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ABSTRACT

The results of a theoretical and experimental investigation of
transverse-wave couplers, and of frequency dcublers employing these
couplers in conjunction with a resonant quadrupole circult, are described.

The theoretical description of transverse-wave couplers is based
upon the well known coupled mode formalism which describes the interaction
between tne normal modes on a filamentary electron beam immersed in a
longitudinal de msgnetic field and the normal modes on & periodic circuit.
The theory of both traveling-wave and resonant couplers is developed in
detall so that the significant characteristics of the coupling inter-
actions are described in terms of known quantities. The coupled mode
theory has been extended to include twisted transverse-wave couplers
with a resulting clarification of this important class of interactions.

The theory shows that the traveling-weve couplers may have a large
bandwidth but generally tend to be quite long due to the low interaction
impedance characterizing this type of circuit. Much stronger coupling
per unit length is obtained by the use of resonant circults with a
resulting decrease in the length and bandwidth of the coupler. The
type of coupler to be used in a particular device depends upon the
requirements and restrictions involved.

The theory of transverse-wave frequency doublers using a resonant
quadrupole cavity is developed in detail from a coupled mode approach.

It is found that the fast cyclotron wave doubler which has been investi-
gated previously is a speclal case of a general class of interactions.

In general, a periodic quadrupole circult interacting with any one of the
four transverse vaves can result in s second harmonic output from the
quadrupole if the proper synchronism conditions are met. Some of these
cases are of particular interest since they involve an active interaction
with the beam which can result in frequency conversion efficiencies that
are greater than one hundred per cent. The characteristices of the various
frequency doubling interactions are presented in terms of normalized
curves and equations that may be readily used in the design of devices.

- 111 -



An experimental study of some of the coupling and frequency doubling
schemes deseribed in the theoretical anelysis was carried out. In the
course of this work several new types of transverse-field coupler and
quadrupole circuits were investigated and found to be of practical
importance. The experimental results were in good qualitative agreement
with the theory in all cases, but a quantitative dissgreement was observed
in the cases in which the beam was an appreciable fraction of a normal
mode wavelength in dismeter.

Frequency doubling by means of the synchronous waves was observed,
although the conversion efficiency was only one per cent of the theoretical
value., This discrepency 1s attributed to thick beam effects. Doubling
by means of a fast cyclotron wave interaction was also observed, and the
25 per cent conversion efficiency in the quadrupole was in good agreement
with the theory, as is to be expected since the relative beam diameter
was small.

An amplifier consisting of two synchronous wave couplers was 8lso
investigated and the net gain of 8 db was 5 db below the predicted value.
High values of gain can be expected from this device if a proper design,
that takes into account thick beam effects, is used.
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CHAPTER I

INTRODUCTION

The study of transverse-wave electron devices has received widespread
attention recently, primarily due to the promise of the higher efficiencies,
lower noise figures, and basically new types of interactions which may be
obtained by utilizing the transverse modulation of an electron beam. The
trensverse waves which can exist on a straight electron beam immersed in an
axial magnetic field are characterized by transverse displacement and
velocity modulation of the electrons as opposed to the longitudinal
modulation characteristic of the more familiar space-charge waves. The
initial experimental studies of transverse-wave devices by Cuccia,l’2
Adler,3 and othersu’i’6 have been notably successful in demonstrating the
practicelity of this class of devices and bave served as an incentive for
further work.

The first theoretical studies of interactions between a thin electon
beam end a circuit supporting a transverse electric field were based upcn
a solution of the Lorentz force equation in terms of the dynamical variables
for one electron.7’8’9 This Lagrangian approach, while certainly edequate,
does not yield solutions in the simple end intuitive form that is obtain-
able with & wave formelism. Siegman,lo and othersll’le
the small~signal excitation of the beam in the transverse plane in terms

have described

of circularly polarized waves, yielding results which are easily described
in terms of the coupling of normal modes. Two of these waves, the fast

and slow cyclotron waves, are characterized by a rotation of the individual
electrons at the cyclotron frequency. The phase velocities of these waves
are greater than, and less than, the dc beam velocity es their names imply.
The other two waves are characterized by pure trensverse displacement of

the electrons and are called synchronous waves since their phase velocities
are equal to the beam velocity. Besides these differences the transverse
waves are distinguished by the sign of the energy which they carry and their
polarization. The applicability of the filamentary beam model, used to

-1 -




obtain this wave description, to devices employing finite size beams is

13

certainly to be questioned. However, Gordon -~ and Wessel-Berglu have
demonstrated that, for beams of nominal thickness, the simple resmults
obtained from a filamentary beam theory are approximately correct, slthough
some additional waves are present.

Two classes of circuits have been important in the study of transverse-
wave interaction. First are the transverse wave couplers which have a
transverse electric field that is uniform over the portions of the transverse
plane in which the interaction takes place. The first complete description
? although the description

vwas in terms of the electron dynamics rather than waves. This coupler

of a transverse wave coupler was given by Cuccie,

consisted of a parallel resonant circuit with the beam passing through the
uniform field of the capacitor plates, or the microwave cavity equivalent

of this, and an axial magnetic field with the cyclotron frequency equal

to the signal frequenéy. In terms of the wave formelism this coupler
excited the fast cyclotron wave with infinite phase velocity. Essentially
all of the experimental devices which have been studied have employed this
type of coupler. However, it is of some value 4o use couplers with other
synchronism conditions to obtain new types of interactions, and to avoid

the high magnetic field demanded by the use of the Cuccia coupler at micro-
wéve frequencies. Several authors have considered the theory of transverse-

wave couplers in varying degrees of generality.lo-l2z 15,16

These ansalyses
have dealt with the general aspects of coupling to a traveling-wave circuit
which can be predicted from the coupled mode equations. However, a detailed
description of trensverse-wave couplers, both traveling-wave and resonant,
has not been given. Such a description would include a discussion of how
sensitive the coupling between the circuit and the beam is to errors in the
synchronism conditons, the coupler gain, bandwidth, and & comparison of the
various types of couplers. One of the purposes of this study is to consider
these, and other points, related to transverse-wave couplers.

The second class of circuits which have been of interest in connection
wilth transverse waves are the quadrupole structures. The quedrupole field
is characterized by an r cos 20 variation in the transverse plane, where
r 1is the radius from the exis and © 1is the angular position. The

parametric amplifier developed oy Adler, Hrbek and W'ade3 uses a resonant
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quadrupole as the pumping cavity. Others have demonstrated that electro-~
statlic quadrupoles of various designs are useful in dc pumped amplifiera.l7'18
The interaction between a thin beam and a general quadrupole circuit may

also be analyzed in terms of coupled mode theory, as has been done by

BlﬁtekJaer and Wessel-Berg and others.ll’lg The differential equations

e et o DA e AN B S g

now have time and space varying coefficients which lead to more complex
solutions than in the case of the coupler type circuits.

One of the interesting possible classes of interactions 1n a quadrupole
type cavity leads to frequency doubling. This had been noticed earlier by
Cuccia20 and later by others in connection with the Adler tuhe.2l In this
case the fast cyclotron wave excitation due to an infinite phase velocity
input coupler induces & second harmonic current in the quadrupole cavity
due to the difference in angular variation between the cyclotron wave and
the quadrupole circuit. Lindsay and Caunter22 analyzed this situation by
means of a ballistic approach and obtained predictions of conversion
efficiencies greater than fifty per cent. Cuccia also noted that the
basic principle could be extended to higher multiplication ratios by using
higher order multipole circuits, and obtained five per cent conversion
efficiency in multiplying up to 3.2 kMc with a frequency quadrupler.ao

The cyclotron wave frequency doubler described above is quite interest-
ing, not only because of the possibility of high conversion efficiency but
also because it appears that relatively high power levels could be obtained,
and because the circuit dimensions meke the device amenable to scaling to
high frequencies. The previous work on frequency doublers has been
restricted to this special case. One of the purposes of this study will
be to carry out a general analysis, based on the coupled mode approach,
of the class of frequency doublers employing one or more of the four
transverse waves interacting with the electric field in & periodic qued-
rupole cavity.

In addition to the theoretical studies of coupler and quadrupole
interactions that were indicated above, experimental studies of some
transverse-wave devices were carried out. One purpose of this part of
the research program was to develop some new types of transverse-field
circuits that were sulteble for use in transverse-wave tubes. A second
purpose was to verify some of the interactions that were predicted in

the theoretical analysis and have not been investigated by others.
-3 -
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A brief account of the contents of this report is given in this and
the following paragrephs. Chapters II and III give & description of the
traveling-wave and resonant type couplers which may be used to couple to
the verious transverse waves. The basic ideas in these chapters are not
new, but the complete solutions to the problems discussed have not been
given before. The next chapter deals with & new type of coupler circuit
which has some interesting applications. These twisted circuits can be
used to couple waves together in a manner which could not be obtained
with conventional circuits. For example, it is possible to couple equally
to the fast and slow cyclotron waves with the appropriate twisted coupler.

The next two chapters give a complete description of frequency doublers
using quadrupole circuits. Chapter V is concerned with the cyclotron wave
doubler, and the previous work which has been done on this subject is shown
to be a special case of the more general device. Chapter VI describes
the frequency doublers which employ the synchronous waves. These are
particularly interesting devices because of the high conversion efficiency
which can be obtained in some cases.

The next two chepters are reports of experimental studies of transverse-
wave devices. .Chepter VII describes & class of slow wave structures which
are suiteble for use as coupler and quadrupole circuits. Results of studies
of the dispersion characteristics and interaction impedances are given.
Finally, Chapter~VIII describes results obtained from an experimental
device which was used to study transverse-wave frequency doublers and
couplers. An emplifier which consists of two synchronous-wave coupler
cavities is described and the results of an investigation of frequency
doublergbased upon the cyclotron and synchronous wave interactions are
given. To the author's knowledge, these are the first studies to be
carried out, with periodic circuits, at dc power levels of more than
1.0 kilowatts. These results are important since they hae a bearing
on the question of the use of transverse-wave devices at high power

levels.
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CHAPTER II
TRAVELING-WAVE COUPLERS

The central purpose of this chapter is to use the coupled mode theory
to obtein the information necessary to the understanding and design of
traveling-wave couplers which can be used to excite the transverse waves
on the beam. The solution of the basic equations is straightforward and
others have described some of the results given here. However, a detailed
discussion of this class of couplers has not been given, and is required
in order to bring out the synchronism requirements, the bandwidth, and

the scaling properties.
The discussion of interactions between transverse-field circuits and

electron beams is restricted to those mechanisms which are usually associated

with the excitation or removal of & signal on a beam. No discussion of
traveling-wave tubes or backward-wave oscillators is given here, as these
devices do not bear on the main purpose of this study.

The first section of this chapter gives & review of the coupled mode
theory which is used for much of the analysis in this thesis. Then, in
the next two sections this theory is applied to the discussion of coupling
to a positive energy wave and then to coupling between both synchronous
waves. The properties of an interesting class of traveling-wave couplers

which are twisted about their axis will be left until Chapter IV.

A. REVIEW OF COUPLED MODE THECRY

The purpose of this section is to present the important results of
the coupled mode theory for transverse-wave interactions in the form which
has been used by Siegman.lo This theory will form the basis of the
analytical epproach used in this, and the later chapters, to consider the
various types of transverse-wave couplers. This review is necessary in

order to provide the working equations for the later ' calculations.



The model which is used to derive the coupled mode equations is one
in which the electron beam is considered to be a very thin filement of
electrons traveling with a velocity uo in the positive 2z direction as
Shown in Fig. 2.1. A magnetic field, Bo
provides the restoring force for the trensverse oscillations which character-

s directed along the 2z axis

ize the transverse waves. The equation which describes the dynamics of

the electrons which make up the filamentary beam is
dv/at = ~(e/m):[ﬁ + 7 x B . (2.1)

In this equation E and 5 are the external vector fields and ; is the

velocity. The electronic charge e 1is a positive number. The electric

field due to the circuit is assumed to have no z component and to be

uniform in the transverse plane. This is strictly true only for an

infinite phase velocity structure and is approximately true, over the

region of interaction, for slow wave circults if the beam is small in

. diasmeter and the beam excursion is small. The force due to the ac

magnetic field of the circuit will also be neglected. This assumption

is also strictly valid for infinite phase velocity and slow-wave structures.
For a beam of infinitesimal] thickness, the modulation of the electrons

is independent of the transverse dimensions so that the time derivative

may be written as

d/at =Pt + uy 33z ) (2.2)

where u. 1is the velocity in the z direction. Upon substituting (2.2)

0
into (2.1) and using the definition of the cyclotron frequency

w, =e Bo/m (2.3)

and the definition of velocity

vy = dx/at , etc. s

L—— )

Q.
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the coupled mode theory, showing the



we obtain the four equations describing the motion of the beam. These are

cest in a particularly simple formulation by essuming all quantities vary

edum )

as end defining the circularly polarized variables:

n

L2}
L}

yo 2 x-9n) v =12 (v, - gv)

r = 1/2 (x + 3y) v_ = 1/2 (vx + jvy)
(2.4)
E, = 1/2 (Ex - JEy)
E =1/2 (Ex + JEy) .
The beam excitat;on may then be expressed by the equations
3v+/5z + J(se + Bc) v, = - e/m =
u
(0]
dv_foz + j(Be - B V.= - e/m — .
,' . u
0
(2.5)
Br+ﬁ3z +yB r, =V,
Br_/az +3B T =V, s
where
Be = (D/uo
(2.6)
Bc = mc/“o

o i e AT e
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It is evident that there are four wave-like solutions with e"’sz variation.
The four values of £ are:

(2.7)

Bu""ae .

Each of these represents a normal mode on the beam and these will be defined
later.

The next step in setting up the coupled mode formulation is to obtain
the equation which describes the circuit excitation due to the modulation
on the beanm. Siegmanlo accomplishes this be considering the transmission
line equations relating the circuit voltage and current to the current
induced by the beam. This assumes that the circuit phase velocity is much
less than the velocity of light, or that the structure is much smaller
than the free-space wavelength, so that the electric field can be represented
by & scalar potential. This is usually a valid assumption. We then have

V2

+J Bz T
(2.8)

d1fz = * J(BO/ZO) V+J s

where ao and zo are the circuit propagation constant and impedance in
sbsence of the beam and J 1s the current induced per unit length. The
upper sign epplies to a wave with positive group velocity, and the lower
to a wave with negative group velocity. The transverse electric field at
the beam position 1s defined in terms of the circult voltage by the complex

Mo
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polerization coefficients f+ and r , which characterize the circuit:

E =-2 VP (2.9) :
E =-f V/D »  (2.10)

.
where E+ and E_ represent the circularly polarized fields given in
(2.4), and D 1is an erbitrary normalizing distance which will not appear
in any of the final results. Note that the complex expressions for the
fields E  and E_ are to be used in Egs. (2.4). To insure that IEI2
is equal to (V/D)° it follows that o

* % =
£ +£1 =1 . (2.11)

! The induced current per unit length can be represented by the expression

given by Siegman: 10

2Iou>

Du

J=-3} (f: r,+rir) »  (2.12)

0 .
vwhere I, 1is the beam current. Equations (2.5), (2.8), and (2.12) are

the equations nececsary to describe the beam-circuit system for this

transverse field case. These are put in the final form by defining the

normal modes so that the square of their amplitude represents the power

carried:
Ay = Vﬁ'aia = circuit wave
Al =Jkv + = slow cyclotron wave
A, = § kv_ = fest cyclotron weve (2.13) .

43 =Jk (v_._ + ) w, T +) = positive polarized synchronous wave
- 10 =
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Ah =3k (v_ -J o, r_) = negative polarized synchronous wave ,
L

.

where

Io w
k = — s . (2011“)
2efm o

Notice that the beam waves are circularly polarized. Siegmanlo shows that

the power carried by the system is

N N o W T W L VW N G )

\

The final form for the coupled mode equetions is:
OA, Pz + J(B, + B,) A =3 K£f A/
OA Pz +3(B, - B) Ay = J KI_Ag

BAe/Bz +3B, Ay =KL A, (2.16)

OAPz + 3 B A, = KT A

3Pz + 5 By Ay =t I KL (Ay - A)) + £1 (A - A)] .«

The coupling coefficient, K , is given by

1
x=j— _j‘iifrfﬁoe , (27)

amc Ro

-1l -
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vhere K& is the trensverse interaction impedance, defined, in terms of
the field end power flow, P , by

EE + E E*
KT=“’2" ,  (2.18)
2B, P

and Ro is the dc beem impedance VO/IO .

In the absence of & circuit (A.o = 0) these equations Just give
the four transverse waves which an propagete on & filimentery beam. The

vave propagation constents are given by (2.7) and the dispersion character-

istics are shown in Fig. 2.2. From (2.15) we see that the waves A, end
A

the subsequent work will be in terms of wave amplitudes, it is convenient
to express the induced current and the beam displacement in terms of the
wave amplitudes. By using (2.9) and (2.10), we obtain

2I

[0}] * *
Dku,) o Le, (A - A3) - £ (A, - 4,)] (2.19)
(]

J=-3

and

1
x=ﬁn:[Al-A2-A3+All»]

(2.20)

y=ipe A +A - Ay - a) :
c

These last equations are useful in the calculation of interception condi-
tions.

The theory presented above has been very successful in predicting
the characteristics of the transverse-wave devices which have been tested
up to this time. However, the filamentary beam assumption which makes
this simple approach possible is very likely to be violated in devices

-12 -
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FIG. 2.2--The dispersion characteristics of the transveirse waves.
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which are inggnded to operate at dc power levels above the milliwatt
region. Gordon13 considered this problem, utilizing some simplifying
assumptions, and fouﬁd thet, for beam redii, & , such that Ba << 1 ,
the filamentary beam theory still describes the motion of the center of
mass of the beam. In this inequality B 1s the propagation constant of
the beam wave in question. In addition to these solutions, another set

of waves, which represent internal motion of the beam, was found. The
propagation constants of these waves depend upon the space-charge density
of the beam, and are most widely separated from the filementary beam waves
when a Brillouin flow beam is used. Wessel-Berglh has analyzed the
Brillouin flgw problem from a rigorous field approach and obtains results
in qualié%tive agreement with Gordon's. In addition, Wessel-Berg finds
higher order transverse waves having azimuthal variations exp (in®) ,
where n 1is any integer. The conclusion which may be drawn from these
results is that the filamentary beam theory still provides a guide for
discussing high power interactions, but that additional beeam w%ges with
different phase velocities will be present. If care is not taken to avoid
exciting these sdditional waves, the device will not perform in the manner

predicted by the simple theory.

B. PASSIVE COUPLING TO ONE WAVE

Here we are interested in using a traveling-wave circuit as a coupler
to excite one of the positive energy transverse waves. One application of
such a coupler is In paremetric amplifiers of the type described by Adler,
where the amplifying mechanism is frequency independent and the bandwidth
is determined by the couplers. In order to obtain a large bandwidth
traveling-wave couplers are used. The alternative choice of resonant
couplers and the resulting small bandwidths are discussed in the next
chapter.

The circuit is assumed to have only a transverse electric field at
the beam position as described in Bection II.A. 8elective coupling to
one of the beam waves is accomplished by employlng a circuit which has the
appropriate phase velocity as well as a circularly polerized field

component which is of the same polarization ms the beam wave to be excited.

- 14 -
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Because the phase velocities of the transverse waves are widely separated
(ac is usually of the order of megnitude of Be) , or the waves are
separated by their polarization, it is possible to have coupling between .
the circuit and essentially one beam wave. This simplifies the mathematics
considerably. ¢

Rather than consider either the positive energy cyclotron or synchronous
wave alone, we will employ the generalized coupled mode equations which
both waves obey. From Eqs. (2.16) we may write

BAi/6z+,j BA, ~JKTA =0
(2.21)

BA0/52+,3-0A0-JK1‘*A1=0 .

Theesubscript 1 designetes which of the positive energy waves is under
consideration and f is the polarization factor of t;hatC wave. Typical
dispersion characteristics for the beam and circuit waves are shown in

Fig. 2.2. These equetions are solved easily by subs®tuting in the assumed
exponentliel variation e"JBz to yield the values of B :

(]

2
B, + B By = B
8= o 1 tj(——-—-lo ) + £ k2 . (2.22)
2 2

®
By matching the conditions imposed at the input end of the circuit and

beam (at 2z = 0) the expressions for the circuit and besm waves are
obtained:

_ Po*Py
: e\ o)
AO = 8.0(0) [cos ¢ - Jﬁ: sin ¢] + ai(O) LJ Ty sin ¢ e
. ) PotPy
7 el "( - ._.2__)2
A; = (a,(0) [cos g+ J]i--a-_;? sin ¢] +a,(0) |3 — sin g|) e
L
(2.23)
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where we define

y = b1~ P (2.24)
2le] K
and .
« g =x |£] Jl+72 . (2.25)

These results are equivalent to those given by Louisell.23

However, the
dependence upon the polarization of the circult is shown explicitly here.
The polarization factor has been retained to emphasize the difference
getween linearly and circularly polarized circuits.

The usual case of interift is the one in which the initial excitetion
is either entirely on the circuit (aﬁainput coupler) or on the beam (an
output coupler). In that casef the complete transfer of power from one

wave to the other occurs in the distance
®
L= x/2|t]k (2.26)

at synchronf;m (7 = 0) « For a circuit which propegates & linearly
£f_=f_=1A2 , vhile
for a circularly polarigzed field f+ or f_ 1is unity. 8ince the coupling
coefficient, K , is small at best, it is desireble to use circularly

polarized field, polarized in the x direction,

polarized circuits to reduce the coupler length. However, for practical
reasons it is easier to develop linearly polarized structures and the
circuits to be discussed in Chapter VII are linearly polarized. It is
also true that, for some of the interactions to be discussed later,
linearly polerized structures are desirable. It should be noted that the
use of linearly polarized couplers for synchronous waves does not fall
into the kind of interaction discussed here since the two waves have the
same phase velocity. This situatlon will be discussed in S8ection II.C.
There are two important points of interest in the consideration of
traveling-wave couplers: the synchronizetion requirements and the band-
width. From Eqs. (2.23) it is e simple matter to decide how close to

- 16 -
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synchronism the beam and circuit waves must be to obtain strong interaction.
Por example, if an input coupler is designed correctly, its length, A »
satisfies (2.26) so that all of the power is transferred to the beam at
synchronism. When the beam varies from this coprrect velocity so that 7

is not zero, we have as the ratio of the output beam power to the input
power, defined as the transfer efficiency,

2
P een sin( gJ 1+ 72)
np = = . (2.27)
1+9

Pinput

This may be put in a more convenient form by substituting the definition
of 7 from (4) and using (5). Then the transfer efficiency may be

written 1

2
_|sin ( %-J].+[(G/n)e]2) (2.28)
31.+[(e/n)e]E ’ )

7

where

0= Bd£ = length of coupler in radians ,
e=1- vo/vi = fractional velocity error |,
VO = circult phase velocity ,
v, = beam wave phase veloclty .

This result, which is symmetrical in €, is plotted in Fig. 2.3. It is
equally applicable to output couplers. We see that the helf power points

(l)Wé have asgsumed that K 1s invariant to small changes in the beam
velocity. This is valid, for small coupling, even though K is proportional
to the beam velocity [as may be seen from (2.17) by noting that the beam
current is proportional to the three halves power of the voltage] since the
primary change in the transfer coefficient comes from the velocity error
multiplied by the large number O/x and not from the smell variation in K .
Equation (2.28) is quite correct at K/B, = 0.1 , which is strong coupling
for a traveling-wave circult, as cen be geen from the results in Chapter VII.

-17 -
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occur vhen (0/x)e = 0.75 . For a coupler which is five wavelengths long
the allowed fractional velocity error is 0.038, which is still quite large.
For a linearly polarized coupler, this optimum length corresponds to

K/Bo = 0,1 , which is g relatively large value for the circuits discussed
in Chapter VII. Consequently, we see that velocity errors of a few per
cent, while being noticeasble, still fall in the range of strong interaction
for usual couplers.

The bandwidth of the coupler cannot be predicted so®simply. The
variation of the coupling coefficient w;th frequency and the error in
synchronism both play an important role here and the only valid way of
predicting bandwidth is to have the dispersion characteristics end a
plot of the interaction impedance for the partic&iar circuit in mind.

Then the second of Egs. (2.23) may be used to compute the frequency dependence
of the power transferred to the beam. This is done in Chapter VII where
experimental circuits are discussed. It is seen there that bandwidths of

30 per cent are easily obtainsble in fast cyclotron wave couplers. If

the reduction in power transfer as a result of frequency deviatipn is due

to the varistion of the coupling coefficient related to change in circuit o
impedance rather than falling out of synchronism, then the half-power

point bandwidth 1s determined by the frequency range for which .

e

F< o] Kb < 3nfl »  (2.29)

]
o

as can be seen from (2.23). The optimum situation would be for the coupling
coefficient to be independent of frequency. Equation (2.17) shows that

this places & restriction on the circuit impedance. The impedance of the
optimum circuit would vary so that E2/P is inversely proportional to

the frequency. While the impedance of experimentel circuits studied in
Chapter VII does decrease with increasing frequency, it is generally at

a raffe greater than that indicated above.

C. COUPLING EQUALLY TO THE SYNCHRONOUS WAVES

In this section we are 1nterested in studying the conditions in which
a traveling-wave circuit may be used to couple to both of the synchronous
waves. The distinction between this and the previous case is that here,

-19 -
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two-wave coupling is possible. That is, it is possible to excite two beam
waves simultaneously because both have the same phase velocity. This case
is interesting for two reasons. First, the optimum coupler for the synchro-
nous wave amplifier described by Nordbotten2 is one which excites both

synchronous waves. This results in an improvement of the gain In the amplify-

ing section of 6 db. Second, the emplitude of the synchronous waves excited
in such a coupler is shown below to be proportional to the length of the
coupler. Consequently, it 1s possible to excite large wave amplitudes with
little expenditure of power since the synchronous waves carry energy of
opposite signs. ’

The coupling is described by the equations

I
o

bAB/az +IBA - JKE A

®

(]
o

BAu/a.z +3BAy - KT Ay (2.30)

OA Pz + § BA, +J K [£] Ay- A =0
®
where the upper sign 1s for a forward wave circuit. The cyclotron waves
have been neglected sfgge they will usually be very far from synchronism
with the coupler circuit in this case. In order to couple strongly to the
synchronous waves the phase velocity of the circult should be close to the
beam velocity. From Eqs. (2.30) we see that, by using circularly polarized
$oircuits so that either f+ or f_ 1s zero, coupling to either synchronous
wave may be achieved. This case is the problem discussed in the previous
section. A more interesting case is when a linearly polerized circuit

1s used so that we couple equally to both synchronous waves. We may solve
Egs. (2.30) in general by assuming solutions of the form

J(at - B 2)
A3 = a3(z) e .
®
Jat - B_z)
A, =g(z) e (2.31)
J((ﬂt < Boz)
A, = ao(z) d

- 20 -




two-wave coupling is possible. That is, it is possible to excite two beam

vaves simultaneously because both have the same phase velocity.

