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ERRATA.

P. 16, Equation (1.23)1

Add factor of (14 -n) on right-hand side of equation, viz.t

P. 21, Equation (2.8):

6th line; oit e in lenowinatbexE of 1st and 2nd terms; change k to

in denominatir. of 3r1 and 5th terms:

7th line; omit RL in denomninatbon of 1st, 2nd, 4th and 5th terms,

viz.$

8th line; change density derivative in last term:

P. 22, Equation (2.13):

2nd line; change 2nd term from ?C to derivatives

P. 65, 4~th line from bottoms

Insert j , viz.:

........ terms with the 3 subscript ......

P. 65, 2nd line from bottoms

Insert K, and Ka , vis.1

....... *.... of proportionality K, and - The ...



P. 95, Equation (F.1l):

In right.hand side of 2nd and 3rd expressions, replace h (enthalpy)

by )A,. (viscosity), via.s

P. 95, Equation (F.12)s

Last line refers to function a, v.:

P. 103, Equation (H.2)s

P& on right-hand side has subscript I , viz.:

P. 105. In line above equation (H.7), reference is made to (H.3) instead

of (h.3), viz.,

(H.3), are presented ..............

P. 108. In definition ofC , replace t and V by p. and t) , viz.s

shear parallel to surface It -



ABMWM

St•d, viscous, two-diminscl m-. elaw sy qmsrio

stagpatin--poLnt flow of a gas ae casidered for the eame en the

3.73018. number Is too low for the app3.iaability of the dlinsheil

boundary-laer theory. It is assud that the law.4mim1t gas is still

a continuous fluid, permittin~g the use of the Xxvieti.Stakes and

associated equations as the basis of the probilm. effects of

low Reyniolds number are determined br SAppIMa an eWWWOLO proedure

(similar to Lmgerstrom end Cole's (2)in tins of a pmeinter,

essentially , to the flui4.deml Su~tCIn5 T

higbest-order equations in this expanoon an the boumbarlayer

equations; the next-order equatimon, *Lseh therefore inwol, first-Order

low-AbynolAdm-mber correction teoms to the.-boun.Z-laur qdtitieso,

are presented and discussed in detalU, together with the apropriate

boundary conditions. The boundary eitiat are of two tqless at

the vall they are derived from the kinstie theory of gpes, far frm

the well the flow must "Merge" Into the Inviusoi solution.

It is shown that the followin qwUtitLes an necessay7

to define the inviscid flow iaar the steagm•nai poait: the OtSDAtiow

properties of the ga, a veloeitq mAdient, a nose raus, and a

vorticity parimter. Ohe ltter is present In the aida3l sENtric

oas only; it defines the slope of the Ivisoid shear f-ow near the

stagnation point of the asWally smete boV. It is Mhas that

further generailiation of the •nvIscid flow b1r e6mai4a addItleoMl

• 1
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passmtez's necessary to define the flw ovr larger ragomp in the

vicinity of the stagmation point is not mocssaW, beomine an

additional pasminters Vill not affect the ftrst-cedar corretions

considered in the analysis of the vinous flow.

2e result of the analMys is that the fofloori core tIon

effects to boundiaa.layer theo7r are defined: curvature effect.,

displacemnt effect, velocity slip ad taqperture-jmp effectj,

vortieLty effect (this last oam for the Wda~ll Mmtric case only).

2he inmLtuds of these effects depe. an the follovin paremeters,

respectively: the ratio of the boumaftq-lqyer thickness to sose

rdius, the change in stanatiopoiant veloci~ty gradient fron the

inv~scd value due to the displacesimat effect of the boundaz layer

around the body, the ratio of the mean free path to the boundary%

layer thickness, and finally the ratio of the slope of the inviscd

Aha-fo profile (in axially syimtric flow only) to the average

slope of the boundary-laMe velocity profile.

Some applications are discussed, in particular the case of a

blunt body nyizg through the atmosphere is considered in detail.

Sa1-gas properties are used to calcul&te the expnsio pai•mieters for

this case; the results are plotted In ohart form. Me regi•om of best

applicability of the expansion procedure is mbere the expaonson

pa•meters arse less than I and are about the sm, order of .apitude.

Ois occurs in the flight-Speed raus of Mich 2 to 7.

Dalseroal solutions of the eLUations are then presented using

the properties of undissocisted air comrspoedin to this speed rap

(perfect gas, constant PzuMdtl =mor,, variation of specific heat,

viseoNItY, beat condkuctivity with pow=s of absolute tMWez'VMM)-



bRsults are tabulated for five values of ulL-to-fre.-strem temperature

ratio; e2oles of lov-Dynolds-w- velocity and temperature

profiles are given. The effect of temperature ratio on wll shear

and vl hbeat-transfer rates are shaom in both table and grph forms.

The behavior of the shear and heat-transfer corrections due to

velocity slip acd. temperature jump is especially significant; the

results clearly indicate that, in spite of the much smaller mean free

path at the wil for strongly cooled boundar layers, the reduction

in heat transfer due to this effect is determined by the mean free

path in the (hot) inviseid flov at the stagnation pant. This

conclusion is the result of including the effects of variable fluid

properties in the analysis.

The predicted stagnation-point heat-transfer reductions for

a cylinder in a supersonic airstream at low nevn numbers are

compared to the experimental results of Teik and OLedt

Both theory and experiment indicate reductions in heat transfer at lov

Reynolds numbers; but the measured reductions, wbile agreeing in

trend, are consideraby larger than the predictions.



The flow in the vicinity of forvard st;%pation points has long

been of special interest to aerodynamicists. The reasons for this

interest are both theoretical and practical. Theoretically, the flow

impinging on an "infinite" flat plate provides one of the few exact

solutions of the Xavier-Stokes equations; furthermore the solution of

boundarylayer flow around bodies always "begins" at the sta lton

point. Practically, heat-transfer rates are usually at a -Y'-. in

the stagnation region; furthermore, stagnation properties of the flow

are often the easiest to measure by mnse of varAous probes and measuring

instrmients. In addition, in recent times, the reentry prdblm has

generated renewed intereet in this problem. especially in the lov-

1eynolds-Number flow regime. The purpose of the present investigation

is to reexamine this problem in this lowp.oynolds-mnmber flow regim

for the stead-flow case and for the plane two-dimensionl and axdally

symmetric flow patterns; due to their similarities a unified treatment

of the two types of flow will be possible.

Laplicit in the aerodynamicist'a solution of flow problems

is the assumption of a continuous fluid. The classical equations of

Navier-Stokes, together with the contiruity and energy equations, and

additional equations, which relate the theroodyaaic and transport

properties of the fluid, form the basis of continuma aerodynmics.

This approach vill be maintained in the present investigation; though

it must be duly noted that it imposes a very definite limitation on the

applicability of the results on gases (which are principally of interest)

in terms of a nudsen number, Vhich cannot exeed a "reaonaly samll"

value. What this limitation means can be inferred fran the kinetic
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theory of gases. It is well known that the properties of a fluid flow

field for a gas can be obtained If the (molecular) velocity distribution

function is given, by taking the appropriate statistical aver•ges.

Solutions of the Maxwell-Boltmunn equation, which is the conservation

equation for this distribution function, can be obtained in terms

of an iteration procedure, which results in succes•ve sets of

"continum" differential equations; i.e., equations In terms of the

"locally average" quantities. It has been pointed out by a muber

of authros (e.g. Shersan(39) , Schaaf and Owabre(36), etc.) that this

iteration procedure is roughly equivalent to an expaasion in terns of

the mean free path between molecules. Te successive sets of equations

are: Ibler's (inviscid) equations, the hviex'-Stokes and associated

equations (which will be Used in the present work), the Burnett equations,

and equations of still higher order. It can be seen then that the present

analysis neglects the Barnett and higbhz-order terms, which implies that

only"m " changes in local flow quantities are permissible over

distances equal to the mean free path. Actuasll it has been found

(SchWa and Oimbre (36)) that even for sc specially simple sad

well understocd problems in gasdynoemc such as the structure of

normal shocks and the propagation of higb-frequency sound waves, where

the Burnett teaps were clearly nou-negligible, their Inclusion in the

theory gave less satisfactory agreement with experimental results

than the theory based on the Nlvier-Stokes equations only. Furthermore,

the Barnett terms include derivatives of higher order than are present

in the Novier-Stokes equations, which indicates the necessity for

additional boundary conditions. There is no agreement at the present

as to vha;,if any, these additional boundary conditions shotld be. A
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more detailed discussion of these and other difficulties involved in

the use of the Burnett equations can be found in reference 36.

The present work is then an application of the avierStokes

equations to the stagnation-poiat problem for a gas with known thezmo-

dynamic and transport properties. A perfect gas will be assumed, with

the specific heat, viscosity, and heat conductivity proportional to

arbitrary powers of the absolute temperature. (These asumptions

regarding the properties of the gas will be justified in another section.)

The classical solution of this problem for very large Reynolds numbers has

two phases: first, the solution of the inviscid-flow problem with slip

around a given body is obtained; this gives the location of the

stagnation point and the velocity gradient there. The second phase

completes the calculation of the flow by applying these results to the

well known solutions of the stagnation-point boundary-layer equations in

the two-dimensional and axiall.y symetric cases respectively (e.g. Cohen

anand Donougheo .3), Howe and uermn((16), etc.). It

is shown by Lagerstromn and Cole(20) that these two steps can be looked

upon as the first steps in an expansion procedure for obteanin approxi-

mations to the solution of the lavyer-Stokes equations for high Reynolds

mmabers. This procedure consists of expanding the stream function in

powers of a Reynolds-nimber parameter, (in this case)

in terms of two parallel series, the so-called "inne.1 and "outer"

expansions. Successive terms in the two series are solved for alternating-

ly. in this manner first the inviscid flow around the body is obtained

(the first term in the "outer" expansion), then the caqilete boundary-

layer problem solved (the first tern in the inner expansion), then

a correction to the external-flow follows (usually &W only to the



7

displacement e•ffect of the boundary layer); and then a correction to

the bouiday.-layer solution, etc. It is apparent from pysictal

considerations that the formal mathematical procedure developed in

this reference is rigorously applicable on3l to certain very special

types of problems. It entirely fails to account for such universally

present phenomena as turbulence.e and the possibility of separation, for

example.

In the folloving, a treatment of this second approximation to

the "inner" flow for these two types of stagnation-point flows is

presented. The formal matha tical procedure of reference 20 will

not be folloved; still the above couments indicate that a complete

treatment of this second approxization, which is essentially an

improvement of boundary-layer theory for low Reynolds nubers, would

r-equire a solution of the second approxiation to the "outer" flow.

This implies that in addition to a superimposed external velocity

gradient of arbitrary nmaitude (vhich is the result of the solution

of the first approximation to the "outer" flow, i.e., the inviscid

flaw) one should have an additional arbitrary external-flow paremeter,

vhlch Influences the second "inner"-flow approximation, and which

should proper1y be the result of calculating the improvement to the outer

flow due to the displacement effect of the boundary layer. Obviously

such a calculation cannot be made within the framework of calculating

the flow at the stagnatiou pont only. Tus one has to accept the

presence of an additional arbitrary parameter in the problem, due to

an undetermined "displacement" effect.



OAPTER I

Inviscid Flow near the Stanation Point

Let • be the radius of curvature of the body near

the stA;nation point. Then the "polar" coordinate system of

Appendix A (A.6) can be transformed into the conventicnal boundary-

layer coordinate system by the trasnformtion:

(1.1)

where j 0 defines the body contour, as ahown in the sketch.

T u

Using transformation (1.1) in (A.8) and. (A.9) the inviscid

momentum equations can now be written down. In the • direction;

L

1 V•AW ' __ I .

(j X

+ i ' (1.2)

8



8ix1arly., in the x direction

Ra0 (.,ý •I'•I )• '+%, + W, Y,- .%

+ Vt. -'

(1.3)

se velocities can be related to the cooressible streaw

fnton by using (A.6) an 0(.1) in (A.3):

U ~ ~ ('IR'. R 3

(1.4

awne flov in the free stzeam is wiifom, and. the flow is

steady, the "iso-energicity" condition can be written as:

2"2.

iibere the subscript S refers to stagnation conditions. For the

"aMuqtiaon of temerature-dependent specine heat the entMalr can be

expended about the stagation condition in a Taylor mlesi, as follO•S:

6
(1 .6)

where the dot~s signUm 4ervatives ,d• respect te taqiere~tue.
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M~e spomtry of the problsm4 and the bouaa'y CO1td~cn tbat

=0 an the b*~ V aL anube uedto vlte dov

the folloving expensions for the vaious qjumtities:

T Tsr~ L LT CTL

flePerfect-gLs law osM be used to relate the pressure,

dansity,. and temperature expensi~om:

PA = S 9 %*rI TSTSu

Q ~. 4.I



o exwansimos (1 .6) ad (1 .7) vill be substituted Into

equations (1.2), (1 .3), nd (1.5). Coefficients of like Poms of the

independent variables vill th•n be equated., g.ving a suoeshion of

additionl. relations, simia to (1.8). Tbm results of this procedure

vil. be that maW of the coefficients in expansions (0.'7) vill be

ep3essed. in terzr of a -1.1er nuIber of Independent mons. 'his vil.

show the truly significant independent parameters naeeeuar to describe

the inviboid. utagmation-point flow that ve are considering. we details

of the procedure follow. Substituting the expansions (1.6) and (1-.7)

into the energy equation (1 .-5), coefficients of the t tern give:

tbus

i 0 (1.9)

Using this result, the x Lx and x terrs give:

A'• +- Er o., = 0

(,+.• + 4- A- o. T V,1 a,

from vhich

•,"-•'r,(1.1o)
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CLT -e .- Ae•,T, .)

O- +- - • (1.12)

A similar substitut•o• into the 'a macentum equation

(1.2), an grouping coefficients of the constant, e , a &d

terms gives:

0

+ & SPO.Iae.+ SS'Ps 0-t*V 0

from Mbi±ch

Z ,(I.13)

(C..

P, 4. 15)

Finally the X .moentum equation (1.3) is used

in a sixilar vor• grouping coefficients of the constant and te ems:

+ , 0

A
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henlce,

,.n ? s,( 1 . 1 6 )

Nov use (1.8) together vith (1.9), (1.10), (1.11), (1.13), (1.141),

an (1.16) to get:

..

~Cgs.

These results make it possible to detezrLne the coefficient

of the second term in the expansion for the streaw function, 6L%

Thus:

f o r n - 0 a -,

for n I o is arbitrary

An expression for the vorticity near the stantion point can

be found by using (1.1) in (A.13):

4.(+ at•,,- .( .8
le)PL? - + +~

0*



aistituting exPmnsion, (1.7) into (1. 18) the .xweusicm for the

vozrticity Is:

A x + .I-, :l +

Mm, for the two Iqpes of asta -tic•b-polint flow:

for ,, =_ -A4.Lz, + =,•] 0-7V 'a)

ibere the above expression defines a vorti-tr. pmimenter V

Coefficient C. •a then be written as

-4.

