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ABSTRACT

The three fundamental boundary value problems of the classi-
cal theory of linear elasticity have been formulated in a manner
that permits maximum exploitation of numerical techniques and
modern high speed digital computers. Both the static and dynamic
cases have been included as well as arbitrary body forces. The
extension to problems involving more than one medla has been

given and in addition no restrictions are placed on the boundary

shape.




e e

M*é W, <

4

.

e et T

Introducti&n

In the classical theory of linear elasticity tliere are two
classes of problems: dynamlc and static. In each of these classes
there are three fundamental boundary value problems which are
labeled the first, second and third or mixed boundary value
problems respectively. The first problem consists in determining
the displacements in an elastic body when the stresses are speci-
fled on the boundary and the second problem is the determination
of the displacements throughout an elastic body when the displace-
ments are given on the boundary., The third or mixed boundary
value problem requires the determination of the displacements
in an elastic body if the stresses are prescribed over part of the
boundary and the displacements are given over the remainder.(l)'
(2),(3), (4)*

Many important problems in elasticity may only be solved
by employing numerical methods. In order to permit maximum use
of numerlcal techniques 1t 1s desirable that all three boundary
value problems, for both the static and dynamic_cases, be
formulated 1n a similar manner. Such a formulation can be
achleved by employing methods analogous to those used in potential
theory. In thils paper the complete formulation of these problems
will be given. This formulation has been used to obtain numerical
results to some specific problems. These results have been

given in reference (5) and will not be reproduced here.

*Superscript numbers in parenthesis refer to references in
bibliography.
-2
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Some General Considerations

The dynamic equations of classical linear elasticity may

be written in terms of the displacement vector, U, as

(/\+2/M)V(V-m AN AT y? = ¢ Uy (1)

where >\ and /u are the Lame constants, ¥ 1; the body force
vector and lower case subscrlipt letters indicate partlal differ-
entiation.(s) U is the displacement vector with components

u, v, w 1n the x, y, ¥ directions respectively. The static
equilibrium equatlons are obtained by setting the 1nertia

force terms equal to zero in the above equations. They are
N +2u) V (V- -uVx7sT + §F =0 (2)

Using the fact that a vector function may be decomposed into a
solenoidal and an 1rrotatlonal part, the displacement vector

maey be written as

U=V +VxYP (3)

where V°TF = 0. The solenoidal part, Vx_’:P s corresponds
to a rotation and the irrotational part, V¢ s to a dilatation.

The body force, —ﬁ, may also be written as

F=V§ + VA

h—ﬁ,f”?-v(rﬁ)df

where
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providing that F 1s uniformly continuous and vanishes at infinity
in a prescribed manner.

Substitution of Equation (3) into Equation (1) and employing
the vector identitiles

vivd =0, V-Vx¥ =0
and

7P = V(7)) -7

shows that 1f Cb and—\'\; satisfy the inhomogeneous wave equations

Vo + f = “1c}¢tt and V'Y + A, = '—éf'wtt (4)

where £ Y W
h -ﬁ:—m;‘—* ) AZ'—'—/—._A—

then the displacement vector as glven by Equatilon (3) satisfies
Equation (1). Similarly, the representation (3), when _substituted intc
Equation (2) shows that if & and W satisfy the Poisson equations

Ve +f =0 ma V'F + A =0 (5)

then the displacement vector, W, satisfles the statlic equilibrium
equations.
Recalling the integral representation of the solution of

the inhomogeneous wave equation, the functlions d> and -\:'\7 may

-4



FIT—
. +

WWW PR

p——
R )

{

|- ey

be wriltten as

b (Bt) = q—ﬁT—J‘J‘J‘[ﬁl (’)%) dr
-2 ([0 ) -2 181 - & () e

T (et) = z‘-ﬁf” [A] (&) dr

- J{0E6) - 48] - B ] e o

(6)

Sl

and

where §ﬁ7 denotes partlal differentlation in the direction of

the exterior normal to ¥ , r 1s the distance from the observa-
tion point P to a point P, on @ and 0 1is the closed surface
enclosing the volume T .(7) [Flmeans that the function F(x,y,z,t)
18 to be evaluated at the retarded time t! =t - r/c. Equations
(6) and (7) are Kirchoff's solutions of the inhomogeneous wave
equatlons in terms of retarded potentlals. The corresponding

integral representations of the solutions of the Polsson equations,
(5) are (8)

&(F) =;{;J”-ffdw ; ;}ﬁ” [oh.() - 4 i dr

and
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If body forces are not present then equations (4) and (5) are

replaced by the homogeneous wave equations and Laplaces' equa-
tions respectively and the volume integrals in the above integrals
vanish.

