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ABSTRACT

The problem of dynamic stresses and displacements around a cavity

and rigid inclusion of arbitrary density is examined for an elastic

medium during the passage of a plane shear wave. In the cavity case,

the dynamic stresses and displacements are found to be dependent upon

the incident wave number and Poisson's ratio of the medium. In the

rigid inclusion case, it is found that dynamic stresses and the rigid

body rotation and translation are dependent upon the incident wave

numbers, the Poisson's ratio, and the density ratio of the medium and

the insert. Close coupling is observed between the stresses and the

rigid body motion of the insert.
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INTRODUCTION

The problem of dynamic stress concentration, around a cylindrical

discontinuity in an infinite elastic medium, subjected to a plane travelling

wave has been under extensive study in recent years. [1, 2, 3, 4, 5]

Former investigations, however, considered only the case where the incident

wave is a plane compressional wave. In this paper, the dynamic stresses

due to an incident, plane, shear wave are investigated. Two cylindrical

discontinuities are considered: a cavity, and a rigid inclusion of

arbitrary density. Furthermore, the displacements on the cavity's free

surface and the rigid body translation and rotation of the rigid inclusion

are also determined.

In the approach presented here, the incident shear wave is assumed

to vary harmonically with time. At the boundary of the discontinuity,

incident waves will be reflected into compressional and shear waves. The

resultant dynamic stresses around the cylindrical discontinuity can be

found from the solutions of the scattered waves and the incident waves

near the obstacle. The solutions obtained are based on the generalized

plane strain assumption.

Comparisons are made between Kirsch's [61 static solution for the

cavity case and Goodier's [7] static solution for the rigid inclusion

with the present solution. As the wave numbers become small, the dynamic

cavity solution reduces to the static solution. The dynamic solution for
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the rigid inclusion also reduces to the static solut-ion for any finite

inclusion density. However, when the inclusion density is infinite

(which is the same as holding the inclusion fixed in space) a singularity

will occur as the wave numbers approach zero. A similar phenomenon was

discussed in detail by Pao and Mow. [4]

GENERAL THEORY

Under the generalized plane strain assumption, the displacement

equations of motion are

(X + 4)v V. u+ PV 2 u = p U (1)

where

u is .the displacement vector

V is the vector differential operator

X and p are the Lam6 constants

p is the density

The displacement vector u, under the Helmrholtz theorm, can be

represented in terms of a scalar potential and a vector potential. In

the case of plane strain, this displacement vector is given by

u- VCP+Vx (ez ) (2)



where e is a unit vector along the axis of the cylindrical discon-

tinuity. Each potential function then satisfies a scalar wave equation

C2 2
C v 1P ( (3)

c 2 = V (4)

where

C2 X + 24

SP

C 2 -c - p

INCIDENT AND REFLECTED WAVES

An incident plane shear wave propagating in the positive x

direction is represented by

M (i *=Oei(ox - Wt)

(5)

() =O0
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where

*0 is the measure of amplitude

w is the circular frequency

= w/c is the wave number of the shear wave

Equation (5) can be expressed in polar coordinates

CO

W)= *0 Z CninJn(Or) cos nge-iwt (6)

n=O

where

fln=O
n {2 rnl

If the origin of the polar coordinates is selected at the center

of the cylindrical discontinuity (Fig. 1), the reflected waves can

be expressed as

(r) = Z An Hn (ar) sin n8ei~t (7)

n=O

CO

*(r) = X Bn Hn (or) cos nee-iwt (8)

n=O



where

A and B are expansion coefficients to be determined by then n

appropriate boundary conditions

a = w/ca is the compressional wave number

H denotes the Hankel function of the first kind of order n.
n

fy
rr

0 0. X 0

CYLINDRICAL CAVITY RIGID CYLINDRICAL INCLUSION

Fig. 1

The total potential can then be determined by superimposing the

incident and reflected potentials. Thus, the displacement potentials

are

Ci() (r) C(r)
q•= +cp =c

(9)
C=,i) + •( r)

Substitution of Equations (6) - (9) into the well-known relation-

ships [4] between stresses, displacements and displacement potentials

yields the corresponding stress and displacement components. With the

time factor e-iwt omitted, they are given by



cc

T = 21.r' I ~~ A D B D)in
"rr = 0enOin + An 1 In + Bn 2Dln) sin n8

n=O

00

" ee = 2pr' ý (Ocnnin 0 D2 n + An iD2 n + Bn 2 D2 n) sin ne

n-- 0n=0

(10)
CO

" = 2pr2 (X 0enin 0D3n + An ID3n + Bn 2 D3 n/ cos nO

n=0

and

"Ur = -r ( 0 enin 0 D4 n - An 1D4 n + Bn 2 D4 n) sin ne

n=O

ue = -r- 1 (*Orn in oD5 n -An ID n + Bn 2 D5 n) cos n8

n=0

(11)

