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562(07)/51 1
Flow between concentric rotating cylinders -
- a note on the narrow gap approximation

by
F. E. Bisshopp
Derivations of conditions under which steady flow between con-
centric rotating cylinders becomes unstable to perturbations

of infinitesimal amplitude are often carried out within the

framework of the narrow gap approximation in which the separa-
tion of the two cylinders is presumed to be much smaller than
either radius. Now a narrow gap limit in which the ratio of

the separation to a characteristic radius approaches zero 1s not
uniquely defined, but rather the form of the resulting govern=-
ing equations depends upon the manner in which the passage
to:the 1limit is made. A systematic survey of narrow gap limitsg

may therefore be useful.

Let there be a viscous incompressible fluid (density,
Py kinematic viscosity,v) confined by concentric cylinders of
infinite length (radit, R, and Ra). Motion of the fluid is to
be caused by rotating the cylinders at angular velocities Qland
92, by translating them in the direction of their common axis
at velocities wl and w2, and by impressing external pressure
gradients P; = (3p4/Ty0p4), and P; = (8p,/8z,), (where the
asterisk denotes the usual, dimensional variable and r,, @4,
z, are cylindrical coordinates of a fixed system whose z,-axls
coincides with the axis of the confining cylinders). We shall
choose a characteristic radius R which i3 of the order R, and

R, (we assume Ry/R, # O) and define a gap wldth parameter as

“The results prenented in this report were ob%sined in the
course of rezearcch sncrgored by the Office of Naval Research
under contrach nonr 562(07).
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es3 where ds= Ry~Ry (1)
A narrow gap limit is then a 1limit where e—>0,
Now let us introduce a set of dimensionless variables

defined by

n n 2n
1‘* = R(l"’sx), L™ = & 2}', Z* = Re 32‘, t*‘ = 'R—E ]+t y

v
m M m M mn
u, = Y € 111, Ve = %(8 2V+S 2V)‘, Wy = %(8 3W+€ 3W) ’ {(2)

o]

2 |
Py = i—‘é—- (sM'FP +emb'p) y, (n,>0 and ny> 0) J
where V(x), W(x) and P(x,y,2z) describe the equilibrium flow.

The equations governing the equilibrium flow are obtained by
substituting the relevant parts of equations (2) in the Navier-
Stokes equations and the equation of continuilty expressed in
cylindrical coordinates. Certain terms in the resulting equa-
tions are dominated by others when e&—% 0 regardless of how Mi
and‘ni are cﬁosen; when such terms aresdelted, the governing

equations are:

-2M,=1
V2 = eMLF 2 Px
+2-M_~n 3 2-M |
v - e“u 22, R TTVep! ? (3)
y 52 2
pw
and N +2-M.~-n 3 2-M !
e e WIS, (B TRy
2™ 2 J

where subszeripts x,y,z denote partial differentiation.




An exponent such as M, which can be eliminated from
all but one equation can immediately be eliminated altogether;
in this case the requirement that V and P shall be present in
a narrow gap limit implies that the behavior of P in the limit
where ¢ —> 0 1s determined by the behavior of V according to-

the relations,

M, =2M, + 1, (&)

and

Solutions of equations (3) for V and W under the impressed

boundary conditions are

-M, 2 _ 2
Va g ‘ﬁ% (Q+xAQ+ % ;%? Pa(x-xl)(x-x2)3
and - (5)
e BB+ L B b (xex ) (x-x0)
W= ¢ y (W XAW)+ 5 pv2 3(x-xy x-%5)% ,

where X1 andx2 are defined by

!‘*(xl) = Rl and r*(X2) = R2 ,

i.e. (6)
X = -(R-Rl)/d and x, = (R2-R)/d »
and where
0= 5059, 402 Q-0
(?)
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The nonlinear equations governing time-dependent

perturbations of the steady flow again include terms which al-

ways vanish in the limit where e—> 0O; after such terms are

deleted the equations become

m, -1 m,-n m,-n R
1 . 2 2 373 =
e uy o+ e Vyte w, = 0y
m -1 m M, 2 m,-n
€ lLu s - emk Pyt (e v+ e 2V) ~2¢ 2 2Vy ’
m My+my=~1 , -n m,-n
e 2vie 2 1y s — e ¥ 2p e L 2y
y y
and
m M 4m -1 , -n
£ 3Lw+e 371 Wuas= - emq' 3pz
where the prime denotes %)—c ’
g Moo a , M3P3
Lze Fgxte 2Vf5§+s33w'5;+11.-2-v,
m, -1 m,-n m,-n
1 22,8 ‘
u.y = ¢ u‘g“+e VB'§‘+533wg_z’
and
2 _ 292 | "My g2 "Ayy2
vV ®¢ 5t e 5t e 9—2
ax oy 8z

