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FOREWORD

Air Force contract No. AF 04(695)-228, under Capt. S. Gavcus, Jr. as

Project Officer with Dr. J. Kaspar, Aerospace Corporation as Technical

Advisor, embodies three major programs: (1) a rigorous theoreticaland

experimental information extraction study, (2) a high bit density lead

selenide array fabrication program, and (3) an experimental demonstra-

tion of data preprocessing, capability based on the results of the

extraction study and state-of-the-art fabrication capability.

Since the first phase of the information extraction study is of more general

interest than the technique fabrication program it appears desirable to

separate the two as a means of providing wider circulation to the study

effort results. For this reason Vol. II of this Technical Documentary

Report is devoted solely to a detailed review of the information extraction

study to date. Vol. I abstracts salient features of the study program

as they apply specifically to the problem at hand, as well as detailing

technique development accomplished thus far.

H. Graff
Project Manager
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ABSTRACT

The reported work complements present detection theory by providing a

useful mathematical statement of the ideal requirements for systems en-

deavoring to detect time-variant stochastic signals in the presence of

.Gaussian noise. The a posteriori probability approach developed by

P. M. Woodward is employed to state the sufficiency conditions in general

form; these are then reduced to a useful set of requirements for an ideal

detection system through series representation of arbitrary signals.

The results show that a detection system can only provide estimates of

relevant information appearing in a signal-plus-noise quantity; inferences

drawn from these estimates subsequent to detection will say something

about signal present. The results clearly state, therefore, that a detec-

tion system is fundamentally an information detector, and not a detector

of signals.

'Present detection methods are shown to be approximations to the ideal

requirements developed. The ideal requirements are evolved in a form

which permit possible logical improvements to present methods.

Subsequent signal processing of detection system output receives some

attention. Maximum likelihood is considered, as well as an approximate

system model based on a particular interpretation of "psuedo-constant

signal" detection which leads to maximum use of detected quantity.
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PREFACE

This report summarizes the first phase of a study program embodied in

Air Force contract No. AF 04(695)-228, Space Systems Division, under

Capt. S. Gavcus, Jr. as Project Officer and under the technical direction

of Dr. J. Kaspar, Aerospace Corporation. The study aspects of this

contract are aimed at establishing a firm mathematical base for signal

detection from which requirements for passive infrared systems can be

determined.

The basic infrared detection problem was outlined by Dr. Kaspar. It was

at his request that the work of P. M. Woodward be the basis for the study

approach. Credit for any valuable progress in the reported work, there-

fore, must largely be given to his direction. Any shortcomings in this

work are the responsibility of the author.

An opinion tendered is that some of the basic building blocks needed to

place a firm foundation under detection theory appear in this report. The

test of time will determine any credence to this opinion.

Though the reported work sets forth a useful mathematical statement of the

sufficiency conditions for a detection system, much labor must still be

expended to further explore this work and reduce it to practice. Only

after this expenditure of effort and after critical scrutiny by those more

knowledgeable than the author in detection theory can the significance of

this work be properly assessed.

J. Steranka, Jr.
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1.0 INTRODUCTION

An apparatus, a machine or a system if you wish, performs in accordance

with its basic sensory capabilities. That which it seeks to obtain is in-

formation requested by the system proper; that which it does obtain varies

with information climate as well as with its own detective capabilities.

The better its information-collecting properties, the better is the system

total. Detection is indeed a major dictate on ultimate system performance.

lfthe energy-sensing medium is under control, as in active sonar or

radar, a unique signature attached thereto eases the selection of relevant

information from the total environment. In passive detection where the

source under observation has characteristics peculiar to those of its en-

vironment, a detector "tuned" to such characteristics often does well in

following source behavior. Under these circumstances, there is very often

reasonable certainty the received quantity is relevant. Passive detection

in general, however, permits only some weighted measure of relevant in-

formation in the received signal-noise quantity.

In the limit, moreover, detection systems generally involve a weighted

measure of the relevant information content because of imperfections

therein. Here, most importantly, the internal noise associated with a

detection system can govern uncertainty in signal detection. In infrared

and stellar detection systems, the internal noise environment is so ad-

verse at times to rule out these devices for given applications. Sometimes

the problem is so severe as to delay system development until detector

state -of-the -art improves.

Confronted with detection in an adverse noise environment, any one sam-

ple of the signal-noise quantity then has little meaning; that is, any one

sample tells us little about the relative contributions of signal and noise

to this sample. Invariably, therefore, a large population of signal-noise

samples are assembled, and inferred therefrom is an average estimate of
"signal" present. In the limit, this becomes the integral of the signal-

noise quantity. "Signal" detection in the presence of noise, therefore,
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reduces to the formation of some statiLtical estimate of signal present by

observing the signal-noise quantity for some predetermined time interval.

A brief scan of the literature reveals quickly an abundance of attention de-

voted to the detection of time-variant signals in the presence of noise.

Analyses have proceeded in numerous ways through the use of various

statistical and network theory tools, with varied degrees of success.

These tools we might say comprise the area of "Statistical Theory of Sig-

nal Detection."

One approach which appears most attractive, as it clearly commences

with a statement embodying all relevant information available at the out-

put of a detector, involves the formation of the a posteriori probability of

a signal event given the occurrence of a signal-noise event. This approach

was applied successfully to the radar return problem some ten years back

by Woodward. * Since, additional consequential work has been done there-

on. *

In problems as radar return, the time shape of signal sought is presumed

known, allowing the development of rather definitive statements regarding

the sufficient conditions confronting any contemplated detection scheme.

For the general stochastic signal case, however, such unavailable a priori

knowledge of signal time shape can obstruct final definition.

Yet, the clarity of the a posteriori approach as developed by Woodward

beckons us to explore this method for the general stochastic case.

Such exploration, in fact, with the aid of series representation of

stochastic signals, leads to a basic revelation not heretofore treated in

detection theory. A restatement of the a posteriori probability through

series signal representation clearly shows that a detection system is

* Reference 1 (Woodward).

** Reference 2 (Helstrom).
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fundamentally an information detector, and not a detector of signals. In

brief, the results state that the detection system can only provide esti-

mates of relevant information appearing in the signal-noise quantity; in-

ferences drawn from these estimates in a subsequent signal processor

will say something about signal present. This latter operation, involving

"guesswork" on the information measures, has nothing to do with signal

detection, however.

Use of time power series is especially employed in this report to mathe-

matically demonstrate the aforesaid statements. Of interest is the fact

that the results so obtained clearly express the sufficiency conditions for

an ideal detector. They fall out in a form, moreover, which are suitable

for implementation. The results agree with current practices, and show

them to be approximations to the ideal requirements. They also appear in

a form suitable to possible systematic improvements to present practices.

'The basic information detection requirements are further explored through

Fourier series expansion, with the same conclusive success as with power

series. These results alone, together with their product representation,

permit treatment of a broad spectrum of problems.

As an aside, it is of interest to point out that the posterior statement given

through Fourier-power series expansion embodies Woodward's posterior

statement for radar return as a special case. Amplitude-modulated radio

reception is satisfied as well. Frequency modulation can also be accom-
modated, though a form of Bessel expansion should provide a more useful

,set of requirements. This latter statement makes reference to the fact

that the work in this report shows that expansions other than the Fourier

and power series can be used in problem solution. The physical realiza-

tion of the ideal requirements ultimately dictates the signalexpansion which

should be used.

The reported work centers about a Gaussian noise environment, and as

such should find broad utility. Although primary attention is on the
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sufficiency conditions for a detection system, the results are expressed

in a form which explicitly reflect what are the detection system require-

ments and what are the requirements for some subsequent signal pro-

cessing system.

As an illustrative example, a signal processing system for the realization

of maximum likelihood receives attention. The posterior statement gen-

erated through series signal representation is shown to lead to its ready

Simplementation.

Added attention is also given to a signal processor where the signal sought

is approximated by a step-like function. A particular interpretation of

the constant-value steps in the signal processor provides maximum use of

detected quantity.

Though the work lends itself to direct application, numerical examples

are not treated herein. The primary viewpoint taken relates to passive

detection; the results equally accommodate signal detection problems in

active systems, however.

In summary, the reported work complements present detection theory by

providing a useful mathematical statement of the: sufficiency conditions

for systems endeavoring to detect time-variant stochastic signals in the

presence of Gaussian noise.
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2. 0 THE A POSTERIORI PROBABILITY

The basic approach employing the a posteriori probability as set down by

Woodward for time-variant signals is. first presented. A discussion re-

garding the difficulties, and resolution thereof, in this approach for

stochastic signals then follows. With the basic passive signal detection

system outlined next, the general solution for a white Gaussian noise

model is subsequently presented. Discussion on the broad import of this

solution and its extension then culminates this part of the work.

2. 1 BASIC APPROACH*

Fundamentally, the problem of signal detection can be expressed as the

extraction of a signal quantity from a signal-noise quantity. This prob-

lem can be explicitly stated in mathamatical form through the a posteriori.

probability for signal detection.

Development of the general a posteriori statement for such a two-variable

case is derivable directly from the multiplication law of probability, by

which it may be written

P(X,Y) = P(X)P(Y/X)= P(Y)P(X/Y) (2-l)

which reads as the probability of the occurrence of both X and Y is equal.

to both the probability of X times the conditional probability of Y given X,

and the probability of Y times the conditional probability of X given Y.
0

If X is defined as the signal event and Y as the signal-noise event, the a

posteriori probability for signal detection then is

P(X/Y) = (2-2)

* Reference 1 (Woodward), Chapter 4i Statement of the basic approach is
borrowed essentially directly from this text; its extension thereafter,
however, is a sole claim of the author.

2-1



Since in the detection problem Y is the given quantity, equation (2-2) may

be written in reduced form as

P(X/Y) = K P(X) P(Y/X) = K P(X) L(X) (2-3)*

where P(Y) is absorbed into the constant K which itself is so chosen that

the conditional posterior probability totals to unity for all values of X.

The a posteriori probability of equation (Z-3) is, therefore, a function of

both an a priori statement on the signal event X and the conditional state-

*ment P(Y/X). The latter conditional statement is known as the likelihood

function, so designated in equation (2-3) by replacing P(Y/X) with L(X).

This is not a probability statement, however, since it is treated as a

function in X for a given Y.

Assuming noise contribution to an additive signal-noise quantity Y to be

Gaussian with zero mean, the likelihood function for an arbitrary sample

of Y then is

L(X = K exp a(Yx) (2-4)

where a is the mean squared value of noise.

With this result inserted in equation (2-3), we can deduce therefrom that

one such sample of Y tells little about X if noise is severe. Rather than

one such spot sample, we might then ask of the requirements for observing

the signal-noise quantity for some finite time, time interval (0, T) let us

say, thereby endeavoring to get a better estimate of signal present. To

answer this then requires formation of the likelihood function for this

time interval.

To develop this likelihood function, it is convenient to consider band-

limited, white Gaussian noise, that is, a white noise frequency structure

*The constant K will appear throughout the work having.different values

at different times, but always chosen such that the probability statement
totals to unity for all possible events.
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constrained within some arbitrary bandwidth W. Doing this permits noise

representation over time interval (0, T) by a finite set of noise samples,

2WT such samples, in fact, taken every 1/2W seconds, as permitted by

the basic sampling theorem.* Assuming statistically independent samples

permits the likelihood function for interval (0, T) to be written as

ZWT 2WT 2

L(X) =I L(X) = K exp n
n K1 n .= 2N

Since the noise samples are an orthogonal set, as per the sampling theorem,

the sum appearing in equation (2-5) can be written as

ZWT 2

S(Y-X)
2a

weeNn=1 ZaTN Z A~~x2d 26

nise eamples t W, or the mean noise power per unit bandwidth.

Thuas, the likelihood function of equation (Z-5i} can be expressed as

L(X) = K exp - No~ (Y-X)2dt~ (2-7)

and the a posteriori probability for signal event X during time interval
(0, T) of equation (5-3) may be written as

P(X/Y) K P(X) exp = 1 o (Y -X)2dt (2-8)

Expansion of the exponent term in this equation permits the reduced form

P(X/Y) = K P(X) exp )- XZdt exp XYdt (2-9)

0 4

* Reference 3 (Shannon) and Reference 4 (Shannon and Weaver) are

recommended.** Reference 1 (Woodward), Chapter 4.
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where the Y term of the integrand, with Y being given, is absorbed into

the constant K.

