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ABSTRACT

The three fundamental boundary value problems of the classi-

K cal theory of linear elasticity have been formulated in a manner

that permits maximum exploitation of numerical techniques and

modern high speed digital computers. Both the static and dynamic

cases have been included as well as arbitrary body forces. The

extension to problems involving more than one media has been

given and in addition no r~estrictions are placed on the boundary

shape.
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ii' Introduction

In the classical theory of linear elasticity there are two

classes of problems: dynamic and static. In each of these classes

there are three fundamental boundary value problems which are

labeled the first, second and third or mixed boundary value

V• problems respectively. The first problem consists in determining

the displacements in an elastic body when the stresses are speci-

fied on the boundary and the second problem is the determination

of the displacements throughout an elastic body when the displace-

- ments are given on the boundary. The third or mixed boundary

value problem requires the determination of the displacements

in an elastic body if the stresses are prescribed over part of the

boundary and the displacements are given over the remainder.(1),

(2), (3), (k)*

Many important problems in elasticity may only be solved

by employing numerical methods. In order to permit maximum use

of numerical techniques it is desirable that all three boundary

value problems, for both the static and dynamic cases, be

formulated in a similar manner. Such a formulation can be

achieved by employing methods analogous to those used in potential

theory. In this paper the complete formulation of these problems

will be given. This formulation has been used to obtain numerical

[i results to some specific problems. These results have been

given in reference (5) and will not be reproduced here.

*Superscript numbers in parenthesis refer to references in

bibliography.
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T
Some General Considerations

The dynamic equations of classical linear elasticity may

be written in terms of the displacement vector, u, as

(A4-e&)(.)pV xi (At (1)

. where X and,A, are the Lame constants, I is the body force

vector and lower case subscript letters indicate partial differ-

1i. entiation.( 6 ) I is the displacement vector with components

F u, v, w in the x, y, t directions respectively. The static

equilibrium equations are obtained by setting the inertia

Sforce terms equal to zero in the above equations. They are

2V(V.Q)KV V ýVL +frF c (2)

!• Using the fact that a vector function may be decomposed into a

solenoidal and an irrotational part, the displacement vector

- may be written as

U +VK(

where VV = 0. The solenoidal part, VxV , corresponds

to a rotation and the irrotational part, V4 , to a dilatation.

The body force, F, may also be written as

SF ' -+ vX A

1 where

f ff -3
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Uand U ~t ()'1.O
providing that F is uniformly continuous and vanishes at infinity

in a prescribed manner.

I. Substitution of Equation (3) into Equation (i) and employing

the vector identities

I vxvep:o , v~v• ~=o

and

shows that if 4 and -%' satisfy the inhomogeneous wave equations

* ~and V +Aa ~ "t (4)
Az --fa t

where A9
+ A,

then the displacement vector as given by Equation (3) satisfies

Equation (1). Similarly, the representation (3), whvensubstituted into

Equation (2) shows that if 0 and 'Y satisfy the Poisson equations

+ 0and V" +(5)

then the displacement vector, ", satisfies the static equilibrium

equations.

Recalling the integral representation of the solution of

I the inhomogeneous wave equation, the functions * and • may



III be written as

"A f16)

and T(,t) = fff I-1 (k)dr

where denotes partial differentiation in the direction of

the exterior normal to T , r is the distance from the observa-

tion point P to a point Po on 0 and T is the closed surface

enclosing the volume .•(7) [Fjmeans that the function F(x,y,z,t)

is to be evaluated at the retarded time t' = t - r/c. Equations

(6) and (7) are Kirchoff's solutions of the inhomogeneous wave

equations in terms of retarded potentials. The corresponding

integral representations of the solutions of the Poisson equations,

(5) are (8)

c~(p) = Jif~j it 'fr ff ()-Lud (8)

and

7 FY
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If body forces are not present then equations (4) and (5) are

"replaced by the homogeneous wave equations and Laplaces' equa-

tions respectively and the volume integrals in the above integrals

vanish.