This result can now be used# together with (1.8),. (1.12),

(1.15) and (1.17) to detezwine

(rT 4Sc[V VR

%TS

The above intezuediate results ema be sumused IV wziting

exPansions (I .7), using the derived .isME of th'U GoefMeCnts:



u A x11 t+'"]V

(1.22)

P- , (1-.25)

Prc these expressio• s the parmiters for the 3 twAcal

invscid sagnatim-point flow cm be aseerta~ind. velocity graient A

is a fuimdintal parinter; it is detemined by solving the invisoid

flow ar•und the entire body. It will be of the order of gmatude

of free- stream velocity, I!J , divided byv a "uigifioant body size,"

L , perpendicular to the flow dre'ti.n. Two more Pemrters

appear in the stream function; nose radius R , ad vortiity

Parameter V .it has been pointed out previously (e.g. 11ott

ad Tm (35)) that there Is an Imortmnt differese in this respect

between tvo-dimansional and a laly qintrie staWt.la.podnt flow; the

latter a•tting a vortical tern but showIng no effect of nose

curvature to the order of term that are cosidered here (i.e., A )p

ifereas the t•m-odnsional flow Is irrotatioLul, but has a curnature

tern. Stagzation thermody ce properties, Yj , ,

and C are the addItImoal az•bitrazy pa•z•mters. •d
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subsequent terms in the expansion (i.e., higher-order ternm in ;K

and k t•wn included in (1.22) through (1.25)) been conusdered,

additloal parameters would have appeared. 2hese parameters vill be

arbitrary, or identifiable as the rate of hange of the nose radius

Vith X, , etc. The possible effect such additional arbitrary paerameters

my have on the viscous flov near the stanation point vill be discussed

in the latter part of hapter II.

As expected, the expansons for the theruod7nauie properties

exhibit Crocco's relation. On the stagnation streamline the flov is

isaentropic; isentropicity is ma"taeAed off the stagnation streamline

also, with the exception of the rotational teru V . nhe pressure

term shows no effect of rotationality; the X tern is the

centrifugal pressure gradient due to curvature.

To complete the treaent of the inviscid flow, the velocities

can be vritten down by substituting ( .R2) into (1 .4)

= -(Ii•I jV .3



Viscous Flow near the Stanstion POWnt

General Considerations

The basis of considerug the viscous flw near the stagnation

point is Lagerstrom and Cole's expansion proceftv (reference 20), as

described briefly in the Introduction. Owe esmenoe of this procedure

is a magnification of both the indepemdnt coordate and the velocity

component perpendicular to the solid surfaee in Inverse proportion to

a "significant viscous length" (i.e., the boundaryj-lqr thickness)

and a velocity based on it. As the llMt of vez7 lare wenols number

is taken, viscous effects will be lmitad to a vez7 thin layer near the

body surface., and these agnifications then permit an alytic Investi-

gation of the structure of this veq thin layr. Sis layer is of

course the classical boundar7 legur of Pvmatl; and lageratran and

(2D)
Cole's procedure consists of Improving the b -undary'layer result

by expanding all flow quantities In pears of the inerse square root

of a Btynolds number based an so ignificant len h. hums,

dmediately as this improvmient is considered the qmOstion has to be

raised what this significant length should be. Thr Is no much

length Inherent in the classical boaudar-loer solution itself.

Another mw to fornmlate this mm question is: ist laenth should

the bouniar.-layer thickness at the stmim pdait be earwed

"to in order to decide whether or not a seoetion term to the bowadaz7.

layer solution is necesmsa7, when emuidemrig the vinos s flow war

the stagnation point. ThiS Is a crustal qwestim, Wch will affect

the foslation of the entire problm.

17
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One such length that sugsts itself Is the radius of

curvature at the nose. That this may be a suitabl, length can be

seen by considering a stagntion. poant located on a urved nose.

For very large Reynolds numbers the boundary-layer thickness becomes

negligibly mull compared to the nose radius, hich, (by geoaetric intu-

ition) is equivalent to takd the "infinite" radius limit. In this

limit then the Wassical solution of flow iamliging on an "Infinite" plate

is recovered. On the other hand It Is easy to see (ralying again on

intuition) that, as the Reynolds number becoses ms3ler, and hence the

boundLa.-layer thickness larger ihen compared to the nose radius, it

y become necessary to consider a correction to the classical result

due to the curvature of the boundary layer near the stagnation point.

(Subsequent analysis vill shov later that these Intuitive considerations

are essentially correct.) If, however, the nose radius is taken ad the

sole length wh1ch could be of significance in the problem, then no

correction terms whatsoever can be adatted for a flat-nosed bogy.

Mis Is certainly contrary to expectation, and in direct contradiction

to the presence of a "boundary-layer displacement effect," as discussed

in the introduction. Actually, it is not necessary, or even possible,

to decide beforehand vhat the proper reference length should, be. It

is clear that the proposed procedure could be applied vith the

reference length left ar•itrary, and whatever the Important reference

length of lengths may be they vill appear in the solution upon proper

expansion of the equations of notion and proper application of the

boundary conditions. In the subsequent analysis, the nose radius

vill be used as the reference length; in the light of the above reArs,

this choice Is one of convenience only and cannot affect the validity
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of the outoone of the analysis. At the end of this cbapter, it vill

be possible to identify all the lou-Daynolds-number effects in terms of

several referene lengths to which the boundary-layer thickness has

to be compared vhen considering the necessity of a lov-Bsynolds-number

correction to the boundarý-layer result.

beveloyment of Theory

the procedure for investigating the viscous flow neao the

stagnation point will then consist of writing the full viscous

equations of notion, as derived in Appendix A, in the curvilinear

boundary-lyer coordinate system of equation (1 .1). Magnification of

the independent coordinate L is accoMplished by replacing it

vith the boundary-layer variable:

(2.1)

Miagification of velocity \r , aad the desired.

exp•nsion of the velocities is accomplished by vriting the strem

function in terms of the folloving expansion:

(2.2)

Using the symmtry of the problem analogous e3qmnuons c•a

be written down for the the d a properties:

T T~~34.) +4J~ i. + 4 ~iti~~.;1(2.3)



20

9 =r (a.&)
+ - Fs 1,(+ *"' + - ot)ý + c )t' (2.5)

ft+ ++ AA OR ( ) ( 2.5)

As in (1.6), the fluid properties are assumed to be

temperature dependent, and can be expended in a Taylor series about

the leading term in expansion (2.3). The dots again signify derive-

tives with respect to temperature; the subscript 0 indicates

evaluation at Infinite l-ynolds maber and X - 0

(+0 t . (~T- ,----, +) +' (T-m•.

(2.6)

Using expansion (2.3) thes" expressions an be written:

.- ,.. t T ,S , + +,, t,,,,,,+ ,1 A[. ,,,,(2. 7

(2.7)
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Ole L, montun equation coa be vritten down byr

considering (1.1) in (A.7)

4.... 41  + -W-3 +

I !

3~ ~ 3R3$~

3 R ~~ j t FW

___ +~~ " 1~4 1  1

Nov expa.ion (2.2) tbraag (2.5) =an (2.7) ca b

substit.ut•ed into tbh~ls equati:lon, an the resu~lt•s grue according• to
powrs of and + . The coefficients of the R,

constant, x" R" ,in es t

$I• (•,m * -,.) = 0•
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hence:

o 0 (2.9)

=0 (2.11)

•- I _ . (2.12)

210e x uamentu equation in obtained by using (1.1)

in (A.8);

__,-_____ f *' • J,. ,,"• ('•

-•? PIC

Or -

Wxv- 2 . I. -) (2.13

+a a +
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Bspeati• g the former prooeduvre coefficients of the X

team give the fo.oaving equation:

(2.14i)

Terms _ and in the above

expression are functions of .w () ny, the exact fimctioml

form dmpending on the viscosity vs. temperature law that ins assumd.

2w next equation in obtained by collecting coefficients of the ,

tenm in the x omentim equation (2.13):

I ( ? , -. 4- + 0 0 I, " +

+•' + +•'

- AoT,"' ~ 4 �),�� L, + T + -

T: .#4_ Lie" 1 '. + C.• -•••

- ,_�,~+ (I -'A,),:'-•4:- {~~~tt.~)~1(.5
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F3mif., the enerar equation (A. 11) Is written down in

coordinates (1.1):

'A, 0" + 1 )

0+ L +

+ 01 ,"")••T,, " . ,•k• + Tx÷ +"' T,+,

(2.16)

The dissipation function in the above expression

has not been expanded, because, to the order of terms considered., it

wili not contribute to the equations. In order to ascertain this,

one hbas to consider the form of the dissipation function given in

(A.1O) in terms of the general coordinate system. Each teiz will be

of the form of the stream function occurring twice, and four

derivatives occurring in like pairs. In order to contribute to the

stagnation-point term, at least two of these derivatives have to be

X derivatives (otherwise the term will be of order ita .

Since i is of order F and derivatives

of order , the lagest tern In the dissipation function

will be of order' viscosity times two stream functions and two It

derivatives, which is altogether of order 'k . But only

terms of order I and order 4 are of interest.

Now (2.1) through (2.7) mn be substituted into erC

equation (2.), sad term grouped in poers o and

XThe leading tern is
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+ JT

(2.17)

(2.18)

Colletie the termgivs

•bee he e-. etc.*, are aain given, but as yet •u-
speCified function of +. An aýitional ratio between

"thMe vaiablses ii given by the perf'ect-ga law, ibich wa asmd

ýg:, +, .r + +

(2.19)

lowi the f ominlation oo the dfAnedental n equatrels is onbet.ee.

Equations (2-.9) throug (2.12), (2.14), (2.15), an (2-.7) throu

(2.19) define two coupled sets of ordi m .y differential equations, in

the serco-th and first-order variables respectIvely. Me nerth-oider

set Is noulinear it ins esmentlaAly the boands.y-I-er equSaio at the

steAutio point. Me first-order set Is lianer, vith the coefficients

and Imbmogeneous terms composed of Uhe kown bmuaryl2qer solution.
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IA order to proceed with the solution of these equations

suitable boundary conditions have to be specified. Two types of boundary

conditions are available; at the aid-fluid interface (i.e., the "w.l•")

and in the inviscid flow, vhere the viscous solution has to "merge" into

the i'viscid solution specified earlier. The boundary conditions at

the vwl an derived in Appendix B, and are repeated here.

0

kjv 0

#0"0) = W(2.2)

and.

0

Ow ,= - i 2 -AV,

(2.21)

there constants K, and k. am defined by the above expressions.

in order to determine the bounday conditions in the inviscid flow,

one can use "the innerzflow" independent variable (2.1) in the

expresmions for the inviscid flow given by (1.22) through (1.25).

Furthermore,, as explained In the introduction, a correction vii. be

necesway in the invis•id ("outer")-flow pareteru, due to the

displac•ment effect of the boundary layer around. the body. Weu

effect will hbange the veloclty gradient A , which is a
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fundmanta3 p•ramenter of the proble) b an unknowm mount. This obangs

can be expressed as follows:

(e)
(2.22)

The other paermeters of the inviscid flow will not be

chaUgd to the order of terms considered here. (A more detailed

di•sasion of these correction terms, and their significane will be

given in a later section). The inviscid stream function can nov be

witten in terms of the viscous (i.e., "inner") expansion as

.sA~k C., 14
(2.23)

W.siNLrlY, the expansions for the thernodyenmic properties

in the inviscid flov become

Mpressions (2.2P3) and (2.24) in oonjiction vith (2.2)

through (2.5) can now be used to define the boundary codlttions necessary

for the proper "mergence" of the viscous "inner" flow into the inviscid

"outer" flow. As ? becowes very large
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•oe11 -• I

(2.25)

and ' I L

--- $0 CP ;p7-- 0
0

Using these bcdA~z7 conditions three of the diffezential

equations, nmely (2.9) through (2.11), can be integrated imdiately

0

-1 (2.27)
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M~ass results can be obae~~d with the perfect-gas levr

(2.19) to obtain

I

(2.2B)

The ramming differential equations can nov be sid Wlified

by using the above Intermediate results. Using (2.27) and (2.2)

equation (2.14i) becomes

~ ~ L
i . + +±T'o o

+ + 0±
(2.29)

The X mcmentim equation for the correction tern, (2.15),

Is siilar•y modified.. Grupng haogeneous and inamognems terms on

the left- end right-hand sides respectively, the equation belmes

j - (+)kj4-('~ -a. -j4 h, ,-

+ o•.,-•L•: ' +t' ••.] , ,•,T 4[( •, •,A•. '

L. " ', "' -

IL+:" +'

-T + ÷' ~ 4.,- T'L( , +.- .,-

+ A'0 k', + \.,, 0, •It' +
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+ (i v'l~+ + ~ ~ 4 +

(2.30)

ThO SO substitutions am be mis in the mrv9 .qpatiame;

(2.1IT) beeams

(2.31)

RL.L1exlj grouigM hmogeaeou~s sad Lahmogsneos tezu

(2.18) bee a

q-4)U t -'4~-) +

'S's (2.32)

Iajaatiowi (2.29) end. (2.31) amw constitute a ystem of

two coupled. non linesa' lifferetiel eqmations in the two vaiables

=Ad ) .oe - b o off the cannda. oyistem is , thus

bounnisay conditions axe neeisd. BqmtiLons (2.20) give 3at the v&ml;
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thus two are needed "at infinity." Mw proper bounary conditions

are than frox (2.25)

,j --.. -. .

(2.33)

These are the boundary-laer equations; their solutions a

be obtained (mericafly) as soon as the depeanmoe of fluid properties

upon tezuprature is specified. The wal-t6-fre-strOws stagMtion-

temperature ratio, W , vwin be a paroewter of the solution. After

these results are obtained the solutiaon of coupled eqatiLcs (2.30)

and. (2.32) can be considered. vWriable %?, in equation (2.30) cam

be eliminated by integrating equation (2.12), hiich cam be done directly

becaume, using (2.29)

tt &.

The boundary condition for p, as giewn in (2.26), can

be used to detezuine the unknown constant of ;iatepatio--. Let the

behavior of 4- far from the vall be described by

(2.34)

There is deteruined from the solution of the bowadaz,.lsyer

equations. Then, far fron the wmL.

AS A)'A + E. s7
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smoe, using (2.26)

K +n

(2.35)

and. the expression

(2.36)

cam now be used in (2.30).

Before proceedins vith the discusuion of the solution of

equations (2.30) and (2.32)., result (2.28) cam be used to modify the

boundary conditions at the wll for and as given in (2.21)

-0

A Ps

(2.37)

Thie two constants (or zathr eth~matica of consan~zts) that

appeer in the above boundary canolticare arbitxwr in =.t1ude; their

ratio K, / K, is also ,*xtr.-y, depending pway on empiri•ally

detezrmned solid-gas interaction propertles d' an d . . Additional

ar.itrary contats appear in the boundary canitions for • "at

innity" as Sven- in (2.26)p 2e .C aend V (this latter

only for the Y) e ase). She linearity of the epa~tions
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suggests that It will be possible to constmiot a solution of the

equaations for &W~ combination of the above arbitrary constants in

term of a. mu, where the arbitrary constants appear as coefficients.

