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ABSTRACT

The problem of dynamic stresses and displacements around a cavity
and rigid inclusion of arbitrary density is examined for an elastic
medium during the passage of a plane shear wave. In the cavity case,
the dynamic stresses and displacements are found to be dependent upon
the incident wave number and Poisson's ratio of the medium. In the
rigid inclusion case, it is found that dynamic stresses and the rigid
body rotation and translation are dependent upon the incident wave
numbers, the Poisson's ratio, and the density ratio of the medium and
the insert. Close coupling is observed between the stresses and the

rigid body motion of the insert.
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INTRODUCTION

The problem of dynamic stress concentration, around a cylindrical
discontinuity in an infinite elastic medium, subjected to a plane travelling
wave has been under extensive study in recent years. (1, 2,3, 4, 5]
Former investigations, however, considered only the case where the incident
wave is a plane compressional wave. In this paper, the dynamic stresses
due to an incident, plane, shear wave are investigated. Two cylindrical
discontinuities are considered: a cavity, and a rigid inclusion of
arbitrary density. Furthermore, the displacements on the cavity's free
surface and the rigid body translation and rotation of the rigid inclusion
are also determined.

In the approach presented here, the incident shear wave is assumed
to vary harmonically with time. At the boundary of the discontinuity,
incident waves will be reflected into compressional and shear waves. The
resultant dynamic stresseg around the cylindrical discontinuity can be
found from the solutions of the scattered waves and the incident waves
near the obstacle. The solutions obtained are based on the generalized
plane strain assumption.

(6]

Comparisons are made between Kirsch's static solution for the

(7]

cavity case and Goodier's static solution for the rigid inclusion
with the present solution. As the wave numbers become small, the dynamic

cavity solution reduces to the static solution. The dynamic solution for



t;he rigid inclusion also reduces to the static solution for any finite
inclusion density. However, when the inclusion density is infinite
(which is the same as holding the imclusion fixed in space) a singularity
will occur as theé wave numbers approach zero. A similar phenomenon was

discussed in detail by Pao and Mow. [4]

GENERAL THEORY
Under the generalized plane strain assumption, the displacement

equations of motion are

A+ pvv.u+pupvZu=pi ¢}

u 1is.the displacement vector

v 1s the vector differential operator
A and p are the Lamé constants

p 1is the density

The displacement vector u, under the Helmholtz theorm, can be
represented in terms of a scalar potential and a vector potential. 1In

the case of plane strain, this displacement vector is given by

u= ch+va(£:“f) 2)



vhere e, is a unit vector along the axis of the cylindrical discon-

tinuity. Each potential function then satisfies a scalar wave equation

v oe=9 (3)

AR @)
where

2 oA+

(¢ p

2 _ B

% =

INCIDENT AND REFLECTED WAVES

An incident plane shear wave propagating in the positive x

direction is represented by

O
)

]
[«

cp(i)



where

Yo is the measure of amplitude
w 1is the circular frequency

B = w/cB

is the wave number of the shear wave

Equation (5) can be expressed in polar coordinates

W(i) = Yy ;; enian(Br) cos nfe ¥

n=0

where

- 1 n=0
€n 2 n=1

£ (6)

If the origin of the polar coordinates is selected at the center

of the cylindrical discontinuity (Fig. 1), the reflected waves can

be expressed as

@

cp(r) = Z A H (ar) sin noe "10* @)
n=0
PO Z B_H_ (Br) cos npe 10t (8)

n=0



where

An and Bn are expansion coefficients to be determined by the
appropriate boundary conditions
a = w/ca is the compressional wave number

Hn denotes the Hankel function of the first kind of order n.

bl
|
L

CYLINDRICAL CAVITY RIGID CYLINDRICAL INCLUSION

Fig. 1

The total potential can then be determined by superimposing the

incident and reflected potentials. Thus, the displacement potentials

are
1) (x) )
=9 + o =9
9)
€9) (r)
b= 4y
Substitution of Equations (6) = (9) into the well=~known relation=-
ships (4] between stresses, displacements and displacement potentials

yields the corresponding stress and displacement components. With the

1wt

time factor e omitted, théy are given by



(o)