This case

is interesting for two reasons. First, the optimum coupler for the synchro-~

nous wave amplifier described by Nordbotten2h is one which excites both

synchronous waves. This results in an improvement of the gain in the amplify-

ing section of 6 db. Second, the emplitude of the synchronous waves excited

in such & coupler is shown below to be proportional to the length of the

coupler. Consequently, it is possible to excite large wave emplitudes with

little expenditure of power since the synchronous waves carry energy of

opposite signs.
The coupling is described by the equations

]
(@]

aaa/az +J BAy - J KT Ay

1
(@]

aAu/az +J B, - J K £ A

OAz +§ BAy + I K€L Ay - £X AT =0

(2.30)

where the upper sign is for a forwerd wave circuit. The cyclotron waves

have been neglected since they will usuelly be very far from synchronism

with the coupler circuit in this case. In order to couple strongly to the

synchronous waves the phase velocity of the circuit should be close to the

beem velocity. From Egs. (2.30) we see that, by using circularly polarized

circults so that either f+' or f_ 1is zero, coupling to either synchronous

wave may be achieved. This case is the problem discussed in the previous

section. A more interesting case is when & linearly polarized circuit

is used so that we couple equally to both synchronous waves. We may solve

Egs. (2.30) in general by assuming solutions of the form

Jat - B z)

A3 = a3(z) e
Jat - B .2)

Ay = au(z) e
wt - z
b - agtey o 7 86
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No generality has been lost in assuming the unperturbed propagation constents
above, because no restrictions have been placed upon the 2z dependence of
the amplitudes. BSubstituting these assumed solutions into the coupled mode
equations gives the differential equations for the amplitudes:

daa(z) Sy, ao(z) e'J(Bo - Be)z

dz
°
[ )

de -J(B, - B
(=) =JKf¢ 309(2) e (Po - Pe) (2.32)
8z -

°
da (z) +J(B -B )z
. S -+ JK[E] ay(2) - a2 e O S L

dz ¢

Integration of these equations ylelds the general solutionr When either
f+ or f 1s zero we have the simple solutions obtained for two coupled
waves as before. In the case of linear polarization (polarized in the x

direction) we have f_=f_ = 142’ end the solutions are:

®
eo(2)e= 80(0) £ 3 T5 M) 2 [a,(0) - ,(0)]
° X -C 2
a5(z) = 83(0) + 3 75 Mz &,(0) + 1~ M, [a;(0) - &,(0)] 2° (2.33)
) &
ey(=) = 8,0) + 3 Ty My 8o(0)z ¥ 1=, [a,(0) - ()] 2°
where )

_ °
-} Azf2 sin Az[2
Ml = e _Az7-éL_ o (2.34)

edazf2

lein Azf2 - e™ 822 | Az (2.35)

My =+

(az/2)?
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and

L4

A= ﬂ\o - Be s . (2.36)

1
the error in synchronism and are shown in Migs. 2.4 and 2.5. Conservation

The coefficients M, and M2 give the sensitivity of the coupling %°

of energy requires that
' .

lag(2) 12 + lay(2)|? - lay(2)]® = la(0)1® + lag(0)[? - lay(0)[%.(2.37)

Subst&tuting (2.33) into this relation shows tHat there 1is indeed conserva-
tion.

In the case of an input coupler for a transverse wave device a3(0)
and ah(o) would be zero. The situation is then one in which the circuit
wave 18 undisturbed and the beam waves both grow linearly with distance.
Energy is conserved since one synchronous wave carries negative Fover-

By substituting these mode expressions into Egs. (2.20), we obtain the

beam excursion at a fixed plane indicgted in Fig. 2.6a. Note that large
excursions (large mode smplitudes) may be obtained without the beam
;%riking the circuit since the beam displacement is perpendicular to

the circuit field. This will be important later when we discuss some * o
particular devices. ¢

In the case ofageneral output coupler a3(0) and ah_(O) will not
be zero while aO(O) will be zero, giving rise to more complex expressions
then before. It is evident from the first part of (2.33) that, in order
to maximize the transfer of en%fgy to the circuit, the entrance conditions
should be such that L

° a3(0) = - au(o)n .

This means that th® trensverse beam velocity at the entrence plane is
parallel to the electric field supported by the circuit as shown in Fig.
2.6b. The current induced in the circuit may be calculated from Eq. (2.19),
and it is indeed meximum for the above entrance conditions. Assuming these

-22 -*
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PIG. 2.6a--The beam excursion in a linearly polarized synchronous wave
. input coupler. The soclid line shows the trace of the beam as

it would appear on a screen in a fixed plane.

Circuit

FIG. 2.6b--The beam excursion for the output synchronous wave coupler at
the entrance plane. The transverse motion of the beam is
toward the circuit so as to induce the maximum current.
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" entrance conditions, the wave amplitudes are, in the case of a forward

circuit wave, s
afz) = a(0) N2 M Ka)
@® ]
85(2) = 85(0) (1 - % K°2°) (2.38)
2 e
Hz w
a(z) = - a(0) (1+ = 2% :
®

A plot of the normalized power carried by each wave, as a function of

the axial distance, z , is computed from these amplitudes and shown

in Fig. 2.7. Note that there is a criticel length at which there is only
ecgative energy wave excitation on the beam. Beyond thig, both waves grow
quadraticelly with distance. The circuit power grows quedratically from
the input. 1In Chepter VII we will discuss experimental gircuits which
have coupling coefficients of the order K/BO = 0.1 , so that tgs Kz
scale in ﬂig. 2.7 would typicelly be 0.6N where N is the number of
wavelengths in the coupler. The circuit power may thus become much

larger then the input beam wave powers in reasoni?le distances.

The bandwidth of this class of couplers cannot be calculated simply
since both deviation in propagation constants and impedance variations
glve rise to & frequeng dependence of the wave excitation. It is
necessary to have these characteristics for the actual circuit under e
consideration. The reduction in coupling due to velocity errors is
expressed by (2.34) and (2.35). The dependence upon interaction impedance
appears in the coupling coefficient in Egs. (2.33). Ugually, it will be
the first factor which is most Important. Generally, it is found that the
bandwidth of practical synchronous wave cghplers is about the same &s
that of the cyclot;;n wave coupler described in the last section.

One pfactical aspect of the type of coupler considered in this
section is that an input coupler must be terminated in a well-matched
load. In the case® of the one-wave couplers described in the previous
section, the power 1s trensferred from the circuit to the beam and there
is a length for which complete transfer takes place. EPwever, (2.33)
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FIG. 2.7--A plot of the normalized power on the waves for the case in which
synchronous vaves of equal amplitude enter an output coupler
with the optimum entrance conditions. The coupler is synchronous

with the beamn.
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shows that the circuit wave on an input coupler considered in this section
hes a constant amplitude throughout the coupler length and must therefore
be dissipated in a load at the end of the coupler.
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CHAPTER III

RESONANT COUPLERS
° .

The traveling-wave couplers conslidered in the previous chapter tend
to be quite long, if optimum coupl%Pg is achieved, and it is therefore
worth considering the exchange of bandwidth for length by employing
traveling-wave circuits which have been shorted to make resonant couplers.
It is also true that 1ngeresting circuit interactions which are not found
in traveling-wave circuits are obtained with resonant circuits.

The resonant cavities considered in this chapter are made by placing
shorting planes an even number of half-wavelengths apart on a general
periodic traveling-wave circuit which supports a transverse electric
field. The coupled mode equations described in Section gI.A may be .used
to describe the interaction phencmena just as before. 1In this case the
field is broken down into its forward and reverse propageting wave com-
ponents in order to fit into the coupled mode approach. In the first
section of this chapter we calculate the beam wave amplitude resulting
from an assumed cavity field. The calculation 1s not complete until the
circult field is found from the power exchanged between the beam and
the external cavity load. The next three sections of this chapter con-
sider this half of the analysis for the different synchronization condi-
t%pns. A comparison of the characteristics of resonant and tﬂ&veling-wave
couplers is given in the final section.

A. CALCULATION OF WAVE AMPLITUDES

The procedure followed here is the usual one in which two constant-
amplitude counter-propagating circuit waves are assumed and the beam
waves resulting from this field are calculated. Because of the constant
amplitudes of twue circuit fields the last of Eqs. (2.16) is not required.
The coupled mode equations are simply

aAl '
B - IRA,

z
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bAe '
— + B A, = JKE_ A,

oz

QA
—3+JBA
oz €3

JKf + Ao ®

BAu 5
S P

(3.1)

]
%
x>

The two propagating weve® which make up the resonant field configuration
must be of equal amplitude to satisfy the boundazw;conditions at the

[ J
shorting planes. Choosing one shorting plane (the entrance to the cavity)

tobe at z =0 , the circuit mode Aj is written . . d
[ Y °
° °
-JB.z +JB .2
_ o _ 0 Joot
Ay = [ao e . ag € ] e . .(3.2)
°
o .

If the cavity field requires space-harmonics for its representation
there will be similar terms for each space-harmonic. Usually only one
will be of importance due to the synchronism conditions. However, super-
position holds here and the calculations described in the following
sections may be carried out for each space-harmonic and the results com-
bined to give the complete solution as described at the end of this
section. It is evident that the solution of any one of (3.1) will be
the same as the others. The difference between the various interaction
schemes will come out in the later sections of this chapter when we
consider the power relations

The equation that is to be solved is

BAi

dz
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along vith the expression for A, as given by (3.2). In the above
expression we have dropped the subscript on the polarization factor and
f represents 1‘+ or f_ in agreement with the polarization of the
wave indicated by the subscript 1 . The perturbed beam mode amplitude
is assumed to vary as

ot - Biz)

A =a(z)e . (3.%)

Just as in the previous chapter, no generality has been lost by assuming
this specific form since the arbitrary 2z variation of 8, still allows
a modification of the propagation constant. By substituting (3.4) into
(3.3) we obtain a simple differentisl equation for a.i(z) vhich may be
integrated immediately to yield

8, (1) = a,(0) + ay(su,red) (3.5)

where 4 1is the coupler length,

-Jg'f}sing& J(ﬂj+§)fa sin Lb_l:+ -eé)‘&

—2 . , (3.6)
31 By + g) t

and A= Bo - ﬁi . The first term in M3 (the subscript is to separate
it from the similar coefficients found in Chapter III) represents coupling
to the forward wave and the second represents coupling to the reverse
wave on the circult. The coefficient MB. can be put in a more useful
form by defining the fractional velocity deviation from synchronism to

be

€= |1l - — s (3.7)
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where Yo is the phase velocity of the traveling wave circuit which
has been shorted to make the cavity and vy is the phase velocity of the
beam wave. Then, noting that a resonant cavity is an integral number of

half wavelengths long, BO = nx , and we finally obtain the expression

M, =e —_— . (3.8)

In this notation Eq. (3.5) is conveniently written as

a; = ago) + 4 (f é% n M3> 8y - (3.58)

A plot of IM312 , which shows how the coupling depends upon synchronism
between the beam wave and circuit wave phase velocities, is shown in

Fig. 3.1. The asymmetry in the curves is due to the interaction with

the backward propagating wave in the cavity. The effect of this wave

is quite noticeable for short cavities. For longer cavities the inter-
action no longer involves the reverse wave to any great extent. These
results are similar to those obtained for longitudinal wave coupling in

25

resonant slow-wave structures by Wessel-Berg, except that the coefficient

M3 has & slightly different form in that case.

Having derived (3.5) and (3.6), which are valid for any of the four
beam waves (the correct polarization coefficient must be.ﬁsed), the next
step is to calculate the power exchange between the beam and the circuit
and, taking into account the losses in the cavity and the externel loed,
to calculate the power which the external circuitry must supply to or
receive from the cavity. The nature of these considerations depends upon
which beam wave 1s in synchronism with the forwerd propegating wave in
the cavity. The next sections are devoted to these calculations for the
various synchronism conditions. Although only those waves which are
near synchronism with the circuit are considered, this does not place a
restriction on the valldity of the analysis since the couplers are described

by linear equations. This means that the beam admittances found for each
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FIG. 3.1~--The square of the coupler modulation coefficient as a function
of the fractional velocity error.
°

-33-




wave may be added to give the total beam admittance if necessary. This
will usually not be required since most couplers are long enough to make
the modulation coefficient M3 small except for the wave in question.
The results that have been obtained above, and the relations derived
from them in the next sections, can also be used if more than one space-
harmonic of the circuit field couples to one of fhe beam waves. This
can be seen by returning to (2.5). For example, by writing velocity
components in (2.5) in the same way as (2.31), we obtain expressions such
as

-3(B, + B,)z

vV, =V, e s
° + +

where the solution for v, is

-e £

- +j(B_+B )z ®
=-ﬂ‘—fEe e ° 4z
+ +

Y o

—

Then if E+ is composed of space-harmonics we can interchange the order

of integration and summation to obtain

1 +J(Be + Bc)z
}: Jr E e dz
ug +n

alln °

|E 1]

Thus, the total excitation of a particular beam mode can be represented
as the sum of the excitations due to each space-harmonic. Finally, to
apply these results to the present situation, the second term in (3.5)
should be replaced by a sum of terms like

Z (el M, )




o e

WP

o

. ¢

where Kn is the coupling coefficient for each space harmonic and M3n
is the corresponding coupler modulation coefficient. In general the
results that have been derived in this chapter are made valid for inter-
action with a number of space harmonics by replacing 1043 by

Z l(nM3n in the various equations.
all n

B. PASSIVE COUPLING TO ONE WAVE

The term "passive coupling" means the circuit is coupled to a positive
energy beam wave. In this section we consider the synchronization con-
ditions which bring about strong coupling to the positive energy cyclo-
tron or synchronous wave. Couplers of this type are important because
of their application as the input and output couplers in parametric
amplifiers employing the positive energy transverse waves. To couple
strongly to the cyclotron wave, the circult propagation constant should
nearly satisfy the condition BO = Be - Bc and the polarization coef-
ficlent f_ should be nonzero. That is, the circuit must have a negative,
circularly polarized field component. In order to couple strongly to
the synchronous wave the condition Bo = Be should be satisfied and the
circult should have only a positively polarized field component. Since
the two synchronous waves have the same propagation constant, a negatively
polarized field component would result in the active coupling situation
which will be considered in the next section.

The complex power delivered by the beam to the circuit may be
computed from

&%
ol

Ve, (3.9)

vhere V 1is the circult voltage of (2.13) and J 4is the current per
unit length induced in the circuit. The induced current is, from (2.19),

2p J(wt - 312)

f*a, e » (3'10)

J = +] 1

Dka)c
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where a, is either the positive energy cyclotron or synchronous wave
amplitude (32 or a3) ) Bi is the appropriate propagation constant,
end f is f_ or f_ , respectively. From (3.2) and (2.13) the cir-

cult voltage 1s

-JB.z +JB .z
v =422, ao[e e 0 ]ert . (3.11)
.

To eliminate D from the power expression we combine (2.9), (2.10), and
(2.18) and the definition of the circuit impedance Z® to obtain °

0
1 Z
Dem— [2 ° (3.12)
BT\ %
Finally, using °
N E (3.13)
and Eqs. (2.14), (2.17), and (3.5), we cobtain
+3B .z -jB.z -Je.z
g—f = +J2P* a.aai(o) - Jfaoa’o‘MB(z)Kz e T L TO T .
(3.14)

Note that this is a point statement and M3
requiring the use of (3.6) with 2z replacing 4 , rather than (3.8).
The complex power given up to a resonant coupler nx radians long is
found by integrating (3.14):

is & function of 2z ,

' 2 [1-¢e-M}
= +32f*-§5 M;nanai(O) - Juefx (El%) nx -—e(—z—-—e;z aoaa »  (3.15)
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vhere ¢ is defined by Eq. (3.7). The real part of this expression should
be the negative of the power gained by the fast cyclotron wave in the
coupler. From (3.5&).we see that

@

Re(z) = = aiaI ’

e

which is the required result. If the only purposeeof the above calculation
was to compute the real power exchanged, the wave amplitude could have been
squared immediately and a lot of effort would have been saved. However,
by using the expression for complex power we will be able to discuss the
effects of beam loading on the coupler operation.

An electronic admittance may be defined in terms of the complex power
absorbed by the beam and the voltage of the forward circuit wave,

Bbeam =2 chzrb = Zanaszb ’ (3.16)

where the circuit voltage is the complex amplitude of the traveling-wave
voltage. From (2.13) we have

Vc = '\/2 Z& a, - ) L] (3.17)
By substituting the negative of the power absorbed by the circuit from (3.15),

we have the ratio of the admittance presented to the coupler cavity by the
beam to the characteristic admittance of the unshorted traveling-wave

circuit: ° ¢
Y K ai(o)
— = . Jof* — ngcw3*
I Po &
2
l-¢-
+ Jufe* [ — nn ———-Mj . (3.18)
Bo €2 - ¢)
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This expression is particularly simple in the case of an input coupler
since the initial wave amplitude is zero., Then the electronic admittance
is determined by the second term in (3.18). This is referred to as the
electronic admittance, and its normalized conductance and susceptance are:

2

Y K
» B [2) = g = l£17[—) (o) wyl? (3.29)
e Y e B
0 0
and
. K 2 R ®
I (2= = -|e]°(—] () ¥ , (3.20)
P m Y e 5
0 (o)
where
| |2 nne 1 l-¢ )
M = |M,| cot — - — . (3.21
b 3 2 M\ ¢

A plot of |1~13|2 was given in Fig. 3.1 and M, 1s°shown in Fig. 3.2.
The beam susceptance, be’ is not zero at synchronism due to the inter-
action with the reverse circuit wave. The ratio of the beam susceptance
to conductance at synchronism is

= — (3.22)

For couplers of usual length the electronic susceptance at synchronism
will be much smaller than the conductance. By comparing the curves in
Figs. 3.1 and 3.2 we see that it is distinctly advantaé%ous to operate
short resonant couplers off of synchronism. The value of € which yields
meximum conductance also reduces the susceptance to essentially zero.

For example: a one-half wavelength long cavity designed to couple optimally
to the fast cyclotron wave should have € = 1.0 . From (3.7) it is
obvious that this requires the cyclotron wave to have infinite phase

-8 -
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FIG. 3.2 -- A plot of the coupler modulation coefficient Mﬂ‘
showing the relative magnitude of the reactive
component of the beuw admittance.
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veiocity, that is, az/w should be unity. This interesting result shows
that the beam conductance in a half-wavelength coupler is maximum, and
independent of the circuit phase velocity, for wE/m =1 Also; we see
that the susceptance is zero in this situation. This example is valid
only when the circuit phase velocity is such that the coupling to the
other transverse waves 1s negligible; otherwise there will be other
contributions to the admittance.

The above results give the effects of the loading of the input coupler
by the beam, and show the dependence on the fractional velocity error € .
Another formulation of this problem is to determine the Q of the cavity
loaded by the beam. In order to do this we calculate the power which
must be supplied to the lossy coupler in order to sustain fields of a
given amplitude. Since Iao|2 represents the power carried in either

the forward or reverse propagating circuit waves, we find from the definition

of the Q of a cavity that

[ J
i 2|aon&
v, ]

q - ——& 2 (3.23)

Y

Pckt

vhere vg is the group velocity of the shorted transmission forming the
resonant cavity, 4 1is the length of the cavity, and Pckt is the power
dissipated in the cavity losses. The QO is tﬁen the unloaded Q of
the coupler cavity. Using the definitign of the circuit propagation

constant, the power lost to a coupler which is nx radians long is

2nx ZE 2
Py = . lagl® (3.24)
0 vg

where vp is the phase velocity of the traveling-wave circuit. The power
delivered to the beam in the coupler is the real part of (3.15) with
a.2(0) = 0 , or it may be obtained from (3.17) and (3.19);

2
. K
Poeam * 212 (“) (on)? |M3|2 |a0|2 . (3.25)
Po
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Then, using
P
_beam _ 39 , (3.26)
Pckt Q‘b

the Q of the cavity loaded by the beam only, Qb , 1s found to be

e
1 o 2K 2
C o (ﬁo) g

This shows that Qb is inversely proportional to the length of the cavity.

On the other hand, Qo

v
i . (3;27)
v

D

does not depend on the length of the cavity, so

Dep .

%

Hence, the ratio of the power lost in the cavity to that which goes into
the beam inqreases linearly with distance. The bandwidth of the coupler
is simply the inverse of the Q

1 1 1 1

= e o e e —

- ) (3-28)
@ QG & Qxe

where Q;;t is the Q of the cavity loaded by the external circuit.
The gain of the coupler, defined to be the ratio of the beam output
power to the input power to the cavity, is

1l
G, = . (3.29)
in L. EE
%
-4 - :
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The discussion up to this point has dealt with the application of
Eq. (3.18) to the study of an input coupler. That iss we neglected the
first term which represents the initial beam excitation. We now consider

the case of an output coupler in which this driving term is not zero. To
aid in the interpretation of (3.18) the equivalent circuit of Fig. 3.3 is
shown. All of the admittances appear in parallel at the terminals across
which the voltage Vc appears. The term in the beam admittance that

represents initial excitation has been separated off and is called Yd

[ 3
X ai(o)
= - Jof¥ — n:tM; . (3.30)

®o 89

(2]
2

<
o

The remaining portion, Ye , represents power absorbed by the beam and
is given by Eqs. (3.19) and (3.20). As shown in Fig. 3.3, the driving
admittance can be interpreted ag a constant signal generator. The driving

current is

I, = -VY, , (3.31)

and by ueing (3.17), we have
°

242 K
£*(nx) — M$e, (0) . (3.32)

0 o

Id = +J

Z

The wave amplitude excited on the circuit by this current is
d
a_o = ————— — 2 (3‘33)

Yielding

K
[- Jef#* (ES) nnM§
8, = 2, (0) (3.34)
ge +J be + yL
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FIG. 3.3--Equivalent circuits for a resonant output coupler.
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|

. = = g +db . - (3.35)

- <4
o

The real power which is given up to the load admittance is

[}

P, = %VCV:Re(YL) = aple - - (3.36)

By substituting (3.32) in (3.34) we obtain

N P, b &L la,0)[2 . (3.37)
= — (nx a } . .
L o3| Ta, vy v o, +o)P

In order to transfer maximum power to the load the load admittance should
be the complex conjugate of the electronic admittance. If this is the

case, (3.19) and (3.37) yield
B, = la ()% , (3.38)

which is just the initial power on the fast cyclotron wave. Of course,
the load admittance is made up of the cavity and external admittances,

Yo=Y +Y (3.39)

ext c

80 that the actual power to the external load under these optimum conditions
is

e
Py = —X—a,(0)|% , (3.40)

ext +
8ext 8c




which may be written

1

’ (3.4)

out Q
1+ ext
Q0

vhere Gout is the ratio of the power delivered to the external load to
the input power on the beam, and Qext ie the Q of the cavity loaded
by the external load conductance. The bandwidth of the output cavity
assuming constant driving current is given by (3.28).

The above results have been kept general in the sense that they are
valid for either positive energy cyclotron or synchronous wave couplers.
To obtain the desired characteristics for one of the couplers it is only
necessary to employ the appropriate propagation constant and polarization
factor. It should be noted however, that, while a linearly polarized’
coupler for the fast cyclotron wave obeys these Jquations , another set of
equations must be used if a linearly polarized synchronous wave coupler
is to be considered. This is considered in the next section.

C. COUPLING TO THE TWO SYNCHRONOUS WAVES

Because the two synchronous waves have the same phase velocity, but
opposite polarization, it is possible to couple equally to them by the
simple expedient of using a linearly polarized coupler. Such a situation
was considered for a traveling-wave coupler in the previous chapter and
now we consider the case of a resonant coupler.

In a linearly polarized coupler, polarized in the x direction,
f+ = 1‘_' - l/J?‘ and the synchronous waves exclited in such a coupler are
given by Eq. (3.5) or (3.5a). The circuit should have a propagation
constant Bo approximately equal to ﬂe to yield strong coupling. For
the positif’e energy wave f . is used, and for the negative energy wave
T 1is ueed. Then

33(4’,) = a3(0) + 3r+u3x{ao

. 8,() = g,(0)+ Jf_MBK‘ﬁao ; (3.h2)
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and it is ohvious that if ¢ . f. , the two waves are excited equally.
If the circuit is elliptically rather than linearly polarized, one wave
will be excited more strongly than the other. The complex power delivered
by the beam to the circuit is computed from Eq. (3.9) as before. The
induced current per unit length in the circuit is obtained from (2.19) and
ie, for this case,

2(.010
Jg = §— f_‘:a.

3
Dka.\c uo

- em, | 30 - Be2) (3.43)

By using exactly the same steps outlined from Egs. (3.11) to (3.15) we
obtain the expression for the power exchanged in a coupler which is nx
radians long:

K

P = +J2— tha*a.o [f1a3(o) - f’_*ah(o)]
Bo
K 2 l-¢-M
+ b (e gx -2 e%) [—| (on) [———2]. (3.44)
ﬁo €(2 - E)

Upon comparing thie with (3.15) we see that each beam wave gives a power
contribution of the same florm as if it alone were present (there 18 a minus
sign wi‘lth the expression involving the negative energy wave). This is a
consequence of the initial assumption of a linear system. While (3.44)

is general, and even contains (3.15) as a special case, we now restrict
our interest to the linearly polarized case, When f .= f._ = 1,(/—2‘ s

we have from (3.4%)

‘ K
P = +) J-é'; M;nxag [3.3(0) - ah(o)] . (3.45)
0




AT o s 22

The beam admittance presented to the circuit may be 'calcuhted in the same
way as vas (3.18), yielding

LNy et .l (3.46)
0 Po 0 %

This expression just represents a current generator due to the input signal
on the beam. There is no electronic loading and therefore the bandwidth of
this type of coupler is determined by the cavity losses and the external
circuilt, ¢

In the case of an input coupler in which there is no excitation of
either wave at the input to the coupler, the wave amplitudes grow as
predicted by (3.42) without loading the circuit. In the design of such
a coupler the input matching and bandwidth are determined by the cold
cavity. Equation (3.24) is valid in this case and substitution into (3.42)
yields the wave amplitudes excited in the linearly polarized input coupler
in terme of the input power to the circuit:

1 K v 1/2
3,3 = ah = J-Q—MB _ (tho "'E) Pcét » (3-1‘7)
BO P

where we have chosen the phase of 8 to be zero. If the power "gain"

of an input coupler is defined as the ratio of the output power on the
positive energy beam wave to the input power to the cavity, we have

nx I |2 K 2 v ( h8)
G = — J— £ . .
o E (Bo) p o ’

The gain is linearly proportional to the length of the cavity, and may be
greater than unity.

When there is initial excitation on the beam, such as would be the
case in an output coupler, the beam admittance given in (3.46) may not be
zero. Just as in Egs. (3.31) and (3.32), the beam excitation may be
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represented by a constant current generator

2 K
I, = +JJ_—Z_O-;nx;;M§‘a3(O) - 8,(0)] .

(3.49)

This current causes a voltage across the electronic and load admittances.
Corresponding to (3.34), the wave amplitudes excited in the cavity are:

[ ]
K nxM¥* .
8y = -aﬁ———i[a3<o) -ah<o>] . (3.50)

[ ]
The power which is given up to the external load admittance is easily

found from (3.36), (3.39) and (3.50):

2 A 2
&, nx Qo » K v8 2 °
Pext = o QO Q |M3| - '33(0) - ah(o)l (. (3.51)
|yL| 1+ 1 4 2xt Bo A
Qext Qo

Note that there is no difference in the power exchange in the case of only
a positive or negative energy wave at the entrance plane. The maximum
power 18 transferred when the total load admittance 1s real and

Qext/QO = 1 . Equation (3.46) shows that the optimum entrance conditions
are attained when a3(0) and au(o) have opposite signs.

A particularly interesting case arises when 33(0) = - ah(o) . This
is the same entrance condition that is shown in Fig. 2.6b, and Fig. 2.6a
shows that this is the beam excitation provided by a linearly polarized
coupler whose plane of polarization 1s rotated by an angle of 90° with
regspect to the present coupler. If the gain of the output coupler is
defined to be the ratio of the output power to the initial input power

on one of the equal amplitude synchronous waves, it is found that

hQO K \° A

G = nx| |2 —_ |cos o, | (3.52)
out ) ) ol »
1+ o 1+ =X Bo/ |
Q'ext Q0
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where 60 is the angle between the initial polarization of the beam and
the plane of polarization of the circuit. It has been assumed that the
loaded coupler is resonant at the signal frequency so that gL/{yLI is

- unity. The gain is linearly proportional to the length of the cavity
and, Just as in (3.48), it may be greater than unity.

