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ABSTRACT

The results of a theoretical and experimental investigation of

transverse-wave couplers, and of frequency doublers employing these

couplers in conjunction with a resonant quadrupole circuit, are described.

The theoretical description of transverse-wave couplers is based

upon the well known coupled mode formalism which describes the interaction

between the normal modes on a filamentary electron beam immersed in a

longitudinal dc magnetic field and the normal modes on a periodic circuit.

The theory of both traveling-wave and resonant couplers is developed in

detail so that the significant characteristics of the coupling inter-

actions are described in terms of known quantities. The coupled mode

theory has been extended to include twisted transverse-wave couplers

with a resulting clarification of this important class of interactions.

The theory shows that the traveling-wave couplers may have a large

bandwidth but generally tend to be quite long due to the low interaction

impedance characterizing this type of circuit. Much stronger coupling

per unit length is obtained by the use of resonant circuits with a

resulting decrease in the length and bandwidth of the coupler. The

type of coupler to be used in a particular device depends upon the

requirements and restrictions involved.

The theory of transverse-wave frequency doublers using a resonant

quadrupole cavity is developed in detail from a coupled mode approach.

It is found that the fast cyclotron wave doubler which has been investi-

gated previously is a special case of a general class of interactions.

In general, a periodic quadrupole circuit interacting with any one of the

four transverse waves can result in a second harmonic output from the

quadrupole if the proper synchronism conditions are met. Some of these

cases are of particular interest since they involve an active interaction

with the beam which can result in frequency conversion efficiencies that

are greater than one hundred per cent. The characteristics of the various

frequency doubling interactions are presented in terms of normalized

curves and equations that may be readily used in the design of devices.
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An experimental study of some of the coupling and frequency doubling
schemes described in the theoretical analysis was carried out. In the

course of this work several new types of transverse-field coupler and

quadrupole circuits were investigated and found to be of practical

importance. The experimental results were in good qualitative agreement

with the theory in all cases, but a quantitative disagreement was observed

in the cases in which the beam was an appreciable fraction of a normal

mode wavelength in diameter.

Frequency doubling by means of the synchronous waves was observed,

although the conversion efficiency was only one per cent of the theoretical

value. This discrepancy is attributed to thick beam. effects. Doubling

by means of a fast cyclotron wave interaction was also observed, and the

25 per cent conversion efficiency in the quadrupole was in good agreement

with the theory, as is to be expected since the relative beam diameter

was small.

An amplifier consisting of two synchronous wave couplers was also

investigated and the net gain of 8 db was 5 db below the predicted value.

High values of gain can be expected from this device if a proper design,

that takes into account thick beam effects, is used.
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CHAPTER I

INTRODUCTION

The study of transverse-wave electron devices has received widespread

attention recently, primarily due to the promise of the higher efficiencies,

lower noise figures, and basically new types of interactions which may be

obtained by utilizing the transverse modulation of an electron beam. The

transversewaves which can exist on a straight electron beam immersed in an

axial magnetic field are characterized by transverse displacement and

velocity modulation of the electrons as opposed to the longitudinal

modulation characteristic of the more familiar space-charge waves. The

initial experimental studies of transverse-wave devices by Cuccia, 1 , 2

Adler,3 and others4,5,6 have been notably successful in demonstrating the

practicality of this class of devices and bave served as an incentive for

further work.

The first theoretical studies of interactions between a thin electon

beam and a circuit supporting a transverse electric field were based upon

a solution of the Lorentz forme equation in terms of the dynamical variables

for one electron.7,8,9 This Lagrangian approach, while certainly adequate,

does not yield solutions in the simple and intuitive form that is obtain-

able with a wave formalism. Siegman, and othersll'12 have described

the small-signal excitation of the beam in the transverse plane in terms

of circularly polarized waves, yielding results which are easily described

in terms of the coupling of normal modes. Two of these waves, the fast

and slow cyclotron waves, are characterized by a rotation of the individual

electrons at the cyclotron frequency. The phase velocities of these waves

are greater than, and less than, the dc beam velocity as their names imply.

The other two waves are characterized by pure transverse displacement of

the electrons and are called synchronous waves since their phase velocities

are equal to the beam velocity. Besides these differences the transverse

waves are distinguished by the sign of the energy which they carry and their

polarization. The applicability of the filamentary beam model, used to

-- i-



obtain this wave description, to devices employing finite size beams is

certainly to be questioned. However, Gordon 1 3 and Wessel-Berg14 have

demonstrated that, for beams of nominal thickness, the simple resuilts

obtained from a filamentary beam theory are approximately correct, although

some additional waves are present.

Two classes of circuits have been important in the study of transverse-

wave interaction. FIrst are the transverse wave couplers which have a

transverse electric field that is uniform over the portions of the transverse

plane in which the interaction takes place. The first complete description

of a transverse wave coupler was given by Cuccia,9 although the description

was in terms of the electron dynamics rather than waves. This coupler

consisted of a parallel resonant circuit with the beam passing through the

uniform field of the capacitor plates, or the microwave cavity equivalent

of this, and an axial magnetic field with the cyclotron frequency equal

to the signal frequency. In terms of the wave formalism this coupler

excited the fast cyclotron wave with infinite phase velocity. Essentially

all of the experimental devices which have been studied have employed this

type of coupler. However, it is of some value to use couplers with other

synchronism conditions to obtain new types of interactions, and to avoid

the high magnetic field demanded by the use of the Cuccia coupler at micro-

wave frequencies. Several authors have considered the theory of transverse-

wave couplers in varying degrees of generality. 10-12 15,16 These analyses

have dealt with the general aspects of coupling to a traveling-wave circuit

which can be predicted from the coupled mode equations. However, a detailed

description of transverse-wave couplers, both traveling-wave and resonant,

has not been given. Such a description would include a discussion of how

sensitive the coupling between the circuit and the beam is to errors in the

synchronism conditons, the coupler gain, bandwidth, and a comparison of the

various types of couplers. One of the purposes of this study is to consider

these, and other points, related to transverse-wave couplers.

The second class of circuits which have been of interest in connection

with transverse waves are the quadrupole structures. The quadrupole field

is characterized by an r cos 29 variation in the transverse plane, where

r is the radius from the axis and 9 is the angular position. The

parametric amplifier developed oy Adler, Hrbek and Wade uses a resonant
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quadrupole as the pumping cavity. Others have demonstrated that electro-

static quadrupoles of various designs are useful in dc pumped ampiifiers.17l 8

The interaction between a thin beam and a general quadrupole circuit may

also be analyzed in terms of coupled mode theory, as has been done by

Blotekjaer and Wessel-Berg and others.l' 1 9 The differential equations

now have time and space varying coefficients which lead to more complex

solutions than in the case of the coupler type circuits.

One of the interesting possible classes of interactions in a quadrupole

type cavity leads to frequency doubling. This had been noticed earlier by

Cuccia20 and later by others in connection Vith the Adler tube.21 In this

case the fast cyclotron wave excitation due to an infinite phase velocity

input coupler induces a second harmonic current in the quadrupole cavity

due to the difference in angular variation between the cyclotron wave and

the quadrupole circuit. Lindsay and Caunter22 analyzed this situation by

means of a ballistic approach and obtained predictions of conversion

efficiencies greater than fifty per cent. Cuccia also noted that the

basic principle could be extended to higher multiplication ratios by using

higher order multipole circuits, and obtained five per cent conversion

efficiency in multiplying up to 3.2 kMc with a frequency quadrupler. 2 0

The cyclotron wave frequency doubler described above is quite interent-

ing, not only because of the possibility of high conversion efficiency but

also because it appears that relatively high power levels could be obtained,

and because the circuit dimensions make the device amenable to scaling to

high frequencies. The previous work on frequency doublers has been

restricted to this special case. One of the purposes of this study will

be to carry out a general analysis, based on the coupled mode approach,

of the class of Frequency doublers employing one or more of the four

transverse waves interacting with the electric field in a periodic quad-

rupole cavity.

In addition to the theoretical studies of coupler and quadrupole

interactions that were indicated above, experimental studies of some

transverse-wave devices were carried out. One purpose of this part of

the research program was to develop some new types of transverse-field

circuits that were suitable for use in transverse-wave tubes. A second

purpose was to verify some of the interactions that were predicted in

the theoretical analysis and have not been investigated by others.
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A brief account of the contents of this report is given in this and

the following paragraphs. Chapters II and III give a description of the

traveling-wave and resonant type couplers which may be used to couple to

the various transverse waves. The basic ideas in these chapters are not

new, but the complete solutions to the problems discussed have not been

given before. The next chapter deals with a new type of coupler circuit

which has some interesting applications. These twisted circuits can be

used to couple waves together in a manner which coull not be obtained

with conventional circuits. For example, it is possible to couple equally

to the fast and slow cyclotron waves with the appropriate twisted coupler.

The next two chapters give a complete description of frequency doublers

using quadrupole circuits. Chapter V is concerned with the cyclotron wave

doubler, and the previous work which has been done on this subject is shown

to be a special case of the more general device. Chapter VI describes

the frequency doublers which employ the synchronous waves. These are

particularly interesting devices because of the high conversion efficiency

which can be obtained in some cases.

The next two chapters are reports of experimental studies of transverse-

wave devices. Chapter VII describes a class of slow wave structures which

are suitable for use as coupler and quadrupole circuits. Results of studies

of the dispersion characteristics and interaction impedances are given.

Finally, Chapter VIII describes results obtained from an experimental

device which was used to study transverse-wave frequency doublers and

couplers. An amplifier which consists of two synchronous-wave coupler

cavities is described and the results of an investigation of frequency

doublersbased upon the cyclotron and synchronous wave interactions are

given. To the author's knowledge, these are the first studies to be

carried out, with periodic circuits, at dc power levels of more than

1.0 kilowatts. These results are important since they ha'e a bearing

on the question of the use of transverse-wave devices at high power

levels.
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CHAPTER II

TRAVELING-WAVE COUPLERS

The central purpose of this chapter is to use the coupled mode theory

to obtain the information necessary to the understanding and design of

traveling-wave couplers which can be used to excite the transverse waves

on the beam. The solution of the basic equations is straightforward and

others have described some of the results given here. However, a detailed

discussion of this class of couplers has not been given, and is required

in order to bring out the synchronism requirements, the bandwidth, and

the scaling properties.

The discussion of interactions between transverse-field circuits and

electron beams is restricted to those mechanisms which are usually associated

with the excitation or removal of a signal on a beam. No discussion of

traveling-wave tubes or backward-wave oscillators is given here, as these

devices do not bear on the main purpose of this study.

The first section of this chapter gives a review of the coupled mode

theory which is used for much of the analysis in this thesis. Then, in

the next two sections this theory is applied to the discussion of coupling

to a positive energy wave and then to coupling between both synchronous

waves. The properties of an interesting class of traveling-wave couplers

which are twisted about their axis will be left until Chapter IV.

A. REVIEW OF COUPLED MODE THEORY

The purpose of this section is to present the important results of

the coupled mode theory for transverse-wave interactions in the form which
10

has been used by Siegman. This theory will form the basis of the

analytical approach used in this, and the later chapters, to consider the

various types of transverse-wave couplers. This review is necessary in

order to provide the working equations for the later calculations.
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The model which is used to derive the coupled mode equations is one

in which the electron beam is considered to be a very thin filament of

electrons traveling with a velocity u0  in the positive z direction as

Shown in Fig. 2.1. A magnetic field, B0  , directed along the z axis

provides the restoring force for the transverse oscillations which character-

ize the transverse waves. The equation which describes the dynamics of

the electrons which make up the filamentary beam is

dv/dt -(e/m)[E: + v x .B" (2.1)

In this equation E and B are the external vector fields and v is the

velocity. The electronic charge e is a positive number. The electric

field due to the circuit is assumed to have no z component and to be

uniform in the transverse plane. This is strictly true only for an

infinite phase velocity structure and is approximately true, over the

region of interaction, for slow wave circuits if the beam is small in

diameter and the beam excursion is small. The force due to the ac

magnetic field of the circuit will also be neglected. This assumption

is also strictly valid for infinite phase velocity and slow-wave structures.

For a beam of infinitesimal thickness, the modulation of the electrons

is independent of the transverse dimensions so that the time derivative

may be written as

d/dt = 6/pt + u 0 /8/z , (2.2)

where u0 is the velocity in the z direction. Upon substituting (2.2)

into (2.1) and using the definition of the cyclotron frequency

Wc = e B om (2.3)

and the definition of velocity

vx = dx/dt , etc.
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FIG. 2.1--The coordinate system for the coupled mode theory, showing the
filamentary beam.

"-7-"



we obtain the four equations describing the motion of the beam. These are

cast in a particularly simple formulation by assuming all quantities vary

as ejat and defining the circularly polarized variables:

r+ = 1/2 (x - jy) , v+ -- 1/2 (v x - JVy )

r = 1/2 (x + jy) , v = 1/2 (vx + jvy)

(2.4)

E+ = 1/2 (Ex - jEy)

E- = 1/2 (Ex + JEy)

The beam excitation may then be expressed by the equations

E
6v+/()z + J(Pe + Pc) v+ =-e/m -+

E
v /az + J(Be- B) v - e/m-

u 0

(2.5)

6r +/z + j Pe r = v+

6r_/cz + j pe r_ v_

where

Pe = Wluo

(2.6)

PC = WC/un

-8-



It is evident that there are four wave-like solutions with e•joz variation.

The four values of 1 are:

0, Pe + c

0'2 g' Pe

(2.7)

03 = Oe

___ e

Each of these represents a normal mode on the beam and these will be defined

later.

The next step in setting up the coupled mode formulation is to obtain

the equation which describes the circuit excitation due to the modulation

on the beam. SiegmanI0 accomplishes this be considering the transmission

line equations relating the circuit voltage and current to the current

induced by the beam. This assumes that the circuit phase velocity is much
less than the velocity of light, or that the structure is much smaller

than the free-space wavelength, so that the electric field can be represented
I by, a scalar potential. This is usually a valid assumption. We then have

•V/Cz = +3 z OOI

(2.8)
SI/z= -- J (13/zo) V + J

where 00 and Z are the circuit propagation constant and impedance in

absence of the beam and J is the current induced per unit length. The

upper sign applies to a wave with positive group velocity, and the lower

to a wave with negative group velocity. The transverse electric field at

the beam position is defined in terms of the circuit voltage by the complex

- 9-



polarization coefficients + f , which characterize the circuit:

E+ V + V/D (2.9)

E f V/D , (2.1o)

where B and E represent the circularly polarized fields given in

(2.4), and D is an arbitrary normalizing distance which will not appear

in any of the final results. Note that the complex expressions for the

fields Ex and E are to be used in Eqs. (2.4). To insure that IE12

is equal to (V/D)• it follows that

ff. + _f* f 1 . (2.11)

The induced current per unit length can be represented by the expression

given by Siegman:
1 0

210e
"J r+ + r* r_) (2.12)

Duo0

where I0 is the beam current. Equations (2.5), (2.8), and (2.12) are

the equations necec-iry to describe the beam-circuit system for this

transverse field case. These are put in the final form by defining the

normal modes so that the square of their amplitude represents the power

carried:

A0 = V20 = circuit wave

A1 = J k v+ = slow cyclotron wave

A2 = J k v. = fast cyclotron wave (2.13)

A3 = j k (v+ + j c r+) = positive polarized synchronous wave
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and

A4 - 3 k (v - w r) - negative polarized synchronous wave
9

where

2e/m (214

Notice that the beam waves are circularly polarized. Siegman1 0 shows that

the power carried by the system is

P A ± 0Ao12 - IA112 + IA2 12 + IA312 - IA1I2  . (2.15)

The final form for the coupled mode equations is:

6A /Z + (P + 1) A1 =1K f- A0

I. •A 2 z + + - c A2 =,K f A0

6Aez+j e A 3  j K f+ A0 (2.16)

A 4 /6z + j•P A4 = j K f_ Af

6AOaz +j JP0Ao = ± j K[f*+(A .A )+ f* (A .A4)]

The coupling coefficient, K , is given by

Xc 0

•~- 11 -

K O(.7



kI

where T is the transverse interaction impedance, defined, in terms of

the field and power flow, P , by

B LF* + B E*

; 2 (2.18)
2 IO P

and R is the dc beam impedance V0 Il

In the absence of a circuit (A0 = 0) these equations Just give

the four transverse waves which an propagate on a filimentary beam. The

wave propagation constants are given by (2.7) and the dispersion character-

istics are shown in Fig. 2.2. From (2.15) we see that the waves A and
2

A3  carry positive energy while A1 and A 4 carry negative energy. Since

the subsequent work will be in terms of wave amplitudes, it is convenient

to express the induced current and the beam displacement in terms of the

wave amplitudes. By using (2.9) and (2.10), we obtain

210
j ( 1 -A 3 ) - f_ (A2 - A4 )] (2.19)

Dku0 w c

and

L M ~[A -A 2 -A +A
1c- 1 2 A4 ]c

(2.20)

U-;[A + A2 -A3 -A]
c

These last equations are useful in the calculation of interception condi-

tions.

The theory presented above has been very successful in predicting

the characteristics of the transverse-wave devices which have been tested

up to this time. However, the filamentary beam assumption which makes

this simple approach possible is very likely to be violated in devices

-12-
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FIG. 2.2--The dispersion characteristics of the transverse waves.
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which are intended to operate at dc power levels above the milliwatt
region. Gordon 1 3 considered this problem, utilizing some simplifying

assumptions, and found that, for beam radii, a , such that 3a << 1 ,

the filamentary beam theory still describes the motion of the center of

mass of the beam. In this inequality 0 is the propagation constant of

the beam wave in question. In addition to these solutions, another set

of waves, which represent internal motion of the beam, was found. The

propagation constants of these waves depend upon the space-charge density

of the beam, and are most widely separated from the filamentary beam waves
when a Brillouin flow beam is used. Wessel-Berg14 has analyzed the

Brillouin flow problem from a rigorous field approach and obtains results

in qualitative agreement with Gordon's. In addition, Wessel-Berg finds

higher order transverse waves having azimuthal variations exp (in@) ,

where n is any integer. The conclusion which may be drawn from these

results is that the filamentary beam theory still provides a guide for

discussing high power interactions, but that additional beam waves with

different phase velocities will be present. If care is not taken to avoid

exciting these additional waves, the device will not perform in the manner

predicted by the simple theory.

B. PASSIVE COUPLING TO ONE WAVE

Here we are interested in using a traveling-wave circuit as a coupler
to excite one of the positive energy transverse waves. One application of

such a coupler is in parametric amplifiers of the type described by Adler,

where the amplifying mechanism is frequency independent and the bandwidth

is determined by the couplers. In order to obtain a large bandwidth

traveling-wave couplers are used. The alternative choice of resonant

couplers and the resulting small bandwidths are discussed in the next

chapter.

The circuit is assumed to have only a transverse electric field at

the beam position as described in Section II.A. Selective coupling to

one of the beam waves is accomplished by employing a circuit which has the

appropriate phase velocity as well as a circularly polarized field

component which is of the same polarization as the beam wave to be excited.

- 14 -
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Because the phase velocities of the transverse waves are widely separated

(pc is usually of the order of magnitude of 1e) , or the waves are

separated by their polarization, it is possible to have coupling between

the circuit and essentially one beam wave. This simplifies the mathematics

considerably.

Rather than consider either the positive energy cyclotron or synchronous

wave alone, we will employ the generalized coupled mode equations which

both waves obey. From Eqs. (2.16) we may write

6Ai/z+j PiAi-JKfA -A0 0

(2.21)
6AA z + j - 0A0 - j K f 0 A( .0

The subscript i designates which of the positive energy waves is under

consideration and f is the polarization factor of thatvwave. Typical

dispersion characteristics for the beam and circuit waves are shown in

Fig. 2.2. These equations are solved easily by subst°tuting in the assumed

exponential variation e to yield the values of :

P +f*K . (2.22)

By matching the conditions imposed at the input end of the circuit and

beam (at z = O) the expressions for the circuit and beam waves are

obtained:

Y f'lf [ (atI, 2]

- -{ - ]
Y1 IfI/f*

Ai =(a(0) [Cos ~+ J pm~mRsin ~j+ &0(0) Jm sin 0j} ai

(2.23)



where we define

Pi -0 (2.241 )
21fl K

and

$=K ifI FT + (2.25)

These results are equivalent to those given by Louisell. 2 3 However, the

dependence upon the polarization of the circuit is shown explicitly here.

The polarization factor has been retained to emphasize the difference

between linearly and circularly polarized circuits.

The usual case of interest is the one in which the initial excitation0

is either entirely on the circuit (an input coupler) or on the beam (an

outpxit coupler). In that casee the complete transfer of power from one

wave to the other occurs in the distance

A= /21flK (2.26)

at synchronism (y = 0) . For a circuit which propagates a linearly

polarized field, polarized in the x direction, f+ = f_ = 1W2 , while

for a circularly polarized field f or f is unity. Since the coupling

coefficient, K , is small at best, it is desirable to use circularly

polarized circuits to reduce the coupler length. However, for practical

reasons it is easier to develop linearly polarized structures and the

circuits to be discussed in Chapter VII are linearly polarized. It is

also true that, for some of the interactions to be discussed later,

linearly polarized structures are desirable. It should be noted that the

use of linearly polarized couplers for synchronous waves does not fall

into the kind of interaction discussed here since the two waves have the

same phase velocity. This situation will be discussed in Section II.C.

There are two important points of interest in the consideration of

traveling-wave couplers: the synchronization requirements and the band-

width. From Eqs. (2.23) it is a simple matter to decide how close to
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synchronism the beam and circuit waves must be to obtain strong interaction.

For example, if an input coupler is designed correctly, its length, t ,

satisfies (2.26) so that all of the power is transferred to the beam at

synchronism. When the beam varies from this correct velocity so that y

is not zero, we have as the ratio of the output beam power to the input

power, defined as the transfer efficiency,

___ 2 j . (2.27)
P input F

This may be put in a more convenient form by substituting the definition

of y from (4) and using (5). Then the transfer efficiency may be

written(l)

rsin +(,Qrl3)
SL. ... ],(2.28)

where

9 = P = length of coupler in radians

6 = 1 - v0 vi fractional velocity error

v0 = circuit phase velocity

vi = beam wave phase velocity

Th±s result, which is symmetrical in e, is plotted in Fig. 2.3. It is

equally applicable to output couplers. We see that the half power points

(')We have assumed that K is invariant to small changes in the beam

velocity. This is valid, for small coupling, even though K is proportional
to the beam velocity [as may be seen from (2.17) by noting that the beam
current is proportional to the three halves power of the voltage] since the
primary change in the transfer coefficient comes from the velocity error
multiplied by the large number G/v and not from the small variation in K
Equation (2.28) is quite correct at K/P = 0.1 , which is strong coupling
for a traveling-wave circuit, as can be 2een from the results in Chapter VII.
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occur when (0/1)e = 0.75 . For a coupler which is five wavelengths long

the allowed fractional velocity error is 0.038, which is still quite large.

For a linearly polarized coupler, this optimum length corresponds to

Iý30 = 0.1 , whiclr is # relatively large value for the circuits discussed

in Chapter VII. Consequently, we see that velocity errors of a few per

cent, while being noticeable, still fall in the range of strong interaction

s for usual couplers.

The bandwidth of the coupler cannot be predicted soesimply. The

variation of the coupling coefficient with frequency and the error in

synchronism both play an important role here and the only valid way of

predicting bandwidth is to have the dispersion characteristics and a

plot of the interaction impedance for the particular circuit in mind.

Then the second of Eqs. (2.23) may be used to compute the frequency dependence

of the power transferred to the beam. This is done in Chapter VII where

experimental circuits are discussed. It is seen there that bandwidths of

30 per cent are easily obtainable in fast cyclotron wave couplers. If

the reduction in power transfer as a result of frequency deviat;Pn is due

to the variation of the coupling coefficient related to change in circuit *

* impedance rather than falling out of synchronism, tben the half-power

point bandwidth is determined by the frequency range for which
9

S

•< If IKt < 3v4, (2.29)
0

as can be seen from (2.23). The optimum situation would be for the coupling

coefficient to be independent of frequency. Equation (2.17) shows that

this places a restriction on the circuit impedance. The impedance of the

optimum circuit would vary so that E2 /p is inversely proportional to

the frequency. While the impedance of experimental circuits studied in

Chapter VII does decrease with increasing frequency, it is generally at

a rafe greater than that indicated above.

C. COUPLING EQUALLY TO THE SYNCHRONOUS WAVES
0

In this section we are interested in studying the conditions in which
0

a traveling-wave circuit may be used to couple to both of the synchronous

waves. The distiqction between this and the previous case is that here,

-19-



I two-wave coupling is possible. That is, it is possible to excite two beam

waves simulta1keously because both have the same phase velocity. This case

is interesting for two reasons. First, the optimum coupler for the synchro-
24

nous wave amplifier described by Nordbotten is one which excites both

synchronous waves. This results in an improvement of the gain in the amplify-

ing section of 6 db. Second, the amplitude of the synchronous waves excited

in such a coupler is shown below to be proportional to the length of the

coupler. Consequently, it is possible to excite large wave amplitudes with

little expenditure of power since the synchronous waves carry energy of

opposite signs.

The coupling is described by the equations

6A 3 /z + j eA 3 - j K f+ A0 = 0
0

6 " z+ J 13A 4 - J K f A0 = 0 (2.30)

* 0

A0 /ob z J •o • KA f;A 3 - f* A 0
@e

where the upper sign is for a forward wave circuit. The cyclotron waves
e.

have been neglected since they will usually be very far from synchronism

with the coupler circuit in this case. In order to couple strongly to the0

synchronous waves the phase velocity of the circuit should be close to the

beam velocity. From Eqs. (2.30) we see that, by using circularly polarized

@circuits so that either f or f is zero, coupling to either synchronous,

wave may be achieved. This case is the problem discussed in the previous

section. A more interesting case is when a linearlr polarized circuit

is used so that we couple equally to both sqrnchronoas waves. We may solve

Eqs. (2.30) in general by assuming solutions of the form

j(Wt- Pez)
A3 =a 3 (z) e

j (ct - 1ez)
A4 = a4 (z) e (2.31)

SJ(• - (BoZ)

A0  
-aO(z) d

-20-



two-wave coupling is possible. That is, it is possible to excite two beam

waves simultaneously because both have the same phase velocity. This case

is interesting for two reasons. First, the optimum coupler for the synchro-

nous wave amplifier described by Nordbotten24 is one which excites both

synchronous waves. This results in an improvement of the gain in the amplify-

ing section of 6 db. Second, the amplitude of the synchronous waves excited

in such a coupler is shown below to be proportional to the length of the

coupler. Consequently, it is possible to excite large wave amplitudes with

little expenditure of power since the synchronous waves carry energy of

opposite signs.