In Equations (10) and (11), 0 Din through 0D5n represents

the contribution on stresses and displacements by the incident wave,

while in 1 D5n and 2 DIn - 2 D5 n represents the contribution on

stresses and displacements by the reflected compressional and shear

waves, respectively. These functions are defined
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0 ODIn = n(n+1) Jn (Or) - nor Jn- 1 (or)

0 D2 n = -n(n+l) Jn (Or) + nor Jn- 1 (5r)

OD3n =-(n2+n - r2 )n2 (Or) + rn (Or) (12)

0D4n = nJn (or)

oD5n = -nJn (Or) + Or Jn-1 (Or)

10In 2 n-i-

iDn = (n2+n -ar2 ) H (axr)-cr H ( r)"In 2n-i

2 2 2 r) n(r)+orn.(e)
1D2n = -(n2+n -• r + 2 ,~r+ ~ H 1 (x

ID = -(n +n) Hn (ar) + rnr Hn.I (ar) (13)

D4n =-n Hn (ar) + car Hn-1 (ar)

iD5n n Hn (ar)
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2Dln = n(n+l) Hn (Or) - n~r Hn.I (or)

2D2n = -n(n+l) Hn (Or) + n~r Hn.I (Or)

2 D = -(n2+n -2r2 ) H (ir) + Or (or) (14)23n 2 n Hn-(

2D = nHn (or)

2D5n = -nini (or) + ýr Hn.I (er)

BOUNDARY CONDITIONS AND SOLUTIONS

As previously mentioned, the coefficients A and B are to
n n

be determined by the appropriate boundary conditions associated with

the two types of discontinuities considered: the cavity and the rigid

inclusion. The appropriate boundary condition for the cavity case is

obvious; i.e., traction free at the boundary. The boundary condition

for the rigid inclusion, however, is not this clear.[4] The correct

boundary condition in this case is obtained by leaving the rigid in-

clusion free to rotate as well as translate with the surrounding medium.

This implies that, at the interface, the displacements due to the combined

incident and reflected waves are equal to the displacements corresponding

to the rigid body rotation and translation of the inclusion which are

determined by the application of Newton's law of motion.
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Cavity

The boundary conditions at r - a, where a is the radius of the

cylindrical discontinuity, are given by

r •T =0rr re

If each term of the series for Trr and T r in Equation (10) is

set equal to zero at r = a, the coefficients A and B aren n

determined from a pair of equations for each value of n

A 0On' n 0Dln 2Dln (5
nn 0An 2 n(15)

n

0D3n 2D3n

B *0eni 1 i ln 0 ln (16)
n

n

1i3n 0D3n

and

IDln 2Dln

A =(17)
n

ID3n 2D3n
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where 0D .. .. 2 3n denote the value of D . 2 DQi 2n0Dn 2D3n

at r = a. The displacements and stress can then be calculated by the sub-

stitution of Equations (15) through (17) into Equations (10) and (11),

and the solution is complete.

It is convenient to nondimensionalize the stresses and dis-

placements with respect to the dimensional coefficient of the stress

and displacement associated with the incident wave, i.e., TO =-- 2*0

and u0 = -i0*0 . It is noted that the wave number is normalized by

the radius of the circular inclusion. Thus, the dimensionless wave

numbers ca and Pa may be regarded as the ratio of the circumference

to the incident wave length. Thus, at the boundary (r a) the

dimensionless stress T and displacements ur and u, are given in

the following form

8 O n n(n2- 2- a ) H n (a). _8 I 1 ¶J In+lnnl-T)(a
Te = (l " 12 ) 6 sin nS

n=1 n

(18)

u 28a nin [ (n+l)Hn (a)- ma Hn-l(aa)]ur TT L A nsin nO

n=1

(19)
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jLn [(n2+n - 2a7 ) H (aa)- aa H(cla)

2 n= -1,cos ne

n=0 n

(20)

where

2 2 C2

k 2 a 2 (1-a)
k 2 2 (I-20)

a is the Poisson's ratio.

