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Abstract

Tension tests have been made on strip specimens cut at different angles from
textured sheets. For a pure titanium sheet, RC-70 annealed, the angular variation
of yield stress and strain ratio do not agree with the predictions of Hill's
anisotropic plasticity theory. Relatively low R values observed in magnesium
alloy (AZ2318) sheets with strong (000!) textures are interpreted as resulting

from basal slip.

For cubic metals, a method is outlined for calculating the relationship of
plastic anisotropy to crystallographic texture. The method, which is an ex-
tension of Taylor's analysis of plastic strains in polycrystalline metals, is

used to predict the flow stress and strain ratio resulting from various textures.

Experimental Work on Textured Sheets of HCP Metals

Tension tests have been made on strip specimens cut from textured sheets
at different angles to the reference (rolling and transverse) directions. The
purpose was to check the anisotropic plasticity theory of m.ll,I which makes

predictions about the angular variation of yield stress and strain ratio.

Early in the testing program it became apparent that micrometer measure-
ments to determine width strains for calculatfon of strain rati;s led to &
larze experimental scatter. Small width variations from place to place be-
cause of machining irregularities or development of an ''orange-peel'' surface
texture caused substantial variations in calculated strains. To avoid this

difficulty, a travelling microscope was subsequently used to measure the

width dimension between fixed gage points.



The results of tests on a 0.067-in.~thick sheet of commerically pure titanium
(BC-?O anno_alod) are shown in Fig. 1. The variation of yield stress g, with angle
of testing is almost I inear, the maximum occurring at 90° (the transverse direction)
and the minimum at 0° (the rolling direction). The variation of the strain ratio R,
is not so straightforward, however, with minima occurring at 0 and 90° and a

maximum near 60°,

According to the theory,

o=[ Fy2a+6cos®as e (2N-Fgeb) sin’ q cos? a) /2 o
and
H + (2N-F-G-4H) Sinz Q cosz a
S ) 2 (2)

Fsin"a+G6G cos" &

where ¢ is the yield stress, R the strain ratio, and @ the angle between the
strip axis and the rolling direction. H, N, F, and G are anisotropy param-
eters of the material. When the measured strain ratios from Fig. | are

substituted into Eq. 2, it is found that

at a=0° G/H = 2.0
a = 90° F/H = 0.96
a=22-1/2° NH = 6.; (using G/H = 2.0; F/H = 0.96)
a = 45° N/M =64 (M " ")
ae=67-1/2° Nu=12.3 (" " ")



With 6/H = 2.0 and F/H = 0.96, Eq. | predicts a yield-stress minimum between
a=0and o= 90° for any value of N/H ) 4.0, The wide range of calculated
N/H values and the absence of a yiqld-stress minimum clearly show that the
data are not consistent with the Hill analysis. The difficulty may lie in
the basic assumption that the sheet normal is an axis of two-fold, four-fold
or rotational symmetry. Textural c&nponcnts with six-fold symmetry gay‘bo
present in this and other sheets of HCP materials and thus contribute to

the disagreement between theory and experiment.

Transverse and longitudinal tension tests were also made on a magnesium
alloy AZ318 in both the hard (H-24) and soft (0) tempers, with results given

in the table. In every test the R values increased markedly with strain.

Strain Ratio R

Temper Testing Direction at axial strain of

1% 10%
H-24 Transverse 1.76 2.89
0 Rolling 0.58 1.28
0 Transverse 1.56 3.04

The (0001) pole figures supplied with the sheets by the Dow Chemical Company
indicate strong basal plane textures, with a slightly greater spread toward
the rolling direction than toward the transverse direction. With this
texture, slip on either prismatic or pyramidal planes ought to lead to R

values higher than those given above. The low expérimeptal values cannot be



sxpl ained by{lOT:}( 1011 twinning because this should not occur under tension.
The only other rationale for these results is that siip occurs on the basal plane
despite its unfavorable orientation. The increase of R value with strain may be
a conu'quoncc of the higher stresses acting to introduce more non-basal slip. |
Should the expianation be correct, a general increase of R would be expected at
higher temperatures since the shear stress for non-basal slip decreases more

rapidlly with temperature than that for basal slip.

