanded about the stagnation condition in a Taylor series, as follows:

. - L8 o _. >
hehy = o (T-Te)+ &, (L) i,

' 1.6
vhere the dots signifyrerivatives with respect to tempsreture. (1-6)



The symetry of the problem, and the boundary condition that
v =0 onthe body =0  canbe used to write down
the following expansions for the various wﬁtﬁ-:

S$AX [\ﬂ'*a|‘a YOy kv b L.*l‘a'l’fln;‘t#u\]

€
"

=3 [Iroqy+va,e® v by <t ety v ]

T= 1; L| +aq 4 + G..ra‘aafm'i- ’r“x"i» ’r_ux"‘\a -h-o]

p = P‘ L‘ ‘-o.'l% + a’u‘a&* ERER 3 L“ XL* L'lx?-z*‘”]

(1.7)
The perfect-gas law can be used to relate the pressure, -
density, and temperature expansions:

P

= = &sTs

Q

A, = Uy %

Qg = A, + Oy + Qg 0,

Q’-'\ : !rf\ * er‘

bgp = Ve v by v o by 4oy (1.8?
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Now expansions (1.6) and (1.7) will be mibstituted into
equations (1.2), (1.3), and (1.5). Coefficients of like powers of the
independent variables will then be equated, giving a succession of
additional relstions, similar to (1.8). The results of this procedure
will be that meny of the coefficients in expansions (1.7) will be
expressed in terms of a smaller mmber of independent ones. This will
show the truly significant independcnt parameters necessary to describe
the inviscid stagnation~point flow that we are considering. The detalls
of the procedure follow. Substituting the expansions (1.6) and (1.7)
into the energy equation (1.5), coefficients of the term give:

35 c?sT a'T|
- thus

ar, =0
T (1.9)
Using this result, the x°, w2, and x4  tems glve:

S%AL oG, T, lf-n =0
(+md S"'At + 2 g2 G T 04, = 0

_E_e QZ'A?“"Q'%LA;L fq‘ (‘YT m ,.*ESEQ,T‘ "’-rz-_.o

from vhich -
2
A
- .1
QJ:‘_‘S 2T, (1.10)
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Tt‘. EQST‘ (1.1‘)
e e~ % &t
s Rl ol Y (1.12)

A similar substitution into the noentum equation
(1.2), and grouping coefficients of the constant, w , and »*

terms gives:

8P gy = O

e -
Cem*A 8 + aSsPso"va* S Ps &p 0y = O

gt K
TR b (g by ) = 0
fram vhich
20
>0 (1.13)
_ . NG :
G (1.14)
AL
- ’S ’
Yoo = OX (3.15)

Finally the X momentum equation (1.3) is used
in a simllar vay, grouping coefficients of the constant and 4 terms:

i

A
3~ + 3.0 "n = 0

R
2

g%“a[("")a-ﬂ * “t‘;" =200, “'*‘\" %v!:l* a?sgs ["hﬂ-" + \-‘a] =0

12
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y A
Voo = - ‘é;: (1.16)

Now use (1.8) together with (1.9), (1.10), (1.11), (1.13), (1.14),
and (1.16) to get:

., =0
[ X -
A 2 @
a = = = (an)y” —
e c(nTs( G‘
t)' _ki ('Vs’@"
1 T 20T, '8

(1.17)
These resulis make it possible to detexrmine the coefficient
of the second term in the expansion for the stream function, a,

gi'Az[a(l—n)a.| + '-‘-:é—“——"' + ‘lt 2A(\ n)[lo. + —] =0

Thus ;

N

2R

for n=| o, is arbitrery

for hao q"=—

An expression for the vorticity near the stagnatiom point can
be found by using (1.1) in (A.13):

| \_l’_._gl - S Yxx
Q- forprer e i

nunl ¢ W, G-n L Wy .
*(h{)tl'ﬂ-i MR TRA )7\( ¥) (1.18)
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Bubstituting expansion (1.7) into (1.18) the expression for the
vortieity is:

Q= _AxLao..+‘_ji—“] RN

Thus, for the two types of stagmation~point flow:
for nso Q: O-(‘K\‘)

tor w» =\ A = -Ax[20., + 0(‘3)] > -A:[V*--J

(1.19)
vhere the above expression defines a vorticity parsmeter V
Coefficient a, can then be writtien as

w-1\ nVv

AW =B ——— e

2R 2 (1.20)
This result can now be used, together with (1.8), (1.12),
(1.15) and (1.17) to determine

Tf,=-c:s_ “v-—]

W
v, = 'r {."v * 3 ‘“Q. ] (.21)

The above intermediate results ean be summarized by writing
expansions (1.7), using the derived valuss of the coefficients:



\ X e
= - !ﬁ :‘S Q’ 2 5 -Q iz (Q;‘ ) :]
S M[ o S BE (VA 0
A.L 1.‘31 . *! [ \V/ h %
T=~ -r;" ;s (1¢w) E + E —(;\-“ )*‘3*“‘] (1‘2“)
(X (3 ‘5" i" - xlg .
p= b sl Eeg -2 ] (1.25)

From these expressions the paremeters for the symmetrical

inviscid stagnation-point flow can be ascertained. Veloeity gredient A
is a fundamental parameter; it is determined by solving the inviscid
flow arcund the entire body. It will be of the order of magnitude
of free-stream velocity, \J , divided hy a "sigaificant body size,"

L , perpendicular to the flow direction. Two more parsmeters
appear in the stresm function; nose radius R » and vorticity
paramster V . It has been pointed out previously (e.g. Rott
and Lenard(3%)) that there 1s an important differemce in this respect
between two-dimensional and axially symmetric stagmtiom~-podint flows; the
latter admitting & vortical tem but showing no effect of nose
curvature to the order of terms that are considered here (i.e., 4%
' wheress the two-dimensional flow is irrotatiomal, but has s curvature
term. Btegnation thermodynsmic propertdes, 9, , & ,» \,
ad Crg are the sdditional arbitrery paremeters. Had

15
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subsequent terms in the expansion (i.e., higher-order terms in x*

ad than included in (1.22) through (1.25) ) been considered,
additional parameters would have appeared. These parameters will be
arbitrary, or identifiable as the rate of change of the nose radius

vith x® , etc. The possible effect such additionsl srbitrery paremeters
may have on the viscous flow near the stagnation point will be discussed

in the latter part of Chapter II.

As expected, the expansions for the thermodynamie properties
exhibit Croceco's relation. On the stsgnation streamline the flow is
isentropic; isentropicity is maintajfied off the stagnation streamline
aleo, vith the exception of the rotational term \ . The pressure
term shows no effect of rotationality; the xe\g term is the
centrifugal pressure gradient due to curvature.

To camplete the treatment of the inviscid flow, the velocities

can be written down by substituting (1.82) into (1.4)

o= AxLitV-3)a]

v +3
c=-AyL+(F - TR ) e ] (1.23)



caPrER 11
Viscous Flov near the Stagnation Point
General Considerations

The basis of considering the viscous flow near the stagnation
point is Lagerstrom and Cole's expansiom procedure (reference 20), as
described briefly in the Introduction. The essence of this procedure
is a magnification of both the independent coordinate and the velocity
camponent perpendicular to the solid surface in inverse proportion to
a "significant viscous length" (i.e., the boundary-layer thickness)
and a velocity based on it. As the limit of very large Feynoclds mmber
is taken, viscous effects will be limited to s very thin layer near the
body surface, and these magnifications then permit an amalytic investi-
gation of the structure of this very thin layer. This layer is of
course the classical boundary layer of Prundtl; and lagerstrom and
0010'-(20) procedure consists of improving the boundary-layer result
by expanding all flow quantities in powers of the inverse square root
of a Reynolds mmber based on some significant length. Thus,
imnediately as this improvement is considered the guestion has to be
reised what this significant length should be. There is no such
length inherent in thc.clul:l.cl.l bandary-layer ‘nolut&u itself.
Another way to formulate this same question is: wvhat length should
the boundary-layer thickness at the stagmtion point be campared
 to 1n order to decide vhether or mot & eorvection term to the boundary-
layer solution is necessary, vhen emmsidering the visesocus flow near
the stagnation point. This is & crueial question, which will affect
the formlation of the entire problms.

7
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One such length that suggests itself is the redius of
curvatures at the nose. That this may be a suitable length can be
seen by considering a stagnation point located oo a curved nose.
For very large Reynolds mummbers the boundary-layer thickness becomes
negligibly small compared to the nose redius, which, (by geometric intu-
ition) is equivalent to taking the "infinite" redius limit. In this
limit then the classical solutionm of flow impinging on an "infinite" plate
is recovered. On the other hand it is easy to see (relying again on
intuition) that, as the Reynolds mmber becomes smaller, and hence the
boundary-layer thickness larger vhen compared to the nose radius, it
my become necessary to consider a correction to the classical result
due to the curvature of the boundary layer near the stegnatiom point.
(Bubsequent analysis will show later that these intuitive considerations
are essentially correct.) If, however, the nose radius is taken as the
sole length vhich could be of significance in the problem, then no
correction terms whatsoever can be admitted for a flate~nosed bogy.
This is certainly contrary to expectation, and in direct contradiction
to the presence of & "boundary-layer displacement effect,” as discussed
in the introduction. Actually, it is not necessary, or even possible,
to decide beforeshand what the proper referemce lemgth should be. It
is clear that the proposed procedure could be applied with the
reference length left arbitrary, and vhatever the important reference
length of lengths may be they will appear in the solution upon proper
expansion of the equations of motion and proper applicatiom of the
boundary conditions. In the subsegquent analysis, the nose redius
will be used as the reference length; in the light of the above remarks,
this choice is ons of convenience only and cannot affect the validity
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of the outcome of the analysis. At the end of this chapter, it will
be possible to identify all the low=Reynolds-number effects in temms of
several reference lengths to vhich the boundary-layer thickness has
to be campared vhen considering the necessity of a low=-Reynolds-mmber
correction to the boundary-layer result.

Development of Theory

The procedure for investigating the viscous flow near the
stagnation point will then consist of writing the full viscous
equations of motion, as derived in Appendix A, irc the curvilinear
boundary-layer coordinate system of equation (1.1). Magnification of
the independent coordinate v is accomplished by replacing it
with the boundary-layer variable:

T=% %i (2.1)

Magnification of velocity \\ , and the desired
expansion of the velocities is accampiished by writing the stream
function in terms of the following expsnsion:

. [
=g, [y A < m‘hwn 1?‘{ fig + e xa%.(‘?’*)v: yA"%'(”*""J
Y R (2.2)

Using the symmetry of the problem analogous expansions can
be written down for the thermodynsmic properties:

Tt ]y
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g = g, [lsep+ 3N+ 4 anig+ ’é& aﬁq)*r---] (2.4)

= ' St z -,-‘-L 1
P=8 [+ ifi s s SR o] o)
As in (1.6), the fluid properties are assumed to be
temperature dependent, and can be expanded in a Taylor series sbout

the leading term in expansion (2.3). The dots again signify derive-
tives with respect to tempersture; the subscript 0 indicates
evaluation at infinite Reynolds number and x = O ;

@ ot (T T + G (T T
I = gt (T + B (r =TS

how ks b(T-T *Q.)a-%'("\‘—‘l‘s{l.)z{-...
(2.6)

Using expansion (2.3) these expressions can be written:

. . L s o
G= Go* J':&' T_;(Qo «‘.\’n LA 2 Xa-'; Ch%k("l + %‘\J% [';“'o Q‘\“’) “'1;2 %’ v'(‘” %‘o(‘l)] e

) * t K Iy
Wo=p i& oo Wep# o+ T gy, ghime %\FA! [T,,.,,&,('p O-Tf’-z‘-' [ X0 g‘.q)]+--~

el _\i % T,L Wit o T i.,l.t,) + ’{E’ ['l',‘\.*,q\ ﬂ:%‘ w‘)*.l'n]q...
(2.7)



The Y momentum equation can be written down by
considering (1.1) in (A.7)

! ! S _ . Wy W War
(“’{)MR{"(“”!" {(\( V);W':%s \q.{ R (‘——1\*{) +
x t :
TRl Yo e W Sw + Ve Wew _ \H\)ly.

Run ¥ OFXF 1r§ % (\+{)‘ T A $Py=
' ‘ (MN‘.[: g\p

= (l*{)""k"( ")"{ ‘M‘, Yol g -3 e D
TS T N R S
s Y TR (%)

nns
—\y}r.‘sz —(‘:") :‘:;‘ + Wy Pr ‘E“qu}"h"'i!::%w‘}‘t -

_ Vaxhe ?«)\-n i 4 LIZ3 3 o Joo nunf _}: hlnl W Sx_
e F x‘(;n)‘ ConZ (+3F a3} Or 1) = i({‘s

v‘—ulk -—5'!-—2-"’)‘.3—!‘-_‘:'- le.. 3x
Rt("&f eyt 3§ o’ ({ T t‘(w“’\() Yegy ¥

¥ ngl ‘l‘l.:_-‘f- r Y *,.,_' S Weg g ¥ S .py,)a. } (2.8)
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Now expansions (2.2) through (2.5) and (2.7) can be

substituted into this equation, and the results grouped according to

powers of x° and T',\J% . The coefficients of the R 5 )
constant, x*R ri , and x? tems are
3P (tnlp) =0

30 (dnde + v dpl)=0
50, (doape + anlp.) =0

LB (“"'%o*{"%?- ""k";{?‘. + T.h ) ?'A?'*. =



hence:

o) (2.9)
1
h‘ = O (2010)
o =0 (2.11)
2
e ! {e
oA ®® = ™ (2.12)
3 ]
T™he X nomentum equation is obtained by using (1.1)
in (A.8);
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Repeating the former procedure, coefficients of the X '
term give the following equation:

U"“)\’{' ‘*—*" Gemto 40 *{‘0 +-—3¥-@ "k“"oTu “’ * k)*‘

+ 2 [*‘“_ \l {:. _* ‘l-".. + a&o{*'.) ]

Y.
(2.14)
K T, fe
Terms ) s and o in the above

expression are functions of {*. “n only, the exact functional
form depending on the viscosity vs. temperature law that is assumed.
The next equation is cbtained by collecting coefficients of the -E\J%—
term in the x momentun equation (2.13):

-7 {(?_nﬁ»l)[(‘*"") b E'o—(\*n) *.l': t &‘.?_] + _"i‘i 2 ¢ %,} +
+(n'- l){-{ +(m-)+°{" {~ ~Gemi gl +.. +(\+n){-.— ‘} +
+('+")*~%.{~. ~ombeb o b b 2k b4 -"-’-,_& (gv.&r.w.gq.) =
- %:Tfu.,(u-m TR SA(CER H‘. (&' -

W ode b 4 " 0} "l% \
~apkogk Lok -qu. SRR -wg}.-%;h
U ‘in bl e (22 sad B -

N l
- ::.{- - h **ok“"u 2{“ 4 “'"*"1 "" 4*‘ Ph]-

- ’i—:“‘-{"t“U' - ;:'] +(|m){.} - ;-‘{,,,,[g'-g{:%-

‘ (2.15)
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Finally, the energy equation (A.11) is written down in
coordinates (1.1):

(rom)

R" (:-w xyn L%(‘V;Tx RANE: s (P m P")]= (+3) AT

l+n + W n n-
T RO BT T LT s

LYW

+ 0 AT (AL ]
N

(2.16)
The dissipation function & in the above expression
has not been expanded, because, to the order of temms considered, it
will not contribute to the equations. In ordbx; to ascertain this,
cne has to consider the form of the dissipetion function given in
(A.10) in tems of the general coordinate system. Each teim will be
of the form of the stream function occurring twice, and four
derivatives occurring in like pairs. In order to comtribute to the
stagnation~point term, at least two of these derivatives have to be
X derivatives (otherwise the term will be of order < ).
8ince ¥ is of order 5_; and ] darivetives
of order /(i  , the largest tem in the dissipeticn function
will be of order viscosity times two stream functions and two ‘4
derivatives, vhich is altogether of order Y% . But only
terms of order 1 and order 55 are of interest.
Now (2.1) through (2.7) can be substituted into energy
equation (2.16), and terns grouped in powers of 4 |2 and
x? . The leading temm is
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-‘-’-‘(wvnl- u.+¢su+m o = }—Eé(; "‘P 1—: &"2]
(2.17)

1
Collecting the 2 \]—% terns gives

C"°T () bo tho W, - °"° NRICE B+t b ‘ot - Gom (bl +
) =2 (W - BT, CROW 2B

+ E’T_:‘ u-‘:“, + Ly (\&-h)bl‘:*ulo]* ‘:’-“ -l;(.\i'“)t AA‘:}
L v, L,
(2.18)
vhere the tems "-'{: etc., are again given, but as yet un-
specified function of {‘»V’() . An additional relation between

the varisbhles is given by the perfect-gas law, wvhich was assumed

oo = W ke,
b= Moko s b b

ete. i (2.19)
ow the formilation of the differentisl equations is complete.
Equations (2.9) through (2.12), (2.1%), (2.15), and (2.17) through
(2.19) define two coupled sets of ordinary differential equations, in
the zero-th and first-order varisbles respectively. The seroth-order
set is nonlinear; it is essentially the boundary-layer equation at the
stagnation point. The first-cxder set is lineer, with the coefficients
" and inhamogeneous terms ccmposed of the known boundary-lsyer solution.
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In order to proceed with the salution of these equations
suitable boundary conditions have to be specified. Two types of boundary
conditions are available; at the miid-fluid interface (i.e., the "wall")
and in the inviscid flow, vhere the viscous solution has to "merge" into
the inviscid solution specified earlier. The boundary conditions at
the wall are derived in Appendix B, and are repeated here.

t v =0
{-'o(o) = O

Yoo = W (2.20)

tv=0

(2.21)
vhere constants K, and K, are defined by the above expressions.
In order to determine the boundary conditions in the inviscid flow,
one can use "the inner-flow" independent variable (2.1) in the
expressions for the inviscid flow given by (1.22) through (1.25).
Furthermore, as explained in the introduction, & correction vill be
necessary in the inviscid ("outer")-flow parsmeters, due to the
displacement effect of the boundary layer arocund the body. This
effect will change the velocity gredient A  , which is &



fundamental paremster of the problem byanunhmmmt. This change
can be expressed as follows:

=Al i Bor]

The other parameters of the inviscid flow will not be

kl&

l
i
(2.22)

changed to the order of terms considered here. (A more detailed
discussion of these correction terms, and thelr significance will be
glven in a later section). The inviscid stream function can now be
written in terms of the viscous (i.e., "inner") expansion as

o PR "?a]*‘..}
(2.23)

S8imilarly, the expansions for the thermodynamic properties
in the inviscid flow become ;

=g L O(@) + Tuy v ]
T=T 1+0(F) + Tud+-]

o[y s ,A
P = ?s%)«fo’(t_k)*\—x i—? +?\\)- 3 ('1 (-))] }

Expressions (2.23) and (2.24) in conjunction with (2.2)

(2.24)

through (2.5) can now be used to define the boundary conditions necessary
for the proper "mergence” of the viscous "imner" flow into the inviscid
"outer" flow. As i beccmes very large
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$

Using these boundary conditions three of the differential
equations, namely (2.9) through (2.11), can be integrated immediately

Yooy =

o =0

) -

SR s \ (2.27)



These resulis can be cambined with the perfect-gas law
(2.19) to obtain

(2.28)
The remaining differential equations can now be simplified
by using the above intermediate results

. Using (2.27) end (2.28)
equation (2.14) becomes

(l+n){v&o _?4.(\1"\)&, {o—{‘o +-‘—°+)" &{““0

—

‘ y—“’l J " " ¥‘° ! l"" _
BT K]

(2.29)
momentum equation for the correction temm, (2.15),

is similarly modified. Grouping hamogeneous and inhomogensous terms on

The X

the left- and right-hand sides respectively, the equatiom becomes

((,m, {.'.?_; + it *:] o+ (}un) {.,,E' - ?.&'.J{( 4+ 1+n) .&.&:‘ -
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The same substitutions can be made in the energy equations;
(2.17) becomes

erclo(*’)o‘ \;‘ . E'T ‘La
s(‘vslﬂ&y.'*‘-s“g‘ftss«. o
(2.31)
fimdlarly, grouping homogeneous and inhamogeneous terms
(2.18) becomes

B2 T, om b K+ Gm(l b2 8] +

S ARG A RS

= — ‘—t T temn W- ‘t Grm{qis + W]

s (2.32)
Equations (2.29) and (2.31) now constitute a system of

two coupled non linear differentisl equaticus in the two varisbles +o

and W, . The onder of the cadined systemis 5 , tus b

boundary conditions ave needed. BEquations (2.20) give D at the wall;
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thus two more are needed "at infinity." The proper boundary conditions
are then from (2.25)

ﬁ‘o(.m — |
n—r=

i — |
(2.33)

These are the boundary-layer equations; their solutions can
be obtained (mumerically) as soon a&s the dependemce of fluid properties
upon temperature is specified. The walletO=free-stresnm stagmtion-
temperature ratio, W , will be a paremeter of the solutiom. After
these results are obtained the solutiom of coupled equatioms (2.30)
and (2.32) can be considered. Varisble 9p,  in equation (2.30) can
be eliminated by integrating equation (2.12), vhich can be done directly
because, using (2.29)

©s \_l'L Lo L& ‘"‘.1‘ J l: .
Zﬁw"kp 2n 4.-,[( 1t \&”7*»’(&"‘ *h(")]
The boundary condition for «p, , a&s given in (2.26), can

be used to determine the unknown constant of jintegretion. Let the
behavior of {-o far from the wall be described by

I
m—e 171 2.3

vhere 4  is determined from the solutiom of the boundary-layer
equations. Then, far from the wall

11— =

g%?!’\: L [(\n)*""' “o Mt %:(*‘.NQ*: ‘l.)].;.K - 1- %1**‘(

t+h



Bence, using (2.26)

2+n

(2.35)
and the expression
;PLA{ ap, = a__l*_h{(”m{,v{; {l.«»(\fh\"'-p'? + i: (*: ‘cﬂ-*: “08 - (.)