. (8)

( (9)

The linearized equations governing an infinitesimal perturbation

of the form
u = u(x)exp {i(k2y+k3z‘)+)\t 3,
p = p(x)exp ﬂi(k2y+k3z)+)‘.t3 y

are

(10)




m, =1 m,-n mn,-n R
£ 1 Du+i(e 2 2k2V+ € 3 3k3w) =0,
mu-ml-l M2+m2-m n,y-my =N,
Iu=-¢ Dp + 2 ¢ yve2ie kv,
S (11)
M, =N, +mM, -M=1 Mq =M,.-N
R P %k ,p- RO e B Zequ, |
and |
=M. =N M, +m, -m, =1
Lw =<1 smh 3 3k3p -€ 37173 W’u, _
- -
where D =& ax
and
-n '~ M,-n
Lze *as 1(eM2, %k oVt € O 3k3w) £
- (12)
—-on -2n
+ (¢ 2k§+ € 312%- €-2D2)

In addition to equations (11) the veloclty components must
satlisfy the boundary conditions
u=v=w=0 at xx; and =X, (13)

With regard to choice of the exponents ml-l,

m,y-n,y and my-ny, we see immediately that at least two of them

must be equal, for, otherwlse, the equation of continuilty implies

that the only solution is the trivial one where u=v=w=p=0,

The case where two of the above exponents are equal and greater
than the third simply cannot occur, for then the equation of
continuity~implies that the veolclty component associated with
the third exfonent,is identically zero; thils means, in effect,
that we have tried to chose the exponent mi, associated with the




third component too gmall. Now the exponents my indicate the
behavior of the leading terms In expansions of the pressure
and the velocity components in powers of ¢, and consequently a
value for my; which 1s too small in the above sense is not allow-
ed since the leading term of an expansion 1s by universal agree-
ment not identically zero. Thus a rough classification of
possible limits on the basis of the continulty equation contains
four cases: the case m1-1=m2—n2=m3-n3 and the three cases where
two of the exponents are equal and less than the third. We
shall first treat the case where the three exponents are equalj
then it will be shown that the remaining cases do not occur.

If we now talke my-l=m,-n,=ny-n,= a (say), equations

(11) become

Du + 1(kyv+kau) = O, 7
-a=2 +n., =1
Tu =-eml+ Dp + 2 fsM'2 2 Vv,
> \ (14)
, ~0=-21. -0
Iv =i emLr 2k2p - eM2 2V'u ’
and on

-a= M,-n

vz -1 e 3k3p -e3 ',

~’

wherz two terms have been dropped since ml-mz—n2=-2n2+1 and
mz-ml-n2=-1. As we shall see presently, the exponent a, which
now remains unspecified, can be assigned 1f one considers

secondary motions of finite amplituie,




The exponents we have to deal with are M2-n2,
M3-n3, M2+n2-1, -2n,, -2n3, -n,, and m.~a . Of these, the last
two are determined by the others In virtue of the following
considerationss (1)-nh appears but once (in L) and therefore
mist be set equal to the smallest of the remalning exponents in
equations (14) in order that the parameter )\ shall appear in
the 1limit gnd (2) m -a appears only in conjunction with p and
therefore, in order to insure that p 1s the leading term of an
expan.zicn in powers of gy must be given the minimum value con-
sistent wlth the requirement that p shall not vanish 1dentically.
Furthermore, we must add the restriction that none of the ex-~
ponents which appear in L shall be less than -2; otherwise,

equations (14) can be reduced to a single second-order dif=-

ferentlal equation fcr u which can be shown to have no nontrivial

solution which satisfies the boundary conditions u=Du=0 at Xy

and Xy Thus we have

n, <1 n351 )y Myan,=2, M32n§4, n,=2. (15)