Before the plastic anisotropy of HCP metals can be related quantitatively
to crystallographic textures, more information is required ab&ut the roles
played by the several possible slip and twinning systems in the deformation
of pol yé;ystalline material. Deformation experiments on constrained single
crystals are planned to generate such information. Several orientations of
magnesium crystals are now being grown for plane-strain compression testing,
the orientations being selected so that different slip or twinning systems
will be activated:. The resulting stress-strain curves ind metal lographic
observations should aid materially in dotemiﬁing the relative importance

of the different deformation mechanisms in textured polycrystals.

Theoretical Analysis of Plastic Anisotropy in Cubic Metals
In cubic metals, siip is by far the most important deformation mechanism.

Except for low temperature twinning and high-twer;ture grain boundary
sliding, it accounts for virtually all plastic flow. The FCC metals have
four {111} siip planes each containing three {110> slip directions, meking
a total of 12 possiblol{lll} { 110) slip systems. 1In the BCC metals, slip



on several types of planes, {110}, {112} and {123}, has been reported, always in

one of the four {111) directions.

With their greater multiplicity of slip systems, BCC and FCC metals are
somewhat less anisotropic than HCP metals, and the reason for the anisotropy
is not as obvious. However, a method for predicting quantitatively the effects
of crystallographic texture on plastic properties of FCC metals has been devised.
It also appliies to BCC metals deforming by {Ilo} {111 slip. This method is an
extension of the analysis that Taylor developed for calculating the tensile
(or compressive) stress-strain curves of randomly oriented polycrystals from
the stress-strain curves of single crystals. Before presenting the new method,

it is useful to review the Taylor analysis.z’B’u

The Taylor Analysis: This is based on determining the amount of siip
required in each grain during deformation, relating the strength of the grain
to that amount of slip, and finding gho average strength of grains with all
possible orientation. When a polycrystalline metal is deformed, each grain
changes shape in such a way as to maintain contact with neighboring grains.
To account for continuity of displacements at grain boundaries, it was
assumed that every gra;n.undergoos the same strain as the aggregate in which
it is imbedded. Under t;nsile loading the flow of a randomly oriented poly-
crystal is axially symmetric, the strains of the aggregate and therefore of

the individual grains being:

€ =€, = -1/2 € €

y =¢, =6, =0 (3)

yz X xy



where x, y and z are orthogonal axes, x being the axis of stressing. The single
subscripts indicate normal strain and the double subscripts indicate shear
strains, i.e., € is the tensile strain parallel to x and ‘xy is the shear strain

in the x plane and y direction.

To avoid later complications introduced by the rotation of crystal axes
during deformation, attention will be focused here on the relations betwsen

small or incremental strains. For incremental strains, Eq. 3 becomes

dey = dez-'-llz dex: d‘yz = dezx = d‘xy = 0. (4)
For a grain with a given crystallographic orientation, the set of strain
increments relative to the specimen axes may be transformed into an equivalent
set, del, dez, deB, dez3, deBl, de|2, relative to the cube axis of the grain.
With constant volume,
de

+de, +de, = 0 (5)

or

de3 - - (de] + dez),
and the number of independent strains is five. To produce these strains, five
or more of the twelve slip systems must be operative. Not every combination

of five slip systems can be used, however. To produce an arbitrary shape

change, the five slip systems must be independent in the sense that the



shear caused by one could not be produced by any combination of thlo others. To
identify the operative systems, Taylor assumed that only those would be active
which gave the minimum value of M = dr/dex; where dr 1is the sum of the incremental
shear strains on all of the active slip systems needed to produce an increment of
tensile strain, dex. The minimum M value appropriate for a given orientation

was obtained after first calculating values for many possible possible combina-
tions 'of slip systems. Such calculations were made for grains of each of a
number of orientations in the basic stereographic triangle, and the average

value was found to be M = 3.06.%

The next step was to relate the stress, L) ‘required for a grain to flow
with axial symmetry -to the total shear strain‘incrmnt, dy. This was
accompl ished by assuming further that the shear stress, T, to active slip would
be the same for all systems, the work expended in slip throughout a unit volume

of material then becoming

dW = tdy (6)

which must be identical to the work per unit volume done by the applied stress

in producing the extension

dW = o, de, . (7)

* In Taylor's original work, many possible combinations of slip systems were
still overlooked. Howsver, the same M = 3,06 was later found by Bishop
and Hill in an independent and more thorough analysis.