Rigid Inclusion of Arbitrary Density

As previously discussed, the rigid inclusion in general will

rotate and translate with the surrounding medium. The resultant forces

and torque acting on the -Inclusion as aresult of the stresses acting

on the boundary due to the incident and reflected waves are expressed

by

2 TT
F = So (rr cos e -'r sin e) a de (21)x rr

2 TT
F = So (rr sin 8 + ;rO cos e) a dO (22)

T = 20 a2dO (23)0 o ;
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By substituting Equation (10) with r = a into Equations (21) through

(23) and considering the orthogonality, it can be readily shown that

F = 0 (24)X

F Y = 2pa 1 [2*0 i 0DII + 0 D3 1 ) + AI (1DII + 1 D3 1 )

(25)

+ B1 (2 D1 1 + 2D31

and

T = 4Tn [ 0 0D30 + A0 ID30 + B0 2 30] (26)

From Newton's law of motion, it is known that

(Tra 2 pl) i = F (27)y y

4
2 'r 1 a T (28)

-i~t
By restoring the time factor e , which is omitted in Equation (10),

and twice integrating Equations (27) and (28) with respect to time,

the rigid body translation and rotation of the inclusion is found to

be given by
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u = 2 2*01 - + - ) + A1 (" + -Uy 2 f ~3 (0DI 0D31) 1(IDII ID31)

(29)

+ B1 (2 51 1 + 2 53 1 ) ]

S . 8 +A0 D + B 0 ) (30)

2a4 0D30 0130 02630

p0

where Ti - is the ratio of density of the surrounding medium
P1

to that of the inclusion. The translation and the rotation will

'vanish if =i 0. Hence, the problem is the same as the case when the

inclusion is fixed in space.

For any inclusion with finite density, the displacements at the

boundary of the inclusion must be

u = U sin e
r y

(31)

u = U cos O+ ae

If the expressions for ur and in Equation (11) are substituted

into Equation (31) and the orthogonality conditions are employed, it is

found that for
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n= 0

A0 0

2a2 Jl($a) + 8• E 2P- J 0 (0a) - J (0a) ]
B 0 (32)

Sa 22 H1 ($a) + 8' [ 2a H0 (0a) - H (0a) ]

n=1

A, = 6--- ýa(l-j) [Jl1(0a) Ho0(0a) -Jo0(0a) HI1(0a)

B1 6 1* E-41] J (0a) H (a~a) + (1+11) (ýaH (m~a) J(0(.a)

+ aaJl(0a) Hl0 (aa)) - a.a 2J 0 (0a) H0(aa) I

(33)

n• 2

n zt 2

An 2 na [Jn(0a)Hn(0a) - J-(0a)Hn(0a)]

n

B 2 *Oin [rKxaHn(aa)Jn(0a) + nSa Hn(aa)Jn(0a)

- c•a 2 H n-1 (aa)J n-1 (0a)]

(34)
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where

61 = -4f HI (ca)H 1 (pa) + (1+11) caHl0 (aa)H1 (ýa)

+ (i+-f) OaH0 (Pa)H1 (aa) - czaa2 H0 (cma)H 0 (0a)

(35)

An = naa HnIl(da) Hn ($a) + n8aHnl (0a)Hn(ca)

- a0a 2Hnl (ma)Hn-I (Pa)
(36)

Substitution of Equations (32) through (36) into Equations (i0) and

(ii) yields the solution for the stresses and displacements for the

rigid inclusion case.

At the boundary, where r = a, the dimensionless stresses

Trr, T 0 V8 , and Tr@ are simplified to

* 4 (I(-x)HI(ca) i n+n Hn (aa)
T f E- sine+ Y sin ne]rr rr 81-A

rr n=2

(37)

T - I - 2rT (38)ee -k2 k
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T 2 

22 2a 
2

Tre =T 03 a 3aHl(ýa) + 87 ( 82a22 Ho(0a)-OaHl(0a))

-61 [(l+7f)Hl(caa)-caaHo(caa)] cos e

SinCl-nH (cia) + aaHn (cia) )

-2 1 n cos nSl (39)

n=2 &n

It is to be noted that the Poisson's ratio range for comnon materials

is 0 < a < ½; therefore, Te8 is always less than Trr" The

dimensionless rigid body translation and rotation of the inclusion

are given

y i 8 17f [H (cma) - -a H0 (aa)] (40)
y Oa6 I 7r 1 2 0

* 16i'f
0 = 1- (41)

nra[O2 a2Hl(ýa) + 8f ( C a H0 (0a) -Hl(0a))]