If we now add to the above restrictions the requirement that
the functicns V and W shall In fact appear in the limiting

equations, we citialn the relations,

Myny = =2 with ny <1
and

My, = =2 with £ <n, <1 | (16)
or

Mén,= -1  with n, <%, ]




from which 1t follows that a choice of n, and n3 completely
determines the remaining exponents.
Now let us consider the case where, n2-n3 o If we

make the transformation

w = w/k3 y V> vk, ,

(17)
W= w/k3 y V> Vi, ,
we obtain the equations
Du + i(v+w) =
Iu = - Dp ‘ '
> (Ple)
2 ' ‘
v = -1k2p -Vu
2 t
Lvw = -ik3p -Wu
where -
V = ek, {5 (Q+XAQ) + - p—-v§-P2(x X, ) (x- x2)3
(19)

€

W= ek, {%‘(W'kxb Wi+ -35- %‘:’5?3&-::1) (x~x,)3

L =A+1i(V+W) + (k§+k§-D2)

~

The pressure and two veloclity components may be eliminated from

equations (18) to give the equation

{L0GaE02) + 1V 3w =0 (20)
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with the boundary conditions

u=Du=0 at x=3x; and x= x, (21)

If we now consider the case where ng <1l we obtain
governing equations which have the same form as equations (18)
through (21) except for a replacement of the quantity k3 by
k3 el-n3 throughout, Thus it is clear that no new narrow gap
1limits can be obtained by taking n3 <1l since they are all
covercd under the case n3=1, k3=0. By means of a similar
argument we can establish that the cases where % <n2 <1 are
equivalent to the case where n,=1, k,=0,

When n2=% a new term 1s introduced in the govern-
Ing equation for u, and a second narrow gap limit 1is obtalned,

The governing equations then become -

Du + 1(v+w) =
Iu = -Dp + 2Vv/k§
' (22)
v = -V u
o 2
Lw = -ik3p - w u
where -
V= 2k {E (+xp Q)+ - v2 P2(x xp) (x-x2)3
ro(23)

2
W= eky {BGxaw 2 %%‘93(""‘1)(""‘2)3

L=+ L(V+W)+ (k§-1>2)
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The pressure and a velocity component may be eliminated from
equations (22) to give the equations

Ky 2
{£a2-0%) + 1)} u = 2(-,;52) vu

Iv = - V'u (2+)

with the boundary ccnditicns

u=Du=v=20 at x=x; end %=X, (25)

When n, <-%, tbe exponent MéwnZAmust be greater

than -2 and we then obtzin the equation

(M 10+ (k§—D2) v = 0 (26)

From the equation above, 1ts complex conjugate and the boundary

conditions v(x;)=v(x,)=0, we obtain the relation,

* x2 x2
= - (3 Iv 2+ [pvi?)ax [ 1v1Pax, (27)

from which it follows that there can be no unstable solution
unless vg0. Thus we find only the two limits given above 1if we

require that all three velocity components shall have nontrivial

expansions in powers of ¢ wlth leading terms which appear in the

limiting form of the continuity equation.

The exponent ¢ which has been left unspecified
may be assigned by requiring that equations (8) shall include
nonlinear terms which limit the exponential growth of unstable

perturbations predicted by the stabllity equations. It is
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readily verified that a =-2 1s the only choice possible,

Narrow gap limits in which one of the velocity
components does not appear in the lowest order continuity equa-~
tion fall into two categoriess (1) limits which can be obtained
from the two limits we have discussed above by setting one of
the velocity components to zero and (2) limits which introduce
new terms in the governing equations, It can be shown that
there are no nontrivial solutions of the equations governing
the limits in the first category, and thus we need consider

only the ssecond,
| From equations (11) it follows that no new terms can

be imtroduced into the governing equations when

(my-ny) = g >(myn,) = (my=nq) = =2; (28)
hence we need not consider this case.
wWhen
(my<1) =p>(myn,) = (m3-n3) = -2, (29)

we have

-~

Mytm)-m,=1 = My-n,+ (B+2) > M,-n,

~—

Mytmy=my-l = Myt (342)> Myny (30)

In vireae of equations (29) and (30) the governing equations are
reduced to
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1(k,v + k3w‘) =0, |
-, -0
Iv = --1em'+ 2 2k2p g
and (31)
-m.-n
Ly=1 3 % 5

where L is defined as in equation (12). From the above equa=-
tions 1t follows that ‘