Bach of the functions, associated with az on of the arbItrary

constants., can be solved for mon and for all. One solutions of the

equations could then be written in the fora

(2.38)

tehere the functions with subscript r- are associated with the

solution of the inhcotogeneous equation, subject to the boundary

conditions with a11 arbitrary constants vaishing; Awreas the other

functions represent solutions of the hamogaeous equations, subject

to boundary conditions associated with the respective constants.

flasut (2.38), above, then ixplies the ewdsteme of 5 different pairs

of functions (14 pairs for n = 0 ),, each pair being a solution

of two coupled linear equations, and. subject to the respective

boundary conditions. A simplification is possible If one dberres that

the pair of functions J- an d JD Ideticall.y satisfies the

homogeneous equations (2.30) and (2.32),, (because the left-bini sides

beams srely the derivatives of the corresponding bowsdaryh-lqer

equations (2.29) and (2.31ýJ. Os pair of functions, multiplied

by an arbitrary constant,, also satisfies the slip and tWQOZatUZe-JW1P

boAundr conditions at the wall, (2.37) prodded it the e0 oostsim-6r V\

and ar Se equal. ftis solution is eoia*W&Vr equtva~m., 'k o



Lin aM Behafl's(23) boundar-.iqe pebrft-tion sc.ution du to slip,

or the alternate nmtho e used by Xmigler(A) of ",epre sif," the position

of the soll&-fluid interface in the boundary layer b1 a leoth

proporti•nal to the mean free path., in order to account for the slip.

Noollmiler, (27 pointed out that depressing the true pohition of the

wval In order to account for the slip, vill nots in psnealp account

Correctly for the effect of the teWrature OJWu. My if this

"depression" times the local temperature gradient Is equal to the

teuperature Jiup vill this approxmation, be correct; this oe is

equi'uulet to the special case K%-wK- in the tezubwola

of the present analsis. For the genrl cae, K, + K.

a correction function an tbm be dmtezmiAed, wich accounts for the

fact that the two constants are not eqjual. 2spressions (2.38) can

then be re* tten as follow

+(AttK Y%,) jý~(I) + O.4 W~

METS )As(2.39)

ftws, to determine the effect of slip and tmemeitur Jumps

only am pair Of functions, tV4 andM % , has to be

detemined, Instead of the two pars in (2.38).

Mw differential eqations an bounary ecoA•tians for each

of the functions appearing In (2.39) em nov be suianriase. First of

al, the gvemrning differential e*%stims (2.30) and (2.32) am be

modified wr vitten In shotened operator notation as follows:
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41) M LAS CI

4 9 ( 2 .1 1 0 )

&aere the symbos M and E. denote the respective diffez'mutia3

operators for the .a 'ntua an enevr' equ,,Law; 9M M M an EL

denote the respective in, mogeneous texu1 appe"ein • the right-bond

sides of the g9uation. From (2.30) and (2.32)p the above opeitors *-'s:

I:l 4o . (2.1.1

't n

•X. Ft•,
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Almo

(2.&3)

EAm'

Nov lot all the arbitrary pearmost.s in (2.39) inldsh.

2)AU the diffeentlal equati•s to be salve4 are

(2.4i5)

Mw boun&az-g condItiams at the vUl ares

0
,,,.to (2.- 0

0 (2..6)



37

while, ver, far from the wall

(2.417)

for~ 0~.

for 0

Nov the correction teaus dau to the .l.p amA tamnpeture-

JM effeeU cam be onsidered. Mae eqt u are

E R%,.., 4,%") o
(2.1.8)

In ageamnt vith (2.37) and (2.39), the bounmaz7 conditions

at the wall are

0

= 1 (2.49)

"e "outer" bouadary conditlons ame

-, 0

(2.50)



Using ( ,, 45) the equations for the te ultiplied, b C are

m ,,W)) - p

(2.52)

At "infinity", using (2.26)

4~ ad ~A can e it(2.53)

Correction functione n mb rte

.do= in tenu of the bowmUda-ilayer sol t.sa direc .

To obtain these expreusione me bae to observe that coefficient C.3
appeared in the inviscid boundary conditis beem veloeity gradlent

A ms expended, as ehova In (2.22). flu. very sme

expamneio of P ean be applied to the origimL eVzresucme for

the stremftutIon andL tmperaturep, a given In (2.1) through



39

(2.3). lot om.ddering tein v4th subscriPt , the ezpmnsion

or A yields tae fo..oving expsin••s

(2.51)
l,, -3 1[o

OMPO~wig with (2.39),- Ow cam edistely identify

+

(2.55)

Substitution into (2.51) through (2.53) verifies these

solutions. Upressions (2.39) can now be written

(2.56)

Finally, the equations for the ti s pro•porioal to V

are
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The bondsary conditions at the wall axe e.1al hamogmasous

(0) = 0

while far from the v.12

-~0

(2.59)

(2. Uxpressins (2.4~5) tbrou&~ (2.50) and (2.5T) (2.oug)

(2.59) give the differential eqations and. the associated boundary

conditions that axe necessary to determine the five pairs of functions

(two for ^ = 0 and three for v = I ) tat oecurin

expressicos (2.56) for the boundary-Ivar corretion teas that are

under caosderation in the present Investigation. 20 solution of

thsen equations Is contingent vao solution of the stagumtlon-

point boundary-layer equations (2.29) ad (2.31) mrbJect to boubdary

conitions (2.20) and (2.33). Iza order to cmlete foration of

the theor7, it is only necesmar naw to specify the dependence of

fluid properties upon teperature., Ms dependence am now be

stipulated as follows (cf. Capter 3=)

JT

T (2.60)



Smnee, using the definitions of (2.6)

(2.61)

me tepezsture derivatives occurring in the equations then

beeme

(2.62)

Vain (2.61) and (2.62), the boudary-layer eqmuatis and

the operators occurring in the equations for the correctian terms

can nam be written down explcitly. In order to Isolate the highest-

order derivatives the expressio.s wall bU be divided by the &PPrOprL&te

powers of .Boundary-layr equations (2.29) and (2.31)

becone

.4r .. A.. •.&•

+, + A- La

=i0

0

-. 00 00(2.63)
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where unchanged boundary conditions (2.2D) and (2.33) have been

appended for the sake of onvemnent reference. ftes equatioms are

canpetely equivalent to those originaly ented b Brown (2),

and then solved for the tvo-dimemsIma3 case by and D mmt(3)

Brown and Liviagood(9, and for the aidally symetric case by How

and srn (16). fte apparent differences ar due to the slightl.y

different normlizations of the temperature and tresm functions.

For the correction toe +s and operators

(2.41) throgh (2.-4) can now be written down

L) +

++
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L{ V%tl) +A (Yý+I) L -.

4-4 - '4 ++ -1- 4+

a'-v

t + * l

go (1){a (L + (1) (2.65)

aicussion of Theory

This completes the presentation of all the differential

equations and associated boundary conditions that are necessary for

obtaining the boundary-layer and first-order boundary-layer

correction term for stagnatica-point flow. he consequences of

arbitrarily choosing nose radius as the reference length

in the Reynolds number that forms the basis of the asmtotic

expansions for .1U the flow and the zuodynamic quantities in the

problem, can nov be discussed. Let the viscous length, F4

ibAch is indicative of the boundary-layer thickness at the stagmnation

point, be denoted by . The expension paramter that wa

used in the above analysis is thea n ; the ratio of the boundary-

layer thickness to the nose radius. As R beome very large

coared to £ , the first of the correction terms In

(2.56), the term vithout any coefficient a labelled by subscript



vill become aegligibly small ecapead to the bou n wery- r ter=.

es term Is then indeed due to the curvature of the noe; it vill

not be present for a flat-nosed body, for instance.

In order to investigate the ppical signific• ae of the

remaining correction terms, the expension parmeter has to

be considered together vith the coefficients of the respective terms.

For the slip and temperature-junp terms, the parameter that is

significant Is

vhere the constant is of order o nhe above shos that this

correction arises vhen the mean free path at the wall becames

significant cafspred to the boundaarylayer tbickness. Sined here

is in the denomnator the behavior of this tern is quite different from

the former one.

Mhe displacement effect arises due to a cbange in velocity

greadent "A" at smell Reyfolds numbers. Therefore, the length

that will be significant in this IRhynlds number Is the length that

plays a determininA role in establishing the magaituoe of "Am

"-ftis reference length L could be the "size" or the body

perpendicular to the free strema for the case of the body In a steady

subsonic stream. Or, for a blunt body in byMprs c flow, it Is actually

the nose radus, as viii be shoa in a later section. go orrection

to 'A' arises •sen the bounzawr •er thickness is large

encugh compared to this reference length L .nom constat

b is then of the ordero f the ratio of R to L , fteoh
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could be quite insignificant if, for example, the utaigntion point

is located on a "mml1 bump" on a much larger body. This ohm that

the curvature and displacement effects can arise independently from

each other. (See sketch below.)

Example of body

S-" - with displacement

effect negligile

canpared to

curvature effect

at stagnation point.

Finally, the last tern In (2. 56), due to the vorticity

effect in axially sjumetric flow, can be considered. It is clear from

inspecting the coefficient of this term that radius R cancels

out; instead is comzpared to length "V .A

physical interpretation of this length can be obtained fran the linear

velocity profile in the inviscid flow given in (1.23), as indicated

in ihe sketch below.

_T
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The ratio of the bouidary-loer thiekness to this 'math

is actually Identical to Kap'ss(19) vortoity parmnetr; the ratio

of the vorticity in the invisoid flow to the "awermp" vorticity

In the boundary lapr.

These considerations show that the first-order correction

terms to the stagoation-point boundar-qaer soluticu, ich are

discussed in the present investigation, arise due to four different

effects; nly the curvature, velocity slip ad t4erature Jp,

displacement, and vorticity effects. Bach of these effects is

associated vith a different loa-waynold~s-miber flow para•eter. Three

of the p•rameters arise fro a comparison of the boumdarý-layer

thickness vith three different, ad in general, independent,

significant lengths; nose radius R , length - (indeative of

body size) which determines velocity gradient , and length

Vv whIch is associated with the slope of the uniform invisild

shear flow that can be present in axially syetri stagnatien-point

flows. The fourth parameter is essential:ly a Ka•se number based

on the mean free path near the vall end the boundary-layer thickness.

In order that the expansion procedure of the above analysis be

applicable to a practical problem it is necessary tJen that all

four independent parameters described above be an order of

magnitude mller than one. This i•gplies then that the mallest

one of the three reference lengths be cemsiderably larger than the

boundary-layer tbickness. It also 1ngies tbat the mean free path

near the wall be considerably m= ler than the bouniar-layer thickess.

This last requirement is actually Implicit in the use of the



4I7

]lier-Stokes equations, because, as pointed out in the introduction,

these equations do not permit large changes In flov properties (such

as occur across a boundary layer) to take place vithin distances of

only a few mean free paths long. This shows that the use of the

alip and temperature-Jump boundary conditions as first-order

corrections to the boundary-layer equations is ecnuistent with the

use of the Uavier-Stokes equations. If i•s o order

the expansion procedure of the present analysis and the fvlezr-

Stokes equations break down s1altaneously.

If all f=nr of the expansion peaameters are suficiently

-01 (i.e., msler than of order I ), so that it is meaningful

to apply the Brynolds-nimber-expeazson p'oseeozi duaribed in the

above analyus, it is interesting to emisider dot "pe of teors may

arise if the next term in the expanion is ecauidezed. The energ

and. moment= equations are again used, as In (2.8) through (2.18)

nov terms to the second. power of expansi on variable 11F-. are

collected. On the left-hand side of the equations, terms

involvirig Ii e now (second-order) variables p~ ,V? I ,-- etc.

will appear. These terms vill all be linear, with the coefficients

camposed of the zero-th-order (i.e., boundary-layer) terms. Te

linearity of the equations again permits splitting the seconA-order

correction terms into a nmber of separte, mutually Independent

effects. These effects ll arise due to various pazawsters that

appear in the Jnhamogeneous terms and in the boundary aitions.

The inhobegneous terns will be coposed. of various

cmUnabtions of the sero-th and first-order terms. At most two

first-order functions can be combined In each term. U&nce the



first-order functicos can have either of three arbitrary coefficients

or no coefficient at all, the second-order terms that arise can be

associated vwth combinations of any two of the three arbitrary

coefficients or no coefficient at all, the secon&.order terns that

arise can be associated with combinations of any two of the three

arbitrary coefficients, or a one of the coefficients, or no

coefficient at all (thereby giving rise to seven different effects

for the axlly symmetric and five for the plane flow cases).

Another new effect will also appear among the inhomogeneous terns due

to the presence of boundary-layer terms that are one order higher in

the X expansion about the x = 0 point than the stagnation-

point boundazy-layer terms (i.e., te like o , , etc.). Thus,

to this second order, the description of the body has to include, in

addition to the nose radius and nose vall temperature, also the rate

of change of these quantities vith A in order to specify the

stagnation-point flow (implying the appearance of two more arbitrary

parameters). As mentioned in Capter 1, additional arbitrary

parameters vill undoubtedly appear in the "outer" (i.e., inviscid-

flow) boundary conditions to the second-order correction terms. These

considerations show that a full treatment of the second-order

correction terms would be very laborAous and comp•lcated indeed.

These correction terms will not be considered in the present

analysis, except a word of caution bas to be added. It ins possible

that coefficients of scme of the new secondorder terms are so large

that the expension procedure of the present analysis (which is based
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an the nose radius as the significant length) Is not applicable,

even though the first-order coarection teras are all sufficiently

well. Min implies that there are new, pbymical paramters,. which

show up only in the second (or possibl.y higer)-order teiams in an

expansion procedure based on nose radius, but which are of the same

order as the boundlary-layer term itselfj, thereby precluding the

possibility of this type of asymptotic-expansion. procedure. For

examlep the rate of chazige of curvature at the stagnation point

could be so large that this effect dcmdmtes the viscous flow near

the stagnation point, even though the curvature Itself is not large.

For those cases when one of the expansi on ps3'inters insso

large that the expansion procedure outlined in this chapter is not

applicable any more, yet the Iaviez'.Btokes equations ar" still

applicable, different methods of solution hae" to be considered.

onie method, which is feasible under certain circumstances, Is

solution of the full havier-Stokes equations, with the Reynolds munber

based on radius as a parameter. Ouch solutions have been obtained

for hypreronic flow around a sphere, with a constant-density fluid

and concentric shook wave, by Probstein and Kew(1) an ohzk

Later Hoshizakild included the slip effect for this CAse, asa

separate parameter. Another method is solution of the boundary-

layer equastions, with the Particular strong lou'.Dsynoldo-.uMber effect

as a parameter. The vorticity effect for incomressible flud Is

considered In this manner by MaIpNT~ A somewhat different approach,

again for the axially symmetric hypersaoni-flow case, is used by

Cgdabi~~ and Barring 1. Their method consists of usinig the bow

shock wave as an "outer" boundary condition for the bouuiarj'.layer
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equations, thereby accounting for both the vorticity and displacement

effects; the former for a S - constant, the latter for a A3 -

constant fluid. More recently 0guechi2 presented an analytic solu-

tion for this sam axially symmetric constant-density bypersonic-flow

case, in terms of an expansion in shook density ratio e

This analysis includes the curvature, displacement, and vorticity

effects siultaneously. F1nally, the method of Probstein and

Kemp(31) ba also been applied to a variable-property fluid. by

Probstein and Ho (32), again, for the case of a sphere in byperoanic

flow.

