FINAL TECHNICAL REPORT EVALUATION AND MODIFICATION OF EXISTING PROTOTYPE DYNAMIC CALIBRATION SYSTEM FOR PRESSURE-MEASURING TRANSDUCERS

VOLUME III COMPUTER PROGRAMS

TECHNICAL DOCUMENTARY REPORT NO RTD-TDR-63-9, VOL III March 1963

> 6593d Test Group (Development) Air Force Flight Test Center Edwards Air Force Base, California

Project No 3850 BPSN 3850, Task No 38506

(Prepared under Contract No AF 04(611) 8199 by Houston Engineering Research Corporation Houston, Texas)

UNCLASSIFIED

SECTION 1 TRANSFER FUNCTION APPROXIMATION PROGRAM

SCOPE

The Transfer Function Approximation Program (TFAP) is an IBM 7090 FORTRAN program which will compute the approximate transfer function for any linear pressure transducer system from the system's time response to a step input. Input data to the program contains information which specifies test conditions, information which defines the data range and density for the approximation, and information which specifies the amplitude of the time response at each of a number of equally spaced sample points in the time domain. Primary output data from the program contains the amplitude and phase of the approximate transfer function for the transducer system at equally spaced points in the frequency domain.

With minor modifications, the program is adaptable to any problem which requires the computation of a linear system's transfer function from its time response to a known input. The program has been tested with time response data for an analytically known two degree-of-freedom system excited by a step input. The results of these tests indicate that the accuracy of the approximate transfer function is determined by the data sampling frequency and the data range. For sampling frequencies greater than twenty times the highest frequency of interest and a data range which includes the time response out to a point at which the time response has reached 99% of its final value, the approximate transfer function was found to be within .5% of its known value.

Experimental results indicate that the time response data can be truncated at a time-point at which the time response has not yet reached 99% of its final value and reasonably accurate results can still be expected. If data is truncated, the experimental results indicate that the maximum error can be expected to occur at frequencies in the neighborhood of the system's natural frequencies. In general, the maximum error will occur in the amplitude characteristic of the transfer function if the input data is truncated.

The program is written to anticipate data truncation and, (if the user so elects) will seek a point for truncation which satisfies the following criteria:

- (1) The point is on the positive going edge of an oscillation,
- (2) The point is that point for which the amplitude of the time response is near the average (d-c) value of the time response data.
- (3) The total number of data points is odd.

The first criterion assures that an integral number of cycles of oscillation exist in the data so that the computed average value of the time response data is

based on an equal number of positive and negative oscillations about the average value. The second criterion is required by the assumptions made in the mathematical relations which define the approximation procedure, i.e., the last data point corresponds to the final value of the time response with all oscillations dampened out. The third criterion is imposed by Simpson's Rule which requires an even number of intervals, i.e., an odd number of data points, in the sampled time response. If the user elects to specify the final value of the transient response, it is assumed that the first two criteria have been satisfied. The program will always satisfy the third criterion by discarding the last data point if the given number of data points is an even number.

The program removes zero-offset in the time response data prior to the computation of the approximate transfer function. All input data is echo-checked by the program both before and after the final value has been determined and the zero-offset has been removed.

Program running time can be estimated from the relation

Running Time = (NBRPTI) (NBRPTO)
$$(1.7) (10^{-5})$$
 minutes

where NBRPTI is the number of time response data points used and NBRPTO is the number of frequency response data points to be computed. For 1501 time response data points and 201 frequency response points, running time is about 5 minutes.

The program is dimensioned for 2000 input data points and an unlimited number of output points and utilizes approximately 6000 words of storage including data storage.

PREPARATION OF INPUT DATA

Input data for the program contains three output identification cards, one test data card, one input/output parameter card, and the time response data cards. The detailed formats for these cards are described in the Input Card Format section of this manual. The procedure for data preparation starts with the FSADC transient waveform digitizing operation. Preliminary editing of the time response data is necessary. The objectives of this editing are (1) to remove FSADC output cards which correspond to the oscilloscope trace prior to the arrival of the step pressure function at the transducer and (2) to correct erroneous data points which correspond to transparency imperfections or random errors.

If the transparency is treated by applying Kodak Opaque paint to transparency imperfections and to that portion of the transient which corresponds to the base line, then the digitizing process will result in few if any erroneous data points. It will still be necessary to remove that portion of the data which corresponds to the transparency base line, however all such data points will digitize as 0000 for the amplitude. Since the FSADC prints a paper tape as it punches digitized data point cards, the operator can readily determine the x-coordinate of

the point at which the step function is sensed. All data point cards prior to that point must be removed from the card deck produced by the FSADC. The total number of cards removed should be carefully counted so that the total number of input data cards to the program can be specified. The FSADC system always digitizes a point at $x=000\,$ and $x=1000\,$, however the latter will appear as 000 on the corresponding data card due to FSADC limitations. The total number of data points will be 101, 201, 501, or 1001, depending upon FSADC switch settings during the digitizing phase.

Assuming that the transparency was treated as previously specified, the data editing procedure is:

- (1) Remove and count those data point cards which correspond to the base line of the waveform.
- (2) Determine the number of cards which remain by subtracting the number of cards removed from the number of points digitized. For example, if 24 cards were removed and the number of points digitized was 501, the number of cards which remain would be 477.
- (3) Scan the printed tape for erroneous data points. The tape will contain an asterisk (*) beside the values corresponding to such points and the corresponding data card will be blank in column 11. (Valid data cards will contain a 9-punch in column 11.) Since such erroneous points arise because either the FSADC sensed two or more traces when it scanned the x-position or the FSADC failed to sense any trace, the user must use judgment in correcting such points. Frequently, no correction will be necessary if the FSADC sensed the second trace at a point which was above the actual waveform trace. By examining the values digitized adjacent to the erroneous point, the user can decide whether or not the point does require correction. If correction is necessary, linear interpolation (using the amplitude values at adjacent points) should be applied in estimating the correct value. Cards which require correction should be removed from the data deck and marked with the corrected value. Preferably, the corrected data card should be keypunched immediately and the card reinserted in its proper position in the data deck.
- (4) The edited data deck should be listed prior to its use as input data to the program and this listing checked for missing data points, card handling errors, and keypunch errors. Upon verification of this deck, the user should mark the deck with such information as the number of cards in the deck and any identification which is considered to be adequate for uniquely identifying

the deck. The first and last cards of the deck should be marked "1st Card" and "Last Card". This deck will be referred to as the "FSADC Deck".

Upon completing the preceding steps, the user should prepare the following header cards:

- (1) OID-1
- (2) OID-2
- (3) OID-3
- (4) STTD-1
- (5) DD-1

The format and content of these header cards are defined in the Input Data Card Format section. It is important that the user observe the units of each quantity specified on the header cards, position each quantity within the card columns (field) assigned to that quantity, and keypunch the decimal point with each quantity. The location of a quantity within its field is arbitrary if the decimal point is punched. The only quantity which must not have a decimal point punched is NBRPTI, i.e., the number of points supplied in the FSADC Deck. The value specified for NBRPTI must be positioned in columns 7-10 of the DD-1 card so that the assumed decimal point position is to the right of column 10.

INPUT DATA CARD FORMAT

Input data cards to the Transfer Function Approximation Program are:

- (1) Output Identification Cards (OID-1, OID-2, QID-3)
- (2) Shock Tube Test Data Card (STTD-1)
- (3) Digitized Data Card (DD-1)
- (4) Flying Spot Analog-to-Digital Converter Cards (FSADC)

Detailed formats for these cards are specified in the Input Data Card Format Layout tables. A brief description of the purpose of each of the above card types follows:

- (1) OID-1, OID-2, OID-3 These cards provide the means for identifying each output page with any arbitrary identification. Such information as transducer manufacturer, transducer serial number, date, remarks, etc., may be entered on these cards.
- (2) STTD-1 This card specifies information relative to the shock tube test conditions and transient waveform recording parameters. The program utilizes this information in computing shock wave velocity, Mach number, pressure step size, and data sampling rate.