It is apparent that an amplifier could be made by using two linearly
polarized synchronous wave couplers. The input coupler should be rotated
by 90° with respect to the output coupler so that 8, in (3.52) is zero.
The gain of the two couplers is the product of (3.48) and (3.52). This
device, which is shown in Fig. 3.4, is a synchronous wave analog of the
extended interaction klystron. Wessel-Berg noted the feasibility of this
synchronous-wave klystron ea.rlierla’ 16a.ndpointed out that it has several

] advantages over the usual extended interaction klystron. In particular,
it should not suffer from the oscillations that arise in the usual case
when the length of the cavities is increased in order to obtain large
values for the gain. This is a result of the fact that the beam loading
is zero, as was shown in (3.46). The calculations given by Wessel-Berg
in the above reference are more general than those presented here, but
they are concerned with the electronic equations only and the gain of
the klystron was not obtained. The gain has been obtalned explicitly
here in the form of Eqs. (3.48) and (3.52).

For purposes of calculating the beam excursion in order to determine
vhen saturation will take place, it is necessary to have the expressions
for the synchronous wave amplitudes on the beam. Substituting (3.50) into
(3.42) gives

2 2

Y K
8) = 0) - —9 0) - 0 — 92
83( ) 33( ) My v, [53( ) a)( )](BO
; 2y K\
ah(e) = ah(O) - M3 Y-E {[53(0) - 3)4(0)] (a‘) 92: (3-53)

vhere 6 = Boz is the axial distance in radians from the entrance plane.
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D. ACTIVE COUPLING TO ONE WAVE

The last case of interest in the study of resonant couplers is the
synchronization condition which leads to strong interaction with one of
the two negative energy waves. This condition 1is important since it can
result in the transverse wave equivalent of the space-charge wave monotron.
The synchronization conditions are: po = Be + 53 for the slow cyclotron
wave interaction, and BO = Be for the negative energy synchronous wave
interaction. In the cyeclotron wave case the circuit can be linearly or
circularly polarized (f, # 0) , while in the gynchronous wave case the
coupler circuit must be circularly polarized (f_# 0) since a linearly
polarized circuit with Bo = Be leads to the type of interaction considered
in the last section.

The notation used here is the same as before: the amplitude a, is
used to denote one of the negative energy waves, & or &), and the
polarization coefficient f is ¢ + when 8 is considered and f_
for a8, - The current induced in the circuit due to wave excitation
on the beam is, from (2.19),

Dku
c

J = - f*&i . (3‘5“)

By using exactly the same steps outlined in Section III.B, we obtain the
expression for the complex power exchanged in a coupler which is nx
radians long:

2
K K l-¢-M
P = . gor* |[— nxugaaai(o) + Juge* [—) nx ___142 a.oas ; (3.55)
Bo Bo e(2 - €)

®

The coefficient M3 is evaluated for the Bi under consideration. The
admittance presented by the beam to the circuit is calculated in the same
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manner as (3.18), yielding

K (0) K \° l-¢-
- +Jer*—nxx'3’ai - aule?[—] nx ik | (3.56)

0 Bo 8y Bo e(2 - ¢)

ﬁldﬂ

Note that this is jJust the negative of (3.18) which is the admittance for
rositive energy wave interactions.
In the case of a beam with no excitation entering a cavity the first

term in (3.56) is zero and the electronic conductance and susceptance are:

2
6, = - l2l2 =] a0 Dy? (3.57
e o % '
2
K
b, = + 1217 (=) (0)fw, (3.58)
B0

where Mh is given by (3.21). The negative conductance means that power

is given up to the circulit in the interaction region. The Q of the .
cavity loaded by the beam only is defined as in (3.26) and in this case

we obtain

1 nx 2K \2 |v 2
e la L

%

Note that Qb is a negative quantity due to the negative conductance.
This results in a decrease of the bandwidth below that determined by the

"losses of the cavity and external circuit.. The gain of the input coupler

is given by (3.29):

n T (3.60)



and we see that it is greater than unity. Althdugh (3.60) becomes infinite
at Qb/Qq --1 , this is not vhere oscillation sets in since the external
eircuit loading was not included in the definition of gain. Oscillation
starts vhen

-_—_ = -1 , (3.61)

where Q‘L is the loaded Q of the cavity. At this point the negative
energy on the beam at the exit plane of the cavity is Just equal to the
power dissipated in the cavity and its load due to the assumed fields.
By combining (3.59), (3.61) and (2.17), we obtain the expression for the
beam conductance required to start oscillation:

1/QL
G = . (3.62)

ot | 2w A -2
fl ;;(vp)xt 'MB'

N

If a signal is on the beam initially, it can be representgd by a constant
current generator driving the cavity. The driving current is derived
from the first term of (3.56) just as in Egs. (3.31) and (3.32):

o —Ku3(> (3.63)
I a - f* nx ¥*a (O . 3.63
¢ VI, Bo !

The wave amplitudes induced in the cavity are found in the same way as -
in the previous cases:

K
+ Jor* B; ntH‘a"
8, = a.i(O) . (3.64)

ge""jbe"'yl}
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The pover to the load is exactly the same as (3.37) where we now use the
negative admittances in (3.57) and (3.58). These expressions are valid
only if g, is greater than 8 - Otherwise, the system oscillates as
described for the case with zero initial excitation and the energy
conservation statements implicit in the derivation of (3.64) are violated
in the linear system.

E. COMPARISON WITH TRAVELING-WAVE COUPLERS

It was stated at the beginning of this chagger that one of the
important reasons for interest in resonant couplers is that circuit length
required for a given gain is less than it is in the case of the traveling-
wave couplers. This is an important factor because of the difficulty of
focusing the electron beam for large distances. The purpose of this
section 1s to compare the length and bandwidth of some typical traveling-
wave and resonant couplers.

The optimum length of a traveling-wave coupler that excites one of
the positive energy waves is given by (2.26). This can be written in
terms of the circuit length in radians as

x 1 ﬁo

The gain of the coupler is unity in this case. In order to make a resonant
coupler with unity gaein it ie necessary to have Qb/Qo be zero. This

is not practical, but Qb/QO = 0.1 would give a gaein of 0.91 which is
close enough to unity for comparison purposes. In that case (3.27) gives,
at synchroniem,

2
B 1 e

|f|2QO v | \x

g

Typical values for linearly polarized circuits described in Chapter VII
are: Q)= 1000 , (K/ao]-o.l yand a v /v, of about two. The
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ratio of the lengﬁh of a traveling-wave coupler to a resonant coupler,
each having unity gain, is spproximately thres. Thus, while the S-band
traveling-wave coupler described in Chapter VII is about six inches
long, its resonant counte.rpart need be only two inches long to yleld
the same gain. This is certainly a significant difference. However, a
large esacrifice in bandwidth must be made in order to achieve these
results. For example, the bandwidth of the traveling-wave coupler
described in Chapter VII is about 30 per cent. The bandwidth 9f the
resonated coupler can be computed from (3.27), (3.28), and the above
assumption that Q,b/Qo = 0.1 . If the coupler is matched to the external
circuit, we have Q_ ., (1/Q0 + 1/q.b) =1 , and ve obtain a bandwidth
of about two per cent.

Linearly polarized synchronous wave couplere can be compared in the
same way. It is found that the ratio of the length of a traveling-wave
coupler to a resonant coupler, each giving the same gain, is

i R VI
2

) -
Yhes Yp

Since Qo is generally of the order of 103 , there 1s & significant
difference in these two cases. Again it is true that a sacrifice in
bandwidth must be made. The bandwidth of the matched resonant coupler
is simply 2/Qo , since there 1s no beam loading, while the bandwidth
of the traveling-wave coupler will typically be about the same as the
thirty per cent value calculated in the previous case.

In conclusion, the choice between traveling-wave and resonant couplers
must be based entirely upon the application. If the important factor is
bandwidth, then the traveling-wave couplers should be used. However, if
coupler length, or gain in the case of the linearly polarized synchronous-
wave coupler, is a limiting factor, then resonant structures may be
indicated. In particular, it is desirable to employ resonant couplers
in the synchronous-wave klystron described in Section III.C in order to
produce a large gain.
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CHAPTER IV
TWISTED COUPLERS

The purpose of this chapter 1s to describe the interactions which
may occur between the transverse waves on an electron beam and a circuit
in which the plane of polarization of the transverse electric field
rotates uniformly along the exis of the circuit. This type of field
corresponds to the transverse electric field of a wave propagating in
a medium characterized by Faraday rotation. Because the circuits which
support such a field look like linearly polarized structures which have
been twisted about their exis, the name "twisted couplers" seems eppropri-
ete for this class of circuits. The special properties of these couplers
make it worth while to treat them separately in this chapter rather than
in Chapters II and III.

The interest in the twisted couplers arises from the fact that the
two circularly polarized fields which make up the propagating circuit wave
have different propegetion constants. This means that it is possible to
obtain coupling conditions which could not be obtained with ordinary
circuits. For example, with this new class of couplers it is possible to
couple equally to the cyclotron waves, or to a cyclotron and synchronous
wave. Bernstein and Feinstein2 have considered the special case of equal
excitation of the cyclotron waves in connection with an electrostatically
pumped cyclotron-wave amplifier. A more general treatment including all
four of the transverse waves will be given here.

The first section of this chapter describes the interaction of the
beam with a twisted electric field which propagates along & circuit, and
gives the coupled mode equations which describe the interaction. Then,
in the next section, the various possible synchronism conditions are
discussed. The following section describes the important case in which
traveling-wave or resonant couplers are used to exclte both cyclotron waves.
Finally, in the last section, the fields %hich exist in a twisted structure
are considered and compared with the twisted-field model used in the electronie
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interaction calculations. A description of some experimental twisted
circuits will be found in Chapter VII.

4
A. BEAM INTERACTION WITH A TWISTED FIELD
A linearly polarized slow-wave structure supports a field characterized
by
It - By2)
E =E e
x 0
(k.1)
Ey =0 ’

where BO is the circult propagation constant and the field is polarized
in the x direction. Now consider this clrcuit to be twisted sbout its
axis with a period defined by

2x
P =5 4.2
Bt b4 ( )

as shown in Fig. 4.1l. The quantity Bt is the ‘twist propegetion constant.
A first epproximation for the new electric field is obtained by twisting
the solution given in (4.1). Therefore, we have, for the twisted circuit,

Iat - B,z)
Ex = Eo cos stz e
(%.3)
It - By2)

Ey = Eo sin atz e .

While these statements are not rigorous at all, they seem intuitively
satisfying; and the more rigorous discussion of Section IV.D, on the
fields existing in twisted periodic structures, shows that (4.3) is the
correct result for small twist rates characterized by ﬂ£/bo << 1.
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FIG. 4,1--Schematic representation of & periodic twisted coupler. The
arrows represcnt the transverse electric field. The structure
twicts 2ﬂ/n redians per section or- 2n radians in one period
that is n sections long.




From Eqs. (2.4) the polarized field quantities are:

dot - -3(8y + B)s )

Jot  =3(B, - B, )z
E =E_ e e 0 t

PO

It can be seen that the effect of the twisting of the circult field is to
subtract Bt from the propagation constant of the field which is polarized
in the direction of the twist and add ﬂt to the propegation constant of
the oppositely polarized field. 1 These twisted field components may be
used in Egs. (2.5) to find the coupled mode equations. Everything is
formally the same as in the previous case except now we obtain polariza-
tion factors which are s function of z . The circuit voltage given in
Egs. (2.9) is defined as

v +3(ot - B2) .
% N D =J2 EO e ’ (4.5)
; ) so that the polarization factors are given by
| -J B2
; £ o= 1 e t
+ 2
: (4.6)
+J B, 2
¢ f = z e t .

These have been normelized so that they satisfy (2.11), as required.
The coupled mode equations which describe the twisted coupler are then
(2.16) with the polarization factors given by (4.6). By combining these

i uTIt should be noted that the definitions of the complex polarized
variables given in (2.4) are based upon a left-hand coordinate system to
asgree with previous analyses. However, 5t has been defined in a right-

hand coordinate system so that positive Bt and ve are associated with
the same azimuthal direction.
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results, the final coupled mode equations are:

aAl K -3 B,z
e BIAl =) - Ao e

dz J2
aA2 K + B2

—=+JBA, =] —A, e
dz e J2 bo

JA K -J B2

.—2 + J BBAB = J — AO e t

oz J2

aAu K +j Btz

—+JIBA, =) —Aje

oz J2

OA, K +J Bz -J Bz
—+J BRI — (AB-Al)e +(A2-Ah)e - (4.7)
oz J2

The definitions of the parameters are the seme as in (2.16). It is

evident from Eqs. (4.7) that the synchronismconditions for strong inter-
action between the circuit and one of the beam waves are considerably
different from those in the case of untwisted couplers. This is considered
in the next section.

B. SYNCHRONISM CONDITIONS IN THE TWISTED COUPLER

The circuit phase velocity which ylelds strong coupling to one of
the beam waves may be obtained from (4.7). The conditions which make the
z variation of the right-hand side of one of the first four equations
equal to the 2z variation of one of the normal modes on the beam 1s

By = By ¥ B, . (%8)
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The propagation constant ﬁi is one of those representing the transverse
waves, and the upper sign 1s to be used when considering coupling to one
of the positively polarized waves and the lower sign is for negatively
polarized waves. It should be commented that the coupled mode enalysis
described involves a system in which the dc magnetic field is in the
positive z direction. If the megnetic field is reversed, the polariza-
tion of the beam waves is reversed, although the propagation constants
remain the same. A tabuletion of the ratio of circult phase velocity to
dc beam velocity required to yield synchronism with a specific beam wave
is given in Table I. The cyclotron frequency is a positive number in these
relations. '

TABLE 1
SYNCHRONISM CONDITIONS FOR TWISTED COUPLERS

Circuit Synchronous vo/uo '
with Mode + BQ - Bo
9-1 - -1
A 1+a-—)‘-:--'3tu0 1+‘;°-c-‘-‘3‘r'u0
1 w a)J L ® w
B 1-1 - -1
w B, u o B, u
A2 l__+__t___Q 1 - =< t 0
| w mJ w w
--l = -ll-l
B, u B, u
A, 1 - 20 1420
- m- - ® o
- -1 - 7-1
B, u B, u
A, 1420 L - -2
L 0] [ 2
L
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In general, both the cyclotron frequency and the twist rate of the
circuit are at our disposal so that it is possible to couple strongly to
any two oppositely polarized transverse waves. It is important to note
that Bt can be either positive or negative, depending on the direction
of twist. For example, by making the twist rate such that

g

Bt =< ; (%.9)
w,

O

the coupler excites both cyclotron waves equally. The circuilt velocity
should be equal to the dc beam velocity in this case. If the magnetic
field is then reversed, the synchronism conditions are changed so that
coupling to only one wave is achieved. This synchronism condition is
important since the equal excitation of both cyclotron waves is the
optimum situation for the dc pumped quadrupole discussed by Gordonh and
others.l

In other cases, coupling to the positive or negative energy cyclotron

and synchronous waves is achieved by making

€

= . (k.10)

VI B

B =

o

It is also possible to achieve strong coupling to only one of the synchronous
waves with a twisted, linearly polarized circuit, and to lower the magnetic
field requirement for cyc%gtron-wave couplers. In Egrticular it is
possible to use an infinite phase velocity circuit and a ratio of
mc/w less then unity to couple to the fast cyclotron wave. It 1s also
possible to couple to the slow cyclotron wave and to the synchronous waves
with an infinite phase velocity coupler by employing the proper twist rate.
Care must be taken in considering the interactions described above
since, as is shown in 8ection IV.D, the assumed fields which lead to
these results are not valid in all cases. Even so, the basic concept of
the twisted circuit is important, and useful applications do arise. Some

applications are considered in the next section.

(l)rhat i, a circuit which has an infinite phase velocity before it
is twisted.
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C. BEQUAL EXCITATION OF THE CYCLOTRON WAVES

Of the various synchronism conditions that were discussed in the
previous section, the condition which leads to equal excitation of both
It
was noted that this importance exists because the optimum coupler for a

cyclotron waves appears to be of the greatest interest at present.

particular type of dc quadrupole amplifier is one which excites the cyclotron
have noted this and described
Their descrip-

waves equally. Bernstein and Feinstein2
the application of a twisted coupler in this connection.
tion of the coupler was not in terms of & coupled mode formalism and it

is worthwhile to note that this independeﬁt description based on coupled

mode theory gives the same results. Another important reason for emphasizing

this synchronism condition is that, since the waves are excited with! equal

.

amplitude, there is no beam loading in such a coupler and we are led to
the consideration of & cyclotron-wave klystron completely analogous to the
synchronous~-wave klystron discussed in Chapter III.

In solving Egs. (4.7) for this case, we assume that the circuit phase

velocity and twist rate are such that there is strong coupling to the

cyclotron waves and very little excitation of the synchronous waves. In
that case the equations to be solved are:
aAl K -J B2
—=+J (B, +B)A =) —e A,
z J@
|
6A2 K +) B2 f
—+3 (B, -B)A, =] —e A, (%.17) ;
dz J2 i
é
aAo K -J B2 +] B2 :
—_— BdAo =) - A2 e - Al e .
z J2

These may be solved directly without difficulty, but it is simpler to
redefine the wave emplitudes so that Egs. (4.17) fell into a category
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that we have already considered. If we now define the new waves

Jatz -
Al = Al e
. =) B2
A=Ay e > (4.18)

then the system of equations (4.17) becomes

BAi ( | K
—+J(B . +8) A =3 —A
3z e 1 Jé 0
BA2’ ( ) K
—=+J(B. - A =3—A
d2 e 2 \/—2 0
oA/ K
0 'd 4
—+ ] B =3 — (A - A)) k.19
3z oto J2 2 1 > )

where
A=p, - B, . (4.20)

When the twist rate or the magnetic field is adjusted to give A= 0,
Egs. (4.19) are identical to (2.30) which describe the linearly polarized
synchronous wave coupler. Thus, the solution to the present problem is
exactly the same as 1t was for the synchronous wave coupler except that
now the cyclotron wave propegation constante are different. The wave
amplitude expressions given by (2.33), or (3.42) in the cese of a resonant
coupler, are in agreement with the results in the ebove reference where
they are applicable.

The exact correspondence between the twisted cyclotron-wave coupler
end the linearly polarized synchronous wave coupler is valld only at the
condition Bc = 5t . Note that this does not mean that the circuit wave
must be synchronous with the beam waves since BO need not be equal to
Be in order to have A vanish. Consequently, the dependence on synchronism

- 6k -
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between the circuit and the beam that appeared in the synchronous wave

g equations cited above is correct here also. However, if A is not zero,

{ the character of the equations changes. By comparing (4.19) with coupled
. mode descriptions of circuit interactions with the space-charge waves, such

g as are given by Louisell,2! we see that identifying |A] with B, leads

! to the traveling-wave tube equations when A 1is positive and to those

5 for the backward-wave oscillator when A 1is negative. Consequently,

published solutions for the propagation constants in space-charge wave

devices can be used here. The correspondence between the two cases does

! not exist at A =0 (Bq = 0) because of the way in which the coupling

coefficient in the space-charge wave equations depends upon Bq .

In general the solutions of (4.7) for other synchronism conditions
are easily obtained by the methods which have been used to solve the
coupled mode problems that have been described earlier. In particular,
it will be found that a simple change of notation such as the one used
above for the case of ac = Bt , Will lead to the formalism of the
problems that have already been considered.

D. ELECTRIC FIELDS IN TWISTED CIRCUITS

. In the first section of this chapter we derived the coupled mode
equations describing the interaction between an electron beam and a twisted
electric field. This field was taken as an approximation of the electric
field that exists in a twisted circuit. The purpose of this section is to

e b kA e e © L g

consider the electric fields which propagate on & twisted structure, and
to show that the field assumed in the electronic interactions described
: previously is correct for small twist rates.

In general, the twisted circuit is a periodic structure in which each
section is rotated about its axis with respect to the previous seation as
was indicated in Fig. 4.1l. The field quantities associated with the circuit
are, in general, periodic in both z and © . Let L be the fundamental
period of the structure before it is twisted and n be the number of these
periods which must be advanced before the twisted circult orientation repeats.

- That is, we are assuming that the twist angle per period of the structure
‘ is 2n/n vhere n 1s an integer. If the circult is symmetric ebout its
- axis, and n 1s even, there will be a higher order symmetry, but this can
be destroyed by imagining a small periurbation of one part of the circuit.
- 65 -
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By meens of Floquet's theorem,28 the circularly polarized components
of the potentisl in the circuit, which has a period of nL in the =z
direction end a © periodicity to be defined, can be written as a sum
of space-harmonics:

-3 B,z -Jpe - B yle
Wz, 0)=c * e E;Ak£e e, (w1
K,

vhere Bt is the phase shift per unit length of the positive or negative
circularly polarized field component in the structure in a right-hand
coordinate system and p 1s <+1 for the positive polarized component and
-1 for the negative polarized component. The coefficient Ak ') contains
the redial variations of the potential. The indices k and i’ are
integers which will be found to be related. If we advance on the circuit

by en exial distance L and rotate by an amoung * 2n/n (the =+ sign
gives the direction of the twist), the circuit is the same and the potential
is a complex constant times the potential at the starting point, that is,

- 2n
-J B, L +jp =—
V(z+L,Oign£)=V(z,G)-e e N (k22) ’

Upon using (4.21) and (4.22) we obtain an equation that is satisfied only
if

k4 =mm ,  (k.23)
wvhere m is any integer. If we aliow axiel symmetries of the structure
which can reduce the period as mentioned above, it is found that (4.23)

is still the correct restriction to be placed on k and 4 . The general
potential expression 1s then written

-3 B,z -Jpe -3 %L’l (m )z -3be .
V(iz , 0) =e e 'é?j Ay e e s (b.24)
I
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vhere the upper sign with 4 1s to be used if the twist is in the positive
sense with advancement in the positive 2z direction and the lower sign is
for a negative twist.

We see from (L4.24) that there is a multiplicity of spatial harmonics
which must be combined to yleld the general field configuration. There
ere in general n branches to the w-p diagram as indicated in Fig. 4.2
for the positively polarized field component. For the purposes for which
we gre considering twisted circuits, that is, in transverse wave couplers,
* 39 ozimuthal varistion. From the
figure we see that these components all lie on one branch of the w-B cuyrve.

the value of 4 is zero, ylelding e

The fact that there is a number of branches to the w~f diagrem can
alter the expected dispersion characteristic for a circuit considerably.
While we are ordinarily not interested in the extrp multipole fields which
arise due to the twisting of the circuit, the intersections of the various
branches can lead to stop-bands if there is eny discontinuity which can
couple the space harmonic components represented by the different branches.

The propagaetion constants that cen be expected in twisted circuits
can be determined from (4.24) by assuming that both field polarizations
propagate with the propagation constant BO in the frame of reference
thet twists with the circuit. 1In that case, by denoting the variebles
in the twisted freme with primes, we have

0" =9 - Btz ’ (%.25)

where B, was given in (4.2) and it carries the sign of the direction of
the twist. Then (4.24) gives

. e'J(B:t +D B )z ZA I -ste

Lm €

{4,m.

(4.26)

where the prime denotes the potential in the twisted frame. Clearly the
quantity in front of the summation represents the propagetion factor of
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the fundamental (m =4 = 0) field component of the periodic structure.
Bquating this to exp [- J Boz] gives

. ﬂq,‘ﬁo'ﬁt

B_ =By + B, » o (k27)
where BO is the propegation constant observed in the twisting frame of

reference. These results are in egreement with those given in Eqgs. (4.4)
when it i1s noted that E+ and E_ are defined in a left-hand coordinate

s pcte

systen.,

While the above discussion is designed to show the nature of the
dispersion characteristic in a general twisted circuilt, it is not well
suited for a calculation of the field components involved in a typical
circuit. The field configuration will certainly be different from that
of the untwisted circuit. Bernstein and Feinstein26 have considered this

B L g R Gt 1 Bt T o g S

question in connection with some work in a twisted coupler of the typg
discussed in 8ection IV.C. Their assumption is the one used in Section

A of this chapter, where we assumed that the transverse field of the
twisted circuit is simply obtained by twisting the linearly polarized field
configuration that is valid for the untwisted circuit. One feels that this
is a good approximation, but, as is pointed out in the reference, this does
not yleld a field expression which satisfies V - ﬁ =0 ., It is also true
that, by estimating the nature of the field perturbations as the circuit

e i AR T T SR B S P VI AR i RO I

is twisted, it can be seen that a new component of the tre sverse field is
produced. This is in space and time quadrature to the main transverse
field.

A description of the exact nature of the fields that exist in a
twisted periodic circuit appears quite difficult and the discussion given
here will be restricted to an approximate approach. It was shown that
the potential in & general circuit obeyed (4.24). In order to obtain a
description of the nature of the transverse fields in a twisted circuit,
ve neglect all of the space harmonics of the circuit and consider only

the fundamental component for which m eand { are zero. The potential
then consists of components with the two propegation constents given by
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(4.27). The potential components are assumed to be solutions of Laplace's
equation in eccordance with the initial assumptions mede in using (2.8) as
the equations governing the circuit. 1In rectanguler coordinates we have

-3(B, + B, )z
Vix, y, 2) = [a+ sinh (ﬁo + Bt) X +b sinh (BO + Bt)Y] e 0 t

'J(ﬂo - B )z
+ [a_ sinh (BO - Bt) X +b_ sinh (Bo - Bt)y] e ’

, © (4.28)

where the coefficients a,

conditions. The solutions which correspond to zero transverse electric

end bt are to be determined by the boundary

field on the axis have been omitted in the above expression since they are
not important for transverse-wave interactions.

The circult is assumed to be oriented‘as shown in Fig. 4.1. In order
to determine the coefficients in (4.28) we impose the condition that, when
the circuit haes twisted through n/2 radians, the circuit potential has
also rotated by n/2 radians. A statement must also be made about the
potential distribution in the x-y plane. The required boundary conditions
are taken as:

V(e, 0, 0) = v,

.S
-Jﬁ ——
0 26,

)=V._ e . (k.29)

v(o, o

a X
s
ZBt
V(O, a, 0) =0 )

where 2a 1s the transverse spacing between the circuit elements. The
lest condition in (4.29) is somewhat arbitrary, but it gives a good approxima-
tion of what the potential in a twisted circuit would be. Equations (4.29)

and (4.28) are enough to obtain the four coefficients e, end b, , if

i o
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we use the additional statement that Egs. (4.29) are valid for any By
. and By The expression for the potential is then found to be

i
h
i
§
!
!
i

. .- Vo /| 8inn (By + B )x N sinh (aga- B, )Y e-J(po + B, )z

2 sinh (ﬁo + Bt)a sinh (ﬁo + Bt)a.

(%.30)

sinh (Bo = Bt)x - sinh (Bo = Bt)y e-J(Bo - ﬂt)z

sinh (ao - Bt)e. sinh (so - Bt)a.

+

The transverse electric fields can be computed directly from (4.30).
Generally, the circuit dimensions will be such that only the first term
in the expansion of the hyperbolic cosine and sine make a significant
contribution to the field end in this case we obtain

. Vo 1 1 B -J Byz
x--—-———-—-—’-a—é- cosﬁtz+3—sinﬁtz e

BoPo?, [ Po

- BO
(.31)
v, 1 1 B =3 Bnz
L sinBz-J-ﬁcosBz e 0 .
2 t t
By Bo® . B Po
. ﬂo

The first term in Ex and Ey represents a field which corresponds to
twisting up the field of the linearly polarized counterpart of the twisted
circuit, and is the field configuration that was essumed in the first section
of this chapter. The second terms in (4.31) represent a modification of
this field that arises because of the twisting. It 1s proportional to

Bt/ﬂo and in quadrature to the main field component. We cast this in a

-T -
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different form by observing the fields in the twisting frame of reference.
The twisted field of the linearly polarized circuit is denoted by E"

and the field perpendicular to this by E; as shown in Fig. 4,3. These
fields are related to those in the laborabory frame of reference by

E, = Ex cos Btz + Ey sin atz

(k.32)
Ey = Ex sin B,z - Ey cos ﬁtz .
Substituting (4.31) into (4.32) yields
-J poz
e
(4.33)
-J B,Z
0
Pe Bo®

B =— ——— ,
1 B, 1 - (B/8y)

where E, 1is a coefficient consisting of the factors in (4.31). Figure
4.3 shows the standing-wave pattern that is created when a forward and a
reverse traveling-wave on the circuit are combined. Note that a simple
planar short on each end of a twisted structure does not result in the
ideal twisted cavity since the end conditions are not correct. However,
for smell twist rates the field pattern would be essentially that shown
in the figure except near the shorted ends of the cavity. This is observed
experimentally in Chapter VII.