The rotation is non-dimensionalized with respect to the dimensional

coefficient of the rotation associated with the incident wave, i.e.,

02 0

0o 2
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LO)NG WAVELENGTH LIMIT

If the wavelength of the incident shear wave approaches infinity

(ý-O), the solutions obtained for the cavity and the rigid inclusion

should reduce to the Kirsch's and Goodier's static solutions. Under

pure shear T03 the static solution for the cavity case at the

boundary is

Tee Te -4 sin 2e (42)

and the static solution for the rigid inclusion is

T rr . 2k 2
-- = T = - sin 29T 0 rr k2 +1

. . . .T 2 cos 29 (43)
T 0 TrO k2+1

T 2 ) *
788 k 2I - rr

For small arguments, the Bessel functions are approximated by

the leading terms of their series. Thus, as x -. 0,

Hox W 1 + 1 ( ) (in x-0.11593)

H(x)-- x, ) n -/n (n-1)' ( 2)nT
n2
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The coefficients of sinusoidal functions for Tee in the cavity

case are reduced in the limit, as Oa-.O and aa= k -- 0, to

the following form for

n= 1

2 H (aa)
2 0 (44)

n• 2

n 2 22

n(n -1- )H (2a)
2 n

n

-i ~n (n 2 -• - 2 ) (n -1 ) ' L a )n -2 4 [ (n -1 ) ,]2 (n 2 n ._ 02

2 2 4

+ (n2"lO a2 [ (n-2) '] 2 + 2(-n3+n- a2 ) (n-2) ' (n-l) ' (1+ )2 2 k
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l.• n -= 2

2(1- 1

(45)

0 n>2

Therefore, as Oa - 0,

.

T- -4 sin 20 (46)Ge

which is identical to Equation (42).

The coefficients for the sinusoidal function in Equations (37)

and (39) for the rigid inclusion case are reduced in the limit, as

aa - 0 and Oa - 0, to

________ _ _) irr(l-T1)Ba -, 0
81 8fl

nH (ca) 1k2 ( a )n-2
n n2_2 .2a2

n (n-2)'(1+k2) - (n-2)1
n(n-1)
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2O

iTrk2 n= 2
2 (l+k)

(47).

S 0 nn>2

2 0

83 a3 Hl(Ba) + 8i• [•" H0 (Sa) - 8a Hl(Sa)]

(1+T) H1 (caa) - cma H0 (cLa) i- r(l+11)Ba 0 (48)
6 . 8'fl

18

-n H (cma) + caa H (aa) -iTrk2 ( 2a )n-2n Hn-1 _,2

A n (n-2) %2 (1+k 2

I "-ikk2 n - 2
2 (1+k 2 )

0 n>2

Therefore,

* 2
Tee - sin 28
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, 2k2

- 2 cos 28re k 2 +1

which are identical to Equation (43).

For the case where I = 0, a singularity will occur in the

n = 1 term as Oa -• 0. The coefficients in this case are of the

form

H1 (aa) k_2

1I (l+k2 )a

(49)
-HI (a)-aa H1 (ma) -k2

AI (l+k2 )a

Hence, it is apparent that the stresses will become infinitely large

as the wave number approaches zero for the "fixed in space" rigid

inclusion.

NUMERICAL RESULTS AND DISCUSSIONS

For wavelengths other than very long or very short, the stresses

and displacements are determined by the series given in Equations (18)

through (20) for the cavity case and in Equations (37) through (41)

for the rigid inclusion case. Numerical evaluations were carried out
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on a 7090 IBM computer where the series were terminated when accuracy

of 10-4 was achieved.

The expressions for the stresses and displacements are all of the

form

-iwt ,2 2)½ -i(wt-v

(R + iT) e = R2 + I e

In one complete cycle, the real parts R yield the stresses at t = 0,

and the imaginary parts I yield the stresses at t = 1, where T is
2 2½

the period of the incident wave. The absolute values (R2 + 1 ) are

the maximum stresses which occur at an instant between t = 0 and

t = depending on the phase angle y = tan"1 ( •

Cavity

In this case, the only nonvanishing stress at the boundary is

Tee, therefore, it is also the maximum principle stress. Numerical results

of stresses and displacements were obtained for the values of a = 0.15,

0.25, 0.35 and dimensionless wave numbers in the range 0.1 r ýa s 3.0.