- (3) <u>DD-1</u> This card specifies information relative to the digitizing phase parameters and range of transfer function approximation.
- (4) FSADC These cards are the output cards from the FSADC system that remain after preliminary editing by the user. Each card represents a digitized data point on the transient waveform and contains the transducer system identification in addition to the x and y coordinates of the point.

OUTPOT DATA CARD FORMAT

Output cards from the Transfer Function Approximation Program are:

- (1) Approximate Transfer Function Header Card (ATFH)
- (2) Approximate Transfer Function Cards (ATF)

Detailed formats for these cards are specified in the Output Data Card Format Layout tables. A brief description of the purpose of each of the above card types follows:

- (1) ATFH This card contains transducer identification, the number of ATF cards, the bandwidth covered by the ATF cards, the frequency increment between sampled points, and the allowable time interval for approximating input time functions.
- (2) <u>ATF</u> Each card defines the approximate transfer function for the transducer at a discrete frequency in the band width specified on the ATFH card.

The above cards are utilized as input data to the Input Time Function Approximation Program. Their contents also appear in the output listings generated by the Transfer Function Approximation Program.

PROGRAM OPERATING PROCEDURES

The order of input data cards for the Transfer Function Approximation Program is (for each transducer):

- (1) OID-1
- (2) OID-2
- (3) OID-3
- (4) STTD~1
- (5) DD-1
- (6) FSADC Deck

OUTPUT DATA CARD FORMAT LAYOUT

(8)

DEFINITION	Transducer identification as contained in columns 1-8 of FSADC DECK	Number of points for which the transfer function is computed	Lowest frequency for which transfer function is computed	Highest frequency for which transfer function is computed	Frequency increment used in computing transfer function	Allowable time interval for computing input time function	Transducer identification as contained in columns 1-8 of FSADC DECK	e Frequency value	Amplitude	Phase - Degrees	Theta — Degrees	
FORTRAN FORMAT	214	112	F10.0	F10.0	F10.0	F10.8	214	F12.0	F15.5	F15.5	F15.5	
PROGRAM VARIABLE NAME	IDOUT(1) IDOUT(2)	NBRPTO	BEFREQ	FIFREQ	FREQIN	SAMP2	IDOUT(1) IDOUT(2)	FREQ	AMPLIT	PHASED	THETA	
CARD COLUMNS**	1-8	9-20	21-30	31-40	41-50	51-60	1-8	9-20	21-35	36-50	51-65	
ABBREVIATED CARD NAME	ATFH	=	=	=	.	=	ATF	=	=	=	:	

** Unlisted columns are blank

The above card deck is referred to as a Transducer Data Deck. An unlimited number of these decks can be processed with a single run on the IBM 7090 by stacking the decks in the desired order of processing. The first deck must always be preceded by a card with an asterisk (*) punched in column 1 and the word, DATA, punched in columns 7-10. The last deck must be followed by an end-of-file card, i.e., a card with a 7 and 8 punch in column 1 and the end-of-file card must be followed by a card with an asterisk in column 1 and the words, END TAPE, in columns 7-14.

The user should consult with the computing installation staff for the card formats they have established for the FMS (Fortran Monitor System) date and identification cards. These two cards must precede the TFAP Binary Deck (i.e., the TFAP program deck in column-binary form). The user must assemble the preceding cards and decks into the following order for a computer run:

- (1) FMS Date Card
- (2) FMS Identification Card
- (3) TFAP Binary Deck
- (4) * Data Card
- (5) Transducer No 1 Data Deck
- (6) Transducer No 2 Data Deck
- (7) Transducer No N Data Deck
- (8) End-of-File Card
- (9) * End Tape Card

The TFAP program reads all input from logical tape unit No 5, writes all output for listing purposes on logical tape unit No 6, and writes all output for card punching on logical tape unit No 11. All input and output is in BCD form. The program will write an End File mark behind each output on logical tape unit No 11. The total number of such End File marks is equal to the total number of Transducer Data Decks submitted by the user for the computer run. The user must specify the preceding information to the computing installation staff.

The TFAP program makes use of the on-line printer during processing. When called upon to compute the estimated final value of the transducer time response data, the program will print the results of each value estimated during the iteration process until the estimation criteria has been satisfied. Generally, no more than 15 to 20 lines of output should occur during the estimating phase, however the user's experience with the program will determine what is reasonable. The Program Organization section should be consulted for further details on the estimating process. Following a successful estimation, the program will print on-line an estimated running time figure for the Transducer Data Deck currently being processed. The user should advise the computing installation staff of the

approximate value to expect for each transducer since an error in card-handling or data preparation will usually result in either a ridiculous time estimate or excessive processing time by the program. This information will tend to reduce the possibility of unproductive computer runs due to card-handling and/or key-punching errors.

Upon completion of a transfer function approximation for each Transducer Data Deck, the program will print on-line that it has completed the approximation. This print should occur within the time period which began with the printing of the estimated running time.

PROGRAM ORGANIZATION

It is assumed that the user is familiar with the Mathematical Analysis section of this report. The basis for the computational procedures utilized in the Transfer Function Approximation Program are developed and discussed in that section in Volume I.

The block diagram for the program is presented in this section. The reader should refer to the Program Listing section for the program details which represent each block. The following conventions are established as an aid to associating the block diagram with the corresponding FORTRAN statements:

- (1) Where a block is numbered, that number corresponds to the FORTRAN statement number which begins the sequence of operations defined in the block. The block number will be outside the block at the upper left hand corner.
- (2) Input and output blocks will contain the corresponding FORTRAN format statement number in the lower left hand corner of the block. The number of the logical tape unit being used as the input or output unit will appear in the lower right hand corner of the block.
- (3) Each FORTRAN statement card is numbered in columns 75 through 80. The beginning and ending card number for a sequence of operations represented in the block diagram will appear outside the corresponding block at the upper and lower right hand corners of the block, respectively.

The major computational processes in the program are:

- (1) Final Value Estimation
- (2) Transfer Function Approximation

The program always checks to see if the number of raw time response data points is an odd number. If not, the last data point is discarded and the total input data

point count is reduced by one. The program then checks the value given by the user on the DD-1 card for the final value. If the given value is zero, the program assumes that the final value must be estimated. Prior to beginning the estimation, the program checks for a positive slope on the portion of the time response defined by the last two time response points. If the slope is not positive, the program discards the last two data points and reduces the total input data point count by two. The slope-check is repeated and points are discarded by two's until the program determines that the last two points do define a positive slope. The program then determines the average value of the remaining raw time response data by numerically integrating the data and dividing by the time range defined by the data. The average value is compared to the last time response data point. If the average value differs from the last time response data point by an amount which is less than the difference between the last data point and the second from the last data point, the program assumes that the final value of the time response data is the computed average value. If this difference criteria is not satisfied, the program discards the last two data points and returns to the section which checks for positive slope. The program will print on-line (1) the value of the second from last data point, (2) the computed average value, and (3) the value of the last data point, prior to returning to the slope-check section. Since all numerical integration performed in the program is based on Simpson's Rule, data points must be discarded by two's to preserve the "even number of intervals" requirement (i.e., an odd number of points are required when Simpson's Rule is used). This method of estimating the final value resulted in an estimated final value of .9991 versus an actual final value of .9998 or about .07% error for the known two-degree-of-freedom test case.

The section of the program which computes the approximate transfer function is based on the relations defined in Equations (44) through (50) of the Mathematical Analysis section of the report. The integrals are evaluated numerically by applying Simpson's Rule. It should be noted that the phase angle for the approximate transfer function is determined in the program from the relation

$$\phi = \tan^{-1} Y/X - 270^{\circ}$$

and not the relation defined in Equation (50). Experimental results with the two degree-of-freedom system indicate that a phase error will occur if the $\theta/2$ angle is included, and that this phase error is approximately equal to the angle, $\theta/2$. It appears that the source of this error is in the approximation made for the Fourier Transform of a step function. The program also includes a provision for completing the angle, $\tan^{-1}Y/X$, when it exceeds 270° . This provision forces the phase angle to always be developed as a negative angle.

A major part of the program is concerned with the details of the house-keeping that are necessary for obtaining the output formats and data. It should be noted that the program echo-checks the raw time response data and follows this with the processed time response data, i.e., the time response data with zero offset removed.