(2.36)

can now be used in (2.30).

Before proceeding with the discussion of the solution of
equations (2.30) and (2.32), result (2.28) can be used to modify the
boundary conditions at the wall for <, and y. as given in (2.21)

=0
~ AR
o) = {:ﬁ l‘ L

\*\(0\=Kt% »wr¥l°’

(2.37)
The two constants (or rether eomkimation of constants) that
[ ]

sppear in the above boundary canditicsare aridtrwry in megunitude; their
ratio K,/ K, 1s also arkdtrery, depending partly on empirically
determined solid-gas interection properties ¢ and . Amuonnl
arbitrery constants appear in the boundary conditions for ,A.\ "at
infinity" as given in (2.26), namely C; and VY  (this latter

only for the n= | case). The linearity of the equations
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suggests that it will be possible to emstruct a solution of the
equations for any cambination of the above arbdtrery constants in
terms of a sum, vhere the arbitrary constants appear as cosfficients.
Each of the functions, associated with any mae of the arbitrexy
constants, can be solved for once and for all. The solutions of the
equations could then be written in the form

*\ = w+%§’i’ﬁ [K‘\::h)*“ +Ke_¥'.h\*,,] + ()*\, v nKV{N
s

‘?‘F \h*%: EW[K‘{»:‘°)*.+\AL&AL"){‘R] +L»llo r oV &lw

(2.38)
vhere the functions with subseript ¢ are associasted with the
solution of the inhomogeneous equation, subject to the boundary
conditions with all arbitrary constants vanishing; wherees the other
functions represent salutions of the hmgcmm equations, subject
to boundary conditions associated with the respective constants.
Result (2.38), above, then implies the existence of 5 different pairs
of functions (4 pairs for n=0 ), each pair being & solution
of two coupled linear equatioms, and subject to the respective
boundary conditions. A simplification is possible if one cbserves that
the padr of functicns . end J,  1dentically satisfies the
homogeneous equations (2.30) and (2.32), (because the left-hand sides
became merely the derivatives of the correspouding boundary-layer
equations (2.29) and (2.31». This pair of functions, multiplied
by an arbitrary constant, also satisfies the slip and tempersture- hump
boundary conditicns at the wall, (2.37) provided the two ccnstem.z K,
and WK,  are equal. Tus solution is campleWily equivaler. :d
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Lin and Sobant's(%3) bomdary-layer perturbation sclution due to alip,
or the altermate method used by lh.uhr(au) of "depressing” the position
of the solid-fluid interface in the boundary layer hy a length
proportional to the mean free path, in order to ascount for the slip.
lonn:l.lor(zn pointed out that depressing the true positiom of the
wall in oxder to account for the slip, will not, in general, account
correctly for the effect of the tamperature Jump. Omly if this
"depresaion” times the local temperstuwre gradient is equal to the
temperature jump will this approximation be correct; this case is
equivalent to the special case K = W, in the terminology
of the present analysis. For the gemeral case, K =+ ¥, ’
s correction function can then be determined, which assounts for the
fact that the two constants are not equal. Expressims (2.38) can
then be rewritten as follows

‘&n v oo b W [K.l“o + (KoK, “’:‘” {'m] +G l’\) +okV &N

r’»

bm v 2t b & (KB (k%) [ NEY I A B
(2.39)

Thus, to determine the effect of slip and temperature Jump,
only one pair of functions, t. wma B, , bestobe
deterxined, instead of the two pairs ia (2.38).

The differential equations and boundary conditioms for each
of the functions appearing in (2.39) esn now be summarised. First of
all, the governing differential equations (2.30) anmd (2.32) csa be
modified and written in shortened cperator notatiom as follows:
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Mk ) = M, beg) -2 8 8

B, ) =E (&, %) (2.40)

vhere the syabols M and b dencte the respective differentisl
operators for the momentum and energy equatioms; and M. asma E,
denote the respective inhomogeneous terms m @ ths right-hand
sides of the efuation. From (2.30) snd (2.32), the above operstors are:

Mk, B)= ’“’Low& & o] b+ {3 M*._ 24+
+)~.1- l*» *l. {ks Qembe + Ro e 7, TP }‘l NN
(B[R v ok B LR e L
METVR 4._.0..{:,%] E{:‘-‘-';_ '.___“‘ N

g (e ]

and

(2.41)

FL) = B T o [T ks

>, 1,
[ ]

f.% Tz_ {‘\'— t.'\" {hl{,&‘ ‘-’\I, H _.(\+n)‘» +

LTI

(2.42)



Also
Mildolh) -2, 2 ot o b=
(2.43)
Pl ek e S (] ]
+((V\-l)+ ]({.4»& Q"H ""T(wh)&o@. ‘i}. };:.
and
E ({_ u”"l) = - (\+n){'1(¥“+ ‘--T “‘1)* » ]
(2.44)

Now let all the arbitrary paremeters in (2.39) vanish.
Then the differential equations 10 be solved are

M(*K, g«.) = ML(*"D“')?)

E (k. W) =E (4, k., "l)
(2.45)
The boundary conditions st the wall are

Wo=0
\
*\L(D) =0

{L\L“n = 0 (2.“)



vhile, very far from the wll

#.,_h,) —>» 0 (2.47)

'?—’m for n=0 Q-\:‘_(’) —

1
for n=1  key)— 0
Now the correction terms dus to the slip and tempermture-
Junp effects can be considered. The eqmtions are

Mt i) =0
= ('&\M, “m) =0

(2.48)
In agreement with (2.37) and (2.39), the boundary conditions
at the wvall are

w0y =10
L =0
$or =1 (2.49)

The "ocuter" boundary conditions are

B — 0
= '
Ly —0

(2.50)



Using (2.45) the equations for the texrms multiplied by C(y are

M(“'w )Mlb) - —a’i{: {ll»o

E({'\‘h ) @‘3) = 0
(2.51)
mebmmdnry}conﬁtim at the wall are hamogeneous

J(m(o): 0

k(=0

p0=0

(2.52)
At "infinity", using (2.26)

l“u(‘l) —~ 0
e |
%(") — (2.53)
Correction functions +, ansd ¥,  can be written
down in terms of the boundary-layer soluticas . sad W,  airectly.
To obtain these expressions ocne has to observe that coefficient (y
appeared in the inviscid boundary comditions because velocity gredient
A was expanded, as showmn in (2.22). This very same
opeasion of A can be spplied to the original expressicms for
the stresa-function and temperature, as given in (2.1) through
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(2.3). Not considering terms with subseript | , the expansion
of A  ylelds the folloving expressions

y= gs 9’ )‘H'h {{. (7l+— J_C) '(7)+LR AC)‘H"(’H }

T=T, (W #3532 oo ]
(2.54)
Comparing vith (2.39), one can immediately identify

‘l‘\) = é(_‘h + 1*"’]
Yo=z1% (2.55)

Substitution into (2.51) through (2.53) verifies these
solutions. Expressions (2.39) can now be written

Li=he+ % %: w [«\;‘, +(he-K)) u‘.(o)h..] X %Q,*,*L)« WV,

e it b [ B Gkl br Fqke RV
(2.56)
Finally, the equations for the terms proportionsl to V

M(%N)MW) =0
E (.&“’ \ {AW)= 0 ' (2.57)



The boundary conditions at the wall are again homogensous
'l‘w(o) =0

butoy=0

Y, 0)=0 (2.58)
vhile far from the wall

¥up—>0

Lot —> |

=

(2.59)

Expressicns (2.45) through (2.50) and (2.57) through '
(2.59) give the differential equations and the associated boundary
conditions that are necessary to determine the five pairs of functions
(two for ne O and three for v = | ) that oeccur in
expressions (2.56) for the boundary-layer correction terms that are
under consideration in the present investigation. The solution of
thess equations is contingent upom salution of the stagnation-
point boundary-layer equations (2.29) and (2.31) subjeet to boundary
conditions (2.20) and (2.33). In order to camplete formulation of
the theory, it is only nocenu'y‘nov 10 specify the dependence of
fluid properties upon tempersture. This dependence can nov be
stipulated as follows (cf. Chapter IXI)

Jn «T°
Lo T°
o o T (2.60)
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Bence, using the definitions of (2.6)

e 2 W0
SR
be = Wy
L
e
The temperature derivatives occurring in the equations then
becoms
l:. _ w-l
.’ I = W &Ao
Js
" -2
ko, 2 _ A’
ol T, = W 1y %o
ete, (2.62)

Using (2.61) and (g.62), the boundary-layer equations and
the operators occurring in the equations for the correction terms
can nov be written down explicitly. In order to isolate the highest-
order derivatives the expressions will all be divided by the appropriate
povers o W, . Boundary-layer equaticns (2.29) and (2.31)
become

o u M e \ m " '. \ ‘.L \ “'
(\+V\){.{.,£‘%’ + () %'— %:1. *"T.w ¥ {, w(wid) do %' -\—w{. ’:—:_ + 4o :T‘. =0

(X

@qu:+a% =0

A= b

?«—‘ (1ewn) *.’(‘o
*o(o)s [}

,)‘\,(o)'—D

$ (0= W

fiy) = 1
foig) |

e

(2.63)



vhere unchanged boundary conditions (2.20) and (2.33) have been
appended for the sake of comvenient reference. These equations are
completely equivalent to those originally presented by Browm (@) )

and then solved for the two-dimensional case by Brown and W(s),

Brown and Livingood!*), and for the axially symetric case by Howe -
and Mersman (16). The apparent differences are due to the slightly
different normalizations of the temperature and stream functions.

For the correction terms {n and N. _operators
(2.41) through (2.44) can now be written dowm

M({UM ‘_(\*\\)* l‘\w-f(\ﬂ«) ]L + &Ll*h)* ‘m_
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\.ﬂ v ) " &
T [ wol' U"‘\& *" ‘—"!..,, + W %vﬁ' (wro a'){° \v‘_ *
o (w-20) 4' E}]Q& +] (1w L__'*" «-(w@g +
+ (-1) *o -W; + 0 w ' Y Yo

+ awkl {:f:_].w\ + {I“u k\"

E( . u,) = f?\—, (1w M:_L *4\, $+ {_Q«- (\-m)-u} ‘!4 QJ,

W& )
+ f-(z-‘)%L r & &]k. [V (\-w\){» W

- aa%f] W+ @.8)

k2
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and
ML“-.M’H'I) = 7{_“““‘%“*'),{*;:—‘%‘ + (n+) 4:: - %’; ] +

t
"
+[\-M-1w} (mriv o bede  faove )40+

wlnte “““"‘]*;%2. e o e

T '
E—L({" ) i I?) =- (H“)‘Jl (‘_ \Fo * ll' ) * l‘p} (2.65)

Discussion of Theory

This completes the presentation of all the differential
equations and associated boundary conditions that are necessary for
obtaining the boundary-layer and first-order boundary-layer
correction terms for stagnatiom~point flow. The consequences of
arbitrarily choosing nose radius R as the reference length
in the Reynolds number that forms the basis of the asymptotic
expansions for all the flow and thermodynsmic quantities in the

problem, can now be discussed. Let the viscous length, ;{ ’
vhich is indicative of the boundary-layer thickness at the stagnation
point, be denoted by § . The expsnsion paremeter that was

used in the above analysis is then % ; the ratio of the boundary-
layer thickness to the nose redius. As R becames very large
cw to 4 , the first of the correction temms in

(2.56), the term without any cosfficient and labelled by subseript (



vill become negligibly small compared to the boundary-layer term.
This term is then indeed due to the curvature of the nose; it will
not be present for a flat-nosed body, for instance.

In oxder to investigate the physical significance of the
remaining correction terms, the expansion peremster % has to
be considered together with the coefficients of the respective temms.

For the slip and tempersature-jump terms, the parsmeter that is

significant is

Aw
S AR J AL Jw 2 O "*ﬁ’—*’”“=°°“““‘——
EE’I‘W'{& Jos Sw Oy AN & % roae §
vhere the constant is of order | . The above shows that this

correction arises vhen the mean free path at the wall becomes
significant compared to the boundary-layer thickness. fince &  here
is in the denaminator the behavior of this term is quite differeat from
the former one.

The displacement effect arises due to a change in velocity
gredient A’ at small Reynolds mmbers. Therefcre, the length
that will be significant in thilkynoldlmnb.rilthnhfgththlt
plays & determining role in establisiting the megnituds of A .
is reference length L. could be the "size” of the body
perpendicular to the free stmforthcuuor‘thebodvincluady
subsonic stresa. Or, for a blunt body in hypersonic flow, it is actually
the nose redius, as will bo. shown in a later section. The ecorrection
to 'A’  arises vhen the boundary-lsyer thickness §  is large
enough compared to this reference length L . Unknowa constant

(3  1s then of the order of the ratioof R to L , whien
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could be quite insignificant if, for example, the stagnation point
is located on & "small bump" on & much larger body. This shows that
the curvature and displacement effects can arise independently from
each other.(See sketch below.)

Exsmple of body
R =™~ with displacement
effect negligilie
canpared to
curvature effect

at stagnation point.

Pinally, the last term in (2.56), due to the vorticity

Sagnation Point

effect in axially symmetric flow, can be considered. It is clear fram
inspecting the coefficient of this term that redius R cancels
out; instesd &  1s compared to length SV . A
physical interpretation of this length can be obtained from the linear
velocity profile in the inviscid flow given in (1.23), as indicated
in te sketch below.

fe— 2A < ——/é/ A (14 Vy)

o r T rry I'q""!""—



The ratio of the boundary-layer thickness to this length
is sctually identical to Kmp's(w) vorticity parameter; the ratio
of the vorticity in the invisecid flow to the "aversge" vorticity
in the boundary layer.

These considerations show that the first-order correction
tems to the stagnation~point boundary-lsyer solution, which are
discussed in the present investigation, arise due to four different
effects; namely the curvature, velocity slip and tempersture jump,
displacement, and vorticity effects. Each of these effects is
associated with a. different low-Reynolds-mumber flow parsmeter. Three
of the parameters arise fram a camparison of ths boundary-layer
thickness with three different, and in general, independent,
significant lengths; nose raddus R , length |-  (indieative of
body size) which determines velocity grsdiemt A , and length

'/v  which is associsted with the slope of the uniform inviseid
shear flow that can be present in axially symmetric stagnation-podnt
flows. The fourth parsmeter is essentially a KXmidsen mmber based
on the mean free path near the wall and the boundary-layer thickness.
In order that the expansion procedure of the above analysis be
applicable to a practical problem it is necessary then that all
four independsnt parsmeters described above be an order of
magnitude smaller than one. This mpliul then that the mmallest
omorthethreererenncelengthtbtcmﬁbwmthnthe
boundary-layer tpickness. It also implies that the mesn free path
near the wall be considerably smaller than the boundary-layer thickness.
This last requirement is actually implicit in the use of the
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Navier-8tokes equations, because, as pointed out in the introduction,
these equations do not permit large changes in flow properties (such
a8 occur across & boundary layer) to take place within distences of
only a few mean free paths long. This shows that the use of the
slip and temperature- jump boundary conditions as first-order
corrections to the boundary-layer equations is eomsistent with the
use of the Navier-Stokes eq\nﬂons. Ir "Vé is off order | ,
the expansion procedure of the present amalysis and the Navier- |
8tokes equations break down simmultansously.

If all four of the expansion parsmeters are sufficiently
small (i.e., smaller than of order | ), so that it is meaningful
to apply the Reynolds-mmber-expansion prosedure deseribed in the
above analysis, it is interesting to emmsider vimt type of texms may
arise 1f the next termm in tbzeiptancn is comsidered. The energy
and mamentum equations are again used, as in (2.8) through (2.18)
now terms to the second power of expansion variable Ji%: are
collected. On the left-hand side of the equations, terms
involving hie new (secand-order) variables &, , Y., . ete.
will aeappesr. These terms will all be linear, with the coefficients
composed of the zero-th-order (i.e., boundary-layer) terms. The
linearity of the equations again permits splitting the second-order
correction terms into a mmber of separste, mutually independent
effects. These effects will arise due to various paremeters that
appear in the inhamogeneous terms and in the boundary conditions.

The inhomogensous terms will be camposed of various
cambinations of the gero-th and firste-order terms. At most two
first~oxder functions can be cambined in each tem. Since the
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first-order functions can have either of three arbitrary coefficients
or no coefficient at all, the second-order texms that arise can be
associated with combinations of any two of the three arbitraxy
coefficients or no coefficient at all, the second-order texms that
arise can be associated with cambinations of any two of the three
arbitrary coefficients, or any ome of the coefficients, or no
coefficient at all (thereby giving rise to seven different effects

for the axially symmetric and five for the plane flow cases).

Another new effect will also appear among the inhamogemeous terms due
to the presence of boundary-layer terms that are one order higher in
the x> expension about the x =0 point than the stagnation-
point boundary-layer terms (i.e., terms like on ) oke , ete.). Thus,
to this secomd order, the description of the body has to include, in
addition to the nose radius and nose wall temperature, also the rate

2

of change of these quantities with X

stagnation-point flow (implying the appearsnce of two more arbitrary
parameisrs). As mentioned in Chapter I, additional arbitrary

in order to specify the

parsmeters will undoubtedly appear in the "outer" (1i.e., nvi;cidp
flow) boundary conditions to the second-order correction terms. These
coneiderations show that a full treatment of the second-order
correction terms would be very laborious and camplicmted indeed.

These correction terms will not be considered in the present
analysis, except a word of caution has to be added. It is possible
that coefficients of some of the new second-order terms are so large
that the sxpansion procedure of the present analysis (vhich is based
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on the nose redius as the significant length) is not applicable,
even though the first-oxrder correction terms are all sufficiently
small. This implies that there are new phyueu parameters, vhich
show up only in the second (or possibly higher)-order terms in an
expansion procedure based on nose radius, but vhich are of the same
order as the boundary-layer term itself, thereby precluding the
possibility of this type of asymptotic-expansion procedure. For
example, the rate of change of curvature at the stagnation point
could be 80 large that this effect daminates the viscous flow near
the stagnation point, even though the curvature itself is not large.

For those cases when one of the expansion parsmeters is so
large that the expansion procedure outlined in this chapter is not
applicable any more, yet the Navier-Stokes equations are still
applicable, different methods of solution have to be considered.
One method, which is feasible under certain circumstances, is
solution of the full Navier-Stokes equations, with the Reynolds mmber
based on redius as a paremeter. Such solutions have been obtained
for hypersonic flow around & sphere, with a constant-density fluid
and concentric shock vave, by Probstein and Kemp(3'), and Hosntzaki('3),
Later Hoshizakihh) included the slip effect for this case, as a
separate parameter. Another method is solution of the boundary-
layer equations, with the particular strong low-Reynolds-mmber effect
as & paremeter. The vorticity effect for incompressible fluid is
considered in this memner by Kulp(w) . A samvhet different approsch,
again for the axially symmetric hypersonio-fiow case, is used by
oguctt‘®) ana Berring!'!). meir method conststs of using the bow
shock vave as an "outer" boundary condition for the boundary-layer
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equations, thereby accounting for both the vorticity and displacement
effects; the former for a ¢ = constant, the latter for & Ag =
constant fluid. More recently Oguchi(29) presented an analytic solu-
tion for this same axially symmetric constant-density hypersonic-flow
case, in terms of an expansion in shock density retio e .

This analysis includes the curvature, displacement, and vortieity
effects simuiltanecusly. Finally, the method of Probstein and
Kenp(3') has also been spplied to & varisble-property fluid by

Probstein and no(32)

» again, for the case of a sphere in hypersonic
flow.

In the present analysis the restriction to small values of
the parameters was accepted, as this disadvantage was compensated by
the poesibility of ldentifying the four first~order low-Reynolds-
mmber erfec;ﬁs and comparing them on an equal footing. The validity
of the present approach can be extended by comstructing "hybrid" or
"camposite" solutioms, including only the largest of the above
effects in tae nonlinear solution, and accounting for the remaining
low-Reynolds-mmbey effects by the perturbation procedure of the
present analysis. For example, Kmp's(w) parametric solution of the
boundary-layer equations subjJect to a vortical outer boundary
condition could be "perturbed" with respect to slip and or curvature;
ete. Such a solution could be useful in a flow regime with large
vorticity intersction effect but comparetively small slip and
curvature parameters. The most useful approach will be different for
each problem, and can be determined by estimating the orders of
magnitude of the various loweReynolds-mmber flow parsmsters.



CHAPTER III

Exsmples of Stagnation~Point Flows
In order to apply the results of the foregoing theory to

flows around specific bodies, the flow parameters that are inherent
in the stegnation-point flow problem have to be determined for the
specific flow example. Some simple examples and applications will
be considered in the following peregraphs. In some cases, it may be
more appropriate to use experimental results to determine the

parameters under cansideration.

Subsonic flow around circular cylinder and sphere.

At low Mach numbers, the results of incompressible flow
around these bodies can be used. The stream functions are given for
the cylinder

o B
y = gsu( r)o«m% (3.1)
and for the sphere

[

- 3
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Using the boundary-lsyer coordinate system of (1.1) and
expanding about the stagnation point, these expressions become

(3.2)
51



for the cylinder and sphere respectively. Coamparing with (1.22),
for the cylinder '

A=E
R (3.3a)
and for the sphere '
- N
A 2R
V=20

(3.3v)

Due to the presence of turbulence and the possibility of
separstion, displacement constant (3  bhas to be left
undetermined for this type of flow. The remaining parumeters are
essentially axrbitrary thermodynsmic properties.

Hypersoniec flow around circular cylinder and sphere.

