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FOREWORD

The papers contained herein were presented at the Optimum System Synthesis
Conference, Wright-Patterson AFB, Ohio, 11 - 13 September 1962‘,‘sponsored
by the Aeronautical Systems Division. The program chairman was Mr. L, Schwartz
of the System Optimization Section, Aerospace Mechanics Branch, Flight Control
Laboratory. Mr. Schwartz was assisted by Lt. R. O. Sickeler, of the same

section.

The selection of the papers and speakers was the responsibility of the
individual session chairmen, Prof. C. T. Leondes of UCLA, Prof. D. Graham
of Princeton University, Dr. J. P. LaSalle of RIAS, and Mr. E. L. Peterson of

the General Electric Company.

The'program chairman is especially indebted to Mr. Cannon of the Special
Activities Division, Directorate of Technical Operations for his invaluable

assistance.



ABSTRACT

The proceedings contain a collection of 16 papers presented at the Optimum
System Synthesis Conference held at the Aeronautical Systems Division 11 - 13
September 1962. The meeting was direci»d toward defining the present position of
optimum system synthesis and determining guides for future research in both
applications and theory. Most papers are concerned with various aspects of
recent applications and theoretical developments in optimal control such as
steepest descent techniques, suboptimal controllers, optimum filtering, and

functional analysis techniques. Some earlier results are also discussed.

PUBLICATION REVIEW

This technical documentary report is a collection of the papers presented

at the Optimum System Synthesis Conference and is published to make this

C.é WESTBROOK : ,

Chief, Aerospace Mechanics Branch
Flight Control Laboratory

information more widely available.
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INTRODUCTION

Since the Optimum System Synthesis Conference was a limited-attendance
meeting, which was not meant to be widely publicized, many readers will be
interested in some background information. The major aim of the conference
was to bring together some prominent mathematicians and engineers working in
the various phases of optimum system synthesis to discuss both what has been
accomplished and what needs to be done to make optimum synthesis a practical
reality. Three sessions were set aside for the presentation of papers;
these papers constitute this volume.

In addition to the symposium sessions there was a panel and forum discussion
of the general topic, "Is optimum synthesis practical?"", and an evening session
devoted to informal discussions by small groups. Each group had a particular
subject to discuss, which lasted until eithes the subject or the group was ex-
hausted..

Admittedly, the question, ''Is optimum synthesis practical ?" is much too
ill-defined to admit of a concise reply. However, some attempt should be made
to summarize the prevailing opinion -- A task one or two levels less difficult
than predicting the wave form of white noise, Despite the clamor for control .
system optimization techniques, it appears that quite often the "optimum" is
a chimera, a situation which results in what might be calied The Great Optim-
ization Paradox. On the one hand we find an ever-growing body of theory and
technique for solving variational problems of one sort or another. On the other
hand we have the problems of the control system designer, many of which can-
not or, perhaps, should not be cast in the form of variational problems. Yet
there seems to be a vigorous attempt by both sides to get together, even though it
is not entirely clear that there is any extensive common ground.

The major difficulty is, apparently, our inability to clearly and unambig-
ously specify control requirements. Often, the critical facter is not performance,
but cost, weight, or reliability. When we seek to "optimize" & control system,
we do not have a precise way to characterize the optimum. How much perform-
ance are we willing to t:-ade for a given amount of reliability ? Indeed, how do
we measure performance ? These are far from trivial questions; the utility of
the powerful synthesis techniques depends upon meaningful answers, ahswers
which are not readily available.

‘ Not all control problems are so ambiguous, particularly the outer-loop or
path problems (usually associated with guidance, although guidance and control
are the obverse and reverse of the same coin). In cases where there is a clear,
quantitative requirement (e. g., minimum time, minimum fuel, minimum ex-
pected miss distance) the techniques hold a great deal of promise, and we can
find examples of actual optimizations. It is when we misapply the syntheses to

ill-defined problems that we suffer our worst failures.

vi



Another obstacle to practicality is the complexity of the optimal control
law, often referred to as the problem of orbiting a 7090. Quite citen the criterion
functional that is being optimized is not too sensitive to changes in the control
law, and we can do "almost as well'" with a much simpler system. The only
other answer seems to be picominiaturization of computing equipment, or similar
equipment breakthroughs, .
As a final point, the panel-forum session evidenced a healthy trend towards
finding out what can and/ or cannot be done with optimum synthesis techniques,
The practitioner is now attempting to apply the theory.
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ABSTRACT

The optimization techniques of Pontryagin (maximum principle} and
Bellman (dynamic programming) are evaluated as feedback design tools.
The first part of the paper is devoted to a discussion of the advantages of
optimal closed-loop (feedback) operation., The second part of the paper is
devoted to an analysis of the feedback nature of the two optimization tech-
niques cited and ar analysis of the current computational difficulties in
applying these techniques.



FEEDBACK DESIGN::':{AND OPTIMAL CONTROL THEORY
John G. Truxal and Peter Dorato
Polytechnic Institute of Brooklyn

INTRODUCTION

i
t

Recently a great deal of interest has been gene‘rated‘ in the application of
modern optimization techniques to problems in control, In the past the term
"control" has been associated with closed-loop (f@edback) systems, Yet the
current literature on optimal control theory is largely devoted to open-loop
systems, There appears to be some limitation to the application of the modern
optimization techniques to the feedback design problem. The purpose of this
paper is to evaluate such presently available optimization techniques as the
maximum principle and dynamic programming as tools for the design of feed-
back systems. To simplify the discussion the plant, object being controlled,

is assumed to have dynamics given by the first order scalar equation
i

X = f(x,u) (1)

where x represents the plant output and u the control input. The performance
criterion is assumed to be given by

T
S = f F(x, u)dt (2)
\ .

o

The object of optimal control theory is to determine a control input u which
causes S to be an extremal. When the optimal control law, denoted u®, is
obtained as a function of the initial output, i.e.,

u® = e[x(t ) t] (3)

the system is said to be operating open-loop. When the optimal control is ob-
tained in terms of the current value of output, i.e.,

W = efxnt (4)
the system is said to be operating closed-loop.
The first part of the paper is devoted to a discussion of the advantages of

closed-loop operation. The second part is a study of the present status of
optimization theory as a feedback design technique.



ADVANTAGES OF CLOSED-LOOP CONTROL

Classically feedback systems have been employed to solve the problems of

(1) Plant dynamics modification

(2) Sensitivity reduction y
It is fairly easy to demonstrate in linear time-invariant systems that feedback
does provide a convenient means of improving system dynamics and reducing
plant parameter sensitivity (ref. 1), In nonlinear systems the advantages of
feedback are not as easily demonstrated, at least not theoretically. If the system
performance is measured in terms of relative stability then such techniques as
equivalent linearization, describing functions,  and Lyapunov's second method
may be used to evaluate the effectiveness jof feedback as a plant-dynamics modi-
fication tool. To show that a given fgedback control law, say u = ¢ (x), reduces
the sensitivity of the output with.respect’to a plant parameter w, one might
proceed as follows. Express the plant dygarrgxic’s wit}} parameter w as

.. - . r

. . ) . Y g .l ‘e
%X = f(x, u;w) el e (5)
. ‘..‘i. . .;
and define the sensitivity measure as e
s = X | (6)
Ow .

.

From the theory of differential equations with parameters, the function s is
known to satisfy the equation (ref.2)

s =+ B (7)

with the initial condition s(t_) = 0. With no feedback, interpreted in this case
to mean u = 0, obtain a solulion of equation (7). Denote this solution s,. Denote
by s¢ the solution of (7) with feedback applied, i.e., with u = Y(x). The sensi-
tivity improvement may then be evaluated, for example, from the relative values
of *sf'lm and Isol' . Note that equation (7) is linear and time~varying and
requiresag‘ solution of the original nonlinear equation (5) via the term 3f/8x. A
discussion of computer solutions of (5) and (7) has been given by Miller and
Murrary (ref. 3). However to obtain closed form solutions of (5) and (7) is,
except for very special cases, almost impossible. Hence the question of
sensgitivity reduction in nonlinear systems via feedback is still an open question,
In optimal control systems the feedback is applied to modify the plant
dynarnics in an optimal way, hénce plant dynamics modification is automatically
taken into account, The stability of optimal closed-loop systems is generally
assured by the properties of the performance criterion chosen(ref. 4). The
result follows from the fact that S°, where S° denotes the value of S when
optimal feedback is employed, serves as a Lyapunov function for the optimal
closed-loop system. Thus if F(x, uo‘):,, where u” = y(x(t);t), is positive definite,
then the Hamilton-Jacobi equations of the optimal path guarantee that 8% is
negative definite; indeed the Hamilton-Jacobi equation requires that

o
& = -Fix,u%) (8)
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In optimal closed-loop systems then, stability does not play the dominant
role it does in classical feedback theory, One clear advantage of closed-~loop
control is that the current state of the output is used to generate the control
input u. Thus if the output is suddenly displaced at time t' by some disturbance,
closed-loop operation assures optimal operation in the remainder of the optimi-
zation interval (t', T), assuming no further disturbances, A similar disturbance
in an open-loop system destroys the optimality of operation in the interval
(t', T) since the control input is preprogrammed for a fixed initial output x(t ).
A compromise between closed-loop and open-loop operation can be achieved
with the use of a periodically updated (with respect to the value of x(t_)) open-
loop control law, This approach has some practical advantages whick are
discussed in the next section. However beyond the point just demonstrated it is
difficult to illustrate further advantages of closed-loop optimal control. Al-
though a sensitivity analysis similar to the one previously indicated can be
performed, the optimization techniques in current use do not assuyre that feed-
back results in a lower sensitivity value than open-loop operation , in spite of
the fact that experimental studies seem to indicate that feedbacl in optimal
systems does reduce sensitivity. Thus thé sensitivity problem in optimal con-
trol systems is much like the sensitivity problem in classical nonlinear feedback
systems, very little can be said theoretically about the relative merits of feed-
back as a means of reducing sensitivity, The only distinet advantage of closed-
loop optimal control then appears to be in terms of possible output disturbances.

.

°

OPTIMIZATION THEORY AS A FEEDBACK DESIGN TECHNIQUE

As is well known the optimal closed-loop control law may be obtained, at
least in theory, from Pontryagin's maximum principle in the following steps
(ref. 5).

(1) Determine the function u which maximizes, for a minimum of §, the
Hamaltonian

H = pf(x,u) - Fx,u) (9)

Note that the maximizing u, dénoted uo, is a function of both x and p, and
hence may be written

u®(t) = afp(t), x(t)] (10)

(2) Solve the set of equations

x = f(x,u) o (11a)
u=u
of | aF 14 01
t p = - -a—i ° + —5—x ] o (11b)
Ty =u” u=u

+1ndeéd‘ a basic requirement for optimization is compie,te knowledge of the plant
dynamics, in the deterministic case, and complete knowledge of the pertinent
statistics, in the stochastic case.



subject to the boundary conditions

x(to) = X (12a)

p(T) = 0 (12b)

It is assumed here that the final time T is fixed while the final output x(T) is
free. Note that the solution for p is a function of the initial output x(‘to) and
therefore may be written ‘

p(t) = B (xt) (13)

(3) Substitute expression (13) back into (10) and let t = to to obtain
uo(to)’ = a [p‘(xo ; to), xo]‘ = ¢y Ex‘(to); to‘] (14)

If now one allows t_ in expression {14) to take on arbitrary values in the
original interval ofooptimization (to, T}, the closed-loop control law (4) is
obtained.

As is also well known, the basic difficulty in applying the above procedure is
the problem of obtaining a solution to the nonlinear two-point boundary value
problem of step 2. Basically what is required to obtain the closed-loop control
law is a mapping of the values of x(tor) into values of p(t ). This suggests tha’
arbitrary values of x(T) be chosen and then that equations (11a) and {11b) be run
backwards a length of time T-t at which time the values of x(to) and p(to) are
recorded for the required mapping. Of course this procedure must be repeated
until all the appropriate values of x(t ) are spanned and all values of time in the
interval (t_, T) are exhausted. The computer time and storage required for such
a procedure is however prohibitive, for most realistic problems. A current ap-
proach to the problem is to use some steepest descent technique to obtain an
open-loop control law and then update from time to time the value of x(t ) (ref.6,
7,8). The success of such a method depends on how quickly the particular
steepest descent technique used converges and how often the output data must be
updated. Further applic ation of the maximum principle tc feedback design
depends largely on the development of numerical techniques for the solution of
nonlinear two-point boundary value problems..

- In some special cases the maximum principle does yield an explicit solution
for the optimal closed-loop control law. A notable example is the case of a
linear plant with unconstrained input and integral-quadratic performance
criterion (ref. 9,10). »

Dynamic programming is a feedback design technique by its very nature. *
Unfortunately, however, dynamic programming also suffers from some basic
computational difficulties., To illustrate the feedback nature of dynamic pro-
gramming and also its computational difficulties the technique is briefly outlined.
* of course in the determinstic case any feedback solution can always be con-
verted, via the plant dynamics, into an open-loop solution. The basic feedback
nature of dynamic programming is inescapable, however, in the study of stoch-
astic systems. See, for example,Bellman (ref.ll), sec, 10. 4.



First Assume that the plant dynamics and performance criterion have been
made discrete in time, thus consider

X4 = 805, v ) (15)
and N '
5= ) Glg w) (16)
k=1

where, for convenience, the notation x(kAt) =x) is used, Denote by sz the
value of S which results from an optimal input policy u) over the interval 4k, N)
and note that Sp, is a function only of xix, hence may be written Sﬁ (xx). The
optimal control law is then determined in the following steps. ‘

(1) Start at the end of the process and search for a value of u,, which mini-

mizes, assuming one wants to minimize S, the function G (x N’ uNN). Note that
u,, is a function of x,.. Let
N N
uy = ey (17) |
and evaluate
Snlxy) = min Glxy,uy) (18)
u :
N :
(2) Proceed one step bagkwardj and minimize, with respect to Un1 the i
function $G(xy, 1, U 1) + 8% (xo) ] » Where x = g(xy, 1, Uy ;)» The results g
of this step thl\{a—nlyielild'&' N N‘ N N-1* "N-1 !
uN-l = q)N-l (xN-l) (19)

and

s;,_l (xN_l) = r:xin [G(xN_l, uN_l') +S?~I@("N-1’“N-1)ﬂ (20)
N-1 '

(3) Proceed backwards, iterating the above procedure, until the entire
interval (1, N) is exhausted, to obtain the closed-loop control law

Y T Ulg) o ISk N (21)

-3



Note that the minimization technique just described requires, at any stage
k, a search for u; in terms of all possible values of and storage, for use in
the next stage, of the function Sz(xg). In addition allxtlfxe functions q;k ) must
also be stored. For practical problems the amount of storage required
exhausts the capacity of most modern day computers. The application of
dynamic programming as a feedback design technique then seems to depend
critically on the development of methods which reduce the amount of storage
required and/or the design of computers with larger storage capacity.