TRANSFER FUNCTION APPROXIMATION PROGRAM BLOCK DIAGRAM

The preparation and editing of time response data is a function of the system being used to generate and digitize this data. If the FSADC is being used, the preparation and editing procedures are the same as those described in the TFAP write-up. Regardless of the system being used to obtain this data, the card format for time response data points must be identical to the FSADC card format which is also described in the TFAP write-up.

The user must prepare the three output identification cards and the input/output parameter card in accordance with the formats defined in the Input Data Card Format section.

INPUT DATA CARD FORMAT

Input data cards to ITFAP are:

- (1) Output Identification Cards (OID-1, OID-2, OID-3)
- (2) Approximate Transfer Function Header Card (ATFH)
- (3) Approximate Transfer Function Cards (ATF)
- (4) Input/Output Parameter Card (IOP)
- (5) Time Response Data Cards (TRD)

The detailed card format for the OID cards is described in the TFAP write-up as are the ATFH and ATF cards. The TRD cards must have the same format as the FSADC cards described in the TFAP write-up, however the contents of columns 1-10 of these cards should contain time response data run identification. The IOP card's detailed format is specified in the Input Data Card Layout table. A brief description of the information contained on this card follows. It specifies the time response data run identification, the number of time response data points, the highest frequency component assumed to exist in the input time function, the time response data sampling interval, the time increment to be used between successive input time function points, the time interval for approximation of the input time function, and the conversion constant for converting time response amplitude values to pressure.

PROGRAM OPERATING PROCEDURES

The order of input data for ITFAP is:

- (1) OID-1
- (2) OID-2
- (3) OID-3
- (4) ATFH

INPUT DATA CARD FORMAT LAYOUT

DEFINITION	- INPUT DATA CARD FORMAT LAYOUT TABLES	OUTPUT DATA CARD FORMAT LAYOUT TABLES		Identification for Time Response Data Run	Number of Time Response Data Cards supplied as input to ITFAP	Highest Frequency Component assumed to exist in the input time function, in cps.	Time Increment between successive time response data points, in microseconds.	Time Increment to be used in computing successive input time function data points, in microseconds.	Time Interval over which the input time function is to be computed, in seconds.	Conversion constant to be used in converting a time response value to pressure, in psi/unit.	INPUT DATA CARD FORMAT LAYOUT TABLES, FSADC CARDS
FORTRAN FORMAT	T DATA CARE	PUT DATA CA	=	215	15	F10.0	F10.0	F10.0	F10.0	F10.5	T DATA CARD
PROGRAM VARIABLE NAME		ı	=	IDRUN(1) IDRUN(2)	NBRPTI	FREQIM	DELTI	DELTO	TIME	CONVER	1
CARD COLUMNS**	SEE TFAP WRITE-UP	SEE TFAP WRITE-UP	=	1-10	16\$20	21-30	31-40	41-50	51-60	61-70	SEE TFAP WRITE-UP
ABBREVIATED CARD NAME	OID-1 OID-2 OID-3	ATFH	ATF	OIP	16	=	£	•	=	=	TRD

** Unlisted columns are blank

- (5) ATF Deck
- (6) IOP
- (7) TRD Deck

Any number of input data decks can be processed with a single run on the IBM 7090 by assembling each deck in the above order and stacking the assembled decks in the desired order of processing. The first such deck must be preceded by an *Data card and the last such deck must be followed by an End-of-File and End Tape card. These cards are described in the TFAP write-up.

The user should consult with the computing installation staff for the card formats they have established for the FMS (FORTRAN Monitor System) date and identification cards. These two cards must precede the ITFAP Binary Deck, i.e., the ITFAP program in column-binary form. The user must assemble the preceding cards and decks into the following order for a computer run;

- (1) FMS Date Card
- (2) FMS Identification Card
- (3) ITFAP Binary Deck
- (4) * Data Card
- (5) Data Decks
- (6) End-of-File Card
- (7) * End Tape Card

The ITFAP program reads all input data from logical tape unit No 5 and writes all output for listing purposes on logical tape unit No 6. All input and output is in BCD form.

ITFAP makes use of the on-line printer during processing. The program prints an estimate of the running time for each data deck prior to processing the data deck. The user should advise the computing installation staff of the approximate value to expect for each data deck since an error in card handling or data preparation will usually result in either a ridiculous time estimate or excessive processing time. The program prints an on-line estimate as processing of each data deck is completed and this comment should appear within the time which has lapsed since the running time estimate was printed.

PROGRAM ORGANIZATION

It is assumed that the user is familiar with the Mathematical Analysis section of this report and the TFAP write-up. The basis for the computational procedures utilized in the approximation of input time functions are developed and discussed in the former and the block diagram conventions are established in the latter.

The major computational processes in the program are:

- (1) Input Function Spectrum Computation
- (2) Input Time Function Approximation

The program always checks to see if the number of time response data points is an odd number and will discard the last data point if not. This requirement is due to the method of numerical integration utilized in the program (Simpson's Rule). After echo-checking the input data, the program removes the x and y zero offset in the time response data and estimates the running time. The latter will appear in an on-line comment. This estimate is conservative and if the running time exceeds this figure, it is reasonable to assume that a malfunction has occurred due to incorrect data preparation.

The program computes the frequency spectrum for the input time function by computing the frequency spectrum for the time response data over the range specified by the user, and multiplying this spectrum by the inverse transfer function. Since the transfer function is known at discrete points only, the time response spectrum is computed at the same points only. Usually, the magnitude of the high frequency components of the input time function will be small relative to the lower frequency components. If so, computation time can be reduced by the user through specifying the limiting frequency at the lowest feasible value. The user may view this part of the program as a low-pass filter whose bandwidth is equal to the difference between FREQLM (Specified on IOP header card in ITFAP data) and BEFREQ (originally specified on the DD-1 header card in TFAP data). It is interesting to note that the program can be readily modified to act as a high-pass, band-pass, or notched filter with sharp roll-off characteristics. The program evaluates the frequency spectrum for the time response data by numerical computation of the values defined in Equations (44) and (45), over the bandwidth specified in the input data and in increments defined by the approximate transfer function data. As each value of X(jw) is computed, the program divides its amplitude by the amplitude of the approximate transfer function at that frequency to obtain the amplitude of $F(j\omega)$. The phase of $F(j\omega)$ is computed by computing the difference between the phase of X(jw) and the phase of the approximate transfer function. These two results are used to resolve $F(j\omega)$ into its real and imaginary parts. The program stores these two parts for use during the input time function approximation phase.

Upon completing the computation of the spectrum of $F(j\omega)$, the program proceeds to the section which computes the approximate input time beginning at t=0. The computation is based on the relations given in Equations (61) and (62). Both equations are evaluated by numerical integration and the results from the two equations will be approximately equivalent if $F(j\omega)$ is Fourier transformable. In order to aid in the interpretation of results, each equation's result will appear in the output listing as will the nearest value of time response. Equation (61) is referred to as the "Cosine Integral" and Equation (62) is referred to as the "Sine Integral".

The user should note that the zero offset is removed from the time response data prior to its use in the computation, hence the conversion constant which is specified by the user should be given on a pressure per unit amplitude basis.