In the present analysis the restriction to small values of

the parameters vas accepted. as this disadvantage vas compensated by

the possibility of identifying the four first-order lovil•-ynoldu-

nmber effects and comparing them on an equal footing. The validity

of the present approach can be extended by constructing "hybrid" or

"ccomposite" solutions, including only the largest of the above

effects in thie nonliAear solution, and accounting for the remining

lo-ynolds-nube r effects by the perturbation procedure of the

present analysis. For exaqile, Kemp's(19) parametric solution of the

boundary-laeyer equations subject to a vortical outer boundary

condition could be "perturbed" with respect to slip and or curvature;

etc. Bach a solution could be useful in a flow regime vith large

vorticity interaction effect but coparatively mull slip and

curvature parameters. The amt useful approach will be different for

each problem, and can be determined by estiasting the orders of

magnitude of the various lowftynolds-mmber flow paraters.
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Inmples of Sten•tion-Point, Flows

In order to apply the results of the foregoing theory to

flows around specific bodies, the flow parameters that are inherent

in the stanation-point flov problem have to be determined for the

specific flov example. Some simple examples and applications viii

be considered in the folloving paragraphs. In snw cases, it may be

more appropriate to use experimental results to determine the

parameters under consideration.

Subsonic flow around circular cylinder and sphere.

At low Mch numbers, the results of incompressible flow

around these bodies can be used. The stream functions are given for

the cylinder

and for the sphere

Using the boundary-ulayer coordinate system of (I .1) and

expanding about the stagnation point, these expressions became

L X ý1 - - ý +I (?- it

(3.2)



for the cylinder an sphere respectively. Oampazing with (1.22),

for the cylinder

(3.3a)

and for the sphere

A -12•
2~.R

v=o
(3.3b)

Die to the presence of turbulence and the poesbiWlity of

sepowaticu, displacement constant -: hla to be left

undetexulned for this type of flow. fe reminig parameters a

essentially arbtrar7 thermodynmo properties.

Bnpersonle flow aroud circular cylinder and sphere.

Inviscid solutions for kyperscnic flow around circular

cylinder and sphere vere given by Uditm(3)" and also Was and
frob(tsL*(9) f the c r, ad •Td l (22) for the sphere. Both

of these solutions ere predicated upon three as maptions; shook shape

that Is concentric vith the body, incoopressIble fluid behind the

shock, density ratio across shock is a constant. the stream functions

are, for the cylinder

*lab defines (,itt) and ;tm and for the sphere
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To 1 1 (3.4b )
There e is the densty ratio soross the shock je

and the radius of the shook. Let the inviscid shok

stand-off distance be A , so that

R .oc = R + (3.5)

In the boundary-lVer coordinate system of (1.1) then,

aMd acnidering the leading power in X only, the expressions

for the respective strem functions beecme, for the aylinder:

Ii U I LIT'-- 4) K- "T ';)I,
(3.6a)

and for the sphere:

QY•;•c(C\•" •{ •- '•- t \•i - '" - 4\l-'/

(3.6b)

Since the body outline Is part of the stag•n•aon streamline,

the expressions in brackets In (3.6) are equal to 0 at '.0

2his relates / to C

(3.7a)

(3.7b)
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Sieg IMU*:lpl t realtions ea• be e3TMed in, a, sles fo'z

for sm e (of. I•es mn Probsteln(9)

(3.8a.)

K-1

(3.8b)

Now stream ftnotions (3.6) corn be expendod. in powers of j

(3.9a)

1/= +

(3.9b)

Again.. ocispring .ith (1.22), the velocitY prd.ent for

the cylinder becomes

(3.10.a)

Simila.rly for the sphere

E

(3. 1Ob)
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In this case, the displacement effect can also be ascertained;

the shok stand-off distance vill be changed from the inviscid value due

to the presence of the boundary layer, vithout (to this order)

affecting the shape of the shook surface. It viUl then appear as if

the nose radius were increased by the boundary-layer displacement

thic•ess . Then, in the velocity gradients in (3.10)

above

, ~ ~~t " - -'

Cap.ring vith (2.22), it ins apparent that

( - 7 i (3.11)

the corresponding lowReynolds-number correction to the shock

stand-off distance is also of interest

(3.12)

For smll expressions (3.10) can be expanded; the

leading terms are

A -ý FSU~i-

(3.130)

for the cylinder, and

( +

V=(3-13b)
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for the sphere respectively. a•G•r s of stani off 4j1bme 1kPR

Velodity gradient A' " p en vortlcity iPer-mter V ane

shown In Figures 1 and 2, for the sake of convenient reference. Oi

corrsponding numerical ocapuRtations are shamn in Appendix C.

Egirically determined stagnation point veloety gradient

vs. free-stream •bech-number curves ar given by Pshotko and Beckwith(33)

for circular cyinders and by uavford an jMjvu (6 ),p an Pjg(3)-

for spheres.

Flight of a Blunt Body t1rgh the Atmoqphere.

Aa especiall. interesting and praetioa3• signifleant

application of lou-Fleynoldo-nuber stagnation-poLnt flow occurs In the

case of a body flying at high altitudes. In order to determne whether

a of the four correction terus described in the analysis of Chapter 11

are necessary or appropriate, one has to estimate the magnitude of the

four respective parameters at various flight speeds and altitudes for

a body of given size. In order to determine the bounda& layer

thickness at the stagnation pol•nt the staogatio kminmatic viscosity )'

and velocity gradient A have to be known. fae former can be

determined unequivocally for a given altitude wad flight speed.

Velocity gradient ," ill be proportional to !/- , where .

le som significant length, uually indicative of body alse. Leaving

thsbody lenath unaspecified,, boundaryw~lqM thickness will be

propartonal to quantity •,,r ", widch is a funetion of altitude

and flight speed only. In order to determine whether the aurvature

and displacement correction effects are lmportaatj, the qmfatity
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should be divided by the square r'oot ot the iesec~ttte length. If

the two length& "k' and "L an of differeint orders of wh.1±tude

r-L, o,,,In the proper paoezter to determine the aiiificane

of the eurnvture effectj, vhich Is theu different frm the displacement-

effect parameter

To assess the signifloiae of the slip an temperature-juap

effects, the nean free path at the s~togi point low to be canpared

to the boumdary-layer thickness. Sw formr mI aw~iilated from

the b raI~c properties, and thusmca be dete~aem am a fttction

of ek nd hi only. US the ratiO

depends on a paromter, wicdh Is a ftmation of V and U only,

divided by the square root of refermie 1w M Let - (For a strongly

cooled body, the mean free path at the will my be cansderab~y -- 3i1 r

than the maen free path at the stagnatin condition, the effect of this

viii, be discussed in detail In Mwpte IV).

For axi~ally symmetric blunt bodies In maiperasom flair,

the vorticit~y correction effect mey hay, to be considered due to the

presence of a .curved shock vws,. At bS* Nosh nidbers, Lightbill'

appradinatian (discussed in the p2eVLOns section) is reasoMby accurute

if the nose outline and. the shoek ane conentric * If this In not the

case,. an n~irically (or otlerwine) dintea.ned, shock radius can he

used instead. of the nose radius. uBiiwtion, (3.10) shove, that In

addition to radius R , Yortielty Paainter V/ is also

deposent on shock density ratio e . Adhia is a funtion

efV nd H o=IV. Swos the parameter that Aeta~nsm the

zoetuda of the vorticity effect



Is then saqgtely dependent an V and H i.th the exception of

afactor of /F

These consid.eati.ona shar tat It Is possible to plot an

a V vs. H carat femd.es of liwo showing the in~itude

of an four of the sign.ificat pawmateos, leing cart the effset of

bod, sire as a multiplicative fatstr of sa'bitza' mbtuas. aach a

Plot is hm In Fpigu•e 3. Me following famlies of linos are

0. ,. therefore an V

The plot Is based an the AMC model atmosphere (reference 1.2);

re•,lgas eoff•ets are included In the calculations. go poedux* snd

mamioreal, details are i.ven In Appendiz D.

For a iven size bo•i, the linos of Figore 3 can be used

to delineate the regiom of applicability of the expasion procedure

of the present analysis. All fou•r t the ezpeasiom peat.ers have

to be less th 1.0 (actuauly lsaes thmy an less them aboat 0.3,P
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the erromr co tted in neglecting the esococaew ta y be maore

than 10%). Inspection of the figure shows thet at low mihem.

fligt speeds the curvature (sad. displ2aet) come'ti effects

beoe sip ficant at a much lower altitude then the slip and

tmeatuae-3w effects. On the other bhad, at IWPrsonic speeds

the slip corctieon occurs at a iwhat lower altitude then the

currature ardi displacement correetions. For spheres at byperuic

speeds the vorticity correction effect is larger 1W orders of

m3naltude than the other temns, espeuially as t shook dalty

ratio becomes sl@3. Also, it appom, tilst te bo. -r]wear

an shock-layer thicknesses becow of the so oder of manitude,

the altitude is already too big (emo bawe the 0Iis nuiber is

too low) for the apjaUcability of n on epzmofet . A very

detailed and thorough discussion of e sunceset fI regoo s

at hypersonic flow, has been given recentl~y ibV Probstain n o 3)
there is no need to reiterate theme results here except to point out

that the parameters plotted on figure 3 cleary indieate this

succession. The expansion procedure of the present maysis is

applicable er the higbho-Byalo e-nabr (i.e., la•ieAltituide) eMn

of this spectrum; especial1y for the axiall•y q tri-e ease, Vbere

the vorticity "correction" becoms as 1=g as the bounwdu7 oyer term

itself at cauparatively low altitudes,•pwere the other corrections are

still m-li. At hypersonic flov then sither the "eMst" solutions

for a sphere byr Probatein and NOW(31) or by, al s3ould. be

us~ed (because the vorticity parameter is too lerge for the appicability

of the present expnanin procedae)j s or at low enoug altitades,
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mbaere the mensuon procedu•- is appliambleo camy the vortiolty

aoo-wo ton ins uipificant, and therefo~r the "moltiled b1Kmnty:1#qr

solutions" (tire the vorticity bmudazy candtion Is a parmeter) of
KMW(19) , 0 O ( Pn -Errn(11) an OLUaiy practical (tails is

the "vorti-it)-interation. real, of Probstein end PiM(3)1) e 3

indLoates that the flow region wbere all four of the correotion

effects are about equally large oocaus in the supersonlc regime

(betosabout 2W0 an 6000 rt/sme). It is o- this basis that the

fluid prpoerties used in the solution of the eqlatinm as presented

it the next chapter, vere chosen. •1w procedfe for obtaining these

properties is mhomm in Appendix E. Ow boitr sdze vii. 0hif the flow

regies on the altitude scale, but not on the velocity smale, since

all parueters are divided bV the sq•a root of the sininfict length.
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AMAMIRemi suts

Presentation of 1wsults

The differential equatioms presenfte In Ompter nI, idth

fluid properties gven in Appendix i, ere salved mariAeaL at the

COMell C ntIig Center by Rons of a Duwr 22D electronic coputer.

SOW details of the cmitig procedure are gven In Appendix G. fte

results of the cacmtations axe detaticonm of "zeroth." and

first-order term (i.e., boundary-l-er and firt•-order ,e .ai0."rems)

for the nam-dimensional strea function - ed tezatere fUaction

44 . In addition to the functions, their derivatives, up to ean

including the highest that occur in the differential equations (i.e.,

the first three forý and the first two for *), wre also computed.

The obtained solutions were than used to deteisine some additiona

quantities of practical interest. Mse quantities are the two

velocity conpemnts, the two mxas-velocity compotn , tes.eaersture

and density profiles, and the varation of vortiaety, sha (parallel

to the wl..), and heat-transfer rate (amial to the m•ml) in the

visous lAyer.

bailing, the definitions given In (2.2) and (2.3)p am

oam write

T 7 . +

-TS -TS V

(i611
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hIbh afiams To~~ , TI ~

Similar ezpreasim: cam be vrittea for the damuity, IW usifg remalt

(2.38 In (2.4) ~

- - -+- ~0(4I.2)

All the other quiantities of interomt 013 Iie writtem down

In lite aminr by usdn the Oaboe szpesuidw emd the relatioms

developed I& Appendices A and B betimem the stran ftmetd= Mad the

various flow qjuantities. Ow

- r V, _ it

. =) L- t A ~ A ~ -~
Q.'Za U~.j

vrLi) 4 .

i-V +5 '~t ( i',.

-u

0 ~ . ~*+J
LA k'.ZS I

4.ohZ

+Q A_

- -~ _ 
11.3
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A fuzther breakdown of the above agresaias osroen

the different effects vwiah k v the firaset,.o r eorrect•n tern

(as derived in Chapter 3:) are conuidered sepmte. To fallitate

this process, let the tems due to veloci .lip and tspemsure tIW

be redefined as folo•

(It w be nted that the tern inzbid 1W sdbeript AL Is due to

both the velocity-slip and tager•ture-j beufaz7 cediticass, and

the ternm hed by I arises not due to the terteraue-Jmup

bouIndar canition alone, but rather due to the difftr•ee betfren the

constants of proportionality for the veloctiallp n teeratre-

jm bamary cao:dticas to the mspoetiw guaeats at the Ul).

Usin this definition and the results of Oter 3I the streM

fumction can be expanded as

+ "
T- Ah Q

~ WA U

+~" __ .a



(4.6)

etc.

•Me results of the nmerial calculations are given in

Tables i and. n. Table I gives tbo wimaipresaible" (i.e., constant-

f*tt-property) results; the boundary-lover tore (given for refere

only), curvature-correction term, displaeeionnt-correction term,

velocity-slip and tesmperature-Jimp tere, and the vorticit-correction

term are tabulated in that order. For each term, the t-vo-diens•lmo l

( 0 = 0) and asias,.y sgummtric (n -, ) results are ta•bmUted

subsequently, except for the vorticity correction term 'which exists

only for the axially symmtric case. The appropriate differential

equations, boundary conditions, and fonalae expressing all the

quantities listed in (4,3) ar iLven. as a convenient reference at

the appropriate sections of the table.

A s~n•lmr tabulation for the "compressible" (i.e., variable-

fluid-property) case is given in Table 31. Results are shon for

the w = 0.75, 0.5, 0.25, and 0.1 cases. e W = 1.0 case

Is i4eAtLical to the "inca res•ible" result (of. Appendix F). To

ilalstrate these results, velocitr and temperature profiles have been

c uted and are plotted in Figures 4 m- 5. &eua are the muorrected
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bcundaryhomler profiles, boundai.lae profiles corrected. due to the

effect of curvature only, diuplaeemat effect eaom, velocity slip and

towpersture 3W only, and vorticity effect i1ny. For each ease, the

pertinent expansion pareaeter was assued. to be W$; e.g., for the curva-

ture correction only profile U( = Lo "- 0,o2 ULc etc.

For the velocity slip and teamerature Jup correction tem the parsaeter

van assumed to be 1.0, hich Is the •ight ore~r of magnitude. To emasize

the effect of ccupress1bJlty, •a"ng ratio Wz 0,t was doen In

these exles. Me obtained curves are shoem In two separate groupings.

In figures 4a and 5a, the velocity and temperature profiles respectively

are grouped together according to the type of correction that is (or Is

not) considered. Mtus, separate groups are given for the boundary.-layer

profiles omly, for boundary-layer profiles corrected for curvature O01,

for displacemnt effect only, etc. Mch group of four curves then brings

out the difference between the two dimensloel and axialy syetric pro-

files for both the incapresuible and cmpressible (i.e., constant- and

variable-fluid-property) cases. In the secon grouping (Figuzes 4b and

5b), the profiles are grouped together according to the type of floaw, i.e.,

all two-dinsional ince ssible profiles are shaow in the suae group,

etc. OAs grouping then brings out the differences between the various

correction effects, caamraes them to each other and the uncorrected (I.e.,

boundaa7-,yer) profiles. The large Increases in fluid velocity and

temperature at the wall due to the velocit-slip and. temperature-Jm

boundary conditions are especially noteworthy for the compressible case.