Thus, from the final posterior statement in equation (2-9), the only oper-

ation which need be performed on the signal-noise quantity Y involves the

integral of the product XY over interval (0, T). This is indeed an irre-

versible, noise-stripping operation on Y, in essence being the correlation

of Y with all X over interval (0, T). Realization of this integral then re-

presents a just sufficient solution to form the a posteriori probability of X

for any a priori P(X) chosen for X.

Formation of the XY integral, moreover, constitutes the sufficiency con-

ditions for a detection system. Selection of P(X) and determination of the

X integral in equation (2-9) are not requirements of the detection system

itself, but requirements of a subsequent processing system, wherein de-

tection system output may be interpreted as one pleases. If P(X) is known,

then the posterior statement could be formed exactly (if given integral XY,

that is); if some arbitrary form of P(X) is presumed, then the resulting

posterior statement is only as good as the closeness between the presumed
P(X) and the actual case. In neither event, however, does such data in-

terpretation impose additional demands on the detection system itself; it

still need only form the integral of XY over interval (0, T).

In the general passive detection case, time shape of X is not known; hence,
the sufficiency conditions expressed through equation (Z-9) are not directly

realizable, that is, the integral of XY is not directly formable. Resolution

of this point, in fact, is the crux of the reported work.

As an introductory exercise to subsequent work, let us at this time con-

sider a known time shape for X; let this known :shape be some constant

value X over interval (0, T). For this simple case, equation (2-9) re-

duces to

P(X/Y) K P(X exp (2-10)
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The sufficiency conditions for a detection system then reduce to a simple

integral of the signal-noise quantity Y.

If P(X)is assumed to be a uniform distribution, examination of equation

(2-10) shows the most probable value of X equal to the average value of Y

over interval (0, T). Such an assumed a priori distribution is equivalent

to the application of maximum likelihood, of course, which then gives the

same solution, a solution also long since intuitively derived by the elec-

tronic system designer.

in passing, we should make an observation regarding the value of observing

the signal-noise quantity for interval (0, T) as opposed to a spot sample.

,This can be done by comparing the variances of their likelihood functions

for the constant signal case. For a spot sample, equation (2-7) gives a

variance of a Z ; for observation over interval (0 T), equation (2-10) gives
N 2

a variance of N /2T, or acN/2WT. Thus, by this measure, we see an im-
provement in signal estimation of ZWT.

2.2 DISCUSSION OF SUFFICIENCY CONDITION REALIZABILITY

As implied heretofore, formation of the XY integral over a chosen inter-

val (0, T) represents the sufficiency conditions for a detection system.

Formation of this integral permits subsequent development of the poste-

rior statement regarding signal present in this interval. To realize this

integral in passive detection, however, poses some difficulty, as a priori

knowledge of signal time shape is not generally available. Direct im-

plementation appears out of the question, since, for a time-variant

stochastic signal, the integral need be formed for an infinity of X signal

time shapes.

Yet, passive detection systems are in existence today, some of which do

an admirable job in picking a signal from a morass of noise. We might

then conclude from such evidence that these systems must in some way ap-

proximate the sufficiency conditions set forth. If this is indeed true, it
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should be possible to relate present successful practices to the ideal set

of requirements. Moreover, should such a relationship be realized, we

might expect therefrom the direction to proceed to obtain even better ap-

proximations to the ideal set.

To show the foregoing desired objectives to be realizable, we must delve

in the subtle facets of troublesome integral XY. More specifically, we

must examine ways of realizing this integral for X unknown: a noble task

indeed.

It will be shortly shown that prior knowledge of X need not be available to

form this integral, at least in principle, if we are judicious in the way an

arbitrary X is represented. The basic argument underlying resolution of

this integral appears in Appendix C of this report.

Regarding the unknown X itself, we seek a more useful way of representing

this quantity, a representation which would ultimately permit solution of

the XY integral. We see difficulty in forming this integral directly only

because X is envisioned as an infinity of unknown time samples. In a

way, the task would seem less difficult if an arbitrary X were represented

by a finite set of samples through use of the sampling theorem; formation

of the required integrals involve sin wt/t type functions, however, over

time minus infinity to plus infinity, causing us to lose enthusiasm in this

representation.

In this search for a useful form of X, we must always keep in mind the

practicality of implementing the required integration resulting from any

new representation of X. Realizing this, the author cannot help but reflect

*This is not idle talk, for the situation here is analogous to the problem
of realizing better performance with a serial, general-purpose digital
computer through better signal representation. This computer problem
was resolved through reasoning similar to the above. We refer to
Reference 5 and 6, even though they are only available under controlled
distribution. The basic philosophy expounded therein, however, is
lightly treated in Appendix A of this report.
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back to the signal representation used in improving serial, general-pur-

pose computer operation. * Therein, a power series in time was employ-

ed as the general form to represent a signal, because of its ease in im-

plementation. Why not then assume the signal sought in the detection

problem to be also representable by this form? This form can be put to

good use in most cases. Its value lies in the way its coefficients are

chosen, and some extremely powerful selections can be made there-

with. **

If X is represented by a power series in time with arbitrary coefficients,

the solution of the general XY integral is direct - embarassingly di-

rect to say the least. Its implementation, moreover, is straightforward,

involving only successive integrals of Y. The arbitrary coefficients need

not be prestated. The successive integrals of Y measure as best possible

the relevant information content; these coefficients then can be determined

from these measures at a later date.

We shall shortly show formally the simplicity to this general solution.

Presently, we first choose to set forth a model for the general passive de-

tection system for use in subsequent discussion.

2.3 PASSIVE DETECTION SYSTEM

A model for a general passive detection system is depicted in figure 2-1.

Therein, the environment to which a detector is exposed is called the in-

coming energy environment. The signal energy represents that relevant

information requested by the system functions; the remainder, which might

pass through the detector, is termed background energy (or signal noise

environment).

A filter system is inserted between the incoming energy environment and

the detector to accommodate those systems employing some sort of "space
* Appendix Aof this report.

** Appendix B of this report.
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Figure 2- 1. Passive Detection System.
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filtering" prior to detection. This might range anywhere from simple

amplitude modulation to some form of random filtering. The filter char-

acteristic R(t) is defined such that its output is equal to the incoming en-

ergy time function multiplied by R(t). In subsequent work, R(t) is always

assumed to be known explicitly.

The detection system is shown as being comprised of both a detector and

preprocessor. The detection system is assumed to have consequential

internal noise. A preprocessor is included as an integral part of the de-
;tection system to emphasize that provision of some unstated measure of

incoming energy behavior by itself constitutes an incomplete detection

system; it must also state as best possible that portion of relevant infor-

mation contained in its output structure. This latter requirement falls

upon the preprocessor.

In a strict sense, preprocessor is only required to provide a measure re-

flecting that portion of incoming energy appearing in total detector output

quantity. That is, all incoming energy is treated as signal energy by'he

preprocessor, and noise is constrained to mean detector internal noise.

When system functions request a signal with specific information struc-

ture, the preprocessor can be burdened with added special requirements.

Here, background energy and detector internal noise combine to represent

total noise environment.

A signal processor is shown distinct to the preprocessor of the detection

system. This is done since the signal processing operation can be chosen

independent of the detection system. The signal processor task is to take

preprocessor measures of relevant information content in detector output

and construct therefrom, or infer therefrom, the nature of the signal

present. The signal processor function might be in the form of a prob-

ability statement with, or without some decision-making operation, or in

the form of an inferred signal as a function of time. System functions wiln

generally dictate the nature of signal processor operation.
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2.4 GENERAL SOLUTION USING POWER SERIES (BAND-LIMITED
WHITE GAUSSIAN NOISE)

To derive the general solution for a time-variant stochastic signal using

power series expansion we remain with the noise environment which is

band-limited, white Gaussian with zero mean. In terms of the passive de-

tection system given in figure 2-1, all incoming energy can be assumed

to constitute signal, and noise to be internal detector noise; a filter system

is not employed, or, as per figure 2-1, filter transfer characteristic is

unity. The object is to determine requirements for an ideal preprocessor.

Deeming spot samples of detector output to be inadequate, we then choose

observation of detector output quantity for some time interval (0, T) as

the basic detection mode of operation. For the noise environment chosen,

previous equation (2-9) constitutes the posterior statement regarding sig-

nal detection. To aid the reader, this equation is repeated below:

P(X/Y) = K P(X) exp -L Xo t exp - TXYdt (2-li)

We shall now proceed. to restate this expression in more meaningful form

by representing the signal sought through power series expansion.

First, X is written as a power series in time over interval (0, T):

X(O,T) = A0 +Alt +A2t2  • + +Aktk k .+ Antn (2-12)
n=o

where the A's are arbitrary constants left to our choosing. * Using this

form of X in equation (2-I1) results in

* Definition of the A's could be made a priori as per Appendix B, or made
a posteriori on the basis of maximum likelihood (Section 3. 0), most
probable value through use of an a priori distribution, or some other
method suitable to particular system application. They are, however,
constants which can be treated as an arbitrary set insofar as the de-
tection system is concerned.
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1A A Tm+n+l
P(X/Y) = K P(X) expi- Am A -n-n

ex{ z J tlt (2-13)eoo o n=o

Since P(X) and the A's are to our choosing, only the integral term needs

resolution. This is the same integral we were confronted with in Appen-

dix B of this report, wherein it was directly solved through integration

by parts. Proceeding as per Appendix B, we may write

oYroAntndt = An tnYdt

n~ nAf
[ T Tt dT+2 jTt J2

= A EfYdt+ A1 [T f YT - f TYt]

+ A2 [T' fT Ydt-ZT f tfydt3+
Or 0 0 00

k

k+=)m+l k! T(k+l-m)

S-m [Y]] + . (2-14)

whereS' m [Y] represents the mth integral of Y over interval (0, T). This

solution can be written in more compact form as

T o Atnd 00 C m+1 T(n-m+l)s•-m

0 no n-- m1 (n-m+l)l (2-15)

Now, P(X) can be expressed in general form in terms of the A's, that is,,

P(X) = P(Ao, AI, A , Ak,. •) = P(JA1) (2-16)

Utilizing equations (2-15) and (2-16) in equation (2-13) gives
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P(X/Y) P({A} /Y)

W A A m+n+

I e No n=o m=o n(m+n)

2 n+l

0 nno M

S [Y]M (2- 17)

This equation represents a useful statement of the a posteriori probability

of a signal X with unknown time shape in the presence of band-limited,

white Gaussian noise with zero mean. For any chosen P(IAI) and {AI,

only formation of the successive integrals of the signal-noise quantity Y

over interval (0, T) are needed to realize the full posterior statement for

signal detection. The requirements for an ideal preprocessor then become

the formation of these integrals, that is, formation of

S '[YJ -- o.JYdt ; ffYdt; ff.IYdt ; Etc. (2-18)
m1 0 0 0 00 0

The immediate realizability of the aforesaid integrals should be apparent,

though we would hardly choose to realize an infinite set.

Note specifically what power series representation for time-variant

stochastic signals has done to the detection system requirements. It has

removed determination of the power series arbitrary coefficients as a re-

quirement thereof, leaving this determination to some subsequent signal

processing system. This is indeed valid since the equation (2-18) inte-

grals measure as best possible the relevant information in detector out-

put quantity. The arbitrary coefficients can be determined from these

measures by any means we choose. Whatever method chosen, it will not

be impaired by a shorted supply of information, for the infinite set of

integrals reflect all that can be obtained.

Request for direct measures of a priori stated coefficients by a detection

system would represent more than sufficient conditions. This would not
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only be a request for the best measure of relevant information appearing

:in detector output quantity, but also a request for some inferences to be

drawn therefrom. The latter is not a task of basic information detection

which is the only responsibility of a detection system, but a task involving
"Itguesaswork', on the information measures obtained which is the respon-

sibility of some subsequent signal processing system.

We might surmise, therefore, that lack of appreciation of this basic point

has obstructed treatment of time-variant stochastic signals by the theo-

rists in the field of signal detection.