Even if the computational difficulties of the maximum principle and dynamic
programming are solved, there still remains the problem of implementing the
closed-loop control law with currently available hardware. In this connection
it should be noted that the control law is generally a nonlinear function of the
state of the plant. Here two separate problems arise: one is the problem of
measuring the state of the plant, which often requires the measurement of high
order derivatives, and the other is the problem of generating the required
nonlinear function to the plant state. If a computer (digital) is used as the
controller element in the feedback loop, then the computer must accomodate
the storage of the controlilaw (xk) for all possible values of and for all k
in the range (1, N). Orne possibl(e solution to this aspect of the problem is the
use of "approximations in policy space' which yield simpler control laws, at
the price of suboptimal operation (ref. 11,12).

In spite of the difficulties cited above, optimal control theory does provide
an organized approach to the design of complex feedback systems. The compu-
tational difficulties encountered should, in fairness, be weighted against the
rather sophisticated nature of the problem considered. Indeed in many
applications,especially nonlinear stochastic systems, the alternative to optimal
control theory is no theory at all.
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I. INTRODUCTION

Much of the current work on control systems optimization has centered
on the establishment of necessary conditions that the optimum solvtion must
satisfy. In many cases these conditions take the form of a functional equation
or a vector partial differential equation that the solution must natisfy. Much
less volume of work has been devoted to the equally importani problem of ob-
taining efficient computational algorithms based on successive iteration
schemes which converge to the optimal solution. [1,2, 3.4]. This paper deals
with such a procedure introduced in [ 3] for a class of de cerminlistic control
problems using methods of abstract functional analysis which afford a succinct
and general solution in many cases and offer a point of departure for prob.ems
where any systematic analysis of a general enough nature would appear to be
difficult,

The computational method employed here is the method of stecpest de-
scent in Hilbert space, an early version of which is due to. Kantorovich [5].

In setting the control problem in the funclion space format, we make use, for
instance, the Theory of (Frechet) analytic functions over abztract spaces,
specialized to Hilbert space [6].

In Section II, we consider the general problem for linear systems ang

general results. In Section III, we specialize to lincar dynamic syst
ploiting the compactness of the operation involved. The computat;
is explained in Section IV. The specialization tc the final valug
linear systems is contained in Section V. In Section VI, exts
linear systems are indicated, and finally in Section VII, ‘
puter studies based on the proposed method are given.




II. FORMUIATION FOR LINEAR SYSTEMS

. ¥
We begin by considel, g 5 linear system, since it is important in its

own r ight and, morecvég provides a point of departure for the extension to
nonlinear systems t7¢7%c iy Section VI, Let x(t) represent the output vector
of a linear system a%g rsguit of the applied control vector u(t). Then x(t)

. will be related furicignaity to u(t) often, though not necessarily, by means
of a differential eqa¢ion, Let x4(t) represent the desir«d response. The
optimization pro}j.r, is one of minimizing some functisnal of the difference

(t) = x(} ,
e(t) = x(1} . x4(t)

The ftiterion chosen i this paper is the jategral of the squared magni-
tude 0% some finite interval which we can normalize to {0, T]. Thus we
WisD40 determine u(t} which minimizes

-

Ve T ) |
/‘/ S e |20 dt; Jle |Z=e® e®

(o}

Here p(t) ‘s a non-negative weizht function and the asterisk denotes the ad-
joint. To avoid the language .f §-functions, we assume more generally that
we haie a finite measure m over the Borel sets of [0, T] and we wish to
minjiinize

§ e l®am,

n

where 7 denotes the interval [0, T]. Here e(t) will be continuous by virtue of
x(t) and xd(t)' being continuous. Usually, there will, in addition, be some con-
straint on the control vector such as

S @ [I? dm, sm?

i

whe e m,, is another finite measure on the Borel sets of 7, and again u(t) will
be Borel-measurable. By taking the measure mj to be a jump at T, we
upecialize to the "final value problem'. But we shall see that this class of
problems can be solved constructively with no restriction on m,; and my,

other than finiteness. For this it is convenient to introduce the real Hilbert
space (actually Lo space) H; of n-dimensional functions square integrable over
7 with respect to measure m; and Hy, the Ly space of m-dimensional
functions square integrable over 7 with respect to measure my. Then x(t),
0=t=sT, will be in Hy and the control vectors can be taken in H2. Moreover,
for a linear system, we have ‘

X(t) = g Wit, o) u (o) do ()
o

12



Of course, for physical realizability, unessential restriction for our problem
is

't
x(t) = y Wi(t, o) u (o) do (2)
b .

Such a relation may come from a differential equation but not necessarily so.
Now, assuming W(t, o) to be continucus for instance, (1) defines a linear
bounded operator from Hjy into H;. We denote this operator by L, so that we
represent (1) by

Lu=x; ue Hz, X € H1

In this frame then, we want to minim»izeT

| Lu - gl

The subscripts 1 and 2 denote the norms in H; and Hy respectively. 'g" is
a given element in H; and minimization is over a sphere of radius M in Hy,
or more generally it can be over any closed convex set (with non-empty in-
terior usually). The minimization can be made slightly more general by
adding another perturbing term and considering

, 2 ‘
Clu) = HJLu - g” + [ Ku,u] (3)
1 2

where K is a linear bounded non-negative operator on Hy into Hy. For ex-
ample, it may be multiplication by a non-negative number corresponding to
a ''Lagrange multiplier'', or more generally it may be multiplication by a
positive-definite matrix K(t). Let L* be the adjoint of L, then L* maps Hy
and Hy. We can then rewrite C(u) as

* ‘ * '
C(u) = [(L L +K) u,u] -2 l:u,L g] +[g,g}
- 2 ‘ 2 ! 1
Now L*L is also non-negative, so that so is the sum
L*L+K = R (4)
Agsume that K is such that

i *
[Ku,, u ] >0 whenever L Lu = 0

T’M°r e generally, we can consider the minimization of
- P(Lu-g), Lu-g 1

where P is a linear bounded positive definite operator on H, into H;.

13
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Then R has a bounded Linear inverse. Let
r
R -tL*L+KJu=I* (5)
Yo o "B ‘

That u_ is then the unique optimal minimizing solution is apparent from
[see Reference 4] ‘

C(u) = C["uo’]‘+ l. R(u-u‘o), u-u ]2 - | (6)

and the second term is non-negative. This establish.. C(u_) ac the unique
absolute minimum, whereas the fact that it is a local ml.imum may be
shown in various ways. Moreover, the optimal solution u, is of the form
by using (5)

%* 1
Kuo=L [g—Luo]

or

-1.* [ ]
u, = (LK ") g-L u
If K is just a positive multiplication k, this reduces to
L lg-Lu]

uo = 1, -—k—-— (7)

* .
so that U itself is in the range of L. . Hence using this and setting
u =L y
in (5), we obtain an equation in H,.

A
LL y+ky=g¢g

This yields a simplification if H, is finite dimensional, as would be the case
if m, has a jump at T,

The main reason for introducing K is the application to the constraint
problem: Suppose the convex set A is the class of all u such that

full, =™

Then we have the following theorem: There is a non-increasing sequence of
positive number kn such that

14
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-1

*. *
[LL+kI:| Lg=u
n ) - n

I being the identity operator, where u € A and
2‘ "
lim [[Lu -g|[® = mf || Lu‘-g“2 (8)
n n uel
The proof of this theorem uses (6) and may be found in [4]. Here we shall
sketch it for completeness. Suppose there is an element u in A such that
* ¥
LLu=L g (9)

Then it is clear that we can find a decreasing sequence of positive numbers
k, such that

* -1,
u =[LL+kI] L g
n n J

belongs to A. Since for each n,

%
[LL+k I]
: n

has a bounded inverse, then

W s e g L'l lalls [l

Thus using (6) we have

Clu) = Clu )+ kn[un‘ u-u ]
and from which it follows that, as kn -0
C(un‘)‘ - C(u)

as required. If there is no u in A such that (9) holds, then we can clearly
find positive ‘ko such that

‘ -1

*_ *
[LL+k I] Lg=u
‘ o J o
and

la Il = m

15
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It may be shown as in [4] that this element yields the unique minimurn, since
for any k < ko :

ll[ L*L+k01]‘ g || > m

and hence is not in A. In particular, we note that the optimal element is al-
ways in the range of L* or possibly its closure.

1II, THE MINIMIZATION PROBLEM FOR LINEAR DYNAMIC SYSTEMS

In this section, we shall specialize our discussion to the minimization
problem for a linear dynamic system. We shall take m; and mj to be
Lebesgue measure. Suppose now that the dynamic system is described by
a differential equation:

x(t) = A(t) x(t) + B(t) u(t)

where A(t) is an n x n matrix and B(t) is an n x m matrix. We shall have
T
“x(t)y = xo(t) +S‘ Wi(t, T) u(T) a7 (10)
o

with
W(t,T) =0 forT>t
Here W(t, T) is an n x m weighting function matrix of the system and x,(t) is

the output due to initial condition. We can now define a linear operation L
from Hg into Hy as

~T

v(t) 'S Wi, T)u(T)dT ; Lu = v
o ‘
0st=T

The main simplification that we shall exploit in this section is the com-
pactness of the operator L by virtue of

T, T‘_ 2
5“, S [Iwet, T~ at dT <eo
(o] [o]

Here the adjoint L* mapping H, into Hy:

. T . o *
am = wremen e Lgen
o

16




Now

2
Cw = [[Lu-g|
1
: 7 2
[roe ] c2fata ]+l
1 1 1
* : * L
< [ Les] 2[ea ]+l
2 2 !
where

glt) = x(t) - x_(t).

* .
Denoting LL L. by R, we note that R is non-negative, self-adjoint and an in-
tegral operator with kernel

T
' L 3 !
G(Tl, Tz)‘ = So w ('t'Tl) W (t, 'rz) dt

It is also compact and thus is characterized by a countable number of non-
negative eigenvalues. Moreover, for any u in H2‘ we have

Ru= )\ [u,¢i ] 6,
i=1

where {Ki} are the set of non-zero eigénvalues and {d)i} are the set of corres-
ponding orthonormalized eigenfunctions, and {Ai} are arranged to be monotone
nonincreasing.

We can now phrase the minimization problem entirely in terms of the
eigenfunctions. For this we note that for any u in Hy, we have the unique
orthogonal decomposition

- -
=Y a é +u ' (11)
u i=21 a ¢i + u .

where

a = [ , ¢i: ];[L u,O,Lu0 ]'= [R‘u‘o,‘ ub ] 20

Similarly, since {Léi} are orthogonal, we have the orthogonal decomposition

17



© (& Lg,]

g =) —— L¢ +g

i=1 | Ai i o

L gO =0 ; E _—i.—_ < o0
i=1 i

Hence we have
°‘.’I 2 2
Clw =) xraS -2a (g Lé.]+ [lgl
2,11 i 1 1
and completing the square in each term

9 .
Clu) = h.|:a.-———1 St U ]+ |
i=21: i ‘(1 A, ) 7«21 ”glll

© (g Lé,°

A,

Il = lle_II’
+ I = | R
1 , el = llg, |l

v
W 7

Hence it is clear that if we set

no (g L¢]
u = ) —_— ¢,
n =1 )ti i
We have that
lim Cuw) = ||g || = It C(u)
n o
n u
and
‘ *
limRu =Lg
n )
n

A necessary and sufficient condition for an element h in H2 such that

Inf C(u) = C(h)
n

is then of course that
- 2
© [g. L]

2
1

< 0
i=1 A

18



and in that case
h = —_— ¢,
a=1N i

Suppose now, in addition, that h is such that

Rh = L%

Inf C(u) = 0
u

Then we notice that g, © 0 and
Lh=g

and what is more important, for any u such that
Lu-=g

we have
I:u - h, ¢i :I = 0‘-f‘or, every i

.and ' '

lull 2 {lnll

by virtue of the orthogonal decomposition (11). If we want

Inf C(u) = 0

u

for every g in H,, then of course we must have that {L ‘¢i} is complete in H;.
On the other hand, the more common problem is one which constraints u to
be in some bounded convex set. Suppose we enclose this set in a sphere of
radium M and consider, instead, u such that

2 2
all 2= n

First of all, if we take a k> 0 and minimize

Cm)=HLu-ﬂﬁ+kHu@, : (12)
- .
we have in terms of the decomposition (11) ,
e 2
© : [g Lé] .2 [8 Lé]
Clw =)0 +k |(a - —r ) - —2-]
iy & ( i in+k ) (xi +k)’2 |

+ Nell” +x fln,
1 2

19
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Hence setting

le. Lo,]
' — ;u =0
3 A+ k ' 7o
i
We note that
% leL¢]

[R+klu=(R+k )

=y
-~ ¢,

+
=1 Al k i

8

_ _ *

or

u=[R+k 1L¥g

To answer the constraint problem, we may look upon (12) as the usual per-
turbation using a Lagrange multiplier, and hence all we have to do is to use
the smallest k so that

= [gLé)’
= M

2
unless of course
2
© [gLé]
i1 a2
That this does yield the absolute minimum has already been shown generally in
Section . ‘

< M

The derivation given above for obtaining the optimal control depends on
the knowledge of the eigenvalues and eigenfunctions of the operator R. Since
they are, in general, infinite in number, this approach is not suitable for
solving the synthesis problems. In the next section, we shall present a
method of steepest descent in Hilbert space, which will overcome these
difficulties.