- 'ZZ np
T = 2ur (woeni 0D1n + An 1D1n + Bn ZDln) sin n@
n=0

Cae? Y . |
'1'ee = 2ur (qroeni 0D2n + An 1D2n + Bn 2D2n) sin n@

n=0
(10)
=2r'zz( i D, +A D, + B .D. j cos nd
e W ¢o€n 0 3n n 1 3n n 2 3n’ 08 0
n=0
and
[oe)
u = -r"IX (e i™ D, -A .D,_+ B_,D ) sin nd
r 0™n 0" 4n n 17 4n n 2 °4n
n=0
u =-r-12(¢einD -A_ .D._ +B__D.) cos n8
¢ 0°'n~ 0'5n n 1 5n n 2 5n
n=0 ’
(11)

In Equations (10) and (11), ODIn through 0D5n represents
the contribution on stresses and displacements by the incident wave,
while lDln - 1D5n and 2D1n - 2D5n represents the contribution on
stresses and displacements by the reflected compressional and shear

waves, respectively. These functions are defined



0D1n = n(nt+l) Jn (Br) - npr Jn-l (Br)

oPon = -n@1) J_ (Br) + mpr J . (Br)
2 §2r2
3 = ~@Hn = S 3 (Br) + pr I 6r) (12)
0D4n= an (Br)
oPsp = I, Br) +8rJ . (Br)
D = (2 iz-r—z ) H (ar) H (@r)
1'1n - 7R =73 n T Fpoptar
D, = -(n2 “+ﬁ>n ) H
1Py, = ~(a'#n w'r 5 N (@r) + ar el (ar)
[Py = ~@%n) B (@r) + mar B (r) a3
= mH (or) + ar H_, @r)

1D4n

1DSn =nH (ar)



D = (@) H (Br) - npr H__, (Br)
2Dy = -n(w+l) H (Br) + nBr H__, (Br)
2 §2r2
D3y = ~@n - =) H (Br) + Br H__, (Br) (14)
2% = o, G
oDs, = ~nH_ (Br) + pr H_ _, (pr)

BOUNDARY CONDITIONS AND SOLUTIONS

As previously mentioned, the coefficients An and Bn are to
be determined by the appropriate boundary conditions associated with
the two types of discontinuities considered: the cavity and the rigid
inclusion. The appropriate boundary condition for the cavity case is
cbvious; i.e., traction free at the boundary. The boundary condition

(4]

for the rigid inclusion, however, is nct this clear. The correct
boundary condition in this case is obtained by leaving the rigid in-
clusion free to rotate as well as translate with the surrounding medium.
This implies that, at the interface, the displacements due to the combined
incident and reflected waves are equal to the displacements corresponding

to the rigid body rotation and translation of the inclusion which are

determined by the application of Newton's law of motion.



Cavity

The boundary conditions at r = a, where a 1is the radius of the

cylindrical discontinpity, are given by

1f each term of the series for Toer and T in Equation (10) is

8

set equal to zero at r = a, the coefficients An and Bn are

determined from a'pair of equations for each value of n

n - -
Ve 1 - D D
An - 2 n 0 '1n 271n (15)
n - -
0D3n 2D3n
“ - -
Vae 1 - .D D
Bn - 2 n 171n 0 '1ln (16)
n - -
l 1°1m  oP3n
and
1®1n 2Pm
A = : (17)

(=]

on

173n 2 3n
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where 0Dln e e 253n denote the value of 0Dln e e 2D3n
at r = a. The displacements and stress can then be calculated by the sub-

stitution of Equations (15) through (17) into Equations (10) and (11),

and the solution is complete.

It is convenient to nondimensionalize the stresses and dis-
placements with respect to the dimensional coefficient of the stress
and displacement associated with the incident wave, i.e., To =‘u32¢0
and yy = -iswo. It is noted that the wave number is normalized by
the radius of the circular inclusion. Thus, the dimensionless wave
numbers oa and Ba may be regarded as the ratio of the circumference
to the incident wave length. Thus, at the boundary (r = a) the

*
dimensionless stress T

* %
66 and displacements u. and ug are given in

the following form

- 2 e2a2
-le ) H (na)

* 8. .1 S B W |
Tog = TT(1 kz)z i A‘n sin n@

n=1

(18)
® n

* 288 © ni [(n+1)HnGma)- aa Hn_lﬁza)]
u = e Z; 7y sin n®
r m n

n=1

(19)



where

2(l-c)

o 1is the Poisson's ratio.