In order to determine how these results affect the calculations made
in the earlier part of this chapter the field of the twisted circuit is

written in circularly polarized variables. We find that the fields

[, o e - B




Axial Distance

Axial Distance

FIG. M.B-—The standing-wave patterns of the two field components on a
twisted circuit due to equal forward and reverse propagating

waves,
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corresponding to (4.4) are given by

E, e-a(ao +8.)z
1+ p./8,

(4.34)
E -J(B, - B )z
E = o__ Vo Tt

1-p/8
' 70

That is, the circularly polarized field components are no longer of equal
amplitude. This meens that f end f_ 1in (4.6) are sltered by the
factor (1 t Bt/BO)-l , respectively. These new polarization factors

then obey (2.11) to first order in (Bt/BO) . It is not eppropriate to
continue the discussion to larger twist rates because of the epproximations
that have been made up to this point.

As a result of the above discussion we see that the coupled mode
equations and the resulting electronic interactions that were derived in
the first sections of this chapter were correct for Bt/BO <1 . However,
if the twist rate is larger than this, the amplitudes of the two circularly
polarized field components become different while their propagation constants
are still the same. The interaction is still described by the coupled mode

equations of Chapter II, but the modified polarization factors indicated
sbove must be used.
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CHAPTER V

CYCLOTRON-WAVE FREQUENCY DOUBLERS

The use of cyclotron-wave interactions in a quadrupole type of resonant
cavity to achieve frequency doubling will be discussed in this chapter.
Such an interaction was reported by Ashkin,el who excited a fast cyclotron
wave on a beam entering a quadrupole cavity and observed second harmonic
power output from the quadrupole. Cuccia had observed this earlier,20
and reported some results and proposed multipliers employing higher order
multipole cavities. Lindsay and Caunteraz‘have carried out a ballistic
analysis for the special case of the fast cyclotron wave doubler operating
at cyclotron resonance, which was the type of operation used in the
experiments mentioned above. It has been noted by all of these workers
that high conversion efficiencies may be expected with this type of doubler.

The above studles have all been connected with the special case in
vhich the fundamental frequency is equal to the cyclotron frequency and
the coupler and quadrupole circuits were characterized by an infinite
phase velocity. It is obvious, however, that these observed frequency
doubling interactions are a special case of the general situation in which
periodic structures w!th finite phase velocity and frequencies other than
the cyclotron frequency are used.

The analysis to be presented here will be based on a coupled mode
approach to the problem, and will include the interactions with both the
fast and slow cyclotron waves, with arbitrary combinations of these waves
existing at the beam input to the quadrupole. This will make it possible
to predict the operating characteristics of the general class of cyclotron-
wave frequency doublers.

The study of this problem by means of coupled mode equations results
in the description of the circuit fields as a superposition of traveling
waves. The field in the resonant quadrupole is then given as a sum of
forward and reverse propageting waves. The aq?lysie which will be
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given in this chapter neglects the interaction between the beam and the
reverse propagating wave; that is, it assumes interaction with a single
cforward propagating circuit wave of constant amplitude. While tﬁis is
generally not an acceptable assumption, as is evidenced by some of the
results for resonant coupler circuits given in Chapter III, it causes no
significant error here, as it applies to practical situations. This is
because quadrupole interaction lmpedances are quite small, resulting in
devices which are many wavelengths long. Consequently, it is safe to
neglect interactions with the traveling waves on the circuit which are

not synchronous with one of the beam waves.

A. COUPLED MODE EQUATIONS

The coupled mode equations representing interaction between a beam
and coupler type transverse flelds were given in Chapter II. In the
present chapter we consider the case in which the beam interacts with a
field having the quadrupolar symmetry shown in Fig. 5.1. Blftekjaer and
Weasel—Berglg have analyzed this situation and have ohtained the coupled
mode equations which are to be the starting point for the analysis given
in this and the next chapter. In order to cast these equations in the
same notation used earlier in this paper, we briefly describe the steps

leading up to their final results. The material presented in this section

is not new, except for various commentaries, and the equations can be
found in the above reference in a different notation.

A traveling-wave field of quadrupolar symmetry which is a solution
of Maxwell's equations may be represented by:

Jwt - k z)
E, = ERe {(le+32y)e K qz}

e
m Jwt -k z
q q
Ey = -e—Re (132x - Bly) e
m Kk ot - k2)
. - .1+ .9 2 _ 2 qQ q
E, - R, 3 : [Bl(x yo) + 2B, x y] e . (5.1)
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FIG. 5.1--A cross section of a structure that supports a quadrupole
field. The equipotential surfaces are hyperbolas in the
ideal case.
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In these equations ah is the radian frequency, and kq is the propagation
constant of the structure supporting the quadrupole field. The terms Bl
and 32 are arbitrary complex constants which may be selected to give
fields of circular or linear polarization. Both Ex and Ey are linear
in the transverse dimensions and satisfy Maxwell's equations to first order
in x and y . The quadratic EZ expression results from forcing the
assumed transverse fields to satisfy the field equations. The analysis
here is to be a linearized one, and so Ez will not play a part in the
interaction equations, but it is required to explain the energy exchange
in the quadrupole.

The filamentary beam model used in Chapter II will also be used here.
The use of this model may be questioned on the basis of the fact that, in
a beam of finite diameter, all of the electrons in the quadrupole do not
see the same transverse field to first order in the displacement. Ir the
coupler calculations this was true and it was possible to describe the
beam motion in terms of the motion of the center of mass of the beam in
the complex calculstions. Fortunately, the same procedure may be used
here.

A real beam may be considered to be a bundle of fllamentary beams.
In the case of the coupler field all of these filaments experienced the
same force, while in the quadrupole field the situation is somewhat
different. By substituting x, + x; and y, +y, , where (xl,yl)
is messured from the individual filament position (xo,yo) , for x
and y 1in the first two of Egs. (5.1), we find that filaments at

different dc positions (x ) are in exactly the same quadrupolar field.

Y
In addition, there is a cogplgr type field which is dependent upon the
position of the filament. If the synchronization condition is correct
this last field will lead to undesired beam expansion by exciting one or
more of the transverse waves, which are then amplified by the quadrupole
field in the same way as in an ordinary transverse wave parametric

amplifier.l9

Another way of saylng this is that the quadrupolar field
will amplify initial zero frequency excitation on the beam filaments.
Thus, in the cases to be studied in this chapter, in which the quadrupole
18 synchronous with the fast cyclotron wave, we should avoid having de

beam rqtation at the cyclotron frequency since this represents a zero
[ ]
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frequency cyclotron wave. In the next chapter it will be seen to be
necessary to have some dc beam rotation to avoid expansion in the *
quadrupole which is synchronous with the synchronous wvaves on the beam.
The crucial point of this argument is that we may employ the filamentary
beam model for finite size beams, if care is taken to avoid the zero
frequeney filamentary beam modes whieh can be amplified by the quadruple
field.

The equations of motion for the filamentary beam are then obtained
by substituting Eqs. (5.1) into (2.1) in Chmpter II. This yields equations
for the velocities and displacements wiich have some coefficients that are
periodic in both t and 2

dv dv J(wqt - qu)
—x+u —-—’&.f-a)v = -Re[le+B2y]e

ov ov t -k
S;x +u, —L -ov = - Re[Bzx - Blyﬂ ej(ah qz)

dx x
§'+uogz--vx = 0

LruE-v,

Bl¢tekjaer and Wessel-Berg19 show that these equations may be solved by

n
(@]

(5.2)

making substitutions of the form

n i

for each displacement and velocity. Writing the propegation -constant as
shown in terms of 7y facilitates the solution of the system of equations.
Next, we define the wave amplitudes just as in (2.13) of Chapter II. Note
that the numerical subscripts here correspond to Siegman'slo definitions
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which were given in Eqse. (2.13) and are different from those used by
Wessel-Berg and Blgtekjaer:

1 1
A = Edk (vx,n =3V o) A2,n JEk (vx

+
1,n y,n 2 y,n

1
A = ik (vx,n AR O Jmhxn)

3’n y,n
1
Ah,n = 3k (vx,n + va,n Oy - Ja%xn) ’ (5.4)
vhere
=nfliom
k = 2 w, e Iy -

It 1s found convenient to define

[32 + JBl]

(B, - 38,1 , (5.5)
0 2 1

which represent the positively and negatively polarized components of
the quadrupole field as may be seen by considering the complex forms of
Eqs. (5.1). Finally, by combining (5.2), (5.3), (5.4) and (5.5), the
coupled mode equations are obtained:

w, )
=y - ;— -n u - kq ®1,n C+32,n-1 + c+a'1&,n-l
0 Q
¥, %,
+ C_aa’ 1 + C-ak,n+l

ey e
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and
o %
~Jly+ —-n - kq ae,n = C-al,n-l + °-‘3,n-1
u u
(0] 0
Wy
+ 08By na * 08300
a4
B A i | SRR R S I S
0
+ Cfae,n+l + Cf"'h,ml
%
=df7.-m» - kq f4,n ° q-al,n-l tCa ,n-1
u
0
* C e Y CP3 a (5.6)

As in Chapter II, when the exponential variation has been omitted,loyer
case letters are used for the amplitudes. Equations (5.6) relate the
amplitudes of the waves at the frequency w + nuh to,those at the
frequencies o + (n-l)ah and  + (n+l)uh . We shall be concerned,
for the most part, with the solution of these equations for some special

cases.

B. SOLUTION OF EQUATIONS

Equations (5.6), subject to the conditions specified on the beam at
the entrance to the quadrupole, describe completely all small signal
interactions possible between the four basic transverse waves and the
assumed quadrupolar field. The solutions for the same synchronism
conditions that are of interest in this chapter (synchronism with the
cyclotron waves) &8s well as in the next chapter - (synchronism with the
synchronous waves) have been considered in the reference cited before.
However, in that case, the goal was to use the quadrupole interaction in
a parametric type of device in which there would be no phase relation
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between the input beam waves and the quadrupole field. This results in
the omission of a term in the final power expressions. This procedure is
not allowable for the present discussion since, in the case being studied
here, the beam waves will interact with the quadrupole and will establish
the circuit field so that the quadrupole phase is related to the input
phase of the beam wave.

As discussed by Blgtekjaer and Wessel-Berg,lg the solution to (5.6)
to first order in the quadrupole field amplitudes C+ and C_ can be
found by a simple perturbation procedure. We follow this same approach
here, but keep terms which were omitted in the previous work due to the
assumption of random quadrupole phase. In carrying out this small quadrupole
amplitude analysis, only the frequencies represented by n = 0, £+ 1 are
considered since other values of n represent interactions which are of
second order in the small coefficients which couple the beam to the
quadrupole. That is, we include the signal frequency  and the sum and
difference frequencies, ah + @ and ah - @ , which arise in the beam
as a result of the parametric type of interaction. As a result of this,
a set of homogeneous equations such as (5.6) for n =0, + 1 is obtained.
The requirement that a nontrivial solution exist is that the system

determinant be zero:

D+(-l) 0 0 0 c* 0
o) . *
D,(0) 0 c, 0 C*
0 0 D (+1) 0 c 0
+
* = 0 , (5.7)

0 cx 0 D_(-1) 0 0
C_ 0 cx 0 D_(0) Y

0 C_ 0 0 0 D (1)
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vhere

[)) [/\)
D(n) = J|-7r+—=+n[-d-x
u u Q
] 0 0
" w w
D(n) = Jf-7-=+n2-xll. (5.8)
) i B % f

The synchronous waves have been neglected in (5.7) because the
synchronism conditions which are imposed below in Bq. (5.9) result in
negligible interaction with the synchronous waves if the quadrupole is
Just a few wavelengths long, measured at the beam velocity. Due to the
small quadrupole interaction impedance which is found in practical circuits,
the circuit will be mych too long to allow significant cumulative interaction
with the synchronous waves.

The reference shows that solutions of (5.6) which are of first order
in small quantities are obtained for the synchronism conditions

w (V]
_9._kq= t2-% | (5.9)
Yy Yo

When uh = 2w , as 1s the case in the frequency doubler, the upper sign
leads to synchronism between the fast cyclotron wave on the beam at the
entrance to the quadrupole circuit and the assumed fields, while the lower
sign corresponds to synchronism with the slow cyclotron wave. This may
be seen by substituting a>q/vq into (5.9), solving for the quadrupole
phase velocity vq , and setting ah =20 .

1. Synchronism Condition 2wfu, - k = +2w .
As pointed out above, the condition given by

2w a%
— -.kq = 4+ 2 - (5.10)
u u

0 0
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results in a quadrupole field that is synchronous with the fast cyclotron
wave. It is this case, with k = O , vhich has been the badis of the
studies on transverse wave frequency doubling in the past, and we shall
begin with it here in the general formulation of cyclotron wave doublers.

The determinant (5.7) represents a sixth order pplynomial in y .
However, the approximate values of y that are different from the
unperturbed solutions are obtained by retaining only the part of the
determinant in which the diagonal elements are of the order o. magnitude
of the small off-diagonal terms. Upon substituting (5.10) and (5.8) into
(5.7) and noting from (5.3) that the unperturbed values of y are % Be
for the cyclotron waves, it is found that the significant portion of (5.7)
1s the fourth order determinant.

D+(-1) 0 c* 0
0 D+(0) 0 c*
= 0 . (5.11)
C_ 0 D (0) 0
0 c_ 0 D (1)

In the case of a frequency doubler, which is the case we are concerned
with here, the quadrupole frequency will be twice the signal frequency.
It is then found that the four values of 7y , which are different from

the unperturbed solutions, are
y = tJJCC* '+ B, - (5.12)

Upon recalling that the z+variation of the wave amplitudes is

e"j(7 Bt nkq) , as indicated in Eq. (5.3), it is seen that the
imaginary part of 7y results in exponential growth and decay of the wave
amplitudes excited on the beam.

The above calculation of the beam wave propagation constants in the
quadrupole region is the first step in describing the interaction between
the beam and the circuit. The next step is to substitute (5.12) into
(5.6) and apply the beam entrance conditions to determine the exact nature
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of the interaction. In doing this it is necessary to note the relationships
vwhich are valid for the negative frequency terms arising from the choide
of n= -1 . It canbe shown that'?

- *
a2,-(1),—1'1 8‘l,m,n ' (5.13)

It is then found that, for the present case, in which the assumed quadrupole
is exactly double the input signal frequency, the wave amplitudes in
the quadrupole region are given in terms of the entrance amplitudes by

ax - (B, + B,)z]
al(O) cosh om e

A (2)

sk - (8, - B2l

AE(Z) a2(0) cosh az e

c Jlax - (B, - B,)2]
+ — aE(O) sinh 0z e
o

c J[3at - (38, - B,)z)
J3 = al(O) sinh oz e € o’® ,  (5.1k)
a

+

where

Q = IC_I . (5-15)

These expressions have been normalized so that the sum of the squares of
the amplitudes of the two frequency components represents the total average
power. It is in this connection that the \/? arises in the third harmonic
fast cyclotron wave amplitude. The equivalent of (5.14) has been obtained
by Blftek,ja.er and Weseel-Berg.29 However, due to the uncorrelated phase
assumption indicated above, their published resultsl9 cannot be used to
explain the frequency doubling interactions which are described in this
chapter.

Equations (5.14) show that an initial slow cyclotron wave on the beam
at the frequency ® grows in amplitude and also gives rise to a growing
fast cyclotron wave at the third harmonic frequency. An initial fast
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cyclotron wave continues through the quadrupole region as a fast cyclotron
wave at the input frequency, but its amplitude is dependent on the phase
of the quadrupole field. Since the quadrupole field is produced by the
energy given up to the circuit by the beam, the quadrupole phase will be
determined by the beam entrance phase and the external loading on the
quadrupole.

The fact that C+ does not appear in the above discussion ghows that
the interactions which are under consideration do not involve the positively
polarized qua.rupole field component. The presence of this field component
represente wasted stored energy. Consequently, for cyclotron wave frequency
doublers, the highest value for the interaction impedance will be obtained
" by using circularly polarized quadrupole cavities. However, practical
considerations involving the ease of design and excitation of such
structures may well dictate the use of linearly polarized quadrupole

structures.

2. Synchronism Condition 2wfu; - k = -2 o fuy -

The procedure for finding the perturbed propagation constants for
the synchronization condition

l
i
w
L[]
)
n
|

(5.16)

1s the same as for the previous case. Substituting (5.16) into (5.8)
and keeping only that portion of the system determinant (5.7) which has
small dlagonal terms ylelds

D+(O) 0 c, 0
0 D (1) 0 c
¥ Tl=o0 . (5.17)
cy 0 & D (1) 0
0 A 0 D_(0)

e s st
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It is then found that the four values of 7y which are different from the

unperturbed solutions are: o

y = £3Jcc¥ep . (5.18)

Thid result shows that the interaction is entirely with the positively
polarized quadrupole field component while the previocus case involved
the negatively polarized field. The equations describing the wave
excitation in the quadrupole region are obtained by substituting (5.18)
into the amplitude equations and applying the conditions on the cyclotron
waves at the quadrupole entrance. Finally, then, the results are:

c, Ilax - (B, + B,)e]
Al(z) = al(o) cosh Qz + — a{(o) sinh oz| e
a

c, 33t - (38, + B)]
+ J3= a2(0) sinh az e :
o

Jlat - (Be - Bc)z]
A2(z) = aE(O) cosh oz € s (5.153)

where

a = JCcc*'. (5.20)

*
PO

These equations are normalized so that the sum of the squares of the
amplitudes of the two frequency components gives the total average power,
and as a result the J?' appears in the third harmonic term.

A comparison of the above results with those given in (5.14) shows
that the roles of the fast and slow cyclotron waves have been reversed.
Otherwise, the discussion is the same, Blﬁtekjaer and W'essel-Bergl9
have discussed the present synchronization conditions for the case in
which @ # 2» and point out that it can lead to an oscillator which
requires an input. When we discues the second harmonic pover output in
the next two sections, 1t will be seen that the present interaction
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scheme can lead to more second harmonic power output than fundamental power
input and that an instability will give rise to oscillations in a very
unusual fashion.

C. POWER CONVERSION EFFICIENCY

We now use the resulte of the last section to study the efficiency
characteristice of the cyclotron-wave frequency doublers. The device under
consideration here consists of an input coupler that excites either or both
of the cyclotron waves on a beam and is followed by a quadrupole circuit.
The quadrupole has & field component that 1s synchronous with either the
fast or the slow cyclotron wave, depending upon the type of interaction
desired. The quadrupole structure is shorted at each end to make it
resonant at exactly twice the input signal frequency. The beam delivers
energy to the quadrupole, if it is loaded properly, and second harmonic
power is available from the cavity.

The second harmonic power which has been given up by the beam to the
cavity can be calculated by determining the net power decrease on the beam
as a result of the interaction. This power is obtained by calculating the
power carried by each frequency component in (5.14) or (5.19) and sub-
tracting the cyclotron wave input power,

1. The Fast Cyclotron-Wave Doubler
The first synchronism condition of interest is the one in which the

quadrupole has a traveling-wave field component that is synchronous with
the fast cyclotron wave. In this case the power gived up to the assumed
second harmonic field is calculated from (5.14). It is found that

Pq = -2 “al(o)|2 + |a2(0)|2)einh2 al

+ 8inh of cosh ol Re {ae(o) aa(o)e"j¢°} , (5.21)

vhere

c. = lc| eJ7-
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and 4 1s the length of the quadrupole., This may be written in terms

of the entrance phase 6. of the fast wave by noting that

0

39, 39, =38,
Re (|aj(0)] & = |ay(0)] e e = a,(0) a3(0) cos (20, - #.) .(5.22)

The question as to the validity of the small signal power conservation
statement used in obtaining (5.21) can be raised, particularly in view

of the fact that several frequencies are involved. However, we observe

that (5.21) is the relation obtained by applying the Manley-Rowe equations,Bo
and in addition the same result is obtained below by another approach.

Since the guadrupole field which has been assumed arises from the
excitation of the circuit by the input cyclotron wave, there will be a
relation between the cyclotron wave phase 96 and the quadrupole phase
¢_ which is determined by the nature of the load presented by the
quadrupole. In order to see this more clearly, and to verify (5.21), we
compute the complex power given up to the quadrupole circuit by the beam.

This may be dbne by evaluating the rf part of the integral

Pc = -%’\[/‘ E(x:y,z)-j*(x’}"z)dxaydz ’ (5‘23)

where E 1s the field due to the quadrupole and J 1 the current
density. Since the beam is assumed to be filamentary, the current can

be represented by a delta function in the transverse plane so that

1
P = .1 f f(x,y,z).{*(x,y,z) dz , - (5.24)
[ 2 0
where
T - od - (5.25)

In the current expression p, 1s the charge per unit length and (x,¥,2)
is the total velocity of the beam. 1In the previous section it was observed

that only the positively polarized portion of the field represented by C_
- 89 -
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interacted strongly with the beam. After noting that, we obtain the
important contribution by considering Eqs. (5.1),(5.5) and (2.20). In
doing this it is important to remember that x and y. in (5.1) are
real quantities, while in (2.20) they are complex. Finally we obtain

u ot - k 2)

E, = -J—2—C_ (A -Aa%)e ° ¢

X 1 2
(e/m)k
u ot - kz)

E = -—2—¢_ (4, - A%) e T 9

y (e/m)k
u k J((Dt -k Z)

E = - —2—¢ & (A, - A"2‘)2 e & (5.26)

z (e/m)k 2ke,

Also, from (2.4) and (2.13) we obtain the components of the beam current

which contribute to the second order power expression:

<
[

Po
z °0x"3;(A1+A2)

<
|

o
i, = iy = UPo (5.27)

The complex power delivered to the quadrupole and its load 18 finally found
by combining (5.24), (5.26) and (5.27), noting that @y = 2w , to obtain

Pc = - 2a2(0) ag(o) [sinh® ad + cos(28, - $.) sinh ol cosh od]

- 22, (0) a2(0) stnh” ob + j2(ot) a,(0) ax(0) sin(ze, - §.) . (5.28)

-
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The real part of the complex power is exactly the expression (5.21) as it
should be. We see from (5.28) that when the loaded quadrupole is excited
at resonance, that is, when the reactive power is zero, the phase is
automatically adjusted so that

(eeo-¢_) = 0 or x . (5.29)

The interpretation of this quantity is simple when we note that the phase
of either the quadrupole field or the beam wave represents a reference
time when the field goes through its maximum value. That is, we could

write the time dependencies as

Jat + 6,) Jaft - t,)
e = e
and
S+ gy P t)
Then we have
(26, - #) = 2wt -t)) = 20 , (5.30)

and we see that © represents the phase, referred to the fundamental
frequency, of the input fast cyclotron wave with respect to the quadrupole
field.

Finally then, substituting (5.22) into (5.21) and using a trigonometric
identity, the real power delivered to the quadrupole can be written as

P A (o 2
-———ﬁL—Z? = - 2 sinh 1+ 12;——215 sinh of
la,(0)] |a(0)]
+ (1 - 2ein 8) cosh ol . (5.31)
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We see that the last term here can make Pq positive and therefore can
give rise to power output from the quadrupole. It is evident that

8in 6 = £+ 1 represents maximum second harmonic power, while s8in 6 = O
represents power delivered to the beam by the quadrupole. Two special
cases of (5.31) are of interest.

First, consider the case in which we have a fast cyclotron wave
entering the quadrupole. This is the case which has been studied before
for w= w, as indicated at the beginning of this chapter. The power
conversion efficiency, Ne is now

P
ne = -~ = 1 - c032 9eaa£ - e-aa£ sin2 e (5.32)

Ja,(0)12 '

We see that the efficiency depends upon © (as shown above, © is
determined by the phase of the quadrupole load) and of . It is inter-
esting to look at the conversion efficiency under several conditions.

First let us look at the maximum efficiency attainable as a function
of © . Differentiating (5.32) with respect to o and equating ihe
result to zero determines the optimum of for that © . For a given
length this is the same as optimizing the quadrupole load. We obtain as
the optimum condition

b | a2 (5.33)

which, when substituted back into (5.32), gives

= 1- |sin 28| . (5.34)

nemax

This is plotted in Fig. 5.2 along with a similar curve calculated, for

a special case, from a ballistic analysis by Lindsay and Ca,unter.‘?2 Their
calculations were for the case when the signal fregquency is equal to the
cyclotron frequency while the results here are for arbitrary o . The
deviation between the curves is due to the small signal assumptions inherent
in the wave analysis. Complete agreement is obtained if small signsl
approximations are used in the ballistic analysis.
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The optimum conditions are obviously 6 = n/2 which, we have shown,
means that the quadrupole presente a purely resistive load to the beam.
If the cyclotron wave excitation is not exactly at the resonance of the
loaded quadrupole, then © is different from x/2 , as indicated by (5.28),
wvith a resulting degradation of the doubler performance as shown in Fig. 5.2.
Using the optimum value of © in (5.32) ylelds

qe = 1-e . (5.35)

This is plotted ;n Fig. 5.3 along with the result for another case of
interest. Physically, this result means that, due to the assumed quadrupole,
fields, the energy carried by the fast cyclotron wave is absorbed by the
quadrupole exponentially. The exponential variation arises from the linear
dependence of the electric field on the transverse displacement. The
maximum amount of second harmonic power which could be obtalned is Jjust
equal to the input fundamental power, and in that case the beam would

emerge from the quadrupole with no transverse modulation. This requires

an infinitely long quadrupole.

A second case of (5.21) that is of significance arises when both the
fast and slow cyclotron waves have equal amplitudes at the quadrupolg
entrance. It was shown in Chapter IV that it is possible to excite the
two cyclotron waves equally, even though they have vastly different phase
velocities. Since the waves carry power of opposite sign it is possible
to excite large wave amplitudes with 'a small expenditure of power in the
coupler. This could lead to a doubler with high conversion efficiency.

In this case we have in Eq. (5.21) |a2(0)|2 - |a1(0)|2 , glving, on
simplification,

e = 1- eaoef,+ 2 sin® © sinh 20 - 2 sinh® ol . (5.36)
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We again look for the maximum efficiency for values of © by varying
af . The requirement obtained is

2o 2 - cos 20
e = m . (5.37)

By substituting (5.37) into (5.36) and making the numerical computation,
we find the dependence of the maximum efficiency on © 1is that shown in
Fig. 5.2. A plot of (5.31) for the optimum condition © = x/2 is shown
in Fig. 5.3, along with the curve for the previous case. In the present
case, the maximum conversion efficiency of 27% is obtained for a finite
value of of

These results can be understood from a physical viewpoint by referring
to Eqs. (5.19). The fast cyclotron wave at the input delivers its power
to the circuit just as in the previous example, while the slow cyclotron
wave gives rise to two growing waves. One of these waves is at the input
frequency and carries negative energy while the other is a third harmonic,
positive energy cyclotron wave. It is this growing third harmonic wave
which absorbs energy back from the quadrupole and results in the conversion .
efficiency reaching a maximum at 27% and then decreasing with larger values
of the parameter ol

While it might be expected that just a slow cyclotron wave excitation
at the quadrupole input would lead to a growth phenomenon, inspection of
(5.21) shows that the beam absorbs energy from the assumed fields in the
quadrupole, agailn as a result of the third harmonic, fast cyclotron wave.
As a result, this case is of no interest when the quadrupole is synchronous
with the fast cyclotron wave.