Z. 5 APPLICATION OF GENERAL SOLUTION OBTAINED THOUGH
POWER SERIES

:Using power series representation for unknown signal X, the require-

;ments for an ideal preprocessor become the formation of an infinite set of

successive integrals of detector output over observation interval (0, T),

a-s per equation (2-18). The integrals themselves are directly realizable.

In practice, moreover, signal behavior is often such that formation of

the first integral alone is sufficient to satisfactorily reflect its detection

in presence of noise. Here, length of observation interval T is the

dominant factor, and its value is so chosen that, for all practical pur-

poses, the signal is constant over the observation interval. Sometimes

other system requirements dictate a value of T such that signal must be

considered time-variant over the interval, requiring formation of the first

two or first three terms of the integral set. It can be generally stated,

however, that requirements for an ideal preprocessor, as given in equa-

tion (2-18), can usually be adequately approximated by but a few of the

integral measures at most (that is, if the power series form is an efficient

representation).

Interesting enough, realization of the required integrals by a preprocessor

in no way affects subsequent signal processing. The arbitrary constants

JAI of the time power series representing signal X remain to be chosen
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therein as one pleases. The same is also true with regard to the a

priori distribution for X.

In passing, it is of importance to relate the significance of these state-

ments with regard to applications where signal detected is recorded (or

transmitted outside the system) for use elsewhere. Its further use might

take many varied, and sometimes yet to be specified forms. Retention of

relevant information in this basic integral-measure form permits these

subsequent operations. They in no way impair freedom in operation

thereafter.

Added reference is also made to space systems, wherein signal detected

is ultimately transmitted back to the earth in digital form. Here, con-

straints on such data transmittal are usually so severe that maximization

of data compression is of primary concern. Straightforward sampling of

signal quantity simply involves much too high bit rates. It then becomes a

problem of finding a signal format which lends itself to the most efficient

coding of signal data.

A little thought on the integral measures of equation (2-18) suggests these

measures as a satisfactory signal format. Rather than a set of sampled

amplitudes, we might use these measures to represent a signal as a power

series for some time interval. In fact, related work in this area by the

author indicates this to be highly effective. In such cases, signal is repre-

sented by an integral or a finite integral set, as per equation (2-18), of de-

tector output quantity. Only these integrals are transmitted back to the

earth. Spectral behavior of signal and other system requirements deter-

mine length of observation interval T and number of integral measures,

with these so chosen that signal data bits per unit time are a minimum for

transmittal. Such signal representation for transmittal, moreover, can

be advantageous whether or not the noise environment is of consequence.
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2.6 GENERAL SOLUTION USING FOURIER SERIES (BAND-LIMITED
WHITE GAUSSIAN NOISE)

To show that signal representation through power series is not the only

form of expansion which leads to a general solution, we now show the re-

quirements for an ideal preprocessor if the Fourier series expansion is

employed (though the Fourier series is embodied in the general power

series). The noise model remains as band-limited, white Gaus-sian noise.

Suppose the arbitrary signal X is represented by the general Fourier

series over the observation interval as

X(O, T) = nF cos ( T +
n=o

•-o[ Z17n 2o V~nt](- )
a nsin T- t + bn Cos

where the F's (or the a's and b's) are arbitrary constants, whose defini-

tion can be stated at a later time (the argument used on power series

applies directly). If this representation of X is inserted into the general

posterior statement for band-limited, white Gaussian noise, as given in

equation (2-9) and (2-i1), we see the XY integral to decompose such that

the requirements for an ideal preprocessor become

T T T

f os(Y 61-t+ 6
3 )dt ; Etc. 

(2-20)
0

or
T T T if Ydt f Ysin-tdt and. f Ycostdt

o o 0
T 9T 4

f Ysin tdt and f Ycos-Ttdt ; Etc. (2-21)
0 0
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Thus, with the signal expressed as a Fourier series, the ideal preproces-

sor must provide an infinite set of filters matched to the sinusoids of the

harmonics representing the signal. (Note that need for synchronous de-

tection is embodied in these ideal requirements.)

Since the Fourier series representation can often be better used to ap-

proximate a signal where similar approximation through power series is

inefficient, and vice versa, the two sets of requirements for an ideal

preprocessor, as given by equations (2-18) and (2-20) or (2-21), present

the system designer with formidable guides by which to synthesize his

system.

The comments regarding application of the power series isolution in sec-

tion 2. 5 apply as well to the Fourier series solution given above.

2.7 SPECIAL CASE OF FOURIER SERIES SOLUTION

It is of interest to examine a special case of the Fourier series solution.

Reference is to the case where the signal sought contains only one fre-

quency and is of constant amplitude, that is, the signal can be represented

by

X(O, T) = F cos (w t + 6) (2-22)

The equation (2-11) posterior statement then becomes

P(X/Y) = K P(X) exp - •f cos2 (W t + e)dt

exp {oo Ycos(w t + e)dt (2-23)

We see equation (2-23) is identical with Woodward's posterior statement

for the radar return problem for known signal amplitude. Of course,

equation (2-23) is the posterior statement for exact time behavior of sig-

nal - phase included. Suppose we are only interested in whether signal
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is present. If phase is unknown, posterior statement for presence of sig-

nal requires integration of equation (2-23) over all possible S. Assuming

a uniform distribution for 8 then leads to the modified Bessel form Io as

the requirement for the preprocessor.

Incidentally, if the envelope of equation (2-22) is time-variant, power

series representation of envelope behavior leads to

Y cos(wt + 8) dt ; jjoY cos(wt + 0)dt 2

Ttt

ff Y cos(wt+6)dt3; Etc. (2-24)

as the requirements for an ideal preprocessor. Here again, the posterior

statement is for both amplitude and phase. Integration of this posterior

statement over all 8 then results in a solution suitable to Woodward's

radar return work on signal amplitudes which are time-variant. It is, in

fact, a more direct solution. This same solution is also applicable to

amplitude -modulated radio reception in general.

2.8 PRE-DETECTION FILTER CONSIDERATIONS (BAND-LIMITED
WHITE GAUSSIAN NOISE)

The characteristics R(t) of a pre-detection filter were defined in section

2. 3, as per figure 2-1, such that its output was given by

XR = X R(t) (2-25)

If X and R(t) both are represented by a power series in time, the require-

ments for an ideal preprocessor operating in band-limited, white Gaussian

noise are those given by equation (2-18): an infinite set of successive in-

tegrals of detector output over the observation interval.

If X is represented by a power series and R(t) by a Fourier series, or vice

versa, the requirements for an ideal preprocessor become
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T 21nn C YDoTt coo t dt2

Tt~~o ,o,4,Vn +..f fYcos(-_T t+ n )dt fO 00_ n d

This solution, incidentally, also satisfies the case where a signal is re-

presented by the product of a Fourier series with a power series.

If both X and R(t) are represented by a Fourier series, the requirements

for an ideal preprocessor are

Fo fYcos( +nt em) cos(-T t + On)dt (Z-Z7)

The preprocessor requirements given through equations (2-18), (2-26)

and- (-2-7) then represent a set of design guides which should cover most

cases arising in practice.

One case not covered by the above set, however, is when the pre-detection

filter frequency modulates the signal. Writing the output of the pre-de-

tection filter for this frequency modulation as

XR = a(t) cos f(t) (2-28)

and expressing a(t) as a power series leads to the requirements for an

ideal preprocessor concerned with the general case of frequency modula-

tion as

3r
T T t c dT t t 3

Ycosf(t)dt ; o/foCOSf(t)dt ; ffycosf(t)dt;etc. (2-29)
0 00 00 0

In, each of the above cases, explicit knowledge of R(t) is presumed known;

the ideal requirements, therefore, have embodied therein a request for

synchronous detection.
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2.9 GENERAL GAUSSIAN NOISE 'CONSIDERATIONS

Though the general solutions heretofore obtained were for Gaussian noise

,involving independent samples, it can be readily extended to include cor-

related Gaussian noise with some additional labor. First, however, it is

necessary to perform a transformation on the noise function in order to

generate a set of independent noise samples. It can then be shown* that

the posterior statement for signal detection may be written asi

P(X/Y) K P(X) exp - g XQdt! exp YQdt (2-30)

where Q i-s defined by the integral equation

T
XR(t) % f (t-s) Q(s)ds (2-31),

with ON being the noise autocovariance. From equation (2-30), we see the

sufficiency conditions for the preprocessor become the generation of in-

tegral YQ.

Most often ON' or its integral, is well behaved permitting its represerita-
Stion in Taylor's form of the time power series. With O N so represented,

and Q assumed in the form of representation chosen for XR(t), equation

'(2--31) should generally lend itself to ready solution. This being so, the

,requirements for an ideal preprocessor are again dependent on the repre-

sentation chosen for XR(t), being either those in equation (2-18), (Z-26),

or (2-27) for power and Fourier series expansions of X and R(t).

2.10 A FEW COMMENTS ON SERIES SOLUTIONS

A close examination of the series solutions presented shows their approx-

imations to represent methods practiced today. We leave discussion of

these approximations to the reader, who is probably better versed in

* Based on Reference 2 (Helstrom), Chapter 4.

2-19



current practices. A clear statement of these approximations, as per

our solutions, is in itself a successful accomplishment. Note the logical

structure of these series solutions, moreover; if the presently employed

approximation is inadequate, they clearly express the next best approxima-

ýtion which can be made.

It should be emphasized that the most important analytical point developed

ýis that the XY integral, which defines the sufficiency conditions for a

preprocessor, is directly solvable if the signal X is expressed as a series:

expansion in time with arbitrary coefficients. Determination, or selec-

tion of these arbitrary coefficients is a task for the signal processing sys-

tem, and not a task of the preprocessor.

Though only Fourier and power series are treated herein, one is not re-

stricted to such signal representation. Many attractive expansions are

available, especially those which are formed from an orthogonal set of

functions. The problem application will ultimately determine the best

type of expansion to be employed for solution. Use of the Bessel form,

for example, appears to offer advantage for frequency modulated signals

as well as certain pulse type signals.

From a practical point of view, that form of expansion which converges

most rapidly for the type of signal to be accommodated and whose terms

lend themselves to ready implementation should be chosen. Rapid con-

vergence implies only a few terms of the expansion need be implemented

to realize a good approximation to the ideal set Of requirements.

Use of the a posteriori approach not only justifies itself, but also strongly

recommends itself as the approach to be employed on signal detection

problems in general. It directly identifies the sufficiency conditions for

detection, which can tnen be readily reduced to usable fcorm through series

expansion for signal representation.
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3.0 MAXIMUM LIKELIHOOD FOR POWER SERIES REPRESENTATION

Though not interested in signal processing,, per se, the simplicity of real-

izing the maximum likelihood method through series representation for

time-variant stochastic signals causes us to devote consequential attention

to its implementation. It also serves as an example of numerous methods

by which the arbitrary coefficients of the series expansions employed

could be obtained.

Maximization of the likelihood function appearing in the posterior state-

ment for signal detection implies that all X signal time shapes are equally

likely to occur during interval (0, T), that is, any set of arbitrary con-

stants for an expansion of X are equi-probable. The a priori X probability

is then a uniform distribution representable by some arbitrary constant.

This constant itself can always be absorbed by the all encompassing K

which accompanies each of the posterior statements.

Thus, assuming equi-probable a priori probability permits a reduced

form of the posterior statement, that is,

P(X/Y) = KL(X)dX (3-1)

being only variant with the likelihood function.

3.1 BAND-LIMITED WHITE GAUSSIAN NOISE

Let us examine the band-limited, white Gaussian noise case having zero

mean. As per equation (3-1) for equi-probable a priori probability, the

posterior statement for signal detection becomes

P(Xl/Y) = K exp [ 1 (Y-X)2dt dX (3-2)
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Application of maximum likelihood method to equation (3-2) involves min-

imization of the integral term therein. Minimization of this integral

term is in itself a statement of the least squares method. For the

Gaussian case, maximum likelihood always encompasses least squares.*

Application of least squares to a general time function X represented as

an expansion in time results in a solution in term.s of matrices having in-

finite rows and columns. Approximations to X, however, permit easy

solution. This will now be shown.