When a harmonic time dependence of the form e"’wt 1s
assumed, the displacement potentlals must satisfy the following

set of inhomogeneous Helmholtz equations
e 1 o
Vh + L+ RP=0 ana VY + A +RY =0 (10

where
[ §
v ot ko= <%
h; = C;! and 3 Cz .

v (9)
The integral representations for d) and Y are

(P = -},,f”;,irf‘"a? ,

i Ren iy (11)
AITRE) - e
and
¥ = a—};f”ﬂ; -%:\E"dr
(12)
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As before, the volume integrals in each of the above vanish if
there are no body forces present.

In differential geometry it 1s shown that an arbitrary
surface in a three-dimensional space may be characterized by

the parametric representation

7= (=, @) (13)

where & and p are two independent parameters. If the lines of
curvature at a point of the surface are chosen as the parametric
representation of the surface then a local orthogonal coordinate
system may be constructed at the point. This 1is always possible
for a sufficiently smooth surface.(lo) The coordinate system
consists of the two lines of curvature and the normal to the
tangent plane at the point. The unit normal 1s given by
—_—
e s (13)
| Lax Xyl
It 1s assumed that the surface is sufficlently smooth so that
the parametric representation as given by Equation (13) possesses
as many derivatives as may be required in the subsequent develop-
ment . ‘
In the next section it will be shown that by employing

the integral representations of the functlons Cb and‘Q? and
imposing the proper boundary conditions that a set of integral
equations may be derived whose solutlions are the desired surface
potentlals from which the displacement and stress flelds may be
calculated by integration.
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Formulatlon of the Integral Equations

The first problem to be considered 1s the second fundamental
boundary value problem of elastlcity. Let D denote the prescribed
surface displacement vector and U the displacement
vector obtalned from the displacement potentlals. On ¢ the
normal and tangential components of the displacement must be

equal and hence on ¢ the followlng boundary conditions hold:
- A — A — L I = A
U'n =DM and Uxn =Dxn . (14)

In terms of the displacement potentials the equations are

A w—t ly.

VP -y +\7x\|’-?\=D’¢‘ (15)

and

b 24

96 & + Vr¥rh = Do
(16)

In a previous paper, (5) the followlng vector relationships were

derilved:

HVd)xﬁ ‘-'Yuq)e"—'x;)d)a s H \Y/

~ g+ Ve

o'?\:TL’

-l
€l

and

HYsFvh = HYY +HaH - %%

where the fact that -\P i1s divergenceless has been used and

H=JEG-F with E=%"X

G:'f‘.»‘i; and F="% (] o

)

-8~
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since the local coordinate system 1s orthogonal. Application

of these vector relationships to Equations (15) and (16) gives

Hdp + L F -%% = HD-A (17)
and

A

HF, + LT 40T T = R

Equations (17) and (18) may be solved for the surface values of

db,‘ and ¢—,\ in terms of the tangential derivatives of ¢ and
W . If the prescribed surface displacement vector 1s time
dependent the values of (b“ and —\R‘ are substituted 1into
Equations (6) and (7) to give

Ppt) = ;,‘Trf” [ﬁl(ﬁ‘) dr

(19)

and
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(20)
Allowing the observation polnt P to approach the boundary and
Interpreting the integrals in the sense of thelr limiting values
results in a set of four simultaneous integral equations for
the determination of the surface values of the displacement
potentials. Solutlion of these equations for the surface poten-
tials enables the fleld values to be calculated by lntegration.
This 1s the integral equation formulatlon of the second funda-
mental .boundary value problem of dynamlc elasticity. If the
prescribed surface dlsplacement vector 1s not time dependent the
problem is a static one and equation (2) is the governing
differentlial equation. Consequently, the surface values of Cb“
and :P; obtained from Equations (17) and (18) are substituted into
Equations (8) and (9) to give the required integral representations
for ¢ and—q; . By Interpreting these integrals in the senase
of their limiting values the integral equation formulation of the

w10~
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second fundamental boundary value problem of static elasticity
1s obtained. If a2 harmonic time dependence 1is assumed for both
the prescribed displacement vector and the body force, the
values of Cb“ and TFL are substituted into the integral
representations of the lnhomogeneous Helmholtz equations. The
limiting values of the resulting ilntegrals gives a set of simul-
taneous integral equations which are equlvalent to those obtained
from the lntegral equation formulation of the scattering of steady
harmonic elastic waves from rigid surfaces of arbitrary shape.
The next problem to be consldered is the first fundamental
problem of elastlclty. Let T denote the stress vector prescribed
on the boundary ¢ and 3 the stress 1in the body actlng on a plane

with direction cosines 1, my n. Then

=Xt +Y5 + R (21)

where

™ o g [
= (0 (\A) ge m

= 0/ \n

N < X

(22)
The stress-straln relations in usual notation(ll) are
T =)\68 +2/u.ux T :/M(M;-I-V%)
T = N6 +2u T = u v+ wy) (23)
0" =X6+2uw, G = pa (W + U
-11-
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where the dilatatlon, 6 s 18 glven by
6=v-U (24)

The boundary condltions require that the normal and tangential

components of the stress at the boundary must be equal, 1.e.