IV. THE METHOD OF STEEPEST DESCENT FOR MINIMIZING A
QUADRATIC FUNCTIONAL

In this section we shall indicate a computational method based on the
steepest descent method in Hilbert space for solving the minimization prob-
lem associated with a quadratic functional. An early exposition of such a
method is due to Kantorovich [5]. The essential idea of this method is con-
tained in the following: In seeking the minimum of a quadratic functional
Q(u), an arbitrary initial guess ué is assumed. We obtain the gradient at this

20



point, i.e., finding an element z such that & (Q(u‘o + €z) ) will be maximized

at € = 0. Let z, be such an element. Since Q(uy + €24) is a second degree
polynomial of €, it will attain a minimum for some €, Then the element
U1 #ug + €5z, will be adopted as the next approximation and the whole pro-
cedure can be repeated as many times as accuracy required.

A geometrical interpretation of this method is fairly clear. In the space
where Q(u) is defined, the surfaces Q(u) = C are, in general, a family of
similar ellipsoids with center at the minimum point. The initial approxi-

mation u, shall lie on a certain ellipsoid of the family. From this initial point,

we shall move along the direction of the gradient at this point, i.e., along the
normal to this ellipsoid. We shall reach a point u; where the value of Q(u) is
the least on this normal, i.e., a point where the normal line is tangent to
some ellipsoid of the family. From this point uj, we shall go along the new
normal to this ellipsoid Q(u) = Q(uy), and the whole process is then repeated.

The quadratic functional to be minimized has the general form

Qu) = [Tu, uJ -2 I: h,u]‘ (13)
' 2 ‘ 2

where T is a positive definite or a non-negative definite operator in Hg. Let
us now substitute u by u, + €z. Then

Q(u +€z)=Q(u)+2€|:Tu —h,z]-tez[Tz, z:, (14)
o o . o :
2 2
In seeking the direction of the gradient, it is necessary to find z such that

=2[Tu -h,z Ji
: o]

die, (Q‘(uo +e z)) :

€=0
is maximized. According to Schwarz's inequality, it will be achieved if
z =Tu -h (15)

Here R u - L*g shall be referred to as the gradient of the functional Q. With
the choice of z o 28 given by (15),(14) will attain its minimum if

, 2
S O
° (T 2o z‘o']z

- (16)
By repeating the above procedure, it is evident that at the nth step, we have
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- h) (17a)

with
Iz I |
. . Dn-179 ‘
“n-1" T[Tz, Lz (17b)
n-1’ "n-1
2
Z 1 =T oy h (17¢)

We note that we improve performance at each step, that is to say:

4
gl
= Q) i ey
n n‘2

'Q(unﬂ (18)

It can be shown [3] that Q(un) decreases to the optimum:

lim Q(u ) = Inf Q(u)
n n u

Many variations on this basic idea are possible. However, the method
has to be substantially modified when the control u is constrained, suchas u
is restricted to some closed bounded convex set with the origin as an interior
point. In this case, we can try adjusting € and z, to satisfy the constraint
in many ways but the convergence of the seré;uence to the optimum would
appear to be difficult to obtain in general. By slightly enlarging the convex
set to be the smallest sphere containing it, we can obtain a general con-
vergence proof for a modified steepest descent method, as shown in [4]. Let
us assume that the radius of the sphere is M. Then we have seen that the
optimal solution is given by

- %
u=®R+k L%
for some k such at ":“”"2 = M.
Let us assume that at the nth iteration, we have

-9 2
ENIEL

We shall now-consider, as a function of positive k,

un+1(k) = un - ehzn

where

22




2, 12

“n ~ [(R+k)zn, zn']'
9

*
z = (R+k) u - Lg

" Now
Ly 001
u_, (k)
nt+l 9
is a continuous function of k and approaches to zero as k goes to infinity.
Suppose

2 _ 2
oy (0 I =

Then we define

l'ln-!'l = un+1(0)

Otherwise, let kn be such that

2
I Upe 1) " =M
2
and define
Unsy = Unep(Ey)

1t can then be shown that

lim Q(un)‘ = Inf Q(u)
n u

for V":u " = M. It must be noted here that the sequence is not necessarily
monotone at the early stage of the iteration.

In practice, we are not really interested to have |lu " exactly equal to M.
A more realigtic constraint for u is that for some small §>0, either

2
full =m®
2

or

23




2
M2 -s5s5|u I, <m?

Thus we shall define

PRSI L
if
‘ 2 2
o, @[ =m
and
Yn+1 ) un-l-l(k )
if
M2 -6s flu (k) II?SMZ
- ntl n ‘2‘ ‘

This is actually what we would do when we carry out the computation on a
digital computer.

V. THE FINAL-VALUE PROBLEM FOR LINEAR SYSTEMS

In solving the géneral control problem, the steepest descent method can
be used to obtain the optimal solution. However, when we are only inter-
ested in controlling the final output vector, then there is a reduction in dimen-
sionality affording a corresponding simplification. In fact, the range of L be-
comes finite dimensional so that matrix methods suffice.

More specifically, we want to minimize

T
lxr) - gl 5 xtry = § wier 0 e at
“o
where now g is a finite dimensional vector. In our general treatment, we
have only then to take m; to be a jump at T. Hence H, is finite dimensional.
For simplicity let us take my to be Lebesgue measure. Then again L is com- .
pact, and moreover
* *

Lg=W(T,t) g

so that, using (7) we know that the optimal solution is of the form
. :

u=Ly

Also we need to consider

24



* % * | % *
'[LL+kI]Ly=L [(LL +kI)y]=Lg
and now

%*
LL

being an operator on a finite dimensional space must be a square matrix, and
indeed it is the n x n matrix

* T . - %
A(T) = LL 5 W(T, T) WCT, T)F a1
. o

and the optimal vector y is given by

{A(T)+ka=g (19)
for some k. The constraint
<
" u "2 —M
now becomes
*
y A(T)ys M2

The steepest descent can then proceed using (17a) and (17b), so that for
instance

yn<|v-1 ) yn * €n,l: (A(T) * kn') yn‘ g :l

On the other hand, we can also use the eigenfunction approach, the eigen-
functions of R being finite in number, since range of R is finite dimensional.

In particular we note from Section III that for the minimum to be zero for every
g, we must have that R must have exactly n eigenfunctions corresponding to
non-zero eigenvalues. It should be noticed that the eigenvalues for R is exactly
the eigenvalues for A(T). We can, of course, readily translate (19) in terms
of the eigenvectors of A(T). Let 8. be the orthonormalized eigenvectors cor-
responding to the non-zero eigenvalues A; of A(T). Then the optimal y is
given by

(8. BI] ‘
y = i T kP
i=1 i

It may also be noted that a necessary and sufficient condition for A,(‘T,)‘. have a
zero eigenvalue is that

25
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* . ‘ .
W(T,t) y=0for0sSt=T (20)

for some non-zero y, since

* T * 2
y A(T) y = 5 | wT, )y || at=0
(o]

For dynamical systems characterized by differential equations, (20) can of
course be carried further.

'

VI. NONLINEAR SYSTEMS

In this section, we shall indicate some extensions of the previous theory
to nonlinear systems. We shall not strive for maximum generality here, al-
in dealing with nonlinear syé‘fems is the specification of the nonlinear system. -
We may consider a dynamic system characterized by a nonlinear differential
equation

¥ = F(x,u,t) (21)

where x(t) is the system state vector and u(t) is the contrnl vector. We want
to minimize, as before

2 , 2
cw = { Jaxw - g0 | am +x { fuwr | am, (22)
g (4
where ” ” denotes the Euclidean norm. Assuming there is a unique so-

lution to the Equation (21) for fixed initial conditions, we have then a mapping
from Hg into H; as before, except that now in

A x = AN(u)
N is not a linear operator but rather a nonlinear operator or function. We

shall assume that F(.,.) is such that N(u) is analytic--that is, locally bounded
and G-differentiable. Then we wish to minimize

2 2
Clu) = |[AN(w) - g "1 + k "ull2 (23)

From this point of view then, all we need is N(u), and it does not matter
whether it comes from a dynamic system or not. It is clear that (23) is also
analytic. Moreover, the Frechet derivative is (in the notation of Reference 6)



a[ C(u); h :l = 2 [ AS[ N(u);h ] , AN(u) ]

] 1 (24)

- 2,|:A6[N(u);h ], &g

caun ]

2

1

But, since §[C(u); h] is a continuous linear homogeneous polynomial, we must
have

R

3 { N(u); h] Lh
6 [ C(u); h ] [ v, h]
2

where, now, from (24), we note that

* * )
v=2[AL:]. A Nfu) - 2 [AL:I gt+2ku (25)
and moreover, the derivative zero leading to an extremum for C such that
* %
0= v=[AL] AN(u) - [ALJ g+ku
or
*
ku = [ A.L.] [ g - AN(u) ] ‘ (26)
This result generalizes (7). Substituting |
*
u= (AL) y
in (26), we again obtain for y the equation in H1
_ « 1
AN [ (AL) y ].+ ky=g (26a)
We note that (26) and (26a) are no longer linear equations, although if H; is
finite dimensional, (26a) is of course also a finite dimensional vector equation.

On the other hand, steepest descent method in this context becomes:

Yl T Un T &% ‘ (27)
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where !
- % %

r r
z, = LALJ AN(u ) -,LAL‘J g+ku
and €, is chosen to minimize
C(un+.1)
Although we can thus inprove the approximation at every stage, convergence

to the optimum is, in general, much harder to prove.

The main calculation is the derivative §[N(u);h]. We shall now examine
this in some special cases. First of all, being analytic, we know that we can
expand N(u) as a power series which can then be approximated by a polynomial
of degree m say. For example, suppose that u(t) is one dimensional, and we
take m = 27

T T -T
x(t) = 5 Wl(t' s)u(s) ds + 5 S Wz('t, S, sz) u(sl)u.(szi) d‘s1 ds2 (28)
(o) o Yo '

then
5 N(u);h}=Lh

T T T
= S‘O Wl(t, s) h (s) ds +S‘ [ S Wz(t, s, o) u(c) do :l h(s) ds

o o

So that, taking A as the identity matrix, and m_, ‘and m

we have

..

o

T AT
+ S; §o W2(t, 8. sz)u ‘(sl) u(sz) d sld'sz } dt | (29)

as Lebesgue measure,

1 2

T T
l: Wl(t, s) + So W2(t‘, s, g) .u(o)do] [S‘o Wl(t,‘ o)u(o) do

~T ‘
- S. [Wl(t“ s) + Wz'(t, s, o) u{o) do ] g(t) dt
o

+ ku (s)
Setting this equal to zero, we have a nonlinear integral equation to solve for
obtaining a local extremum. On the other hand, since the explicit functional
representation x(t) in terms of u(t) is known, the steepest descent procedure
can be applied directly.
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When u(t) is of dimensionality higher than one, the representation of N(u)
by an approximating polynomial is somewhat more complex. A polynomial of
degree m being written as the sum of homogeneous polynomial of lower degree
will be:

_ m T AT
N{) = Z S .. S LK (t, u(sl)‘, u‘(rsz). . .u(sk) ) dsl. e dsk (30)
k=0 %o 0
where for each t

Lk(t, X, X )

‘Ixz‘)‘mo .« k

1

is a vector, each component of which is a continuous K-linear form in the
vector Xy, Xg, .« . Xp. The Frechet derivative can again be calculated in a
similar manner. )

If the system is described in terms of the nonlinear differential Equation
(21), it is possible to obtain §[N(u); h} as a solution to a linear time varying
equation. For, in

x = F(x, w+ X h) (31)
for fixed u and h, we have a function of A for each t, andat A = 0

dx dx .
- v, Flxu] EX-+YuF[x'“"1 h (32)
where V_F(x,u) and V, F(x,u) are the gradient matrices. Now (32) is a linear

eQuation for %{ , and taking initial condition for (21) to be zero, so that

d;‘{t) =0fort=0, A=0

we have
dx t -1 ) ,
& . SO¢ ® ¢ )9, F ( x(s), uis)) n(s)ds (33)

where ®(t) is the fundamental matrix solution of
i’ = VxF[‘x,,u]; Y

From (33), it follows that
L h = §[ N{u) ; h]

corresponds to the operation
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t -1
f d(t)d (s) VuF[ x(s8), u(s) ] h (s) ds

(o]

To use this, x(s) must be known, so that if one solution is known, we can
perturb it to obtain a better approximation to the minimization problem using
Equation (27). Some simplification in these considerations occurs, if, as is
usually the case,

Flx,u) = f,00) + 1, (u)

so that
vV _F(x,u) = V. f (x)
X x1
VuF(x,u) = Vufz(u)

VII. COMPUTER STUDIES

In this section we shall present the results of some computer studies of
the steepest descent methods espoused in the paper. These applications are
not meant to be exhaustive or even representative but rather to illustrate
some of the specific considerations that arise in such application.

Example 1. Let us now consider a second order linear system which is
described by the differential equation

2‘
d4x X % = u(t)
dt

Assume that the desired output over the control interval [0, 1] is a step
function, i.e.,

A

t

A

X d(it): =1 0 1

Let the initial conditions be
x(0) = 1 x'(0) = -1
Then
x (t) = e

and



The problem then is to have the position output of the system following the
step function subject to the energy constraint that

lal” =3
2

This is a one-dimensional problem.

The weighting function of the system is

W(t) = 1-e "
Then | |
-(1-T,) -(1-T)) T | -(2-T.-T)
‘ s 1 2_£< 1’2 12"y
G(T |, T,) = -Max (T ,T ) +e +e -3 (e +e )
\
and

* -
L g=0.3678-T-0.5e¢ T+ 0. 3001 eT

Here Max (T’l, TZ‘) denotes the maximum of Tl’ and ’Tz.