INPUT TIME FUNCTION APPROXIMATION PROGRAM BLOCK DIAGRAM

INPUT TIME FUNCTION APPROXIMATION PROGRAM (CONTINUED) BLOCK DIAGRAM

APPENDIX

```
HERCO PROJECT P-106-9- 2 AHM - 2-21-63 TFAP-02
                                                                              0001
      XEQ
                                                                              0002
                                                                              0003
      FORTRAN
               TRANSFER FUNCTION APPROXIMATION PROGRAM
                                                                              0004
C
                                                                              0005
                               PROGRAMMED FOR
C
             TEST GROUP (DEVELOPMENT) - AIR FORCE FLIGHT TEST CENTER -
                                                                              0006
C
                       EDWARDS AIR FORCE BASE, CALIFORNIA
                                                                              0007
C
                               PROGRAMMED BY
                                                                              0008
                                                                              0009
                   HOUSTON ENGINEERING RESEARCH CORPORATION
                                   UNDER
                                                                              0010
                   CONTRACT NUMBER AF 04(611) 8199
                                                                              0011
      DIMENSION XT(2000), HEDING(36), XCORD(2000), IDOUT(2), XARRAY(300),
                                                                              0012
                                                                              0013
     1YARRAY(300)
    1 READ INPUT TAPE 5,101, (HEDING(I), I=1,36)
                                                                              0014
  101 FORMAT(12A6/12A6/12A6)
                                                                              0015
  20 READ INPUT TAPE 5,102,P1,PA,TEMP,DIST,TIMINT,GAMMA,R,VERSEN,HORSWP
                                                                              0016
                                                                              0017
  102 FORMAT(9F8.0)
                                                                              0018
  30 READ INPUT TAPE 5,103, NBRPTI: XTFIN,
                                                BEFREQ, FIFREQ, FREQIN
                                                                              0019
  103 FORMAT(I10,4F10.0)
      READ INPUT TAPE 5,113, IDOUT(1), IDOUT(2), XCORD(19, XT(1)
                                                                              0020
 113 FORMAT(214,9X,F3.0,F10.0)
                                                                              0021
  40 READ INPUT TAPE 5,104, (XCORD(I), XT(I), I=2, NBRPTI)
                                                                              0022
  104 FORMAT(15X,F5.0,F10.0)
                                                                              0023
                                                                              0024
      DELX = XCORD(2) - XCORD(1)
               VELOCITY - MACH NBR - PRESSURE STEP COMPUTATION
                                                                              0025
      VEL = DIST*1.E6/TIMINT
                                                                              0026
      FMACH = VEL/SQRTF(32.2*GAMMA*R*(TEMP+460.))
                                                                              0027
                                                                              0028
      FM2 = FMACH*FMACH
                                                                              0029
      PSTEP = (P1+PA)*(2.3333333*(FM2-1.)*(4.*FM2+2.))/(FM2+5.)
      IBASE = 0
                                                                              0030
                                                                            0031
  23 IF(IBASE - NBRPTI) 24,28,28
                                                                              0032
  24 NPAGE = NBRPTI - IBASE
                                                                              0033
      IF(NPAGE - 300) 25,26,26
  25 LIM2 = NPAGE
                                                                              0034
                                                                              0035
      GO TO 27
                                                                              0036
  26 \text{ LIM2} = 300
                                                                              0037
  27 CALL HEDOUT (IBASE, HEDING)
      DO 188 I = 1, LIM2
                                                                              0038
                                                                             0039
      K = I + IBASE
                                                                              0040
      XARRAY(I) = XCORD(K)
 188 YARRAY(I) = XT(K)
                                                                              0041
      WRITE OUTPUT TAPE 6,116, IDOUT(1), IDOUT(2), (XARRAY(I), YARRAY(I), I=1
                                                                             0042
                                                                             0043
 116 FORMAT(1H0.49HRAW INPUT TIME RESPONSE DATA FOR TRANSDUCER I.D. .
                                                                             0044
    12I4 • /6(2F10 • 0))
                                                                              0045
      IBASE = IBASE + LIM2
                                                                             0046
     GO TO 23
                                                                              0047
  28 CALL HEDOUT(1, HEDING)
                                                                             0048:
          FINAL VALUE ESTIMATION
                                                                              0049
```

```
CXTFIN=XTFIN
                                                                            0050 (
     NBRPT=NBRPTI
                                                                            0051
     IF(NBRPT - (NBRPT /2) #2) 301,300,301
                                                                            0052
                                                                            0053
300 \text{ NBRPT} = \text{NBRPT} -1
301 CONTINUE
                                                                            0054
     IF(XTFIN)50,200,50
                                                                            0055
                                                                            0056
200 PRINT 208+IDOUT(1)+IDOUT(2)
208 FORMAT(1HI,42HCOMPUTED FINAL VALUES FOR TRANSDUCER I.D. ,214/1HO,
                                                                            0057
   110X,10HXT(LAST-2),7X,13HAVERAGE VALUE,12X,8HXT(LAST))
                                                                            0058
202 BASE=NBRPT-1
                                                                            0059 ^
    L IM=BASE
                                                                            0060
    DIF1=XT(NBRPT)-XT(LIM-1)
                                                                            0.061
    IF(DIF1)203,201,201
                                                                            0062 .~
203 NBRPT=NBRPT-2
                                                                            0065
    GO TO 202
                                                                            0064
                                                                            0065
201 SUMOD=0.
    SUMEV=0.
                                                                            0066
204 DO 205 I=2, LIM, 2
                                                                            0067
                                                                            0068
    SUMOD=SUMOD+XT(I)
205 SUMEV=SUMEV+XT(I+1)
                                                                            0069
    SUMEV=SUMEV-XT(NBRPT)
                                                                            0070
    CXTFIN=(XT(1)+XT(NBRPT)+4.*SUMOD+2.*SUMEV)/(3.*BASE)
                                                                            0071
    DIF2=ABSF(XT(NBRPT) - CXTFIN)
                                                                            0072
    IF(DIF1-DIF2)206, 50, 50
                                                                            0073
206 NBRPT=NBRPT-2
                                                                            0074
    PRINT 207, XT(NBRPT), CXTFIN, XT(NBRPT+2)
                                                                            0075
207 FORMAT(1H . 3F20.5)
                                                                            0076
                                                                            0077
    GO TO 202
 50 WRITE OUTPUT TAPE 6, 444
                                                                            0077.1
444 FORMAT(1H0/1H0/1H0/1H0/1H0/1H0/)
                                                                            0077-2
          ECHO CHECK AND PRELIMINARY OUTPUT
                                                                            0078
    WRITE OUTPUT TAPE 6,106,Pl,PA,TEMP,DIST,TIMINT,R,GAMMA,VERSEN,HORS
                                                                            0079
                                                                            0080
106 FORMAT(1H0,48X,23HECHO CHECK OF TEST DATA/1H0,23HTEST SECTION PRES
                                                                            0081
   ISURE = *F10.3 *5H PSIG*21X*22HATMOSPHERIC PRESSURE = *F10.3 *5H PSIA/1
                                                                            0082
   2HO.13HTEMPERATURE =.F10.3.6H DEG-F.30X.33HDISTANCE BETWEEN VELOCIT
                                                                            0083
   3Y GAGES = FF10.3,5H FEET/1H0,15HTIME INTERVAL =,F10.3,13H MICROSECO
                                                                            0084
   4NDS,21X,23HSPECIFIC GAS CONSTANT =,Fl0.3,17H FT-LBS/LBM-DEG-R/1H0,
                                                                            0085
   521HSPECIFIC HEAT RATIO = .F10.3.27X.23H VERTICAL SENSITIVITY = .F6.0
                                                                            0086
   6,14H MILLIVOLTS/CM/1H0,18HHORIZONTAL SWEEP =,F10.0,16H MICROSECOND
                                                                            0087
   7S/CM)
                                                                            8800
    WRITE OUTPUT TAPE 6,115
                                                                            0089
115 FORMAT(1H0///50X+18HCOMPUTED TEST DATA)
                                                                            0090 ~
    CONVER = 5.E2/(CXTFIN-XT(1))*PSTEP/VERSEN
                                                                            0091
    WRITE OUTPUT TAPE 6,107, VEL, FMACH, PSTEP, CONVER
                                                                            0092
107 FORMAT(1H0,21HSHOCK WAVE VELOCITY =,F10.3,7H FT/SEC,21X,13HMACH NU
                                                                            0093
   1MBER = +F10.3 +/IHQ+25HREFLECTED PRESSURE STEP = +F10.3 +4H PSI.20X+
                                                                           0094
   224HTRANSDUCER SENSITIVITY =,Fl0.3,14H PSI/MILLIVOLT/1H0///50%,
                                                                           0095
   323HINPUT/OUTPUT PARAMETERS)
                                                                           0096
                                                                           0097
```