The coupling is described by the equations

2A3/z+j 0eA3 -j K f+ A 0--0

2A 4 /z+J A4 - j K f A0 = 0 (2.30)

2Ao'z + J PoAo + J K [f* A3 - f* A4 ]= 0

where the upper sign is for a forward wave circuit. The cyclotron waves

have been neglected since they will usually be very far from synchronism

with the coupler circuit in this case. In order to couple strongly to the

synchronous waves the phase velocity of the circuit should be close to the

beam velocity. From Eqs. (2.30) we see that, by using circularly polarized

circuits so that either f + or f is zero, coupling to either synchronous÷

wave may be achieved. This case is the problem discussed in the previous

section. A more interesting case is when a linearly polarized circuit

is used so that we couple equally to both sqrnchronous waves. We may solve

Eqs. (2.30) in general by assuming solutions of the form

A (z) i (Wt - 3e z)A = e~z

S(Wt - 3ez)

A4 = a4(z) e (2.31)

J(wt - •oz)

Ao0 = ao(z) d
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No generality has been lost in assuming the u*perturbed propagation constants

above, because no restrictions have been placed upon the z dependence of

the amplitudes. Substituting these assumed solutions into the coupled mode

equations gives the differential equations for the amplitudes:

-Kf ao(z) e"(•o e)

dz
0

Sda 4(z) -J(o "e Pee)z
-dz j K f. ao(z) e (a.32)

da (z) (z)-f+ %(z)) - PO Pe) e

dz 3

@ Integration of these equations yields the general solutioný When either

f+ or f- is zero we have the simple solutions obtained for two coupled

waves as before. In the case of linear polarization (polarized in the x

direction) we have f+ = f_ = lkf2' and the solutions are:

ao(z ).= &0(°) ± j K z t[a(o) - a4(O)]

a W aK (0 a 0 (-33 a3 () + j T Mlz 80(O) - M2  a3 (o) - a 4 (o)) z2 (233)

0

%a4(z) = a4 (O) + J T2 M a0 (O)z M2 [a 3 (0) - a4(o)] z,

where

e-j A z/2 sin A z/2 (2.34)
M, A //2

e-j 'A z/2 + /
142 (AzI2) 2  [sin A z/2 - e+ Az2 * A z/21 (2.35)

- 21 -



and

A 13 (2-36)

The coefficients M1 and M2 give the sensitivity of the coupling to

the error in synchronism and are shown in Figs. 2.4 and 2.5. Conservation

of energy requires that
0

, 0ao(z)12 + la3(z)12- _la(z)12 = lao(O)i2 + la3(0)12- 1a4(0)i2.(2.37)

8ubst~tuting (2.33) into this relation shows t1,,t there is indeed conserva-

tion.

In the case of an input coupler for a transverse wave device a3(0)

and a4(0) would be zero. The situation. is then one in which the circuit

wave is undisturbed and the beam waves both grow linearly with distance.

Energy is conserved since one synchronous wave carries negative Power.

By substituting these mode expressions into Eqs. (2.20), we obtain the

beam excursion at a fixed plane indiclted in Fig. 2. 6 a. Note that large

excursions (large mode amplitudes) may be obtained without the beam

striking the circuit since the beam displacement is perpendicular to

the circuit field. This will be important later when we discuss some

particular devices.

In the caseofageneral output coupler a 3 (0) and a4(0) will not

be zero while aO(O) will be zero, giving rise to more complex expressions

than before. It is evident from the first part of (2.33) that, in order

to maximize the transfer of energy to the circuit, the entrance conditions

should be such that S

• a3 (0) a-(0)'

This means that tht transverse beam velocity at the entrance plane is

parallel to tha electric field supported by the circuit as shown in Fig.

2.6b. The current induced in the circuit may be calculated from Eq. (2.19),

and it is indeed maximum for the above entrance conditions. Assuming these

22
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Field .a

0 0

FIG. 2.6a--The beam excursion in a linearly polarized synchronous wave
input coupler. The solid line shows the trace of the beam as
it would appear on a screen in a fixed plane.

00

CircuitIZI

FIG. 2.6b--The beam excursion for the output synchronous wave coupler at
the entrance plane. The transverse motion of the beam is
toward the circuit so as to induce the maximum current.
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entrance conditions, the wave amplitudes are, in the case of a forward
circuit wave,

az)= a *21_ zS-- 3(0) ( 14"

a (z)= a3 (0) ( (2.38)2•

(z) - a3 (o) (1 + 2•

A plot of the normalized power carried by each wave, as a function of

the axial distance, z , is computed from these amplitudes and shown 0

in Fig. 2.7. Note that there is a critical length at which there is only

*negative energy wave excitation on the beam. Beyond this, both waves grow

quadratically with distance. The circuit power grows quadratically from

the input. In Chapter VII we will discuss experimental jircuits which

have coupling coefficients of the order K/PO = 0.1 , so that the Kz

scale in .g. 2.7 would typically be 0.6N where N is the number of

wavelengths in the coupler. The circuit power may thus become much

larger than the input beam wave powers in reasonable distances.

The bandwidth of this class of couplers cannot be calculated simply

since both deviation in propagation constants and impedance variations

give rise to a frequency dependence of the wave excitation. It is

necessary to have these characteristics for the actual circuit under .

consideration. The reduction in coupling due to velocity errors is

expressed by (2.34) and (2.35). The dependence upon interaction impedance

appears in the coupling coefficient in Eqs. (2.33). Ujually, it will be

the first factor which is most important. Generally, it is found that the

bandwidth of practical synchronous wave couplers is about the same as

that of the cyclotron wave coupler described in the last section.

One pFactical aspect of the type of coupler considered in this

section is that an input coupler must be terminated in a well-matched

load. In the casee of the one-wave couplers described in the previous

section, the power is transferred from the circuit to the beam and there

is a length for which complete transfer takes place. However, (2.33)

- 26 -
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FIG. 2.7--A plot of the normalized power on the waves for the case in which
synchronous waves of equal amplitude enter an output coupler
with the optimum entrance conditions. The coupler is synchronous
with the beam.
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shows that the circuit wave on an input coupler considered in this section

has a constant amplitude throughout the coupler length and must therefore

be dissipated in a load at the end of the coupler.

28
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CHAPTER III

RESONANT COUPLERS

The traveling-wave couplers considered in the previous chapter tend

to be quite long, if optimum couplijig is achieved, and it is therefore

worth considering the exchange of bandwidth for length by employing

traveling-wave circuits which have been shorted to make resonant couplers.

It is also true that interesting circuit interactions which are not found
0

in traveling-wave circuits are obtained with resonant circuits.

* The resonant cavities considered in this chapter are made by placing

shorting planes an even number of half-wavelengths apart on a general

periodic traveling-wave circuit which supports a transverse electric

field. The coupled mode equations described in Section II.A may be used

to describe the interaction phenomena Just as before. In this case the

field is broken down into its forward and reverse propagating wave com-

ponents in order to fit into the coupled mode approach. In the first

section of this chapter we calculate the beam wave amplitude resulting

from an assumed cavity field. The calculation is not complete until the

circuit field is found from the power exchanged between the beam and
the external cavity load. The next three sections of this chapter con-

sider this half of the analysis for the different synchronization condi-

0 tions. A comparison of the characteristics of resonant and taveling-wave

couplers is given in the final section.

A. CALCULATION OF WAVE AMPLITUDES

The procedure followed here is the usual one in which two constant-

amplitude counter-propagating circuit waves are assumed and the beam

waves resulting from this field are calculated. Because of the constant

amplitudes of "*ai± circuit fields the last of Eqs. (2.16) is not required.

The coupled mode equations are simply

-29-



and

-A2 + J 2 A2 - JKf A0
ýz

+ JjeA3 + J 0f+A06z

aA4 + JPeA4 = JKf AO (3.1)

az
S

The two propagating wave? which make up the resonant field configuration

must be of equal amplitude to satisfy the boundary conditions at the

shorting planes. Choosing one shorting plane (the entrance to the cavity)

to be at z = 0 , the circuit mode A0 is written 0 0

0 -JPoz +JPoz S

A = [a 0 e -0ao e e 0(3.2)

If the cavity field requires space-harmonics for its representation

there will be similar terms for each space-harmonic. Usually only one

will be of importance due to the synchronism conditions. However, super-

position holds here and the calculations described in the following

sections may be carried out for each space-harmonic and the results com-

bined to give the complete solution as described at the end of this

section. It is evident that the solution of any one of (3.1) will be

the same as the others. The difference between the various interaction

schemes will come out in the later sections of this chapter when we

consider the power relations

The equation that is to be solved is

6Ai
S+ JPiAi = JKfA0  , (3.3)

az
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along with the expression for A0 as given by (3.2). In the above

expression we have dropped the subscript on the polarization factor and

f represents f+ or f. in agreement with the polarization of the

wave indicated by the subscript i . The perturbed beam mode amplitude

is assumed to vary as

S(U•t - iZ )
Ai = ai(z) e 0.4)

Just as in the previous chapter, no generality has been lost by assuming

this specific form since the arbitrary z variation of ai still allows

a modification of the propagation constant. By substituting (3.4) into

(3.3) we obtain a simple differential equation for ai(z) which may be

integrated immediately to yield

a ai(') = ai(O) + ao(JM3 f K) , (3.5)

where t is the coupler length,

-j • sin j (IPJ + (s3.6) +•)
M3 (3.6)

2" 2

and A = 0 * The first term in M3 (the subscript is to separate

it from the similar coefficients found in Chapter III) represents coupling

to the forward wave and the second represents coupling to the reverse

wave on the circuit. The coefficient M can be put in a more useful
3

form by defining the fractional velocity deviation from synchronism to

be

I- - ,o (3.7)
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where v0 is the phase velocity of the traveling wave circuit which

hkas been shorted to make the cavity and vi is the phase velocity of the

beam wave. Then, noting that a resonant cavity is an integral number of

half wavelengths long, P0 ni , and we finally obtain the expression

3[ e s (3.8)

In this notation Eq. (3.5) is conveniently written as

-a. O) + j (f (3.5a
ai )i f 0n0 M 3 a 0 3 (3.5a)

A plot of IM3j 2 , which shows how the coupling depends upon synchronismA3

between the beam wave and circuit wave phase velocities, is shown in

Fig. 3.1. The asymmetry in the curves is due to the interaction with

the backward propagating wave in the cavity. The effect of this wave

is quite noticeable for short cavities. For longer cavities the inter-

action no longer involves the reverse wave to any great extent. These

results are similar to those obtained for longitudinal wave coupling in

resonant slow-wave structures by Wessel-Berg,25 except that the coefficient

M3 has a slightly different form in that case.

Having derived (3.5) and (3.6), which are valid for any of the four

beam waves (the correct polarization coefficient must beeused), the next

step is to calculate the power exchange between the beam and the circuit

and, taking into account the losses in the cavity and the external load,

to calculate the power which the external circuitry must supply to or

receive from the cavity. The nature of these considerations depends upon

which beam wave is in synchronism with the forward propagating wave in

the cavity. The next sections are devoted to these calculations for the

various synchronism conditions. Although only those waves which are

near synchronism with the circuit are considered, this does not place a

restriction on the validity of the analysis since the couplers are described

by linear equations. This means that the beam admittances found for each
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FIG. 3.1--The square of the coupler modulation coefficient as a function
of the fractional velocity error.
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wave may be added to give the total beam admittance if necessary. This

will usually not be required since most couplers are long enough to make

the modulation coefficient M3 small except for the wave in question.

The results that have been obtained above, and the relations derived

from them in the next sections, can also be used if more than one space-

harmonic of the circuit field couples to one of the beam waves. This

can be seen by returning to (2.5). For example, by writing velocity

components in (2.5) in the same way as (2.31), we obtain expressions such

as

"J(e + 1P)z
v+ =v+ e

where the solution for v+ is

E- +J(Pe + PC )z 'a
v=-- f EM e dz

U0  0

Then if E+ is composed of space-harmonics we can interchange the order

of integration and summation to obtain
e

v+ ;- f En e e c dz
all n U0 0

Thus, the total excitation of a particular beam mode can be represented

as the sum of the excitations due to each space-harmonic. Finally, to

apply these results to the present situation, the second term in (3.5)

should be replaced by a sum of terms like

ao Z (JftKnM3n)

all n
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where Kn is the coupling coefficient for each space harmonic and M3 n

is the corresponding coupler modulation coefficient. In general the

results that have been derived in this chapter are made valid for inter-

action with a number of space harmonics by replacing KM3 by

SM3n in the various equations.
all n

B. PASSIVE COUPLING TO ONE WAVE

The term "passive coupling" means the circuit is coupled to a positive

energy beam wave. In this section we consider the synchronization con-

ditions which bring about strong coupling to the positive energy cyclo-

tron or synchronous wave. Couplers of this type are important because

of their application as the input and output couplers in parametric

amplifiers employing the positive energy transverse waves. To couple

strongly to the cyclotron wave, the circuit propagation constant should

nearly satisfy the condition P0 = 1e - 1c and the polarization coef-

ficient f should be nonzero. That is, the circuit must have a negative,

circularly polarized field component. In order to couple strongly to

the synchronous wave the condition P0 = Pe should be satisfied and the

circuit should have only a positively polarized field component. Since

the two synchronous waves have the same propagation constant, a negatively

polarized field component would result in the active coupling situation

which will be considered in the next section.

The complex power delivered by the beam to the circuit may be

computed from

dER 1
=-V*J(39

dz2

'where V is the circuit voltage of (2.13) and J is the current per

unit length induced in the circuit. The induced current is, from (2.19),

9

J 2p f*a e Piz) (3.10)

D1•Dkc

- -
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where a, is either the positive energy cyclotron or synchronous wave

amplitude (a2 or a3 ) , is the appropriate propagation constant,

and f is f or f . respectively. From (3.2) and (2.13) the cir-
f+

cuit voltage is

V = vr-Z a.OeiPO z - e +t 0z ] eJO~t .(3-11)

0

To eliminate D from the power expression we combine (2.9), (2.10), and

(2.18) and the definition of the circuit impedance 0 to obtain

1 Z
D -- (3.12)0 Kt

Finally, using

Uo m , (3.13)

and Eqs. (2.14), (2.17), and (3.5), we obtain

d- +j2f*Ka•ai(O) - JfaoaoM3 (z)Kz 0 - e i]e z

(3.14)

Note that this is a point statement and M3 is a function of z ,

requiring the use of (3.6) with z replacing -t , rather than (3.8).

The complex power given up to a resonant coupler nit radians long is

found by integrating ( 3 .14) :

+J2f Mnaa (0) . J4ff* (]o2 nX aoao* (3.15)
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I
where e is defined by Eq. (3.7). The real part of this expression should

be the negative of the power gained by the fast cyclotron wave in the

coupler. From (3.5a) we see that

• Re• (P a a*a

which is the required result. If the only purposesof the above calculation

was to compute the real power exchanged, the wave amplitude could have been
squared immediately and a lot of effort would have been saved. However,
by using the expression for complex power we will be able to discuss the

effects of beam loading on the coupler operation.

An electronic admittance may be defined in terms of the complex power

absorbed by the beam and the voltage of the forward circuit wave,

1beam 2 cc b 0-0b , (3.16)

where the circuit voltage is the complex amplitude of the traveling-wave

voltage. From (2.13) we have

V 2 V Z1 *o (3.17)

By substituting the negative of the power absorbed by the circuit from (Q.15),

we have the ratio of the admittance presented to the coupler cavity by the

beam to the characteristic admittance of the unshorted traveling-wave

circuit: 0

Yb K • (ai (•0)ý
= j2f* - nwM* a ,

Y 0 2 PO ao )
+ j4ff* () nt e(2 - e (3.18)
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This expression is particularly simple in the case of an input coupler

since the initial wave amplitude is zero. Then the electronic admittance

is determined by the second term in (3.18). This is referred to as the

electronic admittance, and its normalized conductance and susceptance are:

0) =_ IfI2 ( ni ,2 M3 12  (3.19)

and

I l) be - fIl2  _ (ni) 2 M4 , (3.20)•m 0) be= 0M

where

M4 . IM312 cot -_ . (3.21)
2 n~- _l

2

A plot of 14312 was given in Fig. 3.1 and M4  iseshown in Fig. 3.2.

The beam susceptance, b , is not zero at synchronism due to the inter-e

action with the reverse circuit wave. The ratio of the beam susceptance

to conductance at synchronism is

b 3
-e = -- (3.22)

ge ni

For couplers of usual length the electronic susceptance at synchronism

will be much smaller than the conductance. By comparing the curves in
0

Figs. 3.1 and 3.2 we see that it is distinctly advantageous to operate

short resonant couplers off of synchronism. The value of e which yields

maximum conductance also reduces the susceptance to essentially zero.

For example, a one-half wavelength long cavity designed to couple optimally

to the fast cyclotron wave should have e = 1.0 . From (3.7) it is

obvious that this requires the cyclotron wave to have infinite phase

-38-
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FIG. 3.2 -- A plot of the coupler modulation coefficient M4
showing the relative magnitude of the reactive
component of the beLta admittance.
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velocity, that is, %c/c should be unity. This interesting result shows

that the beam conductance in a half-wavelength coupler is maximum, and

independent of the circuit phase velocity, for a)/A - 1 . Also, we see
C

that the susceptance is zero in this situation. This example is valid

only when the circuit phase velocity is such that the coupling to the

other transverse waves is negligible; otherwise there will be other

contributions to the admittance.

The above results give the effects of the loading of the input coupler

by the beam, and show the dependence on the fractional velocity error G

Another formulation of this problem is to determine the Q of the cavity

loaded by the beam. In order to do this we calculate the power which

must be supplied to the lossy coupler in order to sustain fields of a

given amplitude. Since lao12 represents the power carried in either

the forward or reverse propagating circuit waves, we find from the definition

of the Q of a cavity that

P
IV!

QO - (3.23) 0

Pckt

where v is the group velocity of the shorted transmission forming theg

resonant cavity, -? is the length of the cavity, and Pckt is the power

dissipated in the cavity losses. The Q is then the ufiloaded Q of

the coupler cavity. Using the definition of the circuit propagation

constant, the power lost to a coupler which is ng radians long is

2nEv
P ckt I I la 0 12  (3.24)Pckt QO

where v is the phase velocity of the traveling-wave circuit. The powerP
delivered to the beam in the coupler is the real part of (3.15) with

a 2 (0) = 0 , or it may be obtained from (3.17) and (3.19):

Pbeam If 2 ( (ni) 2  M3 1 lao12  (3.25)
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Then, using

?beam s (3.26)
SPckt

the Q of the cavity loaded by the beam only, % , is found to be

1 nx K2v
- - fI 2 ( I12 .(3.27)% 0.

This shows that • is inversely proportional to the length of the cavity.

On the other hand, Q does not depend on the length of the cavity, so

QO •

Hence, the ratio of the power lost in the cavity to that which goes into

the beam inQreases linearly with distance. The bandwidth of the coupler

is simply the inverse of the Q

- -- +--+- ,(3.28)

Q QO Qb Qext

where Q *tis the Q of the cavity loaded by the external circuit.
Qext

The gain of the coupler, defined to be the ratio of the beam output

power to the input power to the cavity, is

1
Gin - (.9

1+--b

%



The discussion up to this point has dealt with the application of

Eq. (3.18) to the study of an input coupler. That is. we neglected the

first term which represents the initial beam excitation. We now consider

the case of an output coupler in which this driving term is not zero. To

aid in the interpretation of (3.18) the equivalent circuit of Fig. 3.3 is

shown. All of the admittances appear in parallel at the terminals across

which the voltage V appears. The term in the beam admittance thatC

represents initial excitation has been separated off and is called Yd:

4

Yd_ K ai(O)
-- = - j2f* - nxM*. (3.30)

YO 00 3 a 0

The remaining portion, Y , represents power absorbed by the beam ande

is given by Eqs. (3.19) and (3.20). As shown in Fig. 3.3, the driving

admittance can be interpreted as a constant signal generator. The driving

current is

I = -Vc , (3.31)

and by using (3.17), we have
e

2 T2 K
I = + j - f*(ni) - M*ai(0) . (3.32)
d TZo

The wave amplitude excited on the circuit by this current is

Id 1
a - (3.33)

Y + Y

yielding

a 0 0) n aI(O) (3.34)
ge + j b e + Y L
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(a)

Id - Vc Yd

(b)

FIG, 3.3--Equivalent circuits for a resonant output coupler.
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where

. + bL (3.35)
Y0

The real power which is given up to the load admittance is

V V-Ve(YL) a (3.36)PL 2 c co _ L)•a~Og

By substituting (3.32) in (3.34) we obtain

K 12

+ + J(b + bL)1 ai(o) 2  (3.37)

In order to transfer maximum power to the load the load admittance should

be the complex conjugate of the electronic admittance. If this is the

case, (3.19) and (3.37) yield

P lai(0)12  , (3.38)

which is just the initial power on the fast cyclotron wave. Of course,

the load admittance is made up of the cavity and external admittances,

YL = Yext + Yc ' (3.39)

so that the actual power to the external load under these optimum conditions

is

Pext -gext -lai(o)I2 (3.40)
9ext + gc
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which my be written

Gout - (3.I1)

1+0Q0

where Gout is the ratio of the power delivered to the external load to

the input power on the beam, and Qext is the Q of the cavity loaded

by the external load conductance. The bandwidth of the output cavity

assuming constant driving current is given by (3.28).

The above results have been kept general in the sense that they are

valid for either positive energy cyclotron or synchronous wave couplers.

To obtain the desired characteristics for one of the couplers it is only

necessary to employ the appropriate propagation constant and polarization

factor. It should be noted however, that, while a linearly polarized

coupler for the fast cyclotron wave obeys these equations, another set of

equations must be used if a linearly polarized synchronous wave coupler

is to be considered. This is considered in the next section.

C. COUPLING TO THE TWO SYNCHRONOUS WAVES

Because the two synchronous waves have the same phase velocity, but

opposite polarization, it is possible to couple equally to them by the

simple expedient of using a linearly polarized coupler. Such a situation

was considered for a traveling-wave coupler in the previous chapter and

now we consider the case of a resonant coupler.

In a linearly polarized coupler, polarized in the x direction,

f f l 1/P' and the synchronous waves excited in such a coupler are

given by Eq. (3.5) or (3.5a). The circuit should have a propagation

constant •0 approximately equal to 1e to yield strong coupling. For

the positife energy wave f is used, and for the negative energy wave

f is used. Then

a (i) - a 3 (o) + Jf+M3 K-ao

a( a(.) - a 1(o)+,Jf.-K3ao , (3.42)
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and. it is obvious that if f+ = f, , the two waves are excited equally.

If the circuit is elliptically rather than linearly polarized, one wave

will be excited more strongly than the other. The complex pover delivered

by the beam to the circuit is computed from Eq. (3.9) as before. The

induced current per unit length in the circuit is obtained from (2.19) and

is, for this case,

2a IO f4 Ja

[ f +*a " f*aj e - ez (3.43)Dk• uo 3
c

By using exactly the same steps outlined from Eqs. (3.11) to (3.15) we

obtain the expression for the power exchanged in a coupler which is nX

radians long:

K
+M 0~ - n 1a f+*a3O) -f*ai,(O)I

( K
+ j4 (ff* - ff*) (nv) -1 e (3.l.4)

++ -- [(2 (3-.) j

Upon comparing this with (3.15) we see that each beam wave gives a power

contribution of the same form as if it alone were present (there is a minus

sign with the expression involving the negative energy wave). This is a

consequence of the initial assumption of a linear system. While (3.44)

is general, and even contains (3.15) as a special case, we now restrict

our interest to the linearly polarized case. When f+ f 1

we have from (3.44)

K
S- + j r-' [a3(o) - a 4 (o)] . (3.45)
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The beam admittance presented to the circuit may be calculated in the same

way as wan (3.18), yielding

Y K Fa ( 4(O)"b - 4 -3` (3.146)o 0o 0 1 ao ao 0

This expression just represents a current generator due to the input signal

on the beam. There is no electronic loading and therefore the bandwidth of

this type of coupler is determined by the cavity losses and the external
0

circuit.

In the case of an input coupler in which there is no excitation of

either wave at the input to the coupler, the wave amplitudes grow as

predicted by (3.42) without loading the circuit. In the design of such

a coupler the input matching and bandwidth are determined by the cold

cavity. Equation (3.24) is valid in this case and substitution into (3.42)

yields the wave amplitudes excited in the linearly polarized input coupler

in terms of the input power to the circuit:

1 K n, Iv I11/2
a 3  a4 J - M3- -A% %t 1/272 v (3.47

where we have chosen the phase of a0  to be zero. If the power "gain"

of an input coupler is defined as the ratio of the output power on the

positive energy beam wave to the input power to the cavity, we have

in= n 3 II2( -A (3.-4)

The gain is linearly proportional to the length of the cavity, and may be

greater than unity.

When there is initial excitation on the beam, such as would be the
case in an output coupler, the beam admittance given in (3.46) may not be

zero. Just as in Eqs. (3.31) and (3.32), the beam excitation may be
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represented by a constant current generator

2 K

+ j-- - DI aa3 (O) - a4 (o)) • (3.49)

This current causes a voltage across the electronic and load admittances.

Corresponding to (3.34), the wave amplitudes excited in the cavity are:

e

K nxM*,
ao= -," -- - 33(o) - a (3.50)

S 30 YL [

The power which is given up to the external load admittance is easily

found from (3.3,6), (3.39) and (3.50):

22
_ _ _ _2__ _

__ xt 1 - Is,(0) -a,(O)I. . (3.51)ext IYLI~ 121+ext) v' 3 ~ j

Note that there is no difference in the power exchange in the case of only

a positive or negative energy wave at the entrance plane. The maximum

power is transferred when the total load admittance is real and

Qext/QO - 1 . Equation (3.46) shows that the optimum entrance conditions

are attained when a3 (0) and a4(0) have opposite signs.