In carrying out the computation, we take 6 = 0.2. The initial guess for
the solution is arbitrarily chosen to be uo(t) = 1. Some of the computational
results are listed in Table I. At each iteration step, we have to adjust k,
such that

2
2.85sJu || =3
)

The increment of adjustment for k_ in this problem is chosen to be 0.005. It
is interesting to see that, after the first iteration, the number k. is already
very close to its optimal value. At the third iteration, k, has reached its
optimal value. ’

The closeness of the approximate solution for u(t) to its optimal one can
be measured by the ratio

£ 3
e +x) u -L'g I,

ER = —
||i L g ”2

Thus at the 4th iteration with ER = 0. 0044, we can stop the process. The sys-
tem performance is plotted in Figure 1 and the sequence of control inputs is
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TABLEI
COMPUTATIONAL RESULTS FOR EXAMPLE 1

2
No. of 2 R+ u -L¥g]l. | | 2 f"' Lu -¢ I
Iteration kn [ u I n* L 2 | Q(un) Q(un)'*kn.”un [ ———-———2——1
Steps 2 I gl . 2 ||g||I
1 ‘0.0065 f 2.949360 0. 515050 -0, 155592 -0.136421 '0.074357
2 - 0.0060 2.859088 0.069710 -0.159816 -0. 142657 0.049229
3 0.0055 : 2,996001 0.024473 -0.160658 -0.144180 0.044222
4 0.0055 | 2.969426 0.004438 -0.160531 -0. 144200 .0. 044976
5 . 0.0055 | 2.999596 0.005363 -0,160701 -0. 144203 0.043963
6 0.0055 | 2.992307 0.000992 -0.160662 -0. 144205 :0.044196
1 ‘0.0055 2.999195 0.001222 -0.160700 -0.144205 0.043969
8 0.0055 2.997514 0.000226 -0.160691 -0. 144205 0.044024
9 0.0055 | 2.999088 0.000279 -0.160700 | -0.144205 10;043973
10 ’0.0055 2.998706 0.000052 -0.160698 ~-0. 144205
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.2

K,=0.0065 | ' | ~
' Kg=0.0060 |
 K3=0.0085
0.2 K4 0.0085

‘o

t
FIGURE 1., PERFORMANCE OF THE SYSTEM IN EXAMPLE 1
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| x,=0.0065 |
K, = 0.0060
| K3 = 0.0055
3} Ke= 0.0055
Upit)
2 \
L
o 0.2 0.4 06 08 1.0
t

FIGURE 2. THE APPROXIMATION SEQUENCE un(t)‘ FOR THE
SYSTEM IN EXAMPLE 1
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plotted in Figure 2. It should be noticed that the oscillation of Q u, ) afte{ kn
has reached its steady value of 0.0055 is due to the variation of I u(kn) "

However, Q(u,) + k, ” u, ” is indeed a non-increasing sequence for the same
values of k

Example 2, Let us consider the same system as given in Example 1.
However, we shall now try to control both the position and velocity outputs of
the system to follow the ideal step function by using a single control input. In
this case, we have a 2 x 1 system. Thus

X4 = i
L 0]
(~ -
1l -e t .
W) = N
| e
F'e-t |
xo(t) = -t '
_-e
gty =
Then.
-(\‘1.-71), -(,1-7'2)' -(2-7‘1- 'rz)
G(T‘I, T2)‘ = Max (Tl, TZ) + e " te -e

* : T
L g =0.3678-7T-=0.2324¢

The constraint for the input is taken to be

. 2
Jul s
2

In carrying out the computation, we again choose 6 = 0.2. Hence when .
||u||2 exceed 5, we shall adjust k such that ~
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TABLE II
COMPUTATIONAL RESULTS FOR EXAMPLE 2

2
No. of 2 ‘ * ILu - gl
: (R+k_Ju -L g 2{llLu -g
Iteration | kn‘ ”un" : ” n'"n gII2 Q) Qlu_)+k ”u " ; n 1
Steps | ‘ 2 ‘ ||L* " O D "guz
n | -~ 8 2 ‘ ‘ o i : 1
1 0 2.515420 |  0.396180 -0.437727 | -0.437727 {0.396180
2 0 1.970645 0.241534 | -0.487548 | -0.487548 | 0.241534
3 0 3. 240699 0. 196627 . -0.513064 | -0.513064 | 0.145496
4 0 3.295242 0.126567 - -0.527287 | -0.527287  |0.121808
5 0 . 4.184334 0.112038 -0.535891 | -0.535891 | 0.107479
6 0 4.307971 0.079227 ~ -0.541763 | -0.541763 | 0.097699
7 0 4.975983 0.078128 | -0.546090 | -0.546090 | 0.090481
8 | 0.001 4.978586 0.059593 -0.548912 | -0.544033 | 0.085792
9 | 0.008 4.866785 0.030549  -0.549684 | -0.510750 | 0.084506
10 0.005 | 4.961765 0.029163 | -0.551068 | -0.526259 | 0.082201
11 0.009 4.953561 0.018552 -0.551326 | -0.516744 | 0.081772
12 | 0.008 4.908812 0.014031 -0.551118 | -0.510848 |0.082118
13 | 0.008 | 4.984433 0.012147 -0.551844 | -0.511969 | 0.080909
14 | 0.008 | 4.955171 0.011334 . -0.551709 | -0.512068 | 0.081134
15 | 0.009 4.927553 0.008125 -0.551580 | -0.507232 | 0.081348
16 | 0.008 | 4.942081 0.009304  -0.551775 | -0.512238 [ 0.081024
17 0.009 | 4.947917 0.005447 ~ -0.551861 | -0.507330 | 0.080880
18 | 0.009 | 4.919139 0.006306 | -0.s551625 | -0.507353 | 0.081273
19 | 0.009 | 4.933637 0.003887 . -0.551774 | -0.507371 | 0.081026.
20 | 0.009 | 4.914428 0.004794 -0.551614 | -0.507384 | 0.081291
21 | 0.009 | 4.930254 0.003020 . -0.551767 | -0.507395 |0.081036
22 [0.009 | 4.916224 0.003880  ..;. -0.551650 | -0.507404 [ 0.081232
23 [ 0.009 | 4.930914 0.002415 -0.551789 | -0.507411 | 0.081000
24 | 0.009 | 4.920170 0.003067  -0.551698 | -0.507416 | 0.081152
25 | 0.009 | 4.933092 0

. 001959 | -0.551819 1 -0.507422  0.080951
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The increment of adjustment for this problem is taken to be 0.001. The
initial guess is still chosen to be uo(t) = 1. The computational results are
listed in Table II. When k, are slightly different, Q(un) sometimes show
oscillations as in Steps No. 11 and No. 12, or in Steps No. 14 and No. 15,

This is due to the fact that we are not adjusting "u” to be exactly equal to 5
and it is not practical and necessary to do so. It is Seen that larger norm
always corresponds to smaller Q, Thus the finer the adjustment for k_ and
the smaller the value for 6, the better will be the monotonocity for Q.

Figure 3 shows the system performance and Figure 4 shows the sequence
of controls. It is seen that the iteration process can be stopped at the 15th
step with ER = 0,008. In the practical application of this method when on-line
computation is required, a proper threshold level for ER will be chosen. The
choice of this threshold should be based on the desired accuracy of the solution
and the computing time whi¢h we can afford.
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FIGURE 4. THE APPROXIMATION SEQUENCE u,(t) FOR THE
SYSTEM IN EXAMPLE 2
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THE PROBLEM OF OPTIMAL MODE SWITCHING
R.A. Nesbit
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ABSTRACT

Control systems may be designed to operate in different modes. In
some cases these modes may be switched to obtain various system trajec-
tories. The optimization of the trajectories can be considered as a deter-
mination of the switching times and cther mode parameters. The optimiza-
tion problem is to determine these times and parameters. First order
computations can yield a descent method but convergence is not assured.
Theorems which deal with the existence of solutions to optimal control prob-
lems which have been recently proved indicate that it is better to relax the
dynamic restrictions during the optimization than to work only with the
admissible class of switched controls. The resulting optimal trajectory is
then approximated by one of the trajectories from the admissible class.

INTRODUCTION

Some vehicles have control systems which operate in various modes,
such as an angle of attack hold mode, a bank angle hold, a flight path angle
hold, and a pressure altitude hold. For the control of a re-entry vehicle
one might include other hold modes such as acceleration, attitude, thrust,
or témperature. One approach to trajectory optimization is to select the
appropriate combination of modes at each time. For some optimization
criteria, however, the optimum switching will "chatter" or change rapidly
from one position to another. This type of behavior has already been noted
in connection with relay controllers. A necessary condition for the existence
of chattering in optimal controllers can be based on the application of the
maximum principle. This condition turns out to give information about the
optimal trajectory in trivial examples, although it is questionable whether
or not this result is of practical significance. Warga, Roxin, Filippov, and
Chang (References 1 through 4), deal with the problem of existence of solu-
tion for the general control problem. This general theory seems to indicate
that optimization of the mode switching problem should be accomplished by
generalizing the problem. The method consists of first relaxing the restric-
tions on the switching, finding the optimum, and then approximating this
optimum by the restricted switching trajectories.

A sub-optimal trajectory can be constructed using a fixed switching
sequence and adjusting the switching times by a steepest descent procedure.

DISCUSSION - -

A class of mode switching systems will be considered. ’i-’hese systems
will be represented by the vector equations
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tpStst, (1) -

f(tl) € Bl

For each admissible u (t) the solution of the differential equation is
assumed to be well defined. The initial condition on the n-dimensional state
vector is in some region B and the terminal condition is required to be in
some region B). The r-dimensional control vector u is chosen from a set
of functions

(x-r,) k=12...m
=T (2)

lk constant vectors

The value of u is chosen from the set of possibilities. This method of
formulation is made in an attempt to incorporate the design restrictions
into the optimization problem. Instead of formulating a completely "open
loop" set of dynamics, a set of closed loop systems is considered. The

formulation is motivated by the current practice of designing control systems.

For example, the attitude control system of some satellites have different
sensor and feedback configurations for acquisition, earth pointing, and
eclipse operation. The application of these systems requires some sort of
switching logic, but in many cases the logic is very simple. Since the sys-
tem designer is generally willing to sacrifice some performance for a
simple mechanization, it is of interest to explore the possibilities of mode
switching logic. :

A particular application which motivates this study is the trajectory
control of a vehicle, and while this problem has been explored in some
detail to find optimum trajectories and means of following them, it seems
reasonable to consider "sub-optimal" trajectories if they are easier to
implement.

One requirement of the trajectory problem is to transfer the system
from an initial state in some region B at tg to a terminal state in another
region B) at some reasonable time t; <t;. The fundamental question about
whether or not the vehicle is capable of making the trip is of interest to those
concerned with the journey. To satisfy doubts on this subject, it is worth-
while to find at least one control sequence which makes the trip possible.

If the journey is so difficult that only one control scheme will work,
then the question is how to find and mechanize it. But if there are many
possibilities, then some choice of route must be made even if it is made by
chance. In some "games" random selection is the "optimal strategy"; in
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other casés there is some "cost" which is to be minimized. Again, existence
and uniqueness are of interest. When there is a conirol which completes the

journey at some cost, then the existence of a minimizing trajectory is of less
importance since the cost can be made reasonably close to the minimum.

The lack of uniqueness of the optimizing trajectories merely requires an
additional decision. Some writers indicate that the problem "is not properly
formulated" as long as any ambiguity remains, but even without admitting this
one can conceive of a hierarchy of "play-offs" leading to the final choice of
controls. For this discussion the first component of the state vector xl (ty)
at the terminal time t; will be taken as the cost function to be minimized.

THE SWITCHING CONCEPT

The control problem is to select one of the possible switch positions.
A block diagram of the system described above is shown in Figure 1.

INPUT DATA ‘ SWITCHING
LOGIC
.

e
kX

X
-'— (®, o) - *-

l ™
MODE SWITCHING

Figure 1. Block Diagram of Mode Switching System.



The switching logic is required to give a trajectory which satisfies
terminal conditions. For linear systems this requirement may be imple-
mented by a final value controller (Reference 5). The significant computa-
~ tion carried out in the final value control problem is the conditional response
prediction. This computation utilizes the known dynamics of the system to
extend the trajectory to some future time under the assumption of a particu-
lar control sequence.

This idea igs applicable to nonlinear as well as linear systems. Let
(t, xq, to) designate the solution of the equatmns at time t with the
initial state xq at time ty and using the kth mode of control. This solution
is a conditional response pred1ctor if the present state is used as initial
condition and if the terminal time is used. That is,

x(ty) = g [t x (0.
if

Ek(f)‘ for tS'rSt1

The system may start in mode j and switch to mode k at time t

in
this case 1

x(t) = [tz 85 (t) %o to) 4

The effect of small changes in the switching time t} are of interest and
can be estimated on the basis of first order computations.

Computation of the First Order Influence of Sw1tchmg Time
and Initial State

The computation of the first order effects of changes in t], x5, and t,
on ¢ (t] xg, tg) can be made for the general mode and the mo e subscript
will be dropped. The first order effects describe deviations from some
"nominal" trajectory. The deviations from the nominal will be designated
by the vector z, and the nominal by the vector y(t) with y(tg) = xg. Then
z = x - y and the dynamics of the deviation are :

e
1

fly+:z)-1(y) (3)

Assuming that the first partial derivatives of f are continuous, define
the matrix A with elements

i - .:,L; @
Y

As usual, the fundamental solution of the adjoint equation will be used.
Define thé matrix W(T) such that
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%Yr_’ = -WA  W(t) = I (5)

By combining Equations (3) and (5) one may obtain

5 (Wz) = W[i(y+2) -£(y) - Az)

and thus
& wa) = oz|

where 0 l_z_"Z indicates the terms of second and higher order. Integrating,
one obtains

t
1
WDz() = Witgzg+ | ofe]ar
to
or
Bt 2 tg) = WL(E) W (t) zg + o?_lzu?"‘ (6)

Thus, to a first order of approximation in I z | , one obtains

2(t) = W) W () 2 (tg) (7)
This will be designated by
z(t)) = K (t), t5)z (tg) (8).

A first order approximation to the effect of switching time on the final state
can be obtained by considering the equivalent perturbation 4z due to a change
in switching time and propagating the perturbation to the final time. For
switching from the jth mode to the kth mode this perturbation is

8z (t;) = [£0x w) - £(x w)]oy (9)

and the effect on the final state is

8z (t )

K (t, t,) bz (t)
. : , (10)
K (t, t)[£ 00 u) - £x w)] by
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Defining
vi = Kty t) [f00 w) - 100 w)] (11)
one may write the final perturbation vector as

n=1 ;
bz () = K(t, tg) bz (t) + 12_:1 v, Ati‘ (12)

A linearized mode switching controller could be designed by setting z (t,)=0
and solving for At; using a psuedo inverse if necessary. The effect of small
changes in the switching times Atj can be used to "improve" the nominal by
the usual steepest descent method. The switching influence vectors v; may
span a subspace of the state space z even if the number of switching times
is large. - '

At each step of a descent procedure the values of Atj must be chosen.
This can be done by making 4t; the "solution" to the equation

vi oty +v, at, + ... -l-y_sl\t—s = Ai(tn)
using a psuedo inverse if necessary.