2. The Slow Cyclotron-Wave Doubler
The second synchronism conditlion of importance is the one in which
the quadrupole cavity has a fileld component that 1s synchronous with the

slow cyclotron wave. In this case the power given up to the assumed
second haymonic field is calculated from (5.19). It is found that

P, = 2 (lal(o)la + |32(O)|2)sinh2a'£

+ sinh of cosh of Re{}l(o) al(O)e'J¢{} . (5.38)
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Ir al(o) and aa(o) are interchanged, this result is the negative of

the power expression obtained in the case of synchronism between the

fast cyclotron wave and the quadrupole field. Bquation (5.38) shows that
the beam delivers power to the quadrupole for any beam entrance condition.
The discussion regarding the relative phase between the input slow cyclotron
wave and the quadrupole is the same, except that in the present case there
is no maximum efficiency for a given phase relationship. It is apparent
that the optimum relationship is given by

cos (20, - #,) = +1 . (5.39)

From (5.17), which is correct here aleo, if al(O) and 32(0) are inter-
changed and the sign of Pc is changed, we see that this corresponds to
a purely resistive quadrupole load. In this case the second harmonic
power delivered to the quadrupole is given by

P, = Ial(0)|2 (e?‘“’r’ -1) + |a2(0)|2 (cosh 20 - 1) . (5.%0)

Thie result is plotted in Fig. 5.4 for the cases in which only a fast
wave input 1s supplied and in which both input waves have equal amplitude.

The characteristics of the slow cyclotron-wave doublers are distinctly
different from those of the preceding case, as would be expected. Since
a negative energy wave is synchronous with the circuit, the beam gives up
some of its dc energy to the cavity in the form of the second harmonic
power dissipated in the quadrupole. Thus this device can be viewed as a
kind of driven oscillator that converts dc energy to the second harmonic
frequency under the influence of the fundamental modulating signal on the
beam. This interaction has been studied by otherslg for the case of
unrelated beam wave and quadrupole frequencies, and it was noted that
power gain was still possible in this case.

D. EFFECT OF THE LOAD IMPEDANCE

The results obtained in the previous sections show the nature of the
frequency doubling interactions employing a quadrupole circuit interacting
with the cyclotron waves, but they do not give a satisfactory final

-97-




3-0

2.5

2.0

1.5

1.0

a. Fast cyclotron wave input

b. Equal fast and slow cyclotron
wave input

I ] 1 1 J

0.2 0.4 0.6 0.8 1.0
of

FIG. 5.4--Conversion efficiency for a quadrupole that is synchronous

with the slow cyclotron wave,




formulation of the problem since the effect of the quadrupole cavity load
: impedance is not given explicitly in thonelequationl.
In order to do this we require a relationship between the growth
parameter & and the power being delivered to the quadrupole cavity and
the external load. We define a loaded quadrupole resistance by

v2
R = —A— N (5.1‘1)

q
2P2w

wvhere Vq is the potential of the quadrupole circuit, corresponding to

the field that is synchronous with the beam wave, and P% is the total
second harmonic power given up to the loaded circult by the beam. The
relationship between the coefficients C + and C_ and the quadrupole
voltage Vq can be calculated by combining (5.5) with (5.1) and

integrating the electric field from the axis of the structure out to the
equipotential surface that defines the quadrupole circuit. In this way

. it is found that, for either a linearly or a circularly polarized quadrupole,

the potential is related to the polarization coefficients by
3 S (e/m)v
j/lc+l +le | = y2—34 . (5.42)
¢ ®use

Finally, using (5.41), we obtain the relation

2e/m
\fle 1 + lel? - m“ﬂ/nqp?_m : (5.43)
c 0

Now what is really desired, in order to make the final results exhibit
the information in the most useful form, is to exprese (5.43) in terms
of the unloaded quadrupole cavity resistance and the power which is

" dissipated in the external load. The locad resistance is given in terms




of the unloaded value by

R = R ———o— , (5.44)

while the power delivered to the external load is related to the power
glven up by the beam by

P = P, — (5.45)
2l 2w c'lext

1+
%

Finally, by substituting (5.44) and (5.45) into (5.43), the desired results
are obtained in terms of the Q of the cavity loaded by the external
resistance and the power dissipated in the external -load

. 2 7
Vie, 1% + c.|? = e/m2 VR Py, =25 (5.46)

w

can QO

Thus, Eq. (5.46) can be substituted into (5.24), (5.25) and (5.40) to
obtain the conversion efficiency of the cycl:tron wave frequency doublers
in terms of known parameters and the power on the fast cyclotron wave at
the quadrupole entrance. The transcendental equations obtained in this
way can be solved aumerically to obtain the desired results. In plotting
the_efficiéncy and the second harmonic power output as a function of the .
pover inpdt, it is very convenient to form universal curves by normalizing
the power so that the normalized power p 1is related to the actual

power P by

8(e/m)? 42
P = |37 TR (5.47)

wcuo a
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Because the linearly polarized quadrupole is the most likely structure
to be used, all of the calculations carried out below are for this case.
However, the curves have been normalized so ‘that,  if a circularly polariged
quadrupole is of interest, it is only necessary to replace Rqo by 2Rqo
in (5.47) to make the efficiency curves valid for that situation.

l. Fast Cyclotron-Wave Doublers

The normalized second harmonic power that is delivered to the load
can be expressed in terms of the power input on the fast cyclotron waves
by means of (5.24), (5.25), (5.32) and (5.33). For the case in which only
a fast cyclotron wave existe at the quadrupole input it is found that

(5.48)

§

Pouy, . ext 21
= 3 sinh Py, (- cos 2¢) - 4 ein 3
1+ ext Q
Py Qo 0
L -

In these equations Poug, is the normalized second harmonic power delivered
to the load and Py is the fundamental power input on the fast cyclotron-
wave,

The curve showing the conversion efficiency and output power as a
function of the input cyclotron wave power, when only the fast cyclotron
wave is present, is curve a in Fig, 5.5. At low power levels the
output power is proportional to the square of the input power as can be
seen by considering (5.48) which approaches

l .
% (5.50)

p =
2ul, Q
(1+—i) 1+ =Xt
Qext Q0

. (5.49)
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for output power levels such that

%

<KL —

Qext

Powl

The output is therefore maximum when Qext/qo is unity. PFor large output
power such that

the conversion efficiency approaches a constant so that the output power
becomes a linear function of the input power

Past * G P - (5.52)

From these results it is apparent that the optimum value of Qext/Qo
is dependent upon the input power. For low level operation 1t is desirable
to make Q,ext/Q0 unity, while for high level operation Qext/q0 should
be large. Generally, it is safe to assume that high conversion efficiencies
are desirable and the usual operation of the frequency doubler would be in
the region for which (5.51) is valid.

The characteristics of the frequency doubler when the input to the
quadrupole consiste of fast and slow cyclotron waves of equal amplitude
is somewhat more complex than the previous case, as 1s evidenced by
Eq. (5.49). The conversion efficiency as a function of the input power
on the fast cyclotron wave is curve b in Fig. 5.5. It was poihted out
in the previous section that the efficiency of a doubler operating in
this way reaches a maximum and then decreases due to a growing third
harmonic wave on the electron beam. This is reflected in Fig. 5.5 where

- 103 -




[V

the maximum efficiency which can be attained is

0.27
- 3 . (5.52)

1+ ext
%

“mx

The output power at maximum efficiency is

Doy, = 025 >, (5.53).
Qex‘l:
and the input is
| Q'c)
P, = 0.93 [1+ . (5.54)
Qex1;

The efficlency decreases slowly with increased input power and the output
power saturates at a value given by

Q
= 1,1 —&
t Q

ext

Pout, . (5.55)

On the other hand, at low power levels the output is given by

L
2
e (1+Q°)(1+s-°i*=)pw’
%

(5.56)

Q

ext

which is four times the value for the case in which there is only a fast
wave entering the quadrupole. As before, the optimum value of Qext/Qo
is dependent upon the input power, but in general the operation will be
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near the maximum conversion efficiency where it is desirable to load the

. cavity heavily.
Although the conversion efficiency in the quadrupole is found to be

* small in the equal fast and slow cyclotron wave doubler, the possibility
of gain in the twisted input coupler described in Chapter IV makes this
device a significant competitor of the more usual fast cyclotron wave
doubler. As far as overall efficiency is concerned, it would even be
Possible to exceed one hundred per cent conversion efficiency; that is,
the second harmonic output can exceed the fundamental input.

The amount of second harmonic power that can be obtained from either
of the frequency doublers described above is determined by the beam
interception conditions in the quadrupole. The maximum input power for
the first doubling scheme described above is that power which causes
interception at the quadrupole entrance since the wave amplitude decays
exponentially inside of the quadrupcle. The same interception condition
can usually be used in the case in which there are equal amplitude fast
and slow waves at the input, since it is found that the beam expands a
negligible amount when the operation is adjusted to the peak of the
efficiency curve shown in Fig. 5.5.

. 2. 8low Cyclotron-Wave Doublers
In this case, the normalized power expressions are obtained by
substituting (5.47), (5.46), and (5.45) into (5.38) or (5.40). For the
optimum case with only a slow wave input we obtain

Poug, 1 Q'ext
= e exp 1 P | (5.57)
P o |\ T
L © o

vhile, if both the fast and slow cyclotron waves have equal input magnitudes
and the correct phase relationship so that © in (5.38) is zero, the
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efficiency 1is
Poug, 1 ext
= Q exp ——— pm -1 + cosh — pm -1, (5.58)
ext
Py 1+ === % %

%

As before, Pout, is the second harmonic power delivered to the load and
P, is the fundamental power input on the fast cyclotron wave.

The curves showing the conversion efficiency as a function of the
input power are given in Fig. 5.6. It can be seen that the efficiency
characteristics of the slow cyclotron-wave doublers are distinctly
different from those of the fast cyclotron-wave doublers. The conversion
efficiency of the quadrupole doubler that is synchronous with the slow
cyclotron wave can be greater than one hundred per cent for either
excitation shown in Fig. 5.6. This result simply means that some of the
dc beam power is being converted to second harmonic power under the
i1fluence of the fundamental modulating signal.

We observe that the small-signal theory sets a limit on the fundamental
cyclotron wave input power that ylelds a stable frequency doubling inter-
action, and if the power is increased beyond this point the quadrupole
efficiency will increase until nonlinearities cause saturation. This
behavior is very much like that which occurs in a monotron oscillator,
except that in the present case there is no rf field at the equilibrium
position of the filamentary beam. Consequently, the start oscillation
condition is related to the fundamental power input,which contains both
the beam current and the displacement of the beam from the axis. This
phenomenon sets a limit to the conversion efficiency that can be obtained
with a given value of c;zext/f.;z0 .

The external loading required to achieve the maximum conversion
efficiency is dependent upon the operating conditions. In principle,
the maximum efficiency of 390 per cent is obtained when the quadrupole is
loaded heavily so that Qext/QO approaches zero. However, the practical
matter of beam interception modifies this picture. Figure 5.6 shows that
the input power required to obtain the maximum efficiency increases with
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FIG. 5.6--Conversion efficiency of the slow cyclotron-wave frequency

doubler.
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decreasing Q_ xt/QO 80 that it would require an infinite input signal in
order to obtain the peak efficiency. Thus, we see that the maximum
efficiency will be less than 390 per cent, and that this maxiwum will be
determined by the interception conditions in the quadrupole.

It i8 of interest to investigate the conditions that must be met in
order to obtain the maximum efficiency from the doublers described above.
In order to do this the beam excursion in the guadrupole must be calculated
by substituting (5.19) into (2.20). The expression for the maximum amplitude
obtained in this way can be written in.terms{of the normalized variables
introduced in this section, and it is found that the maximum excursion
is related to the second harmonic power by a simple expression. In the
case of a slow wave input only we obtain

2
Qext r \¢
= o, = | 108 [ , (5.59)
QO r(o)
while for equal fast and slow wave inputs ~
Q 2 :
t T 1 T
ex meL 2 '103( m ) % + 5 Jl + 2 _(22 , (5_60)
% *(0) n

where r(0) is the initial maximum excursion and T is the maximum
excurgion within the quadrupole at a load power level pm .

These results can be combined with the efficiency characteristics
shown in Fig. 5.6 to obtain the optimum operating conditions for the slow-
wave doublers. The value of (Q_ . /Q ]y et the limit points in the
figure is 2.55 for a slow wave input and 1.81 for equal inputs of the two
waves. By using these values in (3.59) and (3.60), we obtain the maximum
excursion in terms of the initial maximum excursion

r, = 2.2 r(0)

~ 108 -

T




and

r, = L.T70 r(0) ,

respectively. Then the greatest efficiency is obtained when T is

equal to the maximum excursion allowed without beam interception, that

is, the quadrupole radius minus the beam radius. Consequently, the
maximum efficiency will be obtained when the input power level is adjusted
80 that the initial maximum excursion is related to the beam excursion
that causes interception by the appropriate expression above, and then the
coupling to the external circuit is adjusted so that the maximum output
without interception is obtained. The actual efficiency obtained in

this way is dependent upon the quadrupole parameters, but we may say that,
by adjusting the length or R of the quadrupole, large conversion
efficiencies can be obtalned.

q0

E. SUMMARY OF CYCLOTRON-WAVE DOUBLERS

The analysis presented in this chapter has shown that the two basic
types of cyclotron-wave frequency doublers involve a quadrupole circuit
that 1s synchronous with either the fast or the slow cyclotron vave.

The first case resultéfin a maxiﬁum cdnversiéﬂ efficiency 6f one hundred
per cent, while the slow wave interactions are characterized by an
efficiency that may exceed one hundred per cent. Consequently, the latter
case is of considerable interest as far as high efficiency frequency
doubling is concerned. However, these devices have the disadvantage of
requiring circuits with much smaller phase velocities than does the fast
cyclotron-wave doubler. This is detrimental because the interaction
impedances of the lower phase velocity circuits are generally smaller,
and because the thin beam assumption is not as good an approximation as
the wavelength of the circuit wave decreases. Bven so, the slow wave
doublers phould, with proper circuit and beam design, result in much
higher efficiencies than are obtainable by means of passive interactions.

The quadrupole interactions with the synchronous waves that result
in frequency doubling are considered in the next chapter. In general,

.
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it is found that the synchronous-wave doublers are analogous to the cyclotron-
vave doublers, and a more complete summary of transverse-wave frequency
doublers is given at the end of that chapter. In particular we can say

that the active frequency doubling mechanisms employing the synchronous

vaves look more attractive than those involving the cyclotron waves be-

cause of the different circuit velocity requirement.
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CHAPTER VI
SYNCHRONOUS WAVE FREQUENCY DOUBLERS

The general approach to the analysis of transverse wave interactions
which is offered by the Blﬁtekdaer and Wessel-Berg coupled-mode theory
outlined in Chapter V.A leads naturally to the discussion of synchronous
wave frequency doubling interactions as well as of the cyclotron wave
doubling schemes presented in Chapter V. This is a new class of frequency
doubling interactions which can be expected to lead to devices that are
different from those employing the cyclotron wave. This difference is
a result of the identical phase velocities of the two synchronous waves,
and the new role played by the negative energy beam wave. The purpose
of this chapter is to develop the theory of this new class of devices
and to compare their ultimate capabilities with those of the cyclotron
wave doublers.

The synchronous wave frequency doubler consists of an input coupler
which excites a combination of the two synchronous waves on the beam
and an output quadrupole cavity in which the frequeicy conversion actually
takes place. The coupler theory has been presented earlier, and so we
are primarily concerned with the quadrupole interactions here. The
analysis properly begins with Section A of Chapter V, where the basic
coupled mode description of quadrupole interactions is described. The
discussion will begin with the solution of Eqs. (5.6) for the synchronism
conditions which lead to strong interaction between the quadrupole cavity
and the synchronous waves on the beam. The assumptions involved in this
chapter are the same as those described in the introductory comments and
in Section A of Chapter V. Basically, these are the assumptions that
the beam interacts with only one traveling-wave component of the field in
the resonant cavity, and the filimentary beam assumptions. The statements
vhich jwere made in Chapter V regarding the validity of these approximations
are generally true in the present case also.
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A. SOLUTION OF THE COUPLED MODE EQUATIONS

It has been noted that one of the synchronism conditions which lead

to perturbed solutions of (5.6) is .
(V]
4.k = 0 . (6.1)
uo 4

That is, there will be a strong interaction between the:synchronous waves
on the beam and the quadrupole cavi@y when the phase vglocity of a travel-
ing-wave component of the field is equal to the beam vélocity. The solu-
tions of (5.6) which were obtained in the reference are, as in the previous
case, inadequate for the discussion of frequency doublers because it was
assumed that there was no correlation between the synchronous wave signal
input and the quadrupole field. We therefore begin the discussion with

an evaluation of the perturbation in the propagation constant perturbation
y , and the wave amplitudes for the synchronism condition (6.1).

It 18 reasonable to neglect the cyclotron waves in the dlscussion of .
(5.6) sincé'there will be no cumulative interaction in a long quadrupole
for the condition given in (6.1). Also, a first approximation will be “
to neglect all frequencies other than o , ah.+ w , and ah -w as
was done for the cyclotron wave case. However, it will be found here that
this assumption is valid only if the quadrupole is circularly polarized
and that the solution for the case in which the quadrupole is linearly
polarized must be obtained by a more rigorous approach which involves
all frequency combinations. It will be found that, for the linearly
polarized case, the three-frequency expressions are valid at low power
levels, while for larger power output these solutions result in
significant errors.

1. Three-Frequency Solution

On the basis of the above comments we obtain from (5.6) a set of
8ix equations which relate the afplitudes of the synchronous waves at
the frequencies represented by ns=0 s 1 . These equations are
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homogeneous and the requirement that they have a nontrivial solution is
that the system determinant vanish; that is,

-Jy 0 0 0 c: 0
0 =37 0 c_ 0 c¥
0 0 ~Jy 0 C. 0
= 0 . (6-2)
0 C* 0 -Jr 0 0
c, 0 c* 0 -J7 0
0 c, 0 0 0 -3y

Evaluation of this determinant yields a sixth-order equation which can
be expressed as the produo} of two cubic equations. The determinantal
equation is then:

2
[73 +y lcox+ c_c:*]] =0 . (6.3)
There are two unperturbed solutions
= 0 , (6.4)

and four perturbed solutions
= - *
73 7, +J JC+C+ + C_Ef'

5 = 76 = -yJecFvcor . (6.5)

The substitution of (6.5) into the equations which gave (6.3) results in

simple expressions for the perturbed wave amplitudes, at synchronism,
and we shall restrict the discussion to that case since it reveals all
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of the characteristic phenomena involved. The synchronous waves in the
quadrupole are given by '

c, (ot - Bez)
A, = l|a,(0) cosh az + — a%*(0) sinh azfe
3 3 a 3
_C J3(at - B 2)
+ J3—La(0)sinnaze - ° (6.6)
a
c. (et - B2)
Ay = [ah(o) cosh gz + ;—- aﬁ(o) sinh oz]e .
c J3(et - B.2)
+ J3I= a.3(0) sinh oz e* S (6.7)
o
where a 1is now
a = Jc+c'f—+ cCc¥ . (6.8)

These results are valid for arbitrary quadrupole polarization. In
arriving at (6.6) and (6.7) it vas assumed that @, = 2w , which is
the case in a frequency doubler. The J3 factor in the third harmonic
term arises because the amplitudes are normalized so that their square
gives the power carried by that wave.

Equations (6.6) and (6.7) indicate that, in general, the initial
excitation of either synchronous wave results in a subsequent complex

spatial variation of that wave amplitude and also a growing third harmonic

synchronous of the opposite polarization. These results are very similar
to (5.14) except that in the present case the form of the equation for
each synchronous wave is the same, this being a manifestation of the
identical phase velocities of the two waves. However, it must be pointed
out that the validity of (6.6) and (6.7) is open to question in the case
of a linearly polarized quadrupole because of the assumption that the
finite set of equations employed in (6.3) is an accurate description of
the system. It is observed that the diagonal elements of (6.3) are all
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of the same order of magnitude, and that this would be true if we

had employed the infinite determinant which represents all values of n .
Thus, to first order in the quadrupole field amplitude, all values of

n.' must be retained. This was not the case in the cyclotron wave discussion
given in the previous chapter. It is therefore necessary to carry out a
more rigorous discussion of the solution of Eqs. (5.6) for the synchronism
conditions stated in (6.1) when both C, and C_ are nonzero.

2. Exact Solution
The arguments stated at the beginning of this section for neglecting

the cyclotron waves in the discussion of the synchronism conditions (6.1)
are generally valid, and we neglect the cyclotron waves in the exact
solution of (5.6). To simplify the discussion we assume (6.1) is satisfied
so that the equations for the synchronous wave amplitudes can be written

- 3733,n = C-ah,n -1t C:Bh,n +1
- Jyalhn = C+B.3,n -1 * Cfa3’n +1 ° (6.9)

The approach which will be used here to solve this set of difference
equations was pointed out to the author by Blﬂpekjaer who found the
solution to a similar transverse wave problem in the same way.31
Equations (6.9) can be combined to yield a single difference equation
relating the amplitudes of the different frequency components of each type

of synchronous wave. For the positive energy wave amplitudes we obtain

2 * -
CHZ a3 ot (" +c.cx+cC¥) 83 n *CC 83 o o , (6.10)

and a similar equation holds for the negative energy wave amplitudes.
Now it is a legitimate step to choose the phase of the quadrupole fields
and then later determine the necessary input phase for the synchronous

waves with respect to the assumed quadrupole phase. Thus, since the
quadrupole is assumed to be linearly polarized, we can choose

C. = C =20¢ = Jc| . (6.11)




As a result of this choice (6.10) becomes

2
4

& 4ot ;5+2 e +8 5 = 0, (6.12)

where the subscript denoting the synchronous wave involved has been dropped
because the equation is applicable for both °‘3,n and a’h,n « The
solution to (6.12) is obtained by assuming that the various frequency
components are of the general form

a = ayel™ | (6.13)

vhere © 1is a parameter which facilitates the mathematical solution of
(6.12). Substituting (6.13) into (6.12) yields

% =t J2cos 0 . (6.14)

By using (6.14) and (5.3), it is found that a solution for the waves
described by (6.12) is

00

A = ao(o) Z) 90 exp J[(m+ nmq)t
n|=0

nw
- (t J2C cos 8 + —3 &+ ae)p] . (6.15)

Yo

The most general solution is obtalned by summing over all poasible solutions
or, in this case, by integrating over all permissible values of © . As
noted in the reference cited above, the condition that only the fundamental
frequency components are nonzero at 2z = 0 1s sufficlent to require that
© be real and that a satisfactory range of integration is -x <6<+ gx .
As a result of the choice of signs in (6.1h4) two solutions are found, as
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described above, and the most general solution to the problem is a linear
combination of these. Finally then the general solutions for the positive
and negative energy synchronous wave excitation in the quadrupole are

> J(@+ na )t - 2/vy)
Ay = aa,o(o)z (& + (-1)"o] I (z) e ,
n|=0

J o+ nw )(t - 2/ug)

A = au,o(o)Z e + (-1)"a) In(QCz) e . (6.16)
n|==0

These equations were obtained as solutions to (6.12) and are quite general.
We note, however, that (6.12) will generate only solutions with even n ,
beginning with the amplitude a, - For this half of the solutions it is
evident that

a+b = 1
c+d = 1 . (6.17)

The other half of the solutions is obtained by substituting (6.13) and
(6.14) into (6.9) with n =1 to obtain

83,10 7 Y%0°

+1

&, = 0 (6.18)

By averaging ovér © as before and matching the initial conditions, we
obtain




and

c-4 = M . (6.19)

2;,0(0)

Finally then, by noting the relationl9

(6.20)

‘ = g
539 -(D, -n K,a)’n

and setting a)q = 20 , we obtain the complete expressions for the
synchronous waves in the quadrupole region:

— 83, 0f0)
A3'Z« 2n +1 In('fé'az)
nZ0 *,0(0) ‘
a3 5(0)
i I, (JE‘ w’, gti(2n + 1)a(t - zfu))  (6.21)
a},0(0)
2,0(0)
A, *ZJ'2n+1' In(‘fél“z]
n>0 a3,0(0)
aft ,(0)
+ »0 I, (J_Q"oz) oHi(2n + la(t - z/uo) . (6.22)
#3,0(%)

In these equations & 1is given by (6.8) and the upper wave amplitude is
to be used 1f n 1is even and the lower if n is odd. The factor
J2n + 1' has been inserted in order to normalize the amplitudes so that
their square 1s the power carried by that wave. This 1s a result of
the ® which appears in (2.14).
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Equations (6.21) and (6.22) are to be compared with the approximate
solutions given in (6.6) and (6.7). For a weak interaction, so that only
the first power of Gz 1is retained in the series expansions of sinh &

. and In (J? cz) » the three-frequency and the exact analyses agree as
would be expected. However, for stronger interactions the exact golution
shows that higher order, odd frequency harmonics on the beam become
important. The only frequency component on the quadrupole is still the
second harmonic, but the calculation of the power delivered to the
quadrupole will be greatly modified for strong interactions as will be
shown in the next section.

B. CALCULATION OF SECOND HARMONIC POWER

The second harmonic power which has been dissipated in the quadrupole
and its load, in the process of establishing the beam waves described in
the previous section, is obtained by calculating the power lost by the
beam in the quadrupole region. In the case of a circularly polarized
quadrupole, Egs. (6.6) and (6.7) can be used for this calculation. For
a linearly polarized quadrupole the three-frequency solution is not valid
at high power levels and so exact wave expressions given by (6.21) and
(6.22) must be used.

The power delivered to the quadrupole by the beam is found by
computing the net negative power on the beam at the quadrupole exit and
subtracting net negative beam power at the input end of the quadrupole
cavity. Determination of this power from the three-frequency wave
solutions (6.6) and (6.7) yields

2
sinh® ol

2
+

2
+

a

a

P, = |lay (0131 -3

a (¢ ]

2
)- la3(o)I2(1 -3

C. 2 C, 12
+ |— |a,(0)|° cos 28, - — ]a,(0)]|° cos 26, sinh 20l , (6.23)
o ¥ L a 3 3

- -

vhere 4 1is the length of the quadrupole cavity and ) and 6, are

. the respective phases of the positively and negatively polarized
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synchronous waves. The phases of the gquadrupole field components represented
by C+ end C_ have been chosen to be zero as described in the previous
section. Both polarizations have been retained in (6.23), as it causes +
no difficulty to do so and it will allow & comparison between the approximate
and exact solutions for the linearly polarized case.
The interpretation of the input synchronous wave phases in (6.23)
can be investigated in the same way as was done for the cyclotron wave
case by calculating the complex power delivered to the quadrupole cavity
by the beam. If the quadrupole is circularly polarized, the discussion
is exactly the same as in Chapter V.C. If the circuit is linearly
polarized, the situation is altered. The complex power delivered to
the quadrupole cavity can be calculated by means of (5.13) and equations
corresponding to (5.15) and (5.16) involving the synchronous wave amplitudes.
When this power is calculated, it is observed that a fifth harmonic term
arises in the electric field expressions which corresponﬁ to (5.15). This
frequency does not appear in the wave amplitude expressions (6.6) and
(6.7) and this result is an indication that the assumed three-frequency
solution is not consistent with the original equations. However, since
we have neglected the higher frequency terms in (6.7), there is no fifth .
harmonic current to go into the power calculation and the real part of
the complex power calculated in this wgy agrees with (6.23). The reactive .
power absorbed by the quadrupole and load has terms proportional to

|a3(0) |2 sin 26, .

and

la,(0)|? sin 26, , (6.26)

which must be zero at the quadrupole resonant frequency. As a result of
these considerations, and inspection of (6.23), it is concluded that the
quadrupole fields will in general be set up so that the phases of the

beam waves with respect to the quadrupole field of the same polarization
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are given by

and

Qh = 0, x . (6.27)

l. Positively Polarized Quadrupole

The basic interactions represented in (6.23) fall into three categories.
The first is the case in which the quadrupole cavity has only a positively
polarized field component. That is, it is polarized like the input
synchronous wave which carries positive energy. The quadrupole field will
be set up so that 63 is given by (6.27) for any angular orientation of
the quadrupole cavity. The second harmonic power dissipated in the cavity
and its load is obtained from (6.8) and (6.23):

Py, = -2 [lah(o)l2 + |a3(0)|2 ‘ sinh® ol + 19,3(0)|‘°' sinh 2ol . (6.28)

This 18 exactly analagous to the result obtained in Chapter V for the
case in which the quadrupole was synchronous with the fast cyclotron wave.
The characteristics of the synchronous wave interactions are the same as
described for the cyclotron wave case. - When only the positive energy
synchronous wave is excited by the input coupler, it is found that the
beam wave energy 1s transferred to the quadrupole as indicated by curve a
in Fig. 5.3. When both synchronous waves are excited with equal amplitude
on the beam, as would be the case with a linearly polarized input coupler,
the power output is the same as described by curve b in Fig. 5.3.