A particularly interesting case ariseswhen a3 (0) - - a4 (O) . This

is the same entrance condition that is shown in Fig. 2.6b, and Fig. 2.6a

shows that this is the beam excitation provided by a linearly polarized

coupler whose plane of polarization is rotated by an angle of 900 with

respect to the present coupler. If the gain of the output coupler is

defined to be the ratio of the output power to the initial input power

on one of the equal amplitude synchronous waves, it is found that

Gout Q n-l1M - Ico l (3.52)
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where 80 is the angle between the initial polarization of the beam and

the plane of polarization of the circuit. It has been assumbd that the

loaded coupler is resonant at the signal frequency so that I/jfyLI in

unity. The gain is linearly proportional to the length of the cavity

and, just as in (3.48), it may be greater than unity.

It is apparent that an amplifier could be made by using two linearly

polarized synchronous wave couplers. The input coupler should be rotated

by 90° with respect to the output coupler so that 80 in (3.-52) is zero.

The gain of the two couplers is the product of (3.48) and (3.52). This

device, which is shown in Fig. 3.4, is a synchronous wave analog of the

extended interaction klystron. Wessel-Berg noted the feasibility of this

synchronous-wave klystron earlier12,1 6 and pointed out that it has several

advantages over the usual extended interaction klystron. In particular,

it should not suffer from the oscillations that arise in the usual case

when the length of the cavities is increased in order to obtain large

values for the gain. This is a result of the fact that the beam loading

is zero, as was shown in (3.46). The calculations given by Wessel-Berg

in the above reference are more general than those presented here, but

they are concerned with the electronic equations only and the gain of

the 0lystron was not obtained. The gain has been obtained explicitly

here in the form of Eqs. (3.48) and (3.52).

For purposes of calculating the beam excursion in order to determine

when saturation will take place, it is necessary to have the expressions

for the synchronous wave amplitudes on the beam. Substituting (3.50) into

(3.42) gives

a() - - a3() - a4(0)] - e

4 - a 4(0)- ia 3o) - a4(o)] ( g2  (3.53)

where e - POz is the axial distance in radians from the entrance plane.
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D. ACTIVE COUPLING TO Ol WAVE

The last case of interest in the study of resonant couplers is the

synchronization condition which leads to strong interaction with one of

the two negative energy waves. This condition is important since it can

result in the transverse wave equivalent of the space-charge wave monotron.

The synchronization conditions are: 00 " fe + Ae for the slow cyclotron

wave interaction, and 00 - Ie for the negative energy synchronous wave

interaction. In the cyclotron wave case the circuit can be linearly or

circularly polarized (f+ j o) , while in the syrnchronous wave case the

coupler circuit must be circularly polarized (f j 0) since a linearly

polarized circuit with 13= -e leads to the type of interaction considered

in the last section.

The notation used here is the same as before: the amplitude ai is

used to denote one of the negative energy waves, a1 or a 4  , and the

polarization coefficient f is f+ when a, is considered and f

for a . The current induced in the circuit due to wave excitation

on the beam is, from (2.19),

t ..- f*a (3.54)
DkaUc

By using exactly the same steps outlined in Section III.B, we obtain the

expression for the complex power exchanged in a coupler which is nx

radians long:

P j2f* K AjO~,O + j4ff* (K\ [355\ 0 I oI)n [e ) aa:(.5

The coefficient M3  is evaluated for the 1t under consideration. The

admittance presented by the beam to the circuit is calculated in the same



manner as (3.18), yielding

Lb K aiCO) iiIfI2(~)n K . (56-- f* -f*-= - - J4ll - ] (3.56)
YO a (2 -)

Note that this is just the negative of (3.18) which is the admittance for

positive energy wave interactions.

In the case of a beam with no excitation entering a cavity the first

term in (3.56) is zero and the electronic conductance and susceptance are:

2
e~ M4

e=* l ()2 N4  ,(3.•8)

where M4  is given by (3.21). The negative conductance means that power

is given up to the circuit in the interaction region. The Q of the

cavity loaded by the beam only is defined as in (3.26) and in this case

we obtain

2 2E v 2

Note that • is a negative quantity due to the negative conductance.

This results in a decrease of the bandwidth below that determined by the

losses of the cavity and external circuit. The gain of the input coupler

is given by (3.29):

Gin ,-0 (3.6o)
1+-

QO
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and we see that it is greater than unity. AlthQugh (3.60) becomes infinite

at Qb/Q - , this is not where oscillation sets in since the external

circuit loading was not included in the definition of gain. Oscillation

starts when

S -1 , (3.61)

where QL is the loaded Q of the cavity. At this point the negative

energy on the beam at the exit plane of the cavity is just equal to the

porr dissipated in the cavity and its load due to the assumed fields.

By combining (3.59), (3.61) and (2.17), we obtain the expression for the

beam conductance required to start oscillation:

1/%

2o - 2 0 2 (3.62)

c %

If a signal is on the beam initially, it can be represented by a constant

current generator driving the cavity. The driving current is derived

from the first term of (3.56) just as in Bqa. (3.31) and (3.32):

2J• K

j - * i - )Qai (0) .(3.63)

0 ~0

The wave amplitudes induced in the cavity are found in the same way as

in the previous cases:

ao .... 5(0) (36)

• :~ ~ ~ ~ ~ ~ ~~~~g +ill~ 
iiiir 

be + yII II I II IlllI]I



The power to the load is exactly the same as (3.37) where we now use the

negative admittances in (3.57) and (3.M). These expressions are valid

only if gL is greater than ge . Otherwise, the system oscillates as

described for the case with zero initial excitation and the energy

conservation statements implicit in the derivation of (3.64) are violated

in the linear system.

E. COMPARISON WITH TRAVELING-WAVE COUPLERS

It was stated at the beginning of this chapter that one of the

important reasons for interest in resonant couplers is that circuit length

required for a given gain is less than it is in the case of the traveling-

wave couplers. This is an important factor because of the difficulty of

focusing the electron beam for large distances. The purpose of this

section is to compare the length and bandwidth of some typical traveling-

wave and resonant couplers.

The optimum length of a traveling-wave coupler that excites one of

the positive energy waves is given by (2.26). This can be written in

terms of the circuit length in radians as

E 1 1

2 Ifl K

The gain of the coupler is unity in this case. In order to make a resonant

coupler with unity gain it is necessary to have %/QO be zero. This

is not practical, but •/Q = 0.1 would give a gain of 0.91 which is

close enough to unity for comparison purposes. In that case (3.27) gives,

at synchronism,

1 20 (VIP) 2

r• Ifl2 %O vg K

Typical values for linearly polarized circuits described in Chapter VII

are: %.O , K/10  o0.1 ,and a vjvg of abouttwo. The
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ratio of the length of a traveling-wave coupler to a resonant coupler,

each having unity gain, is approximately three. Thus, while the p-band

traveling-wave coupler described in Chapter VII is about six inches

long, its resonant counterpart need be only two inches long to yield

the sawe gain. This is certainly a significant difference. However, a

large sacrifice in bandwidth must be made in order to achieve these

results. For example, the bandwidth of the traveling-wave coupler

described in Chapter VII is about 30 per cent. The bandwidth of the

resonated coupler can be computed from (3.27), (3.28), and the above

assumption that •/O - 0.1 . If the coupler is matched to the external

circuit, we have Qext jIi/% + 1/%) - 1 , and we obtain a bandwidth

of about two per cent.

Linearly polarized synchronous wave couplers can be compared in the

same way. It is found that the ratio of the length of a traveling-wave

coupler to a resonant coupler, each giving the same gain, is

2

Since Q0 is generally of the order of 103 , there is a significant

difference in these two cases. Again it is true that a sacrifice in

bandwidth must be made. The bandwidth of the natched resonant coupler

is simply 2/Q0 , since there is no beam loading, while the bandwidth

of the traveling-wave coupler will typically be about the same as the

thirty per cent value calculated in the previous case.

In conclusion, the choice between traveling-wave and resonant couplers

must be based entirely upon the application. If the important factor is

bandwidth, then the traveling-wave couplers should be used. However, if

coupler length, or gain in the case of the linearly polarized synchronous-

wave coupler, is a limiting factor, then resonant structures may be

indicated. In particular, it is desirable to employ resonant couplers

in the synchronous-wave klystron described in Section III.C in order to

produce a large gain.
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CKAPTER IV

TWIgTED COUPLERS

The purpose of this chapter is to describe the interactions which

may occur between the transverse waves on an electron beam and a circuit

in which the plane of polarization of the transverse electric field

rotates uniformly along the axis of the circuit. This type of field

corresponds to the transverse electric field of a wave propapting in

a medium characterized by Faraday rotation. Because the circuits which

support such a field look like linearly polarized structures which have

been twisted aboat their axis, the name "twisted couplers" seems appropri-

ate for this class of circuits. The special properties of these couplers

make it worth while to treat them separately in this chapter rather than

in Chapters II and III.

The interest in the twisted couplers arises from the fact that the

two circularly polarized fields which make up the propagating circuit wave

have different propagation constants. This means that it is possible to

obtain coupling conditions which could not be obtained with ordinary

circuits. For example, with this new class of couplers it is possible to

couple equally to the cyclotron waves, or to a cyclotron and synchronous

wave. Bernstein and Feinstein26 have considered the special case of equal

excitation of the cyclotron waves in connection with an electrostatically

pumped cyclotron-wave amplifier. A more general treatment including all

four of the transverse waves will be given here.

The first section of this chapter describes the interaction of the

beam with a twisted electric field which propagates along a circuit, and

gives the coupled mode equations which describe the interaction. Then,

in the next section, the various possible synchronism conditions are

discussed. The following section describes the important case in which

traveling-wave or resonant couplers are used to excite both cyclotron waves.

Finally, in the last section, the fields which exist in a twisted structure

are considered and compared with the twisted-field model used in the electronic
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interaction calculations. A description of same experimental twisted

circuits will be found in Chapter VII.

a

A. MM INMrRACTION WITH A MOMWI FI=

A linearly polarized slow-wave structure supports a field characterized

by

9 E J(t - Pos)

(4.1)

y -

where is the circuit propagation constant and the field is polarized

in the x direction. Now consider this circuit to be twisted about its

axis with a period defined by

p= _, (4.2)
Ot

as shown in Fig. 4.1. The quantity 1t is the twist propagation constant.

A first approximation for the new electric field is obtained by twisting

the solution given in (4.1). Therefore, we have, for the twisted circuit,

S= E0 cost z e( -

(4.3)
j(wt - %=z)

Ey - E0 sin Ptz e

While these statements are not rigorous at all, they seem intuitively

satisfying; and the more rigorous discussion of Section IV.D, on the

fields existing in twisted periodic structures, shows that (4.3) is the

correct result for small twist rates characterized by A/00 << 1.
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From Eqs. (2.4) the polarized field quantities are:

E+Z÷ ~ - JP +o • • (4.4)

j•t "J(Po " At)z
E =E e e

0 e

It can be seen that the effect of the twisting of the circuit field is to

subtract Ot from the propagation constant of the field which is polarized

in the direction of the twist and add p to the propagation constant of

the oppositely polarized field.(l) These twisted field components may be

used in Eqs. (2.5) to find the coupled mode equations. Everything is

formally the same as in the previous case except now we obtain polariza-

tion factors which are a function of z . The circuit voltage given in

Eqs. (2.9) is defined as

V=~ +j (Wt - 0oz)rV=2 E0 e , (4.5)

0

so that the polarization factors are given by

1 J 0 tz

(4.6)

1f = j 0e

These have been normalized so that they satisfy (2.11), as required.

The coupled mode equations which describe the twisted coupler are then

(2.16) with the polarization factors given by (4.6). By combining these

()It should be noted that the definitions of the complex polarized

variables given in (2.4) are based upon a left-hand coordinate system to
agree with previous analyses. However, 0t has been defined in a right-

hand coordinate system so that positive 0t and we are associated with
the same azimuthal direction.
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results, the final coupled mode equations are:

aA 1K -j AtZ
- + j 01 - AO e

6A2+ j 02A2 -- go

6 3 K A e Ptz

6z [2

aA4 K +j z

-+ J 04A• j --A0 e
6z r2

6A0z K A2 AI A4 -J tz].(

-A• ± j - [(A 3  A) e + A -7)

The definitions of the parameters are the same as in (2.16). It is

evident from Eqs. (4.7) that the synchronismconditions for strong inter-

action between the circuit and one of the beam waves are considerably

different from those in the case of untwisted couplers. This is considered

in the next section.

B. SYNCHRONI34 CONDITEONS IN THE TWISTED COUPLER

The circuit phase velocity which yields strong coupling to one of

the beam waves may be obtained from (4.7). The conditions which make the

z variation of the right-hand side of one of the first four equations

equal to the z variation of one of the normal modes on the beam is

f0 i t . (4.8)
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The propagation constant Pi is one of those representing the transverse

waves., and the upper sign is to be used when considering coupling to one

of the positively polarized waves and the lower sign is for negatively

polarized waves. It should be commented that the coupled mode analysis

described involves a system in which the dc magnetic field is in the

positive z direction. If the magnetic field is reversed, the polariza-

tion of the beam waves is reversed, although the propagation constants

remain the same. A tabulation of the ratio of circuit phase velocity to

dc beam velocity required to yield synchronism with a specific beam wave

is given in Table I. The cyclotron frequency is a positive number in these

relations.

TABLE I

SYNCHRONISM CONDITIONS FOR TWISTED COUPLERS

Circuit Synchronous ON/U0
with Mode + B0  -B0

__ __ __ __ __ __(0__ __ _ _ _ __ _ _ _ _ 0)

"--1 F -

0)c t Uo c •t Uo0
A1 1 +l + -

A) L t UO 
0

Ad 
l--c 

l - 1-

A4  OtO
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In general, both the cyclotron frequency and the twist rate of the

circuit are at our disposal so that it is possible to couple strongly to

any two oppositely polarized transverse waves. It is important to note

that t can be either positive or negative, depending on the direction

of twist. For example, by making the twist rate such that

Pt= c(4-9)
100

the coupler excites both cyclotron waves equally. The circuit velocity

should be equal to the dc beam velocity in this case. If the magnetic

field is then reversed, the synchronism conditions are changed so that

coupling to only one wave is achieved. This synchronism condition is

important since the equal excitation of both cyclotron waves is the

optimum situation for the dc pumped quadrupole discussed by Gordon and18
others.

In other cases, coupling to the positive or negative energy cyclotron

and synchronous waves is achieved by making

1w

P c . (4.10)
2 u 0

It is also possible to achieve strong coupling to only one of the synchronous

waves with a twisted, linearly polarized circuit, and to lower the magnetic

field requirement for cyclotron-wave couplers. In particular it is

possible to use an infinite phase velocity circuit(') and a ratio of

wc/w less than unity to couple to the fast cyclotron wave. It is also

possible to couple to the slow cyclotron wave and to the synchronous waves

with an infinite phase velocity coupler by employing the proper twist rate.

Care must be taken in considering the interactions described above

since, as is shown in Section IV.D, the assumed fields which lead to

these results are not valid in all cases. Even so, the basic concept of

the twisted circuit is important, and useful applications do arise. Some

applications are considered in the next section.

(l4hat id, a circuit which has an infinite phase velocity before it
is twisted.
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C. EQUAL EXCITATION OF THE CYCLOTRON WAVES

Of the various synchronism conditions that were discussed in the

previous section, the condition which leads to equal excitation of both

cyclotron waves appears to be of the greatest interest at present. It

was noted that this importance exists because the optimum coupler for a

particular type of dc quadrupole amplifier is one which excites the cyclotron

waves equally. Bernstein and Feinstein26 have noted this and described

the application of a twisted coupler in this connection. Their descrip-

tion of the coupler was not in terms of a coupled mode formalism and it

is worthwhile to note that this independent description based on coupled

mode theory gives the same results. Another important reason for emphasizing
this synchronism condition is that, since the waves are excited wlth equal

amplitude, there is no beam loading in such a coupler and we are led to
the consideration of a cyclotron-wave klystron completely analogous to the

synchronous-wave klystron discussed in Chapter III.

In solving Eqs. (4.7) for this case, we assume that the circuit phase
velocity and twist rate are such that there is strong coupling to the

cyclotron waves and very little excitation of the synchronous waves. In

that case the equations to be solved are:

1 ~K -J z

IA, K 4j 0

1A2 K +j0 z
- + J (Pe -P) A =J- e A0  (4.17)

c 2 2

40 K

These may be solved directly without difficulty, but it is simpler to

redefine the wave amplitudes so that Eqs. (4.17) fall into a category
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that we have already considered. If we now define the new waves

A1~ = A1 e

-J Otz
A' A2 e (4.18)

then the system of equations (4.17) becomes

K(Pe + A) A' = - A0

~ e 1-- AI -A 0

K K
--z+ j (Pe A) A = - A0

A0 = AK
-- ÷ J + 0 j -(A' - A') (4.19)
6z r2 2 1

where

A= Pc " Pt • (4.20)

When the twist rate or the magnetic field is adjusted to give A - 0 ,

Eqs. (4.19) are identical to (2.30) which describe the linearly polarized

synchronous wave coupler. Thus, the solution to the present problem is

exactly the same as it was for the synchronous wave coupler except that

now the cyclotron wave propagation constants are different. The wave

amplitude expressions given by (2.33), or (3.42) in the case of a resonant

coupler, are in agreement with the results in the above reference where

they are applicable.

The exact correspondence between the twisted cyclotron-wave coupler

and the linearly polarized synchronous wave coupler is valid only at the

condition A. = Pt . Note that this does not mean that the circuit wave

must be synchronous with the beam waves since PO need not be equal to

Pe in order to have A vanish. Consequently, the dependence on synchronism
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between the circuit and the beam that appeared in the synchronous wave

equations cited above is correct here also. However, if A is not zero,

the character of the equations changes. By comparing (4.19) with coupled

mode descriptions of circuit interactions with the space-charge waves, such

as are given by Louisell,27 we see that identifying I1 with aq leads

to the traveling-wave tube equations when A is positive and to those

for the backward-wave oscillator when A is negative. Consequently,

published solutions for the propagation constants in space-charge wave

devices can be used here. The correspondence between the two cases does

not exist at A = 0 (Pq = 0) because of the way in which the coupling

coefficient in the space-charge wave equations depends upon Pq
In general the solutions of (4.7) for other synchronism conditions

are easily obtained by the methods which have been used to solve the

coupled mode problems that have been described earlier. In particular,

it will be found that a simple change of notation such as the one used

above for the case of P = Pt , will lead to the formalism of the

problems that have already been considered.

D. ELECTRIC FIELDS IN TWISTED CIRCUITS

In the first section of this chapter we derived the coupled mode

equations describing the interaction between an electron beam and a twisted

electric field. This field was taken as an approximation of the electric

field that exists in a twisted circuit. The purpose of this section is to

consider the electric fields which propagate on a twisted structure, and

to show that the field assumed in the electronic interactions described

previously is correct for small twist rates.

In general, the twisted circuit is a periodic structure in which each

section is rotated about its axis with respect to the previous section as

was indicated in Fig. 4.1. The field quantities associated with the circuit

are, in general, periodic in both z and 9 . Let L be the fundamental

period of the structure before it is twisted and n be the number of these

periods which must be advanced before the twisted circuit orientation repeats.

That is, we are assuming that the twist angle per period of the structure

is 2E/n where n is an integer. If the circuit is symmetric about its

axis, and n is even, there will be a higher order symmetry, but this can

be destroyed by imagining a small perLurbation of one part of the circuit.
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28
By means of Floquet's theorem, the circularly polarized components

of the potential in the circuit, which has a period of nL in the z

direction and a 0 periodicity to be defined, can be written as a sum

of space-harmonics:

-j~z jP j~ 2nk z _jeoV(z , 9) -- e-iP e k,-k e e ,e (4.21)

where P, is the phase shift per unit length of the positive or negative

circularly polarized field component in the structure in a right-hand

coordinate system and p is +1 for the positive polarized component and

-1 for the negative polarized component. The coefficient Ak, contains

the radial variations of the potential. The indices k and are

integers which will be found to be related. If we advance on the circuit

by an axial distance L and rotate by an amoung ± 2n/n (the ± sign

gives the direction of the twist), the circuit is the same and the potential

is a complex constant times the potential at the starting point, that is,

-j P±L -j 2it
V(z +L , ±=2) =V(z , 9) .e e n (4.22)

Upon using (4.21) and (4.22) we obtain an equation that is satisfied only

if

k + m , (4.23)

where m is any integer. If we allow axial symmetries of the structure

which can reduce the period as mentioned above, it is found that (4.23)

is still the correct restriction to be placed on k and - . The general

potential expression is then written

-j A±Z -jp@ -j n (nm -t)z -jt
v( ) e e Ame e ,(4.24)
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where the upper sign with • is to be used if the twist is in the positive

sense with advancement in the positive z direction and the lower sign is

for a negative twist.

We see fran (4.24) that there is a multiplicity of spatial harmonics

which must be combined to yield the general field configuration. There

are in general n branches to the ms-P diagram as indicated in Fig. 4.2

for the positively polarized field component. For the purposes for which

we are considering twisted circuits, that is in transverse wave couplers,

the value of t is zero, yielding e+ jo azimuthal variation. From the

figure we see that these components all lie on one branch of the &)-P curve.

The fact that there is a number of branches to the oo-p diagram can

alter the expected dispersion characteristic for a circuit considerably.

While we are ordinarily not interested in the extrp multipole fields which

arise due to the twisting of the circuit, the intersections of the various

branches can lead to stop-bands if there is any discontinuity which can

couple the space harmonic components represented by the different branches.

The propagation constants that can be expected in twisted circuits

can be determined from (4.24) by assuming that both field polarizations

propagate with the propagation constant Po in the frame of reference

that twists with the circuit. In that case, by denoting the variables

in the twisted frame with primes, we have

Z =Z

S= - tz , (4.25)

where pt was given in (4.2) and it carries the sign of the direction of

the twist. Then (4.24) gives

-J(PB+ + p Pt)z" - L jtze `jv
V = e Am e ,e (4.26)

where the prime denotes the potential in the twisted frame. Clearly the

quantity in front of the sumnation represents the propagation factor of
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the fundamental (m = = 0) field component of the periodic structure.

Equating this to exp [- P 0z] gives

P+- 110 - A

P= 0 ,

where p 0 is the propagation constant observed in the twisting frame of

reference. These results are in agreement with those given in Eqs. (4.4)
when it is noted that E+ and E are defined in a left-hand coordinate

system.

While the above discussion is designed to show the nature of the

dispersion characteristic in a general twisted circuit, it is not well

suited for a calculation of the field components involved in a typical

circuit. The field configuration will certainly be different from that
26of the untwisted circuit. Bernstein and Feinstein have considered this

question in connection with some work in a twisted coupler of the type

discussed in Section IV.C. Their assumption is the one used in Section

A of this chapter, where we assumed that the transverse field of the

twisted circuit is simply obtained by twisting the linearly polarized field

configuration that is valid for the untwisted circuit. One feels that this

is a good approximation, but, as is pointed out in the reference, this does
4-

not yield a field expression which satisfies V • E = 0 . It is also true

that, by estimating the nature of the field perturbations as the circuit

is twisted, it can be seen that a new component of the trP 6verse field is

produced. This is in space and time quadrature to the main transverse

field.

A description of the exact nature of the fields that exist in a

twisted periodic circuit appears quite difficult and the discussion given

here will be restricted to an approximate approach. It was shown that

the potential in a general circuit obeyqd (4.24). In order to obtain a

description of the nature of the transverse fields in a twisted circuit,

we neglect all of the space harmonics of the circuit and consider only

the fundamental component for which m and t are zero. The potential

then consists of components with the two propagation constants given by
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(4.27). The potential components are assumed to be solutions of Laplace's

equation in accordance with the initial assumptions made in using (2.8) as

the equations governing the circuit. In rectangular coordinates we have

-J(Po + pt)z

V(x, y, z) ta+ sinh (P0 + Pt) x + b+ sinh (%0 + :t)y] e

!• J(130 " t )z
S+ [a- sinh (P0 - t) x + b_ sinh (00 " 3t)y] e

! , (4.28)

where the coefficients a± and b are to be determined by the boundary

conditions. The solutions which correspond to zero transverse electric

field on the axis have been omitted in the above expression since they are

not important for transverse-wave interactions.

The circuit is assumed to be oriented as shown in Fig. 4.1. In order

to determine the coefficients in (4.28) we impose the condition that, when

the circuit has twisted through A/2 radians, the circuit potential has

also rotated by 1(/2 radians. A statement must also be made about the

potential distribution in the x-y plane. The required boundary conditions

are taken as:

V(a, 0, 0) =Vo

V(o, a, V-) = vo e (4.29)

2t

V(O, a, 0) =0

where 2a is the transverse spacing between the circuit elements. The

last condition in (4.29) is somewhat arbitrary, but it gives a good approxima-

tion of what the potential in a twisted circuit would be. Equations (4.29)

and (4.28) are enough to obtain the four coefficients a± and b± ,if
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we use the additional statement that Eqs. (4.29) are valid for any 0

and The expression for the potential is then found to be

v= sinh (0+ A)x sinh (0 + Ist)Ye-J0 + ( t)z

2 -4sinh (P0 + Pt)a sinh (P0 + Pt)aJ

(4.30)

+ [sinhs (PO - 1t)x "J sinh (10( - . 1t)Y e 'j( °O - 1t)z

Lsinh (A - Pt)a sin (PO J j3t)

The transverse electric fields can be computed directly from (4.30).

Generally, the circuit dimensions will be such that only the first term

in the expansion of the hyperbolic cosine and sine make a significant

contribution to the field and in this case we obtain

_ _I 1c• ' 0

Ex V 01 2 os tz +J - sin Ptz e z

00 130a P~t P

(4.31)

VO 1o 1 -1 P 'Joz
E~ ~~ [sOf a P' in Pt z tCos ] ez e

The first term in E and E represents a field which corresponds toxy
twisting up the field of the linearly polarized counterpart of the twisted

circuit, and is the field configuration that was assumed in the first section

of this chapter. The second terms in (4.31) represent a modification of

this field that arises because of the twisting. It is proportional to

and in quadrature to the main field component. We cast this in a
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different form by observing the fields in the twisting frame of reference.