Equating (6) and (7),

(-]
?!'T'""_ra-’ (')*

In addition to relating the incremental shear and axial strains, M serves also
to relate the tensile flow o, of 8 grain to the basic shear stress v for slip.

Thus M 13, in effect, & relative strength.

Finally, the tensile stress-strain or o, = €, curve for a randomly
oriented polycrystal was obtained from the T - y curve for @ single crystal
of the same meterial by using the N averaged over all orientations (N = 3.06)
and by neglecting changes in W from lattice rotation. Points on the 9, - o,
curve at g, = 3.06t and s, - 3{3 were simply taken from the corresponding
points on the T - ¥ curve. The polycrystalline ¢ - ¢ curve constructed in

this way for aluminum was in reasonable agresment with experiment.

* Equation 8 1s the multiple slip analog of the Schaid st for single slip:

Ix & 1

'-r—'dcx'co:).eoso

where )\ and ¢ are the angles between x and the slip direction and the slip-
plane normal, respectively.



An Analysis by Bishop and Hill: More recently an equivalent but simpler
method has been devised for calculating M in grains of various ortcntattons.5’7

Simultaneous slip on five or more systems can occur only when the critical
stress for slip, T, is reached on these systems without being exceeded on any
others. Bishop and Hill showed that this condition is satisfied only with a

Jimited number of stress states or combinations of the terms, A = {§~(02 - 03),
B8 ’\I:‘(UB - Ul)) ‘6 (U‘ - 02), F '@023) G -V§°3l' and H .ci.ﬂlz’ where

the stresses g are taken with reference to the cube axes of the crystal. The

actual values that these terms may assume turn out to be 0, + 1/2, + 1.

An expanded form of Eq. 8 is useful for calculating M.

T LN dex 2 dcx 3 dcx

de
23 } 12
+ 2 923 dex + 2 °3ld + 2 %2 Ta ] (9)

Substituting the constant-volume relationship, Eq. 5,

de de
] ] 2
M= '.; L(U‘ - 03) dex + (62 - 03) d‘x

de de de
23 3) IZ]
+ 2 9,3 dex + 2 93 d‘ + 2 %29 d‘ (10)



or

dc'

de de
n.\l"“‘e-—+A—-3+zr—3+ch‘-3-+zu“'z] ()

M is evaluated for a given orientation (of cube axis relative to specimen axes)
and for a specified shape change, defined by the ratios of the strain components

along the specimen axes. The essential steps are outlined below:

1. The strain components along the specimen axes, x, y and z, are resolved
into components along the cube axes of the crystal, 1, 2 and 3, with the ex-

pression, for del ’

de, = Q'xz dex + Qlyz dey + Q'zz dez + O‘Y 0 ‘1z d
le le dezx + qlx Q ly dexy

and similar fomulations for the other normal and shear-strain components; the

9 terms are the cosines of the angles between cube axes and the specimen axes.

2. If a relationship between dex, dey, dc/z, dczx, and d‘xy is known,
the strains along the cube axes are found relative to dex and substituted

into Eq. 11. For example, 1if the flow is axially symmetric (Eq. 4),

21

dex 1x

2 12 9”2 -1/2 0,:, otc.

10



3. Finally, Eq. 11 is evaluated for each possible combination of A, B, .... H.
The largest result is selected as the appropriate M value according to the principal

of maximum virtual work.

Strength of Fiber Texture: Equation il was used to establish the orientation
dependence of M for axially symmetric flow over the full stereographic triangle
(Fig. 2). An average value of M, identifying the relative strength of a randomly
oriented polycrystal, has been calculated on this basis. Howsver, the results
may also be applied directly to predict the relative strength of wires with dif-
ferent fiber textures which also extend in axially symmetric flow. The strength
is indicated by the M value corresponding to the orientation of the fiber axis.
Thus a wire with a[]ll] or [)10] fiber texture should be 50% stronger than one
with a [IOOJ texture and about 20% stronger than if it were randomly oriented.

The same relative strengths would be expected in compression.