 $(\dot{})$

	DELTI = DELX*HORSWP*1.E-8	0098 -
	NBRPTO=(FIFREQ-BEFREQ)/FREQIN + 1. •	0099
	IF(NBRPTO-(NBRPTO/2)*2)401;400;401	0100
	400 NBRPTO=NBRPTO+1	0101
	401 CONTINUE	0102
	FFN = NBRPTO - 1	0103
	FIFREQ #FFN#FREGIN + BEFREQ	0104
	WRITE OUTPUT TAPE 6,108,NBRPTI,NBRPT,DELTI ,BEFREQ,FIFREQ,FREQIN	0105
	108 FORMAT(1H0,38HNUMBER OF INPUT DATA POINTS SUPPLIED =,14,18X,34HNUM	0106
	1BER OF INPUT DATA POINTS USED =,14,/1H0,24HDATA SAMPLING INTERVAL	0107
	2=+F11+8+13H SECONDS AND + 25HTRANSFER FUNCTION RANGE =+F6+0+2H -+F	0108
	38.0,4H CPS,12H IN STEPS OF,F8.0,4H CPS)	0109
	SAMP1=.5/DELTI	0110
	SAMP2=•5/FREQIN	0111
	WRITE OUTPUT TAPE 6,109,SAMP1,SAMP2	0112
1	109 FORMAT(1H0,34HSAMPLING THEOREM FREQUENCY LIMIT =+F10.0,8H CPS AND,	0113
	138H INPUT TIME FUNCTION INTERVAL LIMIT = ,F10.8, 8H SECONDS)	0114
	WRITE OUTPUT TAPE 6, 117, XT(NBRPTI), CXTFIN, XCORD(1), XT(1)	0115
	117 FORMAT(1HO, 22HRAW DATA FINAL VALUE =, F10.0, 23H AND FINAL VALUE USE	0116
	1D = + F10.0.3X,15HZERO-OFFSET X = +F10.0.1X,15HZERO-OFFSET Y = +	0117
	2F10•0)	0118
	NBRPT I = NBRPT	0119 🗟
	* XCBASE = XCORD(1)	0120
	XTBASE = XT(1)	0121
	CXTFIN = CXTFIN - XTBASE	0122
	DO 2 I=1, NBRPTI	0123
	XCORD(I) = XCORD(I) - XCBASE	0124
	2 XT(I) = XT(I) - XTBASE	0125
,	RANGE = 1.E8/(XCORD(NBRPTI)*HORSWP)	0125.1
	WRITE OUTPUT TAPE 6,119,RANGE	0125.2
	119 FORMAT(1H0,65HTHE TRANSFER FUNCTION MAY BE INACCURATE FOR FREQUENC	0125
•	11ES LESS THAN, F10.0, 40H CPS IF TIME RESPONSE DATA WAS TRUNCATED)	0125.4
	IBASE = 0	0126
	63 IF(IBASE - NBRPTI)64,68,68	0127
•	64 NPAGE = NBRPTI - IBASE	0128
	IF(NPAGE-300) 65,66,66	0129
	65 LIM2 = NPAGE	0130
	GO TO 67	0131
	66 LIM2 = 300	0132
	67 CALE HEDOUT(1+HEDING)	0132
	DO 199 I = 1,LIM2	0134
	K = I + IBASE	0135
	XARRAY(I) = XCORD(K)	
	199 YARRAY(I) = XT(K)	0136
	WRITE OUTPUT TAPE 6,54,(XARRAY(I),YARRAY(I),I=1,LIM2)	0137
	54 FORMAT(1HO,78HINPUT DATA USED IN APPROXIMATION OF TRANSFER FUNCTIO	0138
	IN WITH T=0 OFFSET REMOVED /6(2F10.0))	0139 ¹
	IBASE = IBASE + LIM2	,
	GO TO 63	0141
	68 ESTIME = NBRPTO*NBRPTI	0142
	AR POITUR - MOULIA-MOULIT	0143

```
ESTIME = ESTIME * 1.6E-5
                                                                             0144 🗀
    PRINT 151, ESTIME, IDOUT(1), IDOUT(2)
                                                                             0145
151 FORMAT(1H1, 47HTHE NEXT ON LINE PRINT-OUT SHOULD OCCUR WITHIN .F4.
                                                                             0146
                    24H MINUTES FOR TRANSDUCER $214$/1H1}
   10,
                                                                             0147
    WRITE OUTPUT TAPE 11, 152, IDOUT(1), IDOUT(2), NBRPTO, BEFREQ, FIFREQ,
                                                                             0148
                                                                             0149
   1 FREQIN, SAMP2
152 FORMAT(214,112,3F10,0,F15,8)
                                                                             0150 6
    TRANSFER FUNCTION APPROXIMATION
                                                                             0151
    INIT = 50
                                                                             0152
    FREQ = BEFREQ
                                                                             0153
    DO 49 J=1,NBRPTO
                                                                             0154
                                                                             0155
    ANGLE = 6.2831853
                         *FREQ*DELTI
                                                                             0156
    SUM01 = 0.
                                                                             0157
    SUM02 = 0.
    SUME1 = 0.
                                                                             0158
                                                                            0159
    SUME2 = 0.
    LIM = NBRPTI - 1
                                                                             0160
    DO 3 I = 2 \cdot LIM \cdot 2
                                                                             0161
    FI = I-1
                                                                             0162
    TANG1 = FI * ANGLE
                                                                             0163
    SUM01 = SUM01 + XT(I)*COSF(TANG1)
                                                                             0164
                                                                            0165
    SUMO2 = SUMO2 + XT(I)*SINF(TANG1)
 12 FI = I
                                                                             0166
    TANG1 = FI*ANGLE
                                                                             0167
                                                                            0168
    SUME1 = SUME1 + XT(I+1)*COSF(TANG1)
  3 \text{ SUME2} = \text{SUME2} + \text{XT}(I+1)*\text{SINF}(TANG1)
                                                                            0169
    SUME1 = SUME1 - XT(NBRPTI)*COSF(TANG1)
                                                                            0170
                                                                            0171 🕤
    SUME2 = SUME2 - XT(NBRPTI)*SINF(TANG1)
                                                                            0172
 10 FN = NBRPTI - 1
    TANG1 = FN*ANGLE
                                                                            0173
                                                                            0174
    YOPYN1 = XT(1)
                                 + XT(NBRPTI)*COSF(TANG1)
                                   XT(NBRPTI)*SINF(TANG1)
                                                                            0175
    YOPYN2 =
    SUM1 = .33333333*(YOPYN1 + 4.*SUMO1 + 2.*SUME1)
                                                                            0176
                                                                            0177
    SUM2 = .33333333*(YOPYN2 + 4.*SUMO2 ± 2.*SUME2)
                                                                            0178
    TANG1 = ANGLE*(FN+•5)
                                                                            0179
    FACT=1./SINF(.5*ANGLE)
                                                                            0180
    X = SUM1 - .5*
                        CXTFIN *SINF(TANG1)*FACT
    Y = -SUM2 - .5*
                         CXTFIN *COSF(TANG1)*FACT
                                                                            0181
                                                                            0182
    AMP = SQRTF(X*X+Y*Y)
                                                                            0183
    AMPLIT = 2./
                      CXTFIN *SINF(ANGLE*.5) *AMP
                                                                            0184
    PHASE = ARCTAN(Y > X)
    IF(PHASE - 4.7123889) 16,16,15
                                                                            0185
                                                                            ز) 0186
 15 PHASE = PHASE - 6.2831853
 16 PHASER = PHASE - 4.7123889
                                                                            0187
    PHASED = PHASER * 57.29578
                                                                            0188
                                                                            0189
    IF(INIT-50)502,501,501
                                                                            0190
501 CALL HEDOUT (1. HEDING)
    WRITE OUTPUT TAPE 6,110,PSTEP
                                                                            0191
                                                                            0192 🕣
110 FORMAT(1HO, 22HUNIT PRESSURE STEP IS .F4.0.4H PSI/1H .13HFREQUENCY-
   1CPS,5X,9HAMPLITUDE,5X,9HPHASE-DEG,5X,9HPHASE-RAD,5X,9HTHETA-DEG,9X
                                                                            0193
```

()