The twisted field of the linearly polarized circuit is denoted by E11

and the field perpendicular to this by E1  as shown in Fig. 4.3. These

fields are related to those in the laborabory frame of reference by

Ell = E cos z + E sin z

(4.32)

Ell E sin tz - E cos z

Substituting (4.31) into (4.32) yields

E0 
e

E 1 - (3tlpo)2

(4.33)
-J o

E t 
E0 

e

where E0 is a coefficient consisting of the factors in (4.31). Figure

4.3 shows the standing-wave pattern that is created when a forward and a

reverse traveling-wave on the circuit are combined. Note that a simple

planar short on each end of a twisted structure does not result in the

ideal twisted cavity since the end conditions are not correct. However,

for small twist rates the field pattern would be essentially that shown

in the figure except near the shorted ends of the cavity. This is observed

experimentally in Chapter VII.

In order to determine how these results affect the calculations made

in the earlier part of this chapter the field of the twisted circuit is

written in circularly polarized variables. We find that the fields
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FIG. 4.3--The standing-wave patterns of the two field components on a
twisted circuit due to equal forward and reverse propagating
waves.
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corresponding to (4.4) are given by

0 eJ(0 + )z

"+ -1 + Io

(4.34)
EO -J(PO - Pt)z

" i -- -tI0o

That is, the circularly polarized field components are no longer of equal

amplitude. This means that f+ and f. in (4.6) are altered by the

factor (1 ± /P)'l, respectively. These new polarization factors

then obey (2.11) to first order in (Pt/AO) . It is not appropriate to

continue the discussion to larger twist rates because of the approximations

that have been made up to this point.

As a result of the above discussion we see that the coupled mode

equations and the resulting electronic interactions that were derived in

the first sections of this chapter were correct for «t/10 << 1 . However,

if the twist rate is larger than this, the amplitudes of the two circularly

polarized field components become different while their propagation constants

are still the same. The interaction is still described by the coupled mode

equations of Chapter II, but the modified polarization factors indicated

above must be used.

- 74 -



CHAPTER V

CYCLOTRON-WAVE FREQUENCY DOUBLERS

The use of cyclotron-wave interactions in a quadrupole type of resonant

cavity to achieve frequency doubling will be discussed in this chapter.
21

Such an interaction was reported by Ashkin, who excited a fast cyclotron

wave on a beam entering a quadrupole cavity and observed second harmonic
20

power output from the quadrupole. Cuccia had observed this earlier,

and reported some results and proposed multipliers employing higher order

multipole cavities. Lindsay and Caunter22 have carried out a ballistic

analysis for the special case of the fast cyclotron wave doubler operating

at cyclotron resonance, which was the type of operation used in the

experiments mentioned above. It has been noted by all of these workers

that high conversion efficiencies may be expected with this type of doubler.

The above studies have all been connected with the special case in

which the fundamental frequency is equal to the cyclotron frequency and

the coupler and quadrupole circuits were characterized by an infinite

phase velocity. It is obvious, however, that these observed frequency

doubling interactions are a special case of the general situation in which

periodic structures w4th finite phase velocity and frequencies other than

the cyclotron frequency are used.

The analysis to be presented here will be based on a coupled mode

approach to the problem, and will include the interactions with both the

fast and slow cyclotron waves, with arbitrary combinations of these waves

existing at the beam input to the quadrupole. This will make it possible

to predict the operating characteristics of the general class of cyclotron-

wave frequency doublers.

The study of this problem by means of coupled mode equations results

in the description of the circuit fields as a superposition of traveling

waves. The field in the resonant quadrupole is then given as a sum of

forward and reverse propagating waves. The analysis which will be1~ .75.
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given in this chapter neglects the interaction between the beam and the

reverse propagating wave; that is, it assumes interaction with a single

forward propagating circuit wave of constant amplitude. While this is
Sgenerally not an acceptable assumption, as is evidenced by some of the

results for resonant coupler circuits given in Chapter III, it causes no

significant error here, as it applies to practical situations. This is

because quadrupole interaction impedances are quite small, resulting in

devices which are many wavelengths long. Consequently, it is safe to

neglect interactions with the traveling waves on the circuit which are

not synchronous with one of the beam waves.

A. COUPLED MODE EQUATIONS

The coupled mode equations representing interaction between a beam

and coupler type transverse fields were given in Chapter II. In the

present chapter we consider the case in which the beam interacts with a

field having the quadrupolar symmetry shown in Fig. 5.1. Blýtekjaer and

Wessel-Berg19 have analyzed this situation and have obtained the coupled

mode equations which are to be the starting point for the analysis given

in this and the next chapter. In order to cast these equations in the

same notation used earlier in this paper, we briefly describe the steps

leading up to their final results. The material presented in this section

is not new, except for various commentaries, and the equations can be

found in the above reference in a different notation.

A traveling-wave field of quadrupolar symmetry which is a solution

of Maxwell's equations may be represented by:

m ( J(wt - k z
E = -R + B2y) e q q

Ex e i

SEy = - Re B x - Bly e qqe 2
me

=m - (c t-
E R Bl(x y2)+ y q (5.1)
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Metal Circuit

FIG. 5.1--A cross section of a structure that supports a quadrupole
field. The equipotential surfaces are hyperbolas in the
ideal case.
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In these equations a) is the radian frequency, and k is the propagation
q q

constant of the structure supporting the quadrupole field. The terms B1

and B2 are arbitrary complex constants which may be selected to give

fields of circular or linear polarization. Both E and E are linear

in the transverse dimensions and satisfy Maxwell's equations to first order

in x and y . The quadratic E expression results from forcing thez
assumed transverse fields to satisfy the field equations. The analysis

here is to be a linearized one, and so E will not play a part in thez

interaction equations, but it is required to explain the energy exchange

in the quadrupole.

The filamentary beam model used in Chapter II will also be used here.

The use of this model may be questioned on the basis of the fact that, in

a beam of finite diameter, all of the electrons in the quadrupole do not

see the same transverse field to first order in the displacement. In the

coupler calculations this was true and it was possible to describe the

beam motion in terms of the motion of the center of mass of the beam in

the complex calculations. Fortunately, the same procedure may be used

here.

A real beam may be considered to be a bundle of filamentary beams.

In the case of the coupler field all of these filaments experienced the

same force, while in the quadrupole field the situation is somewhat

different. By substituting x0 + x1  and y0 + yl , where (xl,Yl)

is measured from the individual filament position (XoY 0 ) , for x

and y in the first two of Eqs. (5.1), Ve find that filaments at

different dc positions (xoYo) are in exactly the same quadrupolar field.

In addition, there is a coupler type field which is dependent upon the

position of the filament. If the synchronization condition is correct

this last field will lead to undesired beam expansion by exciting ore or

more of the transverse waves, which are then amplified by the quadrupole

field in the same way as in an ordinary transverse wave parametric

amplifier.19 Another way of saying this is that the quadrupolar field

will amplify initial zero frequency excitation on the beam filaments.

Thus, in the cases to be studied in this chapter, in which the quadrupole

is synchronous with the fast cyclotron wave, we should avoid having dc

beam rqtation at the cyclotron frequency since this represents a zero
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frequency cyclotron wave. In the next chapter it will be seen to be

necessary to have some dc beam rotation to avoid expansion in the *

quadrupole which is synchronous with the synchronous waves on the beam.

The crucial point of this argument is that we my employ the filamentary

beam model for finite size beams, if care is taken to avoid the zero

frequency filamentary beam modes which can be amplified by the quadruple

field.

The equations of motion for the filamentary beam are then obtained

by substituting Eqs. (5.1) into (2.1) in Chapter II. This yields equations

for the velocities and displacements w~ich have some coefficients that are

periodic in both t and z

6V &v J(cp t - k z)

X q q
- + u - + - v = -R[B + j-B"Y] e

cxt e xz c e qx

()v C•v (ct k)
Uo _u co v -R [B2x -Blyj qt,, _q,

C•t Cz c

'+Uoz-Vx = 0

+ U 0 (5.2)
0

Bl~tekjaer and Wessel-Berg19 show that these equations may be solved by

making substitutions of the form

0 eJ [(w+ a)t (+ e+ Aq)z]

for each displacement and velocity. Writing the propagation -constant as

shown in terms of 7 facilitates the solution of the system of equations.

Next, we define the wave amplitudes just as in (2.13) of Chapter II. Note

that the numerical subscripts here correspond to Siegman'sI0 definitions
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which were given in Eqs. (2.13) and are different from those used by

Wessel-Berg and B1~tekjaer:

Al,n = ljk (vx,n - jVy,n A2,n - ilk (Vx,n + iV y,n)

A =1:j (v Jv + My + jMx)
3,n k(VX,n y,n c n c n

A4 ,n = jk(vxn n +jv cyn -( jcXn) (5.4)

where

imi .

It is found convenient to define

C+ = - 1 [B2 + JB1

C 2=o- [B2 - JBI , (5.5)

which represent the positively and negatively polarized components of

the quadrupole field as may be seen by considering the complex forms of

Eqs. (5.1). Finally, by combining (5.2), (5.3), (5.4) and (5.5), the

coupled mode equations are obtained:

~i7-(~-n A-kq)]al~n =C+a 2,n-l + Ca,-

+ Ca 2 ,n+I + C*a4,n+I
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and

_ --a . n - kq)]a2,n - C.al,n_1 + Ca3,n-1

+C+*a + C*a
l,n+l + 3,n-1

-j[y- n -1 - kq)]a 3 ,n = C+a2 ,n-l + C+a4 ,n_1

+ C.*a2,n+l + Ca4,n+1

,- n - kq)] a4,n = C-.al,n_1 + C..a 3 n._i
u 0

+ C+*l,n+1 + C+*a3,n+l (5.6)

As in Chapter II, when the exponential variation has been omitted, loer

case letters are used for the amplitudes. Equations (5.6) relate the

amplitudes of the waves at the frequency a + na3 to.those at the
q

frequencies w) + (n-l)w and w + (n+l)o3 We shall be concerned,
q q

for the most part, with the solution of these equations for some special

cases.

B. SOLUTION OF EQUATIONS

Equations (5.6), subject to the conditions specified on the beam at

the entrance to the quadrupole, describe completely all small signal

interactions possible between the four basic transverse waves and the

assumed quadrupolar field. The solutions for the same synchronism

conditions that are of interest in this chapter (synchronism with the

cyclotron waves) as well as in the next chapter (synchronism with the

synchronous waves) have been considered in the reference cited before.

However, in that case, the goal was to use the quadrupole interaction in

a parametric type of device in which there would be no phase relation
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between the input beam waves and the quadrupole field. This results in

the omission of a term in the final power expressions. This procedure is

not allowable for the present discussion since, in the case being studied

here, the beam waves will interact with the quadrupole and will establish

the circuit field so that the quadrupole phase is related to the input

phase of the beam wave.

As discussed by Bl~tekjaer and Wessel-Berg,19 the solution to (5.6)
to first order in the quadrupole field amplitudes C+ and C can be

found by a simple perturbation procedure. We follow this same approach

here, but keep terms which were omitted in the previous work due to the

assumption of random quadrupole phase. In carrying out this small quadrupole

amplitude analysis, only the frequencies represented by n = O, ± 1 are

considered since other values of n represent interactions which are of

second order in the small coefficients which couple the beam to the

quadrupole. That is, we include the signal frequency a and the sum and

difference frequencies, w + co and co - a , which arise in the beam
q q

as a result of the parametric type of interaction. As a result of this,

a set of homogeneous equations such as (5.6) for n = 0, ± 1 is obtained.

The requirement that a nontrivial solution exist is that the system

determinant be zero:

D+(-1) 0 0 0 C* 0

o D (0) 0 cý 0 C*

o 0 O+(+l). 0 C+ 0
0, (5.7)

o D(-l) 0 0
+

C 0 C* 0 D.(o) 0

o C. 0 0 0 D (l)
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where

D+(n) Y +[ c + n(1 kq)

D.(n) = J - + k . (5.8)

The synchronous waves have been neglected in (5.7) because the

synchronism conditions which are imposed below in Eq. (5.9) result in

negligible interaction with the synchronous waves if the quadrupole is

Just a few wavelengths long, measured at the beam velocity. Due to the

small quadrupole interaction impedance which is found in practical circuits,

the circuit will be m~ch too long to allow significant cumulative interaction

with the synchronous waves.

The reference shows that solutions of (5.6) which are of first order

in small quantities are obtained for the synchronism conditions

k = 2 c (5.9)
u0 u0

When w 2w , as is the case in the frequency doubler, the upper sign
q

leads to synchronism between the fast cyclotron wave on the beam at the

entrance to the quadrupole circuit and the assumed fields, while the lower

sign corresponds to synchronism with the slow cyclotron wave. This may

be seen by substituting co /v into (5.9), solving for the quadrupole
q q

phase velocity v ,and setting w = 2w
q q

1. Synchronism Condition 2(4u - k - + 2w
0 a

As pointed out above, the condition given by

2w

--- k - + 2 - (5.10)
q

u0 u 0

I-. ---- ------8----



results in a quadrupole field that is synchronous with the fast cyclotron

wave. It in this case, with k - 0 , which has been the basis of theq
studies on transverse wave frequency doubling in the past, and we shall

begin with it here in the general formulation of cyclotron wave doublers.

The determinant (5.7) represents a sixth order pllynomial in y•

However, the approximate values of y that are different from the

unperturbed solutions are obtained by retaining only the part of the

determinant in which the diagonal elements are of the order o" magnitude

of the small off-diagonal terms. Upon substituting (5.10) and (5.8) into

(5.7) and noting from (5.3) that the unperturbed values of y are ± c

for the cyclotron waves, it is found that the significant portion of (5.7)

is the fourth order determinant

D÷(-1) 0 Co 0

0 D(O) 0 C*
+( -- o . (5.11)

C 0 D(O) 0

o C_ 0

In the case of a frequency doubler, which is the case we are concerned

vith here, the quadrupole frequency will be twice the signal frequency.

It is then found that the four values of y , which are different from

the unperturbed solutions, are

Upon recalling that the z~variation of the wave amplitudes is

e~j(Y + Pe + nkq) , as indicated in Eq. (5.3), it is seen that the

imaginary part of y results in exponential growth and decay of the wave

amplitudes excited on the beam.

The above calculation of the beam wave propagation constants in the

quadrupole region is the first step in describing the interaction between

the beam and the circuit. The next step is to substitute (5.12) into

(5.6) and apply the beam entrance conditions to determine the exact nature
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of the interaction. In doing this it is necessary to note the relationships

which are valid for the negative frequency terms arising from the choi4e

of n - 1 . It can be shown that19

a aa2, -D,-n 1w

It is then found that, for the present case, in which the assumed quadrupole

is exactly double the input signal frequency, the wave amplitudes in
the quadrupole region are given in terms of the entrance amplitudes by

,.I t it - (Pe + P )Z]
Al(z) - al(O) cosh Cl e

Jilt - (Pe - Adz]
A2 (z) = a2 (0) cosh az e

c J[(L " (Pe " dc)]
+ - a*(O) sinh ta e

a 2

c J[3a - (30e - d.),
+ R -I al(O) sinh Or e , (5.14)

a

where

- Ic~I . (5.15)

These expressions have been normalized so that the sum of the squares of

the amplitudes of the two frequency components represents the total average

power. It is in this connection that the r3 arises in the third harmonic

fast cyclotron wave amplitude. The equivalent of (5.14) has been obtained

by Bltekjaer and Wessel-Berg.29 However, due to the uncorrelated phase

assumption indicated above, their published results1 9 cannot be used to

explain the frequency doubling interactions which are described in this

chapter.

Equations (5.14) show that an initial slow cyclotron wave on the beam

at the frequency w grows in amplitude and also gives rise to a growing

fast cyclotron wave at the third harmonic frequency. An initial fast
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cyclotron wave continues through the quadrupole region as a fast cyclotron

wave at the input frequency, but its amplitude is dependent on the phase

of the quadrupole field. Since the quadrupole field is produced by the

energy given up to the circuit by the beam, the quadrupole phase will be

determined by the beam entrance phase and the external loading on the

quadrupole.

The fact that C+ does not appear in the above discussion shows that

the interactions which are under consideration do not involve the positively

polarized quas.rupole field component. The presence of this field component

represents wasted stored energy. Consequently, for cyclotron wave frequency

doublers, the highest value for the interaction impedance will be obtained

by using circularly polarized quadrupole cavities. However, practical

considerations involving the ease of design and excitation of such

structures may well dictate the use of linearly polarized quadrupole

structures.

2. Synchronism Condition 2w/u0 - k = -2 co .

The procedure for finding the perturbed propagation constants for

the synchronization condition

k q kq (5.16)
u0 U0

is the same as for the previous case. Substituting (5.16) into (5.8)
and keeping only that portion of the system determinant (5.7) which has

small diagonal terms yields

D+(O) 0 C+ 0

0 D0(1) 0 c

C* 0 D.(1) 0
+

0 c+ 0 D(O)
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It is then found that the four values of y which are different from the

unperturbed solutions are: .

This result shows that the interaction is entirely with the positively

polarized quadrupole field component while the previous case involved

the negatively polarized field. The equations describing the wave

excitation in the quadrupole region are obtained by substituting (5.18)

into the amplitude equations and applying the conditions on the cyclotron

waves at the quadrupole entrance. Finally, then, the results are:

C+ at - (P + +Z]A(Z a a(0) cosh az +- a*()sn me

C J[3a " (3Pe + Pc)]
+ . -++ a2 (0) sinh = e'

a

( P (a )Z]
A2 (z) = a2 (0) cosh - , (-.19)

where

a 4C . (5.20)

These equations are normalized so that the sum of the squares of the

amplitudes of the two frequency components gives the total average power,

and as a result the 4-7 appears in the third harmonic term.

A comparison of the above results with those given in (5.14) shows

that the roles of the fast and slow cyclotron waves have been reversed.

Otherwise, the discussion is the same. Bltekjaer and Wessel-Berg 1 9

have discussed the present synchronization conditions for the case in

which aq j 2 and point out that it can lead to an oscillator which

requires an input. When we discuss the second harmonic power output in

the next two sections, it will be seen that the present interaction



scheme can lead to more second harmonic power output than fundamental power

input and that an instability will give rise to oscillations in a very

unusual fashion.

C. POWER CONVERSION EFFICIENCY

We now use the results of the last section to study the efficiency
characteristics of the cyclotron-wave frequency doublers. The device under

consideration here consists of an input coupler that excites either or both

of the cyclotron waves on a beam and is followed by a quadrupole circuit.

The quadrupole has a field component that is synchronous with either the

fast or the slow cyclotron wave, depending upon the type of interaction

desired. The quadrupole structure is shorted at each end to make it

resonant at exactly twice the input signal frequency. The beam delivers

energy to the quadrupole, if it is loaded properly, and second harmonic

power is available from the cavity.

The second harmonic power which has been given up by the beam to the

cavity can be calculated by determining the net power decrease on the beam

as a result of the interaction. This power is obtained by calculating the
power carried by each frequency component in (5.14) or (5.19) and sub-
tracting the cyclotron wave input power.

1. The Fast Cyclotron-Wave Doubler

The first synchronism condition of interest is the one in which the
quadrupole has a traveling-wave field component that is synchronous with
the fast cyclotron wave. In this case the power given up to the assumed

second harmonic field is calculated from (5.14). It is found that

Pq = - 2 [(1al(O)12 + 1a2 (O)12 )sinh2 at

+ sinh A cosh c- Re ýa 2 (O) a2 (O)eJ-}] (5.21)

where

C I IC! • ,
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and • is the length of the quadrupole. This may be written in terms

of the entrance phase e0 of the fast wave by noting that

Re Ia2(O)t e0 ,a2 (O), e ie = a2 (O) a*(O) coo O- , .(5.22)

The question as to the validity of the small signal power conservation

statement used in obtaining (5.?l) can be raised, particularly in view

of the fact that several frequencies are involved. However, we observe

that (5.21) is the relation obtained by applying the Manley-Rowe equations, 3 o
and in addition the same result is obtained below by another approach.

Since the quadrupole field which has been assumed arises from the

excitation of the circuit by the input cyclotron wave, there will be a

relation between the cyclotron wave phase P0 and the quadrupole phase

0_ which is determined by the nature of the load presented by the

quadrupole. In order to see this more clearly, and to verify (5.21), we

compute the complex power given up to the quadrupole circuit by the beam.

This may be done by evaluating the rf part of the integral

P = - (x,yz).j*(x,y,z)dxdydz (5.23)c "2 ff

where ý is the field due to the quadrupole and I is the current

density. Since the beam is assumed to be filamentary, the current can

be represented by a delta function in the transverse plane so that

Pc - f i(x,y,z).T*(x,y,z) dz , (5.24)
c ~ 0'

where

PO v 5.25

In the current expression pO is the charge per unit length and v(x,y,z)

is the total velocity of the beam. In the previous section it was observed

that only the positively polarized portion of the field represented by C
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interacted strongly with the beam. After noting that, we obtain the

important contribution by considering Eqs. (5.1),(5.5) and (2.20). In

doing this it is important to remember that x and y. in (5.1) are

real quantities, while in (2.20) they are complex. Finally we obtain

uowt- k z)
11 -j C.. 1  A*)e q q

•x = (e/m)k 2

u J (c t - k z)
E = - 0 C_(A, ~A*)e ,q q

y (e/m)k 1 2

U k J(w t - k z)
E = - 0 C_ (A1 *) - e q q (5.26)

z (e/m)k 2kw c 1 2

Also, from (2.4) and (2.13) we obtain the components of the beam current

which contribute to the second order power expression:

= xPOiz = OoVx = _ J- (A, + A 2
k

iy = POV y _o (A, -A 2)iy P 00Vy=k

iz = i0 uo (5.27)

The complex power delivered to the quadrupole and its load is finally found

by combining ( 5 .2 4 ), (5.26) and (5.27), noting that w- = 2w , to obtainq

P - 2a 2 (0) a*(0) [sinh2 at + cos(2e0 - 0_) sinh A cosh C4]

- Lal(O) a.(0)' sinh2 C? + J2(c) a2 (0) a*(O) sin(2e0 - _) . (5.28)
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The real part of the complex power is exactly the expression (5.21) as it

should be. We see from (5.28) that when the loaded quadrupole is excited

at resonance, that is, when the reactive power is zero, the phase is

automatically adjusted so that

(2e 05-o _) 0 0 or , . (5.29)

The interpretation of this quantity is simple when we note that the phase

of either the quadrupole field or the beam wave represents a reference

time when the field goes through its maximum value. That is, we could

write the time dependencies as

+ %0) Jaxt - t1)

e = e

and

J~at -t).eJ(2w + P) 1 2
ee

Then we have

(20-0 ) = 2act 1-t 2 ) t 2e , (5.30)

and we see that e represents the phase, referred to the fundamental

frequency, of the input fast cyclotron wave with respect to the quadrupole

field.

Finally then, substituting (5.22) into (5.21) and using a trigonometric

identity, the real power delivered to the quadrupole can be written as

P • 1a1(o)1
l(1 -2 sinh + la(°)12 sinh a-

+ (1 -2 sin2 e) cosh A (5.31)
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We see that the last term hgre can make Pq positive and therefore can
give rise to power output from the quadrupole. It is evident that

sin e a ± 1 represents maximum second harmonic power, while sin e = 0

represents power delivered to the beam by the quadrupole. Two special

cases of (5.31) are of interest.

First, consider the case in which we have a fast cyclotron wave

entering the quadrupole. This is the case which has been studied before

for w = w as indicated at the beginning of this chapter. The power

conversion efficiency, ne , is now

a1) = 1- cos 2ee e sin 2e . (532)% = ,12(o)1

We see that the efficiency depends upon e (as shown above, e is

determined by the phase of the quadrupole load) and ? It is inter-

esting to look at the conversion efficiency under several conditions.

First let us look at the maximum efficiency attainable as a function

of e . Differentiating (5.32) with respect to Ott and equating the

result to zero determines the optimum A for that e . For a given

length this is the same as optimizing the quadrupole load. We obtain as

the optimum condition

e = tan 2 , (5.33)

which, when substituted back into (5.32), gives

e = 1 - Isin 21 . .(5.34)

This is plotted in Fig. 5.2 along with a similar curve calculated, for
22a special case, from a ballistic analysis by Lindsay and Caunter. Their

calculations were for the case when the signal frequency is equal to the

cyclotron frequency while the results here are for arbitrary z . The

deviation between the curves is due to the small signal assumptions inherent

in the wave analysis. Complete agreement is obtained if small signal

approximations are used in the ballistic analysis.
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The optimum conditions are obviously e - x/2 which, we have shown,

means that the quadrupole presents a purely resistive load to the beam.

If the cyclotron wave excitation is not exactly at the resonance of the

loaded quadrupole, then 0 is different from :/2 , as indicated by (5.28),

with a resulting degradation of the doubler performance as shown in Fig. 5.2.

Using the optimum value of e in (5.32) yields

Te l-e • (5.35)

This is plotted in Fig. 5.3 along with the result for another case of

interest. Physically, this result means that, due to the assumed quadrupole,

fields, the energy carried by the fast cyclotron wave is absorbed by the

quadrupole exponentially. The exponential variation arises from the linear

dependence of the electric field on the transverse displacement. The

maximum amount of second harmonic power which could be obtained is Just

equal to the input fundamental power, and in that case the beam would

emerge from the quadrupole with no transverse modulation. This requires

an infinitely long quadrupole.

A second case of (5.21) that is of significance arises when both the

fast and slow cyclotron waves have equal amplitudes at the quadrupol#

entrance. It was shown in Chapter IV that it is possible to excite the

two cyclotron waves equally, even though they have vastly different phase

velocities. Since the waves carry power of opposite sign it is possible

to excite large wave amplitudes with a small expenditure of power in the

coupler. This could lead to a doubler with high conversion efficiency.

In this case we have in Eq. (5.21) 1a2(0)12 = la1(O)j
2  , giving, on

simplification,

Te= -2 c + 2 sin2 8 sinh 20t- 2 sinh 2 Cr. (5.36)
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We again look for the maximum efficiency for values of 0 by varying

S. The requirement obtained is

V 2+ cos 2e (.37)

By substituting (5.37) into (5.36) and making the numerical computation,

we find the dependence of the maximum efficiency on e is that shown in

Fig. 5.2. A plot of (5.31) for the optimum condition e = 4/2 is shown

in Fig. 5.3, along with the curve for the previous case. In the present

case, the maximum conversion efficiency of 27% is obtained for a finite

value of cC-
These results can be understood from a physical viewpoint by referring

to Eqs. (5.19). The fast cyclotron wave at the input delivers its power

to the circuit just as in the previous example, while the slow cyclotron

wave gives rise to two growing waves. One of these waves is at the input

frequency and carries negative energy while the other is a third harmonic,

positive energy cyclotron wave. It is this growing third harmonic wave

which absorbs energy back from the quadrupole and results in the conversion

efficiency reaching a maximum at 27% and then decreasing with larger values

of the parameter 0.

