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Flow between concentric rotating cylinders -

- a note on the narrow gap approximation

by

F. E. Bisshopp

Derivations of conditions under which steady flow between con-

centric rotating cylinders becomes unstable to perturbations

of infinitesimal amplitude are often carried out within the

framework of the narrow ga approximation in which the separa-

tion of the two cylinders is presumed to be much smaller than

either radius. Now a narrow gap limit in which the ratio of

the separation to a characteristic radius approaches zero is not

uniquely defined, but rather the form of the resulting govern-

ing equations depends upon the manner in which the passage

to ,the limit is made. A systematic survey of narrow aD limits

may therefore be useful.

Let there be a viscous incompressible fluid (density,

p , kinematic viscosityv) confined by concentric cylinders of

infinite length (radii, R1 and R12). Motion of the fluid is to

be caused by rotating the cylinders at angular velocities gland

S2V by translating them in the direction of their common axis

at velocities W1 and W2, and by impressing external pressure
! t

gradients P2 = (8p*/r*Op*)e and P' = (aP*/a I)e (where the
; =3 (PP/r/oy*))e

asterisk denotes the usual, dimensional variable and r,, IN,

z* are cylindrical coordinates of a fixed system whose z*-axis

coincides with the axis of the confining cylinders). We shall

choose a characteristic radius R which is of the order R, and

R2 (we assume RI/R2 # 0) and define a MaD width parameter as

The resaults presented In this Mreport were obtained in the
course of re-eeax'ch sporsored by the Office of Naval Research
under contract i•.ornr 56e(o7).
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e% d where d-R 2 -RI (i)

A narrow a limit is then a limit where e--*O.

Now let us introduce a set of dimensionless variables

defined by

n2 3 Rnt

r* = R(l+ex), y = y, z*, Re z t, =

m VM= M2  M m3
uu, ve , ' +Sv v), w, •( 3W+e 3W) , (2)

R* 2

where V(x), W(x) and P(x,ylz) describe the equilibrium flow.

The equations governing the equilibrium flow are obtained by

substituting the relevant parts of equations (2) in the Navier-

Stokes equations and the equation of continuity expressed in

cylindrical coordinates. Certain terms in the resulting equa-

tions are dominated by others when e->0 regardless of how Mi

and n are chosen; when such terms areodelted, the governing

equations ares
1 M4.2M2_Il

V2 =P

V" M4+2-M 2 -n 2  R3 2--M2 'iJ= y 2 - P2 (3)

and W e14 4+2-M3 -n 3  R3  2-M3 3P
= v23

where subscripts x,y,z denote partial differentiation.

ii



An exponent such as M4 which can be eliminated from

all but one equation can immediately be eliminated altogether;

in this case the requirement that V and P shall be present in

a narrow gap limit implies that the behavior of P in the limit

where e -- 0 is determined by the behavior of V according to

the relations,

M 4 = 2M2 + 1, (1)

and

P = V2

Solutions of equations (3) for V and W under the impressed

boundary conditions are

-MI •2 l 2Cxx)xx
V i e (B-(&+xAu)+ P (X

V 2 2 2. 2pv

and (5)

-M 
2

W ~~ 2 PV 2~~W-A) - 3 (x-xl)(x-x2 )ýIpV

where x, and x2 are defined by

r,(xl) - R, and r*(x 2 ) = R2 I
i.e. (6)

xI, -(R-R)/d and x2 = (R 2 -R)/d

and where

£2 x2 -x 1£ 2 , AQ.E 2-ý

S(7)
W ~x 2 Wl-XW 2 , 2-WI .