Fig. 2 illustrates the angular distribution of ITre* for three

wave numbers, Pa = 0.1, 1.0 and 1.5. It is to be noted that at

Pa = 0.1, the stress distribution is almost identical to that of the

static case, while at higher wave numbers the stress distribution is

considerably distorted from the static case. Figs. 3 and 4 show how

stresses at two points on the cavity (8 - ) vary with frequency4' 4
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4.0 3.0 2.0 1.0 0 0 1.0 2.0 3.0 4.0
0-T 19.0

!*
Fig. 2 Distribution of TOO for Various f3a with a 0.25 (Cavity)

4.0A

3.0

V0. 35

0.2

2- .15

0 1.0 2.0 3.0
,80

Fig.3 T*O vs Pa for Various or at 9=1 (Cavity)
0 4
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0.35

0 1.0 2,0 3.0

Fig. 4 f Tr vs /a for Various a at 0= 171 (Cavity)
4

and the Poisson's ratio of the medium. In this case, as well as

results shown in References 2, 3 and 4, the maximum dynamic stress is only

10 to 20 per cent higher than the static values, and the wave number

at which the maximum occurs lies between 0.20 and 0.50.

The angular distributions of lur*l and fu*f for values of

Oa = 0.10, 1.0, and 1.5 are shown in Figs. 5 and 6. At Oa = 0.10 the

displacements are again the same as the static case; while at high

frequency there appear to be two stationary values for fu*f in the
Sr!
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interval of 0 < e < -r, and three stationary values for, Both

maxima for lurl and Iu*1 tend to shift toward the incident side as

the wave number increases.

2.0 1.5 1.0 0.5 0 0 0.5 1.0 1.5 2.0

Fig. 5 Distribution of U for Various Pa with u 0.25 (Cavity)
r

2.0 1.5 1.0 0.5 0 0 0.5 1.0 1.5 2.0
9.wr 8-o

Fig. 6 Distribution of for Various Pa with a = 0.25 (Cavity)
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Rigid Inclusion

Figs. 7 and 8 illustrate the angular distributions of I1 rr and

I Tre for two wave numbers ($a = 0.1, 1.5) and f = 0.5. At ýa = 0.1

(low frequency), the distribution is nearly symmetric with respect to

the x and y axes, as should be expected. At high wave numbers

this symmetry does not exist, and the maximum tend'- Lo shift to the in-

cident side of the inclusion.

2.0 1.5 1.0 0.5 0 0 0.5 1.0 i.5 2.0

9.7r 0.0

Fig. 7 Distribution of Ir Ifor Various P a with a = 0.25
and 17 = 0.5 (Rigid Inclusion)

Figs. 9 through 12 show the variation of IIr, ITrGI, !I, and

jUy1 as a function of wave number for various values of 1 It is
y P

apparent that the density ratio T (--- ) has a large influence on
p1
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the stresses, displacements, and rotation. As the density of the in-

clusion increases the maximum value of the stress, displacement, and

rotation also increases. This increase becomes appreciably greater

for density ratios below 0.5. In the case of f = 0.25, for example,

the maximum dynamic stress for I* and* T l in Figs. 9 and 10 are,

respectively, 37 and 105 per cent greater than those under the static

condition.
3.0

01.0 2.0 3.0

Fig 9 "r~r vs /3a at =[

Fi. -v P"a for Various 77
with " = 0.25 (Rigid Inclusion)

It is also to be noted that there is an apparent relationship

indicated between the maximum values of stresses and those of both the
rigid body motions. Previous studies have shown that there

exists only one maximum for stresses as a function of frequency, which



29

4,5

'4.0

3.5 177:0.10

3.0 8:-, .i e

2.0

1.5

0.5

1.0 2.0 3.0

Tr

Fig. 10 I4*tvs Pa atO= , forVarous i with u = 0.25

Rgd 'n2

(Rigid Icl0.2o5
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is also the case for IT in Fig. 9. However, Fig. 10 shows for

ITr at e = T that there are two distinct, stationary values for

' = 0.10 at two different wave numbers. By comparing these wave

numbers where the peaks occur with those where the maximum of IU*I
y

and 1'@*I occur, it is apparent that the first maximum of ITr*

occurs very close to the wave number where IU!j is also a maximum.
y

Furthermore, the wave number corresponding to the second maximum of

TIel is very close to the wave number at which jo*l is a maximum.

These observations certainly indicate the presence of coupling

between the rigid body motions and the stress at the boundary.

3.0

2.0 0.10

91.

0 1.0 2.0 3.0

Fig. 11i e*I vs fla for Various Ti (Rigid Inclusion)
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I,.5

1.0

0.5 1

0 1.0 2.0 3.0
go

Fig. 12 1 U*lvs Pa for Various r with 0 0.25
(Rigid Inclusion)

From Figs. 11 and 12 it is shown that the denser inclusions

receive the greater rigid body motion for Pa approximately less than* *
1.5 for 1 and 1.0 for IU , but the converse is true as the wave

y

number increases beyond these values.
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