	2,11HX-COMPONENT,9X,11HY-COMPONENT/1H)	0194 🕭
	INIT=0	0195
502	THETA=ANGLE*57.29578	0196
	WRITE OUTPUT TAPE6,111,FREQ,AMPLIT,PHASED,PHASER,THETA,X,Y	0197 🕝
111	FORMAT(1H ,F13.0,4F14.3,2E20.3)	0198
1.10	WRITE OUTPUT TAPE11,112, IDOUT(1), IDOUT(2), FREQ, AMPLIT, PHASED, THETA	
112	FORMAT(214,F12.0.3F15.5)	0200 €
. 4.0	'INIT = INIT + 1	0201
	FREQ = FREQ + FREQIN	0202
	PRINT 114, IDOUT(1), IDOUT(2)	0203
	FORMAT (34HOTRANSFER FUNCTION FOR TRANSDUCER >214+19H HAS BEEN COMP	0204
	IUTED.)	0205
	END FILE 11	0206 (
	60 TO 1	0207
_	END	0208
•	FORTRAN CHEROLITA MARIEDING	0208€
	SUBROUTINE HEDOUT(M+HEDING)	0209
	DIMENSION HEDING(36)	0210
	IF(M) 802,801,802	0211 🦿
	IPAGE = M	0212
802	IPAGE = IPAGE + 1	0213
	WRITE OUTPUT TAPE 6, 803, IPAGE, (HEDING(I), I=1,36)	0214
803	FORMAT(1H1+57X+5HPAGE +12+/24X+12A6/24X+12A6/24X+12A6)	0215
	RETURN	0216
	END	0217
ŀ	FORTRAN	0217.7
	FUNCTION ARCTAN(Y+X)	0218
_	IF (X) 1.2.3	0219
_	IF(Y)11,12,13	0220
11	R= 3.1415927	0221
	GO TO 5	0222
12	R = 3.1415927	0223
	GO TO 4	0224
13	R = -3.1415927	0225
_	GO TO 5	0226
	IF(Y) 21,22,23	0227
21	R = 4.7123849	0228 (*
	GO TO 4	0229
22	R = 0.	0230
	GO TO 4	0231
23	R = 1.5707963	0232
	GO TO 4	0233
	IF (Y) 31.32.33	0234
31	R = -6.2831854	0235
	GO TO 5	0236
32	R = 0.	0237
	GO TO 4	0238
33	R = 0.	0239
	GO TO 5	0240
4	ARCTAN = R	0241

GO TO 6	0242
5 U = ABSF(Y/X)	0243
Q = (U-1.)/(U+1.)	0244
Q2 = Q*Q	0245 🌍
ALPHA = .78539815+Q*(.99999612+Q2*(33317376+Q2*(.19867869+Q2*	0246
1(13233510+Q2*(.07962632+Q2*(03360627+Q2*.00681241))))))	0247
ARCTAN = ABSF(R+ALPHA) " "	0248 💮
6 CONTINUE	0249 👕
RETURN	0250
END	0251 🙈
DATA	0252

(

()

٨

0

0

(

()

٨

0

()

0

()

0

0

()

ŵ

③

```
HERCO PROJECT P-106-9- 4
                                   AHM - 2-20-63
                                                       ITFAP-04
                                                                               0001
      XFQ.
                                                                               0002
      FORTRAN
                                                                               0003
                 INPUT TIME FUNCTION APPROXIMATION PROGRAM
                                                                               0004
C
                                PROGRAMMED FOR
                                                                               0005
Č
              TEST GROUP(DEVELOPMENT) - AIR FORCE FLIGHT TEST CENTER -
      6593D
                                                                               0006
C
                       EDWARDS AIR FORCE BASE. CALIFORNIA
                                                                               0007 🔿
                                PROGRAMMED BY
                                                                               8000
C
                    HOUSTON ENGINEERING RESEARCH CORPORATION
                                                                               0009
·C
                                                                               0010
                                    UNDER
C
                    CONTRACT NUMBER AF 04(611) 8199
                                                                               0011
      DIMENSION IDRUN(2)+IDOUT(2)+XCORD(5000)+XT(5000)+HEDING(36)+
                                                                               0012
    1 HW(5000).QHW(5000).FWR(5000).FWI(5000).W(5000).XARRAY(300).
                                                                               0013
     2YARRAY(300).WARRAY(300)
                                                                               0014
      FQUIVALENCE (HW. FWR) . (QHW. FWI) . (XCQRD.W)
                                                                               0015
    1 READ INPUT TAPE 5.100. (HEDING(I). I=1.36)
                                                                               0016
  100 FORMAT(12A6/12A6/12A6)
                                                                               00.7
      READ INPUT TAPE 5,101, IDOUT(1), IDOUT(2), NBRPTO, BEFREQ, FIFREQ,
                                                                               0018
     1FREQIN.SAMPLM
                                                                               0019
  101 FORMAT(214,5X,17,3F10.0,F15.8)
                                                                               0020
      READ INPUT TAPE 5,102, (W(I), HW(I), QHW(I), I=1, NBRPTO)
                                                                               0021
  102 FORMAT(10X,F10.0,2F15.5)
                                                                               0022
   86 IBASE = 0
                                                                               0023
   23 IF(IBASE-NBRPTO)24,11,11
                                                                               0024
                                                                              0025
   24 NPAGE = NBRPTO-IBASE
                                                                               0026
      IF(NPAGE-200)25,26,26
   25 LIM2=NPAGE
                                                                               0027
      GO TO 27
                                                                               0028
   26 \text{ LIM2} = 200
                                                                               0029
   27 CALL HEDOUT (IBASE HEDING)
                                                                              0030
      DO 199'I = 1.LIM2
                                                                              0031 ~
      K = I + IBASE
                                                                              0032
      WARRAY(1) = W(K)
                                                                              0033
      XARRAY(I) = HW(K)
                                                                              0034
  199 YARRAY(I) = QHW(K)
                                                                              0035
      WRITE OUTPUT TAPE 6,105, IDOUT(1), IDOUT(2),
                                                          BEFREQ, FIFREQ,
                                                                              0036
     1FREQIN • (WARRAY(I) • XARRAY(I) • YARRAY(I) • I=1 • LIM2)
                                                                              0037 ~
  105 FORMAT(1HO. 33HTRANSFER FUNCTION FOR TRANSDUCER .214.6X.F10.0.
                                                                              0038
     13H - FID.O. 10H CPS RANGE. 7X. FIO. O. 15H CPS INCREMENTS/1H /
                                                                              0039
     24(F8.0.4HCPS=.F7.3.3H L .F8.3))
                                                                              0040.7
      IBASE = IBASE + LIM2
                                                                              0041
      GO TO 23
                                                                              0042
   11 READ INPUT TAPE 5,103, IDRUN(1), IDRUN(2), NBRPTI, FREQLM, DELTI, DELTO,
                                                                              0043 . --
     1 TIME . CONAMP
                                                                              0.044
  103 FORMAT(215,5X,15,4F10.0,F10.5)
                                                                              0045
                                                                              0046
      READ INPUT TAPE 5, 104, (XCORD(I), XT(I), I=1, NBRPTI)
  104 FORMAT(14X,F6.0,F10.0)
                                                                              0047
      IF (NBRPTI - (NBRPTI/2) #2) 28,85,28
                                                                              0048
   85 NBRPTI = NBRPTI-1
                                                                              0.049
   28 IBASE = 0
                                                                              0050
```

```
0051
 29 IF (IBASE-NBRPTI) 31 • 35 • 35
                                                                            0052
 31 NPAGE = NBRPTI - IBASE
    IF(NPAGE - 300)32:39:33
                                                                            0053
                                                                            0054
 32 LIM2 = NPAGE
    GO TO 34
                                                                            0055
 33 \text{ LIM2} = 300
                                                                            0056
 34 CALL HEDOUT (1. HEDING)
                                                                            0057
                                                                            0058
    DO 188 I = 1 + LIM2
    K = I + IBASE
                                                                            0059
                                                                            0060
    XARRAY(I) = XCORD(K)
188 YARRAY(I) = XT(K)
                                                                            0061
    WRITE OUTPUT TAPE 6+106+IDRUN(1)+IDRUN(2).+NBRPTI+DELTI+
                                                                            0062
                                                                            0063
   1 (XARRAY(I) YARRAY(I) . I = 1 . LIM2)
                                                        .11H POINTS AT .
106 FORMAT(1H0,25HTIME RESPONSE DATA I.D. =,215,112
                                                                            0064
   1F10.3, 22H MICROSECOND INTERVALS / 6(2F10.0))
                                                                            0065
                                                                            0066
    IBASE = IBASE + LIM2
    GO TO
                                                                            0067
 35 XCBASE = XCORD(1)
                                                                            0068
                                                                            0069
    XTBASE = XT(1)
                                                                            0070
    DO 2 I = I.NBRPTI
                                                                            0071
    XCORD(I) = XCORD(I) - XCBASE
                                                                            0072
  2 XT(I) = XT(I) - XTBASE
    XTFIN = XT(NBRPTI)
                                                                            0073
    NBRW = (FREQLM - BEFREQ)/FREQIN
                                                                            0074
                                                                            0075
    IF (NBRW-(NBRW/2)*2) 4,3,4
  3 NBRW = NBRW + 1
                                                                            9076
  4 FNBRW = NBRW
                                                                            0077
                                                                            0078
    FIFREQ = FNBRW*FREQIN
    INIT = 50
                                                                            0079
                                                                            0080
    FN = NBRPTI*NBRW
                                                                            0081
    ESTIME = FN#1+7E-5 + TIME/DELTO#FNBRW#1+6E-5
    NBRT = TIME/DELTO*1.E6+ 1.
                                                                            0082
    PRINT 501.TDOUT(1).IDOUT(2).IDRUN(1).IDRUN(2).ESTIME
                                                                            0083
                                                                            0084
501 FORMAT(1HO, 49HINPUT TIME FUNCTION APPROXIMATION FOR TRANSDUCER .
   1214, 24H AND TIME RESPONSE I.D. .215./1H . 38HNEXT ON LINE PRINT S
                                                                            0085
   1HOULD OCCUR WITHIN, F10.0, 8H MINUTES/1H1)
                                                                            0086
                                                                            0087
    FREQ = BEFREQ
    DO 49 J=1 . NBRW
                                                                            0088
    ANGLE = 6.2831853E-6#FREQ#DELTI
                                                                            0089
    SUMO1 = 0.
                                                                            0090 💮
    SUM02 = 0.
                                                                            0091
    SUME1 = 0.
                                                                            0092
                                                                            0093 💮
    SUME2 = 0.
    LIM = NBRPTI - 1
                                                                            0094
    D0133I = 2,LIM,2
                                                                            0095
                                                                            0096 <u>@</u>
    FI = I-1
    TANG1 = FI * ANGLE
                                                                            0097
    SUMO1 = SUMO1 + XT(I) * COSF(TANG1)
                                                                            0098
                                                                            0099 💮
    SUMO2 = SUMO2 + XT(I) + SINF(TANG1)
 12 FI = I
                                                                            0100
```