Yielding and Plastic Strain in Textured Sheets: It was shown in the

previous report that when texture-hardening was introduced, the yielding of a
sheet being compressed in the thickness direction is equivalent to yielding
under a state of balanced biaxial tension in the plane of the shéet. Accord-
ingly, Fig. 2 may also be used to predict yielding resistance under the
latter condition of loading i{f the texture is rotationally symmetric about
the sheet normal. Therefore, textural components with [111] and [110] normal
to the sheet have the effect of increasing strength when loads are applied in
this way. As noted before, the same texture would also strengthen a sheet

even if the principal tensile stresses should be somewhat ''unbalanced''.



The analysis may be broadened to include the anisotropy of yislding in
textured sheets under simple tension. Of interest here are both the tensile

de

yield stress and the width-to-thickness strain ratio R = Te'! of specimens taken
2

in different directions in the sheet. To apply the analysis, the incremental
shear-strain dy corresponding to dex must be found, but this can be calculated
only after the other normal strain increments are known relative to dcx. If
the tensile axis, x, is taken parallel to one of the principal axes of an-
isotropy, it is still reasonable to assume deyz = dezx = d‘xy = 0. Constancy
of volume (Eq. 5) applies. Yet one strain component, dcy or dez, remains un-

specified; this may be incorporated in a useful parameter

dey R

“r = = ’ (12)
dey + dez R+1

so that

dey--rdex; dez--(l-r) de, .

Now the ratios,

ﬁ _d:.Z dez3 de}l and del 2
2 2 ?
d‘x dex dex dc* de

in Eq. 11 can be expressed in térms of r, as

de

b

o, 2 -r Qlyz - (1 - r)‘ﬂlzg, etc.

I1x

12



By assuming different values of r and calculating the corresponding values
of M = %E from €q. 11, an M vs. r plot may be generated. The minimum M of such
a plot re:resents the least slip or least work with which the strain increment
dex could be produced and therefore corresponds to the expected behavior. The

o
values of M and r at the minimum identify the relative strength ;5 and the strain

r
ratio R =47/ .

As an example, consider tension tests made on & sheet with the ideal
[sz] (110) texture characteristic of cold-rolled olpha-brass,a (Fig. 3). From
the minimum M of the M vs. r curve for a rolling-direction test, values R = 1|
and ;5 = 3.10 are predicted. For a transverse direction test, the flat
ainimum from r = 0,125 to r = 1,0 makes the prediction of a single R impossible.
In these plots each straight line section corresponds to the combination of A,
B, F, G, and H which maximizes M in Eq. 11. For a sheet with an ideal
[1ToJ (111) (a textural component of cold-rolled stenle) tested in the rolling
direction, the M vs. r curve is a single straight 1ine sloping downward with
increasing r so that an infinite R is predicted (Fig. 4). While these pre-
dictions are made for single ideal textures, small amounts of other textural
components would modify the results, probably creating a unique minimum for
the (1727 (110) transverse test (Fig. 3) and shifting the mini.um to finite R

values in the \fTo} (111) rolling-direction test (Fig. &4).

The value of such calculations for ideal textures lies in the way results
may be combined to predict the behavior of textured sheets of mixed components.
The M vs. r curve for a material consisting of several textural components a,

by, ¢¢sss may be found from the weighted average

M= f. ". + fB "b LX) ('3)

13



where f. and fb are the volume fractions of components a, b, .... The minimum
will occur when

dM d"l d“b

-d—r-fa-d-l’-.'.fb-d—r-'.‘...-o. (“‘)

If a fraction of the grains is randonly oriented, it can be treated as
a component with isotropic plastic properties. The characteristic M vs. r
curve for randomly oriented grain may be found by using the von Mises yield

criterion and its associated flow rule. With these it can be shown that

de :
under an imposed ratio of strain r = de =+ de the work per unit volume dW,
]
per increment of strain dex is
-
Mo xNws (P -re), (15)
x

where X is the yield stress under uniaxial tension. Combining Eqs. 15 and 8,

M =7’:-'\lh/3 (r2-r +4|)'W. (16)

Using Taylor's value for the tensile yield stress of a randomly oriented

polycrystal, % =M = 3.06. Therefore

M=3.06 Nos3 (\P2-ral) an

b



describes the shape of the M vs. r curve for randomly oriented grains (Fig. &4).
Because of the shape of this curve, the presence of some randomly oriented
grains in a textured sheet will make R move toward unity. For example in a
sheet with the[ 170 (111) texture, if half of the grains become randomly

oriented the minimum occurs at R = 2.33 instead of at R = o (Fig. 4).

