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by
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ABSTRACT

In a previous paper [11 the ground work was laid for a new theoretical

model of combat called the "stochastic duel." The principal elements of the

model were fixed kill probabilities on each round fired, a random time between

"rounds fired and unlimited ammunition supply. This paper extends the solution

to those more realistic cases of limited ammunition supply. The general

solution (as a quadrature) is obtained and it is applied to several specific

examples. The special case of finite, fixed ammunition supply is treated in

some detail.
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Stochastic Duels with Limited Ammunition Supply

by

C. J. Ancker, Jr.

In a previous paper [1], the ground work was laid for a new theoretical

model of combat called the "stochastic duel. " The principal elements of the

model were fixed kill probabilities on each round fired, a random time between

rounds fired and unlimited ammunition supply. We now extend the solution to

those more realistic cases in which the ammunition supply is limited. This

complicates matters somewhat, but as we shall see, it is still possible to

obtain the general solution (as a quadrature) and to apply it to specific

examples.

ASSUMPTIONS

The duel starts with two contestants (A and B) both having unloaded weapons

and a limited ammunition supply. A starts with n rounds. The probability that

n is some integer k is ok, that is

Ptn-k) = k, k-O,l,2,... (I)

where

00

kEo --1i (2)

Thus, the ak form a discrete probability distribution.

Similarly, B starts with m rounds and
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P(mmj) P V, J0,1,2,... (3)

and

lo (4)

When the duel begins each contestant loads and fires and continues this process

until either one or the other is killed or they both run out of ammunition. The

probability of a kill on each round fired is pA for A and pB for B and both are

fixed. The time between rounds is a random variable described by the probability

density function fA(t) for A and fB(t) for B. The solutions to this duel are the

probabilities that A wins or B wins or they tie (both run out of ammunition).

THE GENERAL SOLUTION

The technique for solution follows the pattern set in the first paper [1].

First, we determine the distribution of the time to a kill for each contestant.

These functions are derived by considering the opponent to be a passive target.

Then the probability that A wins is simply the probability that A's time to a

kill is less than B's time to a kill.

If hA (t) is the density function of A's time to a kill, then

P(A hits passive target B in the interval (t,t+dt)) -

hA(t)dt - ao 0(t-t)dtl[PAfA(t)+qAS(t--)]dr

2+ •[PAfA(t)+pAqAfA (t)fA(t)+qA5(t-l)]dt (5)

+ a3[PAfA(t)+PAqAfA(t)*fA(t)+PAq.fA(t)*fA(t)*fA(t)+q.5(t-.)]dt

+ .,..
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where * denotes the convolution and 5 is the Dirac Delta Function. Thus

g k-I
hAký I *(t) +5 (t) .)Z (

A~)-PAZ , A k q
k1-i 2-o k-o

(6)

oo' k
- hAl(t)+5(t-o) •.OqA ,

k-o

where the superscript I* denotes I iterated convolutions of the function with

itself. The distribution and the complementary distribution functions of hA(t)

are

t

HA(t) fJohAl(Q)dt+O - HAi(t) (7)

and

GACt) fthAl( )di + A GAl(t) + Zk+qkA" (8)

k-o k-o

Similar expressions apply to B (simply replace A subscripts by B, ak by and

index k by index J).

Since A cannot win if he runs out of ammunition (i.e., if his time to a

kill is infinite) but he may win if B runs out (i.e., A continues to fire at B

until out of ammunition), the probability that A wins is

P(A) of GB(t)hAl(t)dt

GB1(t)h Al (t)dt + z P~jq JfohAl(t)dt
0 JMo 0
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or from (6)

P(A) fG l(t)h l(t)dt + qj [1 -ZC~qk] ~ (9)
0 J=o k-o

From Parseval's formula [2], equation (9) may be written as

P(A) - -L (D (-u)du e iutG i(t)dt + P~ [j1 _I Ok qJk] (10)
- 0 JUo k-o

where DAl(U) is the characteristic function* of hAl(t) and is defined as

(DAl(u) - de u Al1(t)dt

CO CO k-I

- PAf Zi ( l k q~f,*(t)) dt
0 k-l - (11)
0 k-l

= PA ZakL Z (u)
k-l =-o

PA9)A (u) 00 [qA kj(u)]k--qACPA (u) 7{I "TAZu

k-o

and where (pA(u) is the characteristic function of fA(t) or

W
CPA(u) = fo a Utf A(t) at .(12)

OAl(u) is not a proper characteristic function since hAl(t) is not a proper

density function. However, the definitions and manipulations given are valid.
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In the derivation of (11) the convolution property of characteristic functions

has been used.