TR =T-% (25)

and
= A
xh = Txn
-g T on T (26)
Substitution of Equations (21) and (24) into Equation (25) gives

T L+ (i +

+20%m +20%mn + 20%Un =T-H
(27)
Relating the stresses to the displacement potentlals by using
Equations (3) and (25) and substituting into the above equation
ylelds

Cf Hz¢m\ + (Ci-Z C;)(de«G + cbu E\

w | - LN
+2HC’(YP\V’“‘ "”) T f (28)

In a similar manner Equation (26) may be written in terms of the

displacement potentlals to glve

G {H"—I’m + H 27«4’»’279%* Yy - T, Vi
- [‘&‘P (% W) - T (% Fip) + % (% "P,.,)

(B =T

I -]12-

(29)
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The algebra necessary to obtain equations (28) and (29) 1s
quite lengthy and is given in a previous paper.(5) If the
prescribed surface stress is time dependent, Equation (1) is the
governing differential equation and the displacement potentilals
satisfy Equations (4). Since the local coordinate system is

orthogonal,

Vit = \r[’cﬁ() £¢]
+V%[£PX@(V%) + V%] + (30)

and Equations (4) may be combined with Equations (28) and (29) to
elimlnate ¢n and \Vm\ glving:

Hz{q)tt [¢‘63( ) _\%]
- Flakle) F]-ah)
(4.6 +44€) + 2 HG (B, -,
o (% (@) - - (%) + %‘1
H

- [ h(E) - #1-7) +

(=240

"t
AR AR AR Al

(32)
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The above four equations when combined with the limiting values

of Equations (6) and (7) constitute a system of eight simultaneous
equations for the determination of the elght surface potentials
(b ,'q7 s qg,and iP; . If *the gtresses specifled on the
boundary are time independent the problem is a static problem.

Consequently, the time derivatlve terms are not present 1in

- Equations (31) and (32) when Equations (5) are used to eliminate

d’.m and 'CF“, from the boundary conditions. These four equatlions,
together with the limiting forms of Equations (8) and (9), consti-
tute a system of eight equations for the required surface
potentials and thelr normal derivatives. Similarly, 1if a
steady harmonic time dependence 1s assumed, the terms dﬁx and

q’:t in Equations (31) and (32) are replaced by ~h:¢ and-h:q;
respectively when the second normal derivatives are eliminated
from the boundary conditions by substitution from Equations (10).
Agaln, a set of determinate equations for the surface potentlials
and thelr normal derivatives may be obtained by adjoining the
1limiting values of the integral representations, Equations (11) and
(12). These sets of elght equations consitute the desired
Integral equation formulation of the first fundéﬁéﬁfal 56ﬁhééfy
value problem of elastlcity.

The third fundamental problem of classical elasticity 1is
formulated in an analagous manner. The procedure is a direct
extension of the prevlious formulations. For the dynamic
problem the limiting values of Equations (6) and (7) must hold
everywhere on the boundary while for the stétic problem the
limiting values of Equations (8) and (9) must hold. The boundary

conditions require that on those sections of the boundary where

-14-
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the surface displacements are prescribed, Equations (17) and
(18) are to be satisfled and on the remaining sections of 0
where the surface traction T 1s given, Equations (28) and (29)

must hold. These latter equatlions can be combined as before

with Equations (4) to eliminate <P,, and Jm for the dynamic
| problem and combined with Equations (5) to eliminate the same
varlables for the static problem. Consequently, at every point
! of the boundary, there exlsts elght equations for the determination
‘of the elght surface potentials ¢ , TP , $, and @, . If the
dynamic problem 1s reduced to a harmonic time dependence, the
Helmholtz integral representatlons are to be used. The author
would lilke to point out that parts of those sectlons of Reference
{ (5) referring to the second and third fundamental problems are in
| error and should be modified in accordance with the analysis
presented here.
For those problems in which the body force is absent the
displacement potentials satisfy homogeneous equations. Thus, in
! the abo#e formulations of the three fundamental problems the

volume 1integrals are not present in the Integral equatlons.