(1-20)

Rigid Inclusion of Arbitrary Density

11

(20)

As previously discussed, the rigid inclusion in general will

rotate and translate with the surrounding medium. The resultant forces

and torque acting on the-inclusion as a .result of the stresses acting

on the boundary due to the incident and reflected waves are expressed

by
2n -
Fx = XO (Trr
21 -
Fy = Io (Trr
2n
r - f e}

cos 6 - Tre

sin 6 + T

sin 6) a 46

g €08 6) a do

(21)

(22)

(23)



By substituting Equation (10) with r = a into Equations (21) through

(23) and considering the orthogonality, it can be readily shown that

F,o= 0 24)
. gua-l 5. 5 5 . 5
Fo o= 2wa " w2951 (Dyy + oDyy) + 4 D)y + ;Dyy)
(25)
+ By Dy + pD3y)]
and
T = 4m L4y D30 + Ay 1Dy + By 5D30] (26)
From Newton's law of motion, it is known that
(maZp.) U. = F @7)
1 y y
4
ﬂpla ..
(——) @-r @8

By restoring the time factor e-i

um’ which is omitted in Equation (10),
and twice integrating Equations (27) and (28) with respect to time,
the rigid body translation and rotation of the inclusion is found to

be given by
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= 2 D D D D
by T T3 [ 2408 (Pyg + oP3y) *+ 4y Py + 1P3y)
(29)
+ By Dy + 503 ]

0 = -—2 (4o Do+ A B + B D) (30)
22,4 0 0”30 * %0 1P30 * Bp 2P0
o

where T = - is the ratio of density of the surrounding medium

1

to that of the inclusion. The translation and the rotation will

vanish 1f 17 = 0. Hence, the problem is the same as the case when the

inclusion is fixed in space.

For any inclusion with finite density, the displacements at the

boundary of the inclusion must be

u = U sin ®
y

(31)

u, = U cos § + a®
8 y

If the expressions for u_ and Ge in Equation (11) are substituted

into Equation (31) and the orthogonality conditions are employed, it is
found that for



1L

n=20
Ao =0
p%a” 3 (8a) + 81 [ B2 5 8a) - 5, (8a) ]
B = -¢ (32)
0 o ,, on [ Ba
B"a” H (Ba) + 8N [ 5~ H,(Ba) - H, (Ba) ]
n=1
21y,
A - 5 Ba(l-m) [Jl(Ba) H,(Ba) -J,(Ba) Hl(Ba) ]
21y,
B, = - ) [ -4m J,(Ba) H, (aa) + (1+7) (BaH, (aa) J,(Ba)
+ anl(Ba) Hocza)) - aBazJo(Ba) Hooua) ]
(33)
n22
2¢oninﬁa
A = -_Tn__ (3 (Ba)H _, (Ba) - J__, (Ba)H_(8a)]
24,1"
B = - 5 [naaHn_IGma)Jn(Ba) + nBa HnGaa)Jn_l(BA)

- apa’ H . Ge)d _, (Ba)]

(34)
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where

8, = -4nH101a)H1(Ba) + (1+7M) aaHoﬁza)Hl(Ba)

+ (1+1) BaHy(Ba)K, @a) - aBa’Hy(aa)H,(8a)

(35)

An = ma Hn_loza) Hn (Ba) + nBaHn_l(Ba)HnGza)

- aSaZHn-lﬁza)Hh-l(Ba)
(36)

Substitution of fquations (32) through (36) into Equations (10) and
(11) yields the solution for the stresses and displacements for the
rigid inclusion case.

At the boundary, where r = a, the dimensionless stresses

* * q *
T T and T
> g8’ T

r are simplified to

6

« 4 . (1-MH @a) o 1™ (a)
T =—[-_—sin6+z sin nd ]
rr m 51 An
n=2
(37)

R L3
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2 {_ iaza2
r 1 22

B3a3H1(Ba) + 87 (ﬁ_z_a_ Ho(Ba)-BaH1 (Ba))

- -6.2: [A+MH, (ea) aalj(aa)] cos 8

cos ne} (39)
A

e in+1(-nH (ca) + caH_ . (za) )
) Z n n-1
n=2 n

It is to be noted that the Poisson's ratio range for common materials
* *
is 0< o <X%; therefore, ’Tee is always less than Trr' The

dimensionless rigid body translation and rotation of the inclusion

ere given
* i8nm aa
U = Bab [Hl(c,a) - 5 Hy(ea)] 40)
@* - . 1617 ’ %1)

mpal8’a’H, (8a) + 81 ( B2 n (Ba) - (Ba))]