The inner integral of (10) integrates by parts to _L[Ol(U)-l+ P jq

where 4Bl(u) is defined as in (11) and is J-o

PBCBPu

*Bl(u) , qBB(u) {1 -Z j[qBB(u)]I} (13)

and CPB(u) is the characteristic function of fB(t). Thus

P(A) - J [1-I. ~Ckq k]
J=o k-o

(14)

"2 "if OA1('u) ['Bl(u) 1 +i B

It may be shown that functions such as O(u) and cp(u) have the following properties:

(1) no singularities in the upper half of the complex plane and (2) diminish like

I
- along a semicircular contour of radius R in the upper half of the complex plane.

0(-u) and (p(-u) have similar properties in the lower half of the complex plane.

Sufficient conditions for the second property are that f(t) be a differentiable

function of bounded variation and lim f(t) - 0. From (11) and (13) we also notet4•

that

OAl(O) - 1- ~kqA
k-o

(15)

SBl(0) - 1 -a .
J-o
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1-o ý pAl( u)du
In (14) the term - 2Ni Al may be integrated by noting from

the foregoing that in the complex domain the integrand has no poles in the lower

half plane, the integral vanishes around the contour C as R-Ko (see Figure 1),

and there is only a simple pole of residue - ) i (1~ tkq k) at the

k-o

origin (see equation (15)). Thus letting p40 (and noting that we take - 2t
2i

PC

Figure 1.

times the residue because the pole is outside the small semicircle), the desired

integral is .(i- q (1 -ZjqJ) and so

kmo Jio

P(A) Z 1[l k] [1 ÷ [jq] + CAl(-U)¢Bl(U) d+ • (16)

k-o Jjo - -
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The integral in (16) is the Cauchy principal value. This may be further simplified

by noting that the integrand in (16) has a simple pole at u-o which contributes

"1(12 "l kqA)( 1 " JqJB) to the integral (path of integration as in Figure

k-o J-o

1) so (16) may be written

P(A) q Fl[ _I - k] u (17)

J-o k-o

where f means integration from -• to +4 along the real axis excluding the simple

pole at the origin. Further, it implies that the path of integration is as in

Figure 1 (where R-), and that the integrand is analytic everywhere except at
K

singularities and that the integrand vanishes at least like - on C (where K

is some constant), and that p is finite but less than the distance to the nearest

singularity in the lower half-plane. The direction of integration is in the

negative sense.

A still different form may be obtained by integrating around the path of

Figure 2. In this case the pole at the origin contributes

F

Figure 2.
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+~( ý2 ~ q (1 pjj, and thus

k-o J-o

P(A) 1 ckqA + 21- fuAAl(U Bl(U) du

k-o

where f means integration from -• to 4-o along the real axis excluding the simple

pole at the origin. Corresponding restrictions apply to this path of integration

in the upper half-plane.

In the event the integrand is not analytic or does not behave properly on

C, P(A) must be evaluated from (16), rather than (17) or (18).

Similarly, the probability that B wins is,

Wo W + Go

P(B) =1 p- 1 + I A "ý k] -- u
P) 2* -1 ' [i - 2*i OAl(Uu)OEl(u) "

Wo k-co

I C'2k [1-Z uj](9k-o J=0 Bf bo(uOlu

1- q j • Al(U) Bl(u) du
J=o

In addition, the probability of a draw (the probability both run out of

ammunition before a kill) is

W W

P(AB) - l•kA I jqJ, (20)

kUo Jio
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and, of course, P(A) + P(B) + P(AB) - 1.

Thus, (16), (17), (18), (19), and (20) along with (11), (12) and (13) con-

stitute the general solution to the stochastic duel with limited ammunition supply.