Inviscid solutions for hypersonic flow around circular
cylinder and sphere were given by mun("” and also Hayes and
Provstedn(?) for the cylinder, end Lightnt11(%2) for the sphere. Both
of these solutions are predicated upon three assumptions; shock shape
that is concentric with the body, mgpnlum fluid behind the
shock, density ratio across shock is a constant. The streem functions
are, for the cylinder

p= sV RS- ok T & \-utsthocall)] (5 'E,_A} =

= (UR, wt{GuI(2 &) - Gok(E )]
(3.40)
vhich defines (;19 sad (@ ; end for the sphere _
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(3.40)
vhere e is the density retio across the shock %2‘. ,
Shotk
and Ra the radius of the shock. Let the inviscid shock
stand-off distance be 4 , 80 that
= +
Rshuk R A (3.5)

In the boundary-layer coordinate system of (1.1) then,
and considering the leading power in x only, the expressions
for the respective stream functions become, for the cylinder:

r

= g Ua( —\{L{I (F '}i) - WK (% ‘;1)}

(3.6e)
and for the sphere:

Y '+ ¢
e s st (et e
\Y = gsux (r %) {C Marv-ra \Ce \Do. \*%.

(3.60)
Since the body outline is part of the stagnation streamline,
the expressions in brackets in (3.6) are equal to 0 st w=0

This relates A/p\ to e

aol (T - Gl WJsm) =0
(3.78)

3§\.:): _ s_é\_;j;__ » 20-90- )1+ §) = 0
(1) A
(3.70)



These implicit relations can be expanded in a series forx
for mmall e (ef. Hayes and n-ob-tun(”

el b ¢t Y elas v
%;-Ei.hfz*a([”sc)* e ¥ :(
(3.80)
~
1o 5E e e ]
(3.8v)

Now stream functions (3.6) can be expanded in powers of 4

2

e el - Q) <l - £ )

G+y)
(3.90)
! 2
= g L '__i?' 2 T T .3_ e
\V L R e i(\"'%) —\+41.] x [\5 + |-(\—h)(‘_\r:%.)?- Y ]
(3.9v)

Again, comparing with (1.22), the velocity gredient for
the cylinder beccmes

[

A =% < {LTLL:T\?{)] T K"(‘J(‘:_'zﬂ]}

(3.10a)
Similarly for the sphere

ol (= IR
V - 2

\ B e
[} V= (v 'h.\(‘ re )L

V-t

(3.100)
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In this case, the displacement effect can also be ascertained;
the shock stand-off distance will be changed from the inviscid value due
to the presence of the boundary layer, without (to this order)
affecting the shape of the shock surface. It will then appear as if
the nose radius were increased by the boundary-layer displacement

thickness & . Then, in the velocity gradients in (3.10)
above
{ ____' - "
RaL* = R{t+d ]‘\ [ L }

Camparing with (2.22), it is apparent that

>= 77 (3.11)
the corresponding low-Reynolds-mumber correction to the shock

stand-off distance is also of interest

Rgu ~ R =4 ‘E«{ 7*
(3.12)
For small e expressions (3.10) can be expanded; the
leading terms are

SIS
(3.132)
for the cylinder, and

A = % WE + ey ]

Ve gt oo

(3.13D)



for the sphere respectively. Graphs of stand-off dmtahoe <3
veloeity gredient A" , and vorticity paremeter V  are
shovn in Figures 1 and 2, for the sake of convenient reference. The
corresponding numeriecal caputations are showvn in Appendix C.
Bupirically determined stagnation point veloeity gradient
vS. free-stream Mach-mmber curves are given by Reshotko and Beckwith(33)
for circular cylinders, and by Crewford and uccunq(6), and Romig(3*)
for spheres.

FNight of a Blunt Body thromgh the Atmosphere.

An especially interesting and prectically signifieant
application of low=Feynolds-mmber stegnation-point flow occurs in the
case of a body flying at high altitudes. In order to determine whether
any of the four correction terms described in the analysis of Chepter II
are necessary or appropriate, one has to estimate the magnitude of the
four respective parameters at various flight speeds and altitudes for
a body of given size. In oxder to detexrmine the doundary-layer
thickness at the stagnation point the stagnation kinemstic viscosity ),
and velooity gredient A’ have to be known. The former can be
determined unequivocally for a given altitude and flight speed.

Velocdty grdient A will be proparticoal to YL, vhere L
is same significant length, usually indicative of body size. Leaving
this body length unspecified, boundary-layer thickness will be
proportional to quantity \E‘,’- » Which is & funetion of altitude
and flight speed only. In oxrder to determine whether the curvature

and displacemsnt correction effects are importamt, the quantity \E-}



should be divided by the square root of the respective length. If

the two lengths "R’ and "L" are of different coders of magnitude
\’%\E is the proper paremster to determrine the significance

of the eurvature effect, which is then different from the displacement-

effect parsmeter J:—;T—:: .

To assess the significanse of the slip emd temperwture-jump
effects, the mean free path at the stagmtion pednt s to be capared
to the boundary-layer thickness. The former emn e enlmulated from
the thermodynamic properties, and thus esn be determined as a funetion
o¢ UV amd H  only. Thus the retio

X, A

§ ER

depends on & parmmeter, which is & function of U and ' amly,
dividsd by the square root of referemse lemgth | . (For s strongly
cooled body, the mean free path at the wll my be comsiderably smaller
than the mean free path at the stagmation conditiom, the effeect of this
will be discussed in detall in Chepter IV).

For axially symmetrie hlunt bodies in supersomic flow,
the vorticity correction effect may have to be considered dus to the
presence of & .curved shock wave. At high Mach numbers, Lighthill's
sppracimation (discussed in the previous section) is reasonably accurate
if the nose outline and the shock are ooncentric. If this is not the
case, an empirically (cr otherwise) determined shock redius can be
used instesd of the nose radius. Equation (3.10) shows, that in
addition to redius R, vortdeity paremeter \ s also
dependent on shock density ratio e y Vhieh is & funstion
of U anda H  only. Thus the paremeter that determines the
mgnitude of the vorticity effect

vs:xlﬁiﬁi = VRE’,%&



is then campletely dependent cn U and H  with the exceptiom of
s factor of R
These considerations shar that it is possihle to plot on

e UV  va. H  chart famtlies of lines showing the magnitude
of all four of the significant paremsters, leaving out the effect of
body size as a multiplicative fastor of arbitrary megmituds. Such a
Plot is showm in Figure 3. The following families of lines are
shown

2,)%

¢ , therefore ‘% and V

LG,

VR [Z R

BY R

(3.1%)
The plot is based on the ARDC model atmosphere (reference 42);
real-gas effects are included in the calouwlations. The procedure snd
mmerical details are given in Appendix D.
Yor a given size body, the lines of Fgure 3 ean be used
to delineate the region of applicabdlity of the expansion procedure
of the present apalysis. All four of the expansion parsmsters have
to be less than 1.0 (actually unless they are less then about 0.3,
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the error camxitted in neglecting the msesond-oxder texms Ay be more
than 109). Inspection of the figure shows that at low subsomie
flight speeds the curvature (snd displsesmmnt) correction effects
became significant at a much lower altitude than the slip and
temperature- ump effects. On the other hand, at hypersonic speeds
the slip correction occurs at s simewhat lower altitude than the
curvature and displacement corrections. For spheres at hypersonic
speeds the vorticity correction effect is larger by oxders of
megnitude than the other tarms, especislly as the shosk demadty
ratio bescomes mmall. Also, if appesrs, tlat as the bousdsay-lsyer
and shock-layer thicknesses became of the ssme order of magnituds,
the altitude is already too high (smd lesnee the Reymolds mmber is
too low) for the applicability of e eqgmusion prosedme. A very
detailed and thorough discussion of the susesasive flow regimes
at hypersamic flow has been glven resently by Probstain and Kemp'>');
there is no need to reiterate these results here except to paint out
that the parameters plotted on figure 3 clearly indieate this
succession. The expansion procedure of the present amlysis is
applicable near the high-Reynolds-mmber (i.e., low-altituds) end
of this spectrum; especially for the axially symmetriec case, vhere
the vorticity "correction" becamss as large as the boundary-layer tem
itself at comparatively low altitudes, where the other corrections are
still mmall. At hypersonic flow then either the "exmet" solutions
for a sphere by Probstein and KEQ(B‘) or by Mnn(w) should be
used (becsuse the vorticity peremeter is too large for the spplicsbdlity
of the present expansiocn procedure); or, at low enough altitudes,



vhere the expansion procedure is applicable, only the vortieity

correction is significant, and therefore the "modified boundary-layer
solutions” (vhere the vorticity boundmy condition is & parsmeter) of
xemp('?), oguens ()
the "varticity-interacticn regime" of Probstein md Xewp'')). Figure 3

» and Hnrr.l.ng(") are equally practical (this is

indicates that the flow region where all four of the correction
effects are sbout equally large occurs in the supersoniec regime
(betwegmabout 2000 and 6000 ft/ses). It is on this basis that the
fluid properties used in the solution of the equations, as presented
in the next chapter, were chosen. The procedure for obtaining these
properties is shown in Appendix E. Ths body size will shift the flow
regimes on the altitude scale, but not on the veloeity seale, since
all parsmeters are divided by the square root of the significant length.



CHAPTER IV
Rmerical Results

Presentation of Results

The differential equations presented in Chapter II, with
fluld properties given in Appendix E, were sclved mmerically at the
Cornell Camputing Center by mesns of a Burrows 220 electronic computer.
Soms detalls of the camputing procedure are givem in Appendix G. The
results of the computations are destermimations of "zeroth-" and
first-oxder terms (i.e., boundary-layer and first-oxder scxwmeficn.terms)
for the noo-dimensicmal stresm function | and temperature function
« . In sddition to the functions, their derivatives, up to an
inclufing the highest that occur in the differential equatioms (i.e.,
the first three for ¥ and the first two for {k), were slso camputed.
The cbtained solutions were then used to detarmine some additiomal
quantities of practical interest. These quantities are the two
velocity components, the two mass-velocity components, temperature
and density profiles, and the variation of vortieity, shear (parallel
to the wll), and heat-transfer rate (mormal to the wall) in the
viscous layer.

Becalling the definitions given in (2.2) and (2.3), one

can write
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which Qefines V.. » Yo » W T, , T
Similar expression can be writtem for the density, by using result
(2.38) 1in (2.4)

s e 1B -l-iRY
s, 8 RA!, TS L
(%.2)
All the other quantities of interest can be written down
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A further breakdown of the above expressions cecurs vhen
the different effects vhich make \p the first-coder eorrectiom term
(as Asrived in Chapter II) are considered ssparately. To facilitate
this process, let the terms due to velocity slip amd temperature jump
be redefined as follows

K\&:) * (\’\1'\"\)&1;“’)3'”4 =K, l‘im. *(%") *\‘]

(4.4)
(It mxy be noted that the term marked Wy subseript L is due to
both the velocity-slip and temperature-jump boundary conditioms, and
the term marked by | arises not due to the temperature-jump
boundary condition alone, but rather due to the differemce between the
constants of proportionality for the velocity=slip smd tesperature-
Juxp boundary conditions to the respsetive gredients at the wll).
Using this definition and the results of Capter II the stream
function can be expanded as

"_E}u: M) ?; u %»\!V!u* ”1*_ );;FK\[%—:+(£-\)%-«]*NJ%%‘; =
%
= dox —‘i\;i b *'('Tt y‘;‘\m*'% %: WK, ‘_*‘&*(%\“)*“1 +WI; "

(%.5)
All the quantities in (4.3) cen be written dowm in like manner. E.g.
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= {':’ "A. "-\i& {Ms*:c + *;'%N—'“"A‘O“O]*?_J?‘ {*40"‘0"4‘““"} +
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(4.6)

ete.

The results of the mmerical calculations are given in
Tebles I and II. Table I gives the "incompressible” (i.e., constant-
flutd-property) results; the boundary-layer term (given for reference
only), curvature-correction term, displacement-correction term,
velocity-slip and tenpenmm-_:h-p term, and the vorticity-correction
term are tabulated in that order. For each term, the two-dimensional

(n=0) and axially symmetric (n=~i) results are tabulated

subsequently, except for the vorticity correction term vhich exists
only for the axially symmetric case. The appropriate differential
equations, boundary conditions, and foramlae expressing all the
quantities listed in (4.3) are given as a couvenient reference at
the appropriate sections of the table.

A similar tebulation for the "campressible" (i.e., variable-
fluld-property) case is given in Tsble II. Results are shown for
the W = 0.75, 0.5, 0.25, and 0.1 cases. The W = 1.0 case
is identical to the "incompressible” result (cf. Appendix F). To
illustreate these results, velocity and temperature profiles have been
camputed and are plotted in Figures 4 and 5. Showm are the unscorrected
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boundary-layer profiles, boundary-layer profiles corrected due to the
effect of curvature only, displacemsat effect only, velocity slip and
tempersture jump only, and vorticity effect cmly. For each case, the
pertinent expansion paremster was assumed to be 204; e.g., for the curve-
ture correction only profile (/= U, + 0.2 U ete.
For the velocity slip and temperature jump correctiom term the paremeter
was assumed to be 1.0, which is the right orier of megnitude. To exphasize
the effect of campressibility, c&iuu reatio W=,/ was chosen in
these examples. The obtained curves are shown in two separate groupings.
In figures La and Se, the velocity and tempersture profiles respectively
are grouped together according to the type of correction that is (or is
pot) considered. Thus, separate groups are given for the boundary-layer
profiles only, for boundary-layer profiles corrected for curvature omly,
for displacement effect only, etc. Each group of four curves then brings
out the difference between the two dimensionsl snd axially symmetric pro-
files for botk the incampressible and compressible (i.e., constant~ and
variable-fluid~property) cases. In the second grouping (Figures 4b and
5b), the profiles are grouped together according to the type of flow, i.e.,
all two~dimensional incompressible profiles are shown in the ssme group,
etc. This grouping then brings out the differences between the various
correction effects, compares them to. each other and the uncorrected (i.e.,
boundary-layer) profiles. The large increases in fluld velocity snd
temperature at the wall dus to the velocity-slip and tempereture-jump
boundary conditions are especially noteworthy for the compressible case.
This large increase is due mainly to the terms with the subscript in
equation (4.4), 1.e., to the terms arising from the 4ifference between
constants of proportionality snd . The resulting velocity
snd temperature valuss at the vall are (according to the curves of



Figures k&, 5) nearly equal to, or slightly exceeding the free-stream
values; also, the profile slopes at the wall appear to reverse sign.
Such & large change cannot be expected to oeccur in the actual flow;
it shows that for the parsmeters that were assumed wW=0.l, ”}A"-p\
theexpun;ionprocedureorthepremtml cannot be used any
more if the velocity-slip and temperature-jump expamsion paremeter

A —— —
J}’-’Ar s VW, is 20% or larger.
c s

Ao,

The quantities that are of the most precticsl interest are
the shear and heat-transfer rate st the wall (4=0) . Table
III gives these quantities for the remge of cooling ratios that were
employed in the calculations. The heat-tremsfer ratas are expected
to be very much dependent on the temperature difference bhetween the
free stream and the wall, 1.- |w . A &rect
proportionality of wall heat-trensfer rate to this tempermture
difference is usually assumed; then, in oxder to properly normalize
the non=dimensional wall heat-trensfer rates, they should de
divided by the quantity |- W . The heat-trwasfer retes are
therefore given in this normalized forwm; they are equivalent to the
usual boundary-layer-hest-trensfer paremeter N i vhere

Wi 1s the Nusselt number. A plot of shemr and heat-trensfer
rete versus cooling ratio W  is given in Pigures 6 and 7
regpectively. For the boundary-layer term, it is well knowmn (e.g.
neu(al)) that the shear is not very sensitive to the presence or
absence of cooling, and the normalized heat-trensfer xete is even
less s0. This is true in spite of the fact that there is & sharp
increase in the slopes of the velocity and temperature profiles near



the wall for the variable-property-fluid case, but there is a
correspondingly J.u:ge decrease in viscosity and heat conductivity
in the cold=gas layer near the wall. The net effect is & moderate
decrease in shear for mmll W (1.e., strong eccldng), and
an insignificantly small decrease in heat-transfer rate.

Discussion of Results

Among the correction effects that were comsidered, the
behavior of the displacement term parullels that of the boundary-
layer terms, as could be expected from the close relationship
between theam. Both the shear and heat-transfer rete are increased;
this is in accordance with the sign convention thst was adopted,
vhich implies that the increase is due to the increase in veloeity
gredient A . (It may be noted that in most cases A will
decrease due to the displacement effect of the boundary layer, thus
the sign of the dlsplacement coefficient will be negative, and in
reality there will be a decrease in shear and heat-trensfer rate.

For very strongly cooled compressible boundary leyers, it is,
however, possible to have negative displacement thicknesses,
implying an apparent "shrinkage" of the body, thereby incressing A
and the shear and heat-transfer rates likewise.)

The curvature effect tends to decrepse the shear at the
stagnation point; this decrease becames smmsller for mmall cooling
ratios. The heat-transfer rate is affected differently by
curvature for the two~dimensional and axially symetric stagnation-
point flows. In the former case, the heat transfer is decreased, and

1
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almost completely unaffected by the ecoaling retio. On the other hand,
for the axially symmetric case the hsat-transfer rate is increased

by cwrvature; this increase becomes mmller forr mmmll cooling ratios.
There is no simple explanation for these curvature effects; they
arise fram the inhamogeneous terms in the expended differential
equations, and also from the modified boundary conditions in the
inviscid "outer" flow. For example, it is appsrent by inspection

of the velocity profiles of ngm 4, that the negative slope of the
inviscid profile has an effect on the entire viscous layesr. Ancther
effect 18 the different pressure gradients experienced by adjacent
layers of fluid in the viscous layer, due to the centrifugal pressure
rise across the thick curved layer. There are many other terms in the
Navier-Stokes equations that contribute to this effect; no attempt
has been made to identify them separately since the effects alweys
occur similtansously.

Direct comparison of these curvature results with other
theories cannot be made for the sphere, because the fully viscous
shock-layer theories (references 13, and 31) include the displacement,
curvature, and vorticity effects simutanecusly, and for the shock
density ratios employed the vorticity effect predcatinates. However,
for cylinders, where the vorticity effect is of second order,
Hoahizaki 's{'5) theory shows an incresse in heat-trensfer rate st all
Reynolds mumbers, even the large ones (where presumahly the second-
order effects should be insignificant). This is contrery to the
predictions of the present. analysis, according to which the first-order
corrections that were implied in the fully-viscous-layer theory,



namely the displacement and curvature effects, are both negative, i.e.,
they wvill tend to reduce the heat trmnafer instesd of inereasing it.
Bxpansion of Hoshizakl's equations in the expansion paremeter of the
present analysis, ‘-%. s resulted in the ssme equations that
were derived in Chapter II, above. It was not possible, therefore,

to resolve this discrepancy betwsen the theories. Comparison with

the experiments of Tewfik and Giodt(ho’m)

seems to imply that a
reduction in heat transfer due to curvature, rether than an increase,
is in better agreement with experimental results. (A more detailed
discussion of comparison with experiments follows in a subsequent
parsgreph. )

In agreement with previous reports (referemces 13, 19, 31,
etc.), the existence of vorticity in the inviseid flow (to the first
order present in the axially symmetric case only), tends to increase
both the shear and heat-transfer rates. This increase is appreciably
larger at small cooling ratios.

The behavior of the termm due to slip and temperature Jump
at the wall is eepecially interesting. The expansion peremeter for
this tem (cf. Chapter II) is essentially "% , the mean
free path at the wvall divided by the boundary-layer thickness
parameter. The term contains two separate effects; one effect
arising vhen K =K, , the other arising due to
the difference between these two constants. Considering the

K, =W, effect first it bas already been noted
(cf. equations (2.39) and subsequent paregreph) that this term
leaves the wall heat-transfer rate unaffected. Similarly, using the
known identities for the correction functions (e.g. 4.k) in the



expression for the shear correction (4.3), and comparing with
boundary-layer equatica (2.63) one immedistely obssrves that &« -!
at the wall irgespective of W

The other slip and temperature-jump effect, the tem
proportional to (.~ &) , affects both the shear and
the heat-transfer retes at the wall. The shear is increased; the
increase varies from O to large values as W varies from 1 to
saall values. (The uncooled wall also represents the comstant-property-
fluid case, in this case K; can have obviously no effect on
the shear since the momeatum and energy equations are not coupled).
But, as W/ becomes small, the mean free path near the wall,
vhich determines the amount of slip, and vhich appears in the
expansion perameter, also becames small, since the cooled gas near
the wall is more dense. It is of interest to find the combined
effect of strong cooling on the two competing effects: +the increased
correction function and the decreased mean free path. 8ince

A < g‘}: one may write
‘l?k)
Ly P =4s kv b 1Ty 473-\»/& Ty
6?:'1- & ‘ist"‘ s Jag SwiTw Y $
The quantity W& %,(0) 18 plotted in Figure 6;

the graph shows that as W  changes fram 1.0 (no cooling) to O
(strong cooling), the quantity increases from O and then appears to
[ ]

approsch & constant value for very small w . The combined
effect on shear of the "slip and jump" term 1s then an increase for
strong cooling, because a8 W —> 0 , the wit? To term
daxinates; whereas in the regiom near W =1\ the only
significant effect 1s the tem  CX = _| , and the shear

Trat
is thus decressed.



The wall-heat-trensfer-rate correction effect, 0Q,,(0),
shows & behavior similer to L, (0) « The effect tends
to decrease the heat-transfer rate; as W becames very small

{vw

the decrease beccomes excessively large. But if the quantity W' Q,(0)
is plotted, it remsins reasocnable in magnitude throughout the

entire range of W . 'These observations indicate that

for the effect that is under consideration, namely, the correction
arising due to the difference in the constants of proportionality

for the velocity slip and temperature jump, K, and K, , the
proper parsmeter that determines the order of megnitude of this effect
is not 7‘“7,5 , &8 was formerly supposed (e.g. references 9, 31,
etc.) but rather 25/5 . This implies that the reduction in
heat transfer at the stagnation paint of a blunt body due to slip could
be significant even for the case of strong coaling in hypersonic flow.
Just how large this reduction may be in different flight regimes is

indicated by the lines of constant s/ plotted in Figure 3.