The rotation is non~dimensionalized with respect to the dimensional

coefficient of the rotation associated with the incident wave, i.e.,




TONG WAVELENGTH LIMIT

If the wavelength of the incident shear wave approaches infinity
(B=0), the solutions obtained for the cavity and the rigid inclusion
should reduce to the Kirsch's and Goodier's static solutions. Under
pure shear Ty the static solution for the cavity case at the

boundary 1is

=L = 1. = -4 sin 28 (62)

T % 2
o LI Tr = 25 sin 26
To r K“+1
T * 2
;59 = Tp T Z%__ cos 26 43)
0 k+1
* 2 *
TGG = @ k2 ) Trr

For small arguments, the Bessel functions are approximated by -

the leading terms of their series. Thus, as x - 0,

HyG) + 1+ 1 % ) (1n x-0.11593)

Ho) = (3%t -1t (2)7n

17
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*
The coefficients of sinusoidal functions for oo in the cavity
case are reduced in the fimit, as Ba=0 and aa = ﬁké - 0, to

the following form for

n=1
2 2
—’%a— Hl(aa)
- 0 (44)
A1
n= 2
. 2 2
n(n2-1- %— JH_ (aa)
A
n

, ‘ ' 2.2
~ im (-1 Byt (B )“'2/ 4 @-1)1)% (aP4n- B2 )

2 22 22 ‘
b Somlatet )i 4 2t B Y end et )
k
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2(1- 5 )
k
N (45)

0 n>2

Therefore, as Ba=- 0,

Tog = 4 gin 26 46)

which is identical to Equation (42).

The coefficients for the sinusoidal function in Equations (37)
and (39) for the rigid inclusion case are reduced in the limit, as

oca =+ 0 and PBa - 0, to

'Cl-ﬂ)Hlﬁza) 1 (1-T)Ba
— o
n_(aa) am? ( 82 )2
A - ~ 72, .,
n (n-2)!(1+k2) . B a (n-2):

n(n-1)
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iTTkz n= 2
2(1+k2)
- 7).
0 n>2
-15252 - m 22

2 2
83a3H1(Ba) + 87 [% Hy(Ba) -~ Ba HI(Ba)]

(1+1) H, @a) - ca Hy@a) 4 (14myse 0

, (48)
51 8n
2 ,Ba \n-2
n Hn(aa) + ca Hn-l (ca) . ink™ ( 2 )
84 (n=2)12 (1+k)
2
ik 3 n=2
2 (1+k")
0 n>2
Therefore,
2
* 2k
'1'ee 2 sin 28

k +1
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2
%
Tre = 2; cos 26
k™+1

which are identical to Equation (43).
For the case where 1 = 0, a singularity will occur in the

n =1 termas fBa — 0. The coefficients in this case are of the

form
chza) B k2
A1 (1+k2)Ba
(49)
-Hlﬁua)ﬂma Hlﬁxa) N -k2
A1 (1+k2)Ba

Hence, it is apparent that the stresses will become infinitely large

as the wave number approaches zero for the "fixed in space' rigid

inclusion.

NUMERICAL RESULTS AND DISCUSSIONS

For wavelengths other than very long or very short, the stresses
and displacements are determined by the series given in Equations (18)
through (20) for the cavity case and in Equations (37) through (41)

for the rigid inclusion case. Numerical evaluations were carried out



22

on a 7090 IBM computer where the series were terminated when accuracy
of 10™* was achieved.
The expressions for the stresses and displacements are all of the

form

®+ 1) X o @? 4 1%)¥ iutey)

In one complete cycle, the real parts R yield the stresses at t = 0,
and the imaginary parts I yield the stresses at t = %, where T is
the period of the incident wave. The absolute values (R2 + 12)}5 are

the maximum stresses which occur at an instant between t = 0 and

- I
t = '}‘I depending on the phase angle vy = tan ' < ﬁ) )
Cavity

In this case, the only nonvanishing stress at the boundary is
*
Tag’ therefore, it is also the maximum principle stress. Numerical results
of stresses and displacements were obtained for the values of o = 0.15,

0.25, 0.35 and dimensionless wave numbers in the range 0.1 < Ba < 3.0.