These results specialize to the unlimited ammunition supply case of the

previous paper [1) by letting cz j - 0 for all finite kj and -k - OJ . 1

for k,j 3.nfinite.

SOME EXAMPLES

In this section the general solution is applied to certain examples. In

each example there is a specific distribution for the number of rounds A starts

with, the number of rounds B starts with, and specific density functions for

their times between rounds. These are indicated in the heading for each example.

In the following, only P(A) and P(AB) are given since P(B) - 1 - P(A) - P(AB).

Example 1. Geometric-Geometric-Negative Exponential

Let

%- (=-c')aý, = )

-r~t -r~t

fA(t) - rAe , fB(t) = rBe

where the parameters rA and rB are average rates of fire. Then,

rA rB

nf A(1 u) - r( iuI

and from (11) and (13)
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AlU)- XrA •PprB

OA1(-u) M (i(aq)rA+iu , *Bl(u) - (l.•qB)r B UIu

Thus, from (17)

P(A) )ap + _A _P du
II(A ) +u) ((21)

P(A 7-P(.qB)( 1.O•A) 21c 4iL(71.OuýxrAiu ý(lpq B )r B_lu -U - . 2

The integrand has one singularity in the lower half-plane which is a simple pole

at u - -i(l-pq)r1 with residue 1 (l-pAPBBrl A-rA+ " Finally
at uc% -A( -P B )ri B inly

applying the residue theorem

P(A) - [(l. Tc(A)rA2(2)B)rB.]

From (20),

P(AB) - (23)(I.a•A) (I.PqB) .(3

In the following examples only the assumptions and the solutions are given since

the procedure for derivation is the same as in Example 1.

Example 2. Poisson-Geometric-Negative Exponential

e -a~i ,2L
%' =--T- Pj =(l'B)P

-At -rBt
fA(t) - rAe , fB(t) - rBe

and
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P~P rA {ex _PAA[ r -+(lq) r B]

P(A) -l-A+ 3 B B + (4(1A Oq (I B) [PArA+(1-pq B )r B]

and

P(AB) - (1-.BqeBA (25)

The Geometric-Poisson-Negative Exponential case may of course be obtained

by simply reversing the roles of A and B, that is exchanging A and B subscripts,

and replacing a with P and vice versa.

Example 3. Binomial-Geometric-Negative Exponential

ak n ( .j(n) ak, kinO,1,... ,n; - (I-Opi
Oý-(;a (° ,

-r~t -r~t

fA' - rAe f fB(t) - rBe

P(A) P PAPBrA 1 1+ CArA in}
(A -e- - r - (,,,)n rA%+(l.Oq B )rJ

(26)

+ (i-1•i q [' O- ,+ A ,

and

"P(A\) B)( / - (27)
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Again the Geometric-Binomial-Negative Exponential case may be obtained by

reversing the roles of A and B, as stated in Example 2, and replacing n with m.

Example 4. Geometric-Geometric-( y.2)

%ý = (1-a)4• Pj =(1-Mli )

f 2 -2rAt 2 e 2rBt

fA(t) 4rAe A fB(t) = 4rBe

2 2P(A) A r A.q [(.Ar2(1.aqB)r 2_]2+4q r 2 ~rA(rB [('rA+ISBr]

a(l-P) PA (28)

+ '4A)(l.qB

and

P(AB) (1-ao (1-t,_ (29)(A)=(1.aq A ) (1.qB)

The important special case of a fixed limitation on ammunition supply will

now b• • onsidered in more detail.

THE CASE OF FINITE, FIXED AMMUNITION SUPPLY

Suppose that A always starts with exactly n rounds and B with exactly m

rounds. This might very nearly be the case where the policy is to disengage

and resupply immediately after action and where there is a physical limitation

on the number of rounds which can be carried such as in the interior of a tank

or an interceptor.

We may go at once to the general solution for this case by letting
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ak"- 1) k w n

- 0 all other k
(30)

ij m

= 0 all other J.