()

0

0

```
TANG1 = FI*ANGLE
                                                                                0101
SUME1 = SUME1 + XT(I+1)*COSF(TANG1)
                                                                                0102
     133 SUME2 = SUME2 + XT(I+1)*SINF(TANG1)
                                                                                0103
         SUME1 = SUME1 - XT(NBRPTI)*COSF(TANG1)
                                                                                0104
         SUME2 = SUME2 - XT(NBRPTI)*SINF(TANG1)
                                                                                0105
      10 FN = NBRPTI - 1
                                                                                0106
         TANG1 = FN*ANGLE
                                                                                0107
         YOPYN1 = XT(1)
                                     * XT(NBRPTI)*COSF(TANG1)
                                                                                0108
         YUPYN2 =
                                       XT(NBRPTI)*SINF(TANG1)
                                                                                0109
         SUM1 = .33333333*(YUPYN1 + 4.*SUMO1 + 2.*SUME1)
                                                                                0110
         SUM2 = .333333333*(YOPYN2 + 4.*SUMO2 + 2.*SUME2)
                                                                                0111
         TANG1 = ANGLE*(FN+•5)
                                                                                0112
        FACT=1./SINF(.5*ANGLE)
                                                                                0113
        X = (SUM1 - .5*)
                             XTFIN *SINF(TANG1)*FACT)*1.E-6
                                                                                0114
        Y = (-SUM2 - .5*)
                              XTFIN *COSF(TANG1)*FACT)*1.E-6
                                                                                0115
        AMP = SQRTF(X*X+Y*Y)
                                                                                0116
        FMAG = AMP/HW(J)
                                                                                0117.
        FANG = ARCTAN(Y \cdot X) - QHW(J)/57.2958
                                                                                0118
        IF(FANG-6.2831853)901,901,900
                                                                                0119
    900 FANG = FANG - 6.2831853
                                                                                0120
    901 CONTINUE
                                                                                0121
        FWR(J) = FMAG* COSF(FANG)
                                                                                0122
        FWI(J) = FMAG*SINF(FANG)
                                                                                0123
        QFANG = FANG*57.2958
                                                                                0124
        IF(INIT-50) 46,45,46
                                                                                0125
     45 CALL HEDOUT (1 + HEDING)
                                                                                0126
        WRITE OUTPUT TAPE 6,90, IDOUT(1), IDOUT(2), IDRUN(1), IDRUN(2)
                                                                                0127
     90 FORMAT(1H ,36HINTERMEDIATE RESULTS FOR TRANSDUCER ,214, 24H AND TI
                                                                                0128
       1ME RESPONSE I.D. ,215/8X,4HFREQ,9X,4HMAGN,8X,5HANGLE,9X,4HREAL,
                                                                                0129
       29X,4HIMAG,12X,1HX,12X,1HY,9X,4HSUM1,9X,4HSUM2/1H )
                                                                                0130
        INIT = 0
                                                                                0131
     46 WRITE OUTPUT TAPE 6,80,FREQ,FMAG,QFANG,FWR(J),FWI(J),X,Y,SUM1,SUM2
                                                                                0132
     80 FORMAT(1H ,F11.0,8E13.4)
                                                                                0133
        INIT = INIT + 1
                                                                                0134
     49 FREQ = FREQ + FREQIN
                                                                                0135
                INPUT TIME FUNCTION COMPUTATION
                                                                                0136
        INIT=50
                                                                                0137
        T=0
                                                                                0138
    601 SUMO1=0.
                                                                                0139
        SUM02=0.
                                                                                0140
                                                                                0141
        SUME 1 = 0 .
        SUME2=0.
                                                                                0142
        W=BEFREQ*6.2831853
                                                                                0143
        LIM = NBRW - 1
                                                                                0144
        DO 602 I=2,LIM,2
                                                                                0145
        FI1=I-1
                                                                                0146
        FI2=I
                                                                                0147
        ARG1=(FREQIN*6.2831853*FI1+W)*T
                                                                                0148
        ARG2=(FREQIN*6.2831853*FI2+W)*T
                                                                                0149
0
        SUMO1=SUMO1+FWR(I)*COSF(ARG1)
                                                                                0150
```

```
SUME1=SUME1+FWR(I+1)*COSF(ARG2)
                                                                            0151
    SUMQ2-SUMG2+FWI(I)*SINF(ARG1)
                                                                            0152
602 SUME2=SUME2+FWI(I+1)*SINF(ARG2)
                                                                            0153
    T1=BEFREQ*6.2831853*T
                                                                            0154
    T2=FIFREQ*6.2831853*T
                                                                            0155
    T3=FWR(NBRW )*COSF(T2)
                                                                            0156
                 )*SINF(T2)
                                                                            0157
    T4=FWI(NBRW
                                                                            0158
    SUME1=SUME1-T3
                                                                            0159
    SUME2=SUME2-T4
    YOPYN1=FWR(1)*COSF(T1)+T3
                                                                            0160
    YOPYN2=FWI(1)*SINF(T1)+T4
                                                                            0161
    DEL=FREQIN*(1.33333333
                             )*DELTI
                                                                            0162
    SUM1=DEL*(YOPYN1+4.*SUMO1+2.*SUME1)
                                                                            0163
    SUM2=-DEL*(YOPYN2+4.*SUMO2+2.*SUME2)
                                                                           0164:
    IF(INIT-50)606,603,603
                                                                            0165
603 CALL HEDOUT (1. HEDING)
                                                                            0166
    WRITE OUTPUT TAPE 6,605, IDOUT(1), IDOUT(2), IDRUN(1), IDRUN(2), FREWLM
                                                                           0167
   1, NBRT, DELTO, CONAMP, SAMPLM
                                                                          00168
605 FORMAT(1HU:16X,44HCOMPUTED INPUT TIME FUNCTION FOR TRANSDUCER ,214
                                                                            0169
   1,24H AND TIME RESPONSE I.D. ,215/1H ,19HCUT-OFF FREQUENCY =,F10.0,
                                                                           0170
   2 4H CPS, I10,17H OUTPUT POINTS AT, F10.3 , 22H MICROSECOND INTERVAL
                                                                            0171
   35/20H CONVERSION FACTOR = ,F10.5,10x,39HALLOWABLE APPROXIMATION TIM
                                                                           0172
   4E INTERVAL =,F10.8,8H SECONDS/
                                                                            0173
   513X,17HTIME-MILLISECONDS,15X,15HCOSINE INTEGRAL,17X,13HSINE-INTEGR
                                                                           0174
   6AL, 17X, 13HTIME RESPONSE/1H )
                                                                           0175
    INIT=0
                                                                           0176
606 TYME=T*1.E3
                                                                           0177
    K = T/DELTI*1.E6 + 1.
                                                                           0178
    SUM1 = SUM1*CONAMP
                                                                           0179
    SUM2 = SUM2*CONAMP
                                                                           0180
    TIRESP = XT(K)*CONAMP
                                                                           0181
    WRITE OUTPUT TAPE 6,702, TYME, SUM1, SUM2, TIRESP
                                                                           0182
702 FORMAT(F30.3,3F30.5)
                                                                           0183
    INIT=INIT+1
                                                                           0184
    IF(T-TIME)610,611,611
                                                                           0185
610 T=T+DELTO*1.E-6
                                                                           0186
                                                                           0187
    GO TO 601
                                                                           0188
611 PRINT 600, IDOUT(1), IDOUT(2), IDRUN(1), IDRUN(2)
600 FORMAT(1H , 49HINPUT TIME FUNCTION APPROXIMATION FOR TRANSDUCER ,
                                                                           0189
   1214. 19H AND TIME RESPONSE .215.10H COMPLETED/1H1)
                                                                           0190
    GO TO 1
                                                                           0191
    END
                                                                           0192
    FORTRAN
                                                                           0192.1
    SUBROUTINE HEDOUT( M, HEDING)
                                                                           0193.
    DIMENSION HEDING(36)
                                                                           0194
    IF( M ) 802,801,802
                                                                           0195
                                                                           0196
801 IPAGE = M
802 IPAGE = IPAGE + 1
                                                                           0197 • 1
    WRITE OUTPUT TAPE 6, 803, IPAGE, (HEDING(I), I=1,36)
                                                                           0198
                                                                           0199
803 FORMAT(1H1,57X,5HPAGE ,I2,/24X,12A6/24X,12A6/24X,12A6)
```