As a result of the above discussion it can be concluded that the
interactions involved in a positively polarized quadrupole offer no basic
advantages over the cyclotron wave doubler in which the quadrupole is
synchronous with the fast cyclotron wave.
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It is true that the synchronous waves offer the advantage of a
synchronism condition which is independent of the magnetic field. Hovever,
this must be weighed against the reduction in circuit phase velocity, and
therefore interaction impedance, which results when synchronous wave inter-
actions are used.

2. Negatively Polarized le

In this case the quadrupole is polarized in the same direction as the
synchronous wave which carries negative power. The phase of the resonant
quadrupole will again adjust itself so that 6, satisfies (6.27). The
second harmonic power dissipated in the cavity and its load is obtained
from (6.8) and (6.23):

Py, = * z[lah(o)le + laa(ojeJ sinh® ol + |ah(0)|2 sinh 2af . (6.29)

This is exactly analogous to the result obtained in Chapter V for the case
in which the quadrupole was synchronous with the slow cyclotron wave. As
in that case, the interaction is one which can lead to appreciable gain
if either synchronous wave exists on the beam at the quadrupole entrance.
Curves showing the total second harmonic power as a function of the
growth parameter of are given in Fig. 5.4 for the case of one synchronous
wave input, or equal amplitudes of both synchronous waves. The actual
power which is delivered to the load as a function of the input
synchronous wave power is discussed in the next section where the
matching of the cavity $o the external load is taken into consideration.
Although the negatively polarized quadrupole interacting with the
synchronous waves results in the same equations as in the case 1nvo@,v‘,1ng
the cyclotron waves cited above, the present situation has the advantages
of allowing the use of higher phase velocity circuits and allowing the
synchronism condition to ‘be independent of the magnetic field. For these
reasons the present scheme is preferable to the slow cyclotron wave
interaction.

3. Linearly Polarized Quadrupole
In this case the quadrupole fields can be obtained from (5.1) and(5.5)
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and are given by

“e%o
B, = +—=2Cx sin (mqt - qu)

x e/m
)
E - --e—-;-zcy sin (mqt - qu) , (6.30)
vhere
C, = C_ =¢C . (6.31)

The quadrupole field configuration is shown in Fig. 5.1. Since the
excitation of the circuit is a result of the motion of the beam along the
electric field lines, it is apparent that there will, in general, be a
required relationship between the angular orientation of the quadrupole
cavity and the input coupler which excites the initial synchronous waves
on the beam. In particular, the linparly synchronous polarized wave
coupler described in Chapter III should be oriented so that the beam waves
at the quadrupole entrance satisfy (6.27).

The second harmonic' power which is dissipated in the cavity and its
external load can be obtained from (6.8) and (6.23); in general,

1l

Py ® J_a[la‘*-(o)le cos 26, - |33(0)|2 cos 293]sinh 2ol . (6.32)

In the case in which just one synchronous wave is excited at the quadrupole
entrance, or if both have the proper phase relative to the quadrupole as
indicated by (6.27), the power is given by

1l
Py = ﬁ[lgh(O)la + |33(o)|2].1nh 2ol . (6.33)
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It was noted in Section V.A that the three-frequency solution of the
linearly polarized problem is not expected to be accurate because of
appreciable excitation of higher order frequency combinations in the beam.
It is therefore important to calculate the second harmonic power from the
exact wave amplitudes given in (6.21) and (6.22). This is done by calcu-
lating the net change in beam power as a result of the quadrupole intex-
action in the same way as before. Summing the squares of the amplitudes
of the negative energy waves which make up Ah and subtracting the sum
of the squares of the amplitudes of the positive energy waves which
make up A3 yields the net negative power carried by the beam at the
quadrupole output. Then by subtracting the net negative power at the
input, we obtain, after a great deal of manipulation,

Py = [la3(0)|2 - Iau(O)Ia] [1 -1 - 22 (-1)" Iﬁ]
n=1
(6.34)
+ 2Re '[aﬁ(o) - ag(o)J Z (-1 (m+2)TI L,
n=0

where the argument of the modified Bessel functions is ~/.2czf/ . By means
of known series,32 and the relations between the ordinary and modified
Bessel functions, 1t can be shown that

I§(z) +2Z (-1)" Ii(z) = 1 (6.35)
n=l
D (R (e e ) T () = (6.36)

n=l

Thus, the second harmonic power calculated from the rigorous solutions of
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the coupled mode equations is obtained in a very simple form:

Pon

- [Ia.‘l’(o)l2 cos 26, - |a3(0)|2 cos 2Q3] Jab . (6.37)
We see that (6.37) and (6.32) agree exactly at low power levels, but that
the approximate solution is over-optimistic at high power levels. A
comparison of these results with the other synchronous wave interactions
will be given in Section D of this chapter.

Although there is no counterpart of the type of interaction described
above given in Chapter V it is apparent, from the discussion of twisted
circuits which was given in Chapter IV, that a twisted quadrupole would
allow a cyclotron wave interaction completely analogous to the synchronous
wave interaction in a linearly polarized quadrupole. However, this would
offer no advantage over the present case and the design would be much
more complex.

C. EFFECT OF THE LOAD IMPEDANCE

The results obtained in the previous section indicate that the
synchronous wave frequency doubler can yield high frequency conversion
efficiencies for several special cases., However, the equations presented
there are not in a form which exhibits the dependence of the power
dissipated in the external load upon the input power, the qua.drui:ole
parameters, and the coupling coefficient QO/Qe <t The equations of
the previous section can be expressed in terms of these quantities in a
manner similar to that used in Section V.D.

As pointed out in Section B of this chapter, the synchronous wave
interactions involving a circularly polarized quadrupole are exactly
equivalent to the cyclotron wave interactions which were discussed in
Chapter V. If the quadrupole is positively polarized, a 1is given by
(5.43) and (6.28) is identical to (5.21). Consequently, the curves in
Fig. 5.5 are appropriate for this case, If the quadrupole is negatively
polarized, «a is still given by (5.43) and (6.29) is identical to (5.38).
The curves shown in Fig. 5.6 therefore give the frequency conversion
characteristics for this case. The discussion of these situations is

- 125 -




identical to that given in Chapter V for the analogous cyclotron wave cases.
The only differences between the cyclotron wave and synchronous wave cases
are the synchronization conditions.

The situation not represented in the previous chapter is the linearly
polarized case given by (6.37). It is evident from (6.8) and (%5.43) that
the gain parameter is in this case

o= JIgPelc? - J?(:—-é—‘:/:)v .
()

Consequently, using (5.41) and the normalization given by (5.47) in (6.37)
ylelds

1
Pouy, * Q [Psm'Phw]E ’
(l + -———“t) (1 + QO ’ ’

QO Qex*l:

(6.39)

where P3,a) and ph,m are the respective values of the power input on
the transverse waves. It should be recalled that the power input pu’m
is a negative quantity. The phases 63 and 6, 1in (6.37) have been
taken as the optimum values given in (6.27).

As pointed out previously the special case in which the input
synchronous waves have equal amplitude 1s of a great deal of interest
since gain can be achieved in the input coupler in thie situation. If
the power carried by the input positive energy wave is then denoted by
P, the output is

w
L
2
p2‘ﬂ'_, E 3 ; Q Q pm . (60"‘0)
(1+ 0)(1+ ext)
Quxt %

Note that (6.40) 1s identical to (5.56) which describes the low level
output of the cyclotron wave doubler employing both fast and slow input
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cyclotron waves. The significant difference here is that the above result
is valid for large asignal levels while the cyclotron wave doubler saturates
as indicated by (5.55).

Equation (6.39) aleo shows that the linearly polarized synchronous
wave doubler behaves as a constant current source as the load is varied.
Thet is, the maximum power output is obtained when Q_ ./Q, is unity for
all power levels. This is unlike the other cases as can be seen in
Section V.D, and is a result of the zero beam loading presented to a
circuit that couples equally to both synchronous waves.

D. SUMMARY OF SYNCHRONOUS WAVE DOUBLERS

The frequency doubling interactions which have been discussed in this
chapter have, with one exception, been the synchronous wave analogs of
the cyclotron wave interactions described in Chapter V. Hence, most of
the comments in Chapter V are applicabple to the present situation. The
exception is the case of the linearly polarized quadrupole which interacts
equally with both synchronous waves and results in the excitation of all
odd harmonic frequency components on the beam. As was pointed out
previously, the cyclotron wave analog of this case can be obtained by
twisting the quadrupole with a period equal to the cyclotron wavelength
on the beam. Consequently, a discussion of the quadrupole interactions
for the synchronous wave cases discussed in this chapter is really a
discussion of all of the types of doubling interactions which can be
obtained with the four transverse waves which deseribe the filamentary
beam excitation. The details of the circult configurations and the
synchronism conditions are, of course, dependent upon the choice of
cyclotron or synchronous wave interactions.

A comparison of the synchronous wave interactions can be made on the
basis of the equations for the second harmonic power dissipated in the
quadrupole as a function of the parameter al . The curves representing
the possible interactions between one input synchronous wave and the
quadrupole are shown in Fig. 6.1. Curve 4 represents the interaction
involving only the positive energy synchronous wave and we see that the
maximum second harmonic power which can be dissipated in the quadrupole
is equal to the input synchronous wave power. This is the synchronous
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wave counterpart of the fast cyclotron wave doubler which has been treated
by others in a special case. Because no negative energy waves are involved
in this case, it will be referred to as passive doubling. By setting

C_ =0 in (6.6) we can see that only the fundamental frequency exists on
the beam and that the synchronous wave amplitude decreases exponentially
within the quadrupole cavity. Consequently the factor which controls

the beam interception level 1s the amplitude of the beam excursion at

the entrance. This is calculated from Eqs.(2.20). There is no inter-
action if a negative energy wave is injected into a positive polarized
quadrupole unless second harmonic power is supplied by an external source.

The passive interaction indicated by curve d in Fig. 6.1 is to be
compared with the three basic active frequency doubling interactions
ghown in curves a, b, and c¢ of the figure. Curve a represents the
interaction between a negatively polarized (negative energy) synchronous
wave with a negatively polarized quadrupole. This again is an interaction
vhich involves only the fundamental frequency in the beam, but now the
beam excitation grows exponentially in the quadrupole and the second
harmonic power increases rapidly as either the coupling to the beam is
increased (larger Q@ ) or the length is increasef. As is evident from
the figure, this case gives a larger conversion efficiency than any of
the other cases. It is the only scheme which surpasses the passive
interaction at low power levels, that is, small ol . However, it is
necessary to note that, due to the growing beam excursions, saturation
will occur if of 1s made too large. Since there i1s only the fundamental
negative energy synchronous wave in the beam, the beam excursion for a
given wave amplitude is the same as in the passive case. Consequently,
in the limit as of approaches infinity, the saturation output power
of the two devices would be the same, However, the efficiency of
conversion of fundamental to second harmonic power would be infinite
for the active case and unity for the passive interaction.

The active interaction described above is analogous to the 1nter';-
action involving the slow cyclotron wave which was discussed in Chapter V
and the power characteristics given in Fig. 5.6 are applicable here. As
shown in Fig. 5.6, these frequency doublers become unstable when the
input power is increased beyond a critical value. This is an unusual
kind of instability as is remarked in Section V.D.
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An interesting input coupling scheme arises in connection with the
negative energy, synchronous wave 1;teraction described above. It was
noted that the synchronous wave klystron describad in Chapter III can
result in purely negative energy, synchronous wave excitation on the .
beam at the exit of the output cavity. This klystron could then be
followed by a negatively polarized quadrupole cavity, resulting in the
active frequency doubling mechaniem described above. Consequently, a
very large overall frequency conversion efficiency could be obtained.
Alternatively, the input coupler could be a circularly polarized synchronous
wave monotron resulting in an oscillator which produces a fundamental and
second harmonic that are phase related.

Curve b 1in Fig. 6.1 shows the characteristics of the interaction
if the positively polarized synchronous wave serves as the input to a
negatively polarized quadrupole. The conversion efficiency is now greatly
reduced due to the presence of both positive and negative energy
synchronous waves in the beam at the fundamental and third harmonic
frequencies as indicated by (6.6) and (6.7). Also because there are both
growing positive energy and negative energy waves on the beam, the net
negative power carried by the beam for given beam excursion magnitudes
is less than in the previous case. As a final criticism of this case,
it is noted that the input is a positive energy wave, and therefore, it
is not possible to take advantage of a gain mechanism in an input coupler

to increase the overall conversion efficiency. Consequently, this
situation is of less interest than is the previous case.

The last basic interaction scheme is represented by curve c¢ in
Fig. 5.1. 1In this case the quadrupole is linearly polarized and the in-
put wave is either a positively or a negatively polarized synchronous
wave, It is seen that the efficiency of the frequency conversion is
about the same as that of the positively polarized quadrupole with a
rositively polarized synchronous wave input at small values of ol »
while it is distinctly improved for large of . This, coupled with
the fact that the input can be a negative energy wave, mskes the linearly
rolarized quadrupole an interesting case. The power at which beam
interception occurs will be less than it is for either of the two cases
which involve only one frequency on the beam, since we expect an infinite
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number of frequency components here. This large frequency content results
in complex beam motion and larger beam excursions than are found for the
simpler cases. BEven 8o, this is a promising scheme for a large conversion
efficiency as described above.

The frequency doubling schemes described above involved a single
synchronous wave input to the quadrupole. In order to take advantage of
the gain which can be obtained in a linearly polarized input cavity which
excites both synchronous waves equally, it is of interest to look at the
situation in which the input to the quadrupole consists of both synchronous
waves with the optimum phase. A plot of the ratio of the second harmonic
pover to the fundamental power on one of the beam waves as a function of
ol 1is given in Fig. 6.2.

It is apparent that the negatively polarized quadrupole is again
distinctly superior at large values of ol . The instability at large
values of of still exists as indicated in Fig. 5.6 of Section V.D,
since this case is identical to the cyclotron wave case considered there.
The linearly polarized quadrupole also yields large conversion efficlencies
vhile the positively polarized quadrupole saturates at a very low efficiency
and is of no interest here. For the two interesting cases it is seen that
the second harmonic power for a given input wave amplitude 1s distinctly
larger for the two-wave input that it is for the one-wave input case.

From the above discussion it is apparent that the greatest promise
for large values for the efficiency of conversion from the fundamental
to the second harmonic frequency is given by the use of either a negatively
polarized quadrupole or & linearly polarized gquadrupole, each with both
synchronous waves excited in the input coupler. Or, to cast this in a
terminology which is applicable to either cyclotron or synchronous waves,
the quadrupole ahouﬂ.d be synchronous with either the negative energy beam
wave, or with both the positive and the negative energy waves which serve
as the input. Aleo, the input coupler should excite both the positive
and the negative energy beam waves equally. While this situation can be
achieved with cyclotron wave interactions, it requires a twisted input
coupler and either a quadrupole with a very slow phase velocity or a
twisted quadrupole. Thus the use of cyclotron waves for these high
efficiency, active doubling schemes brings on many more technical problems
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FIG. 6.2--Quadrupole conversion efficiency as a function of ol for various
polarizations and equal input synchronous waves of amplitude
a(0) and optimum phase.
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than does the use of the synchronous waves. For these reasons it appears
that the described active interactions employing the synchronous waves
are the most suitable for very high efficiency frequency doubling.
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CHAPTER VII
SOME TRANSVERSE-FIELD CIRCUITS

The discussion up to this point has been involved with the theory
of the interaction between & beam and a transverse-field circuit. The
primary purpose of this chapter is to discuss some traveling-wave
structures which were investigated for use in transverse-wave devices,
The material presented 1s not an exhaustive investigation of transverse
field circuits, but represents the results of efforts to design specific
devices. Even so, the basic circuits have a broad range of application
and so the specific applications will not be emphasized in this chapter.

The first part of this chapter will deal with the transverse-wave
couplers vwhich were lnvestigated during the course of the experimental
program., In the second part of the chapter we will consider a quadrupole
type of periodic circuit which could be used in one of the devices dis-
cussed in Chapters V and VI. Since one purpose of the experimental
investigation was to show that significant transverse-wave interactions
can be obtained at high power levels and high frequencies, good thermal
properties as well as simple and rigid mechanical construction were
important criteria in the design of all of the transverse-field circuits
considered.

A. COUPLER CIRCUITS

There has been a large amount of activity in the last few years in
the development of transverse-wave couplers which employ traveling-wave
circuits. Johnson has described experiments using a bifilar helix as a
transverse-wave ct:vupll.er.33 Other circuits which immediately come to mind
are those involving meander lines and slotted ridge circuits. Honeyah
has studied the meander line in connection with another type of device,
and Sorla.ml35 has investigated a slotted ridge circuit.
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Of these circuit types, the slotted ridge is the wost likely to
have good thermal properties and rigidity at high frequencies. A sketch
of the basic circuit is shown in Fig. T.la. It is evident that the stored
energy in noninteracting regions (in the slots) serves to reduce the
transverse impedance of the circult and that it would be desirable to
reduce the energy. The structure shown in Fig. T.1lb, proposed by Bernstein
and li'ei.nste.'m,26 reduces this noninteracting energy by reducing the
width of the ridge, but results in a lack of field uniformity in the
interacting region. Even so, this type of circult is easy to make, has
good thermal properties, and would be quite rigid when employed at very
short wavelengths. Consequently, the coupler circuit developed independ-
ently during the course of this investigation was of the type shown in
Fig. T.lc. This circult has the advantage that it has a region of rela-
tively uniform transverse field and, as we shall see later, it is par-
ticularly well suited for use as a synchronous-wave coupler. Variations
of this basic circuit may be thought of, and one is shown in Fig. T7.1d.

1. Impedsnce of Idealized Circuits

Before proceeding with a discussion of the experimental coupler
studles, it is worthwhile to make & general observation about traveling-
wave circuits which have a transverse electric field on their axis. The

particular point in question is: how large is the transverse impedance
of such a circuit compared to that of a longitudinal field circuit? This
is a pertinant question because the qualitative descriptions of transverse=-
wave and space-charge wave devices are very similar, and consequently the
two types of interaction mus: be considered competitive in some cases.
While the impedance of a traveling-wave circuit depends upon the
details of the structure, it is possible to set an upper bound on the
impedance whivn can be attained. This is done by assuming an idealized
slow-wave circuit which has only the transverse components of the electriec
field which are important in the interaction and the associated magnetic
fields required to satisfy Maxwell's equations. It is then possible to
calculate the energy stored in the circuit and thus to calculate inter-
action impedance. Pierce36 has done this for the longitudinal field case
and the problen 1s solved in Appendix A for the transverse field case.
The curves in Fig. 7.2 give a comparison of the impedances of the
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field circuits as a function of B . It has been assumed that
the circuit phese velocity is sma1f compared to the velocity of
light. The beam aperture- in the circuit has a diameter of 2a.

- 137 -

LN




idealized circularly polarized transverse-field circuit with the 1dealized
longitudinal field circuit. The definition of impedance used here is
different from that used by Plerce, as noted in Appendix A. Figure 7.2
shows that, in the region Pa < 2.3 , the idealized transverse field
circuit has a higher impedance than does the i1dealized longitudinal field
circuit, At smaller values of Pa , the difference becomes quite signif-
icant. While these results do not say what kind of impedance values can
be obtained in actuasl circults, they do indicate that we can expect to
find circuit configurations which yleld transverse impedances that are
greater than those which can be obtained in longitudinal field circuits
with the same beam diameter. Alternatively, a transverse-wave coupler
will allow the use of a larger beam than will pass through a longitudinal
field structure which has the same impedance.

2. Experimental Linearly Polarized Circuits

Although the ideal coupler for the excitation of one of the transverse
vaves would be circularly polarized, the simplicity of the design and
excitation of the linearly polarized structure makes it a case of pertic-
ular interest. In addition there are interactions in which a linearly
polarized coupler is required. In fact, linearly polarized couplers were

required in the experimental tube described in the next chapter.

The goal of the experiments described here was to develop a slow
wave circuit which could be used as either a cyclotron-wave or a
synchronous-wave coupler at a frequency of about 3.0 kMc with & beam
voltage of a few thousand volts. These structures could then be used
elther as a traveling-wave coupler or as & resonant periodic coupler in a
high-power transverse-wave device. The basic circuit that was studied
is the pin-loaded cylinder indicated in Fig. T.lec.

The characteristics of the eircuits were determined by the usual
procedure of resonating a section of the structure which is an integral
number of periods long and observing the characteristics of the resonant
modes of the resulting cavity. One of the test cavities was made with a
rectangular cross section as shown in Fig. 7.3. The basic difference
between this and a circularly cylindrical cross section is insignificant.
The dimensions of the test cavity could be varied so that their effect
could be determined.
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of the characteristics of this circuit are shown.
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Some of the results of the cold tests of circuits with the dimensions
given in Teble VII.1 are shown in Figs. 7.4 through 7.6. A typical
w=-f dlegrem is shown in Fig. 7.4,  The structure is a closed, simply -
connected region so that it exhibits both an upper and a lover cutoff..

TABLE VII.1

DIMENSIONS OF TEST CIRCUITS IN INDEX

1. w=1,00 2., w=1.00 3, w=1.25
h = 3.00 h = 1.62 h = 1.625

2a = 0.375 2a = 0,315 2a = 0.250

5 = 0.313 5 = 0.325 5 = 0.375

d = 0.125 d = 0.063 d = 0,031

= 0.375 p = 0.187 p = 0.100

The lower cutoff frequency 1s determined by the transverse dimensions of
the circult and is associlated with strong transverse electric flelds
between the upper and lower rods in Figs. T7.lc and 7.3. Consequently,

the transverse interaction impedance can be expected to be quite large
near the lower cutoff frequency. The upper cutoff frequency is assoclated
with the resonance that occurs when the rods are spproximately one-quarter
of a wavelength long so that one rod and its neighbor form a quarter
wavelength TEM transmission line which is shorted at one end and open-
circuited at the other. However, due to end effects, this resonance will
occur at a frequency slightly lower than that predicted on the basis of
the above model. The electric fields near the upper cutoff frequency are
predominantly longitudinal, and consequently the amount of coupling to

the transverse beam waves can be expected to be small in this region.

The circuit represented by Fig. 7.4 was designed to serve as a fast
cyclotron wave coupler and the dispersion characteristic for the fast
cyclotron wave is also shownAin the figure. B8ince the phase veloclty of
the circuit and the beam are essentially the same over & large portion
of the w-fp diagram, the coupler should have a large bendwidth. In order
to determine the bandwidth of a co-directional coupler, it is necessary
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FIG. T.4--Experimental w-f diegram for the circuit shown in Fig. 7.3.

with the dimensions given in Table VII.1 as set no.l. " The dotted
line represents the fast cyclotron wave on & beam which has
uo/c = 0,14 and & megnetic field of T15 gauss.
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to compute the dependence of the coupling coefficient upon the frequency.
The impedance of the circuit was determined by the perturbation procedure
described in Appendix B, and from this the coupling coefficient may be
calculated by means of (2.17). Finally, the response of a co-directional
type of coupler can be calculated by means of (2.23). The result of
these calculations is shown in Fig. 7.5. This shows the efficiency of
tranafer of power from the circuit to the beam as a function of frequency.
It 1s apperent that an overall bandwidth of 25 per cent is easily obtained
in a parametric amplifier which consists of two of these couplers and a
frequency-insensitive pumping section.

A comparison of the measured impedance of the above circuit with
the impedance of the idealized circuits described previously 1s summarized
in the table below. The values of the idealized impedances are half those

Be | Experimentel X, v g/c

1 1.
5 Idealized K, v g/c’ Idealized Ky v g/,c

2
0.39 81 300 11
0.79 14 8 7
1.08 0.6 11 3

shown in Fig. 7.2 to account for linear polarization.

We see that this

circuit has ylelded impedances which are greater than those of the
idealized longitudinel field eircuit, and thet much more improvement

should be possible before the upper bound
verse field circuit becomes a limitation.
described later has a smaller ratio 2a/p

much closer to the theoretical 1limit.

dimensions are shown in Fig. T.6.

phese velocity of the circuit i1s the period p .
circuits at the same phase shift per period, the phase velocity is dir-
ectly proportional to the period.

. The ecircuits represented by the data in Fig. 7.6 were designed to
couple to the fast cyclotron wave and consequently the variation of the
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imposed by the idealized trans-
An experimental circuit to be
» which results in impedances

Some dispersion characteristics for several different circuit
The primary factor in changing the
In fact, if we compare
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phase velocity with frequency is desirable. In order to obtain broad-
band excitation of the synchronous waves, the structures should be

‘ modified to obtain a phase velocity which is essentially constant over a

wide frequency range. One way of accomplishing this is to lower the
lower cutoff frequency of the circuit. It would probably Le necessary to
reduce the period of the circuit at the same time in order to lower the
phase velocity of reasonable values for the beam velocity.

A device which utilized linearly polarized synchronous-wave couplers
to excite both synchronous waves will be described in the next chapter.
The particular requirements call for a resonated rather than a traveling-
wave circuit., It was decided to employ interaction with a space harmonic
in & circult rather than the fundamental in order to avoid the small
periodicities which would be involved in obtaining a fundamental field
component with a phase velocity of approximately one-tenth of the veloecity
of light. It will be recalled that the phase velocities of the space
harmonic field components are given by

Von 1l
B, (7.1)
LR~

where

vpn = phase velocity of nth space harmonic,

vpo = phase velocity of fundamental component,

n = order of the space harmonic, and

ﬂoL = phase shift per period for the fundamental component.

The dimensions and the w-f diagram for this structure are shown
in Fig. 7.7. The figure also shows the - curves for the transverse
waves on a 3,000 volt beam, It 1s evident that, unless a very long
coupler is used, both the n = +1 and the n = -1 space harmonics will
interact with the synchronous waves. This was in fact the case in the
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experiments, and is desirable since it means that the effective interaction
impedance of the circuit will be larger than it would be if only one

space harmonic interacted strongly with the beam. The figure also shows
that it is necessary to choose the magnetic field so that the fast cyclo-
tron wave does not couple strongly to the fundamental field component of
the circuit.

The synchronous wave coupler based on the above circuit was a
resonant cavity made by placing shorting planes at each end of a structure
vhich was five periods long. The transverse electric field amplitude on
the axis of the cavity was measured by means of a perturbing needle and
the results are shown in Fig. 7.8 for the mode in which there is n/5
radians phase shift per period. This mode was used because of the strong
transverse fields near the lower cutoff of the circuit. It is found that
only the first few space harmonics have large smplitudes and the fleld
pattern can be matched quite well with the fundamental and two space
harmonic components of the field. The dashed curve in Fig. 7.8 shows
the result of this procedure. It is seen that the space harmonics corre-
sponding to n = 11 in (7.1) are of approximately equal amplitude. This
can be altered by changing the ratio of the pin diameter to the period.
However, this was not done here since, as will be seen in Chapter VIII,
both space harmonics take part in the interaction for which the coupler
had been designed. A summary of the characteristics of these resonant
synchronous wave couplers, operating in the n/5 mode, is given below.