Comparison of Results with Experiments

It 18 finally of interest to compare the mmerical results
presented in this chapter to experimentally determined properties of
low=-Reynolds-number stagnation-point flow. For a particular
experiment, it is mecessary that the appropriate flow paremeters,
Reynolds number, stagnation-point velocity gredient, mean free path,
etc., be known, andthenthenshtuoftlnpnuntmlyuumbe
applied to predict the flow properties. In one series of experiments
Neice, Rutowski, and M(ZG) measured heat~-transfer rates at the

T
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blunt nose of a hemisphere cylinder placed into a lowdensity
hypersonic shock tunnel. But these experimental results are not too
well suited for comparison with the present analysis. The reason for
this isc partly the difference between the fluid properties of the
present analysis and those of the high tempereture dissociated air
of the shock tunnel. This difficulty could be overcome Wy taking ratios
of the theoretical low=Reynolds~mumber and boundary-layer results, and
then applying this ratio to avallable dissociated-air boundmgy-layer
solutions to obtain a reasonsble theoretical prediction, whiech could
then be campared to the experimental results. (This was the scheme used
by the authors of the experiments, who compared their results with the
constant-fluid-property, "exact," viscous shock-layer solution of
reference 13.) A more serious difficulty in using these experiments
as a basis of camparison is the predaminance of a very large vorticity
effect, which puts the results beyond the reasonsble validity of the
expansion procedure of the present analysis.

For cylinders, an extensive series of lowReynolds-number
flow measurements were performed by Tewfik and Giedt(ho) ’(M). These
experiments were performed in the Machenumber range of 1.3 to 5.7,
and vith low temperaiure (and therefore non-dissociated) air. Thus
the fluid properties that were used in the present snalysis are
exactly those that are applicable to these experimental conditions.
Furthermore, for the range of flow parmmeters that were employed
in these tests, all significant low-Reynolds-mumber effects are about
equally large, sufficiently large to be important, yet not large
enough to preclude reasonsble applicability of the expansion
procedure of the present analysis. For thess reasons, & camparison of
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the experimental results with the present theory seemed especially
appropriate, and was undertaken in detajl. The pertinent calculation
procedure is described in Appendix H; the results of the calculations
are presented in Table IV.

The free-stream Mach mmber ™M ., , Reynolds number
o (ranging from 37 to 4100), and the wall-to-stagnation-temperature
ratio W (ranging from 0.2k to 0.7h) are the independent parameters
vhich are the input necessary for application of the theory. In
addition, the stagnation~point velocity gredients were also measured

2
and recorded; from these the significant Reynolds mmber, %;2\

(bmsed on stagnation fluid properties) could be calculated. The
inverse square root of this quantity is the expansion paremeter of
the present theory; it determines the size of the curvature correction.
Both of these quantities are tabulated in the table, the former
renging from 25 to 930, the latter from 3.3% to 20%. The quantity

that 1s significant for the velocity-slip and temperature- hump
A w

Vi N

effect,
1.8% to 14¢.
Based on the above information, the theoretical results

» 18 also tabulated; it renges from

discussed earlier in this chapter were used to predict stagnation-
point heat-transfer rates. Predictions were based both on the
constant=fluld-property and the variable-fluid-property theories.
Curvature and velocity-slip-temperature=-Jjump corrections were
considered. No other lowReynolds-mmber effects ocour since there is
no first~oxrder vorticity correction for cylinders, and the effect of
boundary=-layer displacement on the external flow has already been



Th
accounted for by using the experimentally measured velocity gredients.
The predictions are presented in texms of a comparisom to the heat-
transfer rate based on uncorrected constant-fluld-property doundary-
layer theory, viz.
Qoid @2

(G-wik T, /5

All the corrections that were calculated, are shown in

— 0.5\2%

Teble IV, as a fraction of the above mmber, in the following

order: incompressible curvature correction, incampressible temperature-
Jump correction, total incompressible correction, compressible
boundary-layer correction, compressible curvature, temperature-jump,
and total coampressible corrections. ‘The experimental results are
presented on the same basis, as a deviation from the prediction of
incompressible boundary-layer theory.

The tabulated predictions indicate a reduction in heat
transfer due to all the effects that were considered; the reduction
is larger in the campressible case, especially for the temperature-
Jump term. However, the experimentally meesured heai~iransfer rates
uniformly differ from the incampressible boundary-layer prediction by
sigﬁﬁ.ca.ntly larger amounts than either combination of correction
terms predict. In order to investigate the possibility of a
relation between this discrepeancy and the displacement effect,
displecement coefficients  (yp were calculated for all the
podints. The calculations were based on comparing the experimentally
cbtained velocity gradients with the high-Reynolds-mmber velocity
gredients given by Reshotko and Bechl:lth(33) (of. Appendix H.) There
appears to be no relation, nor do the cbserved discrepsncies shov any
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other obviocus regularity. Tae discrepancies then remain unexplained,
pending further comparison with other experimental zesults. Neverthe-
less, it can at least be ascertained that the predietions of the theory
show the same trend as the experimanxtal results; nsmely s reduction
in heat trensfer. This is signifioant vhen compared to the predictions
of references 15 and 31, which show an increase :l.n stagnationepoint
heat-trensfer rate for a cylinder at low Reynolds mmbers (these calcu-
leations maglected the decrease due to velooity slip and temperature

Jump. )



APPRMILX A

Derivation of the Equations of Motion
The Navier-Stokes (momentum) equatioms for steady flow can

be written down in vector formm

g (ot §)xF + hoqect ] #aradtp o § qeod (pbivd) +

b ok (e ) - T ¢ opradie ¢ e - A ot '“"‘““Q*‘T(A )

A general orthogonal coordinate system can be defined by

the directions
> -y >

"I)a'&,b.}

with coordinates

Xo ) ¥e s Xy (a.2)
and metric functions
h\ ) Mf_ ) h}
Let ¥, = constant define the planes of symmetry of
the flow field, so that the derivatives - of all

quantities vanish. For this cage, & campressible stresn function
can be defined by

(a.3)
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which identically satisfies the contimiity equation for stesdy flow.
Substituting (A.2) and (A.3) into (A.1) and using vector algebrs, the

-
e, component of the momentum equation can te written down
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Similarly, the 2, component becomes
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For the special case of a "polar" coordinate system the
coordinates and metric functions are

X, =€ x,= (1-w)2+ny | z_,sﬂ'
b=t W= Cenim®) ) =

(A.6)
is the plane two-dimensional, and " = | the
axially symmetric case.

vhere n= 0

(These are the conventiomal cylindrical

and spherical polar coordinate systems respectively). Using (A.6)

in (A.4) and (A.5), and performing all the algebre, the two momentum
equations become
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in the r direction, snd
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(ACB)
in the & direction. The subseripts v and S  denote the

respective partial derivatives.
Now the energy equation for steady flow can be considered.

In vector notation

sl qrodT - Frgode = diw ko qedT +/~U"(ql) +
R B
et = 2bi ot ) 2o e - § ()|
(a.9)



Expanding in temms of the genersl coordinste system of

(A.a), the energy equation (A.9) becames
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Expanding in the "polar" coordinates of (A.6), the equation

(A.10)

becames

CP(W'T“ —U(._T,) * \'5 L\v‘? Pr - Wv ?&‘:‘(3’."‘3}“ K_“N“ &'T r** “’L-" b

+ (e e” kT¢+ s \.T»i—r“‘h{‘ -\-“w}s— “-‘LT.]‘*}"E

(A.11)

where @ is the dissipation function.
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For future reference, the expression for voeticity in the
general coordinate system is

D,zald = "‘M"‘k‘“"da\! -‘-“\'L(WS)"("“L:‘%M'LMWL:‘! =
2 he S e 38 he

\ i \ '
(A.12)
For the special case of the “"polar" coordinate system of
(A.6)
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APPENIIX B
Derivation of Boundary Conditions at the Solid-Oms Interfuce.
The boundary conditions for a gas flowing along a solid
body can be derived fram the kinetic theory of gases, and are given
by many suthors, e.g. Schaaf and Mbre(36)u

|

b= 0 (B.1)

-

P 2
u(o)—.;"-_di),ﬁ[ +
21

e

1%
b
4

T(o)-Tw.—_%_‘.'i‘- ¢r L Pl AN

da TN 3y \5‘0 (3.2)
vhere the same reference givesithe memn free path in terms of the
fluid properties, as follows:

—~ PT- 7 W _ ™
A= = = ’——- -
2 o 2@ ‘

In addition, the no-through-flow boundary condition can

vi(oy=0
(B.4)
These expressions can be applied to the stagmation-point
flow that is being considered by substituting into them changes of
varisbles and expansions (2.1) through (2.7). To fimd U (2.2) ana
(2.4) can be substituted into (1.k4).

u= Ax{{"'w‘i"i [i—;- —-E—L- - g—g]h..}

(2.5)
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Differentiating once one obtains
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(8.6)
Similarly, the expression for A becomes
. U {" ( MM to “’0 x‘-
3 = =0+ PR {%. + ;&‘ [;.- "\l‘t - o ]?}
(3.7)
The QI term in the slip velocity is of order ,

o
and hence, will not contribute to the order 1 and order )

that are being considered. Equation (2.3) can now be used to find
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(8.8)
and finally equations (2.3), (2.4) smd (2.7) to express
[ | 95 "‘v #‘
A= J—c-». {u,h +‘iF§{ET T
—_ ko (_t o N
k,( Tue T {v.%i")] * }
(8.9)

Using (B.5), (B.6) in (B.1), snd eguating like powers of
Reynolds-mmber pAremeter w3 , coe cbtains
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and (using this result)
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Similarly, using (B.7) in (B.4)

*0(0) = 0
‘}‘ @»=0
) Finally, (3.8) and (B.9) are used in (3.2)
“oko) = 1._-‘;:‘5 2 W
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Since (B.13) shows that Mg (o) = Jow
expression can be rewritten as

(8.10)

(B.11)

(B.12)

(3.13)
, the last

(8.14)



APPRIEX C
Neerical Solution of Inviscid Hypersonic Flow Mear Stagmtion
Points of Sphere and Cylinder.
The first step in the mmerical solution is the solution of
equaticn (3.7), vhich relates 4 to e . For the case of
the cylinder, the solution can be obtained grephically by writing the

equation in the form

c

I\ ‘f_' e-'
co=% %l

The functions on the two sides of (C.1) were found

(c.1)

mmerieally as functions of their respective arguments with the aid
of Bessel~-function tables and then plotted on the same gruph.
Corresponding values of the two arguments were them found gruphically,
from Which the corresponding valuss of 5 e & were
camputed. These results were then used in (3.10a) to calculate the
velocity-gredient peremeter. '

For the sphere a similar procedure was fallowed, exsept
here a graphical solw ion was not nesessary siree (3.7) is a quadratic

in € » and can be solved amalytioally

2 N 3
‘ - ao(\,%)ﬂ \of(ng_)s,,(n%) #00(t§ )+ 100 (w &) -520(1+ 2 )-100

6+24(1+%)°
(‘ i k) (c.2)

The result of this solution was again used in (3.10b) to
cbtadn ‘ivﬁ and VR  for the sphere.
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APPENIUX D

Calculations of Flov Parameters at Various Flight Speeds
and Altitudes in the Atmosphere.

In order to calculate the flow parameters that are of interest,
the following tbhree quantities have to be calculated at various flight

speeds and altitudes; kinematic viscosity Vi and mean free
path  Ag , both at the (inviscid) stagnation point, and
(for supersonic flight) e » the shock density retio. The altitudes

wre“chonn at 50,000 ft. intervals, starting at 150,000 up to snd
including 400,000 ft. The flight speeds were grouped into three

regimes: (1) perfect-gas regime, 10, 100, 1,000 ft/sec., (2) nom~
dissociated regime, 3,000 ft/sec., and (3) real-gas regime, 7,000,
(42)

10,000, 20,000 ft/sec. The ARDC model atmosphere was used to find
the free-stream density, tempersture, sand speed of sound (the latter
by extrapolation at the two highest altitudes). The standard reference
temperatures and densities of 7 staniard = 518.69°R and
P stantard = 2.3769 x 1073 %;?5‘; were used.

Different calculation procedures were used in each of the three
regimes, as follows.

In the perfect-gas regime, the free-stresm Mach number was
determined first; then, using Y: /.4 » standard compressible-
flow tables (e.g. reference 1) were used to find stagnation thermo-

dynsmic properties.
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At 3,000 ft/sec. Ksuman's{'®) taples (based cn the Beattte-
Br.ldgmn equation) were used to determine the quantities of interest.
The tables give shock density, temperature, and pressure ratios, shock
Mnch‘mmber, stagnation temperature, and pressure directly as functions
of free-stream Mach number and altitude. Perfect-gas relations were
then uded behind the shock to determine the stagnation density from the
known shock thermodynamic properties and the stagnation pressure and
temperature.
In the real-gas regime, Kochstim's(la) chart was used to

ripd the temperature behind the shock, and the density ratio across,
and We density behind, the shock at the various flight econditionms.
Feld!nn's(?) Mollier diagram for air was used to determine the effect
on these thermodynamic quantities of the isentropic compression behind
the shock. The enthalpy change during this compression could be determined
sin'cé the velocity after the shock was known from continuity considerations.
(Same care had to be exercised in using this multiplicity of charts,
since both Hochstim's and Feldman's reference conditions are slightly
diffgnnt from those of the ARDC atmosphere). Compressibility factor

Z_ at the stagnation point could also be determined from the
Mollier diegram.

(10) calculations were used to determine the

Hansen's
viscosity at the stegnation point as a function of temperature and
(at high temperatures) of pressure. (A graph of stagnation pressures
at various flight velocities and altitudes is given in the same
reference), Schaaf(37), and also Mulen(25 ) use the following

expression to calculate the mean free path



_ D = 2
A__|.255m _o.oz«w’rz_._F for air

vhere ) and T are in units of £t°/sec. snd °R respectively.
Constant 1.255 = (T sbove 1s less then 2§ different
from1.28 = b , vhich is used by Hansen('®) ant
Pltt.rm(w).

Using the above procedures to determine Y. , A,
and e ; and using Figures 1 and 2, all the pareameters given
in equation (3.14) could now be calculated at the various altitudes
and flight speeds. The curves of Figure 3 were thea obtalned by

means of cross plots.



APPENINX E

Calculation of Power laws for Variable Fluid Properties.

Bansen's{'®) tables were used to determine the specific
heat, viscosity, and heat conductivity as functions of temperature.
These results were plotted on log-log greph paper, and tangents to
the curves were drawvn at various temperatures. The results were
as follows: .

For specific heat, ¢ < Td

oL = 0,1kl
Yor viscosity, s =—1°

at 500°K w = 0.661
at 1000°K w = 0.608
at 2000°K w =0.562

For heat conductivity, h. T~

at 500°K e=0.785

at 1000°K &= 0.702

at 1500°K £=0.6Th

The Prandtl nmumber at four representative tempermtures is

glven as

K Pr

%00 0.738
1000 0.756

1500 0.767

2000 0.773
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Considering 1200°K as the desirable median temperature for
the range under considerstion, and neglecting the small varistion in
Prandtl mmber, the following properties represent am optimm "fit;"

Pr = 0.76

*x=0.11, W=058 &E=o0.69



APPENIIX ¥

Derivation of Equations for Constant Fluid Properties

For the case of constant fluid pmportio;, the analysis of
Chapter I and II is modified. The perfect-gas oqu;tim of state is
replaced by § = constant, and the temperature-dependent
viscosity, beat conductivity, snd specific heat are replaced by
constants. Thus there will be no coupling between the momentum
and energy equations; the momentum equation caa then be solved first,
and, using this solution, the energy equation subsequently.

In the inviscid-flow solution of Chapter I result (1.9)
was derived from the energy equation omly, and hence remains
unchanged; likewise results (1.13) through (1.20) are all derived
from the momentum equations only, and therefore also remain
unchanged. The former determines the first term in the
temperature expansion, the latter all the terms that were considered
in the streun-mncﬁion and pressure expansions. These results can
then be used unchanged, as they are presented in equatioms (1.22),
(1.24), and (1.25); these furnish all the boundary conditioms that

are necessary for solution of the viscous flow

g =A™ Ly o™ any) %l*"']

A v o,
T:TS’ a{_ﬁlf)ﬂ'w(}) ]

- : s a\ia :l— ,i?*‘“‘ .
P = P~ SA {(‘ ") p) + 2 * J @.1)

9



Jor the viscous flow the differential eguatioms bave to be
modified in acoordence with the comstancy of fluid properties

b=t =20 | g 20, eke
o Jo k..
AL L T

(*.2)
These results can be used throughout the amalysis of Chapter
II; e.g. (2.9) through (2.12) become

k, =0

k =0

%; =0

B g2

G o=t (r.3)

The first three of these equations can be integrated immediately
as in (2.27), since the boundary comditions given by (F.1) remain
unchanged

koo = |
fp, =0

£e: o, = -

SA‘ (!‘.h)

Using (F.2) and (F.k), boundary-layer oimtim (2.14) and
(2.17) become

Gen)do io- o +i+{>;"==0

Tem) Lo lho + $o =0 (r.5)
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The boundary conditions at the wall were obtained from kinetic
theory, and remain unchanged, as given im (2.20). Simce the inviscid
flow, given by (F.1), is unchanged, (2.25) is equally spplicaeble.
Sumarizing the boundary conditions then

*o(\)) =0
l

$olod = 0
(=W

Wy ! (r.6)

it
4;.0 (1) -

The solution of (F.5) subject to (F.6) can be performed
in two steps; the momentum solution is Eiemenz's snd Ecmammn's
classical result for the two-dimensional and axially symsetric
cases respectively, as given for exsmple by 8<:hl:tcnt:'.n¢(38 ). The
energy equation is linear, and can be normalized with respect to the
arbitrary temperature ratio, by setting

Ko = W+ (1= w) %(q)
(r.7)
so that

e (ew) *., 9! + ¥ =0

S(m=0

1> o Qog) = | (r8)



The solutions of (7.8) can be written dowm in the fom of
the following integral

5 (wnﬂrf ﬂi)‘(-f Lt

g =
{e-(wnﬂ»rf‘ﬂ(g)i,i J,t
0 (r.9)
Tabulated values for 92('1) are given for a range

of Prandtl mmbers by Gaoldstein @) and m(u) for the tvo-dimensiomal
and axially symmetric cases respectively.

The equations for the correction terms are obtained bWy
using (PF.2) ia (2.15) and (2.18). Comsidering momentum equatiom (2.15)
first

(¢ h)*. {-,“ +(\n\)-)(: {-. -24;{-: | = 'l{(?.nu)[(\m)% *. -

- *“’L] + |+ V\*;”} b(h-l){'o\'; *(V\-l)%‘; N az%-%'

Using (2.47) and (2.49), the above expression becomes

Mo  (A) 20rmde b - el g rom b+ =M () -26=

= (& - CRAN ]+ L (& v2ndds +c~m>7*]-2la

24n

(r.10)
vhich defines operators MW_ and ML\-....

o
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The remark made sbove concerning the boundary conditions
for the bomdnry-luor terns is equally applicable to the first-oxder
correction terms -{,. emd o ¢ ; bot the wall and "outer"
boundary conditions are unchanged from the varisble-fluid~property
case. At the wall, from (2.35)

£ (0)z0

710 =K %’ fw 4 )

’04'(0): KZ_% % thl(o) (r.11)

As for the varisble-fluideproperty case, the linearity of
the equations can be used to separate the various "effects," implied
by the arbitrary constants appearing in the boundary conditions. Using
the results of Chapter II then, the equation and boundary conditioms for

the curvature term are

Mm (1["> = Méym_
fe (0)

U}
O

aH
P
Q
~
L]
O

(P.12)



Mie (L) =0
i () =0
{7:»(0) = 3(';(0)

""’9 20 "“"ISL("’) b 4 0

(r.13)
The solution of (F.13) is
L = ')"o
(F.14)
The displacement effect is determined by
M\w, K&\)\) z - L
’Y\b(o) =0
{
Yot =0
'vl’-) Q
(F.15)
vhich has the solution
ko = 3 (horgdt)
(?.16)

Finally, for the vorticity effect one can write



Fmally, for the vorticity effect ome can write

M\/wr, ('g'\v) =0
'&‘\v (o)

*\‘\l (0) =

0

t
o
'

’7"”' ) *w(’])“"‘(”."“)*) #.17)

The correction term for the stream function can then be written

1&‘: L, + 2 kY WK }. . -(\.»1{ Y+ a by

&= P
(r.18)
The equation for the tempersture-function correction term is
obtained by using (F.2) in (2.18)

. 9 e {a \W *{A:' = = (Qrn) {_vl l(: f,\ﬁ‘o#’?-«-{hzx}‘]

vhere the function {'\ , a8 given by(r.IB), is now & known function
cobtained from the sclution of the momentum equation. Defining

Q- W)S\ =‘xAI

(r.19)
and using (F.7), the following differential equation is obtained for
3’, , (permitting solution for all values of W )

Q—r () &‘, 5\‘ + 3\“ = Ehw‘) == (‘\ﬂ\)hgz + 9; +"«r9:{-‘]

(r.20)



which defines cperstor [C.. . The boundary conditiemw for
A, , are obtained from (F.11)

AL !
s’,(t?) =6 -):’W Kzso(-o)

3
7.9 o 9‘ (n) = 0
(r.21)
Due to the linearity of (¥.20), the four "effects” can again
be separated. The equation and B Mary conditions for the curvature

term are
1]

E‘;ﬁ (‘3\(.) = -(_\«—v\)gj‘ 90 *3:2 +’%"%L *\«.-_‘

.0 =0
S )
/?-QDO \ \C ("1) g (1.22)
For the siip and tempersture-jump effects
Eie (M) = tew K Lo 3
\
%\5 (0) = Wago(o)
’7‘30" : 9\5(1\ - 0
(r.23)

The solution of (7.23) can be written down by inspection

D= K 30+ (Ky- %) D (o) (- 3)

(r.24)
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The equation and boundary conditions for the displacement effect

term are |
o (By) = - etendy Btk
S'\9(0) = 0
(dal 9\»(")) — 0 -
vhich has the solution
y = 1
\3 e_
(r.26)
Finally, for the vorticity tem
E\‘«M, (&\J) = —QV\,L-%J*N
'&\V 0y = 0
7-)00 \ '9.\4("“ —y 0 (r.a.?)