Thus, from (11), (12), (13), (16), (17), (18), (19), and (20)

÷-4r

+71() n 1 d
P =A (l-qA)(l+qIm.) + 0= @A(U#I u)

m 1 +d

B qB(1qA) + hfLOAl(-U)B(u) (31)

-q -- 'xifuOAl(-u)Bl(u) 'u

and +

P(B) -(1-qb)(1+q 1 f A1('u)OBl(u) (

. n (1-qB -2 fAl(u)hl(u) du (32)

-lqA B 2vr f UDAl(-uOBl~u

and

P(AB) = qAqB B (33)

where
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and

B(U) PBqP3(u) [1 - (q ~(u))m (35)

' f and the cp's and O's all have the same meanings and restrictions as before.

The use of the general solution (equations (31) through (35)) will now be

illustrated by an example. Assume that firing times are negative exponential,

thus

f A~t) - rAerAt ; f B(t) r Ber rB t

r A () rB

AN B rB-i

Fro ( 1)A(-u) A pAriu A \ A~i/ O B(u) KBrBit. rB ]

Fromm mm1

PA Br pr~r (re iu)n_ n r n (r -iu)m M m T (6
n PABABIAAB du

f LL(pA rA-iiu) (reiu) 1(pB r Biu)(r Biu) M

The integrand of (36) has only one pole in the lower half-plane. This is

located at u 0--ir Band is an m'th order pole. The residue at this pole is

given by Res - - 1 d- - l ...A1 M wer g - (u-u 0) mf(u) and f(u) is the
(m-l) I dum1 0gu heegu

integrand of (36). From this



4, 23 April 1963 17 SP-1017/001/00

PPrArBr (rA-iiu)Iqnr nq r- ~(r -iu)m-qm
. . . . a' PAB AAB'U "BrB ](37)

g(u) - 2i (PArA+iu) (rA+iu)nJ L(pr.}iu)((i)mu3 I

The (m-l)st derivative of this reduces to

dm- PAPBrArB m dmh1
rn--i " (U))W 0 - 27i (iqBr)d dum) (38)

where
n n

h(u) - A(rA iu)nl [PArA+iu)PBrB-iUU] (39)

Expanding h(u) by partial fractions,
n n

h(u:) " 1 - q7]A[_ i

urA +iu) PArA(PArA+PBrB) (PArA+iu) (40)

+ i + 1 1
PBrB(pArA+PBrB) (PBrB-iu) pAPBrArBuJ

The (m-l)st derivative of (40) may now be taken by the product formula. Then u

is inserted, and the whole expression substituted into (38). Finally, going back

to the residue formula, we have after much calculation

PP(A) q r.n m- (P(A) -~ r 1- qrA'• X (hik) ( q B rB•k

PArA+PBrB L rA+rBh Z (k rB) Ik-o

+( PBrB q B r m ( qArA Mn 1 n~k- B+pArA
PArA+pBrB/ rA+r Ar IrA+rB / (4]

k=o

(Pm A YrA+- r B' ko
4- q B - I 1 k

k-o
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Thic expression may be put in closed form by using the known (3) relation

m- (n+k-l) xk = (l-x)'n[l'Ix(mn)] , (42)

k-o

where I x (mn) is the well-tabled [4) Incomplete Beta-Function Ratio defined by
x

I (rn) - B x nB(m,n) r(m+n) oX im-l(1. )n-ldt
IXmn 7- Bmn) u (m) r(n)j (-) d

The identity

I x(m,n) - -l lX (n,m) (43)

is also used. When (42) and (43) are applied to (41) the final result is obtained (
after some manipulation.

PArA A A +qr \n Pqr ~ r B\i
P( rA)Pr 1 + - Ix(fl,m) -T + I y(m, n)

P(A) r--A r 1 -pBrqýrA/ n A PBrB/ \pA , y

(44)
n qmq I (m,n) ,

where

PBrB+rA pArA+rB r B
rA+r- ,y rA+rB z- rAr (45)

To complete the example, from (33),

P(AB) - n m (46)qAqB •(6

Two other cases are obtained rather easily from these results. If A has a

fixed number of rounds, and B has an infinite number of rounds, then for negative
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exponential firing times, the solution is obtained by letting moo in (44), (45)

and (46).