The nonlinear equations governing time-dependent

perturbations of the steady flow again include terms which al-

ways vanish in the limit where e-> 0; after such terms are

deleted the equations become

m -1 m 2 -n 2  m -n
e ux y+ C Vy+e3-3 wz = 0z

MN-I m2 M2 2  m2-n2
e Lu - p •x+ (e V+ eMv) 2e Vy

S(8)
mn2 v .M2+m-l- _ _ .-n 2 p 1-n2y
s veVu= -e y+2

and
m3  M3+m1-i 1  e+-n3pz

where the prime denotes dxdx

e-n + M2-n2A M3 -n + 2

in-I rn- r-n
U.7 - 1 2 -n2 a M 3 -n3 w 3 (9)R_= -2 3 x0+ e, v 6+ e _

ax 6Z

and

2 - 2 2 2n 2 L-2n3,2V z
ax ay Oz

The linearized equations governing an infinitesimal perturbation

of the form

u = u(x)exp {i(k2 y+k3 z)+xt 3,
(10)

p - p(x)exp ti(k2y+k3 z)+xt3

are



m-1  U m2 -n2  em3 3k 3w)
£ Du+is 3~+•

Lu = - 1 Dp + 2 e inVv-21 e k 2 v

(n)

Lv =-Is m4-m2-n2k2P k M2+mln-m 2 -l Vu+21 1 -m22-n2k21

and
-m3-n% M3+m 1 -m3 -1

Lw=-i e 3 3p -e Wu,

dwhereD

and

L -e M2-n2k2V+ M3n 3k3W)
(12)

-2.r-2 2,+ .- 2n31,_ e-2D2)
+( k2 + 13u

In addition to equations (11) the velocity components must

satisfy the boundary conditions

u = v = w = 0 at x=xI and xrx 2  (13)

With regard to choice of the exponents ml-1,

m2-n29 and m3 -n 3 , we see immediately that at least two of them

must be equal, for, otherwise, the equation of continuity implies

that the only solution is the trivial one where u=v=iwu=p=O.

The case where two of the above exponents are equal and greater

than the third simply cannot occur, for then the equation of

continuity implies that the veolcity component associated with

the third exponent is identically zero; this means, in effect,

that we have tried to chose-the exponent Di; associated with the



third component too small. Now the exponents mi indicate the

behavior of the leading terms in expansions of the pressure

and the velocity components in powers of e, and consequently a

value for mi which is too small in the above sense is not allow-

ed since the leading term of an expansion is by universal agree-

ment not identically zero. Thus a rough classification of

possible limits on the basis of the continuity equation contains

four cases: the case ml-l=m2 -n 2 =m3 -n3 and the three cases where

two of the exponents are equal and less than the third. We

shall first treat the case where the three exponents are equal;

then it will be shown that the remaining cases do not occur.

If we now take ml-l-m2 -n 2 =mB-n 3 = a (say), equations

(11) become

Du + i(k 2 v+k3 w) = O, ]
Lu =- a2 Dp + 2 e M2+n21Vv

(110.m+-a-2n 2  M2 -n 2  ,
Lv =-i e k 2 P Vu

and
im4- a2n• M3-nwu,Lw = -ie 3kp - 3Wtu

where two terms have been dropped since ml-m 2 -ne-2n-2 +l and

m2 -ml-n 2=-l. As we shall see presently, the exponent a, which

now remains unspecified, can be assigned if one considers

secondary motions of finite amplitude.



The exponents we have to deal with are M2 -n 2 ,
M3-n31 M2+n2-1, -2n21 -2n3, -n)+, and m4- a e Of these, the last

two are determined by the others in virtue of the following

considerations, (1)-nh appears but once (in L) and therefore

must be set equal to the smallest of the remaining exponents in

equations (14) in order that the parameter X shall appear in

the limit anA (2) mL-a appears only in conjunction with p and

therefore, in order to insure that p is the leading term of an

exae..... on in powers of e, must be given the minimum value con-

sistent with the requirement that p shall not vanish identically.

Furthermore, we must add the restriction that none of the ex-

ponents which appeaap in L shall be less than -2; otherwise,

equizations (14) can be reduced to a single second-order dif-

ferential equation fc.v u which can be shown to have no nontrivial

solution which satisfies the boundary conditions u=Du=0 at xI

and x2. Thus we have

n2 <I , n 3.<l .n 2 -2, M3 >n 3 -2, n4=2. (15)

If we now add to the above restrictions the requirement that

the functions V and W shall in fact appear in the limiting

equations, we obt.ain the relations,

M3-n3 -- 2 with n3 < I

and
M2-n 2 = -2 with <n 2 < 1 (16)

or
M2÷n2 -1 with n2
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from which it follows that a choice of n 2 and n3 completely

determines the remaining exponents.