The entire temperature-function correction term can then
be written

*"\ = (- W) {9\0’ :_——i l;-i ™ &K\SL +(Ka~K‘)§,(o)(\~3,\]f %79'.4} V\KVBN}
(r.28)
This campletes the presentation of the differential equations
and boundary conditions for the constent-fluld-property cesé. It is of
interest to observe that thess constent-fluld property solutions are
actuslly identical to the varisble-fluld-property solutions for the
special case of W = | . This is cbservable by inspecting (2.66),

and noting that M, =\ 1s the solution for this special case.
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Using this result in the equations of Chapter II reduces these equations
to those of the present appendix.



APPENIEX G
Machine-Computation Procedure

The differential equations with boundary conditioms that
were solved by the Burroughs 220 computer can be described as a
tvo-point boundary-value problem. For the boundary-layer case
the equations are nonlinear, for the correction terms linear.
The computer's first~-oxder sindtmm&dittgmtid—emtim
routine (vhich uses the Runge-Kutta method) was applied to the
problem. Three pairs of starting values (for %U(o) and ¥|(°)
were assumed, and then the (inviscid asymptotic) behavior of the
functions at Y = 7  was used to cbtain successively better and
final starting values by means of double interpolation, vhich was
programmed on the machine. This procedure was then successively
repesated with the decrements of f? halved, until the final
starting values did not change.
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APPRNIIX H

Comparison of Theory vith Rxperiments of Tewrik and ateat(*0)s(¥1),

The two references that describe the above experiments are
(40) and (41); in this appendix they will be referred to as Parts I
and II respectively. The following calculation procedure was used
to compare the present theory with the experimental Nusselt mmbers
presented in Teble XI, p. 55, Part I. Pirst, the velocity gndim
at the stagnation point hed to be determined. This was done by using
the experimentally determined values given in Teble A6, Part II. )
Using the definitions given on p. 9, Part II, the relation between
the nomenclature of the present analysis, and of Tewfik and Giedt

is the following

~ !

AR

T (o)

e
"

(8.1)
vhere ¢€ is the density ratio across the shock. In the Mach-
mmber range coasidered (1.3) to 5.7), and around free-streanm
pressures of 1077 atmospheres (in agreement with the "lov" stegnation
pressures of 80-120 microns, mentioned on p. 14 Part I) numn(le)
indicates that the perfect-gas formulae are sufficiently accurate to
calculate the flow. For air  ~ =4  can be assumed, and then

€  and the Mach mumber after the shock can be cbtained from

M. . PRurthermore after the shock an isentropic compression
takes place, for vhich 50‘"’;"-‘ =T , and the varistion
of viscosity with tempersture cen be assumed to be h =T
Then the Reynolds mmber that is of interest in the present analysis
can be related to ¥, given by Tewfik and (Giedt as follows:
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~ 17 )

LK:A‘R‘_ZCJ- Asuex fi_ = MAF}_ >: ze_@l:?i M2 M 57

)g 2ReV M, ﬁm‘r 4 Hock 4 SHEK
(u.2)

Teble V of Part I shows that the recovery factor is always
almost exactly 1.0 at the stagnation point, indicating that the
sdisbatic wall temperature, |..  , vhich forms the basis of
the experimental Nusselt mumbers that are presented, is almost
exactly the same as the stagnation tempersture, |, , which
forms the basis of the heat-trsnsfer formulae of the present
analysis. Then the non~dimensional heat-transfer rate of the
present analysis cen be related to Mw, of Tewfik and Gledt

as follows:
______.—-——Qw = _____-'\L"' b (\_:5_:11_} = N V—’ \ 0.85
- - LMY T TR A (\ 0‘2-“?;..\\) '
ow)m’,/ﬁ,_‘ 2R C-b/3 2 R .

(8.3)
vhere it vas assumed that during the isentropic compression from the
shock to the stagmation comdition b <V °%° . fhe experimental
result obtained in (H.3) can then be compared to the theory of the
present analysis, as given in Chapter IV. The displacement-correction
term will not have to be considered hecause the experimentally meagured
velocity gradients already include this effect. The paremeter defining
the magnitude of the curvature correction is the inverse square root
of the Reynolds mmber given in (H.2). For the slip and temperature-
Jump correction term, the parsmeter that is significant is the ratio
of the mean free path at the wall to the boundary-layer thickness:
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A 2.2 _[F A ?-_'_‘...‘_.—L{th:g_s_j'f‘ﬁ}_}(g
T e S RT, & DA RiA Mg iT R

(B.4)
Temperature ratio \W  in the sbove expressions is

tabulated in Table A5, p. 56, Part II. Viscosity ratio ’_“‘:‘:
was related to W by using the viscosity vs temperature variation
given by Bansen’'®) and (at the lov temperatures) by Jakob''"). ¥or
a stagnation temperature of T = 300K (p 3, Part I) a good
approximstion for this viscosity variation is Mo T
near W03 s A <T"” pear W:07
Nov all quantities in (E.4) are known except K, . A reasonable

guess (e.g. references (36) and (27) ) is

%7 (8.5)
Now all quantities that are necessary to apply the
theoretical results of Chapter IV have been determined. Using the
results of this theory (Table III), the heat-transfer rate at the
stagoation point can be writen for the constant-fluid=property case
¢ S \'" Qi tn Que.

Q w
(\ W\ L T Ag (\_ W) Quf + ?\J A (\'N‘ Qn& “; (\‘ W) Q-“'$

' o
- -J. 5»‘ . - =% 0.2,.0.22k
= 0.5\23 R i 035 S

(m.6)
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The corresponding mumbers for the variable-fluid-property
cuomuuummaunmcumdor W by using the grephs of
Figure 7. The results of these calculations are presented in terms
of the difference between the calculated result and the heat~-transfer
rate based on constant-fluid-property boundary-layer theory, as a
fraction of the latter. The experimental results, as calculated in

(h.3), are presented in the same mamner, e.g.

AQ""""‘? - -‘y:]%’ Q‘“"“? or AQU’ = QuQ‘Qm'-w
Q T 051y Qer Q... Q..

(5.7)
etc. Finally displacement effect parsmeter (3  1s also tabulated
for the sake of reference. The calculation of it is based on an
expirical relation between stegnation-point velocity gradients
for circular cylinders and Mach number, as presented by Reshotko and
pecnitn(33).  (mis is the "infinite"-Beynolds-mmber case). Using
these and the experimentally determined velocity gredients of Tewfik
and Qledt (H.1) in expression (2.22) (3  1is determined as
follows

A

Tew Fik 4 Grle At - Akuhtk.tbukutt\\

A

(p = N
Reshetis § Bekarth  RIA

(8.8)
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Wy
H
L0
b

K
K|)K

K.O)

NOMEXCLATURE

speed of sound

(with subscript) comstant coefficients (Chapter I only)

stagnation-point velocity gradient; uv=Ax

constant coefficients (Chapter I)

displacement-effect parameter (equation 2.22)

cambinations of Bessel functions (equation 3.ls)

specific heat at constant pressure

density ratio across (normal) shock;

base vectors in orthogonal system (Appendix A)

energy-equation differential operstor (equation 2.40)

inhomogeneous terms in energy equation (equation 2.40)

runctions in expansion of viscous flow about stagnation point,
x* and x% terns rupectiwly Without adscript strean

function, vith adscrlpts e, + pressure, density,

and tempersture respectively. (E.g. Ql. is temperature-functionm,

x°  term, etc., equations 2.2 through 2.5)

enthalpy

metric functions in orthogonal coordinate system (Appendix A)

altitude, ft.

Bessel function of ( )  (Chepter III and Appendix C)

heat conductivity

constant of integration (equation 2.35)

proportionality comstants (equatiom 2.21)

Bessel functim of ( )  (Chapter III and Appendix ()

"
reference length indicative of body size, determines A ; A= T
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Mach number

momentum-equation differential operator (equation 2.40)
inhomogensous terms in momentum equation (equation 2.40)
0 for two-dimensional, 1 for sxially symmetric flow
Nusselt mmber

Order of (| )

pressure

Prandtl number

velocity vector

heat-transfer rate normal to surface (= k?;

radial coordinate

nose radius of curvature

gas constant

Reynolds number

absolute temperature

velocity components in X and ‘A directions respectively
free-stream velocity, ft/sec

Vorticity parameter for axially symmetric stegnation-point
flow (equation 1.19)

cooling ratio; waﬁ'
ng O; T&
boundary-layer coordinates (equation 1.1)
exponent of tempersture for specific heat; ¢ 1™

accamodation coefficient for energy transfer at solid-gas
interface

ratio of specific heats
boundary-layer thickness parsmeter J = P;-
inviscid shock stand-off distance
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exponent of tempersture for heat condustivity; 4o 7T
boundary-layer coordinate (equation 2.1) /7-5/3:-'
displacement mmber (equation 2.34)

(without subscript) angular coordinate

(with subscripts) temperature functionm in constent-fluid-
property flow (equations F.7 and F.20)

mean free path in gas

viscosity

kinematic viscosity

density

fraction of diffusely reflected molecules
shoar parallel to surfuce T A g;
compressible stream functiom

dissipation function in energy equation
exponent of temperature for viscosity ,qu"'
vorticity (L=l

proportional to

Subscripts;
6 I 2.successive tems in Reynolds~nmumber expansion;

]

boundary-lsyer
18t order, 2nd order, etc. correction terms; also (in Chapter I)
successive coefficients in J expansion of inviscid
quantities.

correction due to curvature effect

comp result of campressible (variable-fluid-property) snalysis

D

correction due to displacement effect
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e experimental result
i) correction due to temperature Jmp (K, #Ke)
ww result of incompressible (constant-fluid-property) snalysis
M correction due to finite mean free path (equation 2.39)
P refers to pressure
r refers to density
" partial derivative with respect to r (Appendix A omly)
ek reference quantities (see Chapter IV), equations (4.1) anmd (4.3)
(except (r.23) and (r.24).
s inviscid stagnation value
Shoek condition after shock
SL correction due to velocity slip
st'.dad  standard conditions at standard atmosphere
t refers to temperature
") correction due to vorticity effect
W condition at solid surface ("wall")
X4 partial derivatives with respect to x and 4
¥ partial derivative with respect to 3
o free-stream
Superscripts

derivative with respect to 1
derivatives with respect to temperature
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tarnation Point Flow Velocity 'rofiles (W=0,1).
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Incompressible Boundary-layer Solution.

fo{ou - ;'.z"‘\ *{’i\\ - o

fior=Fi0)=3(0)= 0

) 1T~

CONSTENT- FLULD- PROPERTY SOLUTIONS

Two-Dimensional Oase (n=0),

,ﬁ'(y\—vul AT

<

%

_—\% =W+ (\-W)§°

= 0-w) Y

7 |5 £ £ £ % % §
0 0 0 1.2326 | -1.0000 [ © 0.5123 0
0.5 [0.1336 |0.ko46 |0.7583 | -0.8565| 0.2550 |0.%503% | -0.0611
1.0 |o.k592 |0.7779 | 0.3980 | =0.5775| 0.k960 | .0518 | <0.1576
1.6 |0.8873 |0.9962 |0.1770 | -0.3175| 0.683 |0.3505 | ~0.236k
2.0 [ 1.3620 [0.9732 |0.0658 | -0.1423 | 0.8431 [0.2288 | -0.2368
2.5 | 1.854k [0.9929 |0.0202 | -0.0517 | 0.9301 |0.1242 | «0.1750
3.0 |2.3526 |0.9984 |0.0051 | -0.0150 | 0.9735 |[0.0559 | -0.098
3.5 |2.852 |0.9997 |0.0010 | -0.0035| 0.9915 |0.0208 | -0.0ks0
k.0 |3.3521 |0.0000 |0.0002 | -0.0006 | 0.9977 |0.006k | -0.0163
k.5 |3.8521 |1.0000 |0.0000 | -0.0001 | 0.9995 |0.0016 | ~=0.0047
5.0 | 4.3521 |1.0000 |[0.0000 | 0.0000 | 0.9999 |0.0003 | -0.0011
5.5 | 4.8521 |1.0000 |0.0000 | 0.0000 | 1.0000 |0.0001 | -0.0002
6.0 |5.3521 |1.0000 |0.0000 | 0.0000 | 1.0000 |0.0000 | 0 0.0000

17"==- 0.6479
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Incompressible Boundary-layer Solution, Axially Bymmetric Case (n=!),
PR AN LI N X

15259, +¥ =0

fn-= o) =Wol=m0 ; y>eo Rl Sem-»l

? F‘ f.. fo“ Folﬂ eo £ Q
0 0 0 1.3119 | -1.0 0 0.6867 o
0.5| 0.1432 | 0.5316 | 0.8182 | -0.9515| 0.3%01 0.6614 | «0.1439
1.0| o.ho2k | 0.8299 | 0.3959 | -0.7008 | 0.6418 | 0.524k | -0.392k
1.5 | 0.94M1 0.9552 | 0.1357 | =-0.3%31 | 0.8501 0.305 | =0.4375
2,01 1.4330 | 0.9919 | 0.0310 | ~0.104k | 0.9537 | 0.1237 | -0.2692
2.5 1.9313 | 0.9990 | 0.0045 | -0.0193 | 0.9897 | 0.0345 | -0.1009
3.0 | 2.k311 0.9999 | 0.0004 | -=0.0022 | 0.9984 | 0.0066 | -0.0Rk1
3.5| 2.9311 1.0000 | 0.0000 | -0.0001 | 0.9998 | 0.0009 | -0.0038
L.o| 3.k311 1.0000 | 0.0000 | 0.0000 1.0000 | 0.0001 «0.0004
k.5 ] 3.9311 1.0000 | 0.0000 | 0.0000 1.0000 | 0.0000 | 0.0000

7‘:0.5683
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Incampressible Displacement-Correction Tem. Two-Dimensional Case (n= 0).
For i (Forq®)

Yseia¥
" fo fa fo %, ¥
0 0 0 1.8489| o 0.2561
0.5 0.1905 | o0.6842| 0.9233| 0.1258 | 0.2389
1.0 0.6185 | 0.9769| 0.3082| 0.2259 | 0.1470
1.5 1.1308 | 1.0889| 0.0272| 0.2629 | -0.0020
2.0 1.7654 | 1.0390 | -0.0438 | 0.2288 | -0.122%
2.5 2.1683 1.0181 | -0.03Mk | 0.1553 | -0.1567
3.0 2.6739 | 1.0060 | -0.0150 | 0.0838 | -0.1219
3.5 3.1756 | 1.0015| -0.00k6 | 0.0364 | =0.06Bk
k.o 3.6759 | 1.003 | -0.0011 | 0.0128 | -0.029%
k.5 k1760 | 1.0000 | -0.0002 | 0.0036 | -0.0099
5.0 k6760 | 1.0000 | 0.0000 | 0.0009 | -0.0027
5.5 5.1760 | 1.0000 | 0.0000 | 0.0002 | =0.0006
6.0 5.6760 | 1.0000| 0.0000 | 0.0000 | -0.0001
6.5 6.1760 | 1.0000 | 0.0000 | 0.0000 | 0.0000
L 7 v)

Yp . QW  §,

Ax 1 R

do - o _ R
= =7 T
-;‘; - (\' w) 3,)

Qo a-wdy
L.T:/F.‘



Incompressible mlphceuntc-con‘pticn Term.
ﬂ,'é(fo*"fo') ’
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Axially Symmetric Case (n-1),

%\,‘ "E ,VO'

17 Fiy fa fo Yy Po
0 0 0 1.9679 | 0 0.343%4
0.5 0.2045 0.7361 0.9893 0.1653 0.2047
1.0 0.6611 1.0278 0.2433 0.2622 0.0659
1.5 1.8885 1.0570 | =0.0543 0.2287 | -0.1758
2.0 1.708k% 1.0228 | -0.0584 0.1237 | -0.2076
2.5 2.2144 1.0047 | -0.0176 0.0431 | «0.1092
3.0 2.7154 1.0006 | =0.0027 0.0099 | -0.0331
3.5 3.2155 1.0000 | «0.0002 0.0015 | =0.0062
k.o 3.7155 1.0000 | 0.0000 0.0002 | -0.0008
k.5 k.2155 1.0000 | 0.0000 0.0000 | Y0.0000

Jo _ B% _§
2D ‘t’.;']-;,d 4

Vo _ sV _ o

ﬁ - s he - .FD

Q _ e _ 4
_&x/'l% - M‘yg ?

1_.;‘?: a(+w) 5'.)

Qo

\»T./F

L

= (- W)x""



Incompressible Velocity-Slip and Temperature-Jump Correction Terms,
Two-Dimensional Case (n=0).

N AN S ,'(%_.)3;@ [-%)

? Q‘m [‘ - 3.] ,%',lo) 3',
0 0.5123 | 0.262k
0.5 0.3816 | 0.2579
1.0 0.2582 | 0.2314
1.5 0.1546 | 0.1796
2.0 0.086% | o0.1172
2.5 0.0358 | 0.0636
3.0 6.0136 | 0.0286
3.5 0.00kk | 0.0107
k.0 0.0012 | 0.0033
k.5 0.0003 | 0.0008
5.0 0.0000 | 0.0002
5.5 0.0000 | 0.0001
6.0 0.0000 | 0.0000
Uy o G _ F

o LI A TS

Y | S0y E,

Ax g hx

Fiss = ‘Fn‘s,

Q
-l . T By
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T
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Incompressible Velocity-8lip and Temperature=Jump Correction Termms.
Axially Symmetric Case (n=!)

fa=F | By M CR-)ne0-4)

—-—

9 Afi-%) [ %o 9
0 0.6867 | 0.km16
0.5 0.k532 | 0.k5k2
1.0 0.2460 | 0.3601
1.5 0.1029 | 0.209%
2.0 0.0318 | 0.0849
2.5 0.0077 | 0.0237
3.0 0.0011 | 0.0045
3.5 0.0001 | 0.0006
k.0 0.0000 | 0.0001
k.5 0.0000 | 0.0000

% - (!,vt‘ _.
T3 T ak =T
Y (V) _ &)
- o o =fq
3 5!