Suppose the interval (0, T) is so chosen that X over this interval can be

reasonably approximated as X. Equation (3-2) can then be written as

P(X/Y) : K exp (yXdt dX (3-3)

where X may be expressed as

X(, T)+ A tm (3-4)

with rn less than infinity. *

It can be shown that minimization of the integral term in equation (3-3) is

realized by choosing the A's in accordance to the matrix equation

[c][A] = [B) (3-5)

whose elements are given by

Cij = tJdt ; aj = AOR A1,A,•A ; ' i f t'Ydt (3-6)

or

* Reference 7 (Hald), Chapter 8.
** We could just as well choose the Fourier series expansion.
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T T2 T3 Tm+1

T T 3T 4 T z
-f - -yr -M+1

[C) T 3  T 4  T 5  T m+3  (3-7)

T M T + T m+3 TZ+

T + -M+T TM-+3  T 2-M-+Z

0

A 1

[A]~ A 2  (3-8)

Am

~1 0 0... 0 d

T -1 0 ... 0 SYdt 2

Tm

(3-9)
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where the elements of the rows in the right-side matrix of equation (3-9)

are generated from

[ Sum of m i+i m! (3T(m-i+l)
Row Elements T m-i+l)

Thus, with m and T specified, the A's can always be determined in terms

of the successive integrals of Y over interval (0, T) through equation (3-5).

To illustrate this, we will now apply least squares to the three simplest

cases, that is, m=o, m=l, and m=Z.

3.2 SPECIFIC EXAMPLES

If m=o is chosen, then the approximation to X is

X(O, T) A X 0 A (3-11)0

and equation (3-5) becomes

['r][A0] = [ST0Ydt] (3-12)

or A is .given by

Ao = I Ydt (3-13)

If m=l is chosen, then the approximation to X is

X(O, T) A 0 + Alt (3-14)

and equation (3-5) becomes

T2 -T T~t( - 5

T T A -[ -1 0 Ydt

A1 T 1 dt
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or A0 and A 1 are given through

Ao 2•Z Ydt

A1  6 212 Ydt2

If m=2 is chosen, then the approximation to X is

X(O, T) X= A° At + (3-17)

and equation (3-5) becomes

T T T A° I o 0 Ydt
o#

T2 T T AT = T -t Ydt (3-18)
2 3

T 3 T 4 T 53 T Tt tt 3,
T AT 2 ST 2 oo0oYdt3

or Ao, Al, and A 2 are given through

3 24 60 " dTAO • -•-• •-• Ydto
0 TZ 73 o

24 168 360 T t 2
A 1  -1 - -T-TT- Ydt (3-19)

2OT Tt

360 T
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3.3 COMMENTS ON IMPLEMENTATION

Note again that the preprocessor operations involve only, integrals of Y.

Specification of the approximation to X will determine the number of inte-

grals to be formed by the preprocessor. Determination of the A's in the

X approximation through maximum likelih•od is not a preprocessor oper-

ation, however, but a part of the subse-quent signal processing system.

The same preprocessor integral measures could also be used to determine

the A's by a method other than maximum likelihood.

It should also be noted the simplicity with which maximum likelihood can

be realized in a subsequent signal processor through these preprocessor

integral measures. With m and T specified, the elements in the matrix

relating the A's to the integral measures, as in equations (3-13), (3-16)

and (3-19), could be precalculated and stored therein. A simple set of

multiplication-addition operations each observation interval would then

realize maximum likelihood.

In the case of earth transmittal of signal data from a spacecraft, only the

integral measures need be transmitted. Determination of the A's there-

from (or implementation of signal processor) could be done at the earth

reception station.

Note also that the work given herein is applicable to least-squares curve-

fitting in general. The quantity here would be some continuous function in

time which can beapproximatedby some truncated power series in time.

The constants of this truncated power series could then be realized through

the same equation (3-5) matrix relation in terms of the integral measures.
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4.0 APPROXIMATE MODEL FOR TIME-VARIANT STOCHASTIC
SIGNAL

As heretofore implied, the time-variant stochastic signal we seek to

detect in the presence of noise can often be approximated over any one

observation interval (0, T). As in the previous section for maximum

likelihood, that approximation consistent with information measures pro-

vided by a preprocessor would be a truncated series expansion in time.

Choosing to approximate the signal sought by some truncated time series
X, the posterior statement for signal detection can be written in approxi-

mate form as

P(X/Y) !• KP(R) L(X) (4 -1)ý

Of primary interest is that approximation of X which assumes X to be

essentially constant over any one observation interval. The simplicity in

implementing the requirements for a preprocessor resulting from such

an approximate signal form is its major attribute.

As will be seen herein, it is most convenient to consider the constant X

signal over any one observation interval to represent the time-average of

X over this interval; that is, from equation (4-1), the posterior statement

for signal detection for any one observation interval becomes

P(X/Y) • KP(X)L(X) = KP(Xt)L(Xt) (4-2)

with Yt representing the time-average of X over an observation interval.

The latter form of the equation (4-2) posterior probability leads to a
simpler statement of the general Gaussian noise case. This we shall pro-

ceed to show. In addition, it will be shown that the time-average esti-

mate can be interpreted as an estimate of the signal at the mid-point of

an observation interval. With such signal mid-point estimates, it is then
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possible to employ a variety of interpolation schemes in a subsequent

signal processing system.

4. 1 TIME-AVERAGE ESTIMATE FOR BAND-LIMITED WHITE
GAUSSIAN NOISE

We shall now develop the approximate posterior statement for signal de-

tection in the presence of band-limited, white Gaussian noise with zero

mean in terms of the time-average estimates.

The density function of the time-average of noise over interval (0, T) will

then be Gaussian in form, since

17 I I jNdt r(4 -3)

is but a sum of terms each of which is Gaussian. Since any one sample

ýof noise is assumed to have zero mean, the aforesaid sum will also have

zero mean. Thus, the time-average noise density distribution will be of

the form

P K ext (4-4)

2

where only the variance a 2 must be determined.

A direct way of obtaining the variance of equation (4-4) is through use of

the basic sampling theorem. Choosing to represent the noise function N

by a finite set of samples taken at 1/2W equally spaced time points across

(0, T), where W is the bandwidth of the noise spectrum, the time-average

of noise appearing in equation (4-3) may be written as

1-JNdt = N (4-5)
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where N. is any one naise sample of the finite set. Assuming independent

samples, the variance of this sum can be determined as

2 1 2 ZWT 2 1 2 N
a 7t UNI= (a2W-W'T 2WT(NoW) = (4-6.)

where N W is the variance of any one noise sample and N the meano a

noise power per unit bandwidth. Thus, the density function of equation

(4-4) for the time-average of band-limited, white Gaussian noise becomes

P(Nt) = K exp (Nt)Z (4-7)

Since the time-average of noise is by definition

wt 4 _ y-t . t (4-8)

where

Rt 4_JXdt and yt + f.ToYdt (4-9)

then use of equation (4-7) in equation (4-2) gives the approximate posterior

statement for signal detection in presence of this noise as

P(X/Y) K p(7t) exp V(tNt- KY (4-10)N 0o/T (-0

As in previous work, we choose to simplify this expression. We may do

this by examining the exponent term more closely. By expansion, this

expression becomes

(Vj•t . x-t)2 T 1t 2

o/T N r 0 o[ 2 TN [Ydt]J Xdtj + No--[xdt]

(4-3l)
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Since the integral of Y in practice will be given, the first term on the

right-hand side of equation (4-11) may be absorbed into the constant K,

thereby reducing equation (4-10) to

P(X/Y) '" KP(,t) exp{- -N XdtIT

For convenience equation (4-12) is written as

P(X/Y) = KP(Xt) exp -X 2-- exp JY dt (4- 13)

that is, we desire an estimate of the time-average of X over some obser-

vation interval (0, T). Note that our results coincide, as they should,

with the results for the constant signal case as given in section 2. 0,

equation (2-10). Identical to the constant signal case, therefore, the suf-

ficiency conditions for a preprocessor remain as the integral of the signal-

noise quantity Y over interval (0, T). The simplicity of this implementa-

tion again is our justification for theassumed approximate form for signal

X.

4.2 TIME-AVERAGE ESTIMATE FOR THE GENERAL GAUSSIAN
NOISE CASE

The approximate posterior statement for the general Gaussian noise case

in terms of the time-average estimates can be directly expressed as

P(X/Y)KP() (Xt N expl (At +)UN)]ydt. (4-14)

where 1N i-s the mean value of noise (the mean of any one noise sample

being equal to the time-averaged mean of noise) and 2 is again the
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variance of the time-averaged noise quantity. This variance is obtain-

able through
2a 2 T t

2 =f 2t t)dt2  (4- 15)

where z is the variance of any one noise sample and alt) is the noise
w N

correlation coefficient. Derivation of this expression for variance is

shown for an arbitrary signal in Appendix D of this report.

Again note that the requirements for a preprocessor remain as the

integral of the signal-noise quantity Y over some observation interval (0, T).

As a side interest, equation (4-14) is used to re-derive the approximate

posterior statement for band-limited-, white Gaussian noise. This is

done in Appendix E of this report.

The approximate posterior statement of equation (4-14) is also obtainable

directly from the general solution for correlated noise outlined in

section 2.9 by equations (2-30) and (2-31). This is not shown herein,

however.

4.3 TIME-AVERAGE ESTIMATE FOR PRE-DETECTION FILTERING

The heretofore developed posterior statement for time-average quantities

is now extended to encompass detection problems involving a restricted

class of pre-detection filters.

As stated in section 2. 3, we constrain ourselves to filters whose output

is given by

XR = XR(t) (4-16)
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Some difficulty exists if we attempt to develop the posterior statement

for such filter action directly as done in the previous section for R(t)

equal to unity. This difficulty exists for R(t) represented by a Fburier

series, that is,

CO

R•t) F• coo Tt + % (4-17)
0= nh

leading to
eo

RX F co =~ t +) (4-1n

Replacement of Xt in the equation (4-8) time-average noise definition by

the corresponding time-average of XR sees this latter quantity to be zero

for observation interval equal to multiples of carrier period (since X

itself is assumed constant over the interval of interest). Disappearance

of this term causes equal disappearance of X from the eventual posterior

statement. Proceeding in this fashion, therefore, causes the time-average

approach to break down.

Such difficulties can be avoided by working with (Nt)Z directly rather than

with Wt itself. That is, by writing

t

t
(Iqt)2 _Y2 -ZXY Fn Cos (Z rnt + en9

+X [Fn cos(Zt t + (4-20)
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Since we are interested in these; time-averages over some interval (0, T),

equation (4-20) may be written as

1 T T
(0t)Z = "" YZdt - 2lf 4t + 9n)dt

+1 T (4-21)
+ [X 0 Fn cos(0 t + Onf dt- ot (4-21)

Moreover, since X is assumed constant over the interval of interest,

where the constant value represents the time-average of X over the

interval, equation (4-Zl) may be written as

Y•t)t - XI Tt- Y n;=Fn s (•'W•t + 19)dt

+ T F Co[_ c n nt+ dt6)]2 t (4-22)

(The ambiguous use of Xt above can be somewhat misleading, though here

it is meant to represent some constant value which reflects time-average

of X over the interval.)

Insertion of equation (4-ZZ) into the approximate posterior statement for

time-average estimate of the equation (4-10) type results in

P(X/Y)TKP(7t) ex C tep R
T- - 2.L f , Y dt-- P r

1 TFt o2To-tT w

F CO WnT + 6 n]dt

exp Xt- T - F Coo(ffn 11 (4-23)nt Tt
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With Y being given, the first exponent term can be absorbed into K,

resulting in

P(X/Y) Z KP(X) exp -( F coo + Z e dt

(2T 2 n (Ttenj

exp Fn cos(_._t + nt) dt (4-24)

This is a satisfactory posterior statement. (For simplicity sake, the

noise mean value was assumed zero.)

Equation (4-24) calls for preprocessor requirements to be an infinite set

of filters matched to the sinusoids of the harmonics representing the R(t)
Fourier expansion. (In keeping with section 2. 3, it was again assumed

that time behavior of R(t) is fully known.)

4; 4 MID-POINT ESTIMATE

Much as the discussion in section 3. 0 on maximum likelihood, the sub-

sequent work also relates to signal processing which might be done with
those measures provided by the detection system preprocessor. It is
given as added support to the time-average interpretation utilized hereto-

fore in sections 4. 2 and 4. 3.