While it might be expected that just a slow cyclotron wave excitation

at the quadrupole input would lead to a growth phenomenon, inspection of

(5.21) shows that the beam absorbs energy from the assumed fields in the

quadrupole, again as a result of the third harmonic, fast cyclotron wave.

As a result, this case is of no interest when the quadrupole is synchronous

with the fast cyclotron wave.

2. The Slow Cyclotron-Wave Doubler

The second synchronism condition of importance is the one in which

the quadrupole cavity has a field component that is synchronous with the

slow cyclotron wave. In this case the power given up to the assumed

second haymonic field is calculated from (5.19). It is found that

P 2 [(1al (O)12 + ja 2(Oj jsinh2 Ct
pq =2012

+ sinh a -cosh o6 Re-al(O)- al(O)e'j+ (5.38)
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If al(O) and a2 (0) are interchanged, this result in the negative of

the power expression obtained in the case of synchronism between the

fast cyclotron wave and the quadrupole field. Equation (5.38) shows that

the beam delivers power to the quadrupole for any beam entrance condition.

The discussion regarding the relative phase between the input slow cyclotron

wave and the quadrupole is the same, except that in the present case there
is no maximum efficiency for a given phase relationship. It is apparent

that the optimum relationship is given by

cos (2e0 - .) = + 1 .(539)

From (5-.17), which is correct here also, if al(O) and a2(O) are inter-

changed and the sign of P is changed, we see that this corresponds toc

a purely resistive quadrupole load. In this case the second harmonic

power delivered to the quadrupole is given by

Pq = Iai(o)12 (e2t - 1) + la2(o)l (cosh 2crt - 1) . (5.4o)

This result is plotted in Fig. 5.4 for the cases in which only a fast

wave input is supplied and in which both input waves have equal amplitude.

The characteristics of the slow cyclotron-wave doublers are distinctly
different from those of the preceding case, as would be expected. Since

a negative energy wave is synchronous with the circuit, the beam gives up

some of its dc energy to the cavity in the form of the second harmonic

power dissipated in the quadrupole. Thus this device can be viewed as a
kind of driven oscillator that converts dc energy to the second harmonic

frequency under the influence of the fundamental modulating signal on the

beam. This interaction has been studied by others19 for the case of

unrelated beam wave and quadrupole frequencies, and it was noted that

power gain was still possible in this case.

D. EFFECT OF THE LOAD IMPEDANCE

The results obtained in the previous sections show the nature of the

frequency doubling interactions employing a quadrupole circuit interacting

with the cyclotron waves, but they do not give a satisfactory final
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FIG. 5. 4 -- Conversion efficiency for a quadrupole that is synchronous
with the slow cyclotron wave.
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formulation of the problem since the effect of the quadrupole cavity load

impedance is not given explicitly in those equations.

In order to do this we require a relationship between the growth

parameter a and the power being delivered to the quadrupole cavity and

the external load. We define a loaded quadrupole resistance by

V2

q 2P2,

where V is the potential of the quadrupole circuit, corresponding toq
the field that is synchronous with the beam wave, and P2 is the total

second harmonic power given up to the loaded circuit by the beam. The
relationship between the coefficients C + and C_ and the quadrupole

voltage V can be calculated by combining (5.5) with (5.1) andq
integrating the electric field from the axis of the structure out to the

equipotential surface that defines the quadrupole circuit. In this way

it is found that, for either a linearly or a circularly polarized quadrupole,

the potential is related to the polarization coefficients by

"•i(,I/m)V
c ~412+ 2 . (5.42)

Finally, using (5.41), we obtain the relation

-I c 2 V'qp:i (5.43)

c~o

Now what is really desired, in order to make the final results exhibit

the information in the most useful form, is to express (5.43) in terms

of the unloaded quadrupole cavity resistance and the power which is

dissipated in the external load. The load resistance is given in terms
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of the unloaded value by

1

Rq = RqO (5.44)
1+--

qext

while the power delivered to the external load is related to the power

given up by the beam by

1

S2ao 1 Q+ ext

Finally, by substituting (5.44) and (5.45) into (5.43), the desired results

are obtained in terms of the Q of the cavity loaded by the external

resistance and the power dissipated in the external load

+ +C_ = 2e/m Rext (

-u qo ai,-- • (5.46)

Thus, Eq. (5.46) can be substituted into (5.24), (5.25) and (5.40) to

obtain the conversion efficiency of the cyclý':ron wave frequency doublers

in terms of known parameters and the power on the fast cyclotron wave at

the quadrupole entrance. The transcendental equations obtained in this

way can be solved numerically to obtain the desired results. In plotting

the efficiency and the second harmonic power output as a function of the

power input, it is very convenient to form universal curves by normalizing

the power so that the normalized power p is related to the actual

power P by

P T R - P (5.47)
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Because the linearly polarized quadrupole is the most likely structure

to be used, all of the calculations carried out below are for this case.

However, the curves have been normalized so that, if a circularly polarized

quadrupole is of interest, it is only necessary to replace RoOq by 2RqO

in (5.47) to make the efficiency curves valid for that situation.

1. Fast Cyclotron-Wave Doublers

The normalized second harmonic power that is delivered to the load

can be expressed in terms of the power input on the fast cyclotron waves

by means of (5.24), (5.25), (5.32) and (5.33). For the case in which only
a fast cyclotron wave exists at the quadrupole input it is found that

P2_l Qext
1 exp p (5.48)

If both cyclotron waves have equal amplitude at the input the result is

sinh p2  (- cos 2) -4 sinh 2 12cLL . (5.49)
S-- Vex 21] x

1+ext Q70

In these equations p2WL is the normalized second harmonic power delivered

to the load and p• is the fundamental power input on the fast cyclotron-

wave.

The curve showing the conversion efficiency and output power as a

function of the input cyclotron wave power, when only the fast cyclotron

wave is present, is curve a in Fig. 5.5. At low power levels the

output power is proportional to the square of the input power as can be

seen by considering (5.48) which approaches

1

- 101 -



0.

P~4

0 0

d 0.

102.0



for output power levels such that

P2jA << Qex

The output is therefore maximum when Qext/% is unity. For large output

power such that

P2ca >> -QO

Qext

the conversion efficiency approaches a constant so that the output power

becomes a linear function of the input power

1

2 W 1 xt " (5.51)

From these results it is apparent that the optimum value of Qext/o

is dependent upon the input power. For low level operation it is desirable

to make Qext/Q0 unity, while for high level operation Qext/% should

be large. Generally, it is safe to assume that high conversion efficiencies

are desirable and the usual operation of the frequency doubler would be in

the region for which (5.51) is valid.

The characteristics of the frequency doubler when the input to the

quadrupole consists of fast and slow cyclotron waves of equal amplitude

is somewhat more complex than the previous case, as is evidenced by

Eq. (5.49). The conversion efficiency as a function of the input power

on the fast cyclotron wave is curve b in Fig. 5.5. It was pointed out

in the previous section that the efficiency of a doubler operating in

this way reaches a maximum and then decreases due to a growing third

harmonic wave on the electron beam. This is reflected in Fig. 5.5 where
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the maximum efficiency which can be attained is

0.27

1Inax W- ex1+--
QO

The output power at maximum efficiency is

P2aZ,= 0.25-- (5.5O3)

Qext

and the input is

~ext

The efficiency decreases slowly with increased input power and the output

power saturates at a value given by

= 1.1% . (•.5s)
sat Qext

On the other hand, at low power levels the output is given by

4
2

which is four times the value for the case in which there is only a fast

wave entering the quadrupole. As before, the optimum value of Qext/Qo

is dependent upon the input power, but in general the operation will be
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near the maximum conversion efficiency where it ic desirable to load the

cavity heavily.

Although the conversion efficiency in the quadrupole is found to be

small in the equal fast and slow cyclotron wave doubler, the possibility

of gain in the twisted input coupler described in Chapter IV makes this

device a significant competitor of the more usual fast cyclotron wave

doubler. As far as overall efficiency is concerned, it would even be

possible to exceed one hundred per cent conversion efficiency; that is,

the second harmonic output can exceed the fundamental input.

The amount of second harmonic power that can be obtained from either
of the frequency doublers described above is determined by the beam
interception conditions in the quadrupole. The maximum input power for

the first doubling scheme described above is that power which causes

interception at the quadrupole entrance since the wave amplitude decays

exponentially inside of the quadrupole. The same interception condition
can usually be used in the case in which there are equal amplitude fast

and slow waves at the input, since it is found that the beam expands a

negligible amount when the operation is adjusted to the peak of the

efficiency curve shown in Fig. 5.5.

2. Slow Cyclotron-Wave Doublers

In this case, the normalized power expressions are obtained by
substituting (5.47), (5.46), and (5.45) into (5.38) or (5.40). For the

optimum case with only a slow wave input we obtain

1~a qext---
P~a 1+- I'xv

[K =xp - (5.57)pCO i + !ex__t

Qo

while, if both the fast and slow cyclotron waves have equal input magnitudes

and the correct phase relationship so that e in (5.38) is zero, the
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efficiency is

P2aZJ l7~~(extt )qx
-xp -=& + coshP

As before, p2, is the second harmonic power delivered to the load and

pC is the fundamental power input on the fast cyclotron wave.

The curves showing the conversion efficiency as a function of the

input power are given in Fig. 5.6. It can be seen that the efficiency

characteristics of the slow cyclotron-wave doublers are distinctly

different fro those of the fast cyclotron-wave doublers. The conversion

efficiency of the quadrupole doubler that is synchronous with the slow

cyclotron wave can be greater than one hundred per cent for either

excitation shown in Fig. 5.6. This result simply means that some of the

dc beam power is betng converted to second harmonic power under the

influence of the fundamental modulating signal.

We observe that the small-signal theory sets a limit on the fundamental
cyclotron wave input power that yields a stable frequency doubling inter-

action, and if the power is increased beyond this point the quadrupole
efficiency will increase until nonlinearities cause saturation. This
behavior is very much like that which occurs in a monotron oscillator,

except that in the present case there is no rf field at the equilibrium

position of the filamentary beam. Consequently, the start oscillation

condition is related to the fundamental power input,which contains both

the beam current and the displacement of the beam from the axis. This
phenomenon sets a limit to the conversion efficiency that can be obtained

with a given value of Qext/Qo

The external loading required to achieve the maximum conversion
efficiency is dependent upon the operating conditions. In principle,

the maximum efficiency of 390 per cent is obtained when the quadrupole is

loaded heavily so that Q /xt/0 approaches zero. However, the practical

matter of beam interception modifies this picture. Figure 5.6 shows that

the input power required to obtain the maximum efficiency increases with
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decreasing Qext/O so that it would require an infinite input signal in
order to obtain the peak efficiency. Thus, we see that the maximum

efficiency will be less than 390 per cent, and that this maximum will be

determined by the interception conditions in the quadrupole.

It is of interest to investigate the conditions that muwt be met in

order to obtain the maximum efficiency from the doublers described above.
In order to do this the beam excursion in the quadrupole must be calculated

by substituting (5.19) into (2.20). The expression for the maximum amplitude

obtained in this way can be written in termsoof the normalized variables

introduced in this section, and it is found that the maximum excursion

is related to the second harmonic power by a simple expression. In the

case of a slow wave input only we obtain

Qext P log

while for equal fast and slow wave inputs

Q 12

exusin i2e log )~ + J~2j (5.60)QO •r(o)/ r rm

where r(O) is the initial maximum excursion and r is the maximumm

excursion within the quadrupole at a load power level p

These results can be combined with the efficiency characteristics

shown in Fig. 5.6 to obtain the optimum operating conditions for the slow-

wave doublers. The value of (Qext/Qo) p2 ,& at the limit points in the

figure is 2.55 for a slow wave input and 1.81 for equal inputs of the two

waves. By using these values in (3.59) and (3.60), we obtain the maximum

excursion in terms of the initial maximum excursion

rm - 2.22 r(O)
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and

r - 1.70 r(o) ,

respectively. Then the greatest efficiency is obtained when r. is

equal to the maximum excursion allowed without beam interception, that

is, the quadrupole radius minus the beam radius. Consequently, the

maximum efficiency will be obtained when the input power level in adjusted

so that the initial maximum excursion is related to the beam excursion

that causes interception by the appropriate expression above, and then the

coupling to the external circuit is adjusted so that the maximum output

without interception is obtained. The actual efficiency obtained in

this way is dependent upon the quadrupole parameters, but we may say that,

by adjusting the length or R of the quadrupole, large conversion

efficiencies can be obtained.

E. SUMMARY OF CYCLOTRON-WAVE DOUBLERS

The analysis presented in this chapter has shown that the two basic

types of cyclotron-wave frequency doublers involve a quadrupole circuit

that is synchronous with either the fast or the slow cyclotron wave.

The first case results in a maximum conversion' efficiency of one huidred

per cent, while the slow wave interactions are characterized by an

efficiency that may exceed one hundred per cent. Consequently, the latter

case is of considerable interest as far as high efficiency frequency

doubling is concerned. However, these devices have the disadvantage of

requiring circuits with much smaller phase velocities than does the fast

cyclotron-wave doubler. This is dettrimental because the interaction

impedances of the lower phase velocity circuits are generally smaller,

and because the thin beam assumption is not as good an approximation as
the wavelength of the circuit wave decreases. Even so, the slow wave

doublers should, with proper circuit and beam design, result in much

higher efficiencies than are obtainable by means of passive interactions.

The quadrupole interactions with the synchronous waves that result

in frequency doubling are considered in the next chapter. In general,
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it is found that the synchronous-wave doublers are analogous to the cyclotron-

wave doublers, and a more complete sumary of transverse-wave frequency

doublers is given at the end of that chapter. In particular we can say

that the active frequency doubling mechanisms employing the synchronous

waves look more attractive than those involving the cyclotron waves be-

cause of the different circuit velocity requirement.
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CHAPTER VI

SYNCHRONOUS WAVE FREQUENCY DOUBLES

The general approach to the analysis of transverse wave interactions
which is offered by the Bl~tekJaer and Wessel-Berg coupled-mode theory

outlined in Chapter V.A leads naturally to the discussion of synchronous

wave frequency doubling interactions as well as of the cyclotron wave
doubling schemes presented in Chapter V. This is a new class of frequency

doubling interactions which can be expected to lead to devices that are
different from those employing the cyclotron wave. This difference is

a result of the identical phase velocities of the two synchronous waves,
and the new role played by the negative energy beam wave. The purpose

of this chapter is to develop the theory of this new class of devices
and to compare their ultimate capabilities with those of the cyclotron
wave doublers.

The synchronous wave frequency doubler consists of an input coupler

which excites a combination of the two synchronous waves on the beam
and an output quadrupole cavity in which the frequency conversion actually

takes place. The coupler theory has been presented earlier, and so we

are primarily concerned with the quadrupole interactions here. The

analysis properly begins with Section A of Chapter V, where the basic

coupled mode description of quadrupole interactions is described. The
discussion will begin with the solution of Eqs. (5.6) for the synchronism

conditions which lead to strong interaction between the quadrupole cavity

and the synchronous waves on the beam. The assumptions involved in this

chapter are the same as those described in the introductory comments and

in Section A of Chapter V. Basically, these are the assumptions that

the beam interacts with only one traveling-wave component of the field in

the resonant cavity, and the filimentary beam assimptions. The statements

which were made in Chapter V regarding the validity of these approximations

are generally true in the present case also.
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A. SOWUTION OF THE COUPLED MDDE EQUATIONS

It has been noted that one of the synchronism conditions which lead

to perturbed solutions of (5.6) is

-& o . (6.1)
q

That is, there will be a strong interaction between the synchronous waves

on the beam and the quadrupole cav4y when the phase vqiocity of a travel-

ing-wave component of the field is equal to the beam velocity. The solu-

tions of (5.6) which were obtained in the reference are, as in the previous

case, inadequate for the discussion of frequency doublers because it was

assumed that there was no correlation between the synchronous wave signal

input and the quadrupole field. We therefore begin the discussion with

an evaluation of the perturbation in the propagation constant perturbation

y , and the wave amplitudes for the synchronism condition (6.1).

It is reasonable to neglect the cyclotron waves in the discussion of

(5.6) since there will be no cumulative interaction in a long quadrupole

for the condition given in (6.1). Also, a first approximation will be

to neglect all frequencies other than o , 9 + co , and a' - c as
qq

was done for the cyclotron wave case. However, it will be found here that

this assumption is valid only if the quadrupole is circularly polarized

and that the solution for the case in which the quadrupole is linearly

polarized must be obtained by a more rigorous approach which involves

all frequency combinations. It will be found that, for the linearly

polarized case, the three-frequency expressions are valid at low power

levels, while for larger power output these solutions result in

significant errors.

1. Three-Frequency Solution

On the basis of the above comments we obtain from (5.6) a set of

six equations which relate the asplitudes of the synchronous waves at

the frequencies represented by n a o , + 1 . These equations are
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homogeneous and the requirement that they have a nontrivial solution is

that the system determinant vanish; that is,

-37 0 0 0 C* 0
-o o o o•
0 -jY 0 c_ 0 C*

o o .- J7 0 C.. 0
0 o (6.2)

o C! 0 -j7 0 0

C 0 C* 0 -j3 0

0 C+ 0 0 0 -jY

Evaluation of this determinant yields a sixth-order equation which can

be expressed as the produol of two cubic equations. The determinantal

equation is then:

3 + ( Cc + cc*]j 0 . (6.3)

There are two unperturbed solutions

l= 0 , (6.4)

and four perturbed solutions

Y'3 = Y4 + JcýC*+C-C.*'

Y5 = Y6 ="JIC+C:+* cc . (6.C)

The substitution of (6.5) into the equations which gave (6.3) results in

simple expressions for the perturbed wave amplitudes, at synchronism,

and we shall restrict the discussion to that case since it reveals all
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of the characteristic phenomena involved. The synchronous waves in the

quadrupole are given by

[a(,C. i•~J(ca - •z

++ 3(s eZ)A aOcosh az + "a(O) sinh a[a3(O) 3~ a*() J

C J3(at - Pez)

+ a• .. a3(O) sinh z e• - (6.6)
a

A 4= [a()cosh q + a- at(O) sinh az]e'

+ 1 J-Z 3 (0) J3(t Ca e'z (6.7)

where a is now

a = c+C. + C-C* . (6.8)

These results are valid for arbitrary quadrupole polarization. In

arriving at (6.6) and (6.7) it was assumed that oq = 2co , which is

the case in a frequency doubler. The 47 factor in the third harmonic

term arises because the amplitudes are normalized so that their square

gives the power carried by that wave.

Equations (6.6) and (6.7) indicate that, in general, the initial

excitation of either synchronous wave results in a subsequent complex

spatial variation of that wave amplitude and also a growing third harmonic

synchronous of the opposite polarization. These results are very similar

to (5.14) except that in the present case the form of the equation for

each synchronous wave is the same, this being a manifestation of the

identical phase velocities of the two waves. However, it must be pointed

out that the validity of (6.6) and (6.7) is open to question in the case

of a linearly polarized quadrupole because of the assumption that the

finite set of equations employed in (6.3) is an accurate description of

the system. It is observed that the diagonal elements of (6.3) are all
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of the same order of magnitude, and that this would be true if we

had employed the infinite determinant which represents all values of n

Thus, to first order in the quadrupole field amplitude, all values of

n must be retained. This was not the case in the cyclotron wave discussion

given in the previous chapter. It is therefore necessary to carry out a

more rigorous discussion of the solution of Eqs. (5.6) for the synchronism

conditions stated in (6.1) when both C+ and C. are nonzero.

2. Exact Solution

The arguments stated at the beginning of this section for neglecting

the cyclotron waves in the discussion of the synchronism conditions (6.1)

are generally valid, and we neglect the cyclotron waves in the exact

solution of (5.6). To simplify the discussion we assume (6.1) is satisfied

so that the equations for the synchronous wave amplitudes can be written

-j7a Ca+ C*&"3,n -C-a,n- + 4,n + 1

"Jya4,n C+a3,n- + C-*a3,n+1 (6.9)

The approach which will be used here to solve this set of difference

equations was pointed out to the author by Blotekjaer who found the

solution to a similar transverse wave problem in the same way. 3 1

Equations (6.9) can be combined to yield a single difference equation

relating the amplitudes of the different frequency components of each type
of synchronous wave. For the positive energy wave amplitudes we obtain

C*a + C.C*) + C ' o , (6.1o)
+ a3,n+2 + ( 3,n +C- a3,n.2

and a similar equation holds for the negative energy wave amplitudes.

Now it is a legitimate step to Choose the phase of the quadrupole fields
and then later determine the' necessary input phase for the synchronous

waves with respect to the assumed quadrupole phase. Thus, since the

quadrupole is assumed to be linearly polarized, we can choose

C+ - c- - C- Ici (6.11)
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As a result of this choice (6.10) becomes

an+2 +7 + 2 an + an_2  0 0 , (6.12)

where the subscript denoting the synchronous wave involved has been dropped

because the equation is applicable for both a3,n and a4,n . The

solution to (6.12) is obtained by assuming that the various frequency

components are of the general form

an a a0 eJnQ , (6.13)

where e is a parameter which facilitates the mathematical solution of

(6.12). Substituting (6.13) into (642) yields

2 =+J2 cos . (6.14)
C

By using (6.14) and (5.3), it is found that a solution for the waves

described by (6.12) is

00

A = ao(0) e exp J (a)+ no))t
0 =q

n =0
- (± J2C cose+--S+e . (6.15)

u0

The most general solution is obtained by surning over all possible solutions

or, in this case, by integrating over all permissible values of e . As

noted in the reference cited above, the condition that only the fundamental

frequency components are nonzero at z - 0 is sufficient to require that

e be real and that a satisfactory range of integration is - x < e < + .

As a result of the choice of signs in (6.14) two solutions are found, as
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described above, and the most general solution to the problem is a linear

combination of these. Finally then the general solutions for the positive

and negative energy synchronous wave excitation in the quadrupole are

" J(• + ,qn ( - s/w)

A = a3 ( 0) [a + (-1)"b] In(2Cz) e' q

(a) + n, )(t - -/%)
A4 = a4 0 (0) (c + (-l)nd] In(2Cz) e q . (6.16)

n1=0

These equations were obtained as solutions to (6.12) and are quite general.

We note, however, that (6.12) will generate only solutions with even n ,

beginning with the amplitude a 0 . For this half of the solutions it is

evident that

a+b 1

1 +.d 1 (6.17)

The other half of the solutions is obtained by substituting (6.13) and

(6.14) into (6.9) with n = 1 to obtain

joa =
a3,1 = + a4,0 e

a4 ,1  m + a3,0 e (6.18)

By averaging over e as before and matching the initial conditions, we

obtain

a4 (o)
a - b - aO

a3, 0 (0)
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and

£3 (0)
a - ad .,3(°) (6.19)

4,0(0)

Finally then, by noting the relation19

a,. at, o,n (6.20)

and setting co 2w , we obtain the complete expressions for the

synchronous waves in the quadrupole region:' 'I
A3  n - 3,

n>0 a4,0(0)

+ In+1 (%/z +3(2n + 1Wa(t - z/wO) (6.21)na+1,o(°

A 4  ~ +~ [I 4 in P)1
n[>O a3,0(O)J

+ In+1 ' + t- zlu() (6.22)

In these equations a is given by (6.8) and the upper wave amplitude is

to be used if n is even and the lower if n is odd. The factor

Shas -been -inserted in order to normalize the amplitudes so that

their square is the power carried by that wave. This in a result of

the a which appears in (2.14).
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Equations (6.21) and (6.22) are to be compared with the approximate

solutions given in (6.6) and (6.7). For a weak interaction, so that only

the first power of cz is retained in the series expansions of sinh c

and I (nJ~ Qz) , the three-frequency and the exact analyses agree as

would be expected. However, for stronger interactions the exact polution

shows that higher order, odd frequency harmonics on the beam become

important. The only frequency component on the quadrupole is still the

second harmonic, but the calculation of the power delivered to the

quadrupole will be greatly modified for strong interactions as will be

shown in the next section.

B. CALCULATION OF SECOND HARM)NIC POWER

The second harmonic power which has been dissipated in the quadrupole

and its load, in the process of establishing the beam waves described in
the previous section, is obtained by calculating the power lost by the

beam in the quadrupole region. In the case of a circularly polarized

quadrupole, Eqs. (6.6) and (6.7) can be used for this calculation. For

a linearly polarized quadrupole the three-frequency solution is not valid

at high power levels and so exact wave expressions given by (6.21) and

(6.22) must be used.

The power delivered to the quadrupole by the beam is found by

computing the net negative power on the beam at the quadrupole exit and

subi~racting net negative beam power at the input end of the quadrupole

cavity. Determination of this power from the three-frequency wave

solutions (6.6) and (6.7) yields

a a

C _ f1a2~.( O ~ l ~ ( - ~ C + I s j 2) 0 1 2 ( 1 2 ( 6.2 3 )

+[- ja4(O)j 2 cos 2e4 - 33 sinh 2 , (6.23)

where t in the length of the quadrupole cavity and &3 and e4 are

the respective phases of the positively and negatively polarized
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synchronous waves. The phases of the quadrupole field components represented

by C and C have been chosen to be zero as described in the previous

section. Both polarizations have been retained in (6.23), as it causes

no difficulty to do so and it will allow a comparison between the approximate

and exact solutions for the linearly polarized case.

The interpretation of the input synchronous wave phases in (6.23)

can be investigated in the same way as was done for the cyclotron wave

case by calculating the complex power delivered to the quadrupole cavity
by the beam. If the quadrupole is circularly polarized, the discussion

is exactly the same as in Chapter V.C. If the circuit is linearly

polarized, the situation is altered. The complex power delivered to
the quadrupole cavity can be calculated by means of (5.13) and equations

corresponding to (5.15) and (5.16) involving the synchronous wave amplitudes.

When this power is calculated, it is observed that a fifth harmonic term

arises in the electric field expressions which corresponk to (5.15). This

frequency does not appear in the wave amplitude expressions (6.6) and

(6.7) and this result is an indication that the assumed three-frequency
solution is not consistent with the original equations. However, since

we have neglected the higher frequency terms in (6.7), there is no fifth

harmonic current to go into the power calculation and the real part of
the complex power calculated in this way agrees with (6.23). The reactive

power absorbed by the quadrupole and load has terms proportional to

la3 (O)12 sin 2e3

and

la4(O)12 sin 2e4 , (6.26)

which must be zero at the quadrupole resonant frequency. As a result of

these considerations, and inspection of (6.23), it is concluded that the

quadrupole fields will in general be set up so that the phases of the

beam waves with respect to the quadrupole field of the same polarization
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are given b

e3 2

and

94 0,i . (6.27)

1. Positively Polarized Quadrupole

The basic interactions represented in (6.23) fall into three categories.