Sy, _
-M/l‘% = ‘/ﬁ %

T
1‘-—” = (- w) &y,

s

Qlﬂ - - \
ﬁ:/_-?_:_ = (1 vl)&m
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Incompressible Vorticity-Correction Texm, Axially Symmetric Case Quly (n»1).
2% Fu -2Fo Ty + 25,5} + P @ O

S22 Fo®y + By = — 152 Vo Fuv

fum=Fy0r s 3,000

N> ==, 'F:,(vl)-»\ ; iy >0

9 | % £ £ 1 S o b
o |o 0 0.68011 O 0 0.19% | ©
0.5| 0.0812| 0.32k9 | 0.6523| 0.0257| 0.0951| o0.1748 | -0.1196
1.0| 0.3262| 0.6586 | 0.6932| o0.1521| 0.1586| 0.0629 | -0.3070
1.5| o.7Th60 | 1.0298 | 0.8005| 0.2535| 0.1516] -0.0841 | =0.2249
2.0| 1.3660 | 1.4605 | 0.9164 | 0.1862| 0.0922| -0.1317 | 0.0308
2.5| 2.2142 | 1.938 | 0.9187| 0.06%2| 0.0365| -0.083% | 0.1285
3.0 3.3059 | 2.4318 | 0.998| 0.0138| 0.0095| -0.0295 | 0.0762
3.5| 4.6466 | 2.9311 0.9997!] 0.0015] 0.0016 | =0.0064% | 0.0225
k0| 6.2372] 3.4311 | 1.0000] 0.0001| 0.0002| -0.0009 | 0.0039
4.5| 8.0777| 3.9311 | 1.0000| 0.0000| 0.0000| -0.0001 | 0.0004
5.0 {10.1683 | &.4311 | 1.0000| 0.0000| 0.0000| 0.0000 | 0.0000
S, By o F
2R A v
& il = "\\v
M x g$Ax
Dy W o)
—M/ﬁ' h*"/ﬁ
I;:V = (“ W)D'N

s

%‘_v__
R

= (- W)&:v



Oy

L]
143
O =gl G ueso
. ki

n

.-ln\v A Y Rl

. sl .
wdt

. n ‘M‘W . * W
5 -5 g

} '

e o )

(O=u) *9B) TEUIOTSUGETI-OAL ‘TOTINTOR IAAWI-LIVpUnog STQIeseIdmn)
SIOLINOS XIMIIONd -CIYLI-EHVIIVA °II THEVI

0000°0 0000° | 0000°0 0000°0 0000* 1 ooNo°S 0000°0 0000°0 0000°1 | 0000°0 0000°0 0000° ¢ 00y0°S | S°g
0000°0 000"t 0000°0 0000°0 0000° t 0OWS % 1000° 0~ 0000°0 0000° 1 1000°0 0000°0~ 0000° t ooxs°y | 0°S
2000°0 1000° t 1000°0 1000°0 1000°t L6€0%y Looo* 0~ 2000°0 6666°0 | $000°0 2000°0- 1000° ¢ om0y | S°n
0100°0 £000" 1 %000°0 %0000 0000° t SOES "€ 9200° 0= 0100°0 1666°0 | S100°0 9000°0- 2000° 1 OONS'E | Oy
4£00°0 £100° t 9100°0 91000 6666°0 15€0°€ 6,000~ +£00°0 19660 | 2£00°0 8100°0= §000° L L680°€ | €
9600°0 00" 1 #900°0 4900°0 Lis6°0 6L2s 2 16100~ 6600°0 95660 | ge0o-o+ 5£00°0- 120071 16652 | 0°€
9£20°0 9210° 1 #120°0 9120°0 1660 2210°2 HAE0°0~ g€20°0 9Lg6°0 | gL10°0~ £200°0~ 6£00°1 clfo2 S-2
PK0°0 900" t 1290°0 2£90°0 61l6°0 66gn° L #850° 0~ gno°o tol6*0 | Lz2lo-o- 85100 8Loe°t sweg-L joe
€Llo"0 5901 95170 129170 lgi6-o 64L6°0 010" 0= £0Q0°0 260 | ogye-o- 1680°0 1616°0 06€0"1 [S°t
¥901°0 et 2Lt o Lulg-o [TINL: SHOS*€ 9£90° 0= %510 1688°0 1159 0~ 920€°0 16880 Sl9s-0 o1
9t21°0 1€ #5190 144980 121180 N0 0gE0 0~ 2410 meg'c | ot i- 690g°0 1829°0 SLlr*0 {§-0)
0l21-0 EEEE- 1 96€° 1 QMEL_ ;Y 0 10 [I50) WG6L" | 0 0 0
5 A "% 5 ® S u “ % -3 ] 5 PRI
009%0=,b ' SLO0=M
A4
. o - Hkm ‘ ey = > ‘ n n.w
AR A o ACERRTY TS
b33 3z s, LSy
LA iay- xy's | VI . L Ye-
Crderms)ins =8 mnens - SFE0 0D 9w TR Cmus R
e :L.J ‘A T—N..o.* oy § ' meta'n 0O u::..,w =%
O = nmm €Yo+ + °rs .n,hm ¢\|.°
oqiw -4@ 1 sw



0000°0 000" { 00000 0000°0 0000° 1 t996 % 00000 0000°0 | 0000°1 | 0000°0 0000°0 | ©0000°1 t995-4] 0%
6000°0 2000°1 2000°0 2000°0 6666°0 #596°€ 92000~ 6000°0 9666°0 | gLo0°0 9000°0~ | '2000°t 2096°€| o'y
o210°0 Ly00°1 1%00°0 1400°0 wg66°0 21662 €120°0~ o2L0°0 £566°0 | 1510°0 4L00°0- | €00t 2696°2] o't
g€to o 1510°1 291070 19100 9€66°0 anene #590° 0~ 2%€0°0 SHg6°0 | $620°0 #g10°0~ | €600°t £2oy°e| S°2
¥6lo°o 15%0° 1 Slno0°0 Lgwo*o 9ql6°0 falg*t 9621°0~ 6180°0 99%6°0 | 11%0°0 99€0°0- | @220°1 1S6°1} o2
[<<480] FI{{d} 1611°0 6921°0 41£6°0 Lgge 1 oLiz-o~- Lgr-o €969°0 | LLio"O+ 1460°0~ | 65%0°1 62E4°1| S
1962°0 2082° 1 21920 L0€°0 66£8°0 960L°0 €02t 0= 410E°0 1tgl°o | algt-o~ 0L20°0- | 20l0°L ¥go6°0] O°t
L20€°0 [1: 3 M 90LE"0 LISn°0 w=enlo %Sm0 ek 0~ 16gE*0 2569°0 | 1085°0~ 9090°0 0goo° t Lov9°0f SL°0
62%E°0 ol L 161670 tal-o 0009°0 6022°0 648y 0~ £964°0 0565°0 | 9L1g L= 2R E 0 9520°t 9LLE O] 06°0
glgt-0 f€ce 2 £969°0 11184} gLLE O £€190°0 9€5L 0~ 299°0 €m0 | o2ty L= onge°t #1$8°0 2gErL-o} s2°0
ofLE 0 $%0g8'2 Lgog o golq° L 9L12'0 0910°0 gt 1~ 009L°0 995€°0 | 6£06°61~ 2g°2 £019°0 64%0°0[$21°0
1€-0 00004 70€6°0 16L0°2 [¢] (] g€L60 s2'0 g ! 0 0 0
Lecoo=x4b ' G20 =

'0000°0 0000° L 0000°0 0000°0 0000° { 24es 0000°0 0000°0 0000°L | 0000°0 © 0000°0 0000° L 2426 6%
0000°0 0000° L 0000°0 0000°0 0000° { L2nly 1000° 0~ 0000*0 0000° L 1000°0 0000°0 0000°" L L2el-w} 0§
0000°0 0000° 1000°0 1000"0 0000° 1 22y 9000° 0~ 2000°0 66660 | 9000°0 2000° 0~ 0000° 1 2y y] S°%
1100°0 000" L £€000°0 £000°0 6666°0 il € 2too* o=~ 1100°0 9666°0 1200°0 9000° 0~ €000°1 gel€| o'y
2%00°0 §100° L $100°0 €100°0 $666°0 €L€2°€ £010°0- 2100°0 €g66°0 | 6500°0 9200° 0~ 0100° 1 teeet] <€
1£10°0 $500°1 0900°0 0900°0 8L66°0 292le 61200~ 1£10°0 SH66°0 | #210°0 tLoo*0- #£00° 1 €igl-2] o't
[: 31] 69101 6610°0 1020°0 6166°0 1102°2 9650° 0= 24£0°0 €€96°0 19i0°0¢ 9NI0C 0= 1900 1 sgEe 2] s*e
®Llo'o 050"t %9500 glso o 6€L6°0 1.69°1 #501°0~ 05.0°0 0l%6°0 | 9%00°0~ w00~ | oLionr o2tl'] o2
SoEr"0 6501°1 LegEr-0 usL-o 96260 2n01° 1t 92610~ 66£1°0 2n06°0 | €510~ £400° 0+ 9€20° 1 2wz St
S¥61°0 egee" L €20€°0 90NE*0 1608°0 9085°0 6L1°0- 13 A g€1g°o | L2ES0- Y10 6%66°0 w0 o't
nz2-o L62€1 9g2%°0 95050 150L°0 €46€°0 SopLeo- %692°0 12$L'0 | o190°1~ €9€€°0 9l£6°0 2uy'o] Lo
#ON2"0 S2AUnt L265°0 SNl 0 6085°0 20lL°0 05LL-0~ 6ELE°0 1619°0 | o6ot°2- IYAVAL] €Lg-o 9052°0| 05°0
66420 2089° 1L [4: IN] 98L0° L g52€ 0 15700 f9lt 0~ [914 34} 2665°0 | gwok %~ oLt %l65°0 ®lo*o] s2°0
L152°0 0000°2 96£0° L ovs5° L 0 (] 090%°0 05 0 0got € 0 ) 0
"o L TR ol R 0w R YN ..u_ 5 9 &

CL520 =y ' 0S0O=M

€6

o=u




0000°0 0000° t 0000°0 0000°0 0000° U 49t1°S 0000°0 0000°0 0000° L | 0000°0 0000°0 | 00001 S9t1°5 0°S
9000°0 2000° t 2000°0 2000°0 0000° 1541y 0200°0~ 9000°0 9666°0 | S100°0 %000"0- | 2000°1 vy o'y
1010°0 gfoo"1 * L£00°0 1£00°0 99560 [41:15¢1 2n20°0~ 2010°0 2966°0 | Exq10°0 €990°0- | L=200°t L 157 o't
%loto €ono" L 90N0°0 [4% 1 296°0 1202 goEL 0~ £1)o°0 £€196°0 | y¥50°0 6gko"0- | o2eo"t L5012 02
6551°0 €£go1°t as50L°0 Sti1°o 99%6°0 yEER L 09€S 0~ #i91°0 €060 |60L0°0 . oo~ | t6ee°t 9985°t 134
olz-o wlz-t 95€2°0 suz-o 2968°0 9629°0 09¢E 0= %02t 0 #€ol o | 2€20°0¢ ¥001°0- | 6260°1 g0t ot
OEEE 0 - UM [:2 3 3] 9liyo LIVIAL) 99€5°0 0005 *0- 16€n°0 2069°0 | 1921°0~ %160°0- | 9lti-t %ill*0 slo
66EE°0 059l t 6810 ®59°0 [T ] 20RO oLl 0~ 6lis+o £656°0 | 1620 0~ 0E00°0~ | w2Ei°t 25640 S0
¥EIN0o ££50°2 98%*0 L2fg o 6L46°0 92Li*o Lg6°0= 1619°0 olgy o jotel 1~ tnleor | 0521t SHSE0 (4234,
LeEro 68ES 2 16£9°0 16501 SEeno 6490°0 118 M 0128°0 6E6£°0 | 9EB5 4 9L1$°0 08g0° L S0 $2*0
yeEY" O L4 34 80 -5 A £6s€-0 9050°0 16261~ 1£26°0 G6£E70 | 2108°6~ 4166°0 €0t 6pnt-0 | Sigr®o
w0 2909°E ol 0 §095° L 9’0 6€20°0 SEL0°E- SeLo*t Sz o |SonL-te~ B16°t 61560 1980°0 210
6510 9626°% 68610 €ql0°2 gss1°0 %900°0 92g1°9~ 66£€°1 0EQR°0 | 005506~ 4598y 199L°0 €1£0°0 | 62900
Som0 SeNE9 66R8°0 e 980°0 9100°0 | Sl22* 1~ €955t Slg1 0 [0629°192- 9tgL 6 0155°0 fore 0 | s2t£0°0
99y° 0 0000°01 6658°0 £692°¢ [ ] 10°€€~ sigr-e t°o 6269°2€ 0 [] 0

‘M .-ulv olwv OUHIM C»m.— \M. h a r.‘_w ¢ 9 I@ -ow -OW .w ¢

Go110-=xb 'O10O=M

o=\



"0 | 0000°1 6000°0 | 00000 0000° 1 9Lt | 0000°0 0000°0 | 0000° 1 | 000070 0000°0 ] 0000° 1 otRL’t | O°%
0100°0 2000° 1 €000°0 €000°0 6666°0 6oLz 1400° 0~ 0100°0 | §666°0 | g200°0 Looo*o- | 2000°t Siyl-z | 0€
§620°0 600° 1 6810°0 0610°0 15660 t€2l 1 | S0g0°0- 00£0°0 | £066°0 | 6%10°0+ €110°0~ | gno0°1 66¢EL°y | o°e
£402°0 (413441 4262°0 g0 18180 #l49°0 | gRoE O~ cZ=0 | €990 | gnlnco- sot*or | 2466°0 gl o | Ot
£E92 0 1eZe Leogn o 615°0 09LL 0 ooon'0 | s62E’o- #20€0 | £818°0 | E¥20° L~ hge o £gu6°0 8gen0 | S1°0
£O1£°0 w%oE"L 6419°0 £g0g°0 61190 2t61°0 | 2y2€ 0~ IngE o | #etl o | 6191°2- 2699°0 ; 55€g°0 o920 | S°0

€€°0 oest £n16°0 S661°1 £€9€°0 g160°0 | SELE-0~ 6£94°0 | 2929°0 | 2008°%- sont 10g5°0 2’0 | s2’0
joue-o 0000°2 SE9L L £6EL°1 0 0 1065°0 S0 lgly°€ (4] (1] 0
48520~44 ' 050=M
0000°0 0000° 1 0000°0 00000 0000° { Togg ¢ | 000070 0000°0 | 0000°L | 0000°0 0000°0 | 0000°1 Togt't | O'%
6000°0 2000°1 400070 %000°0 6666°0 19gc | 9foo o~ 6000°0 | g666°0 | gL00* 0+ $000°0~ | 1000°1 logs-z | o't
2220°0 8L00" t 15200 2620°0 €£66°C ugs L | Lysoco- £220°0 | £266°0 | gif0’0~ 6200°0 | 1100% 6616t | o2
$190°0 Lgeo-t 92i1°0 SHLLo 6296°0 6050°1 | Slotr o~ 1290°C | 126 0 | 1g02°0- #50°0 | 5066°0 otget | §°t
€gL1°0 2000° t 13 ¢ Y] 109€°0 1268°0 mes:o | £oEr o~ ghet o | g5e6°0 | soal:0- gnoe o 1126°0 9g965°0 | Ot
$19t°0 - TARRE 6lyL°0 &28°0 €595°0 €191°0 0m90° 0= €08L°0 | #84R°0 | 1819°1~ Lzg o 1199°0 1061°0 $°0
ol o €EEE 1 w6eS* L IR 1 0 0 9902 0 sL-o 926671 [} [} (L]
2 3 "3 E s i ™ n °n w M 4 9| &
0= SLO=M
v
. ] *n i e 3
e T T iy R 7% ST T I |.h\..~<.£
. 12 v sy, xy o
Ty Ty oy = dﬂqur 'y T e C ooy - rrest HEN AN en.wul.!w.m
vethog T:....» Rl R L LU A RO MU
op .
0= n®or ars + .m.u"lw °42%1
=T, o . R b o b1 S
0=+ Sneso s .W.,:m.m * oy e .M...!» - e ;....m.:w

151}

‘(1 =u) 98W) OLIIommAs ATTSTXV ‘UOTINTOS ISAW[-ATWptmof STqTssaxdmo




[0600°0 0000°1 0600°0 0000°0 0000° t OEo" Y 0000°0 0000°0 | 0000°t | 0000°0 0000°0 0000° { ROy X%
6000°0 #4000 L 2000°0 2000°0 0000° L 09€0°t | £200°0~ S000°0 | $666°0 | 8100°0 €000°0~ | %000°1 £9€0°€ ot
4£20°0 | S900°t 6600°0 5600°0 2066°0 s120°e | #€20°0- 6£20°0 | 6€66°0 | 4gE0°0 2%10°0~ | L%woo°t gvEo°2 0°2
0260°0 gEeot £ 50°0 §£50°0 05g6°0 L6int £62e 0~ t960°0 | €296°0 |29L0°0 #E40°0~ | €g10°t 26261 (34
9162°0 6NEL°L 6202°0 ngie‘o one6°0 0€69°0 s o~ S#l2°0 | 11980 | yONO O+ 16L0°0~ | 96%40°1 SEL0°L o't
2¥9€°0 L9621 2Lyt o f96E°0 164G 0 Ly65:0 | €€LLO~ o0 | S46L°0 | 400t 0= 15200~ | 9690°t 9g8L°0 sL°0
€19y°0 99061 s o $169°0 oo LLiE*0 | 9901t~ 26€9°0 | §299°0 |9629*0- €o00°0+ | S1go°t €6Ly°0 s*0
09LS°0 0051°2 o94gL 0 (13-~} 268n°0 #960°0 GS06° 1~ 69L6°0 | 159%°0 | 8191 %~ 9gEY°0 ZEn0°t [:18t404] s2°0
2609°0 6090°¢ [: 3 ] 91511 [ X 4] 1g20°0 1L66°€~ OELE L | 9H2E"0 | OBOE"02= [ 301 9EE6°0 9990°0 | S21°0
1190 alé2*y [{97:3] 2l 2 16L1°0 9,00°0 | 61ly°Q- oulg-t | Leteco |o06E9-€g- o6€2°y G69L°0 92£0°0 | 5290°0
9219°0 SooL*S 0L00° 1L €9l 2 tot o 0200°0 H66€°91 - 09£0°2 | #SL1°0 |o19t°gle~ 1190°6 99l5°0 2110°0 | S21£0°0
0E19°0 0000°0L ~  £gEO™t Wn6€ 0 0 | 6£61°29- €200°C 1°0 ohly6€ (/] 0 0
8IC00 —=,¢b ' O1'O=M

0000°0 0000° 1 0000°0 0000°0 0000°* P16 € 0000°0 0000°0 | 00001 0000°0 0000°0 0000° 1 N6 o'y
1000°0 1000° L 1000°0 1000°0 0000"1 6L16°2 1£00° 0~ L000°0 | 6666°0 £200°0 $000°0~ 1000° ¢ €g16°2 0°t
9120°0 #Q00° L l210°0 g210°0 €966°0 6006° L gtgo 0~ gl2o°0 | L166°0 09£0°0 £510° 0~ 2600° 1 o16°1 02
£660°0 16£0° ¢t 6990°0 6190°0 66L6°0 £g5¢-1 orge o~ 6101°0 | %4296°0 Lino* o+ . al£o° o~ 2g10°t L {13 (9}
€2 0 oLt glEe o 2lse 0 0L06°0 gL 0 | gooy°0- 9el2°0 | 9tlg o g0EL 0~ 9620° 0~ €gto°t albgro o't
2ExE0 %992 L 2L6E°0 6064°0 2028°0 2t05'0 2166°0~ 6E0n°0 | L68L°O S1gy°0~ 96£0° 0 gge0" L 2l£9°0 sl o
=Eq°0 7w%EN" L 89650 LE6L°0 s219°0 mse*o | 95l 0~ sols*o | L9990 L5 1= 0692°0 2600° 1 SogE*0 S*0
4E64°0 0100°2 05€8°0 sonet oy 0 L1200 | &6€1°1~ £96L°0 | go64°0 9EH6°9= LEELt %958°0 4£41°0 s2°0
Slog-o 6€95°2 96560 €959t o2 0 8810°0 [~ I 9tl6°0 | 106€°0 0506°02= 1299°2 $9£9°0 2gn0°0 | S21°0
&SEL*0 92 g0t t | #62E°0 gL S 9509°% €Liy'0 9%t0°0 | $290°0

901$°0 0000°% 6490° 1 o 0 0| enlgn 6RE L $2°0 6969°6 0 [ 0
3 A 3 2 g B m K 3 D) |

9120°0=,4 ' STO=M

|=u




0000°0 0000"0 0000-1- | 0000°0 | #l6€-29- | 0005°9- | nl6€°29- 0000°0 }0000°0 0000°0 | 0000°0 | 0000° L= 00059~ | SElgrie~| %9
0100°0 90000 9666°0= | %000°0 €906°9€= | 1000°S- | 9016°9€=|5500°0~ 810070 9000°0- | €€00°0 |2100°1~ 9666° 4= L61°€1=| 0°6
#220°0 %600°0 gt66°0- | 0900°0 €199-€2= | 92004~ | t1469°€2-|6tH0° 0= |#S20°0 4600°0- | ShL0°0+ | EOLO° L~ one6 €~ ©69°g- | 0%
9560°0 §590°0 we6-0- | 9090°0 geEn"E1~ | S1€Q°E~ | aLES-E1~i5EQO° 0~ |5960°0 1690°0~ | #0LO"0~ | O100" 1~ ceg6 e~ 9goeS- | o't
9%60°0 $590°0 - IHE6 0= 1291°0 9lgr'g- | 65§1°2~ | 1212°9= |06EL O+ |9260° O+ 6gLt°0- | gosE0- |9ggLl 0~ a290°2~ leal-e- | o2
10€0°0~ 69%2°0 ng9L°0~ | OoEL-O+ 6666°€- | 9lSLler~- | alby €~ |6962°0 |LototO- 610270~ | 1SHE*0- | 4109° O~ 6Ll t- 2EoL 1= | S$°1
S0~ 6l¥2'0 6gygto- | L2or°o- 88091~ | HEEEt- | nl6H°t- _S_m.o €9€1°0- 91°0- | 2661°0+ | 4L26°0~ o1~ 1516°0- | ot
éal1 o~ o2 0 69€6°0- | 215€°0- ang6 o= | §€60°1- | €66L°0~ 1601°0¢ |ELLL O~ e 0~ | 4EL6°0 | %299°0~ €662° 1~ Siegeo- | Lo
9L 0~ £691°0 7290° - w62l o- 0954° 0 cgog o~ | 262€ 0~ |g620° 0~ |LigL-O- 1gloo- ! tggn°2 | .iwlo°L- 0060° 1~ LoEg-0- | $°0
210 6460°0 uoet1- | g9 t- 0611°0- | 66y 0= | #ELO°O- [€9L1°0- ([BI91°O- 9££0°0- : 6MHE"S |oOLIo 2 £g1L 0~ g60°0- | 520
60" 0~ S6%0°0 GQELz 1~ 64091~ €0E0° 0~ 6%te 1- | 0Li0'0- cOne*0- |95EL"O- 6410°0-  €265°L |fg1g-e- [ 13 0 112070~ 62i°0
4£90°0~- 0 2wk - | 05l6L- 4] 0 0 2201 ° 0 0 _ 0056°€~ 0 0 _ 0

S0 -\
0000°0 0000°0 0000 L~ 0000°0 | 090" 19- |0006°9- | 0850°19-| 0000°0 | 0000°0 0000°0 | 0000'© |0000°t= 00059~ Lifge1e- © §°9
8100°0 9000°0 6666°0~ $000°0 LE16°6€- | 1000°6- | #516°SE~| 1500°0=| 8t00°0 9000°0= | g200°0 |1t00°t- 9666° 4= 6212°€1e | 0°S
$810°0 €900°0 €166°0- $900'0 | Sqlgee- ! 1£00° 4~ £96g°ce~| gEE00-{ $Q10°0 £900°0~ ON00° O+ | 900" L= 1966°€~ onil-g- oy

990°0 16%0°0 #626°0- 1990°0 | #hifg et~ |g€€o°€~ | 6506°21-! 21h0'0-] €590°0 26%0°0- | 00LL*0- |6LL5 0 Lis6 2= 20226~ 0°€
£4E0" O+ 6121°0 61LL 0~ 0961°0 | O15L°6- énlie- #66L°6= ' GiiL O+ | 6GEO°O+ niro- gEIE- O~ | 06EL O~ w21 2= w6l9 2~ o2
19€0°0~ 9tEL'0 €gnl 0~ onsr o+ | 9292 €~ | €E6L°1- | #EQLE- | %0GL°0 | LOEO*O= | 9LLi'O- woot-0- |6L19'0- | SggL-1- 1H0L° 1= St
0260° 0~ 0goL -0 +908° 0~ L6170~ | HESH L~ 106€°1- | 42rE°1- [€9L0°0+ | 1260°0- | #590°0- | §999°0+ |STEL O~ 699n° 1= 6Lgg°0= ot