,Primary value in such interpretation is that signal time-average over

observation interval best reflects signal value at mid-point of observation

interval. With such point estimates of signal available, various inter-

polation schemes are possible in a signal processing operation.

To show this, we draw from Appendix F the expression describing

variance of difference between signal value at any time during an
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observation interval (0, T) and time-average of signal over this interval.

The equation for this variance is

CP2 = a21,- 4.2 xtd 2 1 X(t)dt

2 t 2

+ -T721 Px~~dt(4-25)

where Ox(-t) is the signal correlation coefficient.

As expected, the variance of equation (4-25) varies with time over the

interval, depending upon what point in time is chosen for the single

signal value.

From the nature of the expression, we would expect the variance to have

a minimum at some point in the interval, with intuition suggesting the

mid-point as the most likely place.

Referring to the derivation in Appendix F, we see the signal correlation

coefficient used therein such that it is always either zero or positive

valued, that is,

0 :9Px(t) '9 1 (4-26)

Thus, the integrals appearing in equation (4-25) will always be positive,

monotonically increasing functions. This being so, the variance will then

be least when the sum of the first two integrals is a maximum.

Owing to the condition in equation (4-26) and that in practical situations

P(t) will itself bernonotonically decreasing over a prescribed interval

(0, T), the sum of these integrals will be maximum when their upper

limits are both one half the interval length (T/ 2). Thus, the minimum
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variance of the difference between a signal value over the interval and the

signal time-average over this interval occurs at the mid-point, and is

-n 4 )pX- dt + A (t)dt2 f (4-27)

This we see is in agreement with our intuition heretofore stated. As an

aside, the maximum variance occurs at the end points of interval (0, T),

being

[ Ma ~ 1 4. X + 2 f,(t)dt (4-28)

The most important consequence of equation (4-27) is that, if the pre-

processor is constrained to only the integral of the signal-noise quantity,

then utility of this preprocessor measure in a subsequent signal processor

is maximized when this single-integral measure is interpreted as an

estimate of signal value at mid-point of observation interval.

Assuming such an interpretation in a signal processor then permits a

variety of interpolation schemes to be employed therein. If boxcar

interpolation were used, the result would be the step-like form (a form

which itself could have been taken as the starting point for an alternate

derivation of the approximate posterior statement).

Linear interpolation between these mid-point estimates could also be used

to better represent signal time form, as well as some more sophisticated

scheme predicated, on the more ideal. sin wt/t type interpolation.

Perhaps it is important here to point out that, much like the preprocessor

has the task of maximizing relevant information from signal plus noise,

so must the subsequent signal processor see that preprocessor output is

most effectively utilized.
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As further point, let us develop the posterior statement for mid-point

estimate in terms of time-average quantities. We may do this by commenc-

ing with the joint probability statement involving, mid-point .M., signal

time-average Xt and signal-noise time-average 7t. First writing the

identities

P(XMI X, Yt)_- P(XMp t) P(-Y/XMX3)

- P(XM, RI)P(7,/t)

- P(XMI Xt) L(Xt) (4-29)

and

P(XM' IF,Yt) = P(YT)P(XM# x/Y4t) (4-30)

where

P(Yt/XMXR) = P(Y't/•) = L() (4-31)

we may then form

P(XMX/YT) =P(XM, Xt)L(X-

P(Yt)

= K P(XM,3 t ), L(-K') (4-32)

where P(Yt), with Yt given, is absorbed into K.

The desired posterior statement then is a marginal probability of equation

(4-32). This marginal probability may be formed by summing over all
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X . Denoting an arbitrary value of x by •. and summing over all i,
I

the desired posterior statement then becomes

P(XM/t T P(XM, X1 -I
M ~II

=K P(XMP X'j) L(3r!) (4-33)i

Compared with equation (4-Z), we see only the a priori probability for
signal time-average being replaced by a joint probability and a request
made for a summation over all possible signal time-averages.

As an oft repeated reminder, we again say that any manipulations involving
interpretation, interpolation and the like in a subsequent signal processor
in no way affect requirements for detection system preprocessor.
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5.0 A PRIORI CONSIDERATIONS FOR APPROXIMATE MODEL

To consider a detection system for any application, its effectiveness ulti-

mately must be denmonstrated. Since that employed will invariably repre-

sent an approximation to the ideal set of requirements, as implied through

'the series solutions of section 2. 0, it must be shown to be the best com-

promise between performance required and allowable equipment costs.

The design should reflect maximum "performance-per-equipment-cost"

figures of'merit.

One detection scheme can be weighed against another through the simple

expedient of comparing likelihood functions, with the means and variances

thereof receiving attention. Mean value will indicate sensitivity of likeli-

hood function to signal fluctuation, and variance the deviation about the

mean. For the Gaussian type likelihood functions used in our previous

work, consideration of these two parameters should suffice for such com-

parison.

Ultimately, however, comparison of likelihood fun ctions must be supple-

mented with an evaluation of total system behavior, signal processor in-

cluded. This is necessary to avoid heavy emphasis on consequential

changes in likelihood function which have little effect on the a posteriori

probability.

To do this indeed requires knowledge of the a priori distribution, some-

thing which may not be available. If not known, a best guess must be made

regarding this distribution and a hypothetical model set forth, at least for

analysis purposes. The model need not necessarily be the same a priori

distribution underlying the ultimate signal processor functions, however.

Subsequent work will assume the a priori distribution to be Gaussian,
meaning the a posteriori probability itself will also be Gaussian. The

mean and variance of the posterior statement will receive primary atten-

tion. Here the mean will be shown to reflect sensitivity of the detection
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system to signal fluctuation, with variance describing behavior about the

mean.

The approximate posterior statement based on time-average quantities

developed in section 4. 0 will be used in subsequent work. Interpretation

of performance obtained therethrough will be presented. For reference

sake, this expression is repeated below:

P(X/Y) 2KP(Xt')e exp (X't+. AN) NT Ydt (5-1)

where MN is the mean value of noise and aqt the variance of the time-

average of noise given by

a 2 ZaNNZ (5-2)

with aNz the variance of any one noise sample and PN(t) the noise correla-

tion coefficient.

5.1 GAUSSIAN A PRIORI DISTRIBUTIONS

We now set down several forms for the a priori distribution vhich will re-

ceive attention in the subsequent sections.

Where behavior over any one observation interval (0, T) adequately de-

scribes the signal stochastic process, the a priori Gaussian probability

can be written in terms of its density function as
Po•t) 1 exp { (X •t xtAN)2) dt (5-3)

x 2
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where px is the average value of the signal and

t2 Tt
2 20c x 2"-.Zt =o Px dt (5-4)

with a2 the variance of the signal and px(t) the signal correlation
coefficient.

Where behavior over any one observation interval is also dependent

upon behavior over previous interval, the second distribution for

the Gaussian a priori probability applies, which becomes

t t
P( n, Xn-1) 1 exp

x x x x

- iA) 2 2 -t ~-jix) -x~lAt

+ ('t--h 2j~ ~ (5-5)

where Rt represents time-average over present interval, Xtn n-l

time-average over previous interval, and p-t is defined by
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T2 • Tpx(t)dt2 JTJPTx(t)dt 2

=)- T' 2 lit,2 X a (5-6)
2ffpx(t)dt2

The derivation of P-t may be. found in Appendix H.

If the time-average is interpreted as the mid-point value of the

signal, as per section 4. 4, and if behavior over any one interval

adequately describes the signal process, the a priori probability is

now replaced by a joint probability in the mid-point value XM and

the time-average signal value Xt. This is shown in equation (4-33)

of section 4. 4. For a Guassian X, thus joint probability is

P(X M,

21tM 2tF-px'R aa.t( P -t)
X-2- ZM t (XM-dx)lXt-Ax)

+ (xt-Ax) dXMd-t (5-7)

where , -t is defined by
PXM, X

za2 T
x (t)dt 2oP (t)dt

p -t- -t 0(5-8)

The derivation of p x-t is presented in Appendix I.

5.2 GAUSSIAN A POSTERIOR! DISTRIBUTIONS

We now present the a posteriori probabilities based on the time-average

likelihood function of equation (5-1) for the three a priori distributions

presented in section 5. 1.
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For the time-average Gaussian a priori distribution for any one observaý

tion interval given in equation (5-3), the posterior probability becomes

a, (xtM) 201 -

where

T

MI [a Mx + c•t(1# t Ydt-I )]

[ a ýt +oj

and

x a§Ia~
Lcrt + 4J

Where present signal behavior is conditioned on behavior during previous

observation, interval as described through the joint statement of equation

(5-5), the posterior statement can be written as

P( ) e Xp n .) exp - •t

tt 21

n nIn, n-1 (

(Xt+IlNl T

exp n Ydt

Tc7t f0

KP(9 Rt xp (tn+IN 2 .10

n_ (X- ,n

e a2  n + 2 AN)t

exp n - 42 d-Xt

ao .2 2 22 2 n
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where T

2 -t 2fd-u
V(' -P-t)Ax +O0'N-tp-tXn -+ -t (1 P.p)( f0 Ydt-ul

xx

c o-+t,2 (1 -74~)xZ =

If the time-average of the signal is interpreted as the mid-point value,

then as per equation (4-33) in section 4. 4 the posterior statement becomes

P(XM e K YP(Xt R-exp

Mo

I TV oT

Upon employing equation (5-7), we then have
""t :- 1X- / I ) 2

P(XM~'t =Y. exp (• )22Ca3

7 ~203

where = + 1 fT (5-12)

"P3 (Axe+cM ( 12(axa'x + a z (St

and

axa'Xt [axtvl - p '3)+ ]

•3 ~(Ux° + aN )

5.3 PERFORMANCE FOR TIME-AVERAGE A PRIORI DISTRIBUTION

Let us now examine performance of a system employing the step-like

approximation of a signal quantity. We choose first the posterior state-

ment of equation (5 -9). which is based on a Gaussian a priori distribution
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for any one observation interval. Examination thereof of information

obtained through detection can be made by utilizing the "information change"

definition developed in Appendix G.- Therein information change was

defined as a fractional change in variance, that is,

IC 4 &rior Variance] - [?osterior Variance] (5-13)
LPrior Varianc•

Thus, using equation (5-9) the above equation becomes

ic 1  y (5-14)

Ot + CN.

From equation (5-14) we see change in information through detection is

zero in the limit where noise becomes infinite. Examination of the time-

average variances also sees this information change become a constant

less than unity as length of observation interval becomes infinite.

In practical situations, the information change definition should be

satisfactory. The formal definitions of information gain (See Appendix G)

should also be applicable with no foreseeable difficulty. The simple in-

formation change should usually suffice for design purposes, though the

formal definitions should be used for extensive information flow studies

regarding the overall system.

Of great interest also is an understanding of how well the detection system

follows signal behavior. One way of examining this is to assume the

system proper will choose the most probable value of posterior statement

as the signal value during the observation interval. For the Gaussian

posterior statements, this will be the average value thereof.

Now, signal will fluctuate during the observation interval with a standard

deviation ax, whereas the time-average detected quantity gradually
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becomes equal to the sum of signal and noise means, as length of obser-

vation goes to infinity. Thus, in the limit, the time-average detected

quantity is insensitive .to signal fluctuations (or noise fluctuations, for

that matter).

There are many ways in which sensitivity of detected quantity could be

expressed. Perhaps one of the simplest, and still satisfactory methods is

to define a sensitivity factor based on ratio of change in mean of detected

quantity for change in signal time-average to standard deviation of signal,

that is,

S4_I d•Vt (5-15)

or for the posterior statement of equation (5-9),

S -1  - (5-16)

11

To simplify matters, equation (5-16) can be examined at one standard

deviation of X, giving

I (5-17)
G~t+ O-t ax

This sensitivity factor then gives us a direct feeling for how well time-

average detected quantity responds to signal behavior during an observa-
tion interval (Note that as Tapproaches, infinity S1 goes to zero). Use of

both the equation (5-15) sensitivity factor and the equation (5-13) infor-

mation change can act as "rule-of-thumb" guides for the system designer.
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5.4 PERFORMANCE FOR CONDITIONAL TIME-AVERAGE A PRIORI
DISTRIBUTION

Use of the conditional time-average a priori distribution to develop the

posterior statement is now examined. The posterior statement in question

is given by equation (5-10).

