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ABSTRACT

High-temperature mechanical property data (tensile and compressive
proportional limit, 0.2 percent yield strength, flow stress, tensile strength,
creep rate and time to rupture) for an iron-base (N-155), a nickel-base
(Rene” 41) and a cobalt-base (L-605) superalloy were analysed to evaluate the
equation which correlates the data and to identify the dislocation mechanism
which is rate controlling. The data correlated through the relationship

ir= % cxp-(:%) f(o) ‘?ktr '

where ¢ is the strain rate, t, is the time to rupture, H is the activation
energy for ddormtlon. A and k are constants, and f(l‘) isa ltr.u function
which was f(¢) = e® with n = 4 to 5 at stress below about 10 k./mm (15, 000 pei).
The values of H, are 100, 215, and 120 kcal/mole, respectively, for N-155,
Rene 41, and L-605, values higher than those for self-diffusion of the base
metals of these alloys.

The form of the above equation, especially in regard to the stress law,
is in agreement with Weertman's dislocation climb model of high-temperature
creep. It is suggested that the higher values of H o MAay represent either
changes in structure with temperature or the interaction of solute atoms or
precipitates with dislocations during climb.
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SECTION I

INTRODUCTION

There is now considerable evidencel'3 that the activation energy Hc
for deformation of relatively pure metals at high temperatures (i.e., at
temperatures above 0.5 T _,where T __ is the melting temperature in °K)
D and, hence, that the deformation

is diffusion-controlled. This agreement between Hc and HSD has also been
4-6

is the same as that for self-diffusion HS

observed for simple alloys. Some diffusion~controllied mechanisms which

might be rate-controlling at high temperatures are:

1. The climb of dislocations;

2. The nonconservative motion of jogs in screw dislocations;

3. The dragging of a solute atmosphere;

4. The healing of the disruption of a cluster of solute atoms or of

short-range order as a dislocation moves through the lattice:

5. The dissolution or agglomeration of precipitates opposing the

motion of dislocations;
6. Nabarro-Herring diffusion creep.

In more complex alloys, the value of Hc is often somewhat higher
than HSD of the solvent: for example in iron- and nickel-base alloys it has
been found that Hc = 90 to 120 kcal/mole, -7 whereas HSD = 60 to 80
kcal/mole. ! The reason for this difference is not yet known.

Of considerable technological importance is the ability to interpolate
or extrapolate mechanical property data from a minimum number of tests.
A review and evaluation of the various equations or parameters used for
this purpose was made by Conrad, 8 who found that they all possessed certain
limitations., He suggested that correlations be based on latest theoretical

as well as experimental information and that differential-type tests, where

-1~



stress and temperature are changed during the test, be considered as a
rapid and economical method for evaluating the constants of any correlating

parameter.

Deformation equations most generally relate strain rate with tempera-
ture and stress. Often from a practical standpoint it is more important to
know the interrelationship among time to rupture, stress, and temperature.
Of significance in this regard is the experimentally observed relationship

between the time to rupture t. and the secondary creep rate 15:9'12

where m is a constant approximately equal to one.

In the presentpaper, high-temperature mechanical property data
obtained at the Marquardt Corporation”}'15 fbr three complex superalloys --
N-155, L-605 and Rene 41 -- are analyzed with the objective of providing
additional information regarding the points discussed above, especially in
regard to first, establishing the mechanism which is rate controlling, and
second, correlating the data for use in interpolating and extrapolating. The

Marquardt data is especially significant for such an analysis because:

1. A variety of tests were conducted: constant strain rate tensile
tests, constant strain rate compression tests, programmed
constant strain rate tests (differential tests), tensile creep,

compressive creep;

2. The alloys considered represent three base metals: iron-base
(N-155), nickel-base (Rene’ 41), and cobalt-base (L-605);

3. The data are sufficiently extensive: strain rate range of 1073
to 1.0 lec'l, temperature range 1600° to 2200°F (871°
to 1204°C);

-2-



Heating of the specimen was accomplished in a very short time
(200°F per second heating rate) by self-resistance heating:
consequently, the structural changes associated with heating of

the specimen were kept to a minimum.



SECTION II
MATERIAL AND EXPERIMENTAL PROCEDURE

The nominal compositions of the three alloys considered are given in
Table I. Their minimum melting temperatures and the activation energy for
self-diffusion of the base metal are given in Table II. Mechanical property
tests were conducted on sheet 0.05 to 0. 07 inch in thickness., (Detailed
history of the particular heats tested and of the mechanical testing conditions
can be found in Refs. 13-15, as can also the detailed mechanical test data.)
The data considered here are for temperatures of 1600°F (87l°C) and above
(0.7 to 0,95 Tm), where the proportional limit and yield stress are sensi-

tively dependent on strain rate.