-m,-n -m.-n
2 % e 3 3k§)p =0 (32)
and hence that one or both of the equations
Iv = 0 and Iw=0 (33)

is satisfied., In any case an equation similar to equation
(27) can be derived, and thus we find no unstable solutions.
Finally we have the situation where
m,~n, = fom; -l = my-ng = -2 (3%)

In this case we mey take

m1=m3=M3=-n3=-l,n|+=2o (35)

In virtue of the relations,

Mytmy-my=l <My-n, and my-my-n, >-1, ‘ (36)

the governing equations become
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\
Du + ik3w = 0
+m.+1
u = ethp+2 sMé 2 Vv
~M,-n M,-m,=2 -M,-N,=~1
Ly = 1e ¥ 2 %kpp-e 2 2 vier2te 2 2 kg | (37)
and
Lw = 1¢ k3p -s-awiu
where
-2 2 2 =2, 5 |
L= ¢ [(>\+1k3w)+(k3-D I+ e k5 J

If the above system is not to degenerate to a lower Prder
system (for which the boundary conditions cannot all be satis-
fied), the remaining exponents must be chosen in such manner
that no power of ¢ appearing in the above equations is

less than -2, Furthermore, if V 1s to affect the limit at all

we have

Mytmytl = =2 (38)
and if the third equation 1s not %o become Lv = O we have

elther

m,-m,-n, = =2 , (a)

My-m,-2 = =2, (b) » (39
or

"ma-na"l z =2 'Y (C) \.a
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It can be shown that equations (38) and (39) (a,b, or ¢)
cannot be satlsfied when the Indices satisfy the inequalities
implied in equations (37) and (34)s Thus there 1s no narrow
gap limit here, and this exhausts the possible cases.

The two narrow gap limits ares

Limit 1s n2=n3=l, n =2, m=-2,
m2=m3=M2=M3=-1 and M =-l,.

The governing equations are

022 n2y. 4 L PO a
{LOeG+k3-DZ)+1 (k¥ +kyW J3u = O
and
u=Du=0 at x=x) and XX, , (4+0)
where
- 21252
L =M +1(kVekqW) + (K5+k3-D) g

There are the following six Reynolds numbers to be considered

in generals

(4+1)

BG4 Baod 143 , Wd awd 4 143,
v? v 2 BTy 2 2

The first and fourth of the above may be eliminated by a
redefinition of A,
Limit 25 ny=%, n,=l, =2, m=-2, A= =3

2™%) Ny7l, m=2, m=-2, m=M=—7,

m3=M3=~1 and u,,,--a.
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The governing equations are

fLa2D?) + 10V 4k W Vu = v,

Iv = - V'u.
and

u=v=Du=0 at x»=x; and X=X, b &2)

where

- 2 2
L= x+1(k2v+k3w)+(k3-o )

Here the slx Reynolds numbers ares

PO

WM 3, [ W M e} e,
, (+3)
In view of the fact that the Reynolds numbers as-
soclated with V approach zero for fixed‘ﬁ, AQ and P2 faster
in 1imit 2 than in 1limit 1 by the factor }/d/R, 1t might be
surmised that 1imit 1 1s the more important of the two. In
fact this would be exactly the wrong conclusion. Let us cone-
slder, in order, the three cases where W vanishes and the
dominant term in V is due either to &, AQ or P,. In the
first case the fact that the Reynolds number associated with
Q can be eliminated in limit 1, but not in limit 2, indicates
that 1t is oniy limit 2 which has any bearing on the problem,
In the second case, the neglect of % Rd2P2/pv2 relative to
R%AQ/v in 1imit 1 gives the problem of pure shear flow between

parallel planes. Since this problem is known to have only
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stable solutions, it 1s again limit 2 which matters. It is
only in the third case that limit 1 actually prevails;

however, as Lin has already remarked*, if one adopts the

narrow gap approximation, wherein the equations of the narrow

gap limit are used for finite but small ¢, then on the basis
of the computed critical Reynolds numbers for the two limits

it is found that limit 1 is dominant only when ¢ is less than

0.26 x IOJW; and this 1s indeed a very narrow gap.

. C. Lin Theory of Hydrodynamic Stability p. 48.
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