Using the equation (5-13) definition of information change, we have

2 2 2 2

IC~ = alt (I - Pt) + P Xt (5-18
2 2 2 Za_ t +-•.. t (1 - P t)

Here, it is seen that the change in information is heavily predicated an

correlation in the signal quantity, since knowledge of time-average of

signal during previous interval is presumed known.

A question might arise regarding where this knowledge of previous

signal behavior is obtained. Generally such knowledge will not exist.

That estimate of signal time-average determined during previous

observation interval could be employed. Though in error, no serious

difficulty can be envisioned in its use in a properly designed system.

The sensitivity factor of equation (5-15), evaluated at one standard deviation

of signal time-average, for this posterior statement becomes

-[crt (1 pyt) 2 XI (5-19)2' :LZ Z 2-"'.1 o

Notice as the correlation coefficient approaches unity the sensitivity

becomes zero. This is as it should be for heavily correlated signals.
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5.5 PERFORMANCE FOR MID-POINT A PRIORI DISTRIBUTION

The posterior statement for the. mid-point interpretation given in equation

(5-12) leads to the following expressions for information change and

sensitivity:

--3 = xU (5-20)

4X +~t

and
S3 Pr X M.0 ,XtOCx t] t

s 3-2 - (5-2 1)3 a X '73 + 0jt : •x

These expressions are not examined to determine actual gain realized

through such interpretation. This can be done by comparing the foregoing

quantities with equation (5-14) and (5-17).
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6.0 CONCLUDING REMARKS

The a posteriori probability approach, as developed by P. M. Woodward,

was shown to lead directly to sufficiency conditions for a detection system;

reduction of these conditions to practical form was shown to be possible

by signal representation through series expansion.

Examination thereof for cases seeking signals with unknown parameters,

especially those faced by a passive detection system, revealed the "nor-

mally assumed" basic requirements for a detection system to be an im-

proper statement of the problem. Representation of an unknown signal

by an infinite series with arbitrary coefficients clearly demonstrates this

point. Through this representation, a restatement of these sufficiency

conditions showed detection system requirements to be the formation of an

infinite set of statistical estimates reflecting all information that can be

obtained, from which the arbitrary coefficients can be formed. Forma-

tion of these arbitrary coefficients, however, was shown to be a task not

of the detection system, but a task of some subsequent signal processing

system.

Two series expansions received attention in this report: power series and

Fourier series in time. The various sets of detection system require-

ments obtainable through these two series expansions alone provide the

system designer with rather impressive guides by which to resolve a wide

variety of problems. In fact, m-ost detection system problems., both ac-

tive and passive, should lend themselves to solution therewith.

Solutions through other series expansions are also possible. In a practi-

cal sense, however, one should choose those forms of expansion which

converge most rapidly for the types of signals to be accommodated and

whose solutions thereby lead to ready implementation. Rapid convergence

implies only a few terms of the series expansion need be considered to

approximate the ideal set of requirements.
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,The solutions given in this report revealed present practices as approxi-

mations thereof; the exact nature of these approximations is clearly ex-

pressed. Moreover, the form of solution given allows logical improve-

ments to present practices.

The consequences of the reported work with regard to present and future

,activities cannot be stated at the present moment; this work must stand

the test of time. Moreover, an enormous amount of labor remains to

further explore this work, and especially to reduce it to practice.
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APPENDIX A

REAL-TIME COMPUTER OPERATION

As background to the work presented in the body of this report, we exam-

ine a facet of the digital computer world which finds itself confronted with

the basic problem of suitable signal characterization. Specifically, we

discuss how a serial, general-purpose digital computer accommodates a

typical real-time problem, and roughly relate how improved performance

is obtainable through better signal representation, better representation

through function expansions. The similarity between this computer pro-'

blem and signal detection is very striking in many respects.

First, consider the typical general-purpose digital computer. The com-

puter has stored in its memory section a set of functions JFJ which ex-

plicitly describe some real-time problem. These functions vary in ac-

cordance to a set of variables, IsI signal set, which are provided by the

outside world. The computer, under direction of a stored program P,

operates sequentially on $FI for a given set of isI values to generate an-

other set of values representing desired output quantities 1o1 . The oper-

ation describing provision of an fol value set for a given $ts value set is

called the program compute cycle. With one set of {ol values determined,

the compute cycle is repeated for another Isf value set. In real-time ap-

plications, a time sequence of such repeated operations (or compute cycles)

constitutes a "running" solution of the problem.

The time length of compute cycle for a given general-purpose computer

varies with problem complexity, as well as composition of program P

dictated by a particular problem. Significant here is the fact that a fixed

set of Is values is used for each compute cycle (that is, signals from the

outside world are assumed constant during each compute interval). Any

signal changes over the interval thus will not reflect in the computation,

and accordingly the generated output set of fol values will be in error.

A-1



When these errors are of a cumulative nature, extremely serious limita-

tions can be placed on the spectrum of real-time problems suitable to such

computers.

In aerospace applications especially, present state-of-the-art operational

equipment places rather high cost factors on equipment weight, volume,

power, reliability and the like. Many times these equipment costs are

unacceptable, and the digital computer is omitted from further considera-

tion, or worse, system development marks time until equipment state-of-

the-art becomes more favorable.

The foregoing situation will always constitute an upper limit on the spec-

trum of real-time problems suitable to serial, general-purpose operation

as described above. As the state-of-the-art improves, the limit will be

raised.

This then poses a question regarding the possibility of raising the upper

limit with equipment state-of-the-art remaining constant. If equipment is

fixed and if we also constrain ourselves to serial, general-purpose opera-

tion, the only consequential games we can play are with. the signal set lot .

Fundamentally, the games played here involve a study in signal representa-

tion, or better, whether the normally assumed constant 1s1 values for a

compute interval is an efficient way of representing signals. Here, we see

the mapping of many signal members (representing signal behavior over

the time interval) into one member of another set. This many-to-one map-

ping is an irreversible, information-losing proposition. So long as the

relevant information lost is negligible, the mapping is acceptable. Other-

wise, we must either seek a more representable member for the many-to-

one mapping or consider a many-to-many mapping. Desirably, this latter

many-to-many mapping should be such that its membership for any one

mapping operation is controllable and its members readily formed (that is,

members formable at minimum equipment costs). Since increase in

mapped membership will reflect decrease in relevant information lost in
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mapping, such control of membership should permit minimum complexity

in signal representation consistent with allowable information loss.

Choosing to represent any function expansion of each is I over an arbitrary

compute interval as a power series in time, it is then seen that the coeffi-

cients of this power series represent a new mapped multi-membered set.

Its membership for any one mapping is controlled simply by specifying

the number of non-zero coefficients. These power series could represent

an expansion through an orthogonal function set, an approximation thereof,

or even some truncated Taylor series. The coefficients themselves might

be obtained in a variety of ways. They might be determined through past

differences of signal samples or some other measure of past signal be-

havior (as integral measures, for example). If some computation delay is

permissible, signal behavior over present interval of interest could be
measured to determine these coefficients.

Most important are those power series expansions whose coefficients can

.be determined through integral measures of signal behavior, especially

that set of measures representing successive integrals of signal over some

time interval. This set can be readily, and cheaply formed in a digital

computer through use of a periodic, high-speed adder (in Librascope
phraseology, this high-speed adder is termed the Sigmator). Moreover,

this set can be readily absorbed into the problem mathematical structure.

The mathematics describing expansion through integral measures is re-

lated in Appendix B.

Such expansions have been shown to be extremely effective in certain real-

time computer problem formulations, especially those involving integrals

of more than one variable. Orders of magnitude improvement are realiz-

able without altering the computer structure. Their utility was first intui-,

tively seen some 5-6 years back by R. R. Williamson, and developed since

then. The present writer himself probed numerous special cases involving

such expansions during essentially the same time span. Each probe re-

sulted in success. R. R. Williamson ultimately wrote a report titled
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"Real-Time Control Computers" (Reference 5) in early 1962, wherein he

indicated with reasonable mathematical substance formation of these ex-

pansions. This report coupled with a number of formal and informal in-

vestigative reports by the present writer served as the foundation for a

report titled "Application of GP-Sigmator Hybrid to Real-Time Problems"

(Reference 6), also prepared by the writer of this report, in late 1962.
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APPENDIX B

FUNCTION EXPANSION THROUGH INTEGRAL MEASURES

Consider a variable X represented by an expansion over time interval

(0, T) comprised of a linear set of orthonormal functions, that is,

x(o, T) =F° 0 o (t) + F1 P•l(t) + -. . + Fj i i (t) +. •

Fn On(t) (B-1)
n=o

where the 'P(t)'s are the orthonormal functions and the F's constants de-

fined by

F. .(t) X(t)dt (B-a)

Choosing to express any orthonormal set by their corresponding power

series in time, the jth orthonorrnal function then becomes

i (t) = ;--o ajktk (B-3)

Then inserting this form into equation (B-2) gives

F j = o a jkt k]X(t)dt (B-4)

Assuming a uniformly convergent series in interval (0, T), we may make

use of the fact that the integral of an infinite sum is equivalent to the sum

of the integrals. Thus, equation (B-4) can be written as

F. = ý=o ajk ItkX(t)dt (B-5)

The a.k terms are known since they describe those orthonormal functions

we happen to select. Only the integral terms remain to be determined.

Direct implementation of these integrals could pose a serious problem
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since multiplication accompanies the integration. This multiplication can

be circumvented, however, by the simple expedient of expanding the inte-

grals through integration by parts. This we illustrate below:

F = X(t)dt= TfX(t)dt '"S
0 10-

T 2
F1 =jtX(t)dt = TJ X(t)dt - JX(t)dt

F = 2 t X(t)dt = "TZ X(t)dt - ZT R X(t)dt. (B-6)

+ 2 1jfX(t)dt 3

Etc.

or the kth term can be expressed as

F k+l i+l k! T (k+-l-i) -(B
Fk E - 5 [X(t (B-7)i=l

where s-i[X(t)] represents the ith integral of X(t) over interval (0, T).

The JFJ set of equation (B-i) can then be expressed in terms of the JF•}

set of ecquation (B-6) through the matrix equation

F] = (a][F*] (B-8)

that is,
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FO a 0 0 a 0 1 a02 • ak FO0

F1 a 1 0 a1 1  a 1 2  a lk F 1

F 2  a 2 0 a 2 1 a 2 2  a2k .** F 2

(B-9)

Fj aj0 aj1 aj ajk Fk

U J 2 U

Thus, we see that the variable X(t) can in general be expressed by a power

series in time of the form

X(O, T) = A+0 +Alt +At2 + .... +A tk + • (B-10)

where the A's are determined through integral measures of X(t) over in-

terval (0, T), as reflected through equations (B-1), (B-3), (B-6), and

(B-9). The particular relationship between the A's and the integral meas-

ures depends upon the function expansion chosen. In general form, how-

ever, the A's may be expressed as

A 0 = F 0 a 0 0 + Fla1 0 + F 2 a 2 0 + + F +Faj0 +

A 1 = F 0a 0 1 + F 1 a 1 1 + F 2 a 2 1 + . + Fa ++

A2 = F0 a0 2 + Flal 2 + F 2 a2 2 + • . + F a .

Ak =FOaOk +Flalk +FFaZk +" . +Fja jk +.

or, since the F'l are given by equation (B-9), the A'. become
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A0 a 0 0 a1 0 a 2 0  a.j

Al a 0 1 all a 2 1  aj 1

A 2  a 0 2 alZ a2 2  aj2

Ak a~k ak aa a. .
k Ok 1 k 2kjk

A (B-12)

a00 a01 a02 aOk F 0

al0 all a, alk • F 1

a 2 0 a. 1 a 2 2  a2 k F 2

ajo aji j2 ajk Fk

where the 1F*j are defined by equation (B-7).

As stated in Appendix A, the integral terms appearing in the IF*1 set are

easily formed in a digital computer through use of a periodic, high-speed

adder (Sigmator, in Librascope language). Since such an adder is part of

the normal complement of a real-time digital computer, these power

series expansions can be used to excellent advantage on real-time prob-

lems to enhance computer performance at essentially zero added cost.