TABLE VII.2

SUMMARY OF SYNCHRONOUS-WAVE COUPLER CHARACTERISTICS

Mode of Operation

(Phase Shift Per Perioa) | */5 Redians/Period
Frequency 3.00 kMc
Group velocity 0.256¢
Phase velocity '

fundamental 0.995¢

- 1 space harmonic 0.110c¢

+ 1 space harmonic 0.090¢
Impedance

fundamental 1700 ohms

- 1 space harmonic 3.4

+ 1 space harmonic 2.5
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t
ponent of this mode is approximately 435 as compared to a value of about

T00 for one-half of the idealized value for a circularly polarized
circuit that is obtained by extrapolating the curve in Fig. T.2.
In the design of a space harmonic coupler it is desirable to adjust

Note that the experimental value of K_v 8/ ¢ for the fundamental com-

the shape of the transverse field amplitude so that the interaction im-
pedance for that space harmonic is made as large as possible. A good
estimate of the optimum dimensions for the type of circuit under consid-
eration here can be made, and it is shown in Appendix C that the proper
relation between the pin diameter and the period is approximately

d=p 1f Bp<2.33
Bd =2.33 if Bp>2.33 ,

where
d = pin diameter ,
P = circult period , and

Bk = gpace harmonic propsasgation constant

It has been assumed here that the transverse fleld gap between the pins,
2a , is small so that (Bka.)‘2 < <1 . This will usually be the case
so that the above results offer & satisfactory gulde to the design of
circuits in which space harmonic interaction is desired.

3. Twisted Circuits

A discussion of beam interactions with circuits which were twisted
about their axis was given in Chapter IV, and it was noted that twisted
couplers could be of considersble interest. Some experimental studies
of twisted slow-wave structures were carried out in an effort to deter-
mine the effect of the twisting on the originally linearly polarized
slow-vave structure. Some investigation of twisted periodic circuits
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has been carried out by Bernstein and Feinstein,26 but the twist rates

under consideration here are much greater than in their case. The
experimental twisted circuits were based on the pin-in-cylinder design
described in the previous portion of this chapter. However, in the case
of the twisted circuit, each pair of pins is rotated with respect to the
previous pair.

The characteristics of the twisted circuits were determined by
observing the resonant frequencies and associated field configurations in
a structure an integral number of periods long which was terminated at
each end by transverse shorting planes. Since the image in the shorting
plane is not a continuation of the original circuit, this procedure
results in erroneous results unless the twist per period is small. We
are instead measuring the characteristics of a resonated twist circuit
rather than of an infinitely long structure. Even eo, the experiments
described give an insight into the nature of the fields in a twisted
slow-wvave .c:lrcuit. 26
It has been noted by others ~ that the primary effect of a gradusl
twist on the w-p diasgram of the circuit is to lower the frequency for
vhich there is x radians phase shift per period. This was the general
trend in the experiments described here. However, if the twist rate is
too great, the circuit flelds cease to be twisted versions of the fields
of the untwisted circuits and a comparison with the untwisted eircuit
characteristics becomes meaningless.

An exsmple of the field configurations in an experimental twisted
circuit is shown in Fig. T7.9. The structure consists of ten sets of pins,
each set being rotated by u/8 redians with respect to the previous set,
and 1s shorted at the two ends to produce a resonant cavity. The fleld
patterns shown would be identified as the ones with 0.2x and O0.3x
radians phase shift per period in the case of an untwisted circuit. The
field components, which are defined in the figure, vere determined by
means of a perturbing needle in the transverse plane. By placing such
a needle on the axis of the circuit, it is possible to determine both the
relative amplitude and the orientation of the electric field. The simple
view that the field 1s simply a twisted version of the field of a linearly
polarized circuit would result in E, = O . It was pointed out in
Chapter IV that this picture 1is not éorrect and that we should expect a

- 15 -




(b) PBp = 0.3x Mode

FIG. 7.9--Experimentally determined field distribution plots for two values o:

. phase shift per period in a twisted resonant circuit, the cavity was ten periods
long and the twist per period was x/B rsdians. The E wvas definad in ChepterIV.
and corresponds to the twisted field of a linearly Polarized structure. The Ei

. field is a new field, perpendicular to E" s vhich arises- due to the twisting *
of the eircuit. ’
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nev field component (E_L) to arise, and that the msgnitude of this field
would be approximately Bt/BO times the magnitude of the main field
component E" . A comparison between some experimental measurements and
the theoretical predictions for the above circuits is given below.

B E
Mode Theoretical -— Experimental -
E E
Il I
0.2n 0.62 0.55
0.3n 0.42 0.31

The difference between the experimental and theoretical results may well
be due to the fact that these measurements were made in a cavity produced
by shorting the twisted structure with transverse planes. The results of
Chapter IV do not give a complete picture of what the fields are in this
case because the twisted circuit does not have reflection symmetry and
consequently the shorting planes give rise to other modes in the cavity.
If the cavity 1s very long or if a nonresonant traveling-wave structure
is used, this problem does not arise.

The result of the experimental work described ebove is that we have
verified that the twlsting of the slow-wave structure gives rise to the
additional field component which is perpendicular to the field expected
on the basis of the simple model of the twisted circult. Consequently,
we can say that great care should be teken in using the simple field
picture to obtain a description of the interaction as was done in the
first sections of Chapter IV, although at small values of Bt/BO this
model is gquite satisfactory.

B. A QUADRUPOLE CIRCUIT

The frequency doublers described in Chapters V and VI require a
quadrupole circuit which is, in general, a periodic structure. A
circuit which supports a transverse electric field that approximates the
required quadrupole configuration is shown in Fig. 7.10 . This circuit
is very simply constructed by inserting rods into a cylindrical pipe and
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View A-A

End View

FIG. 7.10--A quadrupole circuit made by inserting rods into a cylinder.
The field near the axis approximetes the quadrupole field con-
figuration shown in Fig. 5.1. The dimensions of the particu-
lar circuit that is characterized by the parameters listed in
Table VII.3are: D= 0.906 , 4 = 0.094 , p = 0.206 , and
2a = 0,230 .
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has good thermal properties and mechanical rigidity. A section of this
structure, an integral number of periods long, can be terminated with
shorting planes to make the rescnant quadrupole cavity assumed in the
theoretical discussion of the transverse-wave frequency doublers.

In order to be used in conjunction with the couplers described
previously, the quadrupole shown in Fig. 7.10 was designed to propagate
in the frequency range around 6.0 kMc . The w-f diagram for a typical
quadrupole circuit is much the same shape as the one shown in Fig. 7.7.
The upper cutoff frequency occurs when the rods are approximately one=~
quarter of a wavelength long just as in the case of the coupler circuits.
The longitudinal electric fields are strong in this cese, since each rod
is = radians out of phase with its neighbors, and this results in veak
transverse wave interaction near the upper cutoff frequency. On the
other hand, there are no longitudinsl fields at the lower cutoff frequency
since the phase shift per period is zero. Consequently the extraneous
stored energy is a minimum near the lower cutoff frequency and the
transverse-vave interaction is strongest in this region.

The cavity under consideration was designed to be used in a
synchronous-wave frequency doubler and consequently the phase velocity of
a component of the field should be equal to the beam velocity. In order
to avold small periodicities the ecircult was designed to employ space
harmonic interaction. The amplitude of the quadrupolar field was deter-
mined by means of a transverse perturbing needle, and the field configur-
ation of the x/5 mode of the circult shown in Fig. 7.10 1is given in
Fig. 7.11. This mode was chosen for the doubler experiments because it
has appreciable space-harmonic content and has a relatively large inter-
action impedance since it i1s near the lower frequency cutoff of the
circuit. The impedance of the quadrupole is determined from the frequency
perturbation data in the manner described in Appendix B. The results of
the space harmonic analysis and impedance calculations for the x/‘)' mode
of this quadrupole cavity are summarized in the teble below.

- 15 - -




. uwoyejuIsaxdax druouwrey-
2AmMd ayy pue gyuyod TejusutIodxd 3I¢ SITIXTD

*ATOITO aY} dn Syww Jwy)} SpOIX 3y} Jo

suoy31e0d ay3 moys sSoTOITO IBrey Iyr Hm\wumwm uys ¢2°0 + d/z ¢fx urs CL°0] = &
8

PIZTTELION JY} WOJJ Pa4e8TnNOTed ST
Trems 9yl °OT°L °"Brd uT umoys £37A8D

m\u
< K ¢ 2 T 0
* 1 T ) T %o
\ /
\ ]
\ - -~ !
\
/o /] . 4 \ 0\
\ / \ / \ j1e°
! / \ / \ /
\ \\ —— \ \ /
s \ I / \
ol\\. \ ‘ [ %
__ i 1
|
__ \‘,/ \./ !
\ / \ / \ !
\ \ \ / \ |
\ \ !
/ \ ..
., \ J_ \h \ \ 70
\
e 1 ° | ! °V e
\ / \ | \ !
\ / \ | \ /
N \ | \ ] .
\ \ ! \_s 1%°
° " é °
\ ]
\ 1
/
\ s
L | -10°1T

sTodnapenb sy3 uf 9pow Gfx = dg 9UY IOJ UOTINQTIISTP PIITI OTIIIIT3 9sI9ASURI} IUL--TT°L *DIA

PTSTJ OTJIROSTH PIZTTEMION

- 155 -




TABLE VII.3
SUMMARY OF QUADRUPOLE CHARACTERISTICS

Mode (Phase Shift Per Period) x/5
Frequency 5.70 kMc
Phase Velocity

fundamental 0.940¢

- 1 space harmonic 0.105¢
Quadrupole Resistance (15 Periods Long)

fundamental 1080 ohms

- 1 space harmonic 120 ohms
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CHAPTER VIII
AN EXPERIMENTAL TRANSVERSE-WAVE DEVICE

Several of the transverse-wave interactions which have been considered
in the earlier part of this report are quite interesting, and the purpose
of this chapter is to describe some experimental studies of these cases.
One group of devices which promises to have some useful applications are
those employing the active frequency doubling schemes described in
Chapters V and VI. These are of particular interest since the efficiency
of the frequency conversion may be large, and can in fact exceed one
hundred per cent. A second device that is of importance is the synchronous
wave klystron described in Chapter III. As was noted there, this amplifier
has the advantages of the usual extended interaction klystron, but does
not have some of the same limitations.

Thus, a single device that would allow the investigation of both the
synchronous-wave klystron and one of the active frequency doubling schemes
would be quite interesting. This may be done simply by employing two
resonant synchronous-wave couplers followed by a quadrupole cavity. An
experimental tube that was designed in this way is described in Section A
below. Then the experimental results of a study of both the synchrcnous-
wave klystron and a synchronous-wave frequency doubler are presented.

In addition, the fast cyclotron-wave doubling interaction was observed
and the experimental w-p characteristic for the fast cyclotron wave was
measured. Finally, the observation of oscillations in both the quadrupole
and coupler cavities, for particular focusing conditions, is reported.

A. DESCRIPTION OF THE DEVICE

It was pointed out above that it is possible to design a composite
transverse-wave tube, consisting of two synchronous-wave couplers and a
quadrupole cavity, which will allow the investigation of both the
synchronous-wave klystron and the synchronous-wave frequency doubler. A
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schematic diagram of the composite transverse-wave tube is shown in Fig. 8.1.

The first section of the tube is a synchronous-wave klystron which consists .
of two resonant synchronous wave couplers that are oriented so that their
planes of polarization are perpendicular to each other. It was shown in
Chapter III that this is the requirement for maximum gain. The couplers
are followed by a linearly polarized quadrupole cavity that couples to
both synchronous waves. This is a synchronous-wave frequency doubler of
the type described in Section B.3 of Chapter VI. The quadrupole cavity
is oriented as shown in ‘the figure so that the synchronous waves excited
by the couplers will have the proper input phase to yield maximum doubler
conversion efficiency.

The synchronous wave couplers that were used in the device described
above are the resonant transverse-field cavities described in Chapter VII
and the important characteristics are given in Table VII.2. The coupling
to the cavities consisted of an external transmission line as shown in
Fig. 8.2. The transition between the coaxial line and the strip transmission
line yielded a standing-wave ratio of less than 1.1 over the frequency
range of interest when the strip-line was terminated in its characteristic
impedance. The iris dimensions were adjusted so that the cavity was
critically coupled to the external circuit in the cold tests. Unfortunately
an error was made in these tests and the cavity was actually overcoupled.

It is desirable to have the cavity critically coupled since, as was shown

in Chapter III, the beam loading is zero in a linearly polarized synchronous-
wave coupler. The improper coupling indicated above can be corrected by
means of external tuning, but even so, the extra energy assoclated with

the mismatch results in a reduction of the interaction impedance. For
qiample, the interaction impedance of an exact replica of the couplers

in the tube was 570 ohms for the fundamental field component in the u/5

mode as compared to 1700 ohms shown in Table VII.Z2.

Since three resonant cavities are inwvolved in the tube, it was
neceesary to make two of them tunable so that all three would be resonant
at the same frequency. The coupler cavities are identical in design so
that it was most efficient to put the tuning mechanisms in these cavities.
The resonant frequency of the coupler was varied by means of a tuning
plunger. In this way the resonant frequency could be varied between 2.80
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Power in Power out Power out

at ® at o at
_ .. Coupler Coupler Quadrupole ———
£ 1o, 1 no. 2 f===5 Bean

(a)

Beanm

Coupler Coupler Quadrupole

no. 1 no. 2
(v)

PIG. 8.1-<(a) a schematic diagram of the device used to investigate
some of the transverse wave interactions; (b) a cross
section of each of the cavities 80 that the relative
orientation .of the periodic structures may: be seen.
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\—Strip Iine 0.125 x 1.00

Glass Window 0.800 x 0,063

N

FIG. 8.2--The coupler cavities were coupled to the external circuit
by means of the glass window and strip line shown. The dis-
tence 4 was adjusted to give the best transition from the
coexial line to the strip. line.

- 160 -



and 3.00 kMc without appreciably affecting the interaction impedance. A
photograph of an assembled coupler is shown in Fig. 8.3 and the tunming
Plunger can be seen clearly. The shorting plates which cover the ends
of the cavity are omitted in the photograph.

The quadrupole cavity that was used in the tube is based on the circuit
described in Section B of Chapter VII and the important characteristics for
the resonant mode used in the interaction are given in Table VII.3. The
actual quadrupole was fifteen periods long, or twenty-seven half-wave-
lengths long for the space harmonic component of the field, and was
resonant at 5.69 kMe in the n/5 mode. ihe cavity was coupled to the
external circuit by means of the same windows used for the coupler cavities,
but in this case the external transmission line was a waveguide. The
cavity was critically coupled to the external circuit in order to achieve
maximum second harmonic power output. Equation (6.40) shows that this
is the optimum condition. A photograph of two quadrupole cavities with-
out the shorting end plates is shown in Fig. 8.4,

The electron gun employed in this tube provided a Brillouin flow
beam, The use of this kind of focusing is generally desirable in synchronous
wvave devices which employ parametric interaction since, as was pointed out
at the beginning of Chapter II, such a beam has no initial zero frequency
synchronous wave excitation. To avoid dissipation problems the beam
voltage was pulsed. Typical operating characteristics for the beam were:

Beam voltage 3000 - volts
Beam current 0.230 Ampere
Beam diameter 0.070 in.

Theoretical Brillouin flow field .600 Gauss

The focusing conditions were not found to be critical and it was possible
to vary either the voltage or the magnetic field in order to observe the
characteristics of the various interactions without giving rise to current
interception in a beam tunnel about 0.160 in. in diameter and eight in.
long.

A photograph of the assembled tube is shown in Fig. 8.5. The tube
was assembled by brazing the three cavities together and, therefore,
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The end plates, which have a beam aperture, have

been omitted for clarity.

FIG. 8.3 -- A photograph of an assembled coupler cavity showing the tuning
sa.
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there was no dc isolation between the cavities and the gun anode., However,
the collector wae isolated so that beam transmission through the rf portion
of the tube can be determined.

B. AMPLIFICATION BY MEANS OF SYNCHRONOUS WAVES

As mentioned previously, the two coupler cavities of the device
described above form a synchronous-wave klystron. The experimental
obgervation of amplification in this device is reported in this section
and a comparison with the theoretical characteristics is made.

The expected gain of the synchronous-wave klystron can be calculated
from Eqs. (3.48) and (3.52). Since several space harmonics are involved
in the interaction it is necessary to replace KH3 in this expression
with the sum of these terms due to each space harmonic as indicated in
Section A of Chapter III. The important coupler parameters that are used
in calculating the gain were given in Table VII.2. However, as noted above,
the impedance ia the table must be multiplied by 0.33 in order to obtain
the tube cavity impedance due to the window design error. The calculated
gain of the tube is found to be 13 db at the optimum synchronization
condition. The frequency of operation 1s immaterial as long as it is
within the tuning range of the cavities. Unfortunately, the tuning mech-
anism in the second coupler cavity became jammed after a few funing
adjustments, and after this the resonant frequency of the cavity had to
be varied by means of an external tuner. This has no effect on the
klystron experiment under discussion here, but does present difficulties
in the frequency doubling experiments to be described in the next sections.

The gain characteristics of the synchronous-wave klystron are shown
in Fig. 8.6. The power has been corrected for coaxial line loss and
insertion loss due to a slight mismatch at the input cavity. Therefore
the input and output power represent the actual power eptering and
leaving the terminals of the strip-line adaptors on the‘cavities. The
peak rf power was measured by means of calibrated crystal and attenuators.
The gain of the tube at small signal lavele is seen from Fig. 8.6 to be
7.9 db. We have shown above that the expected gain is about 13 db. The
discrepancy is probably due to the fact that the beam is of finite diamter
and that the circuit fields are not uniform acrose the beam. The error
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here is rather large and is an indication that the solution of the thick
beam problem should yield some significant changes in the quantitative
description of transverse-wave devices.

It 1s evident from the experimental data that the amplifier gain
becomes dependent upon the input power at a lower level than might be
expected. The fraction of the current that is intercepted on the cavity
structure is shown in Fig. 8.7. It 1s apparent that the gradual decrease
in gain which occurs below about ten watts is not a result of current
interception. The small-signal theory presented in Chapter III predicts
a constant gain. It is rather certain that the effect observed here can
be explained in terms of a beam model which is more realistic than the
filamentary beam description. That is, the large signal gain characteristics
are determined by the beam diameter and the nature of the variation of the
circuit fields which act on the beam as it makes large excursions.

The rapid reduction of the gain which occurs above about ten watts
of input power is due to beam interception. The expected power level at
which current interception will begin can be computed from Egs. (2.20).
The beam, which has both synchronous waves excited on it in the input
coupler, will begin to strike the output coupler circuit when the maximum
excursion exceeds 0.043 in. This is the radius of the circuit beam hole
minus the radius of the beam. On this basis, the maximum power which
can be carried by each synchronous wave without interception is 32 watts.
Since both the input and output couplers are identical, we see from (3.48)
and (3.52) that the input coupler gain is one-fourth of the square root
of the total galn when the output coupler is cz"itically coupled to the
external circuit as it is here. By using the actual gain curve, we
calculate that the interception shown in Fig. 8.7 begins at a power of
about 4,5 watts on each synchronous wave. This is considerably less
than the 32 watts calculated above, and may be due to inaccurate know=-
ledge of the beam diameter. Some of the discrepancy may also be a con-
sequence of violations of the filamentary beam model.

The dependence of the gain of the synchronous-wave klystron on the
various parameters of the system. was also investigated. The beam current
could be varied aver a small range by changing the control electrode on
the gun. A plot of the observed power output as a function of the beam
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Power Input in Watts

0.5
0.4 -
003 -
!
To
0.2
Operating parameters:
fo = 3,00 kMc
Vo = 3060 Volts
O.J'. I0 = 0.239 Amperes
By, = 583 Gauss
0 I | 1 |
0 10 20 30 40 50

FIG. 8.7--Intercepted current as a function of the input power for the
synchronous wave klystron. The operating parameters are shown

in the table in the figure.
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current is shown in Fig. 8.8. The input power was constant in this
experiment. BEquations (3.48) and (3.52) show that the output should be
proportional to the square of the beam current and the curve drawn in
the figure shows that the experimental datd have this same behavior. We
also see that the output power should be inversely proportional to the
square of the magnetic field. The experimental data shown in Fig. 8.9
verify that this is approximately true. The rather large discrepancy
between some of the data points and the inverse square law trend may well
be due to the changing dc beam configuration as the magnetic field is
varied.

The variation of the gain of the amplifier with the beam velocity is
of interest also. Figure 8.10 shows a photograph of the power output
of the second coupler as the beam voltage is swept through the wvalue for
synchronism. The amplitude of the lower trace is proportional to the'pup-
put power while the height of the second trace above the base line is
proportional to the input power. No correction for external transmission
line loss has been included here so that the apparent gain is smaller than
the actual tube gain. A detailed discussion of the shape of this response
is given in the next paragraph. The voltage was varied by adjusting the
peak beam voltage so that the synchronous-wave interaction took place
during the decaying portion of the voltage pulse. The transient phenomenon
at the right hand end of the traces is due to the trigger pulse which
initiates the beam voltage pulse and is not associated with the electronic
behavior of the tube. The third trace from the bottom represents on the
same power scale as before, the power reflected from the input coupler.
The upper trace represents this same reflected power which has been
amplified to show more detail. The coupler is matched to the external
circuit with the beam turned off and so the trace to the right of the
trigger disturbance represents zero reflected power. There is a reflection
as soon as the beam voltage is turned on and this is due to the interaction
between the fast cyclotron wave and the fundamental component of the coupler
field. The magnetic field has been adjusted so that the real part of the
beam admittance, due to the fast cyclotron wave, is zero, and therefore
we do not observe any transmission through the tube due to this inter-
action. We see that there is no significant reflection from the input
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(d)
(c)

(b)
(a)

FIG. 8.10 -- A photograph of a series of oscllloscope traces showing
some of the synchronism characteristics of the synchronous-
wave klystron. The traces, lettered from the bottom, re-
present: (&) output power, (b) input power, (¢) reflected
pover from input coupler, and (d) the reflected power
amplified. The apparent gain is less than the actual net
gain due to external eircuit losses.
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coupler which can be associated with the synchronous wave gain shown in
the lower trace. This verifies that the two synchronous waves do indeed
have very nearly the same phase velocity since, if this were not the
case, there would be some observable beam loading. It is true that we
can see some fluctuation of the reflected power in the amplified trape
and this is evidence that the synchronous waves may not have exactly

the same phase velocity. A more thoraugh investigation of this point is
not feasible with this device since tje nature of the beam motion is not
well known, nor can the voltage and current be controlled independently
over a very wide range due to the electron optics in the gun region. It
should be noted that the small bump on the left side of the synchronous
wave Interaction is due to the interaction between the fast cyclotron
wave and the space-harmonic fields of the coupler.

A detailed study of the dependency of the gain upon the beam velocity
was made 80 that the gain curve could be compared with the theoretical
predictions. The gain as a function of the beam voltage was measured
carefully. It was not feasible to keep the beam current constant during
this experiment due to the defocusing effect of the focusing electrode
when it was used as a grid. Figure 8.11 shows the normalized gain ae a
function of the beam velocity. The beam velocity plotted here does not
include the space-charge reduction. However, the theoretical gain curve
has been shifted to include space charge by means of the standard expressions
relating the beam voltage and velocity such as are given by Chodorow and
Susskind.37 The data have been corrected so that they represent a beam
of constant dc resistance. This is for convenience in the calculations,
and the correction is done by assuming that the experimental dependence
on the beam resistance is the same as the theoretical dependence. It
is seen that the agreement between the theoretical and experimental results
is quite good. The fact that the experimental curve is slightly broader
than the theoretical prediction may well be due to a small separation
in the phase velocities of the two synchronous waves, Oor perhaps to a
velocity distribution of the electrons in the beam.

The experimental results which have been described above show that
the synchronous-wave klystron is indeed a realistic device and that a
good qualitative description of its characteristics is given in terms

- 173 -



* £ TO00TaA WBaq
973 JO uoTjonNpax 981uyo-20uds oU3 SPNTOUT 07 POYJTUS UISQ S¥WY 9AIND TRO[}9I09U}
Y3 puUe IDURISTSOI WEsq JULLSUOD B JOJ 2J8 SIAIMD Y30g 38} TOA Wedq Y3 JO 300d

axenbs 543 JO UOTIOUNJ B SB UOIISATY SABM-SNOUOIYOULS Y3 JO UTB POZITeWIOU BYI~-TT°Q °*HIJ

(2/A3100T2A ureeq pajosLIOOUN) = cos/ \._”

#T°0 £1°0 FARLY 18 0) " 0T'0 60°0

P N T | I |

X © -
d.:OH .°T

MM 00°E = J
:sI9qowered Juiyeaady
SAIMD TBIT}SI03Y], I.‘nl

B818p TejuamIIdxy —O—

9°0

8°0

o°1

utsh POZTTEWION

- 174 -




e AR S R 1 T 3 OO

of the filamentary beam theory which has been described. It was found,
however, that the experimentally observed gain was about 5 db less than
the calculated value, and it was pointed out that this is probably due

to the violation of the filamentary beam assumptions. Finally it should
be pointed out that, although the observed gain was only 8 db, the inter-
action impedance had been reduced as a result of an error in the window
design. If the value of the interaction impedance which was observed in
cold test cavities is used, we predict that the experimental gain reported
above should be increased by about 10 db. This is a net gain of 18 db
which i8 of significance. By simply making the cavities longer, a very
large gain could be achieved.

C. FREQUENCY DOUBLING WITH THE SYNCHRONOUS WAVES

The frequency doubling interaction described in Chapter VI can be
observed with the tube described in Section A of this chapter by using
one of the synchronous wave-couplers as the input and the quadrupole
cgvity as the second harmonic output. The puyrpose of this section is to
report the results of an experimental investigation of this interaction
and to compare them with the theoretical predictions.

The overall theoretical conversion efficiency of the synchronous-
wave frequency doubler 1s calculated by considering the gain in both the
input coupler and the quadrupole cavity. The coupler gain 1s'given by
(3.43) while the quadrupole gain is obtained from (6.40). The data for
the gquadrupole calculations are given in Table VII.3 of Chapter VII. The
megnetic flux density used in the experiment was 583 gauss, as it was
in the klystron experiment reported in the previous section. We then
calculate the normalization constant of Eq. (5.33) and obtain the normalized
power p in terms of the actual power P

p = 1.66x102P .
Consequently, we have, from (6.40),

2 2
Py = 1:66x107° P,
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where PzwL is the second harmonic power delivered to the load and Pw

is the power on each of the synchronous waves at the quadrupole input.

In order to isdlate the deviations from the theory which occur in the
quadrupole section of the doubler, we use the experimentally observed gain
of the coupler to calculate the relation between the input and output power.
For essentially the same beam conditions as here, the small-signal gain

of one input coupler is approximately 1.2. Thus, we would expect the small-
signal frequency doubler characteristics to be given by

2_ 2
Pog = 25x10°P °

where P1n is the input power at the fundamental frequency. This result
will be compared with the experimental findings given below.

The input coupler resonant frequency should be exactly half of the
frequency of the quadrupole cavity resonance in order to have optimum
operation. As was noted in the previous section, the tuning mechanism
of the coupler closest to the quadrupole was defective and consequently
it was necessary to use the first coupler and the quadrupole for the
frequency doubling experiments. The optimum orientation between the
coupler and the quadrupole is preserved; however, the beam must now pass
through the detuned coupler cavity before entering the quadrupole. This
should have no significant effect on the small signal operation of the
device and indeed there was a signal of negligible amplitude detected at
the second coupler during the course of the experiments. However, there
is an slteration of the saturation power due to a reduction in the
dimension of the aperture through which the beam ..ast pass. The effective
aperture is now 0.156 in., rather than the 0.225 in. dimension that would
have been valid if the second coupler could have been used to excite the
synchronous waves. This results in a reduction of the maximum wave
amplitudes that can be excited in the coupler, and consequently the
conversion efficiency will be reduced since this is a square-law device,
as shown in (6.40).