SECTION III
RESULTS

Typical mechanical property data are shown in the log-stress versus
log -strain rate plots of Figs. 1-4. These suggest a relationship between

strain rate ¢ and stress o of the form

€ = aan . (2)

From many such plots it was found that n decreased with temperature,

approaching a constant value between 4.0 and 5. 0 at the higher temperatures,
generally at 1800°F (982°C) or higher.

The apparent activation energy Hc for the high-temperaturlce6deforma-
tion of these alloys was obtained by the conventional techniques. The
values so obtained were found to be independent of stress and the same for
all deformation phenomena (proportional limit, yield stress, tensile stress,
flow stress, and creep) and types of testing (tension, compression, pro-
grammed strain rate) within the experimental error associated with their
determination, which was £15 percent. The average values of Hc are

presented in Table IIIL

Since Hc was independent of stress and deformation phenomena, the

deformation rate may be expressed by an equation of the form proposed by

Dorn1 and Weertmanz' 17 for high-temperature creep:

=4 e £ 3
_-Texp 'R'T‘ (0') ’ ( )

where A is a constant and f(o) is a stress function. Figures 5-7 show how

well the mechanical test data for the present alloys correlate using Eq. (3).

-5.



At low stress, <10 kg/mmZ (<15, 000 psi), as is seen here { (o) 30,4.0-5. 0’

while at higher stresses n increases as stress increases, similar to the

2,17-19

observations of Weertman on relatively pure metals.

From Fig. 8 it is seen that the relationship between strain rate and

time to rupture given by Eq. (1) is approximated by the present alloys with
mx~1.0,

-6~



SECTION IV

DISCUSSION

The manner in which the data correlate in Figs. 5-7 and the fact that
the stress exponent at low stresses is between four and five suggest that

2,17 applies to the high-temperature

Weertman's dislocation climb mechanism
deformation of the presently considered superalloys. However, the values of
Hc are significantly higher than rather than equal to HSD' as required by the
theory. These higher activation energies may be due to one or more of the

following possibilities:

1. The values of Hc obtained are only apparent activation energies
and include changes in structure with temperature (solute distri-

bution, precipitates, etc.);

2. The activation energy for deformation includes the energy Hj to
form the jogs required for dislocation climbzo so that

HC = HSD + Hj:

3. The activation energy for climb includes the interaction energy

. . 21
between a dislocation and a solute atom

4. The activation energy for climb includes the surface energy

associated with precipitates on dislocation lines2 ;

5. Alloying increases the value of H_ through the interaction energy

sD
between a vacancy and a solute atom;

6. Deformation is controlled by the diffusion of an alloying element
whose activation energy for diffusion HAD is larger than that for

self-diffusion of the base metal.

These possibilities will now be considered in the order in which they are

listed.

-7



Very little, if any, change in structure is expected to occur in N-155
and L-605 during testing in the temperature range under consideration,
namely, 1600° to 2200°F (871° to 1204°C). Although definite carbide
precipitation is known to occur in the cobalt-base L-605 alloy from 1400°
to 1800°F (760° to 982°C), the strength in the testing temperature range for
this alloy, 1800° to 2200°F (982° to 1204°C), is primarily due to solid solu-
tion strengthening. Wagner and Hall23 report that the strength of this mate-
rial above 1800°F (982°C) is essentially the same for the aged and annealed
conditions. Microstructure and hardness values of annealed L-605 both
previous to testing and after testing are given in Fig. 9 and support the con-
tention that practically no changes in structure occurred during testing.
Although test specimens of the iron-base N-155 alloy were not available for
study, it, too, is primarily a solid solution strengthened alloy in the temper-

ature range under consideration, and no changes in structure are expected.

The nickel-base alloy Ren€ 4l is not simply a solid solution strength-
ened alloy, but is dependent upon the precipitation of Ni3 (Al, Ti) called y'
during aging at 1400°F (760°C) for its superior strength. Testing conducted
from 1600° to 2000°F (871° to 1093°C) is accompanied by very definite
agglomeration of this precipitate, and at higher temperatures re-solution
occurs. Microstructures and hardness values of annealed and tested samples
of Ren€ 41, Fig. 10, show definite evidence of changes in precipitate distri-
bution. It is seen in this figure that the microstructure and hardness did not
change much during short times at 1600°F (871°C); however, at 1800°F
(982°C) and 2000°F (1093°C) agglomeration and some re-solution of the pre-
cipitate did occur, accompanied by significant loss in hardness. The
higher hardness for testing at 2000°F (1093°C) than at 1800°F (982°C) is due
to the rapid reprecipitation of y' upon cooling from the solution temperature,
which cannot be inhibited even by an ice brine quench. This characteristic

is discussed by Decker et al. 24 for a similar nickel-base alloy.