When a harmonic time dependence of the form 2-• is

assumed, the displacement potentials must satisfy the following

set of inhomogeneous Helmholtz equations

+va4, +4' 0~ and 'VA-6 + (10)

where

and Ca 0

The integral representations for ! and "' are(9)

iA
4'41Y

and

U (12)
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As before, the volume integrals in each of the above vanish if

i there are no body forces present.

In differential geometry it is shown that an arbitrary

1. surface in a three-dimensional space may be characterized by

the parametric representation

O(13)

where c and 3 are two independent parameters. If the lines of

curvature at a point of the surface are chosen as the parametric

representation of the surface then a local orthogonal coordinate

system may be constructed at the point. This is always possible

for a sufficiently smooth surface.(I0) The coordinate system

consists of the two lines of curvature and the normal to the

tangent plane at the point. The unit normal is given by

-mx (13)

It is assumed that the surface is sufficiently smooth so that

the parametric representation as given by Equation (13) possesses

as many derivatives as may be required in the subsequent develop-

ment.

14 In the next section it will be shown that by employing

the integral representations of the functions 4 andT4/ and

imposing the proper boundary conditions that a set of integral

equations may be derived whose solutions are the desired surface

potentials from which the displacement and stress fields may be

Scalculated by integration.

| -7-



Formulation of the Integral Equations

The first problem to be considered is the second fundamental

boundary value problem of elasticity. Let D denote the prescribed

Ssurface displacement vector and u the displacement

vector obtained from the displacement potentials. On T the

normal and tangential components of the displacement must be

equal and hence on 0" the following boundary conditions hold:

- A - A .. ,A'lLA.'v - and U 9 (14)

In terms of the displacement potentials the equations are

vc.• A .• - (15)

and

(16)

In a previous paper,(5) the following vector relationships were

derived:

H V4) ~ -d 4, H V -
and

I ', where the fact that V• is divergenceless has been used and

}i -H -- • -- FI with E--• ''

[ G: •',.•, and F :•.•
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since the local coordinate system is orthogonal. Application

of these vector relationships to Equations (15) and (16) gives

t ~ H •, • ' -- ", -HD - (1.7)

and

H + (18)

Equations (17) and (18) may be solved for the surface values of

and q in terms of the tangential derivatives of 4) and

W . If the prescribed surface displacement vector is time

dependent the values of ' and M* are substituted into

Equations (6) and (7) to give

iA

! and

IH
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'10 'YO =4 ffJK F'JTL

-4H fH[[§A]2(-L) 8,

(20)

Allowing the observation point P to approach the boundary and

interpreting the integrals in the sense of their limiting values

results in a set of four simultaneous integral equations for

the determination of the surface values of the displacement

potentials. Solution of these equations for the surface poten-

tials enables the field values to be calculated by integration.

This is the integral equation formulation of the second funda-

mental boundary value problem of dynamic elasticity. If the

prescribed surface displacement vector is not time dependent the

problem is a static one and equation (2) is the governing

differential equation. Consequently, the surface values of O

and M obtained from Equations (17) and (18) are substituted into

Equations (8) and (9) to give the required integral representations

for 4ý and 'T . By interpreting these integrals in the sense

of their limiting values the integral equation formulation of the

LI -10-



second fundamental boundary value problem of static elasticity

is obtained. If a harmonic time dependence is assumed for both

the prescribed displacement vector and the body force, the

values of , and 4 are substituted into the integral

representations of the inhomogeneous Helmholtz equations. The

limiting values of the resulting integrals gives a set of simul-

taneous integral equations which are equivalent to those obtained

from the integral equation formulation of the scattering of steady

harmonic elastic waves from rigid surfaces of arbitrary shape.