The first is the case in which the quadrupole cavity has only a positively

polarized field component. That is, it is polarized like the input

synchronous wave which carries positive energy. The quadrupole field will

be set up so that e3 is given by (6.27) for any angular orientation of

the quadrupole cavity. The second harmonic power dissipated in the cavity

and its load is obtained from (6.8) and (6.23):

P - 2 [a4(O) 12 + a3(0)12 sinh2 ct. + 1 3(O)12 sinh 2a, . (6.28)

This is exactly analagous to the result obtained in Chapter V for the
case in which the quadrupole was synchronous with the fast cyclotron wave.

The characteristics of the synchronous wave interactions are the same as

described for the cyclotron wave case. -When only the positive energ

synchronous wave is excited by the input coupler, it is found that the

beam wave energy is transferred to the quadrupole as indicated by curve a
in Fig. 5.3. When both synchronous waves are excited with equal amplitude

on the beam, as would be the case with a linearly polarized input coupler,
the power output is the same as described by curve b in Fig. 5.3.

As a result of the above discussion it can be concluded that the

interactions involved in a positively polarized quadrupole offer no 7basic

advantages over the cyclotron wave doubler in which the quadrupole is

synchronous with the fast cyclotron wave.
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It is true that the synchronous waves offer the advantage of a

synchronism condition which is independent of the magnetic field. However,

this must be weighed against the reduction in circuit phase velocity, and

therefore interaction impedance, which results when synchronous wave inter-

actions are used.

2. Negatively Polarized Quadrupole

In this case the quadrupole is polarized in the same direction as the
synchronous wave which carries negative power. The phase of the resonant

quadrupole will again adjust itself so that 84 satisfies (6.27). The
second harmonic power dissipated in the cavity and its load is obtained

from (6.8) and (6.23):

P = + 2[a1 4(0)12 + Ia 3C(02] sinh2 at+ Ia4 (0)1 2 sinh 2at . (6.29)

This is exactly analogous to the result obtained in Chapter V for the case

in which the quadrupole was synchronous with the slow cyclotron wave. As
in that case, the interaction is one which can lead to appreciable gain

if either synchronous wave exists on the beam at the quadrupole entrance.

Curves showing the total second harmonic power as a function of the
growth parameter at are given in Fig. 5.4 for the case of one synchronous

wave input, or equal amplitudes of both synchronous waves. The actual

power which is delivered to the load as a function of the input

synchronous wave power is discussed in the next section where the
matching of the cavity to the external load is taken into consideration.

Although the negatively polarized quadrupole interacting with the

synchronous waves results in the same equations as in the case invcving
the cyclotron waves cited above, the present situation has the advantages
of allowing the use of higher phase velocity circuits and allowing the

synchronism condition to -be independent of the magnetic field. For these

reasons the present scheme is preferable to the slow cyclotron wave
interaction.

3. Linearly Polarized Quadrupole

In this case the quadrupole fields can be obtained from (5.1) and(5.5)
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and are given by

%u0
Ex + a /q

Y el 2 .,sin u(wt - kk ) , (6.30)

where

C+ C c . (6.31)

The quadrupole field configuration is shown in Fig. 5.1. Since the

excitation of the circuit is a result of the motion of the beam along the

electric field lines, it is apparent that there will, in general, be a

required relationship between the angular orientation of the quadrupole

cavity and the input coupler which excites the initial synchronous waves

on the beam. In particular, the limearly synchronous polarized wave

coupler described in Chapter III should be oriented so that the beam waves

at the quadrupole entrance satisfy (6.27).

The second harmonic power which is dissipated in the cavity and its

qxtermal load can be obtained from (6.8) and (6.23); in general,

p a [a4 I.(0)12 cos 2e4 - ja3 (0)1 2 cis 2e sinh t . (6.32)

In the case in which Just one synchronous wave is excited at the quadrupole
entrance, or if both have the proper phase relative to the quqdrupole as

indicated by (6.27), the power is given by

P -" [Iai.(O)[e+ la 3(O)1hsinh 2 •. (6.33)
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It was noted in Section V.A that the three-frequency solution of the

linearly polarized problem is not expected to be accurate because of

appreciable excitation of higher order frequency combinations in the beam.

It is therefore important to calculate the second harmonic power from the

exact wave amplitudes given in (6.21) and (6.22). This is done by calcu-

lating the net change in beam power as a result of the quadrupole intezi-

action in the same way as before. Summing the squares of the amplitudes

of the negative energy waves which make up A4 and subtracting the sum

of the squares of the amplitudes of the positive energy waves which

make up A3 yields the net negative power carried by the beam at the

quadrupole output. Then by subtracting the net negative power at the

input, we obtain, after a great deal of manipulation,

W

S13( 4 - I2_ 2- (_)n jn2]

n-1

(6.34)

+ 2Re a(0) - a 3 (-l)n (2n + 1) InIn +1
n=0

where the argument of the modified Bessel functions is f2, . By means
32

of known series, and the relations between the ordinary and modified

Bessel functions, it can be shown that

I2(z) + 2Z (-1)n I2(Z) = 1 (6.3()

n-l

(_i)n (2n + i) In(z) In+l(Z) 2 (6.36)
n-l

Thus, the second harmonic power calculated from the rigorous solutions of
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the coupled mode equations is obtained in a very simple form:

2 [Ia4(O)I2 co. 2 194 _ la3()1 coos . (6.37)

We see that (6.37) and (6.32) agree exactly at low power levels, but that

the approximate solution is over-optimistic at high power levels. A

comparison of these results with the other synchronous wave interactions

will be given in Section D of this chapter.

Although there is no counterpart of the type of interaction described

above given in Chapter V it is apparent, from the discussion of twisted

circuits which was given in Chapter IV, that a twisted quadrupole would

allow a cyclotron wave interaction completely analogous to the synchronous

wave interaction in a linearly polarized quadrupole. However, this would

offer no advantage over the present case and the design would be much

more complex.

C. EFFECT OF THE LOAD IMPEDANCE

The results obtained in the previous section indicate that the
synchronous wave frequency doubler can yield high frequency conversion

efficiencies for several special cases. However, the equations presented

there are not in a form which exhibits the dependence of the power

dissipated in the external load upon the input power, the quadrupole

parameters, and the coupling coefficient .Qet . The equations of

the previous section can be expressed in terms of these quantities in a

manner similar to that used in Section V.D.

As pointed out in Section B of this chapter, the synchronous wave

interactions involving a circularly polarized quadrupole are exactly

equivalent to the cyclotron wave interactions which were discussed in

Chapter V. If the quadrupole is positively polarized, a is given by

(5.43) and (6.28) is identical to (5.21). Consequently, the curves in

Fig. 5.5 are appropriate for this case. If the quadrupole is negatively

polarized, a is still given by (5.4 3 ) and (6.29) is identical to (5.38).

The curves shown in Fig. 5.6 therefore give the frequency conversion

characteristics for this case. The discussion of these situations is
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identical to that given in Chapter V for the analogous cyclotron wave cases.

The only differences between the cyclotron wave and synchronous wave cases

are the synchronization conditions.

The situation not represented in the previous chapter is the linearly

polarized case given by (6.37). It is evident from (6.8) and (5.43) that
the gain parameter is in this case

S.. - i1 +12 + IC' 2
wUoa

Consequently, using (5.41) and the normalization given by (5.47) in (6.37)

yields

1

%eO [P 3,0 " P4, 2  (6.39)

(i+ A%
where P3 ,(D and p4,( are the respective values of the power input on

the transverse waves. It should be recalled that the power input p_

is a negative quantity. The phases 83 and 64 in (6.37) have been

taken as the optimum values given in (6.27).

As pointed out previously the special case in which the input
synchronous waves have equal amplitude is of a great deal of interest

since gain can be achieved in the input coupler in this situation. If

the power carried by the input positive energy wave is then denoted by

pZ , the output is

4

P2c&L (2x (6.140)

Q~extJ Q0

Note that (6.40) is identical to (5.56) which describes the low level

output of the cyclotron wave doubler employing both fast and slow input
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cyclotron waves. The significant difference here is that the above result

is valid for large signal levels while the cyclotron wave doubler saturates

as indicated by (5.55).
Equation (6.39) also showe that the linearly polarized synchronous

wave doubler behaves as a constant current source as the load is varied.

That is, the maximum power output is obtained when Qext/% is unity for

all power levels. This is unlike the other cases as can be seen in

Section V.D, and is a result of the zero beam loading presented to a

circuit that couples equally to both synchronous waves.

D. SUi4ARY OF SYNCHRONOUS WAVE DOUBLES

The frequency doubling interactions which have been discussed in this
chapter have, with one exception, been the synchronous wave analogs of

the cyclotron wave interactions described in Chapter V. Hence, most of
the comments in Chapter V are applicable to the present situation. The

exception is the case of the linearly polarized quadrupole which interacts

equally with both synchronous waves and results in the excitation of all

odd harmonic frequency components on the beam. As was pointed out

previously, the cyclotron wave analog of this case can be obtained by

twisting the quadrupole with a period equal to the cyclotron wavelength

on the beam. Consequently, a discussion of the quadrupole interactions

for the synchronous wave cases discussed in this chapter is really a

discussion of all of the types of doubling interactions which can be

obtained with the four transverse waves which describe the filamentary

beam excitation. The details of the circuit configurations and the

synchronism conditions are, of course, dependent upon the choice of

cyclotron or synchronous wave interactions.

A comparison of the synchronous wave interactions can be made on the

basis of the equations for the second harmonic power dissipated in the

quadrupole as a function of the parameter at . The curves representing

the possible interactions between one input synchronous wave and the

quadrupole are shown in Fig. 6.1. Curve d represents the interaction

involving only the positive energ synchronous wave and we see that the

maximum second harmonic power which can be dissipated in the quadrupole

is equal to the input synchronous wave power. This is the synchronous

- 127 -



I\ I

N°

0 r4

0

I I II o ,,

""4 -H*

0

03

S4•%

-ll co)rl

,I 
UW

1284a



wave counterpart of the fast cyclotron wave doubler which has been treated

by others in a special case. Because no negative energy waves are involved

in this case, it will be referred to as passive doubling. By setting

C - 0 in (6.6) we can see that only the fundamental frequency exists on

the beam and that the synchronous wave amplitude decreases exponentially

within the quadrupole cavity. Consequently the factor which controls

the beam interception level is the amplitude of the beam excursion at

the entrance. This is calculated from Eqs.(2.20). There is no inter-

action if a negative energy wave is injected into a positive polarized

quadrupole unless second harmonic power is supplied by an external source.

The passive interaction indicated by curve d in Fig. 6.1 is to be

compared with the three basic active frequency doubling interactions

qbown in curves a, b, and c of the figure. Curve a represents the
interaction between a negatively polarized (negative energy) synchronous

wave with a negatively polarized quadrupole. This again is an interaction

which involves only the fundamental frequency in the beam, but now the

beam excitation grows exponentially in the quadrupole and the second

harmonic power increases rapidly as either the coupling to the beam is
increased (larger a ) or the length is increaseo. As is evident from

the figure, this case gives a larger conversion efficiency than any of

the other cases. It is the only scheme which surpasses the passive
interaction at low power levels, that is, small ctt . However, it is

necessary to note that, due to the growing beam excursions, saturation

will occur if at is made too large. Since there is only the fundamental

negative energy synchronous wave in the beam, the beam excursion for a

given wave amplitude is the same as in the passive case. Consequently,

in the limit as 04 approaches infinity, the saturation output power

of the two devices would be the same. However, the efficiency of

conversion of fundamental to second harmonic power would be infinite

for the active case and unity for the passive interaction.

The active interaction described above is analogous to the inter-

action involving the slow cyclotron wave which was discussed in Chapter V

and the power characteristics given in Fig. 5.6 are applicable here. As

shown in Fig. 5.6, these frequency doublers become unstable when the

input power is increased beyond a critical value. This is an unusual

kind of instability as is remarked in Section V.D.

- 129 -



An interesting input coupling scheme arises in connection with the

negative energy, synchronous wave interaction described above. It was

noted that the synchronous wave klystron described in Chapter III can

result in purely negative energy, synchronous wave excitation on the

beam at the exit of the output cavity. This klystron could then be

followed by a negatively polarized quadrupole cavity, resulting in the

active frequency doubling mechanism described above. Consequently, a

very large overall frequency conversion efficiency could be obtained.

Alternatively, the input coupler could be a circularly polarized synchronous

wave monotron resulting in an oscillator which produces a fundamental and

second harmonic that are phase related.

Curve b in Fig. 6.1 shows the characteristics of the interaction

if the positively polarized synchronous wave serves as the input to a

negatively polarized quadrupole. The conversion efficiency is now greatly

reduced due to the presence of both positive and negative energy

synchronous waves in the beam at the fundamental and third harmonic

frequencies as indicated by (6.6) and (6.7). Also because there are both

growing positive energy and negative energy waves on the beam, the net

negative power carried by the beam for given beam excursion magnitudes

is less than in the previous case. As a final criticism of this case,

it is noted that the input is a positive energy wave, and therefore, it

is not possible to take advantage of a gain mechanism in an input coupler

to increase the overall conversion efficiency. Consequently, this

situation is of less interest than is the previous case.

The last basic interaction scheme is represented by curve c in

Fig. 5.1. In this case the quadrupole is linearly polarized and the in-

put wave is either a positively or a negatively polarized synchronous

wave. It is seen that the efficiency of the frequency conversion is

about the same as that of the positively polarized quadrupole with a

positively polarized synchronous wave input at small values of t ,

while it is distinctly improved for large c . This, coupled with

the fact that the input can be a negative energy wave, makes the linearly

polarized quadrupole an interesting case. The power at which beam

interception occurs will be less than it is for either of the two cases

which involve only one frequency on the beam, since we expect an infinite
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number of frequency components here. This large frequency content results

in complex beam motion and larger beam excursions than are found for the

simpler cases. Even so, this is a promising scheme for a large conversion

efficiency as described above.

The frequency doubling schemes described above involved a single

synchronous wave input to the quadrupole. In order to take advantage of

the gain which can be obtained in a linearly polarized input cavity which

excites both synchronous waves equally, it is of interest to look at the

situation in which the input to the quadrupole consists of both synchronous

waves with the optimum phase. A plot of the ratio of the second harmonic

power to the fundamental power on one of the beam waves as a function of

C* is given in Fig. 6.2.

It is apparent that the negatively polarized quadrupole is again

distinctly superior at large values of at . The instability at large

values of Ott still exists as indicated in Fig. 5.6 of Section V.D,

since this case is identical to the cyclotron wave case considered there.

The linearly polarized quadrupole also yields large conversion efficiencies

while the positively polarized quadrupole saturates at a very low efficiency
and is of no interest here. For the two interesting cases it is seen that

the second harmonic power for a given input wave amplitude is distinctly

larger for the two-wave input that it is for the one-wave input case.

From the above discussion it is apparent that the greatest promise
for large values for the efficiency of conversion from the fundamental

to the second harmonic frequency is given by the use of either a negatively

polarized quadrupole or a linearly polarized quadrupole, each with both
synchronous waves excited in the input coupler. Or, to cast this in a

terminology which is applicable to either cyclotron or synchronous waves,
the quadrupole shoed be synchronous with either the negative energy beam

wave, or with both the positive and the negative energy waves which serve
as the input. Also, the input coupler should excite both the positive

and the negative energy beask waves equally. While this situation can be
achieved with cyclotron wave interactions, it requires a twisted input

coupler and either a quadrupole with a very slow phase velocity or a

twisted quadrupole. Thus the use of cyclotron waves for these high

efficiency, active doubling schemes brings on many more technical problems
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FIG. 6.2--Quadrupole conversion efficiency as a function of at, for various
polarizations and equal input synchronous waves of amplitude
a(O) and optimum phase.
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than does the use of the synchronous waves. For these reasons it appears

that the described active interactions employing the synchronous waves

are the most suitable for very high efficiency frequency doubling.
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CHAFIM VII

SOME TRANSVERSE-FIELD CIRCUITS

The discussion up to this point has been involved with the theory

of the interaction between a beam and a transverse-field circuit. The

primary purpose of this chapter is to discuss some traveling-wave

structures which were investigated for use in transverse-wave devices.

The material presented is not an exhaustive investigation of transverse

field circuits, but represents the results of efforts to design specific

devices. Even so, the basic circuits have a broad range of application

and so the specific applications will not be emphasized in this chapter.

The first part of this chapter will deal with the transverse-wave

couplers which were investigated during the course of the experimental

program. In the second part of the chapter we will consider a quadrupole

type of periodic circuit which could be used in one of the devices dis-

cussed in Chapters V and VI. Since one purpose of the experimental

investigation was to show that significant transverse-wave interactions

can be obtained at high power levels and high frequencies, good thermal

properties as well as simple and rigid mechanical construction were

important criteria in the design of all of the transverse-field circuits

considered.

A. COUPLER CIRCUITS

There has been a large amount of activity in the last few years in
the development of transverse-wave couplers which employ traveling-wave

circuits. Johnson has described experiments using a bifilar helix as a
transverse-vave coupler.33 Other circuits which immediately come to mind

are those involving meander lines and slotted ridge circuits. Honey34

has studied the meander line in connection with another type of device,

and Sorland35 has investigated a slotted ridge circuit.
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Of these circuit types, the slotted ridge is the most likely to

have good thermal properties and rigidity at high frequencies. A sketch

of the basic circuit is shown in Fig. 7.1a. It is evident that the stored

energy in noninteracting regions (in the slots) serves to reduce the

transverse impedance of the circuit and that it would be desirable to

reduce the energy. The structure shown in Fig. 7.1b, proposed by Bernstein

and Feinstein, 26reduces this noninteracting energy by reducing the

width of the ridge, but results in a lack of field uniformity in the

interacting region. Even so, this type of circuit is easy to make, has

good thermal properties, and would be quite rigid when employed at very

short wavelengths. Consequently, the coupler circuit developed independ-

ently during the course of this investigation was of the type shown in

Fig. 7.1c. This circuit has the advantage that it has a region of rela-

tively uniform transverse field and, as we shall see later, it is par-

ticularly well suited for use as a synchronous-wave coupler. Variations

of this basic circuit may be thought of, and one is shown in Fig. 7.1d.

1. IMpedance of Idealized Circuits

Before proceeding with a discussion of the experimental coupler

studies, it is worthwhile to make a general observation about traveling-

wave circuits which have a transverse electric field on their axis. The

particular point in question is: how large is the transverse impedance

of such a circuit compared to that of a longitudinal field circuit? This

is a pertinant question because the qualitative descriptions of transverse-

wave and space-charge wave devices are very similar, and consequently the

two types of interaction must, be considered competitive in some cases.

While the impedance of a traveling-wave circuit depends upon the

details of the structure, it is possible to set an upper bound on the

impedance whit.n can be attained. This is done by assuming an idealized

slow-wave circuit which has only the transverse components of the electric

field which are important in the interaction and the associated magnetic

fields required to satisfy Maxwell's equations. It is then possible to

calculate the energy stored in the circuit and thus to calculate inter-

action impedance. Pierce36 has done this for the longitudinal field case

and the problem is solved in Appendix A for the transverse field case.

The curves in Fig. 7.2 give a comparison of the impedances of the
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FIG. 7.1--Some basic transverse-field circuit structures. The metallic side

walls that would be used in a microwave circuit have not been shown,
for the purpose of clarity.
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FIG. 7.2--The impedance of the idealized transverse-field and longitudinal-
field circuits as a function of 13 . It has been assumed that
the circuit phase velocity is aoml! compared to the velocity of
ligh~t. The beam aperture' in the circuit has a diameter of 2a.
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idealized circularly polarized transverse-field circuit with the idealized

longitudinal field circuit. The definition of impedance used here is

different from that used by Pierce, as noted in Appendix A. Figure 7.2

shows that, in the region Pa < 2.3 , the idealized transverse field

circuit has a higher impedance than does the idealized longitudinal field

circuit. At smaller values of Pa , the difference becomes quite signif-

icant. While these results do not say what kind of impedance values can

be obtained in actual circuits, they do indicate that we can expect to

find circuit configurations which yield transverse impedances that are

greater than those which can be obtained in longitudinal field circuits

with the same beam diameter. Alternatively, a transverse-wave coupler
will allow the use of a larger beam than will pass through a longitudinal

field structure which has the same impedance.

2. Experimental Linearl, Polarized Circuits

Although the ideal coupler for the excitation of one of the transverse

waves would be circularly polarized, the simplicity of the design and

excitation of the linearly polarized structure makes it a case of partic-

ular interest. In addition there are interactions in which a linearly

polarized coupler is required. In fact, linearly polarized couplers were

required in the experimental tube described in the next chapter.

The goal of the experiments described here was to develop a slow

wave circuit which could be used as either a cyclotron-wave or a

synchronous-wave coupler at a frequency of about 3.0 kMc with a beam

voltage of a few thousand volts. These structures could then be used

either as a traveling-wave coupler or as a resonant periodic coupler in a

high-power transverse-wave device. The basic circuit that was studied

is the pin-loaded cylinder indicated in Fig. 7.1c.

The characteristics of the circuits were determined by the usual

procedure of resonating a section of the structure which is an integral

number of periods long and observing the characteristics of the resonant

modes of the resulting cavity. One of the test cavities was made with a

rectangular cross section as shown in Fig. 7.3. The basic difference

between this and a circularly cylindrical cross section is insignificant.

The dimensions of the test cavity could be varied so that their effect

could be determined.
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FIG. 7.3--An experimental test structure enclosed in a box. The im-
portant dimensions that are feferred to in the description
of the characteristics of this circuit are shown.
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Some of the results of the cold tests of circuits with the dimensions

given in Table VII.1 are shorn in Figs. 7.4 through 7.6. A typical

w-P diagram is shown in Fig. 7.4. The structure is a closed, singly

connected region so that it exhibits both an upper and a lover cutoff..

TABLE VII.1

DIMEICKS OF TEST CIRCUITS IN INDEX

1. v 1.00 2. v =1.00 3. v 1.25

h 3.00 h 1.62 h 1.625

2a - 0.375 2a = 0.315 2a a 0.250

5 0.313 5 -0.325 5 -0.375

d -0.125 d 0M.063 d -0.031

p O. 375 p 0.1 8 7 p O. .00

The lower cutoff frequency is determined by the transverse dimensions of

the circuit and is associated with strong transverse electric fields

between the upper and lower rods in Figs. 7.1c and 7.3. Consequently,

the transverse interaction impedance can be expected to be quite large

near the lower cutoff frequency. The upper cutoff frequency is associated

with the resonance that occurs when the rods are approximately one-quarter

of a wavelength long so that one rod and its neighbor form a quarter

wavelength TE4 transmission line which is shorted at one end and open-

circuited at the other. However, due to end effects, this resonance will

occur at a frequency slightly lower than that predicted on the basis of

the above model. The electric fields near the upper cutoff frequency are

predominantly longitudinal, and consequently the amount of coupling to

the transverse beam waves can be expected to be small in this region.

The circuit represented by Fig. 7.4 was designed to serve as a fast

cyclotron wave coupler and the dispersion characteristic for the fast

cyclotron wave is also shown in the figure. Since the phase velocity of

the circuit and the beam are essentially the same over a large portion

of the a-- diagram, the coupler should have a large bandwidth. In order

to determine the bandwidth of a co-directional coupler, it is necessary
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FIG. 7.4--Experimental w-P diagram for the circuit shown in Fig: 7.3.
with the dimensions given in Table VI.l as set no.1- The dotted
line represents the fast cyclotron wave on a beam which has
Uo/c - 0.11 and a magnetic field of 715 gauss.
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to compute the dependence of the coupling coefficient upon the frequency.

The impedance of the circuit was determined by the perturbation procedure

described in Appendix B, and from this the coupling coefficient may be
calculated by means of (2.17). Finally, the response of a co-directional

type of coupler can be calculated by means of (2.23). The result of

these calculations is shown in Fig. 7.5. This shows the efficiency of

trangrer of power from the circuit to the beam as a function of frequency.

It is apparent that an overall bandwidth of 25 per cent is easily obtained

in a parametric amplifier which consists of two of these couplers and a

frequency-insensitive pumping section.

A comparison of the measured impedance of the above circuit with

the impedance of the idealized circuits described previously is sumnarized

in the table below. The values of the idealized impedances are half those

1i 1
Pa Experimental Kt vgfc g Idealized Kt vgl c Idealized KZv

0.39 81 300 U

0.79 14 38 7

1.08 0.6 11 3

shown in Fig. 7.2 to account for linear polarization. We see that this

circuit has yielded impedances which are greater than those of the

idealized longitudinal field circuit, and that much more improvement

should be possible before the upper bound imposed by the idealized trans-

verse field circuit becomes a limitation. An experimental circuit to be

described later has a smaller ratio 2a/p , which results in impedances

much closer to the theoretical limit.

Some dispersion characteristics for several different circuit

dimensions are shown in Fig. 7.6. The primary factor in changing the

phase velocity of the circuit is the period p . In fact, if we compare

circuits at the same phase shift per period, the phase velocity is dir-

ectly proportional to the period.

. The circuits represented by the data in Fig. 7.6 were designed to

couple to the fast cyclotron wave and consequently the variation of the

i [ L i,£ . . ... ,, .14 4•



phase velocity with frequency is desirable. In order to obtain broad-

band excitation of the synchronous waves, the structures should be

modified to obtain a phase velocity which is essentially constant over a

wide frequency range. One way of accomplishing this is to lower the

lower cutoff frequency of the circuit. It would probably Le necessary to

reduce the period of the circuit at the same time in order to lower the

phase velocity of reasonable values for the beam velocity.

A device which utilized linearly polarized synchronous-wave couplers

to excite both synchronous waves will be described in the next chapter.

The particular requirements call for a resonated rather than a traveling-

wave circuit. It was decided to employ interaction with a space harmonic

in a circuit rather than the fundamental in order to avoid the small

periodicities which would be involved in obtaining a fundamental field

component with a phase velocity of approximately one-tenth of the velocity

of light. It will be recalled that the phase velocities of the space

harmonic field components are given by

v 1

2n (7.1)
pnn

where

th
V = phase velocity of n space harmonic,

pn

- phase velocity of fundamental component,

n - order of the space harmonic, and

1 - phase shift per period for the fundamental component.