£190°0- Z250°0 sigett- QoNg o= | 6%5E°0- £619°0~ 6g62°0~ {9290°0~ | 9560°0= GGE0° 0~ €OE6°1L | pHlEcL- 8996°0~ 2992°0~ §°0.
£€90°0~ 6220°0 eom” L= oLy 1- | €690°0- |Eyme0- | 619070~ |€911°0- | L2loo- | 2%10°0- | 610M°T |#ESB6"L- 0155°0- @loo- | s2o
$2€0°0~ )] 15091~ €168t~ 0 (] 0 L6£0° 0= ] g5 e - 0 o 0
= e R B | e
SL0=M
- °ry Ma J “V ) 1 0. .
"n.=(¢30a™ on a BV L e vy " i
BT s S = n-cs e e LECR AT TERE (R TR W RS (3 O By .I.N.mﬁ«
°, ) & - - rm v -
o A * "L - \4&\\1 Loy = tc.c. PR TE. 5. PR -
WA e Tyn s S T T T ks B = T ey Uy ey = 1
0 WMy - e—ilyry e~ b ‘ C =t rj=uay =0y

HSy-2) e * 1\ 1q " o Mgy L ' 6 . 'a 'L\~ - -
9-2) 6% (¥3:2) pneavnda B ﬁaﬂ *rv..wlﬁ " LM_ A.: N : N =y w:\l_

(0 =u) asge) TPUOTSUITII-CAL -TXS] TOTIIALIO)=AIMIVAITY ITqTsaIdmD)

£y




0000°0 0000°0 | 0000°t- | 0000°C go1g°#9= | 0005°9= g019°49=1 0000°0 | 0000°0 0000°0 | 0000°0 0000° t= 0005°9- otog 12=| $°9
6000°0 1000"0 9666°0~ 6000°0 #29L g€~ | 2000° G~ ‘ G€9lL- gt~ | 6200° 0~ | 6000°0 1000°0~ | 0200°0 0000° L~ 6166° 4~ 96L1 €] 0°S
L 100 £500°0 16660~ | 6%00°0 6L41°62- | 11000~ 669162~ | OnEO" 0= | 94100 €600°0- | G610°0+ | 4L0O°1- #G66°€= w209°8- oy
1980°0 60500 | £666°0- | 91400 g6ES nt~ | 4910°€- HOWO“Hi~{ GEOL"O- | LORO"0 1050°0- | 6610°0= 1020° 1= G6L6 2= LE61°6~ o't
ofE°0 9l6t'0 62£g 0~ 91#0°0 gn6°9= | H2it 2~ Lowo'L- | £190°0+ | goft 0 6281°0- | §562°0~ 2%98° 0~ 4#€00° 2~ cEil-e- o°e
40€0°0r g€62°0 | geel-0- | 62€1°0¢+ 6L6L 0= | 2669 L~ Llgt 4= | 9€92°0 | £€30°0+ 26E£2°0= |1 0~ | 4969°0~ 1609° 1= 0519° 1= (44}
€gEL-0- sgleco | 2620~ 98000~ SERL-2- |onge L= 26 t- | 26H4€°0 | 2g60°0= €2te 0~ |Gl 0~ | gesntO- 961E" 1~ 680" 1~ [}
6502°0~ 6E14°0 | 9029°0- | 69L1°0- 146€° 1= | 1650° 1= 0060°1- | €€0£°0 | t191°0~ 2l61°0- |OLLE O~ | S6%E°O- e - onLl-o-| Slo
1££2- 0~ egYy'0 | Si9gro- | 2E9n 0~ 2L 0~ | 9n0R 0~ ey o= | 1261°0 | Ehero- #ENL*0- {96010+ | LioE*O- 196" L= H4OQ4°* 0~ $*0
65220~ 40Ly°0 | 2Hg8 0~ €990~ LEln0=- |2659°0- 2alzto~ | 1121°0 | €E92 o= 9LL1° 0= | LHEE°0 Hese0- €560 t= oonE o= | SLE0
¢€oe 0~ $105°0 | alo6* o~ 6200° 1= 01920~ | 6E6%° 0~ 9611°0- | 6/90°0 | eGle o= glloro- [2L19°€ 29090~ [o SR alozro~|{ §2°0
[: <180 2666°0 | é6g6°0- lgngt- | sn6oro- _N:mw.o- 66200~ | 9g0C"0 | 9lge" 0= eno° o= m..wﬁ..m_ ooeL: = L2160~ L£go*0o-| Get1°0
styl-o- €6g5°0 | €g€6°0- | niloe~ (€00~ | #6910~ Gl00*0= | 921670 | 191£°0= 1h20°0- |6ght-2g | 062 4~ 9EHl 0= 11£0°0~ | 6290°0
9ge1° 0~ oBNG"0 | 960 | Eenste- 6010-0-  2%60°0- 1 6100°0= ; gE5°2 | GH9E° 0= 9€10°0- |90RL 192 | 6EG6°B- ©055 0= $010°0- F21€0°0
gmie-o- o | Lo~ | rogse- o | o i o a0 o | £10g°5€~ 0 0 0
1'G=M

0000°0 ] 00000 |  o©O°1- 00°0 9729~ 059~ 9729~ 0°0 0°0 000°0 0°0 00 1- 05 9- oigted &°9]
£100°0 1000°0 | 9666°- L000°0 G-lE-| 00'S- G lE- | %000~ 1000 100°0~ | £00°0 $000° 1~ 966" 4~ sgrgl4 0§
ww..o.o §500°0 ngH-- Loo-o g5 2~ 00" %~ S'q2= | H0°0- $10°0 900°0- | $10°0¢ 900° L~ S66°E~ 69°g= (%]
6160°0 6260°0 6£6°~ 0Ls0°0 6g0°yL= | 600°E- gLi*#t= |tgot‘0~ | 9g60°0 #260°0~ 1 O1£0°0~ | Ll600°t- sg6ee- 96616~ o't
otzt-o Yoo | 9etg o= $0561°0 8129°9- [ #2212~ | s2ol'9- [L2oi-O+ wEL°0 slgr-o- . 692£°0- 15480~ gLio 2~ (S VAr A o2
9900° 0+ o620 | 2ELL-o~ | Lo+ SK6°€E~ [olil-1- | 26e9°f- Inige o 4,£0° 0% 9eE2°0- | Somy 0~ | EQN9 O~ o2Y9° 1= Ly t- 194
L0510~ 215¢°0 olog* o= #L%0" 0= 0196° 1~ | 600€° 1= s92l 1= |SQLE‘0 sgle o= €q12°0- { t21€°0~ fayy o~ gLLe 1~ 9250° L~ ot
ot 0~ 190 | $958°0= | Sgne°0- £E02 1~ |6190°t- | tgn6 0= |ene O* | #E61° O~ Sqli o= 2e2lotor | 4Eon'oO- g9 - gelo-| ¢sLo
2t o~ 105€°0 | yne6°0- €gl5 0~ 6L09°0- |6G6L°0~ | 60040~ [9901°0+ ngES 0~ go11+0- | LISE°L ngYs 0~ 9561 t- t6ty°0~| 05°0
geliro- gl6e 0 | 9to0*1- L 18 O olgL o~ |299n°0- | #160°0- {1190°0= | 6E#2°0- 9g50°0~ | 19 L 20€y" L~ 0gE6° 0~ 0Esto-| S2°0
26¢t°0- $922°0 | 9tno° (- 6L09° 1~ 16500~ [§gse 0~ 21200~ |gE60°0~ tege o~ gee0"0- | ogaLl 12 | Ll2go°f- 9619°0~ t050°0-] s21°0
€ELL 0~ 0ESt°0 | 950"t~ | OEE6° 1~ 1510°0- | LLEL*O- | 0500°0~ [2920°0- | lgee 0= Wm0 0~ | 1981°wh | %000°S- 2tEn-0- 6%10°0~- | $290°0
1060° 0~ 0 | 6490°1~ | 96lE*2~ (] 0 0 gntS 0~ o £816°6~ o (] 0
3 =2l Ry Emln ] R wm | w S 7 D
GTO0=M

ot O=u




0000°0 0000°0 0006°1= [0006%0 0000°3~ ani6* Ly= [ 0000°S~ en16L4=]0000°0 [0000°0 0000°0 0006°0 | 0000°0 0000°0 [T
%000°0 | 1000°0 |0008°1+ ]0000°0 000°%- | E1E4°0E- | 2000° %4~ | S1E%° 0= 6100°0~ |4000°O 1000°0~ | S100°0 | €000°0- | 1000°0 | SE5%°O~
610°0 | 2500°0 |l266°0~ [2l00°0 g66°2= | Lgw6-91- | 81001€~ | 096 "91- [gg50° 0= |1610°0 1500°0- { $920°0¢+ | gL10°0~ | ¢€00°0 | S664°0~-
$611°0 19L0°0 | 0€Sg O~ [2¢EL°0 1666°1- | 1ol L~ | £666%2= | LIC°L-|66%0°0~ [QI21°0 94L0°0= | yLIE°0~ [ LESO°O+ 00100+ | %Ot5°0~
9090°0+ | Soyto 61£L0~ |G2R2°Or s 1= | opoe - | 8lS9°1- | Lno2 y-[9Slz o+ |21L0°0+ | §631°0- | §559°0- |290€°0 [€2lo*0- | 1005°0-
20€1°0- | 6€S1°0 |immg 0= |[L£00°O- S962° 1= | 4llg 't~ |€692°1~ | E£ERL 1-|CLBEOr |6021°0- | 2021°0- | 6161°0= 19LlG 0 |E€20€°0~ | weiy°O~
19910+ 6150°0+ {lg9ti*t= ligol-0- 9166°6- | 2g5%°0~ |20_L0~ | 624E°0-jE122 0~ [€961°0~ | 6L20°0- | 2599°2+ [ gyLL O+ |6EES O~ €460~
€600~ | £€20°0- |2121°1~ jgLit*1- on6s o= | €lor°e- | LlgE o~ | $990°0-[21€L°0~ [68LO0= | 2600°0+ | 64HQ*S | O226°0~ |96%h°0- | 0990°0~
10t1°0+ 0 | goE6 0~ MI6E“1~- 0 [ o 0 Lilt-os (] ®eel -2 0 0

S0

0000°0 0000°0 | 0000° 1t~ | 0000°0 0000°6- [oglE-on~ [0000°G- | 0BlE-9n~] 0000°0 | 0000°0 | 000070 | 0000°0 | 0000°0 | o0OO'C S0l O-
#7000°0 1000°0 §6666°0= | 1000°0 0000 4= |#912°62- | 1000°4- | L912°62-}0200°0- | #000°0 1000°0- | §100°0 | £000°0~ 1000°0 | S0lS° 0=
6910°0 2600°0 | 0066°0~ | §600°0 Li662~ | $65091= | €200°€- | 6690°91=15640°0- ; 6910°0 250070~ | §100°0+ | 0000° 0~ L200°0+ | w160~
golo*o ons0°0 |292g 0~ | 2191°0 12€0°2~ | 1668°9~ |9690'2~ | g616°9~ [£210°0+ | O2L0°O | 2ES0°0~ | OFEY O~ | 9L 0+ | 6620°0- | 2695°0-
L210°0+ 900 |ENEL O~ | o222 ot | 60591~ | 169L+€- | LEQo 1~ | O0GL°E- SG02°0 | S910°0+ | G6L0°0O- | #o6%-0-| 2ton o | 2691-0- | 09R5°O-
1£60°0= | #690°0 | #C26°0- | #960°0~ | 4O 1- | LEGE 1= | 1Ll2°v-  Li0S 1~ ;9591 | €€60°0~ | §650°0-"| 9525 0+ | Sguy O+ | €66€0- | 09gE O~
¢ogo"0- | 2g00°0+ |2142°1- | 196L°0- | 95180~ | GONE*O- | 6569 0~ | 20620~ ,.386- €6g0°0- | 65000~ | GElE-2 | Lyle*o- 12gn°o-| 9051-0-

€€10°0- | @e10°0- | gosa t- | £901°1- | oefw 0~ | €2Lo"0~ | 2E4E 0~ | nlS0'0- |09 0- | 691070~ | =2groo+ | 1€96°2 | @@S6°0~ | SIEEr0- | wSworO-
#0L0° 0+ 0 |loi- | gu21- 0 0 0 0 6590° 0+ 0 ge69° 1~ ] [
~n Sg 78 av 149 ., o o . o™ . -~
> RN - N I B S
SLO=M
- o~|~ . \%\Pd * q» «m . .khx_!«
((mimeroen] on = =5 ¢ - AR .Tz..»..m,i..- Urio "I o 950 PRI IR zruﬁ "
- 1.&\ -t 5, pLANTS .
L9 S ww.th a»& W* .+ T o - =3 wr w| ﬁM.J a*nm ™ - o ¢ onwovr "ueT0n = w |u« " oge, Lo mpo ye T30y - KB,

0« Wy 0y sl g=7m o= (07y =(0)7
S ($9-1) Qv (y9.2) SNOILVADS 4) AP. eﬁ.ob *3=("n ..:“:m ¢ —P.!@.ob Jz - ﬂ.:;..:b—)—
(1= u) 2sw) dTxewmipy ATTEIXY *EIt] UOTIOALIO)-GIMBAINY ITqIssaxdmd

6€1



ot

uﬂ...,o-

6@6 0000°0 | 0000°L~ | 0000°0 0006 -4- | 6%l2° 1y~ | 00054~ | 6%l2°14={0000°0 0000°0 | 0000°0 [0000°0 [0000°0 | 0000°0 Sy
glioro | ofoo*o | 1966°0~ |S200°0 9666°2- | 196981~ | 6200°€~ | 0L99"gL=|1400°0~ | 2100°0 0€00°0- | y220°0+ |9900°0= | L1000 ogEy° 0 0t
L1€1°0 | g€90°0 | 0go6-0- |0lgo-o gt 1- | Ligscg- | mi€o'e- | g199°8- |4651°0- | EEEL°O 6290°0~ { 9660°0- [9620°0~ | #5€0°0 ¥054° 0= o2
ycor | gosico | $9LL 0= |0g6L0 12161~ | 4€$0°G- | 1909 1= 1OL°S= [#ERL O+ | GESL°O+ | LtnL70- | 4625°0~ |4BLL O+ | ESL0°O+ €19y 0~ (441
1990°0- | Lif2'0 | genleo- |S1SL 00 6LL1 1~ | goly'e~ |o9g@@ 1= | %66E°2- |0695°0 16€0°0- | 66L1°0~ |69Lg 0~ |[19gn°0 | EgRL O~ | kWO ot
G202 0~ | 0eWe"0 | $918°0- | 16£0°0~ G6L0*t= | @L1§ 1= | 6020"1= | L6LE*L- [6L05°0 logieo- | l26t-o- |opigro- |2tal 0 | €LL2°0~ | 2x6E°0- sl°0
2002°0- | 9t12°0 | 160~ | LlgEro- 6610°1= | qoglr0- | GELL-O- | 8195°0~ |E912°O* 162 0~ | 0660°0~ | 19Le 0~ [61S8°0 ; | tSly°C= 010€°0~ [54]
g6€2 0~ | SuLL-o g6 0~ | 6€€9° 0~ g5g6°0- | 2E64°0~ | 6929°0- L20€+0- | 000t ‘0O~ Z262°0- | 9960°0~ | 2649°0+ loMwg o | Legsto- | 6nE2To- slf*0
9l91°0- | 21010+ | EE46°0= | §L56°0- LEE6°0- | 9192°0- | S65q*0- 1 £92L°0- |G695°0- G262 0~ | 612070~ e126°E {9129°0¢ | 6L19°0~- | &K&iO- $2°0
£160°0- | 02f0°0- | wn6Q O~ [ESS L glegro- | l6goo- | 9£92 0~ " gae0t0- |Soon 1= | OMEL'O- | %E00 O+ | OE1E 61 [1964°0~ sol o= | 0890°0~ s2t°0
110°0+ | 6261°0- | 2Lng O~ |2t4g L~ 2199°0- | 10€0°0- | Sln0- _ 1900°0- |6S9L"2= | 0010°0- | £§00°0 -€99g°gL |i9to°€- | 1€19°0- | oge0°O-. $290°0
tgno*o | ggeeto- | €o1g°0- |Lleoe 2~ 2184°0= | 9600°0- | 7050°0~ _ 9100°0- '0B10°G= | SHOL'O+ _28.0 coeeecneloese - L- | Emo- | 69000~ | SEIE0°O
£€990°0 0 | 6LLL O~ |SLS6°2- (] 0 o ! ¢ . -~ lezno | ) onls 62 0 o o
1'0=M

Mowomol."ooooo 0000 1= _oooo.o 0005 n= | EC12-On= | 0005 "h- | €512-04- |0000°0 | 0000'0 | 00000 00-0 | 00°0 |0000°C | £0SH°0- G
$610°0 _Sooo 6S66° 0= _m._oo.o ’ £166°2- | 6096°L1- | 0100°E- | 20L6°Li~ |2150°0= Tm.o.o 1qo0*0~ | L2£ot0-! LOto°0- | 0E0O"C oSy o= 0t
69€1°0 | £€L0°0 | 2688°0- _Q.o_ (4} GEg6 1= | €2€1°g- | G6fote- | OEORT@-  [S92LTO- | 06€1°0 12L0°0- | Ltl1*0-| 2800°0= | 6920°0+ 15on°0- 02
oy | 286100 18610 j2t12°0 M 26E6 1= | 1golig= | L1929t~ | 6LEL"n- |BLte°O __wmm_.? 99n1°0- | 9€19°0-| $581°0+ | 0B00° 0~ ggly o= (441
1901°0- 19L12°0 | 6nLL-0- |2L6O O+ _ Lie AR _3Num.. _unzw 1= | in60°2- _:mm.o “@omo.o- 1991°0- | Qrhl-0-| #555°0 | 1061°0- | ZEq'0 o't
2Ll1g 0" w:.om.o 1188°0= wlqto- | SERL - ?.:Nm 1= ' £620"t- | iS2L i~ (EGERTO ! o1 0- 1621°0= | #OH#E'0=| 2EOL‘O | SERE"O- ¢Go€ -0~ (924}
9lf2°0~ | wgnl'0 | 2E66°0- inges o= _ g0 1= immm.o- 9610~ | gOSHt 0= 16220 O+ W.oi.m.o- #990°0- | 6101t ' Sgg-O+ | §625°0= 6652°0= S0,
1621-0- wmm_o.? 100" 1= |ZnL0" L= g2g-0- | figLo- | €Sthom j egoro- Wmmmp.o- wmmw_.o- 2#00°0- , 1966°L 9L12'0-| 0119'0- | S60L-C- 20!
WEL0°0- : 66i0°C- | GEH6TO= 6ZLyTl= | SBISTO- 1105070 QL2704 061070 €200 1= ' #Gn0"0= | GLI0"0+ | OSGE"IZ SZEETL 06640~ | 16£0°0" ce10
“mSo.o, | 610170 Wm_mm.o- S:m._- _ 9.6€°0- _nm_o.o- éLt1-o- "m48 o- {6£5n°2- _,__Q.oo., ?o_oo ﬁ gzgt 2 000aL €-| S1€€ 0= | S110°0~ $290°0
Lo g 0 __, ig1g°0- L M o _ m . .o 4 0 .wawwn , . eptEtl-| O 0 [
B e S L ER: "y “ LV "y ‘1

32°Cc=M

=4



1%

Compressible Displacement Correction Term. Two-Dimensiomml Case (n=O),

\
\)‘é(‘FD*TFo‘) ) ﬂ‘)= %_QFA"

\l’ = FJo¥\) +¥,-ﬂ > Y :—‘; =‘Ro"Fm' +'F."FA 0
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w=0.15

’ for fa By B gf.v :%:c 2, S?r_: z_",ﬂ
o |o ) [5) 0 0 2.0199 | 1.709% | o 0.0635
0.25 | 0.0T19| 0.5297| 0.0186| 0.0576| o. 1.3923 | 1.2249 | =0.0300 | 0.0626
0.5 | 0.2458| 0.8303 | 0.0353| 0.2089] 0. 0.8883 | 0.8109 | #0.0519 | 0.05T1
1.0 | 0.7286| 1.0410 | 0.0577| 0.6805| 0.9763] 0.2720 | 0.2671 | ~0.0730 | +0.0286
1.5 | 1.2539( 1.0M60 | 0.0606| 1.239% | 1. 40.0282 |40.0330 | =0.0688 | -0.0089
2.0 | 1.7696] 1.0175| 0.0478 | 1.7902| 1.0350 =0.0327|-0.030% | =0.0508 | -0.0322
2.5 | 2.2736| 1.0010 | 0.0297| 2.3059 | 1.0183]=0.0293 |=0.0288 | «0.0305 [ «0.0341
3.0 | 2.7727] ©.9968 | 0.0148 | 2.7981 | 1.0073] =0.0151|=0.0150 |=0.0149 | ~0.0236
3.5 | 3.27T13] 0.9977 | 0.0060{ 3.2851 | 1.0023| =0.0058|=0.0058 | =0.0060 | «0.0121
k.0 | 3.770%| 0.9990 | 0.0019} 3.7761 | 1. «0.0017(=0.0017 | =0.0019 | ~0.0048
k.5 | 4,2701] 0.9997 | 0.0005 | 4.2715 | 1.0001| «0.000k| -0.000k | -6.0005 | =0.0015
5.0 | 5.2700} 1.0000 | 0.0000 | 5.2700 | 1.0000] 0.0000| 0.0000{ 0.0000 | 0.0000
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n=0

