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AN EXPERIMENTAL DETERMINATION OF THE EFFECT OF POWDER
SAMPLE POROSITY ON X-RAY INTEGRATED INTENSITIES

J. J. DeMARCO and R. J. WEISS

Materials Research Laboratory
Ordnance Materials Research Office
Watertown Arsenal
Watertown 72, Massachusetts

ABSTRACT
Some measurements are presented which support a aimple
derivation for the effect of porosity on the integrated inten-
sity of Bragg pcaks in powders. A practical method of correct-
ing for porosity is presented which makes use of fluoreacent

radiation from the sample.



AN EXPERIMENTAL DETERMINATION OF THE EFFECT OF POWDER
SAMPLE POROSITY ON X-RAY INTEGRATED INTENSITIES

J. J. DeMARCO and R. J. WEISS

It is the purpose of this note to underscore the fact that porosity
(or surface roughness) can give rise to large errors in X-ray intensity
measurements on powders and to propose a simple semi-empirical expression
for estimating the effect of porosity and a practical method for correcting

for it.

If one is measuring the Bragg peaks from an infinitely thick powder
sample in symmetrical reflection then the integrated intensity in absence
of extinction is ordinarily taken to be proportional to Q/2u (James i954,
p. Si) where p is the linear absorption coefficient of the bulk material
and d is the integrated reflecting power per unit volume of a single crystal-

lite. This expression is valid either for a powder sample whose apparent

density equals the true density of the bulk material or for a powder sample

whose particle size is so small that the X-ray traverses a great many par-
ticles. However even for a particle si;e as small as a few microns the
absorpbion_coefficient for elements of Z > 25 is so high as to limit the
depth of penetration of X-rays to only a few particles. Thus we can expect
that the X-rays will traverse a statistical distribution of path lengths on
entering and leaving a typical powder sample. On the average, though, the
emergent path lengths are greater than the p;th lengths on entering. Since
the Bragg intensity is proportional to the amount of sample traversed by
the X-rays and the absorption of X-rays is exponential there is a different
averaging for the two competing processes. It turns out that this reduces
the intensity from that expected from d/Zp by as much as 20% in typical

cases encountered in X-ray diffraction.

We have calculated the integrated intensity in infinitely thick powder

samples in symmetrical reflection on the simple assumption that the X-rays
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encounter a distribution in emergent path lengths exp [-€|A|n/(1-a)]'where
n is the average number of particles traversed by the X-ray, 1 + A the cor-
rection to the emergent path iength, € an adjustable parameter and a the
ratio of the average path length in the powder sample to the path length in
a bulk sample, i.e., the ratio of the apparent density of the powder to the
true density of the solid. As is expected such a distribution function be-
comes narrower as either the apparent density or n increases and becomes a
delta funtion when a = 1. The reascn for the longer emergent path lengths
can be seen in Fig. 1 where an entering X-ray is seen to penetrate quite
deeply due to voids and thus cannot easily leave. If the reverse ray were
equally intense (reverse the arrows in Fig. 1), there would be no porosity
effect but such a reversed ray would have been scattered or absorbed before

reaching this depth.

If we let d equal the average particle size then n = 1/ud and a straight-

forward integration yields (x is the depth from the surface)
® ® Zyax(1+A;I -€n|A| u€n|A|
-4 Qf dx f - exp xp dA f dA
) ° - sinf sinf J

(1)
I« 12. 1 -[;l:glﬁg}
2K 2¢

valid for ud<1

showing that the intensity decreases from that expected by the bulk sample,
Q/Z#. In the limit as either 1 or d approaches zero or a approaches unity

the intensity for the bulk sample is realized.