Ods large Increase is due m.iny to the te• with the sbsript in

eqution (4.i), i.e., to the terms arising frm the differem e between

constants of proportionality and. . Th resulting velocity

and taermtue values at the wall ar (according to the curves of
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Figures 4p. 5) nearly equal top or slightly oexeeMing the free.stream

values; also, the profile slopes at the wall appear to reverse sign.

Bach a large change cannot be expected to cecur In the actual flow;

it shows that for the perasteters that vitr asumd 'A 0.1

the expansion procedure of the present analyuis canot be used any

more if the velocity-slip and tomersture-jump Iz Ian parstmeter

VA ~ ~ ~Is 2D% or larger.

The quantities that ar. of the most practical interest are

the shear and heat-transfer rate at the uall (,A 0 ) . Table

InI gives these quantities for the reamge of cooling 2stios that were

employed in the calculations. Th ot,-twaaaftr zaea are expected

to be very much dependent on the tesizamturm diffazwnee between the

free stresam end the wall -T5T .Adirect

proportionality of vall heat-trviasfer rate to this taezerature

differenc is usually assumd; then., In ozder to propez~Ij normlize

the noom-dimengiocal vail heat-tronsfer rates, they should be

divided by the quantity ý- W. . Th himat-trismufer rates are

therefore given in this norial~iued, feam; they are equivalent to the

usual bow~mraz3.lyer%-heat-trsnsfer parnmter N'L /4iz There

N-,- is the Nusselt nmbser. A plot of shear amid heat-transfer

rate versus cooling ratio V/ is given in 7igures 6 and 7
respectively. For the boundary-lver tem, It In Vall know (e.g.

Lee (2) )that the shear is not very sensitive to the presence or

absence of cooling, and the normisliad, heat-transfer rate Is even

less so. Mhis is true in spite of the fact that there in a sharp

Increase In the slopes of the velocity and taqierature profiles near
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the well for the variable-propert-_fluid cae, but there Is a

eorsespoingly large decrease in viscousty ad beat coazuetivity

in the eold-gas layer near the waml. Oe net effect Is a modzrate

decrease in shear for small W/ (i.e., straw eoc1ag), and

an insignaficantly meli decrease in heat-truasfer rate.

Mscussion of Results

Among the correction effects that were eotdered, the

behavior of the displacement term parallels that of the boundary-

layer terms, as could be expected from the close relationship

betwen them. Both the shear and heat-transfer rate are increased;

this is in accordance vith the sign convention thst ms adopted,

vhich imlies that the increase is due to the increase in velocity

gradient A . (It may be noted that In most cases i vll

decrease due to the displacement effect of the boundary layer, thus

the sign of the displacement coefficient will be negative, and in

reality there vill be a decrease in shear and hest-transfer rate.

For very strogl cooled coamressible boundary layers, it is,

hovever, possible to have negative displacement tbickesses,

implying an apparent "shrinkage" of the body, thereb inreasing A
and the shear and heat-transfer rates likewise.)

The curvature effect tends to decrese the shear at the

stagnation point; this decrease becoes msller for mall cooling

ratios. Me heat-transfer rate is affected differently by

curvature for the two-dimensional and axially symotric steantin-

point flows. In the former case, the beat transfer Is decreased, and



slISoNt ccMpletelY Unaffected. by the eoolinS ratio. CM the other hand,

for the asidaly symmetric case the Imt-.transfor rate i incJrreased

by curvature; this increase beccms mlanr for mua cooling ratios.

Moere Is DO SImple explanation for these curvature effects; they

arise from the inhonogeneous term in the expanded differential

eqUAtions, and also from the modified boundary condtions in the

inviscid "outer" flov. For exuqple, it Is apparent by inspection

of the velocity profiles of Figure 4j& that the negative slope of the

inviscid. profile has an effect on the entire viscous layer. Another

effect is the different pressure gradients experienced, by adjacent

layers of fluid in the viscous layer, due to the centrifugal pressure

rise across the thick curved layer. gwire are =u other terms in the

Navier-Stokes equations that contribute to this effect; no attempt

has been made to identify them separately simce the effects always

occur siimultaneously.

m~rect comparison of these curvature results with other

theories cannot be made for the sphiere, because the fully viscous

shocko-layer theories (references 131 and 31) include the displacement,

curvature, and vorticity effects silwltaneously, and for the shock

density ratios employed the vorticity effect predxidmtes. However,

for cylinders, where the vorticity effect is of second order,

loshizaki. $05 theory shows an increse in heat-tranhfer rate at all

Reynold~s numbers, even the large wooe (where presmably the second-

order effects should be insioificant). This Is contmary to the

predictions of the present, anslysis, according to wicdh. the first-order

corrections that were Implied. In the funyh-vIscous-lmyer theory,
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nmly the displaceuent and curvature effecta, ane both neative, i.e.,

they will tend to reduce the heat transfer instead of ineresing It.

psnslon of Houhizaki's equations in the expanAon parhaeter of the

present analysis, I , resulted in the am equations that

were derived in Chapter n, above. It vs not possible, therefore,

to resolve this discrepancy between the theories. Caqpaisan with

the experizlents of Tewfik and iedt (401) eNs to Im that a

reduction in heat transfer due to curvature, rather than an increase,

is in better agreement with experimental results. (A more detailed

discussion of comparison vith experimts follows in a subsequent

paragraph.)

In agreement with previous reports (references 13, 19, 31,

etc.), the existence of vorticity in the inviscid flow (to the first

order present in the aially syusetric case cmly), tends to increase

both the shear and heat-transfer rates. This increase is appreciably

larger at ma-l cooling ratios.

The behavior of the term due to slip and temperature jum

at the wall is especially interesting. The expansion parwuter for

this tern (of. Capter I1) is essentially A , the mean

free path at the wall divided by the boundary-laqyer thickness

parmeter. The term contains two separate effects; one effect

arising *hen Ký =K , the other arising due to

the difference between thes tw constants. Considering the

K%'- V'? effect first it bas already been noted

(cf. equations (2.39) and subsequent paragraph) that this tern

leaves the vall heat-transfer rate uaffected. B•ialarly, usin the

known identities for the correction functions (e.g. 4.4) in the
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expression for the shea~r correction (4-.3)., and comparing 10ith

bounftry-layer equation (2.63) mne immdiatel.y obsrves that-

at the vanl iriespective Of V

The other slip and teuperature-Jump effects, the terin

proportional to (ý"I- IKý) , affects both the shear and

the heat-transfer rates at the ve.il. The shear is increased, the

increase varies froma 0 to large values as W' varies fran I to

inLl values. (2hie uncooled vail also represents the constant-propertY-

fluid case, in this case cýam hae" obviously no effect om

the shear since the imaaentun and enrgy equations are not coupled).

But, as W/ become -11., the mean free path nea the vall.,

which determines the amouint of slip, and ibich appears in the

expansion paxmnter, also become -i1, since the cooled gas near

the vail is more dense. It is of interest to find the combined

effect of strong cooling on the two competinig effects: the increased

correction function and the decreased meain free path. Bince

one may write

Tequantity wa. (0~t) Is plotted in Figure 6;

the graph shwn that as WI changes from 1. 0 (no cooling) to 0

(strong cooling), the quantity increases from 0 and then appears to

approach a constant value for very milU \A/ . combined

effect on shar of the "slip and jump" tern is then an Increase for

strong cooling, because as W~ 0 ,the W L Ob1 tern

daminates; whereas in the region near W __the only

significant effect Is the tern a and the shoea

is thus decreased.
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noe Wal1-heat-transfeu-rate correction effect, Q13(0),

shos a behavior ad-il to "Cr, (0) . Ow effect tends

to decrease the heat-transfer rate; as W' becomes very sall

the decrease becomes excessively large. But If the quantity \N*OL•Io)

is plotted, it remains reasonable in winpitude throughout the

entire range of W/ . 2hese observations indicate that

for the effect that is under consideration, nmely, the correction

arising due to the difference in the constants of proportionality

for the velocity slip and temperature JuM, K, and K? , the

proper parometer that determines the order of mgnitude of this effect

is not X "IS , as vs formerly supposed (e.g. references 9, 31,

etc.) but rather ' .- is limpies that the re&ucon in

heat transfer at the stagnation point of a blunt body due to slip could

be significant even for the case of strong cooling in hypersonic flow.

Just how large this reduction my be in different flight regimes is

indicated by the lines of constant )-$IS plotted in Figure 3.

Comparison of Results vith Experiments

It is finally of interest to compare the n~merical results

presented in this chapter to experi±mtally detezn.ned properties of

lowmreynolds-number stagnatin-point flow. For a particular

experiment, it iaswcessary that the appropriate flow parameters,

Reynolds number, stagnarion-point velocity gradient, mean free path,

etc., be known, and then the resý.ts of the present anamsis can be

applied to predict the flow properties. In one series of experiments

Neice, 1L~toski, and Mant(26) insured heat-transfer rates at the
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blunt name of a hemisphere cylinder Placed into a low-density

hypersonic shock tunnel. �at these experimental results are not too

uefl inuited for c�arison with the present analysis. The muon for

this is partly the difference between the fluid properties of the

present analysis and. those of the high taiperature dissociated sir

of the shock tunnel. This difficulty could be overcam �r taking ratios

of the theoretical lov-Reyno2As-nwiaber and boundary-layer results, and

then applying this ratio to available dissociated-air bouniu�'y-layer

solutions to obtain a reasonable theoretical prediction, vhioh could

then be oaq�e.red to the experinuntal results. (This tam the sohin used

by the authors of the experiments, who conpared their results with the

constant-fluid�..property, "exact," viscous shock�lqer solu�on of

reference �3.) A more serious difficulty in using these experi.ments

as a basis of ocupari son is the pred�.nance of a ve� large vorticity

effect, which puts the results beyond the reasonable validity of the

expansion procedure of the present azulysis.

For cylinders, an extensive series of loi�.kynolds-nu.ber

flay measurements were performed by Te'vfik and Giedt���' (le1) These

experiments were performed in the 3�oh-number range of �.3 to 5.7,

said with low' tempera ;ure (and therefore non-dissociated) air. �as

the fluid properties that were used in the present analysis are

exactly those that are applicable to these experimental conditions.

Furthermore, f or the range of flow parameters that were �lcyed

in these tests, all significant low-bynolds-nuaber effects are about

equally large, sufficiently large to be important, yet not large

enough to preclude reasonable applicability of the expansion

procedure of the present analysis. For these reasons, a cauparison of
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the experimental results vith the present theory seened especially

appropriate) and vas undertaken in detail. The pertinent calculation

procedure is described in Appendix 3; the results of the calou~tions

are presented in Table IV.

7he free-stream Mach nuaber M~ 0 , anolds nmaber

'0 (ranging fran 37 to 4i100), and the vall-to-st4a~tion-temperature

ratio W/ (rangin from 0.24i to 0.74i) are the independent parameters

wicdh are the input necessary for application of the theory. In

addition, the stagnation-point velocity gradients vere also masured

and recorded; from these the significant Psynolds nuaber,

(based on stagnation fluid prbperties) could be calculated. Th~e

inverse square root of this quantity in the expansion parameter of

the present theory; it determines the size of the curvature correction.

Both of these quantities are tabulated in the table, the fozrme

ranging from 25 to 900, the latter from 3.3% to 2D%. The quantity

that is significant for the velocitywslip and tan~e1'ature- 3wp

effect, w, is also tabulated; it rianges frcm,

1.8% to 14i%.

Based on the above information, the theoretical results

discussed earlier in this chapter vera used to predict stagnation-

point heat-transfer rates. Predictions vera based both on the

constant-fluid-property and the variable-fluid-propertby theories.

Ozrvature and velocityh. lip- tsperature-JMp corrections Vero

considered. No other lov-Dmynolds-nuber effects ocur mimes there is

no first-order vorticity correction for cylinders., and the effect of

boundiar7-layer displacement on the external flow boas already been
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accounted for by using the erlpentsay measured- iaosity gradients.

Me predictions are presented in terms of a comparison to the beat-

transfer rate based on uncorrected constnt-flui-prop-rty boundary

layer theory, viz.

Q01- =. 0 .5•

All the corrections that were calculated, are shown in

Table IV, as a fraction of the above umber, in the following

order: inicressible curvature correctio., inaospresaile tmperature-

JiN correction, total imccapressible correction, coressible

boundary-laer correction, cosqresuible curvature, tuaqerature-jum,

and total coressible correctione. Me experimental results are

presented on the same basis, as a deviation from the prediction of

incoressible boundary-layer theory.

The tabulated predictions indicate a reduction in heat

transfer due to all the effects that were considered; the reduction

is larger In the ccqiressble case, especially for the teerature-

3wip tern. Hovever, the experimentally meanured heat-transfer rates

uniformly differ from the incompressible boundary-layer prediction by

significantly larger asounts than either ccubiation of correction

terms predict. In order to ivestigate the possibility of a

relation between tbis discrepancy and the displacewmt effect,

displaceient coefficients CIO ere calculated for all the

points. Mwe calculations vere based on caering the ezermentally

obtaind velocity gradients with the higbhs-anolds-umber velocity

gradients XLven by Usshtko and Deo'rAth (33) (of. A ppendx 1.) 5ere

appewrs to be no relation, nor do the observed disoeqrpanies show any
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other obvious regulaxity. T7w dw. epomei then rau unqxdluned,

pandl further caqpsAson vith other experimetal remA.ts. Uverthe-

less, It can at leust be ascerbaled that the p•ediction of the theozy

show the sm tre as the e.perlmental results; n .y a r*eWt:ia

in heat transfer. Thi s snilifteant idm c ied to the piniotions

of references 15 and 31, which show an increase in stognati.-point

beat-tronsfer rate for a cylinder at low RhpolAx mnubers (thee calcu-

loatios zMalected the decrease due to velocit slip and taerature



Dbsivation of the Equatians of Motion

The avier-Stokes (matantum) equati•as for stead flow can

be written down in vector form

(A.1)

A general orthcgonal coozdinate system can be defined by

the directions

vith coordinates

, ep- ) (A.2)

and mtrLc functitons

I K% )ý

Let )e, = constant define the planes of empetry of

the flow field, so that the derivatives of SL

quantities vanish. For this ame a ecampressibhe stru function

can be defined by
•n ~ ~ L % er~ 1

- ) )

(A.3)
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u*Loh identioa1y ua~tisfles the contimdty egmtiou for steady flow.

aabutitutla6 (A.2) aud (A.3) into (A.1) and usIz6 vector aliebra, the

oaqKnet of the ammtim equation cam te vritten dou

1-Y 2.1 ?A, -4

4P]4

+ t.