W=0-5

" fo £ S 2, EA A 2% A
0 0 0 0 0 o 2.3310] 1.5594 o 0.1258
0.25 | 0.1068| 0.7329| 0.04kT | 0.0670 | 0.460T| 1.4185| 1.0846}=0.1261 0.1225
0.5 |0.3281] 0.9906| 0.0785| 0.2425| 0.736% | 0.8318 | 0.7043|=0.1702 0.1059
0.75 | 0.5872| 1.0637| 0.1011 | 0.4892| 0.8947} 0.4637| 0.426k|=0.1787 0.0756
1.0 |0.8543| 1.0671 | 0.1121 | 0.7753| 0.9800| 0.2372| 0.2346|=-0w1693 | +0.0378
1.5 |1.3783| 1.0269| 0.1049| 1.37k5| 1.0359 |+0.0262 | +0.0340|=0.1283 | =0.0311
2.0 |1.8836]0.9983|0.0750 | 1.9326| 1.0317 [=0.0278 | =0.0246|=0.0819 | =0.0619
2.5 |2.3801| 0.990% | 0.0k28 | 2.4362| 1.0170 |=0.0264 | =0.0257|=0.0k32 | =0.0557
3.0 |2.8757| 0.9926|0.0197| 2.9138 | 1.0069 |-0.0141 | <0.0140|=0.0199 | <0.03kk
3.5 |3.3730| 0.996k4 [ 0.0073 | 3.3916| 1.0022 }-0.0055 | =0.0055|=-0.00T3 | =0.0159
b.5 |4.3715] 0.9997| 0.0005] %.3735| 1.0002 |-0.0004 | =0.000k}|=0.0005 | =0.0016
5.5 |5.3714 | 1.0000 | 0.0000 | 5.371%| 1.0000| 0.0000 | 0.0000] 0.0000 0.0000
W=0:25

0 0 0 o 0 0 3.1187| 1.3956 0 0.1871
0.125 | 0.0606 | 0.7868 | 0.0475 | 0.0237 | 0.3095 | 1.9B64 | 1.1547 | =~0.3736| 0.1851
0.25 |0.1755| 1.0119| 0.0805 | 0.0890 | 0.5177 | 1.3933 | 0.9%32 | -0.4088| 0.1761
0.5 |[0.4h452] 1.1076 | 0.1241 | 0.3073 | 0.7752| 0.Tk3B | 0.6082 | -0.3626| 0.1379
0.75 | 0.720% | 1.0907 { 0.1459 | 0.5946 | 0.9140 | 0.3991 | 0.3683 | =0.3019| 0.0831
1.0 |0.9893| 1.0567| 0.1507 | 0.9096| 0.9867 | 0.1996 | 0.2022 | =0.2469[+0.0258
1.5 |1.5033] 1.0053| 0.1258 | 1.5283 | 1.0326 [+0.9185 40.0271 | «0.1566|=0.0581
2.0 |2.0001|0.9862|0.0819 | 2.0738 | 1.0273 |-0.0261 |-0.0231 | =0.0894 |~0.0813
2.5 |2.k927|0.9862| 0.042B | 2.5595| 1.0141 [-0.0232 |-0.0225 | <0.04k1 [~0.0630
3.0 |2.9872|0.9920]0.0181 | 3.0267| 1.005k [+2.0118 }-0.0117 | =0.0182|=0.0347
4.0 |[3.9835|0.9989]0.0017 | 3.9894 | 1.000k |-0.0012 |-0.0012 | =0.0017 [=0.00L8
5.0 |4.9832] 1.0000|0.0000 | 4.9832} 1.0000| 0.000§ 0.0000 0.0000| ©.0000
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n=0

W=0.|
k4 ‘e f‘.’ o ?m u_u.:“ ‘?:':, mn’ ,?': %%c
0 o 0 0 0 0 h.o039 | 1.89] o 0.2233
0.03125 [0.0138 | 0.7038 | 0.0250| 0.002k | 0.1246| 3.3649 | 1.2281| -1.0066] 0.2231
0.0625 0.0396 | 0.9182| 0.0419| 0.0093| 0.2185| 2.7061 | 1.1689| -1.0158| 0.2221
0.125 {0.1029 | 1.0779| 0.0671 | 0.0343 | 0.3633] 2.0066 | 1.0580| -0.8716| 0.2178
0.1875/0.1723 | 1.1331 | 0.0950 | 0.0937| 0.4751| 1.5984% | 0.9561 | -0.7033| 0.2105
0.25 [0.2438]1.1527|0.1026| 0.1182| 0.5656| 1.3145 | 0.8623| -0.6615} 0.2006
0.375 [0.3882 1.1515] 0.1273 | 0.2342| 0.7041| 0.9297 | 0.6957| -0.538| 0.17%0
0.5 [0.5310] 1.1316 | 0.1445| 0.3718 | 0.8033| 0.6740 | 0.5537| ~0.ks521| 0.1438
0.75 |0.8078 | 1.0833 | 0.1613 | 0.6830 | 0.9280| 0.3547 | 0.3317| ~0.386| 0.07%
1.0 [1.0733| 1.0427 | 0.1602 | 1.0097 | 0.9919| 0.1732 | 0.1783| -0.2610 }0.0105
1.5 ]1.5811]0.9958 | 0.1255 | 1.6261 | 1.0302[+0.0117 | 40.0195| -0.15% }-0.0719
2.0 [2.0748 | 0.9830 | 0.0773 | 2.1571 | 1.0239/-0.0251 | -0.0226 | -0.0836 }-0.0855
3.0 [3.0617}0.9929 | 0.0153 | 3.0975| 1.004k}-0.0096 | -0.0096 | -0.0154 |-0.0310
bo [4.0585]0.9993 [ 0.0013 | 4.0628 | 1.0005|-0.0008 |=0.0008 | -0.0013}=0.0037
5.0 |5.0583] 1.0000 | 0.0000 | 5.0583 | 1.0000{ 0.0000 | 0.0000| 0.0000| 0.0000
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Ocmpressible Displacement-Correction Term. Axially Symmetrie Case (n=1).
§,° 5 (Fornf) By =3 m ¥

T, N \ \
-a% = ‘B‘O‘F" + .:OB\) ) &-\)2‘3 ‘FA,‘F\, L gog“

(8v)g _ . (av) v ] Vg e "
iy AL vy =fs | ‘*j:/l% = FLFS + 1,0, +FoFa, 4 R,

. 5| \ . !
F%‘E = 600 [Dgfa 4 BT, « RUR, « 1S8R EL, 4 0508, ’3-.{4\,]

o, T CoQe uttra 3% u,
TR R g S G oe®s)
* &

wW=0.15 .
84 fo {“' B ?«.% ‘\'J;; %u 'gr‘.a ,'E ‘:40
) ) ) 0 ) ) 2.1967]1.8591 | o 0.0855

0.25| 0.0773|0.5668| 0.02kT | 0.0633| 0.4639| 1.5367| 1.3687 |-0,0385 | 0.0829
0.5 | 0.2618 | 0.87k0| 0.0k52 | 0.2307 | 0.77T16{ 0.9946| 0.92T2 | =0.0628 | 0.0679
1.0 | 0.7599 | 1.0535| 0.062k | 0.7409 | 1.0327| 0.3011 ] 0.301k | =0.0728 {+0.0028
1.5 | 1.283k | 1.0309{ 0.0k7h | 1.2985| 1.0488|+0.0389 40.0k1k | «0.0498 |~0.0463
2.0 | 1.7911 | 1.00k0| 0.0223 | 1.812k| 1.0186|=0.0081 |-0.0078 | =0.0226 |-0.0k2k
3.0 | 2.7906 | 0.9993| 0.001k | 2.7936| 1.0005]|=0.0008 |~9.0008 | «0.0014 |-0.0050
20 | 3,790k | 1.0000] 0.0000| 3.790% | 1.0000] 0.0000] 0.0000 | 0.0000 | 0.0000

w=0.5
0 0 0 0 0 0 2.6090 | 1.7453| © 0.1705
0.25| 0.1139| 0.7658| 0.0580 | 0.0761| 0.5132| 1.5891| 1.2605|=-0.1479 | 0.1610

0.5 | 0.3408 | 1.0017| 0.0962| 0.2750| 0.81%0| 0.9409| 0.8368 | «0.1793 | 0.1179
0.75| 0.6000 | 1.055V| 0.113% | 0.546k | 0.9709] 0.5196| 0.4997 | =0.169% |+0.0k92
1.0 | 0.863% | 1.0868] 0.1112] 0.8495] 1.0357] 0.2567| 0.2603 | «0.142k |-0.0200

1.5 1.

2.0 1.8748 0.9935| 0.0300 1.9089| 1.0141|=0.0051 | =0.0048 | =0.0306 |=0.064}
3.0 | 2.8711 | 0.9991| 0.0015] 2.8745/ 1.000k|=0.0005 | =0.0005 | =0.0015 |-0.0057
k.0 | 3.8709]1.0000]| 0.0000| 3.87091 1.0000] 0.0000] 0.0000| 0.0000 | 0.0000

3760 | 1.0063| 0.0722| 1.4117| 1.0401{40.0326 | 40.0357 | -0.0782 |-0.0883




W= 0.25 15
v Jf % e % || ® % |y (&
o |0 0 0 0 0 3.63 [1.6273 | © 0.2553
0.125 |0.0639 | 0.8029| 0.0607| 0.0278 | 0.3518| 2.2363 | 1.3820 | =0.3991 | 0.2k97
0.25 |0.1788 | 0.9981| 0.0995| 0.1036| 0.5840| 1.5767 | 1.1509 | =0.3985 | 0.2260
0.5 |O0.MM1T| 1.0730| 0.1426| 0.3496 o.8609J 0.8Mk5 | 0.7426 | =0.3190 [ 0.1372
0.75 |0.7082} 1:0536| 0.1515| 0.6557 | 0.989| 0.4390 | 0.4265 | -0.2k29 (+0.0286
1.0 [0.9677| 1.0235]| 0.1363 | 0.9677 | 1.0356| 0.2062 | 0.2122 | =0.1786 [-0.0590
1.5 |1.4693 | 0.9902| 0.076M | 1.5219| 1.0308|+0.023k |+0.0360 | -0.0825 |»0.1137
2.0 |1.9636 | 0.9899| 0.0278 | 2.0005| 1.0096|<0.0036 |-0.0034 | =0.0282 |-0.0670
3.0 |2.9593 | 0.9993| 0.0010 | 2.9619| 1.0002}-0.0003 |~0.0003 | =0.0010 |-0.0043
4.0 <9592 | 1.0000| 0.0000 | 3.9592 | 1.0000] 0.0000 | 0.0000 | 0.0000 | 0.0000

W=0.\ :

0 0 0 0 ] 0 5.9211 | 1.557h (] 0.3065

0.03135.:/000M6 0.7181 | 0.0318 | 0.0029 | 0.1443| 3.8128 | 1.k953 | =1.0337| 0.3059
0.0625/0.0403 | 0.9019( 0.0522| 0.0111 | 0.2501| 3.04k6 | 1.4340 | -0.9642( 0.3033
0.125 |0.1017 | 1.0348 | 0.0821 | 0.0401 | 0.4125] 2.2662 | 1.3137 | =0.T790| 0.2925
0.25 |0.2362 | 1.0980( 0.1221 | 0.1357| 0.6381| 1.5017 | 1.0828 | -0.5684| 0.2519
0.5 |0.5100 | 1.0816| 0.1598 | 0.4146 | 0.8897| 0.7640 | 0.6780 | =0.363B| 0.1294
0.75 |[0.T75k | 1.0414| 0.1601 | 0.7358 | 0.9985| 0.3825 | 0.3753 | =0.2536|+0.0045
1.0 [1.03151.0100| 0.1373 | 1.0480 | 1.0339} 0.1729 | 0.1790 | =0.1768]|-0.0827
1.5 |1.5285]0.9057| 0.0706 | 1.5865 | 1.0254| 40.0178 [40.0197 | <0.075k{=0.1175
2.0 |2.0221 | 0.9905| 0.0235 | 2.0568 | 1.0077|=0.0025 [-0.002 | «0.023|-0.0610
3.0 |3.0187 |1.0000} 0.0007 | 3.0213 | 1.0008|=0.0002 |~0.0002 | =0.0007|=0.0032
k.0 |4.0184 | 1.0000] 0.0000 | ¥.01847 1.0000| 0.0000 | 0.0000 0.0000{ 0.0000
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ADDENDUM
February 1962

Sirce completion of the research work presented in the foregoing
rcport several new developments in low-Reynolds-nurber bouniary-layer
theory came to the author's attention. in particular VanJyke(Al,Az) and
;\aslen(A” utilized a Lagerstrom-Cole type expansion pr‘;cedure to calculate
ceconiworder terms (i.e. first-order correction terms) to stagnation-point
and other boundary-layer problems. The purpose of this Aidendum is to
clarify a shortcoming of the foregoing analysis which became apparent in
corparison with these rew levelopments, anda which was brought to the
author's attention by Professor JanJyke in private conversation. In
aidition, an important Jetail regardirg the application of the foregoing
theory to experimental low-Heynolds-number stagnhation-point measurements
#ill also be glarified; this was brought to the . ‘thor's attention by
Prof. Rott(hu) ir & differ-nt context.

et the external flow be Jdescribed by a streamfunction of the

form; T

)
- 2 T—
\\J;SSA x' n \é*(vx:k—l q.“\"')% 4+ ..--+%\jy_;_ ¥Q"§ &.“ \a._,]..} (Ad‘ol)

where the equation above replaces (1.22). Tge first-order correction
terms appearirg in the above expression are not necessarily related to

the nosc radius, rather (as explained ir the introduction to Chapter II.)
1 is merely a convenient reference length. The pressure, temperature,

ar.d density expansions can be related to the streamfunction by means of
the procedure described in Chapter 1. (This is permissible for the first -

order correction terms because the viscous terms in the equations are of
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n 2 o \
1+ \ d .
g s A e (o) E et Bl fyn ] td
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terms appearirg in the above expression are not necessarily related to

the nosc raiius, rather (as explained ir the introduction to Chapter II.)
i is merely a convenient reference length. The pressure, temperature,

ard density expansions can be related to the streamfunction by means of
the procedure described in Chapter i. (This is permissible for the first-

order correction terms because the viscous terms in the equations are of
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order il-s .) Unly the pressure expansion is of interest here;

?.P‘_ &‘Aa (““fg; '.éL. ".;),, - *%& [(\vn\ad‘\’ - ('r" V\Vq..)xlb -]'} o (Ade2)

The "irner" expansions of the sare variables are as given in
chapter il. Jdatching the two expansions requires that as Irqeo the
"inner® expansion approach the external flow Jdescribed by (Ad.1) and
(Ad.2). This implies that the solution for fg, , eRy, I, ftg s o, and
i'p' are &s given in Chapter 1li. Furthermore, using the boundary-layer

solution in the natching requirement one obtains that;
AxN-h 3 Y + s
7”,"’ (g)= 3 J—A 7->~ R \ (0 (hd.3)

Since any constant that might appear in the limiting behaviour
of f‘ (?) or higher—order corrections would bec of order %! or smaller,
it is apparent that the constant 4, in (Al.1) can be identified by
comparison with (A4.3) as;

@, = - Rl?* (Ad.L)

It is likewise apparent that to determine constant by, the
limiting behaviour of f, (7) must be known. However equation (Ad.2)
shows that b, appears as a bounldary condition necessary for the
integration of gp (?) , which in turn is necessary for the solution of
f, (:'). This shows that b,, can not be ietermined within the framework
of stagnation-point flow alone; it can then be Jefined as the undeter-

mined "iisplacement constant", i.e.;

=6 | (4d.5)
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(For further discussion on the somewhat arbiguous nature of
defining the displacement effect reference is nade to (Au).)
Using results (Ad.L) and (Ad.5) in (Ad.1) and (Ad.2) the

"outer®-flow expressions hecome;

2

g o ‘un{\v('ri‘- N nV)\g r ot ’i [.R,,?h; (_D\rq}“.}

(Ad.6)
S\ S A T +lfi o Ry + (G mRV), L),
| il o SS E) 2 R RVA 3 Y Ixen
Corresponding to (A1.6) the constant of integration in
irtegrating gp, (r?) (cf. pp. 31-32) becomes;
_lrn % * ,
K“" = E:'—; 7 —_ CD— nRVf? (Ade7)

which now replaces (2.35). Then the corrected form of (2.36) becomes;

Pl — __\_. ! * ,'.. \ |.- ' -( _ V % ” 8
;;_Al %L(:?l - e*“iﬂfn)*o «o¥ (\HMI +'7%— F‘('&. \‘, ‘-,‘l,] =) wk /1 (ad.8)
Thus it is clear that the momentum equation for the vorticity

correction term is not homogeneous as given in (2.57), but rather;

M (4%" ’ &A\vw) _ e%* /%’o 7 (Ads9)

is the correct equation. Now the behaviour of the momentum equation for

the correction term as nz-D‘t can be observed;

Lo M) = - 24 ol (82.20)
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Ihus it is clear from (2.57) that;

;‘.ZZ oo = m-n* (Ad.21)

.

Un the other hand (Ai.6) and (M9) imply that;
Lowm ' - S
?ooo {'Wé?') ,? (Ad.12)

Finally, the limiting behaviour of the displacement correc-
ticn terr consistent with (2.55), (Ad.6) and (A4.10) is;
W *' my=\
yr= 1 1 (2.53)
vbserving that the energy equation and all the remaining
voundary conditions for the Jisplacement ani vorticity correction terms

are ilentical;

B )= b= o= o < 45 Wi = O (h1:13)
ani using the five foregoing expressions, it is easy to see that;

‘i’w“a"l\ = *w("n T ’?* {v., (1) (Ad.1lh)

satisfies both the correct momentum equation (Ad.9) and boundary
condition (Ad.12). The energy equation ani the remaining boundary con-
Jditions are automatically satisfied by (Ad.ly). Equation (Ad.1L) is
then the correct vorticity term; the temperature function ft\v.,..., is
correspondiingly modified. The correction to the vorticity effect
.iescribed by (Ad.1l4) hss become known in the literature as the "“vorticity-
induced pressure-gradient" effect (e.g. Li(AS), Vam)yke(Al), etc.);

and the present result and the results of the above mentioned investi~

gations are thereby in agreement.
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One may now consider an application of the foregoing theory
to experimental measurements of low-Reynolds-number stagnation-point
flow, let the velocity gradient 4 berbased on pressure distribution

data ottained at a "low" Reynolis number, so that;

9i’.

P
I

m

(Ad.15)

i
S,Awr

x=0
0
Using (A1.8) and (?.5) in the above expression one obtains;

2 2
3sA!'-"=— {Ecm(o\ + < ﬁ.* %, 10) + -n}p’ = g, A {\ -

— %]} [g‘;"““:“) Yoo ,-’:-:(o) * (rmat )- G- v.v\v.l"]w--}

where A corresponds to an "infinite" Reynolds number.

(Ad.16)

Nhow, considering only the highest-order corrections, & can be

expressed in terms of A ;
exp

A= Ao {14 k[ K- G- Rip¥]] )

where constant K, is defined by;

- [ fes ]
KL =5 B,(o) &A.Lo) ;}(0)*!- (H—M’?x (Ad.18)
if now A is to be used to predict physical quantities in
exp

the bouniary layer, and if the Reynolds number is sufficiently low to
necessitate consideration of the first—order correction terms, then the

change described by (Ad.17) and the effect of this change on the boundary-layer
tern must also be included for a consistent theoretical prediction to this
order. T7he effect on the boundary-layer quantities of changing A to the

first order is already knowmn (cf. pp. 38-39); it is the displacement-—

effect term. Thus expressions of the form given in Chapter V.,
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€ege (hcé);

Y W +-‘-FDUL‘ Lo % +e $ Aw [Uul..'.("‘-_|)'f'_‘]+
) : «, um

Vet Unt NIR Uk RVR Ups /A

(hdo19)
v JY{ ul'tgrf
OV
must now be revise in accordance with (Ad.17);
U Y% G LB e | QK- c!-.,kv,: Vyp  2-8 2. [yy_h
U‘!f U'..‘_ l 'A UTC“ ?{" + ‘ v‘ U?lf
+(-K-.‘ - ‘) Ul) ]+hvr lv...,v - J_; U\(_* K(_U\) +
%y Ure® V«:F A \Ju{:
Py [u.,.. (K"")U’B]*- oV % Uvarn =% Vo (Ad.20)
4 Jv,/p, Vref Yret AT Uret

The two expressions above liffer because (Ad.19) uses a velocity
graaient &4 calculated from inviseid theory, or reasured at an equivalent
"infinite" (i.e. very high) Reynolds number, whereas (Ad.20) is based on
Aexp obtained from pressure measurements at the particular ("low")
Reynolds number corresponding to ))‘ . Tl:xe former method must therefore
account for an undetermined change in A due to the displacement .effect,
whereas the latter has already taken this into account, but must also
account for the changes in surface pressure gradient due to the centrif-
ugal pressure rise and vorticity interaction effects.

Constant K, (Ad.18) is a function of W ani is tabulated below,

as a supplement to Table 1il.



167

TABLE ad.1. Values of K.,

Kc
N n=0 n=i
— T, - 0. 9402 U. 0100
C.75 0.7998 v. 6927
0.5 0. 6484 0.5601
0.25 0.4820 0.4160
0.1 0.37117 0.3216

The experimental comparison presented in Chapter IV. ani Table
V. and carried out in Appendix H must also be revised in accordance with
(A1.20). Values of K, and 3, (0) clearly indicate thut the theoretical
heat-transfer rate will be somewhat higher than the predictions pre-
sented in Table IV., thereby making the agreement between experiment

and theory less favorable than implied by that Table.
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