This procedure will not convérge in many cases, and the real problem
is to determine the conditions under which it will converge. A fairly trivial
example will now be discussed to illustrate the descent procedure.

EXAMPLE
The computations of the descent procedure will be illustrated in the

usual first order system with mean square error. The system is shown in
Figure 2 and is described by

s o)t

" {( 1-a) (x%42)
p. &

= az0orl
:-an‘Z
. %2(0) = - 0.5
p. 4 (0) = 2
x (Z) = 1.5
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Figure 2. System for Example.

As will be shown later, this system will be required to chatter in order
to approach the non-attainable minimum of x1(2). During this chattering
the process will "slide" along the trajectory x2 = 1. For the present, a
sub-optimal trajectory with only two switches will be considered.. The
switch parameter a will be taken ae

0 for 0‘<tStl

1 for t, <ts< t2

1

0 for t2<tSZ

4

and the nominal trajectory will switch at t, = 0.5 t, = 1.5.

The adjoint equations are

W22

and since xz' does not depend upon x1 these equations may be solved along
the nominal

I (tp) +2 [exp 2 (2 - t,) - 1]
+6 [;-exp(z-tz')] |

10 exp (2 - tz)



[ ‘ ]
oGy fexp -4ty -ty - 1]
w. - - [l-‘exp-Z(tZ-tl!]ﬂ
5 = |
0 exp - 2 (t, - t))

The velocity difference (_fo -_f_l) is given by

0
o4 - 2 ~
3Ix” + 2,
Along the nominal mentioned above
-1.62 -0.766
M 2 F
0.762 -3.61

Thus the switching time increments are related to the changes in the
terminal state through the equation

-1.62 0.766( [t | [ax'(2)

0.762  -3.61[(at, [ |ax(2)]

to a first order approximation in Aty and Axi(t). The nominal trajectory

does not quite satisfy the terminal conditions, and the increment in terminal
state is taken as

This choice gives switching increments of 4t) = 0. 0556 At; = - 0.0133,

The modification of the switching times does improve the trajectory.

Repeated application of the procedure gives the sequence of trajectories
tabulated in Figure 3.



e A2ty o Ry Ry ARy
NOM. 0 -0.5 0.5 0.437 1.500 0.0640 2 1.403
TRIAL | o =0.5 0.537 0.568 1.481 0.0857 2 1.504
TRIAL 2 0 -0.5 0.585 0.692 1.494 0.1123 2 1.503
1.5
1.0

1.0 2.0 i
t (TIME)

Figure 3. Sketch of Trajectories.

The steepest descent procedure outlined above can be used in more
complicated examples, and the principle saving of computation and storage
is due to the fact that the influence matrices only need to be stored at the {
switching instants. If two switching times t and z approach each other )
hearer than some specified ¢, thatis if |t] - t2]| < ¢ the intermediate mode o
may be omitted and the number of switches reduced. This procedure leads
to a sub-optimal policy in the mathematical sense, but there are often
practical reasons for avoiding a large number of switches. The available ,
knowledge about the desired trajectory and mode properties can be used to ‘
select a reasonable nominal sequence.




A Necessary Condition for Optimal Switching

The systern described by Equations (1) and (2) has the following adjoint
to the first variation.

The Hamiltonian is

For a minimizing trajectory the maximum principle (Reference 6)
requires that the ap be chosen to maximize H for suitably chosen boundary
conditions on the multipliers p;. As an alternative to steepest descent com-~
putation of a fixed number of switching times, a steepest descent procedure
for determining the initial conditions on the multipliers may be attempted.
The relative merits of these two procedures are of interest. One problem
which may arise in the optimal switching case is the problem of chattering.
The necessary condition outlined above gives an unambiguous speciﬁcation
of the switch position when one of the quantities p - f (x, ux) is actually
greater than any of the others. However, when there are o or more of
these quantities equal to the maximum, then the choice is not clear. This
equality occurs at each switching instant, and if the equality only holds for
an interval of measure zero, there is no ambiguity of the resulting traJec-
tory.

" Ii-the multiple maximum persists, then the switching choice is not
defined by the maximum principle, although it may possibly be defined by
\\the persistence of the multiple maximum. The optimum switching choice
may not exist in piecewise continuous form, and the optimal control choice
"chatters'" between the two or more possibilities. In this case the sub-
optimal choice of a fixed number of switches may be more desirable com-
putationally.

A more rigorous discussion of chattering may be based on the work of
Warga, Roxin, Filippov, and Chang (References 1 through 4). The switching
problem is first associated with a relaxed problem by conmdermg values of
akg: 0 < ap S 1 Tayp =1 insteadof only ax = 0 or 1, Zap = 1. This relaxation
allows the velocity vector to take on all the values in the simplex with
corners at f (x, ‘_‘k) instead of only the value of the corners. For the
relaxed pro'Blem a solution exists as shown in the above papers. Warga
also shows that this optimal solution can be approximated arbitrarily closely
by using only the original switching control. The application of this result
to the problem of optimium mode switching seems to indicate that the relaxed
problem should be solved for the optimal trajectory and then approximated
by the switched trajectory. However, if oné is going to attempt to follow a
nominal, then one of the other perturbation techniques (Reference 7) may be

4
)

51



more feasible for closed loop operation. It appears that switching modes
does not simplify the optimum trajectory computation unless a sub-optimal
trajectory with a fixed number of switches is accepted.

* EXAMPLE

The dynamics of the previous example are used, but an attempt is made
to find the "optimal" switching. The multipliers p; satisfy the equations

pl = 0 P = -1
0y 2 "
By, = -~2(x"-1)p) -p, [(1 -a,) - 20

and the Hamiltonian is

H = p, (x, - 1% + P, [(1 - 0,) (xX +2) - a, sz}

This quantity is a c_onstant and switching can only occur when xz = ~-2/3 or
p2=0. If p2=0, pp = 0 only if x2 = 1 and thus a necessary condition for
chattering is x< = 1.

CONCLUSION

A steepest descent modification of the switching tirnes in a mode switch-
ing control system can be based on first variation computations, and the
computer storage requirement less than that required for functional descent.
By introducing control variables the mode switching system can be put in the
format usually used in the study of control optimization. The application of
the maximum principle yields a necessary condition for optimum switching
and a necessary condition for chattering. If the switching problem is relaxed
to assure the existence of an optimal solution the computational problem of
finding this optimum is not simplified by the switching approach although
mechanization of the control system may be simplified. The use of steepest
descent procedure for determining the sub-optimal control using a fixed
number of switches is only based upon differential arguments and some
knowledge of the global properties of the trajectory is required to assure
the usefulness of the procedure. ’
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OPTIMAL THRUST PROGRAMMING FOR MINIMAL
‘ FUEL MIDCOURSE GUIDANCE
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ABSTRACT

The problem of specifying the minimal fuel thrust program for guiding
a space vehicle in its midcourse phase is formulated as an optimization
problem. The task of the thrust program is to transfer the vehicle from a
given initial error state (position and velocity) to a terminal error state of
zero with minimum fuel subject to a magnitude constraint on the thrust vector.

The form of the optimal thrust program is derived and shown to be of an
"on-off" nature with time-varying direction during periods of thrusting.

The problem of synthesizing the optimal thrust program is reduced to
the problem of maximizing a particular function whose gradient is readily
computed. An iterative computational procedure for synthesizing the optimal
thrust program is then developed utilizing the method of steepest ascent.

INTRODUCTION

Let us consider the problem of guiding a space vehicle during the mid-
course phase of its mission. Basically, the problem is that of correcting the
space vehicle's ballistic or "free fall" trajectory. In general, this involves
thrusting at low levels in contrast to the large amounts of thrust required for
launch or deboost operations. We indicate a typical mission involving a mid-
course maneuver in Figure 1.

There are two primary functions which a midcourse guidance system
must perform. The first is one of sensing and processing information to
determine the vehicle's state, such as position and velocity, in an appropri-
ate coordinate system. This is the navigation function. The second is that
of utilizing the navigation information to generate thrust control signals so
that mission objectives are achieved. This is the thrust programming func-
tion.

Numerous problems dealing with the optimization of flight paths and
guidance systems have been treated in the literature (References 1 throughé).
Here we shall consider the specific problem of minimal fuel thrust program-
ming for midcourse flight where the corrective thrust vector is amplitude
constrained. The central result of the paper will be the development of an
iterative computational technique for generating the thrust program. With
respect to the navigation functions, we shall assume that midcourse guidance
is to be initiated at a specified instant of time at which the vehicle's state is
known to a desired degree of accuracy.
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Figure 1. Typical Space Mission Involving Midcourse Maneuver.

THE MINIMAL FUEL PROBLEM

If launch or deboost operations, that is, phases of a space mission
involving periods of relatively high level thrusting, could be executed per-
fectly, a given space vehicle would free fall to the desired destination along
a path which we shall term the nominal trajectory. However, imperfect
launch or deboost ocperdtions cause errors to exist along the ballistic or
free fall portion of the mission. We use the term errors here to denote
position and velocity deviations from the nominal trajectory. We assume
these errors are small enough to permit a linearization of the vehicle's
equations of motion.

To within the accuracy limitations of the guidance elements utilized, we
shall require that the correéctions reduce the errors to zero at the conclusion
of the midcourse phase. We shall also require that the midcourse phase be
executed in a fixed time so that the vehicle will arrive at the same terminal
state at the same time as a vehicle following the nominal trajectory. By

57

hian e S i e o e



imposing these two requirements, we have considerably reduced the task of
the terminal guidance system in executing re-entry, rendezvous, or docking
type maneuvers.

In order to maximize the useful payload, we shall choose quantity of fuel
as the system parameter to be minimized. Moreover, for obvious practical
reasons, we shall assume the corrective thrust is amplitude constrained.

The equations of motion of a space vehicle subject only to gravitational
and propulsive forces may be written as

v = Py, t)+ Q(y) T (t) (1)

for either cartesian or spherical coordinates. In Equation (1), y is a six-
dimensional column vector whose elements are the position and velocity
coordinates of the vehicle, P is a six-dimensional column vector represent-
ing the gravitational forces, and Q (y) is a 6 X 3 matrix which relates the
three-dimensional thrust vector T to y.

Assuming small errors, we shall now linearize Equation (1). We let

y = Y + 6y where Y is the nominal trajectory which satisfies the free fall
equation

Y = P(Y, t). (2)

The initial conditions on Equation (2) are those which would result from an
ideal (perfect) launch or deboost operation.

Since y satisfies Equation (1), 6y satisfies the equation

oy = (B evrem T+ (3)

where (3P/3dy) is a 6 X 6 matrix (evaluated along the nominal trajectory Y),
and the dots on the right denote higher order terms in &y.

Assuming Q (y) is approximated closely enough by Q (Y) and neglecting
the hlgher order terms, Equation (3) becomes

@_f,_’) Sy + Q(Y) T (1) (4)

Since the time history of the nominal trajectory is known, we observe that
(3P/3y) and Q (Y) are explicit functions of time. Hence, defining

x(t) = by (t) A(t) = @7?)
u (ty = T(t) B (t) = Q(Y)
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Equation (4) becomes
x(t) = A(t)x(t)+ B (t)u(t). (5)

In Equation (5), x (t) is a six-dimensional column vector, the vehicle state
vector; u (t) is a three-dimensional column vector, the thrust vector; and
A (t) and B (t) are 6§ X 6 and 6 X 3 matrices, respectively.

We shall let the time interval over which midcourse guidance is per-
formed be the interval 0 < t < 7, where T is a known constant. We shall
denote the initial errors or dev1at10ns from the nominal trajectory by x (0).
The task of the midcourse guidance system is then to null these errors so
that x (1) = 0.

For low-level thrust propulsion systems operating in free space, it is
reasonable to assume the specific impulse Igp, given by

;- T ()

8 " »
P 8, ™

is constant (Reference 7). In Equation (6), IT (t)l is the magnitude of the
thrust vector, go is the acceleration of gravity at sea level, and m is the
time rate of change of the fuel mass. Cross-multiplying in Equation (6),
and integrating the result between the limits 0 and 7, we obtain

T T
f IT (t)] at = g, Isp f mdt = go..Isp‘ dm. (7
‘0 (o]

But g, T dm is simply the total weight of the fuei consumed during the mid-
course phase. From Equatmn (7) then, we see that the time integral of the
thrust vector magnitude is proportional to the fuel consumed. Therefore, in
order to minimize the fuel consumed during the midcourse phase, we shall

choose
T ‘
S = f IT (t) dt,
(o]

T
N S = [ flu (t)) at, 8)
A ‘

or equivalently,

a8 the design parameter or cost to be minimized. In Equation (8), the
symbol | | denotes the Euclidean norm as given by R
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o 0 = -\[ui' (8) + 02 () + w2 (1),

This is simply the magnitude of the thrust vector.

In minimizing Equation (8), we shall restrict ourselves to thrust vectors
for which: (a) |lu (t)] < 1, and (b) each component of u (t) is piecewise con-
tinuous. Thrust vectors which satisfy these two restrictions for 0t <~
are termed admissible.

In practice, condition (a) is equivalent to requiring |T (t)] < To where
T, is a known constant equal to the maximum thrust available from the pro-
pulsion system. For analytic simplicity, we have normalized this constraint.
Condition (b) is one of requiring that the thrust vector be physically realiz-
able.

We now summarize the problem formulation: We are given the linear-
ized system of Equation (5) of a space vehicle in midcourse flight. We wish
to determine an admissible thrust program u (t) which will transfer the
vehicle from a known initial state x (0) to the terminal state x (1) =0 ina
fixed time T such that the cost (Equation (8)) is minimized. Such an admis-
sible thrust program will be called an optimal thrust program.

DERIVATION OF THE OPTIMAL THRUST PROGRAM

For a given initial state x (0) and an admissible thrust program u (t),
the state of the system (Equation (5)) at any time t, 0 <t < T, is given by

;t
x(t) = X (t) |x (0) + f X-l (s) B (8) u(s)ds , (9)
o

where X (t) is the 6 X 6 matrix solution of X (t)= A (t) X (t), and X (0) =1 =
identity matrix.