M.uIlArly, the compcovmt beeces

.~.Oj~ +2'Y !~ ' ~ Ix

aN.,

-~ ~1* L _ __ _ A.L



78

For the special ca& of a polaw ooorzdimte system the

cooo'inates uand metric functions are

"x, r~~ '1

(A.6)

where V ý 0 is the Plane two-dimmnsionul, ean V% al the

axially s trio case. (Tbse axe the oonventioail. cylindrical

and spz.ical polwa coordinate systams respectively). Using (A.6)

in (A.I4) wa (A. 5), and perfoa.zag all the algebra, the two momentum

equations beaoc

'A)'&YI, )- W,)v2 )', S'.)- +
Y'1

- - -a P + ,

('Y~)C ~ S'4 -4-__A_7)
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in the r- direction, and

Sor ot0)-1 Va)t V _

S . 3 ZZ . - _____

.3 3

+ soŽŽ.- + Tw t__ - r~~

W)4-_ - t- \____ (a.8)+A)4-r

in the ~* direction. fts subscripts n a denote the

respective partial derivatives.

Nov the energy equation for steady flowamro be considered.

In vector notation

(A.9)
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kpMW ±n In teus of the gsmwrel comftanete systm of

(A.2)j, the o.'g equation (A.9) beacma

k,

L V r

S x, - S43ý 3 sv'% a

(A. 10

2.(A 11)1~'

1"ree is the d:Lisulptim fimotion.
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70r future reference, the expression for verdaoLty In the

gmnerul coordinate system is

(A. 12)

For the special case of the "polar" coordinte system of

(A.6)

+0 

_



Derivation of Boundary Conditions at ths Solid-as InUrface.

The boundary conditions for a gs flowing along a solid

body am be derived from the kinetic tbeo7 of gpss, and are given

by. m authorms e.g. Sbaf and Oabare(36)u

i,) )- 4 IT air (.1

where the same reference gives-•the men free path in trm= of the

fluid properties. as fofllan

In addition, the no-tbrougt-flov boundary condition can

be used

\r (o) =-0

(B.4)

These expressions can be applied to the stiation-point

flow that is being considered b substituting into tm changes of

variables and expamions (2.1) through (2.T). To find 0 (2.2) and

(2.4) can be substituted into (1.1&).

(3.5)
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B.ffemtnSt•t±m once aw obtains

U- + 1 . +-

(B.6)

im.ilarlyj the expressio. for ,,- be m s

(3.7)

2 ,e .- terin In the aLp velocity Is of order 'ý.

and hence, wMl not contribute to the or'der I and order '~

that are being considered. Equation (2.3) can now be used to fin

(3.8)

-A n, uy equations (2.3), (2.4) mo (2-.7) to e ,ress

koim'e e I

(B. 9)

using (3. 5), (3.6) in (B.1), .a equating 2.11m powrns of

fhynol~md-miber parmenter am obtains



-0

(u.io)

am~ (using tkis remilit)

id.•ArlY, us±ig (B.7) in (i.k)

(D.12)
RAlY, (B.8) Md (3.9) an used •n (B.2)

AR P, P- f-

(D. 13)
a~nce (B. 13) ohmu' that kj)=*th. last

exPrDssg.on ao be remvtttn "s

A Fý, i- 1w 1 •. • (0)•,•of •



muarioal, BolutIon of Inmibeld *pwscwLc now Xmr Stagation

Points of Sphere and CylJ±nder.

e ftirst step in the mmeri•el solution is the solution of

equation (3.7), which relates to e . For the cas of

the cylinder, the solution cn be obtained gmzp aoLly1 ' vbriting the

equation in the form

(c.i)

The functions on the two sides of (C.1) vere found

mmwisf•Uy as functions of their respective aaig = id•th the aid

of Busel-funntion tables and the plaotted on Us s puph.

Oorrempodng values of the two Lwints wre tha found gphicAlly,

from *Lih the corresponding values of and e vere

c~uted. Tese results more then used in (3.10a) to calculate the

veloatty-gpAient pammeter.

For the sphere a simtlar procedfum vs foauedp, except

ber a gmpbic•l• soUt ion we not nemq samie (3.T) in a quadratic

in e , and can be solved snLYt~iafll

e=+

P, ) (C.2)

Mhe result of this solution vas agin used. in (3.10ob) to

obtw, and V for the spere.
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APPUEX D

Cailculations of Flow Parameters at VaiLous llIgbt speeds
and Altitudes in the Atmosphere.

In order to calculate the flowr parameters that are of interest,

the folloving three quantities have to be calculated at various flight

speeds and altitudes.- kinematic viscosity and mean free

path As p both at the (iniriscid) stagnation point, end

(for supersonic flight) e ,i he sock density ratio. one altitudes

vere chosen at 50,000 ft. Intervals, starting at 190,,000 uap to and

including 4M.0,000 ft. Th~e flight speeds were grouped into three

regimes: (1) perfect-gas regime, 10, 100, 1,000 ft/sec., (2) non-

dissociated regime 3,000 ft/sec.,. and (3) rea-gas regime, 7,000,

10,000, 20,000 ft/sec. mae AMC model atmspbere (4)vs used to find

the free-strain density, temperature, and speed of sound (the latter

by extrapolation at the two highest, altitudes). mae standard reference

tesperatures wad densities of T stanwd rd 5i8.69OR and

f'st~adard - 2.3769 x 16- /' sL'eA? ued

ID.fferent calculation procedures vere used in each of the three

regimes, as follows.

in the perfect-gas readme, the free- strain inach nmober vas

detexuined first; then, usImg Y-- 1,4. ,standard compressible-

flow tables (e.g. reference 1) were aused to find stagnation, thermo-

dynamc properties.
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At 3,000 ft/sec. Kauflan's(18) tables (based on the Beattie-

Brideglmm equation) were used to determine the quantities of interest.

The tables give shock density, temperature, and pressure ratios, shock

Mach number, stagnation temperature, and pressure directly as functions

of free-stream Mach number and altitude. Perfect-gas relations were

then uded behind the shock to determine the stagnation density from the

known shock thermodynamic properties and the stagnation pressure and

temperature.

In the real-gas regime, Rochatim's (12) chart vas used to

find the temperature behind the shock, and the density ratio across,

and hene density behind, the shock at the various flight conditions.

Feldmad'sM7} Mollier diagram for air was used to determine the effect

on these thermodynamic quantities of the isentropic compression behind

the shock. The enthalpy change during this ccmpression could be determined

since the velocity after the shock was known from continuity considerations.

(Some care had to be exercised in using this multiplicity of charts,

since both Hochatim's and Feldman's reference conditions are slightly

different from those of the ARDC atmosphere). Compressibility factor

Sat the stagnation point could also be determined from the

Mollier diagram.

Hansen's(10) calculations were used to determine the

viscosity at the stagnation point as a function of temperature and

(at high temperatures) of pressure. (A graph of stagnation pressures

at *arious flight velocities and altitudes is given in the same

reference). Schaaf(37), and also Maslen(25) use the following

expression to calculate the mean free path
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1-2 ISSf r- for air

vbgre sad T a i• its. of tt 2/me. m , r e l.

Constant 1.255 = above is less than 2% different

froin1. 278 -- ida sue y asn(0 n

m(30 ) 9 1 . -°r

Using the above procedures to determine V ,

and. e. ; and using Fligures 1 and 2, a13. the pameuters, given

in equation (3.14,) could nov be calculated at the various altitudes

and flight speeds. The curves of Figure 3 were then obtained by

mas of cross plots.



APIUlZZ I

Caloulation of Pover Laws for VMIable Fluid Properties,

HNsMen'5(10) tables vere used to determine the specific

heat, viscosity, and heat conductivity as functions of temperature.

fhese results vere plotted on log-log graph paper, and tangents to

the curves were dravn at various temperatures. T-- results vere

as follows:

For specific heat, , 'T "

o( "0.144

For viscosity, -<'To

at 500 K t 0 -661

at IO00K 0.608

at 20000K 0.0.562

For heat conductivity, o- "T

at 500#C075

at 1000I-K 0.702

at 1500o•K F= o.674,

fte Prandtl number at four reprsentative temperatures is

given.as

T1 Pr

500 0.738

1000 0.7%6

1500 o.767

2000 0.773
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owBi8.W1Uin 1200OW " the dulirab3. selo to~rstuix for

the range under consdderstion, and neglecting the minL variation in

Prondti. nbedrs the following properties re setma optimam "fit;"i

Pr - 0.76

4 - o.11, tA - 0.58 60 .69
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Derivation of Equations for Constant Fluid Properties

For the case of constant fluid properties, the analysis of

Caapter I and n in modified. 7e perfect-Sea equation of state Is

replaced 'b 3 = constant, and the teupersture-dependant

viscosity, heat conductivity, and specific heat are replaced by

constants. 7bus there will be no coupling betwenm the alnt=m

and ezvr equations; the mentua equation can then be solved first,

and, using this solution, the energy equation subsequently.

In the inviscid-flow solution of Oiapter I result (1 .9)

vas derived from the energ equation only, and hence remains

unchanged; likewise results ( .13) through (1.2) are all derived

fron the smoentum equations only, and therefore also rezman

unchanged. 7he former determines the first term in the

temperature expansion, the latter all the terms that vare considered

in the stream-function and pressure expansions. Mose results can

then be used unchanged, as they are presented in equations (1.22),

(1.234), and (1.25); these furnish all the boundary conitions that

are necessary for solution of the viscous flow

9'
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For the visous flow the differeatial egmtiom have to be

modified I& aasordo e vith the onsta• y of fluid properties

Soso results can be used throuhot the smly•is of Chapter.

n; e.g. (2.9) thrcug (2.12) becm

O(.3)

Me first three of these equations oan be Integrated imidiately

as in (2.27), since the boundary conditions given by (7.1) remain

unchanged

0

•oe = - (,.I)

Using (7.2) and (7.'4), boundary-loyer equations (2.14i) and

(2,17) bea,

+ 'V + 4•0

%4(I.,i) ~e + i4.~ : .0
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Mle boundary conditions at the v.12. veze obtained fr omnetic

theory, and rmain unchmaged, as given in (2.20). 6a.e the lamisoi.d

flows given by (A.1), is unchoanged, (2.25) Is eo.may applicable.

amwisitg the boundary conditions then

(•o) = 0

¥o(0) "0

S(r.6)

"+,' (I) "

2e solution of (F.5) subjcot to (7.6) ca be perfonmed

in two steps; the amentum solution Is Nleons's am INmm's

classical result for the two-dinmslonml and axia3y qysistric

cases respectively, a given for e=aple by Scblchtln(38). me

energy eoatIon is linear, and. ca be norUsesd with respect to the

arbitrary tuerature ratio, by setting

W + (,,- w) ao (1)

so that

I + 0.)

(v.B
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fe solutions of (7.8) cam be wrttes dý Iz the for of

the following 13tePmi

ti 
(19))%1e -

Tabulated values for ~ al are given for a range

of Prandtl numbers by Goldstein (8) a 71(") b: two-d

and axially "imetric cases respectivel.y.

Me equations for the correction ternm we obtained by

using (F.2) ia (2.15) an (2.18). Com•iderig momentum equatiLn (2.15)

first

4- (h -

Waig (2.47) sad (2.49), the above expression becomess

• v. -=W~(,)ZL

(7.10)

ubiah defines operators MA s ad M
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Me remart mads above concerning the bamdsry conditions

for the boundaz-layrer terms Is equsalW applicable to the fIrst-order

correction terms and ;bot the vail and "cuter"

boundary conditions are unchanged from the vsriable-fluid-prcperty

cAe. At the wall, from (2.35)

(0 0

As for the variable-fluid-property case, the linearity of

the equations can be used to separate the various "effects," igIled

by the aridtrary constants appearing In the boundary conditions. Using

the results of Chapter Il then, the equation and boundary cnition$ for

the curvature term are

# . (0) 0

Fcr the slip term
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O solution of (F.13) is

e displacement effect Is deterined4 by

0)

0)
- (o•

(1. 15)

which bas the solution

Fially., for the vort-lity effect ne eam write
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WInUyj, for the vorticity effect am can write

S",,I 41V) =- 0

V (Q) 0

The co ection tero for the stream function can then be written

(F.18)

The equation for the temerature-function correction term is

obtained by using (7.2) in (2.18)

CV,) 0W VA 0i 0 +

iwere the function ,as given by (r. 1), in amw a known function

obtained from the solution of the mmontum equation. Defining

Op. 19)

and using (F.7), the following differential equation Is obtaInsd for

, (Permitting souon for all values of V/ )

(7.2D)



,&bioh defines oeistor Eý mo Ysbwa.rsa comtiaw ra

am, az obtained fro (I.11)

(v.21)

Ame to the linearity of (1.20), the four "effects' am again

be separate4. 5So equation and b kdy coaditions for the curvature

tera ane

(0

(7.22)

'-'

(I.23)

lb solution of (F.23) can be vritten dm. n by Inspection

(i. V, )
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Me equation ae boundary conditions for the displacesent effect

term are

0 (F. 25)

mhich has the solution

(7.26)

inayo, for the vorticity term

(0) - 0

Me entire temperature-funaoltn correction tern cam then

be -ritten

this cow1tes the presentation of the differential eqimmos

and boundary conditions for the constant-fluld-propety cs. It Is or

interest to observe that then constant-fluid property solutions are

actuall Identical to the varabe-fluidproperty solutions for the

special case of W Id . s erabe by Inspecting (2.66),

and otin that 0 Is the solution for this special case.
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USIlg this remat in thwe .mationso ch ~apter n i.4uoes uses equations

to those of the weuent, appeanix.



ehmaino- Omutation Procedure

Me differential equations with boundary conditions tast

vere solved by the aurroughs 220 cmputer can be described as a

tvo-poat boundary-value problei. For the boundaayhliqer case

the equAtions are nonlinear, for the correction terms linear.

he cputer's first-order siaultaneouis-differential-eqmtims

roztine (which uses the Rwge-mtta notbod) was applied to the

problem. Three pairs of starting values (for 4 (0) and #'(o)

were sasmad, and then the (inviscid asymptotic) behavior of the

functions at ý 7 vas used to obtain successively better and

final starting values by means of double interpolation, which was

progrmeid on the machine. This procedure vas then successively

repeated vith the decremnts of halved, until the final

starting values did not change.
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COMFOiscn Of fliSor with fteriments of Teifik and Gi.dtQ40)' (iii

The two references that describe the above expriments am

(40) and. (141); In this appendix they Villi be referred. to as Fearts I

and II respectively. . Te folloing calcuastion procedure sus used.

to c=Vsxe the pre sent theory vith the experimental hsagelt =&Ons

presented. in Table XI) p. 55, Part I. First, the velocity gradient

at the stagation point had. to be detezzlned.. This ms done by us11ing

the experimentally determined. values given in Table A6, Part XI.