In a digital computer and also in our detection problem, it is the form of

the expansion which is important - not the specific expansion - this we

can choose to best suit the problem. Simply stated, the power series

form of expansion is important because it leads to simple implementation.
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In our work on signal detection, little interest is shown in specific power

series expansions. We primarily deal with the general form given in

equation (B- 10), under the tacit assumption that particular A's can be

determined if desired.
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APPENDIX C

AN ARGUMENTIVE RESOLUTION OF INTEGRAL XY

Relying heavily on the reasoning developed in Appendix A, we now endeav-

or to resolve integral XY in much the same way. To do this, we find it

instructive to commence with the constant signal case presented in section

2. 1 and given by equation (2-10).

If signal is known to be constant, detection system need only form the in-

tegral of Y. This integral constitutes an irreversible operation by the de-,

tection system which endeavors to provide a reasonable estimate of signal

present. Herein, the integral of the signal-noise quantity Y is seen to

represent a mapping of a many-membered set of time events (occurring

during the specified time interval) into a single member of another set,

where a member of the latter is not definable by a unique combination of

members of the initial set. This mapping of an arbitrary time set of mem-

bers into a single member is a dictate of the mathematics; it may be real-

ized directly with physical equipment because Y happens to be the quantity

available and integration something readily provided by the hardware.

Now, when we move to the more general case given in section 2. 1 by

equation (2-9), we see the mathematics requests a similar mapping, in this

case the initial set of members each representing a subset of XY time

events. This mapping may not be realized directly, however, since the XY

subset is unavailable. It requires explicit knowledge of X: the very thing

we seek. Thus, it appears that the exact solution is not directly attainable.

For argument sake, let us set exactness aside for the moment, and say a

solution which is "reasonably exact" will be permitted. Under this quali-

fication of exactness, we may reason an approximate solution wherein the

approximation is predicated on a presumed mapping operation on the un-

known quantity X. We need to choose a mapping on X, however, such that

the required mapping of XY is realizable, that is, the integral of XY solv-

able.
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Suppose for the present we consider a mapping of X, as described by a

subset of time events over interval (0, T), into a single member of another

set where this member represents a measure of X over interval (0, T).

The simplest, and most obvious such member Het is that one whose mem-

bers represent that measure of X defined by the time-average of X over

interval (0, T). This presumed mapping of X is irreversible, with infor-

mation lost in the process. It would be acceptable as long as a sub-mem-

ber of the initial set does not differ significantly from a chosen member in

the final set. This is to say that such an assumed mapping of X is per-

mitted if X is reasonably behaved, with reasonable behavior determined

by some fidelity criterion (as allowable variance for deviation of X during

interval from the average of X over the interval).

Let us now translate this rather simple argument to a general time func-

tion for X. Such a function is shown in figure C-1. Therein, we may di-

vide an arbitrarily long period of time into nT sub-intervals, and assume

the function can be approximated by a step-like function described by a

constant value for each sub-interval. Each constant value may be the time-

average of X over the corresponding sub-interval. This step-like approxi-

mation of X does indeed assume an irreversible mapping on X wherein

some knowledge of X is lost. As figure C-1 indicates, however, so long

as the length T of each sub-interval is chosen that a prescribed fidelity

criterion is satisfied, the step-like form is a reasonable representation

of X itself.

This being so, the posterior statement for the constant signal case given

in section 2. 1, equation (2-10) is then a fair statement for this arbitrary

signal X during any one of the sub-intervals. Moreover, the integral of

the signal-noise quantity Y reasonably satisfies the sufficiency conditions

for a detection system, that is, the general integral XY is reasonably

approximated.

At a glance, there appears to be nothing profound in the foregoing argu-

ment; use of the approximate solution therefrom would not be an
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Figure C-I. Step-Like Approximation of General Time Function.

C-3



innovation - it has a long practiced history. Reflecting a moment, how-

ever, we see in our thinking the seed for general problem solution; it lies

in our previous statement regarding a presumed mapping of X which is so

chosen that the eventual mapping of XY is realizable, and hence the inte-

gral of XY solvable.

When we speak of a presumed mapping of X, we really are only seeking a

more useful way of representing X. We see difficulty in forming the inte-

gral XY directly only because X is seen as an infinite set of unknown time

samples. In a way, the task would seem less difficult if an arbitrary X

were represented by a finite set of samples through use of the sampling

theorem; formation of the required integrals involve sin wt/t type func-

tions, however, not permitting direct implementation of this representation.

With an eye always on the practicality of implementing the required inte-

gration resulting from any new X representation, we might then consider

the signal representation used in improving serial, general-purpose digi-

tal computer operation. Therein, a power series in time was employed as

the general form to represent a signal, because of its ease in implementa-

tion.

If X is represented by a power series in time with arbitrary coefficients,

the solution of the XY integral is direct. Its implementation, moreover,

is straightforward, involving only successive integrals of Y. The arbi-

trary coefficients need not be prestated; they may be chosen at a later date.

Nor are we limited to power series alone; we may employ the Fourier

series, for example. We see then the solution of the XY integral to call

for an infinite set of filters matched to the sinusoid of each harmonic.

The arbitrary coefficients of the Fourier series can again be chosen at a

later date.
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APPENDIX D

VARIANCE OF A TIME-AVERAGE QUANTITY

Suppose we request the variance of time-average of some quantity X as

given by

Xt E
T=4 ]Xdt 4 T X(u~t)At (D-1)

v=O

wherein it is understood that the summation expression holds as At

approaches zero.

Utilizing the infinite sum in equation (D-1) and also making use of the cor-

relation coefficient of X, that is p X(t) where t represents the time sepa-

ration between any two X values, the desired variance can be written in

infinite sum form as

(tt At

)[Y + + +* + (1c t

+ o tx + cAt x(ZAt) + "'"

.+ '(Y V. 1)At Px (( V - 01)t

+ Zaat(/&)2 [a 2 A x(At) + a3AtPx (ZAt)+,

S+a (Vl)AtPx((,-2)At)J +•

S* a + At 22.

+20(u.)(t [().l),tPx(At)J (D-2)
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where a 2, 2 Z 2 are the variances of X at times o,

o o t , a2A)&

At, ZAt, • , (u-l)At. The quantity v is equal to T/At. Advantage was

taken in the symmetry of the correlation coefficient.

Since the sum involves the same variable, then all variances appearing

in equation (D-2) are equal, that is,

2 2 2 2 2
Ux 0u=lAt 2At = - 1)At (D-3)

Employing this fact reduces equation (D-Z) to

St =( )T + 2x x(At) + px(ZAt) +. +Px((u-l)At)]

+ 2a Z() lPx(At) + Px (2 t) •+ (VP+ • •j .

* *+ 2r (T) (At) + P (2at)]

+ Z72() 2  x(At)] (D-4)

which may be written as

a- . t)z + 2P4 2)= px(nAt)At

2 �t) At

+ E A px(n0t)At + . .+ ' •p(nAt)AtI (D-5)

n= n=l

and further as
2 T-1

r t= L + T•p•nx= L (nAt)At 2  (D-6)-;x 7
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In the limit as At approaches zero, the first term on the right-hand side

of equation (D-6) goes to zero and the second term can be replaced by a

double integral, that is, the desired variance becomes

' a 2 T.tx PO(t)dt (D-7)
T Yo 0x

As an aside, Lee *gives an equivalent form of equation (D-7) as

4 = 2a? T T-ItI p(t)dt (D-8)
x x tT x

wherein his- notation has been altered to conform with ours. The equiv-

alence is seen by rewriting equation (D-8) as

(t 2crt T 2 .2

p x(t)dt x P(t)dt t)dt (D-9)x x T o T

Employing integration by parts on the second term, we have

Za2 2 2cr 2
x -tp(t)dt = - P f(t)dt - -. fP(t)dt 2  (D-10)

Substituting equation (D-10) into equation (D-9) shows the equivalence

2 2o, 2 t 2a-t = Cy Y T-it[ P• ,(t'dt (D-11I)
T2 pt)dt -- p(t)dt

* Reference 8 (Lee), p. 286.
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APPENDIX E

ALTERNATE DERIVATION OF TIME-AVERAGE ESTIMATE
FOR BAND-LIMITED WHITE GAUSSIAN NOISE

Of some interest is an alternate derivation of the approximate posterior

statement for signal detection in presence of band-limited, white Gaussian

noise with zero mean in terms of the time-average estimates. Reference

here is to the approximate posterior statement given. in section 4. 2,

equation (4-14). This equation is repeated below:

P(XY),-,KP(R,)ex -(Rt+N) 21ex I (Rt+UN) d E-1

With noise having zero mean, AN equals zero.. Only Ca-t remains to be

determined. This variance quantity was defined in equation (4-15) of

section 4. 2 as

aZ (N • -PN(t)dt (E-2)

The correlation coefficient P (t) in equation (E-Z) is obtainable by nor-
N

malizing the autocovariance for the noise quantity, that is,

ON(t) M 0(t) (w )exp jwt d w (E-3)

where GN(w) is the noise power density spectrum given by

2
aN (-2SW : w : 21W) (E-4)*

Thus, equation (E-3) reduces to

1 -ZW 1 [!sn2-tPk = TW'7 i exp{JWt dw = - snwt (E -5)

*• Discussion of band-limited, white Gaussian noise may be found in
Reference 9 (Bennett).
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Upon substituting equation (E-5) into equation (E-2), we have

a4- N 1 11 sin-fmt o N 4fI in.2iFWt
t t dt 0t dIt

J IT 0 (E-6)

where aN = NoW.

The results of equation (E-6) point to some inconsistency in assuming a

finite bandwidth and independent noise samples. This inconsistency is

considered more of academic interest, however, brought about by the

noise model chosen. Normal interpretation of equation (E-6) would con-

sider the case where bandwidth approaches infinity (analogous to zero

correlation between samples), that is,

Lim sinZVWt dt (E-7)
W-.I -t

or at least a very large W where equation (E-7) holds nearly always.

Inserting this result into equation (E-6) provides

a 0 N fdt = (E-8)
ZT 2 0 !

Utilizing this quantity in equation (E-1) gives the approximate posterior

statement as t Zox Z{ T~yt
0 0O

which is in exact agreement with the previously determined result given

in section 4. 1 by equation (4-13).
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APPENDIX F

ERROR IN STEP-LIKE REPRESENTATION
OF GENERAL TIME FUNCTION

Let us determine the probable error in representing a general time func-

tion X(t) in step-like form. This representation is sketched in figure F-i.

As shown, X(t) is approximated by a constant value for each T-second

time interval. More specifically, these constant values are deemed to

constitute the time-averages of X(t) for the corresponding time intervals.

We now inquire into the error resulting from such approximations. To

satisfy our curiosity we need only concentrate on one arbitrary T-second

interval. Such an interval is illustrated in figure F-Z. For convenience,

the time base thereon is now denoted by a starting time t equal to zero

coinciding with the beginning of the chosen T interval.

The general error expression for the approximation during the arbitrary

time interval of figure F-2 may be written as

-x.t = X(t) - xt

= X(t) - X(t)dt (F- 1)

Let us assume this error to be sufficiently characterized if we ascertain

its mean value and its variance. Accepting this, we first rewrite

equation (F-i) to represent the integral by an infinite sum. We may do

this by subdividing the interval into T/At equal time increments, giving
T -

I -tX TE X(VAAt (F-2)- -- (t) - .,- x , t
X-X

"V=0

where it is understood that this equation is valid in the limit as At ap-

proaches zero, and that t ranges between zero and T.
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X(t)

Figure F-I. Step-Like Representation of General Time Function.

ERROR IN APPROXIMATION

TIME AVERAGE OF X(t)OVER INTERVAL (O,T)

0 T

Fig-ire F-2. Arbitrary Time Interval Describing Time Process.
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The form of equation (F-Z) now readily lends itself to a determination of

the mean and variance of the error.