&
L
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Further Modificatlions and Conslderations

When the elastic medium 1s a composite of two or more
different elastic media the previous formulations must be modi-
fied. The procedure for setting up the required equations for
two adJacent media will be outlined. The extension to more
than two media may then be readily accomplished. Denote the
media by medium I and medlum II and let terms in medium I be
denoted by the subscript I and those terms in medium II be denoted
by the subscript II. In addition, let 0%11 denote that part of
the interface between media I and II. Continuity of normal and

tangential displacements across (i 1implies

H (‘b:)n "'Yf(q:t). - Lo ((E)p = H (¢n)n + —i(l'(q’)-t T (wﬂ)p
(33)

and

H(q-/:),\ '\'7: X (q';z)?- pr (TPI)‘ + Y (CP,)’ -7'9 (cb‘)a
=H@), + Tx(@), -Tp < (T, + L), -FK (%), v

Continuity of normal and tangential stresses across (f;;; implies

p{H(0).G + (8, (G-2G )6 + @), (G-2ci)e
126, H [ (B, Lo (), )] = 2, [ (0GR
¢ (0. (50-2G)6 + (&), (G 26 )E

r2cy K (% (R, - % (‘%ﬂ

=16~

(35)
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(35)
where cl oo N; +2£, Cz i, >‘1! +2£tr
2 Ou fu
[ - /‘(2. 2 - __/‘_/g__
w7, %= %

The terms (¢,)“, (q/:),,,, ’ (ch-;)“ and (q’;)m may be eliminated

from Equations (35) and (36) by employing the displacement potential
equatlions approprlate for the problem and the medium. The
resulting elght equations when combined with the limiting values

of the integral representations ylelds sixteen equations for the

determination of the surface values of the sixteen functions

S T A S (- W (2 TR (-~ N (7

-17-
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In addition, on those segments of the boundary of elther medium
where the displacements or stresses are specified, the equations
previously dev~loped must hold. If the parameters ol and (3

are 30 chosen as to be the arc lengths along the curves @ =
constant and ® = constant respectively, the differential forms
E, G and H are equal to unity. This simplifies the boundary
conditlons and considerably reduces the numerical effort required
to obtaln a solution to a speciflc problem.

In all of the previous development it was assumed that the
elastlic medium was finite and bounded by a closed surface. If
the medium 1s infinite 1n extent, the integral representations
must be suitably modifled and the displacement potentials
must vanish at infinity in a prescribed manner.(9)’(12):(13)

The exlstence of solutions for three-dlmensional problems 1is
discussed by Sokolnlkoff and Gurtin, among others, who giye

several references.

-18-
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Discussion and Conclusions

By employing methods analogous to those used in potential
theory, the fundamental boundary value problems of static and
dynamic elasticity have been formulated in terms of a coupled
set of integral equations and inhomogeneous partial differential
equations. One of the advantages of this formulation is that the
shape of the boundary 1s directly accounted for. If the geometry
of the cross-section coincides with a coordinate system in which
the equations satlisfled by the displacement potentlals separate,
1t is possible to obtain solutlons by eligenfunctlon techniques.
Another advantage 1s that because of the similar structure of
the formulation of each problem methods developed for the solution
of one problem may more easlly be adapted to obtaln solutions for
the others. For example, 1f a numerical method of solution is
attempted, the integrands occuring in all of the formulations
have the same type of singularity. Thus, a technique that
satlsfactorily estimates the contribution to the integral in the
neighborhood of the singularity of one of the integrals may be
used 1In estimating the contributions of the analogous singularities
in the other integrals.

If in the statlic and harmonlic time dependent problems the
Integrals are approximated by finite sums, the resultant set of
linear equations is simultaneous. A similar numerical approxima-
tion applied to the integrals in the initlal boundary value problem
results in a set of linear equations which are not simultaneous.
Hence, the lmplilicit and expliclt character of the two types of
problems 1s clearly evident. Also, it should be noted that, the

-19-
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elastlicity are analogous to the problems of determining the
scattered fileld due to an elastic wave impinging upon an arbitrary
fixed or free surface.

After the deslred surface potentlals are determined, the
dlsplacement and stress flelds are obtained by differentlating
the kernels of the integrals and properly combining the resulting
expressions with the known surface potentials and integrating.
This method of computing the stress and displacement fleld avoids
the decrease 1n rate of convergence of the infinlte series that
results when elgenfunction expansions are used to obtailn these

flelds.
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