The dimensions and the w-P diagram for this structure are shown

in Fig. 7.7. The figure also shows the w-A curves for the transverse

waves on a 3,000 volt beam. It is evident that, unless a very long

coupler is used, both the n = +1 and the n w -1 space harmonics will

interact with the synchronous waves. This was in fact the case in the
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experiments, and is desirable since it means that the effective interaction

impedance of the circuit will be larger than it would be if only one

space harmonic interacted strongly with the beam. The figure also shows

that it is necessary to choose the magnetic field so that th% fast cyclo-

tron wave does not couple strongly to the fundamental field component of

the circuit.

The synchronous wave coupler based on the above circuit was a

resonant cavity made by placing shorting planes at each end of a structure

which was five periods long. The transverse electric field amplitude on

the axis of the cavity was measured by means of a perturbing needle and

the results are shown in Fig. 7.8 for the mode in which there is X/5

radians phase shift per period. This mode was used because of the strong

transverse fields near the lower cutoff of the circuit. It is found that

6 the first few space harmonics have large amplitudes and the field

pattern can be matched quite well with the fundamental and two space

harmonic components of the field. The dashed curve in Fig. 7.8 shows

the result of this procedure. It is seen that the space harmonics corre-

sponding to n - ±1 in (7.1) are of approximately equal amplitude. This

can be altered by changing the ratio of the pin diameter to the period.

However, this was not done here since, as will be seen in Chapter VIII,

both space harmonics take part in the interaction for which the coupler

had been designed. A summary of the characteristics of these resonant

synchronous wave couplers, operating in the v/5 mode, is given below.

TABLE VII.2

SUO4ARY OF SYNCHRONOUS-WAVE COUPLER CHARACTERISTICS

Mode of Operation
(Phase Shift Per Period) adians/Period

Frequency 3.00 kMc

Group velocity O.256c

Phase velocity
fundamental 0. 995c
- 1 space harmonic O.110c
+ 1 space harmonic 0.090c

Impedance
fundamental 1700 ohms
- 1 space harmonic 3.4
+ 1 space harmoni 9  2.5
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Note that the experimental value of Kt v g/c for the fundamental com-

ponent of this mode is approximately 435 as compared to a value of about

700 for one-half of the idealized value for a circularly polarized

circuit that is obtained by extrapolating the curve in Fig. 7.2.

In the design of a space harmonic coupler it is desirable to adjust

the shape of the transverse field amplitude so that the interaction im-

pedance for that space harmonic is made as large as possible. A good

estimate of the optimum dimensions for the type of circuit under consid-

eration here can be made, and it is shown in Appendix C that the proper

relation between the pin diameter and the period is approximately

d = p if PkP < 2. 3 3

Pkd- 2. 3 3  if Pkp >2. 3 3

where

d n pin diameter ,

p = circuit period , and

Pk = space harmonic propagation constant

It has been assumed here that the transverse field gap between the pins,

2a . is small so that (pka)2 < < 1 . This will usuall' be the case

so that the above results offer a satisfactory guide to the design of

circuits in which space harmonic interaction is desired.

3. Twisted Circuits

A discussion of beam interactions with circuits which were twisted

about their axis was given in Chapter IV, and it was noted that twisted

couplers could be of considerable interest. Some experimental studies

of twisted slow-wave structures were carried out in an effort to deter-

mine the effect of the twisting on the originally linearly polarized

slow-wave structure. Some investigation of twisted periodic circuits
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26
has been carried out by Bernstein and Feinstein, but the twist rates

under consideration here are much greater than in their case. The

experimental twisted circuits were based on the pin-in-cylinder design

described in the previous portion of this chapter. However, in the case

of the twisted circuit, each pair of pins is rotated with respect to the

previous pair.

The characteristics of the twisted circuits were determined by

observing the resonant frequencies and associated field configurations in

a structure an integral number of periods long which was terminated at

each end by transverse shorting planes. Since the image in the shorting

plane is not a continuation of the original circuit, this procedure

results in erroneous results unless the twist per period is small. We

are instead measuring the characteristics of a resonated twist circuit

rather than of an infinitely long structure. Even so, the experiments

described give an insight into the nature of the fields in a twisted

slow-vave circuit.
26It has been noted by others that the primary effect of a gradual

twist on the w-P diagram of the circuit is to lower the frequency for

which there is it radians phase shift per period. This was the general

trend in the experiments described here. However, if the twist rate is

too great, the circuit fields cease to be twisted versions of the fields

of the untwisted circuits and a comparison with the untwisted circuit

characteristics becomes meaningless.

An example of the field configurations in an experimental twisted

circuit is shown in Fig. 7.9. The structure consists of ten sets of pins,

each set being rotated by x/8 radians with respect to the previous set,
and is shorted at the two ends to produce a resonant cavity. The field

patterns shown would be identified as the ones with 0.23 and 0.3*

radians phase shift per period in the case of an untwisted circuit. The

field components, which are defined in the figure, were determined by

means of a perturbing needle in the transverse plane. By placing such

a needle on the axis of the circuit, it is possible to determine both the

relative amplitude and the orientation of the electric field. The simple
view that the field is simply a twisted version of the field of a linearly

polarized circuit would result in E. - 0 . It was pointed out in

Chapter IV that this picture is not correct and that we should expect a
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FIG. 7.9--Experimentally determined field distribution plots for two values of
phase shift per period in a twisted resonant circuit, the cavity was ten periods
long and the twist per period was 4/0 radians. The E vas deflnMAAL ChapterIV.
and corresponds to the twisted field of a linearly lP1trized structure. The EF
field is a new field, perpendicular to Iii , which arlbes7 due to the twisting
of the circuit.



new field component (EL) to arise, and that the magnitude of this field

would be approximately Pt/•0 times the magnitude of the main field

component E11  . A comparison between some experimental measurements and
the theoretical predictions for the above circuits is given below.

Mode Theoretical -I Experimental -J

Ell Ell

0.2v o.62 0.55

10-31 0 .42 10.31 1

The difference between the experimental and theoretical results may well

be due to the fact that these measurements were made in a cavity produced

by shorting the twisted structure with transverse planes. The results of

Chapter IV do not give a complete picture of what the fields are in this

case because the twisted circuit does not have reflection symmetry and

consequently the shorting planes give rise to other modes in the cavity.

If the cavity is very long or if a nonresonant traveling-wave structure

is used, this problem does not arise.

The result of the experimental work described above is that we have

verified that the twisting of the slow-wave structure gives rise to the

additional field component which is perpendicular to the field expected

on the basis of the simple model of the twisted circuit. Consequently,

we can say that great care should be taken in using the simple field

picture to obtain a description of the interaction as was done in the

first sections of Chapter IV, although at small values of Pt/0O this

model is quite satisfactory.

B. A QUADRUPOLE CIRCUIT

The frequency doublers described in Chapters V and VI require a

quadrupole circuit which is, in general, a periodic structure. A

circuit which supports a transverse electric field that approximates the

required quadrupole configuration is shown in Fig. 7.10 . This circuit

is very simply constructed by inserting rods into a cylindrical pipe and
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F[G. 7.10--A quadrupole circuit made by inserting rods into a cylinder.
The field near the axis approximates the quadrupole field con-
figuration shown in Fig. .. 1. The dimensions of the particu-
lar circuit that is characterized by the parameters listed in
Table VII.3are:D - 0.906 , d - 0.094 , p - 0.206 , and
2a - 0.230
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has good thermal properties and mechanical rigidity. A section of this

structure, an integral number of periods long, can be terminated vith

shorting planes to make the resonant quadrupole cavity assumed in the

theoretical discussion of the transverse-wave frequency doublers.

In order to be used in conjunction with the couplers described

previously, the quadrupole shown in Fig. 7.10 was designed to propagate

in the frequency range around 6.0 kMc . The w-O diagram for a typical

quadrupole circuit is much the same shape as the one shown in Fig. 7.7.
The upper cutoff frequency occurs when the rods are approximately one-
quarter of a wavelength long just as in the case of the coupler circuits.

The longitudinal electric fields are strong in this case, since each rod

is x radians out of phase with its neighbors, and this results in weak

transverse wave interaction near the upper cutoff frequency. On the

other hand, there are no longitudinal fields at the lower cutoff frequency
since the phase shift per period is zero. Consequently the extraneous

stored energy is a minimum near the lower cutoff frequency and the

transverse-wave interaction is strongest in this region.

The cavity under consideration was designed to be used in a

synchronous-wave frequency doubler and consequently the phase velocity of
a component of the field should be equal to the beam velocity. In order

to avoid small periodicities the circuit was designed to employ space

harmonic interaction. The amplitude of the quadrupolar field was deter-

mined by means of a transverse perturbing needle, and the field configur-
ation of the w15 mode of the circuit shown in Fig. 7.10 is given in

Fig. 7.11. This mode was chosen for the doubler experiments because it

has appreciable space-harmonic content and has a relatively large inter-

action impedance since it is near the lower frequency cutoff of the
circuit. The impedance of the quadrupole is determined from the frequency

perturbation data in the manner described in Appendix B. The results of
the space harmonic analysis and impedance calculations for the 5x/ mode

of this quadrupole cavity are summarized in the table below.
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TABLE VII. 3

STMARY OF QUADRUPOLE CMARACTRISTICS

Mode (Phase Shift Per Period) i/S

Frequency 5.70 kMC

Phase Velocity
fundamental 0.94oc
- 1 space harmonic 0.105c

Quadrupole Resistance (15 Periods Long)
fundamental 1080 ohms
- 1 space harmonic 120 ohms
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OHAPTER VIII

AN E TRANSVERSE-WAVE DEVICE

Several of the transverse-wave interactions which have been considered

in the earlier part of this report are quite interesting, and the purpose

of this chapter is to describe some experimental studies of these cases.

One group of devices which promises to have some useful applications are

those employing the active frequency doubling schemes described in

Chapters V and VI. These are of particular interest since the efficiency

of the frequency conversion may be large, and can in fact exceed one

hundred per cent. A second device that is of importance is the synchronous

wave klystron described in Chapter III. As was noted there, this amplifier

has the advantages of the usual extended interaction klystron, but does

not have some of the same limitations.

Thus, a single device that would allow the investigation of both the

synchronous-wave klystron and one of the active frequency doubling schemes

wOuld be quite interesting. This may be done simply by employing two

resonant synchronous-wave couplers followed by a quadrupole cavity. An

experimental tube that was designed in this way is described in Section A

below. Then the experimental results of a study of both the synchronous-

wave klystron and a synchronous-wave frequency doubler are presented.

In addition, the fast cyclotron-wave doubling interaction was observed

and the experimental w-1 characteristic for the fast cyclotron wave was

measured. Finally, the observation of oscillations in both the quadrupole

and coupler cavities, for particular focusing conditions, is reported.

A. DECRIPTION OF THE MVICE

It was pointed out above that it is possible to design a composite

transverse-wave tube, consisting of two synchronous-wave couplers and a

quadrupole cavity, which will allow the investigation of both the
synchronous-wave klystron and the synchronous-wave frequency doubler. A
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schematic diagram of the composite transvprse-wave tube is shown in Fig. 8.1.

The first section of the tube is a synchronous-wave klystron which consists

of two resonant synchronous wave couplers that are oriented so that their

planes of polarization are perpendicular to each other. It was shown in

Chapter III that this is the requirement for maximum gain. The couplers

are followed by a linearly polarized quadrupole cavity that couples to

both synchronous waves. This is a synchronous-wave frequency doubler of

the type described in Section B.3 of Chapter VI. The quadrupole cavity

is oriented as shown in the figure so that the synchronous waves excited

by the couplers will have the proper input phase to yield maximum doubler

conversion efficiency.

The synchronous wave couplers that were used in the device described

above are the resonant transverse-field cavities described in Chapter VII

and the important characteristics are given in Table VII.2. The coupling

to the cavities consisted of an external transmission line as shown in

Fig. 8.2. The transition between the coaxial line and the strip transmission

line yielded a standing-wave ratio of less than 1.1 over the frequency

range of interest when the strip-line was terminated in its characteristic

impedance. The iris dimensions were adjusted so that the cavity was

critically coupled to the external circuit in the cold tests. Unfortunately

an error was made in these tests and the cavity was actually overcoupled.

It is desirable to have the cavity critically coupled since, as was shown

in Chapter III, the beam loading is zero in a linearly polarized synchronous-

wave coupler. The improper coupling indicated above can be corrected by

means of external tuning, but even so, the extra energy associated with

the mismatch results in a reduction of the interaction impedance. For

qample, the interaction impedance of an exact replica of the couplers

in the tube was 570 ohms for the fundamental field component in the 45h

mode as compared to 1700 ohms shown in Table VII.2.

Since three resonant cavities are involved in the tube, it was

necessary to make two of them tunable so that all three would be resonant

at the same frequency. The coupler cavities are identical in design so

that it was most efficient to put the tuning mechanisms in these cavities.

The resonant frequency of the coupler was varied by means of a tuning

plunger. In this way the resonant frequency could be varied between 2.80
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FIG. 8 .1--(a)'a schematic diagram of. the device used to investigate
some of the transverse wave interactions; (b) a cross
section of' each of the cavities so that the relative
orientation of the periodic gtructures ma be seen.
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Coaxial Idne

Strip Line 0.125 x 1.00

Glass Window 0.800 x 0.063

FIG. 8.2--The coupler cavities were coupled to the external circuit
by means of the glass window and strip: line shown. The dis-
tance d was adjusted to give the best transition from the
coaxial line to the strip. 3Line.
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and 3.00 kMc without appreciably affecting the interaction impedance. A

photograph of an assembled coupler is shown in Fig. 8.3 and the tuning

plunger can be seen clearly. The shorting plates which cover the ends

of the cavity art omitted in the photograph.

The quadrupole cavity that was used in the tube is based on the circuit

described in Section B of Chapter VII and the important characteristics for

the resonant mode used in the interaction are given in Table VII.3. The

actual quadrupole was fifteen periods long, or twenty-seven half-wave-

lengths long for the space harmonic component of the field, and was

resonant at 5.69 kMc in the 315 mode. The cavity was coupled to the

external circuit by means of the same windows used for the coupler cavities,

but in this case the external transmission line was a waveguide. The

cavity was critically coupled to the external circuit in order to achieve

maximum second harmonic power output. Equation (6.40) shows that this

is the optimum condition. A photograph of two quadrupole cavities with-
out the shorting end plates is shown in Fig. 8.4.

The electron gun employed in this tube provided a Brillouin flow

beam. The use of this kind of focusing is generally desirable in synchronous

wave devices which employ parametric interaction since, as was pointed out

at the beginning of Chapter II, such a beam has no initial zero frequency
synchronous wave excitation. To avoid dissipation problems the beam

voltage was pulsed. Typical operating characteristics for the beam were:

Beam voltage 3000 -volts
Beam current 0.230 Ampere

Beam diameter 0.070 in.

Theoretical Brillouin flow field .600 Gauss

The focusing conditions were not found to be critical and it was possible

to vary either the voltage or the magnetic field in order to observe the
characteristics of the various interactions without giving rise to current

interception in a beam tunnel about 0.160 in. in diameter and eight in.

long.

A photograph of the assembled tube is shown in Fig. 8.5. The tube

was assembled by brazing the three cavities together and, therefore,
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FIG. 8.3 -- A photograph of an assembld cou~pler cavity showing the tuning
mechanism. The end plates, which have a been aperture) ha~ve
been omitted for clarity.
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there was no dc isolation between the cavities and the gun anode. However,
the collector was isolated so that beam transmission through the rf portion

of the tube can be determined.

B. AMPLIFICATION BY MIANS OF SYNQHRONOUS WAVES

As mentioned previously, the two coupler cavities of the device
described above form a synchronous-wave klystron. The experimental

observation of amplification in this device is reported in this section

and a comparison with the theoretical characteristics is made.

The expected gain of the synchronous-wave klystron can be calculated

from Eqs. (3.48) and (3.52). Since several space harmonics are involved

in the interaction it is necessary to replace KM3 in this expression

with the sum of these terms due to each space harmonic as indicated in

Section A of Chapter III. The important coupler parameters that are used
in calculating the gain were given in Table VII.2. However, as noted above,

the impedance in the table must be multiplied by 0.33 in order to obtain

the tube cavity impedance due to the window design error. The calculated

gain of the tube is found to be 13 db at the optimum synchronization

condition. The frequency of operation is immaterial as long as it is

within the tuning range of the cavities. Unfortunately, the tuning mech-

anism in the second coupler cavity became jammed after a few tuning

adjustments, and after this the resonant frequency of the cavity had to

be varied by means of an external tuner. This has no effect on the

klystron experiment under discussion here, but does present difficulties

in the frequency doubling experiments to be described in the next sections.

The gain characteristics of the synchronous-wave klystron are shown

in Fig. 8.6. The power has been corrected for coaxial line loss and

insertion loss due to a slight mismatch at the input cavity. Therefore

the input and output power represent the actual power entering and

leaving the terminals of the strip-line adaptors on the cavities. The

peak rf power was measured by means of calibrated crystal and attenuators.

The gain of the tube at small signal levels is seen from Fig. 8.6 to be

7.9 db. We have shown above that the expected gain is about 13 db. The
discrepancy is probably due to the fact that the beam is of finite diamter

and that the circuit fields are not uniform across the beam. The error
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here is rather large and is an indication that the solution of the thick

beam problem should yield some significant changes in the quantitative

description of transverse-wave devices.

It is evident from the experimental data that the amplifier gain

becomes dependent upon the input power at a lower level than might be

expected. The fraction of the current that is intercepted on the cavity
structure is shown in Fig. 8.7. It is apparent that the gradual decrease

in gain which occurs below about ten watts is not a result of current

interception. The small-signal theory presented in Chapter III predicts

a constant gain. It is rather certain that the effect observed here can

be explained in terms of a beam model which is more realistic than the

filamentary beam description. That is, the large signal gain characteristics

are determined by the beam diameter and the nature of the variation of the

circuit fields which act on the beam as it makes large excursions.

The rapid reduction of the gain which occurs above about ten watts

of input power is due to beam interception. The expected power level at

which current interception will begin can be computed from Eqs. (2.20).

The beam, which has both synchronous waves excited on it in the input

coupler, will begin to strike the output coupler circuit when the maximum

excursion exceeds 0.043 in. This is the radius of the circuit beam hole

minus the radius of the beam. On this basis, the maximum power which

can be carried by each synchronous wave without interception is 32 watts.

Since both the input and output couplers are identical, we see from (3.48)

and (3.52) that the input coupler gain is one-fourth of the square root

of the total gain when the output coupler is critically coupled to the

external circuit as it is here. By using the actual gain curve, we

calculate that the interception shown in Fig. 8.7 begins at a power of

about 4.5 watts on each synchronous wave. This is considerably less

than the 32 watts calculated above, and may be due to inaccurate knowr

ledge of the beam diameter. Some of the discrepancy may also be a con-

sequence of violations of the filamentary beam model.

The dependence of the gain of the synchronous-wave klystron on the

various parameters of the system. was also investigated. The beam current

could be varied ever a small range by changing the control electrode on

the gun. A plot of the observed power output as a function of the beam
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FIG. 8.7--Intercepted current as a function of the input power for the
synchronous wave klystron, Us operating parameters are shown
in the table in the figure.
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current is shown in Fig. 8.8. The input power was constant in this

experiment. Equations (3.48) and (3.52) show that the output should be

proportional to the square of the beam current and the curve drawn in

the figure shows that the experimental data have this same behavior. We

also see that the output power should be inversely proportional to the

square of the magnetic field. The experimental data shown in Fig. 8.9

verify that this is approximately true. The rather large discrepancy

between some of the data points and the inverse square law trend may well

be due to the changing dc beam configuration as the nagnetic fieid is

varied.

The variation of the gain of the amplifier with the beam velocity is

of interest also. Figure 8.10 shows a photograph of the power output

of the second coupler as the beam voltage is swept through the value for

synchronism. The amplitude of the lower trace is proportional to the o94-

put power while the height of the second trace above the base line is

proportional to the input power. No correction for external transmission

line loss has been included here so that the apparent gain is smaller than

the actual tube gain. A detailed discussion of the shape of this response

is given in the next paragraph. The voltage was varied by adjusting the
peak beam voltage so that the synchronous-wave interaction took place

during the decaying portion of the voltage pulse. The transient phenomenon
at the right hand end of the traces is due to the trigger pulse which

initiates the beam voltage pulse and is not associated with the electronic
behavior of the tube. The third trace from the bottom represents on the

same power scale as before, the power reflected from the input coupler.

The upper trace represents this same reflected power which has been
amplified to show more detail. The coupler is matched to the external

circuit with the beam turned off and so the trace to the right of the

trigger disturbance represents zero reflected power. There is a reflection

as soon as the beam voltage is turned on and this is due to the interaction

between the fast cyclotron wave and the fundamental component of the coupler

field. The magnetic field has been adjusted so that the real part of the

beam admittance, due to the fast cyclotron wave, is zero, and therefore

we do not observe any transmission through the tube due to this inter-

action. We see that there is no significant reflection from the input
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(d)
(c)
(b)
(a)

FIG. 8.10 -- A photograph of a series of oscilloscope traces showing
some of the synchronism characteristics of the synchronous-
wave klystron. The traces, lettered from the bottom, re-
present: (a) output power, (b) input power, (c) reflected
power from input coupler, and (d) the'reflected power
amplified. The apparent gain is less than the actual net
gain due to external circuit losses.
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coupler which can be associated with the synchronous wave gain sbipyn in

the lower trace. This verifies that the two synchronous waves do indeed

have very nearly the same phase velocity since, if this were not the

case, there would be some observable beam loading. It is true that we

can see some fluctuation of the reflected power in the amplified trace

and this is evidence that the synchronous waves may not have exactly

the same phase velocity. A more thorough investigation of this point is

not feasible with this device since t~e nature of the beam motion is not

well known, nor can the voltage and current be controlled independently

over a very wide range due to the electron optics in the gun region. It
should be noted that the small bump on the left side of the synchronous

wave interaction is due to the interaction between the fast cyclotron
wave and the space-harmonic fields of the coupler.

A detailed study of the dependency of the gain upon the beam velocity
was made so that the gain curve could be compared with the theoretical

predictions. The gain as a function of the beam voltage was measured

carefully. It was not feasible to keep the beam current constant during
this experiment due to the defocusing effect of the focusing electrode

when it was used as a grid. Figure 8.11 shows the normalized gain as a
function of the beam velocity. The beam velocity plotted here does not
include the space-charge reduction. However, the theoretical gain curve

has been shifted to include space charge by means of the standard expressions

relating the beam voltage and velocity such as are given by Chodorow and

Susskind.37 The data have been corrected so that they represent a beam
of constant dc resistance. This is for convenience in the calculations,

and the correction is done by assuming that the experimental dependence

on the beam resistance is the same as the theoretical dependence. It
is seen that the agreement between the theoretical and experimental results

is quite good. The fact that the experimental curve is slightly broader
than the theoretical prediction may well be due to a small separation

in the phase velocities of the two synchronous waves, or perhaps to a

velocity distribution of the electrons in the beam.

The experimental results which have been described above show that

the synchronous-wave klystron is indeed a realistic device and that a

good qualitative description of its characteristics is given in terms
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of the filamentary beam theory which has been described. It was found,

however, that the experimentally observed gain was about 5 db less than

the calculated value, and it was pointed out that this is probably due

to the violation of the filamentary beam assumptions. Finally it should

be pointed out that, although the observed gain was only 8 db, the inter-

action impedance had been reduced as a result of an error in the window

design. If the value of the interaction impedance which was observed in

cold test cavities is used, we predict that the experimental gain reported

above should be increased by about 10 db. This is a net gain of 18 db

which is of significance. By simply making the cavities longer, a very

large gain could be achieved.

C. FREQUENCY DOUBLING WITH THE SYNCHRONOUS WAVES

The frequency doubling interaction described in Chapter VI can be

observed with the tube described in Section A of this chapter by using

one of the synchronous wave-couplers as the input and the quadrupole

c~vity as the second harmonic output. The purpose of this section is to

report the results of an experimental investigation of this interaction

and to compare them with the theoretical predictions.

The overall theoretical conversion efficiency of the synchronous-

wave frequency doubler is calculated by considering the gain in both the

input coupler and the quadrupole cavity. The coupler gain is given by

(3.43) while the quadrupole gain is obtained from (6.4o). The data for

the quadrupole calculations are given in Table VII.3 of Chapter VII. The

magnetic flux density used in the experiment was 583 gauss, as it was

in the klystron experiment reported in the previous section. We then

calculate the normalization constant of Eq. (5.33) and obtain the normalized

power p in terms of the actual power P

p = 1.66 x 10-2 P

Consequently, we have, from (6.40),

-2 2P = 1.66 x 10 P
2ai
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where P2a is the second harmonic power delivered to the load and P
is the power on each of the synchronous waves at the quadrupole input.

In order to isolate the deviations from the theory which occur in the

quadrupole section of the doubler, we use the experimentally observed gain

of the coupler to calculate the relation between the input and output power.

For essentially the same beam conditions as here, the small-signal gain

of one input coupler is approximately 1.2. Thus, we would expect the small-

signal frequency doubler characteristics to be given by

P2aZ = 2.5 x 10- 2 Pin 2

where Pin is the input power at the fundamental frequency. This result

will be compared with the experimental findings given below.

The input coupler resonant frequency should be exactly half of the

frequency of the quadrupole cavity resonance in order to have optimum

operation. As was noted in the previous section, the tuning mechanism

of the coupler closest to the quadrupole was defective and consequently

it was necessary to use the first coupler and the quadrupole for the

frequency doubling experiments. The optimum orientation between the

coupler and the quadrupole is preserved; however, the beam must now pass

through the detuned coupler cavity before entering the quadrupole. This

should have no significant effect on the small signal operation of the

device and indeed there was a signal of negligible amplitude detected at

the second coupler during the course of the experiments. However, there

is an alteration of the saturation power due to a reduction in the

dimension of the aperture through which the beam _.ist pass. The effective

aperture is now 0.156 in., rather than the 0.225 in. dimension that would

have been valid if the second coupler could have been used to excite the

synchronous waves. This results in a reduction of the maximum wave

amplitudes that can be excited in the coupler, and consequently the

conversion efficiency will be reduced since this is a square-law device,

as shown in (6.40).