Using the definition& given on p. 9, Part 3I1, the relation between

the nammlature of the present ank~a~lsis and of Tevflk and COiedt

is the folloving

A-R e y()

where e_ Is the density ratio across the shock. in the )ibh-

nmmber range ocnsidered (1.3) to 5.7), and. around. free- stream

pressues of 10-5 atmospheres (In agreemeant with the "low" stapnation

pressures of 80-12D microns., mentioned on p. 14 Part I) K=aumn(18)

indicates that the perfect-gas fozuulse are sufficiently accuate to

calculate the flow. For air Y *14 can be assumed, and. then

e and. the Mach number after the shock can be obtained from

*Furthermore after the shock an isentropic compression
-L 9

takes place, for which 5 -r 1- .T , and. the variation

of visosuity with temperature can be assumd. to be ý,k - I

Tben the Rmynol~s number that is of interest in the present ainlysis

can be related. to ¶4  given by Tewfik and. COidt as fallows:
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(1,.2)

Table V of Part I show that the recovery factor is alvWs

almost exactly 1.0 at the stagnation point, indicating that the

adiabatic va11 temperatures, , #iich forms the basis of

the experifhntal Nusselt mubers that are presented, is almost

exactly the sm as the stagnation teierature, T, , thich

forms the basis of the heat-transfer formulae of the present

analysis. 2en the non-dimensional heat-transfer rate of the

present analysis can be related to kL of Tevfik and aiedt

as follow:

" ( -T,-(-.3)

ehere it vs assumed that during the isentropic coression from the

ahock to the stagnation condition L ý¶ , . SO experiMental

result obtained in (1.3) can then be compared to the thec of the

present analysds, as given in Chapter IV. The i.splacement-correction

term will not have to be considered because the experimntally measured

velocity gradients already include this effect. The peanaeter defining

the mgnitude of the curvature correction Is the Inverse square root

of the syFnolds nmber given in (w.2). For the slip and teoperature-

jump corection tern, the paawmeter that is sigtificant Is the ratio

of the man free path at the all to the bouzdazW-layer thickness:
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a-a~I At e.4 k fj

Temerature ratio i/ in the above expres•imos is

tabulated in Table A5, p. 56, Part 3r. Viscosity ratio -

was related to t/ by using the viscosity vs temperature variation
iven b ,an on ) and (at the low taieratumes) by Jekob(17). Jor

a stagnation teperature of Ts - 3001 * (p 3, Part I) a good

approxi .tion for this viscosity variation is k .A T

near aW - 0 • nd A. -. near T 0w 0.7

Now *12 quantities in (3.4) are known except V, • A reasonable

guess (e.g. references (36) and (27)) is

(.= \5&

Now all quantities that are necessary to apply the

theoretical results of Chapter IV have been datezoined. Using the

results of this theory (Table III), the heat-transfer rate at the

stagnation poiat can be writen for the constant-fluid-property case

= OS\Z -% ,:• -.... O -,O? ,,

(1.6)
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Me. corresponding mabers for the viarale-fluibFproperty

case can be determined as fimcticm4J of W by WsIN the graps at

Figure 7. Me results of these calculatioms ae presented in term

of the differen e between the calculated reset and the heat-transfer

rate based on otant-fluid-propert;y boundar,-laer theor, as a

fraction of the latter. fhe experimental results, as caleulated in

(N.3), are presented in the sam maner, e.g.

- I Q.

('.7)

etc. Finally displacemet effect paeriter C. is also tabulated

for the sale of reference. 2he calculation of it Is based on an

iri•oa relation between stagnation-point velocity gradients

for circular cylinders and Mach nmuber, as presented by Usdatko, and

Scki•thn(33). (This is the "infinitem-blnolds-auer cwe). Using

these and the experimentally detezrmned velocity gradients of Tevfik

and Giedt (R. 1) in expression (2.22) C~Is determined as

follmv

A

(z.8)

i



a. speed of sound

0- (vitah subscript) constant coefficients (Chapter I only)

sta6nation-point velocity gradient; u=Ax

constant coefficients (Chapter 1)

C3 displacement-effect parameter (equation 2.22)

CI ALi ccubinations of Bessel functions (equation 3.4a)

C, specific heat at constant pressure

Sdensity ratio across (normal) shock;

, base vectors in orthogonal system (Appendix A)

2 () energy-equation differential operator (equation 2.4.0)

E ) inhmogeneous terms in energy equation (equation 2.40)

4 o. functions in expansion of viscous flow about stagnation point,
x6 and xL terms respectively. Without adscript stream

function, vith adscripts ? , r , t pressure, density,
and temperature respectively. (E.g. At. is temperature-function,

x0 term, etc., equations 2.2 through 2.5)

enthalpy

, , li metric functions in orthogonal coordinate system (Appendix A)

N altitude, ft.-

T,( ) Bessel function of ( C (hapter in and Appendix C)

I heat conductivity

K constant of integration (equation 2.35)

K,) K& proportionality constants (equation 2.21)

K( eBessel functioneof ( ) (Chaptetera In ndApgnd -C)

L reference length Indicative of body size, determne A A,2L

wo6
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ach numaber

M ( amentum-equation differential operator (equation 2.40)

ML i inhomogeneous terms in momentum equation (equation 2.40)

S0 for two-dimensional, 1 for axially symmetric flow

w Nusselt number

0(')=OrderoLo)

p pressure

Prandtl nuaber

Svelocity vector

Q heat-transfer rate nor to surface Q
r radial coordinate

nose radius of curvature

gas constant

�kReynolds number

absolute temperature

U, •- velocity components in '< and * directions respectively

free-stream velocity, ft/sec

V Vorticity parameter for axially symetric stagnation-poant
flow (equation 1.19)

W cooling ratio; W'A

~. boundary-layer coordinates (equation 1.1)

exponent of temperature for specific heat; (t -

0 accoodation coefficient for enera transfer at solid-gas
interface

ratio of specific heats

£ boundary-layer thickness parmeter f=

inviscid shock standroff distance
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E6 expouisat of towereture fra mest camfuotivity; 4*(7-e

6? bo~mdary-lqrr Coordinate (equaticm 2.1) /VWO

dIspl3•Acmt muber (equation 2.3i)

,~'(without subscript) magplar coordinate

,- (wiLth subscripts) twmperature function In consteat-fluid-

property flow (equations 1.7 and 1.20)
me an free path in sas

,w viscosity

k)~~ immtic viscosity

,P density

6 fraction of diffuse4j reflected molecules

o- hma partalll to suraxfce V:. 4

cmcpressible strem function

Sdissipation femtIo e In mmerg equa:ton

Sexponent of temerature for viscosity ,cT

* £1. vorticity rl cA 4 Ili.'

cA proportional to

Subscripts;

0, ý),succesuive toerm in 07molds-nuaber expension; bowuasry-lqer
1st order, 2nd order, etc. correction tems; els (in Chapter I)
successive coeMflents In expansion of Iniscid
quAntities.

o correction due to curture effect

comp result of compressible (variable-fluld-property) sma2ys

) correction due to disp3Acement effect
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Sexperimental result

3correction due to temperature Jup (KI#,

result of inccmpresaible (constant-fluid-property) analysis

correction due to finite man free path (equation 2.39)

refers to pressure

r refers to density

r partial derivative vith respect to r (Appendix A only)

a reference quantities (see Chapter IV), equations (I.I) and (4.3)
(except (1.23) and (7I.2).

C. inviacid stagnation value

SýO' condition after shock

SL correction due to velocity slip

st,. A4 standard conditions at standard atmosphere

t refers to temperature

V correction due to vorticity effect

condition at solid surface ("vail")

x •3 partial derivatives with respect to x and

partial derivative with respect to

free- stream

Superscripts

derivative with respect to

derivatives with respect to temperature
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Inviscid Hypersonic Stam~~tion Point Flow Parameters for Cylinder.
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Inviscid Hypersonic Stapmnation Pbint Flow Parameters for Sphere
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Low Reynolds Number Stagnation 1 oint Flow Teiinerature Profiles (W=O.1). 11
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Wall Shear Param'eters. 12
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?A3U . 0•LJglMl•W.1MlPT,, 8l~liP•Cf
ZmuapudIble Dwanda7eLe-r Sohl'uti~m. T..mw-neomml1 a8O (n-O).

f~o.'- f..,.+ I + T" - 0

0. 74 f. +" 1W" o,+•

0 o 0 1.2326 -i.oooo o0 0.5123
o.5 o.1 336 o.14946 0.7583 -o.8565 0.2550 0. 5D34 -0.0611
1.0 0.4592 0.7779 0.398o -o.5775 0.1.960 .01518 -0.1576
1.$ 0.8873 o.9162 o.177o -0.3175 o.6983 0.3505 -0.2364
2.0 1.36ao 0.9T32 0.o658 -o0.123 0.8431 o.2288 -0.236B
2.5 1.8%.4 0.9929 0.o02D -0.0517 0.9301 0.1242 -0.1750
3.0 2.3.526 0.99& 0.0051 -0.0150 0.9735 0.0559 -0.0998
3.5 2.8522 0.9997 0.0010 -0.0035 0.9915 o.oaoW -0.0450
4.0 3.3521 0.0000 0.0002 -0.0006 0.9977 O.o06k -0.0163
4.5 3.8521 1.0000 0.0000 -0.0001 0.9995 0.0016 -0.004T
5.0 14.3521 1.0000 0.0000 0.0000 0.9999 0.0003 -0.0011
5.5 1•.8521 1 .0000 0.0000 0.0000 1 .0000 0.0001 -0.0002
6.0 5.3521 1.0000 0.0000 0.0000 1.0000 0.0000 0 0.0000

0 -6479
= (%,r). = fo

%'A
u . ,,t

-T . - •- l +
fs = w •'
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Ia•o•oWessible Domdary-LAer Solution, Alui&.lly Bomtri, Cl . (,v,..).

Sf.f."-f"4. ,? - o

'I-5 f~o +___ 0 ________

f.(q) .,. f÷(O 9.( -o 1

,f F.f.' fo" f°" o
0 0 0 1.3119 -1.0 0 o.B6T 0

0.5 o.i432 o.5316 0.8182 -0.9515 0.3101 o.6614 -0.1439
1.o o.492g4 0.8299 0.3959 -o.70w8 0.6i18 0.5241 -0.3924
1.5 0.9441 0.9552 0.1357 -0.3431 0.8501 0.3050 -0.4375

2.0 1.11330 0.9919 0.0310 -0.1044 0.9537 0.1237 -0.2692
2.5 1.9313 0.9990 0.00o.5 -0.0193 0.9897 0.0345 -0.1009

3.0 2.4311 o.9999 0o.0o4 -o.0022 o.99804 o.066 -o.oi.i
3.5 2.9311 1.0000 0.0000 -0.0001 0.9998 0.0009 -0.0038
4.0 3.4311 1.0000 0.0000 0.0000 1.0000 0.0001 -o.o0x4
4.5 3.9311 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0. o.5685

'I . _s•. :

Tv = W +(I-viJ

q - o- W)o
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Incnpremau.l.o muplmament- Omieetin Tem. wo-mmuau.onml Case OA, 0).

o 0 0 1.8489 o 0.2561
0.5 0.1905 o.6842 0.9233 0.1258 0.2389
1.0 o.6185 0.9769 0.3o82 o.2259 o. 1.7/
1.5 1.1308 1.0189 0.0272 0.2629 -0.0020

2.0 I.1"65 1.0390 -0.0438 o.228 -0.1224
2.5 2.1683 1.0181 -o.o034 0.1553 -o.1567
3.0 2.6739 1.0060 -0.01 i 0.0838 -0.1219
3.5 3.1756 1.0015 -0.0046 0.036A ,,.OM4
4.0 3.6759 1.o03 -0.o011 o.01o0 -O.O29I
1.-5 4.176o 1.0000 -0.0002 0.0036 -0.0099
5.0 4.676D 1.oooo o.oooo o.oo09 -o.oo27
5.5 5.1760 1.0000 0.0000 0.0002 -o.ooo6
6.0 5.676D i.ooo0 o.oooo o.oo00 -o.ooo0

6.5 6.1760 i.oooo o.oooo o.oooo o.oooo

(I "•S•"

o -_)

I` TV Ff



In os .uuble ospl1a.ent-Co•.eat,:m To.m AxiL& Amwtz,±a CA&e (A- 0,

o 0 0 1.9679 0 0.3.3.
0.5 o.2o45 o.7361 o.993 o.1653 o.2947
1.0 o.06611 1.o278 0.-233 0.2622 0.0659
1.5 1.8885 1 .o05 -0.051,3 0.227 -0.1758
2.0 1.7/08 1.0228 .-0.0%4 0.1237 -o.2'/'6

2.5 2.214. 1.0o07 -0.0176 0.0131 -0.1092

3.0 2.7151 1.0006 -0.0027 0.0099 -0.0331
3.5 3.2155 i.oooo -o.oo2 o.oo0 5 -o.oo62
4.0 3.7155 1.0000 0.0000 0.0002 -0.0008

1.5 Is.2155 1•.0o0 0.0000 o.0000 o0.0=

TO = (o-r• .
-a TVA -2 ZN"A

X7.

-r,,4 V ) r
TS. ~)
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Inacps, ibleVb1.e .oc1ty-..Mp am T4Mez'•.-Jftm COnt:c .n TOeiu,
TwSSSmmo1m ease (Al.M).

; u 0)' -b *%I .I q.

o o.5i23 o.2624
0.5 o.316 0.2579
1.0 0.252 0.2314
1.5 0.1546 0.1796
2.0 o.0864 0.1172
2.5 0.0358 o.o636
3.0 0.0136 o.o06
3.5 0.004. 6.0107

4.0 0.0012 0.0033
4.5 0.0003 0.0008
5.0 0.0000 0.0002
5.5 0.0000 0.0001
6.0 0.0000 0.0000

'T,~

TSS

Qj o- W) ý% S

a. ~~
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Inoampessible Velocity-Slip and !mpessturo.-Juu Ocavootion Tomus.
AXd.s11y Rytzo OCse ( • ')

0 0.6T .671

0.5 0.J1 532 0.4e542

1.5 0.1029 0. o g.

2.0 0.0318 0.0849
2.5 0.0071 0.0237

t 3.0 0.0011 0.00.5
3.5 0.0001 o.0006

4.0 0.0000 0.0001

14-5 0.0000 0.0000•.. o!oooo of oo

T•

Iai - VI jll
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IZonaWi.blbe Vort.oati.O.Ooz. .outln T*U, AXh.8ly Opjtrie O- e 034r (vt ).