The next problem to be considered is the first fundamental

problem of elasticity. Let T denote the stress vector prescribed

on the boundary T and -9 the stress in the body acting on a plane

with direction cosines 1, m, n. Then

XI+r + (21)

where

Y TN q4 Tt *n

(22)

The stress-strain relations in usual notation(II) are

+ V", ,V (V. + Vr.) (23)

- + -11-



where the dilatation, e , is given by

Ve =v.1 (24)

The boundary conditions require that the normal and tangential

components of the stress at the boundary must be equal, i.e.

r (25)

and

on . (26)

Substitution of Equations (21) and (24) into Equation (25) gives

Cr t+ (FtYM

(27)

Relating the stresses to the displacement potentials by using

Equations (3) and (25) and substituting into the above equation

yields

C; H k,, + (c,,-z• ¢,, ,/
+ 2+ a

f' (28)
In a similar manner Equation (26) may be written in terms of the

displacement potentials to give

+ X

A :LA
I (29)

-12-



The algebra necessary to obtain equations (28) and (29) is

quite lengthy and is given in a previous paper.(5) If the

prescribed surface stress is time dependent, Equation (1) is the

governing differential equation and the displacement potentials

satisfy Equations (4 ). Since the local coordinate system is

orthogonal,

+ (30)

and Equations (4) may be combined with Equations (28) and (29) to

eliminate and 4 giving:

+E at ct]±(:2

(OcW6 +' E) + 2 H ~ Foot) T- (31)

and

-E-

(32)
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The above four equations when combined with the limiting values

of Equations (6) and (7) constitute a system of eight simultaneous

equations for the determination of the eight surface potentials

S, 'CF , 4 and !V, . If the stresses specified on the

boundary are time independent the problem is a static problem.

Consequently, the time derivative terms are not present in

Equations (31) and (32) when Equations (5) are used to eliminate

Offn andv from the boundary conditions. These four equations,

together with the limiting forms of Equations (8) and (9), consti-

tute a system of eight equations for the required surface

potentials and their normal derivatives. Similarly, if a

steady harmonic time dependence is assumed, the terms 'tt and

M'tt in Equations (31) and (32) are replaced by- and-ai

respectively when the second normal derivatives are eliminated

from the boundary conditions by substitution from Equations (10).

Again, a set of determinate equations for the surface potentials

and their normal derivatives may be obtained by adjoining the

limiting values of the integral representations, Equations (11) and

(12). These sets of eight equations consitute the desired

integral equation formulation of the first fundamental boundary

value problem of elasticity.

The third fundamental problem of classical elasticity is

formulated in an analagous manner. The procedure is a direct

extension of the previous formulations. For the dynamic

problem the limiting values of Equations (6) and (7) must hold

everywhere on the boundary while for the static problem the

limiting values of Equations (8) and (9) must hold. The boundary

conditions require that on those sections of the boundary where

-14-



the surface displacements are prescribed, Equations (17) and

(18) are to be satisfied and on the remaining sections of 0

w where the surface traction Tis given, Equations (28) and (29)

V must hold. These latter equations can be combined as before

with Equations (4) to eliminate and T, for the dynamic

problem and combined with Equations (5) to eliminate the same

variables for the static problem. Consequently, at every point

of the boundary, there exists eight equations for the determination

of the eight surface potentials • , j , and 4 If the

dynamic problem is reduced to a harmonic time dependence, the

Helmholtz integral representations are to be used. The author

would like to point out that parts of those sections of Reference

(5) referring to the second and third fundamental problems are in

error and should be modified in accordance with the analysis

presented here.