In conclusion, it appears that structural changes could account for the
extremely high value of H_ obtained for Rene 41, but that this does not seem
to be the case for N-155 and L-605., However, even for Rene 41 it is some-
what puzzling that the same high value for the activation energy was obtained
for the proportional limit as for the tensile strength and for changes in
strain rate after appreciable plastic flow, indicating that the relative changes

in structure were constant throughout a test and for all testing conditions.

The values for H_ of 100 to 120 kcal/mole for N-155 and L.-605 are
similar to those obtained by others for various steem5 and for the Nimonic
alloys. 7 These higher values do not seem to be related to the stacking-fault
energy, because approximately the same values are obtained for ordinary
carbon steels as for stainless steels, nickel alloys and cobalt alloys, which
have a considerably lower stacking-fault energy. This observation suggests
rather strongly that if dislocation climb is the rate-controlling mechanism,
the jogs are formed mechanically rather than thermally, and, hence, that

the activation energy for deformation does not include the energy to form jogs.

There is insufficient information to evaluate the possibility that the
higher Hc is due to the fact that the activation energy for climb includes the

interaction energy between a dislocation and a solute atom H If this were

AD’
the case, the present data on N-155 and L-605 indicate that HAD% 1to 2 ev,
which is reasonable, Likewise, there is insufficient information to evaluate
whether the interaction between precipitates and dislocations is responsible

for the higher values of Hc’ but this is also a possibility.

Measurements on the interaction energy between solutes and vacancies
EAV in aluminum give values of the order of 0.1 ev. On this basis, one
expects that EAv should not exceed 0.5 ev for iron, nickel, and cobalt alloys.
This assumption is in agreement with the fact that the activation energy for
self-diffusion in these metals is not significantly affected by alloying elements.
Consequently, the high values of H_ probably are not due to an increase in

HSD through the interaction energy between a vacancy and a solute atom.



That the higher Hc represents the activation energy for the diffusion
of an alloying element does not seem reasonable either. Values for diffusion
of molybdenum in iron by Sherby and Simnad26 and for the diffusion of tung-
sten in nickel by Swalin and Mart:in27 indicate that diffusion involves an
energy only about 15 percent greater than that for self-diffusion in iron

or nickel.

In summary, the above discussion leads one to the conclusion that the

higher values of H_ may be due to:
1. Changes in structure associated with changes in temperature;

2, An increase in the activation energy for climb due to the inter-
action energy between a solute atom or a precipitate and a

dislocation.

The very large value of Hc obtained for Rene” 4] and the fact that actual
structural changes were observed suggest that changes in structure are
responsible for the high apparent activation energy for deformation of this
alloy. For N-155 and L-605, as well as for steels in general and for the
Nimonic alloys, the higher value of Hc is probably associated with the inter-
action energy of a dislocation line with a solute atom, with an agglomeration

of solute atoms, or with a precipitate.

-10-



SECTION V

TABLES AND FIGURES
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Table I. Nominal composition of alloys.

N-155 Rene 41 Haynes 25 (L-605)

Base Fe Ni Co
Fe Bal 5.0 max 3.0 max
Ni 19.0-21.0 Bal 9.0-11.0
Co 18.5-21.0 10.0-12.0 Bal
Cr 20.0-22.5 18.0-20.0 19.0-21.0
Mo 2.50-3.50 9.0-10. 50 ---
w 2.0-3.0 - 14.0-16.0
Mn 1.0-2.0 0.10 max 1.0-2.0
Al - 1.4-1.6 ---
Ti - 3.0-3.3 ---
C 0.08-0.16 0.12 max 0.005-0. 15
Si 1.0 max 0.50 max 1.0 max
S 0.03 max 0.15 max 0. 040 max
P 0. 04 max - 0.0300
Cb + Ta 0.75-1.25 --- -
N2 0.10-0.20 --- ---
B --- 0.003-0.010 ---

=12~



Table II. Melting temperature of alloys and activation energy

for self-diffusion of base metal.

o Tm o Hgp(l)
Alloy Base F K kcal/mole
N-155 Fe 2350 1561 48-74.2
Rene 41 Ni 2425 1602 63,0-66.8
Haynes 25 (L-605) Co 2420 1599 61.9-67.0

Table III. Values of the activation energy Hc and the constants A and n

derived from the experimental data.

H_ A
Alloy kcal/mole n c’K-sec'1
N-155 100 . 4 x 1012
Rene 41 215 5, 5 x 100
Haynes 25 (L-605) 120 4.8 6 x 1014

-13-
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