Now let us consider the case where n 2 =n 3=l. If we

make the transformation

w-• wA 3 , v-- v/k2

w-- W/k3 f V-- V/k2 9

we obtain the equations

Du + i(v+w) =0

Lu = - Dp (('18)

Lv = -ik p - V u

Lw = -ik 2 p - Wu
3

where
2 •2(XX)XX)

V = ek2  R 2 +•- ½

w- (½~)+~~P(~l(~25 (19)Pd; -( 3 x-x ) (x-x 2 )3

pv

L =X +i(V+W) + (k22k2 -D2

The pressure and two velocity components may be eliminated from

equations (18) to give the equation

•LC.(ki+k..-D2) + i(V+W)?u ,,0 (20)
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with the boundary conditions

u = Du = 0 at x= x and x= x2  (21)

If we now consider the case where n3 < 1 we obtain

governing equations which have the same form as equations (18)

through (21) except for a replacement of the quantity k3 by
1-n3

k E 3 throughout. Thus it is clear that no new narrow gap
3

limits can be obtained by taking n 3 <1 since they are all

covered under the case n 3 =1, k3 =O. By means of a similar

argument we can establish that the cases where-1 <n 2 <1 are

equivalent to the case where n2 -l, k2=O.
1When n 2 - a new term is introduced in the govern-

ing equation for u, and a second narrow gap limit is obtained.

The governing equations then become

Du + i(v+w) 0

Lu= -Dp + 2Vv/k 2

(22)
Lv = -V u

Lw = -ik -Wu

where v=2 2 2) X-l

(23)

W ek {A(iw+x A Rd2 (23

pv

L =7 + i(V+W)+(k 2 _-D2 )
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The pressure and a velocity component may be eliminated from

equations (22) to give the equations
k 2

Lk-.D2 +i(V"+W")j u = 2(-)Vu

12 (2k*)
Lv -V u

with the boundary conditions

u = Du = v = 0 at x-xI and c=x2 (25)

When n 2 < I the exponent M2 -n 2 miust be greater

than -2 and we then obta.n the equation

(X+iW4(k 2-D2))v = 0 (26)

conditions v(Xo )=V(x2)=o we obtain the relation,

2x V 2 2 x2IV1
U~k =-2 (k 3 Iv'+DvI2) dx/ vldx' (27)

X1X

from which it follows that there can be no unstable solution
unless vM0. Thus we find only the two limits given above if we

require that all three velocity components shall have nontrivial

expansions in powers of e with leading terms which appear in the

limiting form of the continuity equation.

The exponent a which has been left unspecified

may be assigned by requiring that equations (8) shall include

nonlinear terms which limit the exponential growth of unstable

perturbations predifcted by the stability equations. It is
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readily verified that a -2 is the only choice possible.

Narrow gap limits in which one of the velocity

components does not appear in the lowest order continuity equa-

tion fall into two categoriess (1) limits which can be obtained

from the two limits we have discussed above by setting one of

the velocity components to zero and (2) limits which introduce

new terms in the governing equations, It can be shown that

there are no nontrivial solutions of the equations governing

the limits in the first category, and thus we need consider

only the second.

From equations (11) it follows that no new terms can

be introduced into the governing equations when

(m3-n 3 ) - p >(m 2 -n 2 ) = (ml-nI) - -2; (28)

hence we need not consider this case*

When

(ml-1) - > (m2-n2) - (m3- 3) - -2 , (29)

we have

1 2+ml-m 2 .- -= 2-.2+ (p$2) > 42-n2

M + 1M31-" "3-+(P2)> M3"C3. (30)

- m1 -m2 "n2 ' (P+2)+i-2n 2 > -2n2

In fl @ of equations (29) and (30) the governing equations are

reduced to
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i(k 2 v + k3w) = 0 ,2

Lv -i e i C2n2kp
aria• (31)