Since the mean of a sum or difference is equal to the sum or difference

of the individual means, the error mean may be written as

- - 37~t - + x(at + X(2at + • + x (v-1)A]tX--X t-

T- [tgo + OAt + Ozat + + 4(o-1)At] (F-3)

where At and $o' AAt' AZAt , , ,(-l)At are the mean values of X(t)

at times t and o, At, ZAt, , (v-1)At respectively. Assuming a sta-

tionary stochastic process, all means appearing in equation (F-3) are the

same, being the mean of X(t). Denoting this mean by ;A allows reduction

of equation (F-3) to

-- AtXX = x x x _- T " V Ox = I.x - JAx = 0 (F-4)

Proceeding in a like manner we may write the expression for the variance

of equation (F-2) as

a2  a 2 ýAtJ[ Z+ ,aA2+a2A
a =~ t-'t• o+-T' o At+ 0"•t+" + "(7(V-1)At],

t("t o 0 x+(t) + P, x(t-At) + ZAt Px(t-?-At) +

*.... +tAt Px(At) +at P(O)]

- Zat(-)[aTt+AtPx(At)+at+AtPx(Z4t)0+

+ a... + ( l)AtPX ( P-l)At-)]

+$ ZaO"/ a 0/%t 2 P (at) +a" k)• [Ua xt )X(ZA0+•'

+0 +(VUat 
PX((VI) )At)]
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+ 2, At(-A"-V [2At P(At) + a 3 AtP (2At) +7) 3 x

. + o(V-1)At I x((-2) At)I +"

""" + 2Zr(P-3)(At T) (-2)Atx (At,) +ap(2At,,

+At\(r+ 2a(_z)t•T)[ a(l)At PAt (F- 5)

wherein advantage is taken of the fact that the correlation coefficient

PM(t) is an even function in t (symmetric about t equal zero). Now all a

values appearing in equation (F-5) are the same, whe~re the common

value will be denoted by a, . Hence., equation (F-5) can be written in

more compact form as

Z2 t/At " Za• T-t-At

=a Cy g -I~ 0 P (vAt)&t - (v pAt)At
V=O U1 (F- 6)

a2 At
+ 2 1 xt x(LVAt)At + =t)At +x-,At)t

T L0:l v ~l J

which can be further compressed as

2 2T-t-At

t a t/At Za At*r a~ 2(-A)a~ I x P(J A -: x(u At)At
u=0 U=1

2T

+ 2a-- A P (77t)At2 (F-7)

Allowing At in equation (F-7) to approach zero in the limit permits the

sums to be replaced by integrals, and causes the second term to go to

zero, that is,

2= . 2)1 2 t T t

S,4(tdt
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Since the variance of equation (F-8) varies over the interval, it is of in-

terest to determine its minimum and maximum values. Note P (t), as
x

utilized in the derivation, is always zero or positive Valued, that is,

0 r Px(t) : 1 (F-9)

Hence, all integrals appearing in equation (F-8) are positive, monotoni-

cally increasing functions. Moreover, from the structure of this equation

we see the minimum will occur when the sum of the first two integrals is

,a maximum. Since in practical situations P (t) itself will be a monotoni-
x

cally decreasing function over prescribed interval of length T, this sum

has its maximum when their upper limits are both equal to T/Z, or the

mid-point of the interval. Thus, the minimum variance of the error be-

comes

[e Z]in= ( - 4 •P(t)dt +T.fOtx(t)dt21 (F'- 10)

Through similar reasoning, it can be shown that the maximum variance

occurs at the end-points of the interval, having a value

EII ax 2= - 4ý 1P ttt+j (t)dtZ ~ (F-il1)

The conclusions of equation (F-10) and (F-11) are in agreement with our

intuitive notions. We would expect the error to be least at the mid-point

and largest at the end-points.

As a final item, let us restate equation (F-10) for a Taylor series repre-

sentation of P (t). This form leads to ready interpretation, especiallyx
since the behavior of Px(t) over the range of interest often reduces to two

or three terms of the Taylor series. The general Taylor series for Px(t)

expanded about t equal zero is

=(0) (1) t + (2) tz 2C (n) tn

PX(t) x &+ Px T +... Px -T.'. (: '- n
n=o
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where
(n) •n

with (0)(X0 (F-14)

and where it is understood the derivatives are determined by
(11)( )(FnS

W Lim aF-1nPx C -.o tn f

with E being positive. This right-hand interpretation of the derivatives

,circumvents arguments which might arise because derivatives at t equal

zero may be undefined, since Px(t) is even, p,(0) is a maximum, and a

point of discontinuity can occur at t equal zero. Actual concern with

equation (F-15) is not envisioned in general application, however.

Utilizing equation (F-1Z) in equation (F-10) and integrating results in

ViMin = n=o

+(n) n+2

To (nl) n_1 1(-6

E p Tn 41)' L1(-6
n=l

wherein use is made of equation (F-13).

Since equation (F-13) always is true, the expression of equation (F-16) is

directly applicable to a PX(t) comprised of a Taylor series representable

function plus a delta function. The delta function would of course indicate

presence of white noise. It only affects the -pO) term, however, which we
see to be a constant equal to unity: hence the validity of equotion (F-16).
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APPENDIX G

INFORMATION GAIN

As we ultimately desire to evaluate effectiveness of detection operation,

some measure of information gain would be most appropriate. Certain

mathematical difficulties arise, however, with regard to information gain

measures for continuous distributions.

In general, some feeling for information gain can be obtained by compar-

ing some function of the prior variance with the same function of the

posterior variance. This feeling can be mathematically expressed through

the cla-s~sical definition of entropy change, which reflects an average meas-

ure of information gain.

Since entropy for a continuous probability density distribution is defined by

H(X) = - Jp(X) log p(X) dX (G-1)

This definition may be used to express average information gain as the

entropy differential between the a priori distribution p(X) and the a

posterior distribution p(X/Y), that is,

AH = H(X) - H(X/Xo

= - Lp(X) log p(X)dX + fp(X/Y) log p(X/Y)dX (G-2)

Reza* refers to this entropy change as "transinformation".

To reflect some of the unattractive behavior of equation (G-2), let us

examine the case where the distributions are Gaussian. Assuming a,

to be the a priori variance and c/y__to be the a posterior variance,

equation (G-Z) becomes

* Reference 10 (Reza),.
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A Hx= log [Z]e aX] log [Me o

= log [•'/ (G-3)

The normal argument associated with equation (G-3) states that one half

the logarithm of the ratio of the a priori to the a posteriori variance is an

average measure of information gain. A reduction, therefore, in the pos-

terior variance from the prior variance results in a positive entropy

change denoting a gain in information. Generally the equation (G-3) def-

inition finds effective usage for continuous signal data, if care is taken to

avoid some of its mathematical difficulty.

One such difficulty arises when the posterior variance becomes zero. The

result is an infinite positive change in entropy, implying infinite informa-

tion gain. So long as infinite entropy change is understood to mean that

all information has been obtained, the definition is satisfactory. As a

numerical measure where the posterior variance approaches zero, it has

no quantitative meaning, however.

Actually the foregoing difficulty reflects shortcomings in extending the

definition of entropy for discrete distributions to the continuous. We might

say the mathematics breaks down. Entropy for continuous distributions

can run the spectrum from minus infinity to plus infinity, thereby losing

some of its significance in measuring information content. In a sense,

equation (G-3) is only half as bad in signal detection, in that entropy

change will only cover the plus side of the spectrum (that is, so long as

interpretation of information does not take place). The plus infinity point

usually occurs in the limit when the continuous density function becomes

a discrete probability. * In equation (G-3) this occurs when the a posteriori

probability becomes a delta function.

* Reference 10 (Reza), Chapter 8.
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Rather than the average information gain definition of equation (G-3), in-

formation gain which is not averaged can be obtained directly from the

basic definition of information, that is, by

IG = log M (G-3)

or the prior information minus the posterior information. Again as for

equation (G-3), continuous distributions can cause this expression to be-

come infinite.

To avoid the foregoing, we need an expression for information gain whose

boundaries are zero and some direct measure of actual information re-

maining to be gained. If we dispense with logarithmic behavior in such an

expression, the straightforward relation of fractional difference between

prior and posterior variance could be used, that is,
Ic 4 [Prior Variance] - [Posterior Variance] (G-4)

[Prior Variance]

where IC means information change (that is, a change in the information

to be gained). Thus, when no information is gained, the quantity is zero;

when all information is gained the quantity is unity. We should refrain

from calling equation (G-4) information gain, however.

Though the equation (G-4) has its deficiencies, it is nonetheless simple

and effective for comparative purposes in analysis. At least it is well

behaved.
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APPENDIX H

CORRELATION COEFFICIENT FOR SECOND PROBABILITY
DISTRIBUTION INVOLVING TIME-AVERAGE OF SIGNAL

Let us derive the expression for the correlation coefficient appearing in

a Gaussian second probability distribution for the time-average of a Sig-

nal. In general form, this correlation coefficient is defined by

"x lq -1 - U ý l X n - 1 " 1 x )=t _ - - -- (H-i)

S-t a-t -2tx x t
n n-i x

where the subscript n relates to the time-average over the interval and

n-i to the, time-average over the previous interval, with advantage taken

of the fact that

Att i t x (H-2)
n n-I

and

--t a-t = a;-t (H-3)xn Xn_1I

Equation (H,-l) reduces to

n 2  
(xn- H-4)-y . _t _r t

X x

Only the product term remains to be resolved. Expressing this term as

(Xtn_ i) Xn) = _ I ° Xdt) (T 0. x dt) (H-5)

a-nd subdividing both T time intervals into vat sub-intervals, allows ex-

pression of the integral terms as sums, that is,
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n T
_ Xt i [ 1O

= (~~[~T)+X(-T+At)+... +X(-ZAt)+X(-At]

X(o)+x<At)+x(z>t)+. + X((V i>)A] (H-6)

To form the mean of the above product then involves sums of product

terms of the general form expressed below for the ith sample! in one term

and the jth sample in the other:
x2 x2 2 t2(H )

XWIM3t) Xjt= u +Px i -j) At a =l+Px a- (H-7)x

where a x is the variance of X and P (t) its correlation coefficient.
x x

Noticing there are u of the u terms, the mean of equation (H-6) may be

written as
t \/l-t 1= tNt2 2 Z++.xVIrA<: +a?[=,:P. . .

+ P(T +At)+(TZt+

Px(T+(u-1)At)]

+• ~x(T-2t) +Px(T~t)+Px(T+t)+""" +x(T+(v -Z)At)]

+4 [;P(ZAt)+p (T-,t)+p(4•t) +

whi) + +PT]tt

whic may beu -tated a

+o 26)-x(Zt+



or 2_ _-1 Zv-2

v (+1 1x(nAtAt
n= [n l . J-

+ N-P(n~t)At +I: PX(n~t)4tI (H-9)

and in integral form as
z, T ZTt +T 2

(z --1 na =)JA . ozTt x(t)dt-L (H-10)

Upon substituting into equation ,(H-4), we have

2
a 2T rt+T

t= 7 t (H-I 1)
x a.2t

x
Xand using the de~finition of a- 4 ~ from Appendix D, equation (H-i 1)beo s

T ft+T 2

p-t ) (t)dt2)
Xt= T t

H-,3



APPENDIX I

CORRELATION COEFFICIENT FOR SECOND
PROBABITLTY DISTRIBUJTION INVOLVIN'

TIME-AVERAGE AND MID-POINT OF SIGNAL

The general expression for the correlation coefficient of the Gaussian

second probability distribution involving time-average and mid-point of

signal can be written as

PX,- xM'" IAXt 7-- "x( _ "x
xxa a e-t - , a-t

M• x X X

where

AX M Aw•t = Ax(-)

and

or N (1-3)

Equation (I-1) reduces to,

XMt - 'A X - /•xXM+/Sx_ XMX(Mxt-/)Pk Xa-t a a -- t (-
PXM.-;tx = Cx (-x trx •--x (-4

To determine the mean of the product term, it 'is first rewritten as

T

--X X Xdt = xk.) X(YAt)At (1-5)

where At approaches zero and

XM = ) (1-6)

I- 1



Writing out the sum, equation (1-5) becomes

= 3 t X X(O)+X(Ati+X(2At)+" + X V-1) (1-7)

Recognizing that'f)x I., =-Ux2 + ao2 P At -T) (1-8)
we have

+' (P1 _ At + I px (T<o ] Ox<, (1-9), + •

which maay be written in integral form as

2 Zx

]•viZt =4J2 + ax (t)dt (I-10)
2a T I12~

Upon inserting equation (1-10) into equation (1-4), we then have

2 fT1 2 T/2
,x • P(t)dt zo P(t)dtPXM = x P x-II

2x to fpx(t)dt2

where the expression for 0-t is obtained from Appendix D.
x