Fig. 2 illustrates the angular distribution of ,T;e, for three
wave numbers, Ba = 0.1, 1.0 and 1.5. It is to be noted that at
Ba = 0.1, the stress distribution is almost identical to that of the
static case, while at higher wave numbers the stress distribution is
considerably distorted from the static case. Figs. 3 and 4 show how

stresses at two points on the cavity (8 = %; %F ) vary with frequency



1.0

. ‘ERS

Fig.2 Distribution of rt for Various Ba with ¢ = 0.25 (Cavity)

06
5.0
-
40
R |
Toe |
30
L
N0.35
0.25
20 0.15
.
o 1.0 2.0 3.0

Bo

Fig. 3 |“r§9l vs Ba for Various o at 0=£(Cavity)
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) 1.0 20 3.0
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Fig. 4 IT*‘ vs fBa ﬁerbusaaf8=gf(Cmﬁw)

06

and the Poisson's ratio of the medium. In this case, as well as
results shown in References 2, 3 and 4, the maximum dynamic stress is only
10 to 20 per cent higher than the static values, and the wave number

at which the maximum occurs lies between 0.20 and 0.50.

* *
The angular distributions of Iurl and ,ue, for values of
Ba = 0.10, 1.0, and 1.5 are shown in Figs. 5 and 6. At PBa = 0.10 the

digplacements are again the same as the static case; while at high

*
frequency there appear to be two stationary values for furl in the



*

interval of 0 < 6 < 11, and three stationary values for . luel . Both
* *

maxima for ,url and luel tend to shift toward the incident side as

the wave number increases.

*
Fig. 6 Distribution of‘luel for Various Ba with ¢ =0.25 (Cavity)
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Rigid Inclusion

Figs. 7 and 8 illustrate the angular distributions of IT. and

rrl
*

,Tre, for two wave numbers (Ba = 0.1, 1.5) and T = 0.5. At Ba = 0.1

(low frequency), the distribution is nearly symmetric with respect to

the x and y axes, as should be expected. At high wave numbers

this symmetry does not exist, and the maximum tend~ .o shift to the in-

cident side of the inclusion.

8:x 8:0

Fig.7  Distribution of |73;[for Various Ba with o = 0.25
and n = 0.5 (Rigid Inclusion)

*
,, and

*
Figs. 9 through 12 show the variation of ,Trr,‘, l'r:e’ )

*
,Uyl as a function of wave number for various values of 1. It is

p
apparent that the density ratio 1 (-p—° ) has a large influence on
1
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the stresses, displacements, and rotation. As the density of the in-
clusion increases the maximum value of the stress, displacement, and
rotation also increases. This increase becomes appreciably greater
for density ratios below 0.5. 1In the case of 1 = 0.25, for example,
the maximum dynamic stress for l'r:rl and I'r:e[ in Figs. 9 and 10 are,

respectively, 37 and 105 per cent greater than those under the static

condition.

3.0

0.10

*
Torl
rr

Ba

T 3r
Fig. 9 T;r! vs Ba ot =7, for Various 1
with o = 0.25 (Rigid Inclusion)
It is also to be noted that there is an apparent relationship
indicated between the maximum values of stresses and those of both the
rigid body motions. Previous studiests’ 4, 5] have shown that there

exists only one maximum for stresses as a function of frequency, which



«*

4.0

3.5~

3.0

0.5

Bo

Fig. 10 |T;0ivs Ba aotf= T, g for Various n with ¢ =0.25
(Rigid Inclusion)
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is also the case for lT:r, in Fig. 9. However, Fig. 10 shows for
,T:e, at 0 = that there are two distinct, stationary values for
H.= 0.10 at two different wave numbers. By comparing these wave
numbers where the peaks occur with those where the maximum of IU;I
and ,®*, occur, it is apparent that the first maximum of ,T:el
occurs very close to the wave number where ,U;, is also a maximum.

Furthermore, the wave number corresponding to the second maximum of

* *
,Trel is very close to the wave number at which l@ , is a maximum,

These observations certainly indicate the presence of coupling

between the rigid body motions and the stress at the boundary.

30

2.0 0.10

"l

le

Fig. 11 , e*l vs Ba for Various n (Rigid Inclusion)



3]

0.5

Bao

Fig. 12 iU*|vs Ba for Various n with o =0.25
(Rigid Inclusion)

From Figs. 11 and 12 it is shown that the denser inclusions
receive the greater rigid body motion for Ba approximately less than
* *
1.5 for l@ I and 1.0 for IUyl , but the converse is true as the wave

number increases beyond these values.
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