The present analysis may be used to predict R values for sheets with

textures that are rotationally symmetric about the sheet normal. With a
crystal lographic plane, (hkl) parallel to the rolling plane, all directions
in (hk1) will be aligned with the axis of a tensile specimen cut from the
sheet. I-‘o'r the purpose of analysis, such a texture has been approximated
with a number of components, each sharing the common (hkl) plane, but
differing from one another by 5% or 10° rotations about the normal to the
sheet. Figures 5, 6, and 7 show the M vs. r curves for each of the various
components of the textures with (100), (110) and (111) respectively in the
plane of the sheet. By averaging the curves for the various components,
M vs. r curves were obtained for rotationally symmetric textures with (100),
(110) and (111) planes in the sheet (Fig. 8). Although pure (111) and (110)
textures should give infinite R values, a small amount of some other compo~
nent would preclude this possibility. The curve for randomly oriented

grains is added for comparison,

The calculated curves may be'related to the observations of Whiteley
and wises on steel sheets. When these authors evaluated the relative amounts
of (111), (110) and (100) components and compared the results with experi-

mental R values, they found that (111) contributed to high R, (110) was

15



neutral, while a small amount of (100) strongly depressed R. Such findings are
consistent with the slopes dM/dr of the three curves in the range r = 1/2 to

2/3 (R = 1 to 2) that characterized their steels. If only (111) and (100) were
present, the minimum M would occur when f(‘oo) —{100) + f(lll) d‘”

dr r
dM™ dM
At R = 1.5, —-g—‘ro—o)- = ,9 and —g-:,ﬁ)- = = ,2 so that the sffect of a (100)

-0.

component in depressing R would balance the elevating effect of 4 to 5 times

as much (i11) component.

Limitation of the Analysis: It is important to consider the limitations
involved in extending Taylor's analysis to the prediction of plastic anisotropy
in cubic metals. The basic assumptions of the original theory were that
deformation is homogeneous (each grain undergoes the same shape change as the
polycrystall.ine aggregate), that the active slip systems are determined by
the condition of least shear, and that the work hardening of all active slip
systems is the same and depends only on the total amount of prior slip. These
assumptions may form the bases for several reasonable objections to the

analysis.

Sometimes during deformation the individual grains of a polycrystal may
undergo shape changes which are quite different from those of the polycrystal
itself. 1In [IIO] fiber-textured wires of iron and tungsten, the grains are
ribbon-shéped instead of cigar-shaped after drlw:lng.m During the compression
of polycrystalline aluminum, the flow of individual grains strongly departs
from axial symmetry once a [110] texture is developed.'! The formation of
deformation bands represents still another departure from homogeneous flow.

The deviations from assumed behavior which are usually not large, probably

16



occur in such a way as to lower the total amount of work so that the predicted

strengths should be regarded as reasonable upper bounds to actual values.

The assumption that work hardening depends only on the total amount of
prior slip might be questioned in view of the different combinations of slip
systems and &islocation interactions that would prevail in differently
oriented grains. If this were a major complication, the orientation depend-
ence of strength could not be described by M alone. To test the point, work
hardening was recently studied in aluminum crystals sub‘jcctod.to constrained

" The results indicated that

axially-symmetric flow by drawing through dies.
the orientation dependence of strength was in fact adequately described by

the variation of M over the stereographic triangle.

Applying the analysis to BCC metals involves the assumption that slip is
restricted to {no} {111> systems. Apparent slip on {112}, {123} and non-
crystallographic planes may be due to frequent cross-slip of screw disloca-
tions from one {110} plane to another, which should occur readily. Even if
slip does occur on-other crystal!lographic planes, the prediction of the
analysis still ought to have value for suggesting useful textural components.
The reason is that in the analysis, restricting slip to &4 { 111> directions
is more severe than confining slip to 6 {IIO} planes; and the former

restriction accounts for a greater part of the anisotropy.

There seems to be no reasonable way, however, to extend the present
analysis to HCP metals, in which the many siip and twinning systems have

different critical stresses for 6peration.

17
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