From Equation (9), we see that we can achieve the desired terminal
state x (T) = 0 if and only if

T . -
-x(0) = | x!(s)B(s)u(s)ds. (10)

Let us define an additional state variable y by

t
y@) = | [ju(s) ds.

We note from Equation (8) that S = y (7).
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Let us consider the set {1 defined by the relation

T T
=] x1@®B(uat, Ju (ol atf: u (t) admissible} .

o L o

We see that 1 is a set in seven-dimensional Euclidean space, and that a
point (x, y) belongs to {1 if and only if there exists an admissible thrust pro-
gram u (t) which transfere the initial state -x to the origin in time T with a
cost y.?t

It is shown in Reference 8 that 1 is convex, closed, and bounded, and
that it is symmetric about the y {cost) axis.

For a given x (0), the minimum cost to reach the origin in time T is the
least y (T) for which (-x (0), y (7)) € 1. We shall denote this minimum cost
by y© (7). Clearly, (-x (0), y© (T)) is a boundary point of (1. We let
Xo = (-x (0), yo (T)). (Bold faced letters will be used throughout to indicate
seven-dimensional vectors.)

Since (1 is convex, there exists at least one seven-dimensional column
vector € such that

n".zokﬂ'.g, (11)
for all w ¢ O where the prime denotes the transpose. That is, we may con-
struct a hyperplane of support to 1 at xo with 7 as any vector normal to
this hyperplane at x,

From the properties of {1 it can be shown that the last (seventh) com-
ponent of 7 is nonpositive. With little loss of generahty, we shall assume
it is negative. Moreover, since the length of 1 is immaterial, we shall set
ite last component equal to -1 for all the work which follows.

From Equation (11), we see that the function n': w attaine its maximum
in 1 when w = x,. For any w € given by

x! () B (t) u (1) dt, fu (&) |,
(o]

thi 8 function becomes

It is concewable that for suff1c1ent1y large initial errors x (0), it would be
impossible to achieve x (T) = 0 even if full thrust |ju (t)] = 1 were utilized
throughout the interval 0 S t < T. In our work here, we shall consider only
those initial errors which can be transferred to the origin in time T using
admissible thrust programs.
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T
N e [ x 0B @ u - ta o] e (12)

v

o
where, from above, 1= (n, -1) and n = (M- Mg)-

We wish to select an admissible thrust program u (t) which maximizes
w. We maximize this function by maximizing the integrand of Equation

LI
2) for all t, 0<t<T, Thus, we wish to maximize the function

£(0) = nt- XL (0) B () u(t) - Ju(e)f (13)

with respect to the variable u subject to the constraint fulj < 1.

We observe that n' - X-1 (t) B(t) is a three-dimensional row vector.
If n' « X-1(t)B(t) = 0, we maximize f(t) by setting u(t) = 0. If
n' - X-1(t) B(t) # 0, £(t) will be maximized only if u(t) has the same
direction as n' . X-1(t) B{t). We shall assume this is the case in the work
which follows. Hence, for n' + X-1(t) B(t) # 0, Equation (13) becomes

£t) = fu(t)] [ln’ - x LBy - 1]. (14)

If fn' - X-1(t) B(t)j > 1, £(t) is maximized by making fJu(t)] = 1, the
maximum allowable. Since u(t) has the same direction as n'. X~1(t) B(t),
we obtain -

[y x Y Bl
u(t) = - T
In' - x™7 (1) Bl

If Il‘n" . x-1 (t) B (t)n <1, f(t) is maximized by setting ||u (t)} = 0 which
means u(t) = 0. .

Finally, if |n'. X-1(t) B(t)]l = 1, we have f(t) = 0 for any admissible
u(t). For purposes of our work here, we shall assume that the set of points
in the interval [0, 7] at which fn' . X-1(t) B(t)]] = 1 is of measure zero for
every vector n. For the sake of completeness, however, we set u(t) = 0
whenever |n . X-1(t) B(t)j = . For the above assumption then, we have
that the thrust program u(t) which maximizes n' + w is unique and defined
almost everywhere. -~

Because of the uniGueness, we can replace inequality (11) by the strict
inequality .

n' . 3(-0)3' W W € Q and @ #50 (15)

In summary, the thrust program which maximizes 7' - w (and thereby
minimizes the cost) is given by the relation -
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4 - -1 - el : . . .
| [ﬂ[ i x “) B(t)] wh n! o .x_‘-'.l' t) Be)l >1
T T (t):B(t)I whenever [ ) B (t))

0 whenever |n' « X'l(t);B(t)“‘ <],

u(t) = (16)
for 0<t<rT,
SYNTHESIS OF THE OPTIMAL THRUST PROGRAM

We see from Equation (16) that the problem of generating the optimal
thrust program is one of computing an 1 for a given initial state x(0).

Let us consider a seven-dimensional column vector A = (\, -1) where
A=(\,..., \g). For a given \, let us define the function

v x1g )] |
—— [\ X l(t)‘ Bit)] whenever |\' - X‘-l(t) B(t)) >1
e x Bl

v(t, \) = o1 (17)
0 whenever \' - X"  (t) B(t) S 1,
for 0 <t < T, Letus introduce the vector function
T T 1
z(\) = x 1B v, dt, [ vt 2 @t (18)
o o V
Analogous to Equation (15), we obtain
ANMez(W)>N G (e and C#E2(N). (19)

Hence, z(\) is a boundary point of (0 and a hyperplane of support to Q at
z(\) has the normal vector \ = (A, <1).

MNow if a vector n is known for a given initial state x(0), the corres-
ponding point on the boundary of Q) has the coordinates

z() = (-x(0), y°(T)). (20)

Let us consider any vector \ for which z(\) # z(n). We shall denote
the hyperplane of support to 1 at z(\) by B(A\). If §=(81,..., 86, 87) is
any point in the seven-dimensional Euclidean space which also lies in B(\),
we obtain

X' z(\) = N § (21)

as the equation for this plane.
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The line through the point (-x(0), 0) parallel to the y axis intersects
B(\) at some point ¥ = [-x(O)‘, p]‘. Setting § = }: in Equation 21), we obtain

A 200 = A« (=x(0), p) . (22)

o~

Recalling z(\) £ z(n), it follows from Equation (19) that
AMeEM>A . zM). (23)
From Equations (20), (22), and ,(23), we obtain
A (x(0), p) >A' . (-x(0), yO(T). (24)
From Equation (24), it then readily follows that
p<y°(r). - (25)
Solving Equation (22) for p yields
p(N) = -\ x(0) -g()), (26)

where we have made the definition g(\) = A' - z(\) and have introduced the
notation p(\) to emphasize the fact that p is a function of \. We note,
from Equation (18), that

T
gA\) = \'-z(\) = / [x"- x1 (t) B(t) v(t, \) - Jv(t, x)|]‘ dt, (27)
o]

which is clearly a function of \.

Now if z(\) = z(n), we see from Equations (20) and (22) that

p(A) = y°(T). . (28)

From Equation (25), we recall p(\) <y©°(T) if m(\) # z(n). Thus, Equation
(28) holds if and only if z(X) = z(n)- -

From Equations (25) and (28) then, we see that the problem of synthe-
sizing the optimal thrust program is one of determining a six-dimensional
vector X which maximises the function p(\) given in Equation (26). We
shall perform this maximization using the method of steepest ascent (Refer-
ence 9). ’

The method involves making A\ a function of some parameter p and
iolving‘ the differential equation
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‘3‘% = kvpn) (29)

for A\ (p). In Equation (29), Kk is some p nstant and ¢ denotes the
gradient.

Let us now consider the limit

A = lim \(p).
p®

We shall show that if this limit exists, it is precisely a desired \ for
synthesizing the optimal control for a given x(0).

‘It can be shown (Reference 10) that yp(\) (note Equations (26) and (27))
is continuous in \ and is given by

wO) = -x(0) - 27Ny B(e) v(t, A) at, (30)
(o]

Assuming
lim x(p) = Xx°
p-c0 .

where \? is a constant six-dimensional column vector, we obtain
lim 9p [)L ('pa = Vp ()\o),
pc ‘

since yp(\) is continuous. From Equation (29) it now follows that

Thus, as A+\°, we have d\/dp—0. (Otherwise, \ would grow without bound
as p-> contradicting our assumption that \ approaches a limit.) Then,
for \ = \°, we see from Equation (30) that

T
-x(0) = f X~ (t) B(t) v(t, \°)dt. (31)
(o]

This means v (t, \?) is precisely the thrust program required to transfer
the space vchicle from the point x(0) to the desired terminal state x(T) =
It is very easy to show (Reference 8) that z(\%) = z(n), and, therefore, tha.t
v(t, \°) is an optimal thrust program.
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If we substitute Equation (30) into Equation (29), we obtain

T
g% = -k [x(0) + f X“t) Bty vie, A)atl,
‘ o )

or equivalently,

, T
I =k X~y dx(r) |x(0) + f x Ly By vit, \) atp. (32)

o

We observe that the term within the braces is simply the solution x (t) of
Equation (5) with u(t) = v(t, \) evaluated at the terminal time t= T. Since
this solution depends upon the choice of \, we shall adopt the notation

.
| Lty B(e) vit, ) atl. (33)

x(T, \) = X(T) }<(0)+

o
Substituting Equation (33) into Equation (32), we have

g% = xx ryx(r ),

or, in discrete form,

Wi+ () Kx'lmx(v, xm)‘. (34)

where K is some positive constant and i is the index of iteration.

We now outline the steps of an iterative computational procedure for
determining a correct \:

(1) Make an arbitrary imtial fguess" x(°) for \.

(2) For this value of \(i), compute v(t, \(i)) from Equation (17)."

(3) Integrate the equations of motion (Equaticn (5)) using the thrust
program of step (2) to determine x(T, A(i)). Equation (33) may be used
directly for this purpose.

(4) Substitute this value of x(T, x(i)) into Equation (34), solve for
A(i+1), and return to step (2).

(5) Terminate the iteration process when ||x(i+1) - \i)] < ¢ where
¢ is a small positive number. .

The optimal thrust-program il then given by Equation (17) using the last
iteration on \.




DISCUSSION OF RESULTS

"The utility of space missions is directly dependent on their payload
capability. In minimizing the amount of fuel used in the midcourse phase,
our intent has been to increase this capability, that is, to permit the inclu-
sion of additional useful equipment. We must bear in mind that a savings of
only a few pounds may permit a mission to include scientific experiments
which would not be possible otherwise. This is a significant factor when
viewed in terms of the over-all cost of a space mission.

In developing the equations of motion of a space vehicle in midcourse
flight, we assumed the mass M of the vehicle was appreciably larger than
the mass of fuel m consumed during the midcourse phase. More realistic-
ally, of course, we should have considered the variations in total mass along
the flight. However, if the fuel mass for the midcourse phase should turn out
to represent a significant percentage of the total vehicle mass, this would
raise the question of the effectiveness of the launch or deboost guidance sys-
tem. In general, we would expect errors to be small at the conclusion of
launch or deboost operations. The task of midcourse guidance then becomes
that of making small corrections so that these errors do not propagate along
the trajectory and cause large misses at the destination. Hence, for pur-
poses of this preliminary study, it is felt the assumption M >> m is reason-
able.

We observe from Equation (17) that whether or not the vehicle is thrust-
ing is controlled by whether or not u‘)\" - X-1(t) B (t)] exceeds a threshold
equal to unity. Moreover, we note that when the vehicle is thrusting, the
system utilizes the full thrust capability by making [v(t, A)j = 1 and changes
only the thrust direction in accordance with the components of \' « X-1(t)B (t).
As a result of this "on->ff" nature of the thrust program, non-throttleable
propulsion can be used. However, since the direction of thrust is time-
varying, the attitude control system must be utilized during periods of thrust-
ing.

Since the initial error x(0) is a measured quantity, i.e., the output of
the navigation scheme employed, the thrust program performance is directly
dependent upon the quality of navigation. By allowing the navigation system
more smoothing time, i.e., deferring the initiation of midcourse guidance,
one obtains a more accurate estimate of x(0). However, in waiting, one
allows the launch or deboost burnout errors to propagate unchecked. A trade-
off between these two factors is essential in the selection of the time at which
midcourse guidance should be initiated.

In conclusion, we point out that whether or not the midcourse guidance
scheme developed here is practical from a systems-hardware point of view
is a question requiring further study. In this section, we have pointed out a

" number of factors, pro and con. Certainly, the discussion is not exhaustive.
In any event, it is felt that results developed here could be exploited as guide
lines in other similar studies. For example, the amount of fuel required to
execute a mission using the above scheme could be used as an ultimate per-
formance limitation in the design of other midcourse guidance systems for
the same mission.
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SUMMARY

A review of the literature shows that the problem of optimal
control synthesis is not completely solved although many aspects
of the problem have received considerable study. An lterative
procedure for the syntheslis of time optimal controllers 1s des-
cribed and some experimental results are presented. It is well
known that the optimal control law for the time optimal control
of linear systems with bounded ¢ontrol amplitude is of bang-bang
type while the time optimal rocket steering control law 1is con-
tinuous. In both cases, the solution of the assoclated two-point
boundary Eroblem requires the determination of (n - 1) parameters
for an nth order system. The computational procedure described
here is based on the i1dea of optimal evolution and uses the method
of steepest descent to obtain the proper values of the n - 1
parameters. The geometrical significance of these parameters as
well as their relationship to the reachable sets is discussed. An
experimental investigation of the convergence of the iterative
procedure 1s described for both regulator and controller problems.
The use of this iterative technique for variable input signals has
been found to work in those cases investigated. The development
of the theory shows that convgergence to the correct solution can-
not always be guaranteed when working with variable inputs. For
example, 1t 1s possible for moving targets to "out run" or "out
maneuver'" the system.

The results presented for the bang-bang problem were obtained
on second order systems. The rocket steering problems provided
third and fourth order examples. A closed loop optimal controller
for optimal rocket steering has been programmed and 1s presently
being studied on a digital computer.