The experimentally observed second harmonic power 1s plotted as a
function of the input power in Fig. 8.12, The data have been corrected

for the insertion loss of all external t;anamisaion lines 8o that the
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FIG. 8.12--The output power of the synchronous-wave frequency doubler as
& function of the input power.
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power indicated 1s that which exists at the input and output terminals of
the tube. The square-law characteristic which gives a good fit to this
data at low power levels is

The corresponding coefficient calculated above was 2.5 x 10-2 . This

discrepancy between experimental and theoretical results by a factor of

one hundred certainly indicates that the filamentary beam theory fails in
this case as far as quantitative predictions are concerned. In the next
section it will be shown that the filamentary beam theory gives much

closer agreement with the experimental results for the cyclotron wave inter-
action in the quadrupole cavity. In that case the quantity Bgb , where

b is the beam radius and P is the wave propagation constant, is appréxi-
mately 0.05 while for the synchronous wave interaction pb 1is about

0.5 . We would therefore expect thick beam effects to be much more
significant in the synchronous wave case, and the experimental evidence
seems to bear this out. It should be noted that the theoretical predictionms
came much closer to the experimental results in the case of the synchronous
wave interaction in a coupler field, treated in the previous section, than
in the case of the quadrupole interaction studled here. This indicates

that thick 5eam effects are much more significant in quadrupolar fields

than in coupler fields.

The large-signal character of the data shown in Fig, 8.12 is very
interesting and shows a qualitative deviation from the theoretical results.
The change from the second power dependence of the output power on the
input power is quite apparent and was observed in all of the synchronous-
wave doubler experiments. That this is an effect which takes place in
the quadrupole is verified by the fact that it was not observed in the
synchronous-wave klystron experiments reported in Section B of this
chapter. This result cannot be explained in terms of the interactions
described in Chapter VI, in which the power characteristic was an exponen-
tial curve, because the second harmonic power observed in this experiment
is not great enough to give rise to a deviation from the low-level square-
law characteristic. It is difficult to speculate on the exact nature of
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this phenomenon because the true character of the beam is unkown. Perhaps
a satisfactory explanation can be made in terms of the space-charge wave
interactions which give rise to the oscillations described in Section F
of this chapter. However, a more thorough investigation, with ; device

in which the beam is well defined and current interception does not occur
at such low power levels, would be required.

In general, the results of the experimental investigation of the
synchronous-wave frequency doubler employing a linearly polarized quadrupole
cavity indicate that the assumptions of the filamentary beam theory devel~
oped in Chapter VI have been vidlated in a cruclal way. The frequency
doubling that is predicted is observed, but the experimentally determined
efficiency is two orders of magnitude less than predicted. It was also
seen that some phenomenon, in addition to the synchronous-wave doubling
interaction, was taking place. Consequently, while the predicted effect
was observed, there is both a refinement of theory and more experimental
work required in order to make this interaction competitive with other

frequency doubling schemes.

D. FREQUENCY DOUBLING WITH THE FAST CYCLOTRON WAVE

The experiments described in the last two sections involve coupling
between the synchronous waves and a space harmonic of the circuit field.
It was also possible to adjust the beam voltage and the magnetic field
80 that there was strong coupling between the fast cyclotron wave and the
fundamental component of the circuit field in both the couplers and the
quadrupole. Consequently, we should observe the passive frequency
doubling described in Chapter V. The expected efficiency of this inter-
action will be calculated and compared to the experimental results.

The theoretical conversion efficiency of the cyclotron-wave frequency
doubler is computed by considering the gain in both the coupler and the
quadrupole cavity. The cavity gain is given by'(3.29) and the quadrupole
gain is obtained from (5.34). By using the data in Table VII.3 of
Chapter VII, we calculate the normalization constant given in (5.33).

The magnetic field intensity of 815 gauss and the voltage of 4080 which
were used in the experiment were less than the optimum values for syn-
chronism, but larger values could not be obtained due to equipment
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limitations. We obtain the normelized power given by (5.33) as

» = 58P ,

and at small signal levels (5.34) gives

PQ(D 508

—_ 2 — P
Q w

P 1 4+ Xt
%

Now this result was derived under the assumption that the fast cyeclotron
wave was synchronous with one component of the circuit field and did not
interact with any other traveling-wave components. Neither assumption

is valid here because of the error in beam velocity and the shortness of
the quadrupole. However, it was noted in Chapter V that, for very low
power levels, the modification of the results due to other field components,
and to errors in synchronism, is exactly the same as in coupler circuits.
That is, we shoyld multiply the above efficlency by the coefficient ])43|'2
shown in Fig. 3.1. The value of the synchronism error € calculated

from (3.7) is, in this case,

€ = - 0.56 ,

and from Fig. 3.1 we obtain for a cavity three wavelengths long,
2
|M3(- 0.56)|° = 0.03 .

Only the fundamental components of the resonant field need be considered
here since the space harmonics are far from synchronism. The theoretical
value of the conversion efficiency in the quadrupole is found to be

P2w

P
®

= 0.08TP, ,
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vhere Qext/qo has been set equal to unity. Of course, as the power level
18 increased the conversion efficiency of the quadrupole will not remain a
linear function of the input power, but will saturate at fifty per cent as
shown in Fig. 5.5.

It was necessary to use the first coupler to provide the input to
the quadrupole as a result of the tuning mechanism difficulty mentdoned
in Section B of this chapter. It ¥& not expected that this-will cause
any difficulty in the present case gince the second coupler cavity is
detuned. Unlike the synchronous—waw;e case, the saturation characteristics
should not be sltered because at least in theory, the beam motion in the
transverse plane is circular and the dimensions of both couplers are the
same,

The experimental data showing the second harmonic power output as
a function of the fundamental coupler power input are plotted in Fig. 8.13.
This represents the overall power characteristic of the tube and we see
that a conversion efficiency of 6.7 per cent is achieved. The gain in
the input coupler was observed by measuring the reflection coefficient of
the coupler cavity with and without the beam in the cavity. These results
give the ratio. of the cold cavity Q and the @ of the cavity loaded
by the beam. We obtain

The coupler gain, given by (3.29), is

G, = 025 .

The low level (square-law) portion of the curve in Fig. 8.13 is matched
very closely by

Fow

= 0.064 P, >
P
w
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FIG. 8.13--The output power of the cyclotron-wave frequency doubler as

a function of the input power.
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where Pm is the cyclotron wave power at the quadrupole entrance. This

. result agrees very well with the theoretical low-level power expression
calculated above. Since the coupler gain is 0.25 here, we see from the
figure that an experimental overall conversion efficiency of about 25 per
cent would have been obtained if the coupler cavity window had been designed
properly. This result is approximately the same as observed by Ashkin with
infinite phase velocity structures, and there is no reason why the efficiency
cannot be pushed much closer to one hundred per cent.

{
3
3

A plot of the fraction of the beam current which is intercepted in
the input coupler is shown in Fig. 8.14, Calculations ghow that the current
interception begins much below the value predicted by the filamentary beam
theory, and it is alsc observed that the sharp decrease in power output
observed in Fig. 8.13 does not occur until the input power reaches about
twice the value at which interception was first observed. On the basis
of this, one is led to believe that the beam is expanding more than the
filamentary beam theory would predict, and that not all of the beam is
Playing a significant role in the coupling interaction in the input cavity
since the abrupt loss of signal transmission through the tube is not
related to the initial current interception. This may be related to beam
scalloping as a result of improper focusing conditions, or it can be a
result which is to be expected for any thick Brillouin flow beam. Again,
it is apparent that the filamentary beam model fails in many respects.
This simple theory has, however, provided a very useful guide to a quali-
tative description of the transverse-wave interactions that have been
observed.

In summarizing the results of the experimental investigation of the
fast cyclotron-wave doubler, it is to be noted that exceptionally good
agreement between the theoreticel and experimental results is obtained.
The overall efficiency of seven per cent that was observed at saturation
was low ag a result of the error in window design in thalinput coupler.
The quadrupole frequency doubling efficiency was in excess of 25 per cent.
The good agreement with the theory can probably be attributed to the
small value of beam diameter measured in the wavelengths of the fast
cyclotron wave. The one distinct disagreement with the theoretical
predictions was the power level at which beam interception occurs. 1In
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FIG. 8.14--A plot of the fraction of the beam curfent that 1s intercepted
ag a function of the input power for the fast cyclotron-wave

doubler.
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all of the experiments we have observed current interception at much lower
values of the input power than would be expected. It is believed that
this is a result of a thick beam phenomenon, and probably dc scalloping
of the beam as well.

E. DISPERSION OF THE FAST CYCLOTRON, WAVE

The question as to whether the propagation constants of the transverse
waves on the Brillouin focused beam are the same as on a filamentary beam
natyrally arises in connection with the experiments presented here.
Wessel-Berglh has done some theoretical work on wave propagation on thick
Brillouin focused beams and arrives at the conclusion that, while additional
waves do arise, there is no significant change in the propagation constants
of the equivalent of the filamentary beam transverse waves that are
asgsociated with a Brillouin beam. The experiment described below was
carried out in order to verify these results.

It was possible to observe transmission through the two couplers as
a result of the fast cyclotron wave coupling to the space harmonic fleld
components by properly adjusting the magnetic field and the voltage. The
shape of the transmission response curve shown in Fig. 8.11 is valid for
the cyclotron wave coupling also and it is apparent that the velocity of
the cyclotron wave can be defined very well by observing the maximum
coupling through the two couplers. Although it was not possible to change
the phase velocity of the couplers, the combinations of magnetic field
and beam voltage which yield a cyclotron wave phase velocity that gives
maximum transmission can be observed. It is then possible to normalize
this data so that an w-p diagram for the fast cyclotron wave is obtained.
The data were taken by changing the magnetic field in discrete steps and
observing the beam voltage that yielded maximum coupling. This insures
that the cyclotron wave has the same phase velocity at each point. The
beam current was varied at each point to verify that the optimum voltage
was independent of the current. This was to be expected in this experi-
ment since the beam voltage, and therefore the current, was quite small.
The normalized data taken in this way are plotted in Fig. 8.15. The
agreement between the curve based on the filamentary beam model and the
experimental data 1s excellent. There is a slight deviation at frequencies
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near the cyclotron frequency which is of the same nature as the deviation
predicted by Van Hoven and Wessel-Berg.38 Because of the way that these
data were taken, it is not possible to make a numerical comparison with
the results in the reference cited above. For example, it is almost
certain that the beam diameter varied in this experiment. These results
do indicate that the propagation constant of the fast cyclotron wave is
essentially the same as that predicted by the filamentary beam theory.

F. MONOTRON OSCILLATIONS

No mention of oscillations was made in the descriptions of the various

experiments reported above. Special care was tgken to look for instabilities

at all stages of the investigation and none were associated with the above
experiments. However, oscilllations were observed in both the coupler and
quadrupole cavities when the axial magnetic field was perturbed in a
particular way.
It was observed that, for particular synchronism conditions, it was
possible to cause osclillations in the quadrupole cavity by placing a
steel rod, one-quarter inch in diameter, near the gquadrupole and parallel
to it. The peak output power obtained in this way was 22.0 watts at
5.70 kMc, with a peak dc beam power of 1500 watts. It is apparent that
this is not an insignificant process. Similar oscillations were observed
in the coupler cavities. In all cases the oscillations were accompanied by
beam interception. The position of the perturbing rod that yielded
oscillations was one in which the beam would be deflected toward a set
of pins in the slow wave structure. For example, the optimum perturbing
rod position in the case of the quadrupole oscillations was in the plane
of any one of the four sets of pins that make up the quadrupole structure.
Several explanations for these results might be plausible. One
explanation could be that secondary electrons due to the beam striking
the slow-wave structure could be giving rise to the oscillations. How-
ever, by varylng the external load on the cavities it was determined
that the beam interception was due to an rf phenomenon and was not due
to the perturbed dc trajectory of the beam, A second explanation could
be based upon a parametric interaction between the circuit and & dc "ﬁhmp"
vave which was excited on the beam by the magnetic field perturtation.
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This would have been an attractive solution because it might hav; offered
evidence of the existence of some of the new transverse waves described
by Wessel-Berg;lu However, no combination of the transverse waves could i
be found that would explain the oacillations in this way.
Finally, the answer that immediately suggests itself is the one that
fits the data. The proper explanation is that the beam is shifted off of
the tube axis by the perturbing rod so that the symmetry of the fields

acting on the beam is destroyed. The beam is now in a region where it

b b s i

observeg transverse fields with a superimposed longitudinal field, and
it is the coupling of the slow space-charge wave to this longitudinal
field that results in the oscillations. For example, strong oscillations
were observed in both the quadrupole and the coupler-cavities for the i

gohditions -
V0 = L4250 volts
I0 =  0.350 amp
BO = 675 Gauss .

The plasma frequency is obtained from the cyclotron frequency, since this
is a Brillouin-focused device, and a knowledge of the approximate beam
diameter as well as of the circuit dimensions allows an estimate of the
space-charge reduction factor by means of curves such as are given by
Beck.39 It is found that the phase velocity of the slow space-charge wave
is

2

v
2 =~ o011
C

o3 e e

which is very close to the phase velocity of the first backward space

harmonic in both the couplers and the quadrupole. Since these oscillations

are a result of an unmodulated beam interacting with a single resonant

cavity, they have been called monotron oscillations here. Since the .
interaction happens to be with a negative phase velocity component of

- 188 -




o, AR L A

B v RS e 1

et e e e DR S S SR D

the eircuit field, some might feel it preferable to call this backward-
vave oscillation. .

The main importance of these results is that they show that beam
misalignment can cause oscillations. Thies would be particularly evident
in long structures in which the coupling occurs over many wavelengths.
However, the ordinary care that was exercised in the construction of the
device described here was quite sufficient to avoid difficulties.
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CHAPFTER IX

SUMMARY

In genersal, the plan of the work presented in this report has been
to use the coupled mode approach to describe certain classes of transverse-
wave interactions, and then to experimentally investigate those inter-
actions which appeared to be most likely to result in devices that perform
a useful function. An outline of the major divisions of the work is
presented below, along with a summary of the way in which each part rep-
resents a contribution to the understanding and utilization of transverse-
wave interactions.

The purpose of Chapters II, III, and IV was to present an explicit
and unified description of the various types of transverse-wave couplers
that employ elther traveling-wave or standing-wave circuits. The fila-
mentary beam model has been used throughout the analysis and, although
this represents a limitation, it is felt that a good qualitative descrip-
tion of the basic interactions is found in this way. The results derived
in these chapters should serve as a useful gulde to the design of couplers,
and the description of both resonant and traveling-wave couplers in the
same notation makes it easier to study transverse-field circuits without
specifying the manner in which they are to be used. The coupled mode
formulation of the twisted eircuit interactions maekes it possible to gain
a better understanding of this class of couplers. In particular, it was
observed that any two transverse waves of opposite polarization cen be
excited equally in a twisted coupler. On the other hand, the twisted
coupler can be used to discriminaste between waves with the same phase
velocity and opposite polarization.

Chapters V and VI presented the coupled mode theory of transverse-
wave frequency doublers. These devices consist of an input transverse-
wave coupler and a gquadrupole structure for the second harmonic power
output cavity. The theory included a study of some new interactions as
well as a new formulation of the fast cyclotron-wave doubler that has

- 190 -



© e o .,

been described before. Several of the new interactions have scme

promise as useful devices because they lead to high conversion efficiencies
by means of an active process. The doublers employing both of the syn-
chronous waves were of particular interest because of the opportunity to
obtain gain in the input coupler and thereby increase the overall con-
version efficlency of the device,

The studies reported in Chapters VII and VIII described some new
transverse-field circuits, and the results of an experimental investiga-
tion of some of the interaction schemes that were considered in the first
part of this report. The synchronous-wave klystron described in Chap-
ter III was investigated and the observed 8 db gain 1s felt to be
significant because this is the first experimental observation of this
phenomenon. Frequency doubling by means of both the synchronous waves
and the fast eyclotron wave was also observed. The conversion efficlency
of the synchronous-wave doubler was much smaller than the value predicted
on the basis of the theoretical work, while the experimental and calcu-
lated efficiencies of the cyclotron-wave doubler agreed very well. These
results indicate that the filamentary beam model used in the theory is
probably inadequate as far as quantitative descriptions of slow-wave
interactions invclving thick beams in quadrupole fields are concerned.
The quadrupole conversion efficlency of 25 per cent that was cbtained in
the cyclotron~wave doubler does show that this interaction is practicable
in devices that use periodic circuits to reduce the masgnetic field

requirement.
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APPENDIX A
IMPEDANCES OF IDEALIZED SLOW-WAVE CIRCUITS

In order to compute the ultimate interaction impedance which might
be obtalned with a longitudinel-field traveling-wave circuit, Pierce36
introduced a hypothetical circult which had only the fileld of interest
in the interaction, and the extraneous fields as required by Maxwell's
equations (assuming slow waves). Then, by using the assumed field varia-
tions that are appropriate to the postulated cylindrical symmetry of the
ideal circult, it was possible to match the external and internal fields
at the circult by means of the continuity relations, and obtain the fields
everywhere in terms of the axial electric field. The energy stored per
unit length was then calculated and, by introducing the group velocity,
the interaction impedance of the circult was determined.

This same approach may also be applied in the case of transverse-
field circuits. By doing this it will not only be possible to obtain an
upper bound to the lmpedance of transverse-field circuits, but it will
also allow some comparison of the ultimate capabilities of this class of
circuits with those of the longitudinal-field circuits. We calculate here
the impedance of an idealized TE ecircuilt which 1s circularly polarized.
The circularly polarized circuit is the interesting case since the
transverse waves on a beam are circularly polarized.

We begin with the equations releting the electric fields to the
longitudinal electric and magnetic fields in cylindrical coordinates:

1 [ o, moaHz'}
E,.=-—>5|r—+J -2
K, or r 06
(A.1)
1| 7aEZ anz
E, === |-=—4+ jop, —] ,
6 ki r 06 0 3r J

- 192 - -



s S U, T .

L e ey apgee 4 e A A

vhere

k§.72+k2 .

We are assuming e(‘m’t - 72) variation here. For slow waves (v/c <<1l),
we define 7 = JB and Egs. (A.l) are approximately

BE .iaE—z.}. ?2?2
T Bar 8%r 0
and
J OE wy, OH
Ey=——2 -3 5 —% . (A.2)

For a circularly polarized circuit the 6O-variation 1is chosen to be

e-Je Then assuming that there is no axial electric field, Egs. (A.2)
become

op. 1
B~ r
(A.3)
wy,. OH
By =35 =2
B dr

The appropriate solutions for Hz s with the 2z- and 8-variation
suppressed, sare

Hi = A1, (Br)

K =BK (Br) ,
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where the superscripts indicate fields inside and outside of the
cylindrically symmetric circuit, A and B are arbitrary constants,
and I1 and Ki are the modified Bessel and Hankel functions. After
substituting these fields into Egs. (A.3), matching E, eacross the cir-
cuit boundary (at r = a) , and choosing Er(O) to be unity, we obtain

I,(Br)
Ei = 2 1
r Br
E: =-j2 1! (Br)
o 1

o, L(ee) K (e)

B =

T K (Pa) r
I.(Ba)

--y2 1K) . (a.)
Ki(ﬁa)

The total average stored energy per unit length is twice the average
electric energy stored, or

e o
e=-9f [E]° 20 ar .
2

r=0

By substituting Eqs. (A.l4) into this expression, we obtain integrals which
are simply evaluated by means of standard recurrence relations and
integral formulas, The resulting expression for the energy stored per
unit length in the hypothetical ecircuit is

7
1+
( (Be)?

1 - (1/1)(1/e) Y é( u)

. {1 -
1+ (g /x)/ee)) B\ (ea)l
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The arguments of the cylinder functions are all Pfa and have been
omitted. The transverse interaction impedance, defined by (2.18), is

£ (0)

hﬁeev

KT-

where vg is the circuit group velocity. The final expression for the

impedance is

c 1 1 r 4 )
=30 — = l2-=(1+
& v )| T\ (ea)®
1 - (1,/1,)(1/88) ¥ K& y \ ™
+ 1 0 ¢ =11 = 5 . (A.6)
1+ (K /KN (1/pe)) K2\ ()

If the longitudinal-field circuit (TM) impedance is defined in the

same way as the transverse impedance KT s Wwe have

. =E§ (0)

2
e
hﬁvg

(1)

s0 that, from Plerce's results,

~l

¢ 1 1|1
KLIBO-————§—J"'+-I§'- . (A-7)

vg Ba I0 Io Ko

Equations (A.6) and (A.7) are plotted in Fig. T7.2.

(1)Pierce's definition of impedance differs from that used here,
since he employs the field at the circult rather than on the axis.
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MEASUREMENT OF INTERACTION IMPEDANCES

The interaction impedances of the circuits described in Chapter VII
were determined by a frequency perturbation technique. A sectlion of the
slow wave structure, an integral number of periods long, was shorted at
the ends to form & resonant cavity, and the shift in resonant frequency
was noted when a metal needle was placed in the cavity fleld. It is
noted below that the frequency perturbation produced by a thin needle is
proportional to the square of that electric field component that is par-
allel to the needle. Consequently, a needle that is placed in the plane
that is transverse to the axis of the cavity can be used to determine
the axial distridbution of the transverse field and to note the angular
distribution of the field in any transverse plane., If 1t is desirable
to have a frequency perturbation that is independent of the orientation
of the perturbing object, a cross made of two needles that are perpendic-
ular to each other may be used. This is useful since it is often desirable
to support the needles on a thread so that the orientation cannot be
controlled. A drinking straw was found to be a very suitable vehicle for
the needle when it is desirable to control the orientation. The deter-
mined transverse-field distribution along the axis of the cavity can be
used to compute the space harmonic amplitudes of the traveling-wave
circuit by matching assumed space-harmonic series, composed of forward
and reverse propagating waves, to the data in a menner very similar to
that described by Gallagher.uo

The traveling-wave interaction impedance is calculated from the
frequency perturbation and the needle dimensions by means of an expression
that is derived from an equation given by G:lnztcm.ul The reference
states that the shift in resonant frequency of a cavity when a needle of
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length 2a and diemeter 2b 1s placed parallel to a uniform electric
field is given by

2 2

22 . /e 2 bna® (.1)

2
%o

where . is the natural rescnant frequency of the cavity and o 1is the

0
perturbed resonant frequency. The F(b/a) is a shape factor for the

needle that is given in the reference, and is given by

0

o £ , (B.2)

0 = €0 20

wvhere E 18 the electric field at the needle and U 1s the energy stored
in the cavity. Equation (B.l) is used below to relate the impedance of
a coupler and a quadrupole type circuit to the perturbation data.

1. Impedance of a Linearly Polarized Coupler

If a circuit supporting a single traveling-wave is shorted to make
a cavity, the peak field is related to the field of the forward wave
component on the circuit by

E,=3E_, (B.3)

and the energy stored per unit length in the forward propegating wave is
related to the total energy stored in the cavity by

(B.4)

(=]

n
-
ol [ =

-

where L 1s the length of the cavity. The power that is carried by the
forward propagating wave 1is

P =0V ’ (B°5)
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where v8 is the group velocity. Finally, by combining these equations
and using the definition of the transverse interaction impedance given
in Chapter II,

K, = ——ms , (B.6)

we obtain the impedance in terms of the known circuit and needle quantities
and the frequency shift

5 = . (B.7)

For  <<1 , vwe obtain

K, =15 [F(b/a) -;‘- (vg/c)(sa)e] 5 . (8.7)

In general, there will be space harmonic components in the field and
(B.7) must be modified. The impedance of the nth space harmonic is

2 -1

K, =15 @) F(b/a) EZE IV (3.8)
(o]

where En/E is the ratio of the space harmonic amplitude to the amplitude
of the field which gave the frequency perturbation.

2. Impedance of a Linearly Polarized Quadrupole
In the calculation of the gain of the quadrupole frequency doublers
we need to use a value for Rq which is defined to be

V2
R =3
1 2p

’ (8.9)
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where Vfl 18 the forwvard propagating voltage and P 1is the power which
must be supplied by the beam to establish this Vq . An approximate
determination of Rd can be made by means of the perturbation procedure
described above.

A cross section of a quadrupole cavity and the needle orientation
are shown in Fig. B.1l. The unperturbed potential at the position of the

needle is
2
X
g = Yy = (B.10)
0
s0 that the field is
V x
E=2-2— | (B.11)
To To

An effective uniform field for use in the perturbation equations is

taken to be that fleld which gives the same energy stored in the volume
to be removed by the needle that is stored there in the actual quadrupole
field, that is,

a
2
Eiff--;f ® ax . (B.12)
0
The effective field is then
E2 zg 2 a 2

er = L/3 - ;—- . (B.13)

0 0 °
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Perturbing
Needle

FIG. B.1--A schematic diagram of the quadrupole showing the needle
orientation.
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The quantity

(B.14)

is exactly the impedance Kn obtained in terms of the frequency pertur-
bation in (B.8). Upon combining Eqs. (B.8), (B.9), (B.13), (B.14) and
the definition of the Q of the cavity and its load,

Q= aU/P |, (B.15)
we obtain
5 2
E‘l’l s (p/a)(a/ry) (5) . (5.16)
Q (vb/c)Bnp F(v/a) |\ E

Thus, a perturbation measurement and determination of the Q of the
cavity allows the celculation of Rq .
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SPACE HARMONICS IN TRANSVERSE-WAVE COUPLERS

In order to calculate the amplitudes of the space harmonic components
of the fleld to be expected in transverse-field couplers, we employ the
model shown in Fig, C.1. It is assumed that there 1s no variastion of the
field in the y direction. Because the circuit i1s periodic in the =z
direction, we will have space harmonics with propegation constants

2nn
Sn = Bo + —1'.:— Y (C.l)

where BO is the fundamental propagation constant. An appropriate
expansion for the potential V at a point between the upper and lower
halves of the circult is, in rectangular coordinates,

a -JB 2z
V-_--Z -—nsinthXe no (c.2)
nmee Pn

s0 that the transverse field is

o -anz
Ex e z a cosh Bn X e ’ (c.3)

Nn==x

To determine the amplitudes a , we match (C.2) to the assumed potential
of the ecircuit at x = a

0]
Va0, -§<z<-% 3 %<z<+§
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FIG. C.1--The c¢ircuit model used to calculate space harmonic amplitudes.
The circuit is uniform in the y direction.
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Then, using the orthogonality 1ﬂ' z , ve integrate over the period to

obtain
P -1
Voafsin—=1p d/p\/sinn B8
2
8 =—~ - . (c.b4)

e p\ —pdfp B8
2

For smell B & , the last factor in (C.4) 1is unity and to the same
degree of accuracy the transverse variation of E in (C.3) may be
neglected.

These results may be used to determine the requirements on d and
P 1n order to maximize the impedance of a particular space harmonic. 1In
order to do this for the space harmonic denoted by n = k , we maximize
the ratio of the square of the harmonic amplitude to the average of the
square of the electric field. That 1s, we look for the maximum of

2 2
ak ng sin ng/Q
7R 2 ’ c.
- f/ : . 9 “‘"‘e 2 (c.5)
L ah € dz t gk/
-L/2in=s=
where
ﬁkd = egk
PP = Opy -

IR
This is exactly the result obtalned by Plerce 2 for longitudinal field
circuits and the solutions are:

egk = etk if etk <2.33

(c.6)

6g = 2-33  if 6, >2.33 .
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