	BETHOM	0200
	RETURN END	0200 (0201
	FORTRAN	
		0201.
	FUNCTION ARCTAN(Y+X)	0202
_	IF (X) 1,2,3	0203
	IF(Y)11+12+13	0204
11	R= 3.1415927	0205
	GO TO 5	0206
12	R = 3.1415927	0207
	GO TO 4	0208 (
13	R = -3.1415927	0209
	GO TO 5	0210
2	IF(Y) 21,22,23	0211
21	R = 4.7123889	0212
	GO TO 4	0213
22	R = 0.	02147
	GO TO 4	0215
23	R = 1.5707963	0216
	GO TO 4	0217
3	IF (Y) 31.32.33	0218
	R = -6:2831854	0219
71	GO TO 5	
22	R = 0.	0220 (0221
22	GO TO 4	0222
		0223
23	R = 0.	0224
	GO TO 5	
4	ARCTAN = R	0225
_	GO TO 6	0226
-	U = ABSF(Y/X)	0227
•	$Q = (U-1 \cdot)/(U+1 \cdot)$	0228
	Q2 = Q*Q	0229
_	ALPHA = .78539815+Q*(.99999612+Q2*(33917376+Q2*(.19807869+Q2*))	0230
	(13233510+Q2*(.07962632+Q2*(03360627+Q2*.00681241)}))))	0231
	ARCTAN = ABSF(R+ALPHA)	0232
6	CONTINUE	0233
	RETURN	0234
	END	0235
	DATA	0236

		-	
Research & Technology Division,	1 Instrumentation	Research & Technology Division,	1 Instrumentation
Edwards AF Base, Calif. Rpt. No.	I Project 3850	Edwards AF Base, Calif. Rpt. No.	I Project 3850
RTD-TDR-63-9. EVALUATION AND	Task 38506	RTD-TDR-63-9. EVALUATION AND	Task 38506
MODIFICATION OF EXISTING PRO-	II Contract No	MODIFICATION OF EXISTING PRO-	II Contract No
TOTYPE DYNAMIC CALIBRATION	AF 04(611)-8199	TOTYPE DYNAMIC CALIBRATION	AF 04(611)-8199
SYSTEMS FOR PRESSURE-MEASURING	III Houston	SYSTEMS FOR PRESSURE-MEASURING	III Houston
TRANSDUCERS (U). Final Report,	Engineering	TRANSDUCERS (U). Final Report,	Engineering
Vol III - Computer Program Write - Up	Research	Vol III - Computer Program Write-Up	Research
March 63, 33 p incl illus, tables.	Corporation	March 63, 33 p incl illus, tables.	Corporation
Unclassified Report	IV J L Schweppe	Unclassified Report	IV J L Schweppe
This report presents an IBM 7090	J L Williams	This report presents an IBM 7090	J L Williams
FORTRAN program applicable to exist-	A H MCMOITIS	FORTRAN program applicable to exist-	A H McMorris
ing dynamic prototype cali-, bration	W K DUSDY	ing dynamic prototype cali-/ bration	W K BUSBY
system for pressure	-	system for pressure measura / ing	V In Abilia
measuring transducers at EAFB.	collection) [collection
Research & Technology Division,	1 Instrumentation	Research & Technology Division,	1 Instrumentation
Edwards AF Base, Calif. Rpt. No.	I Project 3850	Edwards AF Base, Calif. Rpt. No.	I Project 3850
RTD-TDR-63-9. EVALUATION AND	Task 38506	RTD-TDR-63-9. EVALUATION AND	Task 38506
MODIFICATION OF EXISTING PRO-	II Contract No	MODIFICATION OF EXISTING PRO-	II Contract No
TOTYPE DYNAMIC CALIBRATION	AF 04(611)-8199	TOTYPE DYNAMIC CALIBRATION	AF 04(611)-8199
SYSTEMS FOR PRESSURE-MEASURING	III Houston	SYSTEMS FOR PRESSURE-MEASURING	III Houston
TRANSDUCERS (U). Final Report,	Engineering	TRANSDUCERS (U). Final Report,	Engineering
Vol III - Computer Program Write-Up	Research	Vol III - Computer Program Write-Up	Research
March 63, 33 p incl illus, tables.	Corporation	March 63, 33 p incl illus, tables.	Corporation
Unclassified Report	IV J L Schweppe	Unclassified Report	IV J L Schweppe
This report presents an IBM 7090) L Williams	This report presents an IBM 7090	J L Williams
FORTRAN program applicable to exist-	A H McMorris	FORTRAN program applicable to exist-	A H McMorris
ing dynamic prototype cali- bration	W K BUSBY	ing dynamic prototype cali bration	W K BUSBY
system for pressure measure ing	collection	system for pressure measure ing	v III Abilia
transducers at EAFB.		transducers at EAFB.	COLLECTION

,

7

,