INTRODUCTION

A. A dynamic system 18 to be controlled in such a way as to
maximize or minimize some performance functional. The state of the
system at any instant is described by n-independent variables
x1{t), 1 <1 < n. These variables change with time according to a
set of differential equations Xi = f1(x4s UK, t) where the Ug are
independent controls, 1 <K<R<n. T ese are the governing
equations for the system. The variables X4 may or may not cor-
respond directly to the physical variables naturally associated
with the process. In addition to the governing equations there



are constraints on the state variables and on the controls. These
constraints are often in the form of inequalities A(xy, Ug) < O or
I B(xys Ug) < M. The functional to be extremized is often Taken
to be an integral of the form S = [T L(xj, Uk, t)dt where the
function L 1s called the error criterion and the functional S 1is
called alternatively the performance index, the payoff or the cost.

In realistic cases unwanted disturbances enter the system
along with noilse in the sensors that observe the state variables or
the measurable physical variables. The controller may also suffer:
from imperfections of various types and in additlon the controller
may have only Imperfect knowlédge of the process or system being
controlled. ‘

The 1nlitilal and desired terminal states of the system are
prescribed. The problem consists in finding a control law u(t) in
the class of allowable controls that brings the state point from
initial to terminal locations and extremizes the payoff or cost.

A synthesls procedure for an optimal system results in a
closed feedback loop representing the system being controlled and
a computer to select the optimal control law. The block dlagram
in Figure 1 1llustrates the maa? 1deas.

1

Process

X; ()

N2

| Controller

FIGURE 1, OPTIMAL FEEDBACK CONTROLLER

It is necessary to lncorporate the nolse and random inputs
from the beginning and to determine the extent to which these dis-
turbances must be taken into account in selecting a performance
criterion.

The synthesis procedure involves several dilstinct steps.
Each of these steps 1is an interesting area for research on its
own merits. However, no single step, by itself is sufficient to
constitute a synthesis procedure. These steps lnclude the selec-
tion of a performance criterion, determination of the system state
point from noisy data, estimation of statistical propertles of
riolse and random inputs, and computation of the optimal control law.

B. Historical background. A searech of the literafure dis-

closes many examplés of a speclific nature as well as several
thorough treatments of general methods of formulating problems of



optimal control. However, very little has heen published regarding
actual synthesis of real time optimal controllers. Research on
real time optimal control appears to be confined in the maln to
separate studies of one or more of the individual steps described
previously. However, there are some results on synthesis of pre-
dictive but not necessarily optimal controllers.

The reduction of the synthesis problem to studlies of indlvidual
simpler problems follows the traditional pattern. General studies
of dynamical systems lead to speclal studies of properties of con-
trolled systems. The historical development of control theory
usually emphasizes stability. Although this 1s always a considera-
tion, it 1s not the maln concern here. The optimization problem
1s frequently treated separately and ordinarily is formulated in
terms of calculus of varilations, elther in classical form or by
using direct methods. The treatment of the optimization problems,
in a great many cases, 1s almed at finding solutions for a few
initial states and limited number of terminal states. The two-
point boundary problem is ordinarlly solved for only a restricted
class of initial and end conditlons. The solution of two-point
boundary problems constitutes another large area of research and
again there are a number of general studles and a number of very
specific studies.

Filnally, there is a class of papers devoted malnly to appli-
cations of previously derived theoretical and computational results
to specific systems. These papers encompass alrcraft performance
studies, space travels, chemical plant operation, instrument servo
designs, optimal noise filters, and a varlety of other speclal ap-
plications. It goes without saying that there are papers that fit
into more than one of the general categorles described as well as
articles of interest that do not fit well into any one of these
general areas.

The behavior of dynamlic systems subject to random inputs or
dlsturbances has some connectlion with research on optimal control
synthesis. There 1s a relation between certaln random problems of
control theory and problems arilsing from physics, for example
Brownian motion. The simlilarity between problems 1s very close
and the same kind of equation (Fokker-Planck) arises from both
classes of problems. Blackman (1) Hopkin and Wang (2) and Barrett
(3) have studied this. The book by Wax (4) contains a collection
of stochastic problems of physics that relate to control theory.
Texts by Tsilen (5) Lanning and Battin (6) and Petersen (7) have
discussed random processes and control theo in detail. In ad-
dition, recent papers by Aoki (8) Bellman (5% Adorno (10) and
Zadeh (11) have dlso been concerned with control and random proces-
SeS.

The design of optimal controllers depends upon the selection
of performance criteria. Varlous kinds of standards, performance
%riter%a, and error indices have been proposéd and investigated

12,13
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The theory of optimization has developed along two parallel
branches stemming from mathematlcal and engineering interests.
Formulatlions of the mathematlcal problem have been made by Bliss
(14) Hestenes (15) Kalman (16) Marcus and Lee (17) Breakwell (18)
Bryson (19) Bellman 220; Kalaba 21; La Salle (22) Pontriagin (23)
Kipiniak (24) Chang (25) DeSoer (26) and many others. A review of
the literature relating to time optimal control has been prepared
by Paiewonsky (27). At the present time, the formulation of .
optimization problems and the resulting necessary conditions are
fairly well understood. A possible exception is the case of in-
equallty constralints on the state variables. .

Once the problem has been formulated in precise mathematical
terms, the next step is to obtaln solutions. The solutions can be
the optimal path that the system should follow or the optimal control
law to be applied to the system.

The solutlon of the optimization equations has been attempted
by many investigators using several different techniques. For the
most part, these investigations have been dilrected towards solu-
tions of a speclal class of optimlzation problems.

The direct Integration of the Euler equations has been tried
many times. Integrations are tried forward, backwards, or in
combination. There are several ways to satlsfy the boundary con-
ditions. These include Sa) trial and error searching for the
Lagrange multipliers, (b) flooding or calculating a great number
of trajectories by systematically varylng multipliers at 1nitial
or terminal points, (c) guessing and refining the initial results
by Newton's method, influence funttions methods and other means.

It has been known for a long time that the direct 1integration
of the equations of the system coupled to the Euler equations re-
sults 1in a set of equations with extreme sensitivity to initilal or
terminal conditions. ‘

Another approach to the solution of the optimization equations
1s the partial differential equation or payoff surface approach.
The Jjustlfication for these methods is based on the fact that for
most systems the surfaces of constant optimal payoff are boundaries.
of convex sets and the gradient of the surface (1f it exists) cor-
responds to the Lagrange multipliers of the classical approach or
the adjoint variables of the maximum principle. These. optimal
payoff surfaces are solutlons of a partial differential equation
analogous to the Hamilton-Jacobl equation obtainable from the
maximum principle. The properties of these surfaces, also called
reachable sets, have been studied by Halkin (28) Paiewonsky (27)
Roxin (29) and Anderson (30). The characteristics of this partial
differential equation satisfy the Euler equations. A discrete
version of this partial differentlal equation 1s the basls for the
method of Dynamic Programming developed by Bellman. Thls approach
has been applied to many problems with varylng degrees of success.
A téchnique based on results of Neustadt (31) appears promising
for optimal problems with linear processes. This will be dis-
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cussed in more detail in a following section.

The methods listed above have In common the idea of searching
for a function that satisfies 1lnitial and terminal conditions
among a class of functions satlsfyling certain necessary conditions.
An alternative approach has been taken by several investigators.
In particular,‘Kelley‘é32) Bryson (33) Swanlund (34) Kipiniak (24)
Ho (35) and Dreyfus (36) have investigated the gradient methods.
These methods seek a control function that extremlzes the perfor-
mance functional from the class of functions that satisfy the
boundary conditions. The method depends upon successive approxima-
tions to continually improve the value of the performance index.
In the course of the "descent" 1t 1s necessary to adjust the pro-
cedure to satisfy the boundary conditions which may be drifting
off. °Several speclal procedures developed to do this have been
reported on and are included in the bibliography. Analog computers
for solving these problems have beén investigated by Kipiniak (24)
and Meers %37).

The optimal control of quantized or discrete systems has been
studied by DeSoer (38) Friedland (39) Kulikowski (40) Neustadt (41)
and Zadeh (11) among others.

The idea of a field of extremals is fairly old, however, it
has been only recently that this notion has been applied to optimal
control problems to obtain neighboring solutions to a known optimal
trajectory. :

Perturbation techniques designed to obtain additional solu-
tions to boundary problems by examining neighboring solutions have
been studied by Bryson (42) Kelley (43) Kipiniak (24) Swanlund (34)
and Dow (44) among others.

There is such an abundant literature on applications of opti-
mization procedures to problems in flight mechanics that it is
impractical to do more here than to cite some of the more prominent
works and to describe in generalities what has been accomplished.

It is important to observe that the objective in many of these
studies 1s to find only a few solutions to a limited class of
boundary conditions and the question of synthesis of a controller
does not arise. ‘

Classical variational theory has been used by Leitmann (45)
Behrbohm (46) Miele (47) Melbourne (48) and Edelbaum {49) among
others to study optimal paths for aircraft, rockets, and space
craft. Lawden (50) employed direct methods for optimal orbital
transfers, while Bellman (51) and Dreyfus (52) and Smith (53) use
dynamic¢ programming.

Optimal reentry and optimal climbs have been among the ap-
plications of the gradient methods employed by Bryson %54) and

Kelley (55). These investigators have also glven some considera-
tion to the synthesis problem. Friedland (56) has considered the
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synthesis problem and has described in general terms the structure
of a class of optimal controllers.

At this point 1t is useful to look back for a moment and take
stock of what has been said. Optimal control and optimal path
problems can be formulated and solved for a number of special ap-
plications. 1In general, though, these are idealized cases. That
is, given a typlcal problem as posed in the preceding sectlions, 1t
1s usually possible to find a solution to the two-point boundary
problem, 1f one exists, by some one of a varlety of means. Never-
theless, this 1s not enough to constitute a synthesls procedure,
although it is a step in the right direction.

A closed loop optimal controller must be able to determine the
optimal control law at each instant of time. Except for some
speclal cases, l.e. time invariant linear processes with quadratic
error and quadratic fuel cost, the two-point boundary problem re-
quires iterative solution in one form or another.

The determination of the optimal control may be accomplished
by looking up stored results of previous calculations, by actual
solution of the two-point boundary problem with fast-time-scale
computers, or by a combination of these methods. For example,
controllers have been described by Bryson (57) and Kelley (M3$
that would use stored nominal optimal paths together with a fast
computer to determine neighboring optimal paths. Alternatively,
nominal paths can be stored and the optimal control for an "initial"
point not on a stored path can be approximated by an interpolation
scheme.

There are many alternatives available and only a few seem to
have recelved any serious study. For the most part, these studies
are idealized by excluding noise, random disturbances, and
component imperfections. There are exceptions however. Studies
of satellite attitude controllers have included these effects and
considered the behavior of the systems, (usually relay type), in
the small signal region with component imperfections present such
as dead time and hysteresis (58). The effect of these real
characteristics on 1limit cycle size and fuel consumptlion are es-
peclally important in those applications inveolving a service life-
time that is long compared to system time constants. An optimal
system designed, for example to reduce large errors in least time,
should be expected to spend most of 1ts life in the small signal
region where the effects of imperfections and nolse are important.

Returning again to the synthesis question, 1t has been found
worthwhile to examine some results of studies of non-ortimal con-
trollers that use techniques similar in principle to those re-
quired for optimal synthesis. These are the predictive controllers
and the terminal controllers. Some results of automatic predictive
controllers are available. {(Chesnut and Sollicito (59) Steeg and
Morris (60).) The applications studied include reentry guidance,
satellite rendezvous and alrplane automatic landings. In ad-
dition, studles of predictive controllers with human pilots in the
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loop have also been made (NASA) (61,62). These have also been
ldealized problems as various simplifications or approximations
have been made to facilitate the studies.

These predictive controllers have been made to work at least
in 1deal simulation and there seems to be no fundamental reason
why simllar controllers based on an optimal control logic could
not be made to work under the same ideal conditions. The important
question 1s how to design an optimal controller to operate under
real conditions and very little 1s known about this at present.

The next section will describe some results of optimal synthe-
sls studies for linear systems.

SYNTHESIS OF OPTIMAL CONTROLLERS FOR LINEAR SYSTEMS

A. Preliminary remarks. The discussion in the preceding sec-
tion defined an optimal controller as a closed-loop feedback system
that repetitively solves the two-point boundary problem. It was
pointed out that there are several ways to accomplish this de-
pending on the amount of pre-computation and storage allowed. The
studies reported on here use the minimum amount of precomputa-
tion. The minimum time performance criterion was selected for
these synthesis studies for several reasons. The main reason being
the belief that a synthesis procedure could be achieved for this
case. The reachable sets are generally easy to obtain, yet the
problems are not trivial. The next step was to try to obtain a
computational solution to the time optimal control problem. The
closed-loop system that was envisioned would frequently sample the
measurable system output variables and estimate the system state
point. On the basis of this estimate, the controller rapidly ob-
tains the optimal control manipulation by finding the proper state
for the adjoint system. Section B contains a description of the
studles directed towards developing a useable computational pro-
cedure. The incorporation of this procedure into a feedback
controller 1s described in section €. Some applications to simple
problems of flight mechanics were used to provide a framework for
the synthesls studies.

B. Solution of the time optimal control problem. It is al-
ready well known that the solutlion for the classical time optimal
control problem is of bang-bang type and the control law can be
given in terms of the response of the system adjoint to the given
system. It 1s possible to obtain these results by several different
procedures and a review of the field is contalned in reference (27).

In spite of the fact that the optimal control law has been
known for a long time, very few optimal controllers have been built
for systems of order higher than two. The prineipal drawback has
been the difficulty in solving the two-point boundary problem, or
what 1s the same thing, finding the optimal initial state of the
adjoint. This section is intended primarily to show how previously
published techniques can be combined to successfully solve this
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problem. In addition, some experimental results are presented that
~provide verification of the convergence of the proposed procedure
for-a class of linear time Invariant systems. The problem can be
stated as follows: Gilven a linear system of the form

X = A(t)X + B(t)u (1)
where |

X 1s an n-vector
A is n x n matrix
B is n x r matrix
u is r vector,

It is desired to find the control law u® that takes the system from
initial state X(0) to_terminal state X.(or catches input signal
£(t) in least time, T°

It 1s well known that the optimal control law is given by the
expression

w® = sgn (9 - X-lB) (2)

where X_l(t) satisfies the adjoint differential equation
(X7) = -(x7)a

The solution of the equation (1) can be written as

x(t) = X(t) [x(O) +fTX—1('r) B{t)u(t)dr ] (3)

O

After substituting the terminal condition x,(t) = &,(t) and equa-
tion (2) the following expression

, T
-x(0) = X (t)E(t) +f X 1(t) B(7)sgn (nx'l('T)B(T))dT (4)

o
is obtained. h

This equation in effect 1s a mapping of vectors 1 into vectors

Z = -\j;t... dt E(t) = 0 .