In Fig. 2 are the results of integrated intensity measurements of the
111 and 200 reflections taken from ten micron size aluminum powder compressed
into briquets under varying pressures so as to vary the density from

1.28 gm/cm3 to 1.95 gm/cm3 (true density 2,70 gm/cm3). At MoKah (1 =13.5/cm)
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the X-rays penetrate about ioo particles and the intensity of the (111) peak
appears independent of packing density. At Cr Ka\(u = 400/cm) the X-rays
only penetrate a few particles and both the (111) and (200) peaks show in-
tensity loss in the low density samples., The best fit of eq, 1 (solid lines

in Fig. 2) is obtained by adjusting the parameter ¢ so that ¢ T 1.0

Using this value of the parameter ¢, Fig. 3 shows the results of com-
paring eq. 1 with intensity measurements of the 110 reflection taken from
five micron carbonyl iron powder at Ag Kah(u = 143/cm),‘Mo Kah(u = 295/cm),
Cr Kah (¢ = 906/cm) and Cu KaA(u = 2500/cm). For Ag KaA the X-rays penetrate
about fifteen particles while for Cu Ka\ only one to two particles are pene-
trated. After making a small correction for preferred orientation in the
high density samples, the good agreement with eq. i (solid lines) over a
wide range of density and absorption coefficients leads us to believe that

eq. 1 is useful in estimating the porosity effect,

If the sample is caused to fluoresce be the incident radiation then a
measurement of the fluorescent intensity relative to the fluorescent inten-
sity from a bulk polished sample enables one to make a direct estimate of
the effect of porosity on the Bragg intensity without requiring a knowledge
of a or d. Employing the same formulation that led to eq. 1 and replacing
u by (u +.u‘)/2 we find that the integrated intensity of the Bragg peak is
reduced by a factor R given by

~ +4*) (1-R*

Ry . )R 2)
2ut

which is independent of the distribution function selected and where R* is

the ratio of the fluorescent intensity from the porous sample to that from

a polished bulk sample, p the linear absorption coefficient of the incident’

radiation and u* the average linear absorption coefficient of the fluorescent

radiation (FeKal and FeKA\ in our measurement).
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In Fig. 4 the measured values of ‘R for Cu Kah (Fig. 3) are plotted
against the right side of eq. 2 utilizing measured values of R*. The agree-
ment is good to < 10% and leads us to suggest the use of eq. 2 as a practi-
cal method for estimating the correction for porosity, particularly when the

correction is small.

There have been previous considerations of the effect of porosity
(Taylor (1944), Brentano (1935), Schafer (1933), Brindley (1945),
Rusterholz (1931), de Wolff(i947), Wilchinsky (1951)." Several of the authors
have given elaborate derivations which in the main agree with eq. 1 (except
for some differences in the power of the term (l-a) depending on the model)
but none of the expressions yield any better representation of the data in
Figs. 2 and 3 than our simply derived expression. (An examination of powder
particles under a microscoée indicates that their irregular shapes are hardly
amenable to a sophisticated calculation). Wilchinsky has made some measure-
ments on powders of particle size (,3<ud<16 principally to show that a treat-
ment such as in eq. 1 is not valid for.ud>>1.} Batterman, Chipman and
DeMarco (1961) have utilized the fluorescent intensity of their compressed
powder samples to eliminate porosity effects by selecting a sample whose
fluoreséent intensity equalled that of a solid specimen. Figure 4 and eq. 2

lend support to their procedure.

tIn such a case it may be reasonable to replace ud by pd* where d* is an effective deﬂth
of penetration into the particle. fhis should not affect eq. 2, though, since it is
independent of the distridution function,
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Fig. 1.

A schematic sketch showing that, on the average, emergent
path lengths in the sample are greater than entering path
lengths since a certain fractxon of X-rays can enter quite
deeply through voids.
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Fig. 3. The integrated intensity of the Fe 110 peak at Ag Ka, Mo Ka,

Cr Ka and Cu Ka wave lengths as a function of apparent density
of the 5 micron carbonyl Fe powder samples. The solid curves
are determined from eq. 1 (¢ = 1.0).
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Fig. 4.
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The ratio of the integrated intensity of the 110 Fe peak relative
to a powder sample with no porosity (extrapolated) versus the
argument in eq. 2, taken with Cu Kah. R* is the ratio of the
fluorescent intensity of the powder sample to the fluorescent
intensity of a solid polished sample. If the fluorescent intensity
of a powder sample equals the fluorescent intensity of a solid
specimen of the same material then porosity effects are absent.
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