For those problems in which the body force is absent the

displacement potentials satisfy homogeneous equations. Thus, in

the above formulations of the three fundamental problems the

volume integrals are not present in the integral equations.

ii

I
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Further Modifications and Considerations

When the elastic medium is a composite of two or more

different elastic media the previous formulations must be modi-

[ fied. The procedure for setting up the required equations for

two adjacent media will be outlined. The extension to more

F than two media may then be readily accomplished. Denote the

media by medium I and medium II and let terms in medium I be

denoted by the subscript I and those terms in medium II be denoted

- by the subscript II. In addition, let T1.11 denote that part of

the interface between media I and II. Continuity of normal and

tangential displacements across kn implies

H A-, Hc NO + I(Ti?. -ZX. (fn)~

(33)

and

Continuity of normal and tangential stresses across (•,1 implies

¶ {'•1. (1•,). (c,•-ac;)G + (4.),, (c4,-2c4)E
G

+2 Cý H C y
S+(ý,).,(C- G + (,.)t, (c .-zc ,)E

-16-



and

V 'A + 2 - , - otc AL

V H• [i;11 ,.-i -,-• t(•),},,•] •, [cs ..n

' + H [ ./\I'-,'r-,1 -"\ -'H(•,

+ (- () 41
10t = IP , CX- Y4 Y, Y

wherterm ______,_•-•,,• +%, n l mabJlmiate

Vfo qain (5 n 3)b emloingthedslcmnoeta
- ---

(•"~~D X RU I., , ¢)'A? , -"b nd('II•

ipi
The terms j X WAand (PS may be eliminated

from Equations (35) and (36) by employing the displacement potential

equations appropriate for the problem and the medium. The

resulting eight equations when combined with the limiting values

of the integral representations yields sixteen equations for the

I. determination of the surface values of the sixteen functions

c:YIIT ,4VI P~ () Pe1 (U and A



In addition, on those segments of the boundary of either medium

where the displacements or stresses are specified, the equations

h previously devrloped must hold. If the parameters ot and

F are so chosen as to be the arc lengths along the curves =

constant and 0( = constant respectively, the differential forms

E, G and H are equal to unity. This simplifies the boundary

conditions and considerably reduces the numerical effort required

[i to obtain a solution to a specific problem.

In all of the previous development it was assumed that the

elastic medium was finite and bounded by a closed surface. If

the medium is infinite in extent, the integral representations

must be suitably modified and the displacement potentials

must vanish at infinity in a prescribed manner.(9),(12),(13)

The existence of solutions for three-dimensional problems is

discussed by Sokolnikoff and Gurtin, among others, who give

several references.

it
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If
Discussion and Conclusions

By employing methods analogous to those used in potential

theory, the fundamental boundary value problems of static and

dynamic elasticity have been formulated in terms of a coupled

[ set of integral equations and inhomogeneous partial differential

equations. One of the advantages of this formulation is that the

shape of the boundary is directly accounted for. If the geometry

of the cross-section coincides with a coordinate system in which

the equations satisfied by the displacement potentials separate,

it is possible to obtain solutions by eigenfunction techniques.

Another advantage is that because of the similar structure of

the formulation of each problem methods developed for the solution

of one problem may more easily be adapted to obtain solutions for

the others. For example, if a numerical method of solution is

attempted, the integrands occuring in all of the formulations

have the same type of singularity. Thus, a technique that

satisfactorily estimates the contribution to the integral in the

neighborhood of the singularity of one of the integrals may be

used in estimating the contributions of the analogous singularities

in the other integrals.

If in the static and harmonic time dependent problems the

I. integrals are approximated by finite sums, the resultant set of

1 ilinear equations is simultaneous. A similar numerical approxima-

tion applied to the integrals in the initial boundary value problem

results in a set of linear equations which are not simultaneous.

Hence, the implicit and explicit character of the two types of

problems is clearly evident. Also, it should be noted that, the

I -19-
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first and second fundamental boundary value problems in dynamic

elasticity are analogous to the problems of determining the

scattered field due to an elastic wave impinging upon an arbitrary

fixed or free surface.

II After the desired surface potentials are determined, the

displacement and stress fields are obtained by differentiating

the kernels of the integrals and properly combining the resulting

f expressions with the known surface potentials and integrating.

This method of computing the stress and displacement field avoids

I the decrease in rate of convergence of the infinite series that

results when eigenfunction expansions are used to obtain these

fields.

20
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