LW= i 3

where L is defined as in equation (12). From the above equa-

tions it follows that

',m++2- 2k2+ .£+m3 -n3 , 2)p =O 0C32)

and hence that one or both of the equations

Lv = 0 and Lw = 0 (33)

is satisfied. In any case an equation similar to equation

(27) can be derived, and thus we find no unstable solutions*

Finally we have the situation where

m2 -n 2 = P>ml- = m 3 -n 3 = -2. (34)

In this case we may take

m = m 3 = M3 = -n3 = -, nj•= 2 (35)

In virtue of the relations.,

M2+ml-m 2 -l <M2 -n 2  and m2-ml'-2 >-I, (36)

the governing equations become
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Du + ik 3 w V 0

k+ M2+ n2 +l1Lu = emDp+2 c Vv

m4"im2 -n2,, M2 -m2 "2 , -m2-n2 -1
Lv = ik V u+21s k2 u (37)

and
Lw = ~m4 -2W'u

Lw= ie ~k3P - u

where

L = [2 (X+ikW)+(k3D )]+ k2

If the above system is not to degenerate to a lower order

system (for which the boundary conditions cannot all be satis-

fied), the remaining exponents must be chosen in such manner

that no power of e appearing in the above equations is

less than -2. Furthermore, if V is to affect the limit at all
we have

M2+m2 +- = -2 0 (38)

and if the third equation is not to become Lv = 0 we have

either

m4-m2-n 2 = -2 , (a)

Ml-m 2 -2 = -2, (b) (39)

or

-m2-n 2-1 = -2 , (c)



It can be shown that equations (38) and (39) (a,b, or c)

cannot be satisfied when the indices satisfy the inequalities

implied in equations (37) and (34). Thus there is no narrow

gap limit here, and this exhausts the possible cases.

The two narrow gap limits ares

Limit Is n 2=n 3=l, n1 -=2, nm=-2,

m2=m3=M2=M3=-1 and =-1.

The governing equations are

•• ~~2 2 2 " "•=
an L(k2+k -D )+I(k 2V +k W)3u 02 3 2 3W

u=Du=0 at X-x 1  and x-x 2  (4.0)
where

L - ' +i(k 2 V+k 3 W) + (kjfk -D2 )

There are the following six Reynolds numbers to be considered

: in generals

Iii • d3 Wd &WI 1n ld
ii~ ~ ~ ~~~~n 2 -v 2'v'v •2 P3 (1

V V 9 2PV2 27 , and3

The first and fourth of the above may be eliminated by a

redefinition of Xe

Limi 2s n 2=, n3 =, n4-2, m4~-29,ol4
"m3=13=-1 and VI-2:.



The governing equations are

2_2) + ick 2V"+k w2)3u av
Lk3 -D3 3 V[ t

Lv= -Vu.

and

u=v=Du=O at x=xi and x=x 2  (12)

where

2 2)X+i(k 2V+k3 W)+(k -D2 )

Here the six Reynolds numbers ares

-R 1 .1 d 2• P2\ R 9 2' 2 -- P3
p Pv pv 3 +3)

In view of the fact that the Reynolds numbers as-

sociated with V approach zero for fixed C, AQ and P2 faster

in limit 2 than in limit 1 by the factor Vd7-, it might be

surmised that limit 1 is the more important of the two. In

fact this would be exactly the wrong conclusion. Let us con-

sider, in order, the three cases where W vanishes and the

dominant term in V is due either to ff, AQ or P2. In the

first case the fact that the Reynolds number associated with

0 can be eliminated in limit 1, but not in limit 2, indicates

ý- that it is only limit 2 which has any bearing on the problem.

In the second case, the neglect of - Rd 2 P /pv 2 relative to2 2/

R2Ag/v in limit 1 gives the problem of pure shear flow between

parallel planes. Since this problem is known to have only
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stable solutions, it is again limit 2 which matters. It is

only in the third case that limit 1 actually prevails;

however, as Lin has already remarked*, if one adopts the

narrow gap approximation, wherein the equations of the narrow

gap limit are used for finite but small e then on the basis

of the computed critical Reynolds numbers for the two limits

it is found that limit 1 is dominant only when e is less than

0.26 x 10"; and this is indeed a very narrow gap.

C. C. Lin Theory of Hydrodynamic Stability p. 48.