2-f .- F , t" +. 't

0 0 0 0.6491 0 0 0.1956 o
0.5 0.0812 o.3249 0.6523 0.0257 0.0951 o.17A8 -0.1196
1.0 0.3262 0.6586 0.6932 0.1521 0.1586 0.0629 -0.3070
1.5 o.7Th6o .o298 0.8005 0.2535 0.1516 -o.o84i -o.2249

2.0 1.3661 1.,4605 0.916. 0.1862 0.0922 -0.1317 0.0308
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3.0 3.3059 2.4318 0.996B 0.0138 0.0095 -0.0295 0.0762
3.5 4.6M6 2.9311 o.9997 0.0015 o.0016 -o.oo6& 0.0225
4.0 6.2372 3.4311 1.0000 0.0001 0.0002 -0.0009 0.0039

4.5 8.0777 3.9311 1.0000 0.0000 0.0000 -0.0001 o.o000
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o 0 0 0 0 0 2.0199 1 W 7o9 0o oRC35
0.25 O.OT19 o.5291 o.086 o.o576 o.24 1-.3923 1-.22.9 -0.0300 0.0626
0.5 o.2k5S 0.8303 o.o353 o.2o89 o.70 0.8883 0.8109 40.0519 0.0571
1.o o.726 i.o11o 0.o57 o.A05 o.9 o.272o o.2671 -o.073o 40.o26
1.5 1.2539 1.o01 MW o.z060 1.231 1.o 0.o2 40o.o330 -o.o68 -.ooo89
2.0 17696 I.o175 0.-078 1.7902 1.0350 .4.0327-0.030.. -0.0o0 -o.032
2.5 2.2736 1.0010 0.029T 2,.359 1.0183 -0.0293 -.o.o2B -0.0305 -0.0311
3.0 2.7M27 0.990 0.01o18 2.T981 1.0073 -0.0151 -0.015D -0.0149 -0.0236
3.5 3.2713 0.-9M7 0.0060 3.251 1.0023 -0.005 -0.005 -0.0060 -0.0121
4.0 3.7Tok o.9990 o00.019 3.7761 1.o0o6 -0.0017 -0.0017 -0.0019 -0.oo48
k.5 ,270o1 0.999M 0.0005 4.2719 1.0001 -0.000k -0.000k -4.0005 -0.0015
•.o 5.2700 1.o000 0.o0oo 5.270 1.000 0.00001 0.e o 0.0000 1 0.0000o
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o 0 0 0 0 0 2.3310 1.5590 0 0.128

0.25 0.106B 0.7329 0.0o7 0.0670 0.146D7 1.185 1.o8 , -o.1261 0.122

0.5 0.3281 o.9906 0.0785 0.2•25 0.73&. 0.8318 0.70o3 -0.1702 0.1059
0.75 o.5872 1.o637 0.1o1 o.4892 o.8947 o.4637 o.426 -o.1787 o.o756
1.0 0.8543 1.0671 0.1121 0.7753 0.9800 0.2372 o.2346 .4w1693 40.0378
1.5 1.3783 1.0269 0.104.9 1.3715 1.0359 40.0262 40.0340 -0.12B3 -0.0311
2.0 1.8836 0.9983 0.0750 1.9326 1.0317 .o.o278 -o.o026-o.0819 -o.o619
2.5 2.3801 0.990o 0.04M 2.4362 1.0170 .0.062 -0.0257 -0.0o92 -0.0557
3.0 2.875T 0.9926 0.0197 2.9138 1.oo69 .01.o1 -o.o01o -o.oi99 -o.o311
3.5 3.3730 0.996& 0.0073 3.3916 1.0022 .00055 -0.0055 -. 0073 -0.0159
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5.5 5.37114. 1.0000 o.00 5.371V4 1.oooo 0.0o00 0o.o00 o.0o0o 0.0000

W= 0.5 ___ __ ______ __
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1.o0 3.9835 0.9989 0.0017 3-9B9 1.0001ooo .o1 .0012 -0.0017 -0o.oo18
5.0 11.9832 1.0000 0.0000 11.9832 1.-0000 0. = o.ooo 0.000I 0.0m0
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o 0 0 0 0 0 4..9039 1.299 0 0.2233
0.03125 0.0138 0.7038 0.0250 0.0024 o.1246 3.349 1.2281 -i.oo66 o.2231

o.o625 0.0396 o.9182 o.4i19 o.oo93 0.2185 2.7o61 1.1689 -i.o158 o.2221
0.125 0.1029 1.0779 o.o671 0.0313 0.3633 2.0066 1.o58o -0.8716 o.2178
0.18750.1723 1.1331 0,0950 0.0937 0.4751 1, 5 04 0.9561 -0.7033 0.2105
0.25 0.2438 i.15z1 0.1026 0.1182 0.5656 1.3145 0.8623 -o.6615 o.20o6
0.375 0.3882 1.1515 0.1273 0.2342 0.7041 0.9297 0.6957 -0.536B 0.1750
0.5 0.5310 1.1316 0.1445 0.3718 0.8033 o.670o 0.5537 -0.4521 0.143B
0.75 0.8078 1.0833 0.1613 0.6830 0.920 0.3547 0.3317 -0.3386 0.0750
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1.5 1.5811 0.9958 0.1255 1.6261 1.030240•.0117 40•.0195 -0.159P -. 0719
2.0 2.o748 0.983o 0o.773 2.1571 1.o\39 -o0o251 -0.o226 -0o.836 -0,0855
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o o 0 0 0 o 0 2.171.8591 0

0 .2• 0.0773 O..566B 0.0o7 0.0633 0.11639 1.5367 1.3•7 -0,0385 0.0829
0.5 o.2618 0.87110 0.045 0.2307 0.7716 0.99116 0.9272• -0.06E8 0.0679
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2.0 1.7911 1.00o1 0.02.3 1.812 i.oi86-0.o081-0.0018 -o.o•6 -0.o1.J4
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W-0.5

0 0 0 0 0 0 2.1090 1.7593 0 0.1705
0.25 o.1139 o.7668 o.o o7 o.063 0.6139 1.5396 1.360 -o0.1479 0.1608
0.5 o.3108 0.8171 0.0o52 0.237o o.8To1 o.9949 o.832 -o.0793 0.1179

0.75 0.6000 1.0o51 o.134, o..5464 0.97o9 0.5196 0.4997 -0.1694 4o.o49
1.0 0.8639 1.o-0 1 0.1112 o.8495 1.0357 0.267 0.2603 -0.0728 -o.o0o
1.5 1.3760 1.00631 0o.07 1.4,1175 1.0•0 40.0326 40.•043 -o.o078 -0.0883
2.0 1.79118 0.ooo 0.030 89 1.0141 .-o.oo5 -.o.oo08 -o.o036 -0.0624
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0 o 0 0 0 0 3.636A -.6•3 0 0.2553
0.125 0.0639 o.8o0 0.0607 0.0278 0.3518 2.2363 1.382D -0.39W o.297
0.25 0.1788 0.9981 0.0995 0.1036 o.05o 1.5767 1.1509 -0.3985 0.2260

0.5 0.-417 1.o73o o.1126 o.3496 o.86o9 o.845 0.7W6 -0.3190 0.1372
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1.5 1.14693 o.9902 0.076 1.52,919 1.0308 40.0231 40.020 -0.0825 .-01137
2.0 1.9636 0.9899 0.0278 2.0005 1.0096 -0.0036 -0.o03 -0.0282 -. 0670
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o.o1o8 0•. o7181 00.318 0.0029 0.1.3 3.8128 1.1953 -1.0337 0.3059

o.o625 o.o0o3 o.9019 o.o05; o.o0111 0.2501 3.o-06 1..31o -0. 96k2 0.3o33

0.125 0.1017 1.03118 0.0821 0.0o101 0.4125 2.2662 1.3137 -0.7•90 0.2925
0.25 0.2362 1.0980 0.1221 0.1357 o.6381 1.501T 1.o828 -0.56o. 0.2519
0.5 0.5100 1.o816 o.159B o.0146 o.887 o.760o o.678o -0."3 o.1.29

0.75 o.7751 1.01.14 o.16Oi o.735 o 0.9985 0.3825 0.3753 -0.2536 40.0015

1.0 1.0315 1.0100 0.1373 1.0o80 1.0339 0.1729 0.1790 -0.1768 -0.0827
1.5 1.58:5 o.o057 o.o7o6 1.5865 1.0254 40.o178 4o.o197 -0.0754 -0.1175

2.0 2.0221 o.9jl 0.-0235 2.o56 1.0077 -0.0025 -0.00211 -o.o238 -o.o61o

3.0 3.0187 1.0000 o.0o07 3.0213 1.0008 -0.0002 -0.0002 -0.0007 -0.0032
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ADDENDUM

February 1962

Since completion of the research work presented in the foregoing

report several new developments in low-Reynolds-number boundary-layer
(Al,A2)

theory came to the author's attention. i.n particular Vanjyke and
(A3)

.,aslen utilized a Lzigerstrom-Cole type expansion procedure to calculate

seconI-order terms (i.e. first-order correction terms) to stagnation-point

and other boundary-layer problems. The purpose of this Addendum is to

clarify a shortcoming of the foregoing analysis which became apparent in

corparison with these new levelopments, 4na which was brought to the

author's attention by Profesror Janjyke in private conversation. In

a1.ition, an important detail regarding the application of the foregoing

theory to experimental low-ieynolds-number stagnation-point measurements

vill also be clarified; this was brought to the .1thor's attention by
(ALI)

Prof. Rott in a differ.•nt context.

'et the external flow be described by a streFmfunction of the

form;

A + .. .+ ,. ,

where the equation above replaces (1.22). The first-order correction

temri appearing in the above expression are not necessarily related to

the nose radius, rather (as explained in the introduction to Chapter It.)

i is merely a convenient reference length. The pressure, temperature,

and density expansions can be related to the streamfunction by means of

the procedure described in Chapter 1. (This is permissible for the first-

order correction terms because the viscous terms in the equations are of
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ADDENDUM

February 1962

6ince completion of the research work presented in the foregoing

rcport several new developments in low-Reynolds--number boundary-layer
(Al,A2)

theory came to the author's attention. in particular Vanjyke arid
(A3)

ý,aslen utilized a Lagerstrom-Cole type expansion procedure to calculate
second-order terms (i.e. first-order correction terms) to stagnation-point

and other boundary-layer problems. The purpose of this Addendum is to

clarify a shortcoming of the foregoing analysis which became apparent in

cor.parison with these new levelopments, dna which was brought to the

author's attention by Professor lanryke in private conversation. In

aldition, an important detail regarding the application of the foregoing

theory to experimental low-ideynolds-number stagnation-point measurements

woll also be clarified; this was brought to the author's attention by
(AL&4

Prof. Rott in a differ.-nt context.

Let the external flow be described by a streamfunction of the

form;

%~A hln +.- nv)' + -?j~ - +~J (A4)

where the equation above replaces (1.22). The first-order correction

termL; appearing in the above expression are not necessarily related to

the nose ra ius, rather (as explained in the introduction to Chapter 11)

,t 4s merely a convenient reference length. The pressure, temperature,

ard density expansions can be related to the streamfunction by means of

the procedure described in Chapter i. (This is permissible for the first -

order correction terms because the viscous terms in the equations are of
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order O .) Only the pressure expansion is of interest here;

p(l 2)

The "irner" expansions of the sarre variables are as given in

2hapter 11. Latching the two expansions requires that as 7 -* the

"inner" expansion approach the external flow described by (A1.l) and

(Ad.2). This implies that the solution for fP, , gP,, fr., ffl, fo, and

fpI are as given in Chapter Ii. Furthermore, using the boundary-layer

solution in the matching requirement one obtains that;

)s Ll? '*" J• T' 3(ad.3)

aince any constant that might appear in the limiting behaviour

of f, (?) or higher-order corrections would bL of order it or smaller,
#4

it is apparent that the constant a,, in (Ai.1) can be identified by

comparison with (Ad.3) as;
,-- -P

0. % 7(A'd. 4)

It is likewise apparent that to determine constant be the

limiting behaviour of f, (?) must be known. However equation (Ad.2)

shows that bl, appears as a boundary condition necessary for the

integration of gp, (7)' which in turn is necessary for the solution of

fl (y). This shows that b,1 can not be determined within the framework

of stagnation-point flow alone; it can then be defined as the undeter-

mined "Hisplacement constant", i.e.;

ZL( * (.5)
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(For further discussion on the somewhat arbiguous nature of

defining the displacement effect reference is made to (A4).)

Using results (Ad.h) and (AJ.5) in (AI.l) and (Ad.2) the

"outer"-flow expressions become;

(Ad.6)

Aý 0+ + (( EVIKr

Corresponiing to (AI.6) the constant of integration in

integrating gp! ( 1) (cf. pp. 31-32) becomes;

-- •' m- . v-•V (Ad.7)
Corr .n 7

which now replaces (2.35). Then the corrected form of (2.36) becomes;

I fY : (Ad.8)

Thus it is clear that the momentum equation for the vorticity

correction term is not homogeneous as given in (2.57), but rather;

~vn * (Ajb9)

is the correct equation. Now the behaviour of the momentum equation for

the correction term as can be observed;

tA.. M+ P-V
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Thus it is clear from (2.57) that;

Un the other hand (Ad.6) and (Ad.9) imply that;

Finally, the limiting behaviour of the displacement correc-

tion terL consistent with (2.55), (Ad.6) and (Ad.1O) is;

' (2.53)

observing that the energy equation and all the remaining

boundary corditions for the displacement arki vorticity correction terms

are iientical;

E0 A)A~ ~4 (f (A.±.13)

and using the five foregoing expressions, it is easy to see that;

*v (oil = ýW J. t J*ý1 (1 (Ad . l)

satisfies both the correct m~mentum equation (Ad.9) and boundary

condition (Ad.12). The energy equation and the remaining boundary con-

ditions are automatically satisfied by (Ad.l4). Equation (Ad.14) is

then the correct vorticity term; the temperature function ft v is

correspondingly modified. The correction to the vorticity effect

described by (AW.lh) has become known in the literature as the "vorticity-
(A5) (Al)

inauced pressure-gradient" effect (e.g. Li , VanJyke , etc.);

and the present result and the results of the above mentioned investi-

gations are thereby in agreement.
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One may now consider an application of the foregoing theory

to experimental measurements of low-Reynolds-number stagnation-point

flow. Let the velocity gradient A be based on pressure distribution

data obtained at a "low" Reynolds number, so that;

I P•iA.e..p = - t - (Ad.15)

Using (AI.8) and (2.5) in the above expression one obtains;

(Ad.16)

where A corresponds to an "infinite" Reynolds number.

h~ow, considering only the highest-order corrections, A can be

expressed in terms of A
exp

where constant K, is defined by;

K1 = _L V- (0) .(.o) (o) + 0+V.I (Ad.18)

Lf now A is to be used to predict physical quantities in

exp

the boundary layer, and if the Reynolds number is sufficiently low to

necessitate consideration of the first-order correction terms, then the

change described by (Ad.17) and the effect of this change on the boundary-layer

term must also be included for a consistent theoretical prediction to this

order. The effect on the boundary-layer quanbities of changing A to the

first order is already known (cf. pp. 38-39); it is the displacement-

effect term. Thus expressions of the form given in Chapter IV.,
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e.g. (4.6);

a t. 4- S3

• 4 An V

must now be revise ' in accordance with (Ad.17);

+ + ( --V+ KIC V ' -4 t!. + 16

K.. | U,)U+•, 4- -f Ut...

+ .r.-I., + ( - .N I +,u V III go ,. V? .'o

The two expressions above differ because (Ad.19) uses a velocity

graaient A calculated from inviscid theory, or r easured at an equivalent

"infinite" (i.e. very high) Reynolds number, whereas (Ad.20) is based on

A obtained from pressure measurements at the particular ("low")exp

Reynolds number corresponding to • The former method must therefore

account for an undetermined change in A due to Lhe displacement effect,

whereas the latter has already taken this into account, but must also

account for the changes in surface pressure gradient due to the centrif-

ugal pressure rise and vorticity interaction effects.

Constant Kc (Ad.18) is a function of N and is tabulated below,

as a supplement to Table 1LI.



167

TABLE Ad.1. Values of Kc.

Kc

Sn-O n.il--. U U-902 -u.15

U.75 0.7998 u. 6927
U.5 u. 64 84  o. 56Ol
U. 25 U. 8 20 0.4160
0.1 0.3717 0.3216

The experimental comparison presented in Chapter IV. ard Table

IV. and carried out in Appendix H must also be revised in accomrance with

(Ai.20). Values of K. and •1 (O) clearly indicate that the theoretical

heat-transfer rate will be somewhat higher than the predictions pre-

sented in Table IV., thereby making the agreement between experiment

and theory less favorable than implied by that Table.
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Subscripts :

Corr corrected vorticity term due to induced pressure effect
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