P()- pA rA r 1  q- (~A~L\ (47)
PArA+PBr B L 1rB4rvA J

and

P(AB) - . (48)

Similarly, if A has an infinite number of rounds and B is restricted, let

PA'A ( t , (B qBr B m
P(A) - PArA+prB +rB KpArA7PBr rA+r) (49)

and

P(AB) - 0 (50)

In the preceding we have used lim IZx(mn) - 0 and lim Ix(m,n) - 1.

DISCUSSION AND CONCLUSION

The general solution to the stochastic duel with limited ammunition supply

has been obtained. Several examples with specific distributions have been worked

out. The general solution for the special case of fixed, finite ammunition supply

has also been obtained and several examples worked out.

The results given here can be readily adapted to fit various initial con-

ditions as described in the previous paper [1]. These include the "Classical

Duel" where each contestant starts with loaded weapons and the "tactical equity"
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duel in which one-half the time A sights B first and fires one round which alerts

B and then the duel proceeds as a fundamental duel. The other half of the time

B fires first.

A limited ammunition supply may drastically affect the outcome of the duel.

The precise effect depends on the exact conditions of the duel. Some insight into

the nature of this effect is clearly shown from an examination of equations (47)

and (49). These are duels in which firing times are exponential and only one

side has a fixed, limited amnunition supply. We now compare these results with

the same duel in which both sides have unlimited supplies whose outcome [1] is

(A) PArA (51)
U() - PArA+PBrB

In (47), A has a limit of n rounds. The effect of this limitation is given

by

P- AA ) - l-xn. (52)
P(A)u BrB +

(r A

This expression is plotted in Figure 3. A's chances of winning are always degraded

for n < o. If PBrB is much larger than rA, then x is nearly zero and P(A)/P(A)U

is nearly 1 and the limitation on ammunition has little effect. This is explained

by the fact that P(A) is very small in this case anyway. If PBrB is of the same
order as rA or is much less than rA then x essentially depends on q (A's miss

probability). If q is small then again the effect is small but if q is fairly

large then the anmmunition limitation is important and A's chances of winning are

degraded seriously by small n. I
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P (A) 2

0 0.5 1.0
x

Figure 3. The Effect on A of Azmmunition Limitation on A.

For the duel where B's supply is limited (equation (49)) we have

F(-A) U 1 PA r A 1P (53)

This expression is plotted in Figure 4. A's chances of winning are, of course,

always improved for m <. However., the major effect occurs for small and

this is particularly reinforced for PA rA < pB rB'
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3.0---- 1222l1
•'• P, r,...Pl r6l

N 
2~

P(A)

5

1.0
0 0.5 p1  1.0

(a)

A=o

P(A) 

M 1 Prp
P(A)U

0 0.5 Pe 1.0

(b)
m=o1.5

P(A) I \ .> II
P(A)U I I

0 M=00 0.5 Ps1.0

Figure 4. Effect on A of Ammuunition Limitation on B.
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APPENDIX

The general solution for a somewhat different duel is readily obtained from

the preceding work.

In this case, the duel concludes as soon as one contestant is killed or as

soon as one contestant runs out of ammunition. The last feature is new. This

might be the case where the contestant who runs out takes immediate cover. The

analysis proceeds as before but account is taken of the fact that no kills are

possible when one contestant has no ammunition. The modified general solution is

P(A) f GBl (t)hAl (t)dt

A(+q) () 2 f OAI(-u)OBt(u) "-

kmo J-O -
(54)

M 1 f0 duT-r L •Al('u)"Bl(u) du

k-o 
J Bo

and 00 + COP B)c-qk I Oj q --L
(B () () 23-r f OAI(-u)DB1(u) !"

k-o J-o -Co

M (u) du (55)
"2-i JUA1('u)( ) u

,,k q k 1jq - 14 -u d

(AY ) (1 23- fOAl('u)OBl(u) u
k-o J-o

and W c C W
P(AB) kqA k+ "j q . (56)

k-o J-o k-o J0o

The O's are the same as before. All of the examples worked out in the preceding

sections are easily modified to fit this model.
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