The experimentally observed second harmonic power is plotted as a

function of the input power in Fig. 8.12. The data have been corrected

for the insertion loss of all external transmission lines so that the
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FIG. 8.12--The output power of the synchronous-wave frequency doubler as
a function of the input power.
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power indicated is that which exists at the input and output terminals of

the tube. The square-law characteristic which gives a good fit to this

data at low power levels is

4 2
P 2a m 2.0 x 10- Pin

The corresponding coefficient calculated above was 2.5 x 10-2 . This

discrepancy between experimental and theoretical results by a factor of

one hundred certainly indicates that the filamentary beam theory fails in

this case as far as quantitative predictions are concerned. In the next

section it will be shown that the filamentary beam theory gives much

closer agreement with the experimental results for the cyclotron wave inter-

action in the quadrupole cavity. In that case the quantity 1b , where

b is the beam radius and 0 is the wave propagation constant, is appr6xi-

mately 0.05 while for the synchronous wave interaction 3b is about

0.5 . We would therefore expect thick beam effects to be much more

significant in the synchronous wave case, and the experimental evidence

seems to bear this out. It should be noted that the theoretical predictions

came much closer to the experimental results in the case of the synchronous

wave interaction in a coupler field, treated in the previous section, than

in the case of the quadrupole interaction studied here. This indicates

that thick beam effects are much more significant in quadrupolar fields

than in coupler fields.

The large-signal character of the data shown in Fig. 8.12 is very

interesting and shows a qualitative deviation from the theoretical results.

The change from the second power dependence of the output power on the

input power is quite apparent and was observed in all of the synchronous-

wave doubler experiments. That this is an effect which takes place in

the quadrupole is verified by the fact that it was not observed in the

synchronous-wave klystron experiments reported in Section B of this

chapter. This result cannot be explained in terms of the interactions

described in Chapter VI, in which the power characteristic was an exponen-

tial curve, because the second harmonic power observed in this experiment

is not great enough to give rise to a deviation from the low-level square-

law characteristic. It is difficult to speculate on the exact nature of
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this phenomenon because the true character of the beam is unkown. Perhaps

a satisfactory explanation can be made in terms of the space-charge wave

interactions which give rise to the oscillations described in Section F
of this chapter. However, a more thorough investigation, with a device

in which the beam is well defined and current interception does not occur

at such low power levels, would be required.

In general, the results of the experimental investigation of the

synchronous-wave frequency doubler employing a linearly polarized quadrupole

cavity indicate that the assumptions of the filamentary beam theory devele-

oped in Chapter VI have been Vi~lated in a crucial way. The frequency

doubling that is predicted is observed, but the experimentally determined

efficiency is two orders of magnitude less than predicted. It was also

seen that some phenomenon, in addition to the synchronous-wave doubling

interaction, was taking place. Consequently, while the predicted effect

was observed, there is both a refinement of theory and more experimental

work required in order to make this interaction competitive with other

frequency doubling schemes.

D. FREQUENCY DOUBLING WITH THE FAST CYCLOTRON WAVE

The experiments described in the last two sections involve coupling

between the synchronous waves and a space harmonic of the circuit field.

It was also possible to adjust the beam voltage and the magnetic field

so that there was strong coupling between the fast cyclotron wave and the

fundamental component of the circuit field in both the couplers and the

quadrupole. Consequently, we should observe the passive frequency

doubling described in Chapter V. The expected efficiency of this inter-

action will be calculated and compared to the experimental results.

The theoretical conversion efficiency of the cyclotron-wave frequency

doubler is computed by considering the gain in both the coupler and the

quadrupole cavity. The cavity gain is given by (3.29) and the quadrupole

gain is obtained from (5.34). By using the data in Table VII.3 of

Chapter VII, we calculate the normalization constant given in (5.33).

The magnetic field intensity of 815 gauss and the voltage of 4080 which

were used in the experiment were less than the optimum values for syn-

chronism, but larger values could not be obtained due to equipment
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limitations. We obtain the normalized power given by (5.33) as

p 5 .8P ,

and at small signal levels (5.34) gives

P 5.8

-= P
P 1 +ext •

Now this result was derived under the assumption that the fast cyclotron

wave was synchronous with one component of the circuit field and did not

interact with any other traveling-wave components. Neither assumption

is valid here because of the error in beam velocity and the shortness of

the quadrupole. However, it was noted in Chapter V that, for very low

power levels, the modification of the results due to other field components,

and to errors in synchronism, is exactly the same as in coupler circuits.

That is, we should multiply the above efficiency by the coefficient IM3 1?

shown in Fig. 3.1. The value of the synchronism error e calculated

from (3.7) is, in this case,

e = - 0.56

and from Fig. 3.1 we obtain for a cavity three wavelengths long,

IM3(- 0.56)12 = 0.03

Only the fundamental components of the resonant field need be considered

here since the space harmonics are far from synchronism. The theoretical

value of the conversion efficiency in the quadrupole is found to be

-- 2a o.o87 P.
P
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where Qext/'O has been set equal to unity. Of course, as the power level

is increased the conversion efficiency of the quadrupole will not remain a

linear function of the input power, but will saturate at fifty per cent as

shown in Fig. 5.5.

It was necessary to use the first coupler to provide the input to

the quadrupole as a result of the tuning mechanism difficulty mentioned

in Section B of this chapter. It *A not expected that this, will cause

any difficulty in the present case qince the second coupler cavity is

detuned. Unlike the synchronous-wave case, the saturation characteristics

should not be altered because at least in theory, the beam motion in the

transverse plane is circular and the dimensions of both couplers are the

same.

The experimental data showing the second harmonic power output as

a function of the fundamental coupler power input are plotted in Fig. 8.13.

This represents the overall power characteristic of the tube and we see

that a conversion efficiency of 6.7 per cent is achieved. The gain in

the input coupler was observed by measuring the reflection coefficient of

the coupler cavity with and without the beam in the cavity. These results

give the ratio: of the cold cavity Q and the Q of the cavity loaded

by the beam. We obtain

- = 3.0
Qo

The coupler gain, given by (3.29), is

G = 0.25

The low level (square-law) portion of the curve in Fig. 8.13 is matched

very closely by

P 2ap

C -8
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FIG. 8.13--The output power of the cyclotron-vave frequency doubler as
a function of the input power.
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where P is the cyclotron wave power at the quadrupole entrance. This

result agrees very well with the theoretical low-level power expression

calculated above. Since the coupler gain is 0.25 here, we see from the

figure that an experimental overall conversion efficiency of about 25 per

cent would have been obtained if the coupler cavity window had been designed

properly. This result is approximately the same as observed by Ashkin with

infinite phase velocity structures, and there is no reason why the efficiency
cannot be pushed much closer to one hundred per cent.

A plot of the fraction of the beam current which is intercepted in

the input coupler is shown in Fig. 8.14. Calculations qhow that the current

interception begins much below the value predicted by the filamentary beam

theory, and it is also observed that the sharp decrease in power output
observed in Fig. 8.13 does not occur until the input power reaches about

twice the value at which interception was first observed. On the basis

of this, one is led to believe that the beam is expanding more than the

filamentary beam theory would predict, and that not all of the beam is

playing a significant role in the coupling interaction in the input cavity

since the abrupt loss of signal transmission through the tube is not

related to the initial current interception. This may be related to beam

scalloping as a result of improper focusing conditions, or it can be a

result which is to be expected for any thick Brillouin flow beam. Again,

it is apparent that the filamentary beam model fails in many respects.

This simple theory has, 4oDever, provided a very useful guide to a quali-

tative description of the transverse-wave interactions that have been

observed.

In summarizing the results of the experimental investigation of the

fast cyclotron-wave doubler, it is to be noted that exceptionally good

agreement between the theoretical and experimental results is obtained.

The overall efficiency of seven per cent that was observed at saturation

was low as a result of the error in window design in the input coupler.

The quadrupole frequency doubling efficiency was in excess of 25 per cent.

The good agreement with the theory can probably be attributed to the

small value of beam diameter measured in the wavelengths of the fast

cyclotron wave. The one distinct disagreement with the theoretical

predictions was the power level at which beam interception occurs. In
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FIG. 8.14--A plot of the fraction of the beam current that is intercepted
as a function of the input power for the fast cyclotron-wave
doubler.
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all of the experiments we have observed current interception at much lower

values of the input power than would be expected. It is believed that

this is a result of a thick beam phenomenon, and probably dc scalloping

of the beam as well.

E. DISPERSION OF THE FAST CYCLOTROT,,4AVE

The question as to whether the propagation constants of the transverse

waves on the Brillouin focused beam are the same as on a filamentary beam

natUrally arises in connection with the experiments presented here.

Wessel-Berg has done some theoretical work on wave propagation on thick

Brillouin focused beams and arrives at the conclusion that, while additional

waves do arise, there is no significant change in the propagation constants

of the equivalent of the filamentary beam transverse waves that are

associated with a Brillouin beam. The experiment described below was

carried out in order to verify these results.

It was possible to observe transmission through the two couplers as

a result of the fast cyclotron wave coupling to the space harmonic field

components by properly adjusting the magnetic field and the voltage. The

shape of the transmission response curve shown in Fig. 8.11 is valid for

the cyclotron wave coupling also and it is apparent that the velocity of

the cyclotron wave can be defined very well by observing the maximum

coupling through the two couplers. Although it was not possible to change

the phase velocity of the couplers, the combinations of magnetic field

and beam voltage which yield a cyclotron wave phase velocity that gives

maximum transmission can be observed. It is then possible to normalize

this data so that an cn-B diagram for the fast ..yclotron wave is obtained.

The data were taken by changing the magnetic field in discrete steps and

observing the beam voltage that yielded maximum coupling. This insures

that the cyclotron wave has the same phase velocity at each point. The

beam current was varied at each point to verify that the optimum voltage

was independent of the current. This was to be expected in this experi-

ment since the beam voltage, and therefore the current, was quite small.

The normalized data taken in this way are plotted in Fig. 8.15. The

agreement between the curve based on the filamentary beam model and the

experimental data is excellent. There is a slight deviation at frequencies
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II
near the cyclotron frequency which is of the same nature as the deviation

predicted by Van Hoven and Wessel-Berg. Because of the way that these

data were taken, it is not possible to make a numerical comparison with

the results in the reference cited above. For example, it is almost

certain that the beam diameter varied in this experiment. These results

do indicate that the propagation constant of the fast cyclotron wave is

essentially the same as that predicted by the filamentary beam theory.

F. MONOTRON OSCILLATIONS

No mention of oscillations was made in the descriptions of the various

experiments reported above. Special care was tsken to look for instabilities

at all stages of the investigation and none were associated with the above

experiments. However, oscillations were observed in both the coupler and

quadrupole cavities when the axial magnetic field was perturbed in a

particular way.

It was observed that, for particular synchronism conditions, it was

possible to cause oscillations in the quadrupole cavity by placing a

steel rod, one-quarter inch in diameter, near the quadrupole and parallel

to it. The peak output power obtained in this way was 22.0 watts at

5.70 kMc, with a peak dc beam power of 1500 watts. It is apparent that

this is not an insignificant process. Similar oscillations were observed

in the coupler cavities. In all cases the oscillations were accompanied by

beam interception. The position of the perturbing rod that yielded

oscillations was one in which the beam would be deflected toward a set

of pins in the slow wave structure. For example, the optimum perturbing

rod position in the case of the quadrupole oscillations was in the plane

of any one of the four sets of pins that make up the quadrupole structure.

Several explanations for these results might be plausible. One

expýlanation could be that secondary electrons due to the beam striking

the slow-wave structure could be giving rise to the oscillations. How-

ever, by varying the external load on the cavities it was determined

that the beam interception was due to an rf phenomenon and was not due

to the perturbed dc trajectory of the beam. A second explanation could

be based upon a parametric interaction between the circuit and & dc "pump"

wave which was excited on the beam by the magnetic field perturbation.
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This would have been an attractive solution because it might have offered

evidence of the existence of some of the new transverse waves described
1.4

by Wessel-Berg. However, no combination of the transverse waves could

be found that would explain the oscillations in this way.

Finally, the answer that immediately suggests itself is the one that

fits the data. The proper explanation is that the beam is shifted off of

the tube axis by the perturbing rod so that the symmetry of the fields

acting on the beam is destroyed. The beam is now in a region where it

observeg transverse fields with a superimposed longitudinal field, and

it is the coupling of the slow space-charge wave to this longitudinal

field that results in the oscillations. For example, strong oscillations

were observed in both the quadrupole and the coupler-cavities for the

cobTditions

V0 = 4250 volts

I( = 0.350 amp

B0 = 675 Gauss

The plasma frequency is obtained from the cyclotron frequency, since this

is a Brillouin-focused device, and a knowledge of the approximate beam

diameter as well as of the circuit dimensions allows an estimate of the

space-charge reduction factor by means of curves such as are given by

Beck. 3 9 It is found that the phase velocity of the slow space-charge wave

is

v

P •0. 11
S~C

which is very close to the phase velocity of the first backward space

harmonic in both the couplers and the quadrupole. Since these oscillations

are a result of an unmodulated beam interacting with a single resonant

cavity, they have been called monotron oscillations here. Since the

interaction happens to be with a negative phase velocity component of
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the circuit field, some might feel it preferable to call this backward-
9 wave oscillation.•

, The main importance of these results is that they show that beam

S- misalignment can cause oscillations. This would be particularly evident

in long structures in which the coupling occurs over many wavelengths.

However, the ordinary care that was exercised in the construction of the

device described here was quite sufficient to avoid difficulties.
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CHAFTER IX

SUMIARY

In general, the plan of the work presented in this report has been

to use the coupled mode approach to describe certain classes of transverse-

wave interactions, and then to experimentally investigate those inter-

actions which appeared to be most likely to result in devices that perform

a useful function. An outline of the major divisions of the work is

presented below, along with a suxmmry of the way in which each part rep-

resents a contribution to the understanding and utilization of transverse-

wave interactions.

The purpose of Chapters II, III, and IV was to present an explicit

and unified description of the various types of transverse-wave couplers

that employ either traveling-wave or standing-wave circuits. The fila-

mentary beam model has been used throughout the analysis and, although

this represents a limitation, it is felt that a good qualitative descrip-

tion of the basic interactions is found in this way. The results derived

in these chapters should serve as a useful guide to the design of couplers,

and the description of both resonant and traveling-wave couplers in the

same notation makes it easier to study transverse-field circuits without

specifying the manner in which they are to be used. The coupled mode

formulation of the twisted circuit interactions makes it possible to gain

a better understanding of this class of couplers. In particular, it was

observed that any two transverse waves of opposite polarization can be

excited equally in a twisted coupler. On the other hand, the twisted

coupler can be used to discriminate between waves with the same phase

velocity and opposite polarization.

Chapters V and VI presented the coupled mode theory of transverse-

wave frequency doublers. These devices consist of an input transverse-

wave coupler and a quadrupole structure for the second harmonic power

output cavity. The theory included a study of some new interactions as

well as a new formulation of the fast cyclotron-wave doubler that has
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been described before. Several of the new interactions have some

promise as useful devices because they lead to high conversion efficiencies

by means of an active process. The doublers employing both of the syn-

chronous -waves were of particular interest because of the opportunity to

obtain gain in the input coupler and thereby increase the overall con-

version efficiency of the device.

The studies reported in Chapters VII and VIII described some new

transverse-field circuits, and the results of an experimental investiga-

tion of some of the interaction schemes that were considered in the first

part of this report. The synchronous-wave klystron described in Chap-

ter III was investigated and the observed 8 db gain is felt to be

significant because this is the first experimental observation of this

phenomenon. Frequency doubling by means of both the synchronous waves

and the fast cyclotron wave was also observed. The conversion efficiency

of the synchronous-wave doubler was much smaller than the value predicted

on the basis of the theoretical work, while the experimental and calcu-

lated efficiencies of the cyclotron-wave doubler agreed very well. These

results indicate that the filamentary beam model used in the theory is

probably inadequate as far as quantitative descriptions of slow-wave

interactions involving thick beams in quadrupole fields are concerned.

The quadrupole conversion efficiency of 25 per cent that was obtained in

the cyclotron-wave doubler does show that this interaction is practicable

in devices that use periodic circuits to reduce the magnetic field

requirement.
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APPENDIX A

IMPEDANCES OF IDEALIZED SLOW-WAVE CIRCUITS

In order to compute the ultimate interaction impedance which might

be obtained with a longitudinal-field traveling-wave circuit, Pierce36

introduced a hypothetical circuit which had only the field of interest

in the interaction, and the extraneous fields as required by Maxwell's

equations (assuming slow waves). Then, by using the assumed field varia-

tions that are appropriate to the postulated cylindrical symmetry of the

ideal circuit, it was possible to match the external and internal fields

at the circuit by means of the continuity relations, and obtain the fields

everywhere in terms of the axial electric field. The energy stored per

unit length was then calculated and, by introducing the group velocity,

the interaction impedance of the circuit was determined.

This same approach may also be applied in the case of transverse-

field circuits. By doing this it will not only be possible to obtain an

upper bound to the impedance of transverse-field circuits, but it will

also allow some comparison of the ultimate capabilities of this class of

circuits with those of the longitudinal-field circuits. We calculate here

the impedance of an idealized TE circuit which is circularly polarized.

The circularly polarized circuit is the interesting case since the

transverse waves on a beam are circularly polarized.

We begin with the equations relating the electric fields to the

longitudinal electric and magnetic fields in cylindrical coordinates:

Er k 2 6 r r ,z
C

(A.1)

1 y6E 6S" -- + w ----E Z

-k r6e -c
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where

C

W rede assuming  e(jt - 7z) variation here. For slow waves (v/c < <1),

we define 7 =JP and Eqs. (A.1) are approximately

J~z O 0  z
} J •Ez ~+ j O z

r S6 r W2r ae

and

E Pr a~z (A.2)Pr 60 6r

For a circularly polarized circuit the e-variation is chosen to be

e-je Then assuming that there is no axial electric field, Eqs. (A.2)

become

E =--H
r 62  r z

(A.3)
•o 6Hz

e P" 2 62 r

The appropriate solutions for H , with the z- and e-variationz
suppressed, are

HiH A I, (Pr)

H B K (Pr) ,
z
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where the superscripts indicate fields inside and outside of the

cylindrically symmetric circuit, A and B are arbitrary constants,

and 1 and K,1 are the modified Bessel and Hankel functions. After

substituting these fields into Eqs. (A.3), matching E. across the cir-

cuit boundary (at r w a) , and choosing Er(O) to be unity, we obtain

Il(Pr)
E =2

r Or

i '(Or)E6 =-J2 I,

0 Il'(Pa) Kl(Pr)

E0 2
r Kj'(a) Or

E -- -J 2 '(r) (A.4)

The total average stored energy per unit length is twice the average

electric energy stored, or

0 of 1-12 2d

r=O

By substituting Eqs. (A.4) into this expression, we obtain integrals vhich

are simply evaluated by means of standard recurrence relations and

integral formulas. The resulting expression for the energy stored per

unit length in the hypothetical circuit is

2 2 12i
e 3faC Ia [2 ( +

0 0(2a) Io

+•• (A.5)
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The arguments of the cylinder functions are all •a and have been

omitted. The transverse interaction impedance, defined by (2.18), is

2 (0)

`~V9

where v 8  is the circuit group velocity. The final expression for the

impedance is

c 1 1 4
KT=30 - TI/a 1 a 2 72 -

gI0 I0a

+ ( 0KoKC)(ll")) ( - . (A.6)

If the longitudinal-field circuit (TM) impedance is defined in the

same way as the transverse impedance 'I , we have

E2 (o)
KL =

so that, from Pierce's results,(l)

KL - 30 .+(A.7)vg 3a I0 2O1

Equations (A.6) and (A.7) are plotted in Fig. 7.2.

(1)pierce's definition of impedance differs from that used here,

since he employs the field at the circuit rather than on the axis.
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APPENDIX B

!MUREMENT OF INTERACTION IMPEDANCES

The interaction impedances of the circuits described in Chapter VII

were determined by a frequency perturbation technique. A section of the

slow wave structure, an integral number of periods long, was shorted at

the ends to form a resonant cavity, and the shift in resonant frequency

was noted when a metal needle was placed in the cavity field. It is

noted below that the frequency perturbation produced by a thin needle is

proportional to the square of that electric field component that is par-

allel to the needle. Consequently, a needle that is placed in the plane

that is transverse to the axis of the cavity can be used to determine

the axial distribution of the transverse field and to note the angular

distribution of the field in any transverse plane. If it is desirable

to have a frequency perturbation that is independent of the orientation

of the perturbing object, a cross made of two needles that are perpendic-

ular to each other may be used. This is useful since it is often desirable

to support the needles on a thread so that the orientation cannot be

controlled. A drinking straw was found to be a very suitable vehicle for

the needle when it is desirable to control the orientation. The deter-

mined transverse-field distribution along the axis of the cavity can be

used to compute the space harmonic amplitudes of the traveling-wave

circuit by matching assumed space-harmonic series, composed of forward

and reverse propagating waves, to the data in a manner very similar to

that described by Gallagher.
40

The traveling-wave interaction impedance is calculated from the

frequency perturbation and the needle dimensions by means of an expression
41

that is derived from an equation given by Ginzton. The reference

states that the shift in resonant frequency of a cavity when a needle of
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length 2a and diameter 2b is placed parallel to a uniform electric

field is given by

2 2
CIO - (

2 a F(b/a) E2 , 4,a 3  (B.1)
2 0

00

where c0 is the natural resonant frequency of the cavity and w is the

perturbed resonant frequency. The F(b/a) is a shape factor for the

needle that is given in the reference, and E2 is given by
0

E (B.2)
0 0 2U '

where E is the electric field at the needle and U is the energy stored

in the cavity. Equation (B.1) is used below to relate the impedance of

a coupler and a quadrupole type circuit to the perturbation data.

1. Impedance of a Linearly Polarized Coupler

If a circuit supporting a single traveling-wave is shorted to make

a cavity, the peak field is related to the field of the forward wave

component on the circuit by

E E (B.3)Ef 2 • p,

and the energy stored per unit length in the forward propagating wave is

related to the total energy stored in the cavity by

1 u (B.4)

where L is the length of the cavity. The power that is carried by the

forward propagating wave is

Pf uvg , (B.5)
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where v is the group velocity. Finally, by combining these equationsS
and using the definition of the transverse interaction impedance given

in Chapter II,

E2
Kt = - , (B.6)

we obtain the impedance in terms of the known circuit and needle quantities

and the frequency shift

5 = (B-7)
100

For 5 << 1, we obtain

Kt = 15 [F(b/a)L' (vg/c)(Pa)2 ]1 5" (B.7)

In general, there will be space harmonic components in the field andth
(B.7) must be modified. The impedance of the n space harmonic is

Ktn 15 blb) - -A (Pna)2 5 (B.8)
E [IFba L c

where En/E is the ratio of the space harmonic amplitude to the amplitude

of the field which gave the frequency perturbation.

2. Impedance of a Linearly Polarized _uadrupole

In the calculation of the gain of the quadrupole frequency doublers

we need to use a value for R which is defined to be
q

R q , (B.9)
q 2P
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where V is the forward propagating voltage and P is the power whichq
must be supplied by the beam to establish this V . An approximate

q
determination of R can be made by means of the perturbation procedure

q
described above.

A cross section of a quadrupole cavity and the needle orientation

are shown in Fig. B.I. The unperturbed potential at the position of the

needle is

2x
vq 2o (B.lO)

so that the field is

V x
E = 2 - -- .(B.11)

r 0 r 0

An effective uniform field for use in the perturbation equations is

taken to be that field which gives the same energy stored in the volume

to be removed by the needle that is stored there in the actual quadrupole

field, that is,

a

E 2f 2f= f ?dx .(B.12)

0

The effective field is then

2 (

Eeff /3(B.13)-ro9 o
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FIG. B.I--A schematic diagram of the quadrupole showing the needle
orientation.
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The quantity

2
(eff) 3L4

is exactly the impedance K obtained in terms of the frequency pertur-n

bation in (B.8). Upon combining Eqs. (B.8), (B.9), (B.13), (B.14) and

the definition of the Q of the cavity and its load,

Q . COU/P , (B.15)

we obtain

S= 22.5 .JyA) (B.16)Q. L(vp/c)P3np F(b/a) j•E}

Thus, a perturbation measurement and determination of the Q of the

cavity allows the calculation of R q
q

S~- 201 -



APPENDIX C

SPACE HARMONICS IN TRANSVERSE-WAVE COUPLERS

In order to calculate the amplitudes of the space harmonic components

of the field to be expected in transverse-field couplers, we employ the

model shown in Fig. C.l. It is assumed that there is no variation of the

field in the y direction. Because the circuit is periodic in the z

direction, we will have space harmonics with propagation constants

2ni( (Ci)
Pn = PO +7- .

where P0 is the fundamental propagation constant. An appropriate

expansion for the potential V at a point between the upper and lower

halves of the circuit is, in rectangular coordinates,

00 a -Jn z
V = sinh 13 e n (C.2)

n=-• Pn

so that the transverse field is

Ex a cosh X e e , (C.3)
n Pn

n-.oo

To determine the amplitudes a , we match (C.2) to the assumed potentialn

of the circuit at x a :

d dV -V0 < - z < +

V = 0 2 < <z <- d <z < +
- 20 2 2
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FIG. C.1--The circuit model used to calculate space harmonic amplitudes.
The circuit is uniform in the y direction.
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Then, using the orthogonality in z , we integrate over the period to

obtain

V0 d sin - d/p inhnaa - . . .._._c._

K I !n " dip

For small P a , the last factor in (C.4) is unity and to the same

degree of accuracy the transverse variation of E in (C.3) may be

neglected.

These results may be used to determine the requirements on d and

p in order to maximize the impedance of a particular space harmonic. In

order to do this for the space harmonic denoted by n a k , we maximize

the ratio of the square of the harmonic amplitude to the average of the

square of the electric field. That is, we look for the maximum of

a20 snGk2 2k gk

L/2 2p dz ek2 (c-5)
r, fan e d. 0 t \ egk21

-L/2 n=m-

where

Pkd - egk

Pkp , etk

This is exactly the result obtained by Pierce42 for longitudinal field

circuits and the solutions are:

egk e tk if etk < 2.33

(c.6)
eg = 2.33 if t >2.33

gk tkj -~2o~4-
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