The problem 1s to find an 7 that maps Z into -x(o). This was
recognized in a somewhat different form by Krasovskii (63). How-
ever, Neustadt provided a key to a steepest descent procedure by
means of an elegant result (31).

Before proceeding directly to the main idea, it is desirable
to insert a brief discussion of some geometrical aspects of the
problem. The idea of optimal isochrones, or the boundaries of the
preachable sets, plays an important role in the development of
optimal control theory. To each point in the x-phase space, there
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1s assigned a value of the optimal time required to reach the target.
Through each point there passes a portion of a surface of constant
optimal time to reach the target (Figure 2). The normal to this
surface defines the direction of the optimal 7 vector. These sur-
faces need not be smooth, in fact, there may be corners, sharp .
edges and points. Therefore, the gradient may not exist at certain
points or along certaln curves or hypersurfaces. Figure 3 shows a
typical set of isochrones for a second-order system.

The hyperplane passing through the point -x(o) and defined by
the n° vector 1s a support plane for the convex set formed by the
optimal isochrones. Therefore, for all unit vectors mn, the inner
product (1, -x(o)) < (ng -x(o)j or n° maximizes (n; -x(o)).
Neustadt ?31) suggests the following iteration procedure. Select
a trial value of n. This determines a trial hyperplane at -(x(o))
in the Z-space. Examine the locus of points mapped by 7 into 2
using t as a parameter, and select the values of Z and t correspond-
ing to the point where the locus pierces the hyperplane. The
geometrical ideas relating the optimal control problem to the
notlon of expanding convex sets are believed to have been first
explored by Bellman, Glicksberg, and Gross in a study of the bang-
bang problem (20).

Figure 4 illustrates this procedure. The point of inter-
section of the Z trajectory and the hyperplane will not generally
coincide with the desired target; -x-(o . If this point does
correspond to -xi(o) then the optimai initial conditions of the
adjoint have been found and are equal to the components of the
normal to the hyperplane. A series of corrections to the 7m-vector
is usually necessary to find the optimal initial conditions. A
steepest descent procedure 1s effective. The changes in
n(nY+l = n¥Y 4+ 61) are given by a result of Neustadt, namely
67 = K[x(o) + 2(n,t)]. _The correction to nY should 1lie along the
"error vector" (x(o) +'Z(7m,t)) in the hyperplane determined by 1".

A starting value for the 7 vector must be obtained. The re-
sults of previous studies have shown that there is a relation
between the optimal isochrones and Liapunov functions (27). This
observation leads to a means of approximating the optimal 1iso-
chrones by quadratic forms. These quadratic forms are then used
t6 obtain the starting values for the iteration. These studies

used .
. x(o)
n(o) = - - — .
' x(o) 1
The 1nitial studles werée based on simple systems. Using the ARAP
analog-digital computer, a second order undamped oscillatory

system with one control force was simulated and regulated in a
time optimal fashion.

The equations are:



ig = —w2x1 +u (1)

u® = sgnf-n, SBOE L o cos at) (21)
z,(t) = -‘j;t 2 sin wrlulas (4ar)
Z,(t) =\/;t cos wrluldr (4o1)

1,02,(6) + x,(0)] + n,l2,(t) + x,(0)] <0 (5)

ny K [2,(T) + x,(0)] -K,[2,(T) + x,(0)]?

(6a)

D llny K2 () + xy(0)] - Kylz,(2) + x,(0) 12

The analog computer is started with a first guess of the
adjoint system initial conditions 17, 7o

~—

xi(o
IEXCH

This initial guess is obtained from a Liapunov function. The
computer then runs until 7m1[21(t) + xi(o)] becomes positive. The
analog machine 1s then transferred into the hold mode; 21, Zp
sampled; and a new initial condition vector 71, 7o found for the
adjoint system. This cycle is repeated until the terminal point
in Z-space is within distance € of -xj(o),

rli = -

For the examples shown here, the system parameters are:
w° = .1l and F = + .5, giving steady state rest points of x
In all tests, the effects of the gain constants Ky, Ko in %6& on
the convergence characteristics were noted. The general trend ob-
served was that increasing the K's résulted in fewer iterations
required per solution with five iterations being the minimum
number. PFurther lncreases then resulted in large and undesirable
oscillations about the correct solution. The values of the gain
constants at which the cycling occurs depends upon the system in
question and its initial conditions. For the time optimal regula-
tion of the harmonic oscillator values of Ky = 1; Kp = 1 were
satisfactory under all conditions.

Using these nominal values, the iterations shown in Figures 5
and 6 were obtained. Each of the trajectorles shown in the Z-phase
space represent one of the iterations in the search for the correct
initial conditiong for the adjoint system. The trajectory of the
physical system in x-phase space corresponding to the correct 7
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vector is also shown. Figure 6 i1llustrates the same data in time
history form. ‘

In addition to.oscillatogs, the regulation of double integra-
tors was also investigated (w® = o). A sample case 1s shown in
Figure 7. The hyperplane 1s almost parallel to the trajectory of
the system in the region of the solution. Under these conditions,
a small angular change in the adjoint initial vector, (producing

an equal angular change in the trial tangent line) will result in

a large displacement of the point of intersection. It 1s necessary
to reduce the steepest descént gains 1f oscillations are to be
avolded. In the case shown, Kj = .1, Ko = .1 were used in the
region sufficiently near to the correct solution (use of these
gains throughout the problem results in an excessive number of
iterations). It will generally be necessary to program controller
gain variations.

In addition to regulation (returning the system to 1ts null
point) it was decided to investigate the capabilities of this
technigue in following command signals. Referring back to Equa-
tion 4, it can be seen that the ability to follow variable input
signals is obtained by retaining the terms &.(t); i.e., the target
point coordinates, £i(t), are no longer 1oca%ed at the origin.

For the second-order example, the equations used by the controller
are

~ T '
xl(t) = xl(O) -\/; % sin wrluldr -&l(t) cos wt + ﬁg(t) s5in wt

@
(72)
t
r(t) = x,(0) +\/; cos wrluldar -£ (t)w sin wt -£,(t) cosmt( )
Tb
where Xy (t) = xy(0) + 2;(t) terms resulting from £;(t) # o.

Ny [ (7)1 + n I (T)) <o (5")

ul ‘—Kl[xi(T)] —KQ[}i(T)]2

S ' (8)
n }:ll Un l-Kl[Xi(T)} —KQ[xi(T)Iglw
‘ n-1

These equations reduce to those given previously by setting
E1(t) = £p(t) = 0 and transposing the x;(0) terms to the left hand
side of the equations.

The two forms of input signals investigated in this portion
of the study were:

(a) Arbitrary stationary points in the phase space, 1.e.
going to a prescribed position and attaining a prescribed velocity



at that point.

(b) Step and ramp signals. In phase space, the target starts
with initial horizontal and vertical displacements from the origin
and moves horizontally at a rate proportional to 1ts vertical
displacement. Figure 8 shows the iteration process for the first
type of input.

It 1is important to remember that Neustadt's procedure 1is
based on finding the maximum time for which the condition
n - [2(T) + x(O% = 0 can occur. The error vector, [Z(t) + x(0)]
need not decrease at each step of the steepest descent and may be-
come very large even as the time T approaches the optimal time.
In order to speed up the convergence of the iliterations, a change
1s made in the procedure 1f successive changes in T are observed
to be growing small without reduction in the size of Z(T) + x(0).
There are several other ways to use the Z-equations and two of
these have been employed during the terminal phase of the itera-
tions. Gamkrelidze suggests a method (also described by Kras-
ovskii) for a steepest descent procedure, keeping T filxed and
varying M to make Z(T) parallel to x(0). The final time T is to be in-
creased from something small until Z(T) = -x(0). In this method, as in
the previous one, there is still the question of determining the maximum
T (i.e. distinguishing local minima) in the case of moving targets.

It is also possible to seek the value of n that minimizes
the error at the time m « [Z(T) + x(0)] = 0. This is a modifi-
cation of a search method investigated by Paiewonsky (27 The
latter method usually requires an experimental determination of
the gradient in practice, although a closed form solution is
sometimes available. The results obtained to date on these tech-
niques are not sufficlent to allow a complete comparison with
Neustadt's methed regarding speed of convergence, practical dif-
ficulties, etc. It is hoped that it will be possible to do this
soon. It is possible, however, to state that the problem-of the
vanishing of the gradient of the error (as a functlon of the
initial 1) as described by Palewonsky in reference (27) can occur
for the latter method. This does not occur with Neustadt's
method as the gradient theré\is always glven by the error vector.

C. Applications. The applicability of this technique to
problems of flight mechanics depends upon a linearization of
some kind. Many possibilities suggest themselves; one is to
find a problem that can be linearized from the start. If this
cannot be done, it may be possible to apply a method of sue-
cessive approximations to the equations solving a succession of
linear problems. The following example was prepared 1in order
to study the properties of a closed loop optimal controller using
a repetitive computer. Consider first the problem of determin-
ing the optimal steering program for the upper stages of a
booster rocket. If the Mocket burns continuously then the
minimum fuel problem ig al minimum time problem. The gravitatlonal
field will be assumed to be uniform in this example. The equa-
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tions of motion are

VIR
[]

1= %
X, = A cos u
2
. (9)
X3 = XLL
iu =Aslnu-g

The convexity of the reachable sets can be verified directly.
The adjoint equations are:

P1 =0 P2 = - Pl
i . (10)
P3 = O Pu_ = = P3
The optimal control is the well-known bi-linear tangent law:
ran O Pu(t) _ P, (0) - P3(Q)t
P2(%)~ P2(O) - Pl(Ojt
In thils example, the equations for the Z's are
Zl = -t A cos u
22 = A cos u ‘
. (11)
Zg = - t(A sin u - g)

24 = A sinu - g

The particular numerical éxample chosen 1s the optimal
steering of a nuclear powered upper stage rocket. The inilitial
conditions are ‘

vx(o) = 10,330 ft/sec
vy(o) = 5,500 ft/sec
y(0) = 20 miles

and the desired terminal condltions are:

Vy = 25,300 ft/sec
vV, =0 ft/sec
y = 200 miles

The horizontal range was not prescribed. These equations were
set up on the ARAP analog-digital computer at first for the
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special case of A = F/m(t) = 5. The objectives of the initial
study were to determine the sensitivity of the convergence of
the iteration procedure to computational errors and toc determine
the number of iterations required as a function of the initial
starting value of the adjoint. These studles showed that con-
vergence of the iterations depended to a great extent on the ac-
curacy with which the stopping time could be determined. For
systems of order higher than two, Z(T,n) proved to be a highly
sensitive function of 1. The maximunrtolerable error in
determining the time at which 1 + (2(T,n) =~ x(0)) vanished was

of the order of 10-% seconds. This 1s illustrated by Table 1,
which represents & typical case.

Components of 7 F(n) 'Component s of Z'(F(n),n)‘i-x(o)“'

54580027 .01316405 1.0729829(148.56863| .830 22,700 -7.373
54580027 01316405 1.0729839|148.56906| .397 52,705 -16.369
.54580027 .01316405 1.0734830|148.56824) 1.259  -7,410 1.640|
54580027 .01314405 1.0734830|148.56763|10.711 -121,610 31.768

TABLE I

This extreme sensitivity makes 1t difficult to reduce the
error, ||2(T,n)-x(0)|| when the time T is close to the optimal
time. Two steps were taken to overcome thils difficulty. First,
a special program for the step size was developed. Second, when
successive values of stopping time, T, differed by a pre-
selected amount of different computational scheme was used to
obtain reduced values of the error [1z{T,n) - x%(0)|| and precise
estimates of n°. The details of these computational studles
~will be contained in a forthcoming ASD report.

The next step was to program a computational model of
closed-loop optimal controller for simulation on an IBM 7090.
This is shown schematically in fig. 9. The controller samples
the output of the system and determines the value of the control,
u°(t) on the basis of the noisy measurements. The possibility
of filtering the noisy measurements was included.

It takes a finite amount of time for the computer to
determine the control and a variable length delay was incor-
porated to study the effect of this time lag. Provislon was
also made for a calculation in the controller to simulate
compensation for the delay. The control computer requlres an
estimate of the system parameters, in this case the initilal mass
m(o), the propellant mass flow rate B, and the thrust F or the
effective exhaust velocity c¢. The control computer does not
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know the exact values of these parameters and a study was made

to determlne the effect of uncertalntles in system parameters

on overall performance. The mass flow rate, B, was allowed to
have random variations corresponding to rough burning, or in
extreme cases, a '"chamber out" condition. No ‘adaptive features
were lncluded in the controller although 1t 1s clear that the
system parameters needed are capable of being estimated in flight.

In order to reduce the number of iterations required during
the computation of the control, a "nominal" trajectory was
introduced. The nominal trajectory used was the optimal path
from the initial point to the terminal point. That 1s, once the
optimal initlal values for the adjoint are found by the computer,
after the very first sample period, the nominal values for the
state varlables and adjoint can be obtalned by a faster than
real time integration. These values of the adjoint are stored
and used as starting values for the subsequent iterations at
later sampling periods.

This work 1s not yet complete. However, some preliminary
results of the computer studies are available. The objective
in the perturbation studies is to observe the behavior of the
iteration scheme as the initial conditious are perturbed away
from the starting values. Two types of investigations were
made. In a typical run of the first series, the initilal point
in phase space 1s fixed, the starting value of the adjoint is
varied and the number of iterations required to converge to the
optimal value of the adjoint is obtained. The second series of
runs is similar but the starting value of the adjoint is fixed
and the 1nitlal state of the system 1s varied. The number of
iterations required to find the optimal state of the adJoint is
obtalned here also.

A series of runs to observe the closed loop system be-
havior in the presence of noise and parameter uncertalnties is
also being carried out at the present time as part of the
computer studies. The results of these studles will be re-
ported in detail at a later date.
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ABSTRACT

Section I conslders the practical problem of closed-loop
control of linear plants. A minlmum response time criterion
is used 1n the design of a pitch attitude controller for a
flexible launch vehicle, The criterion 1s applied to a fourth
order model containing the primary dynamics of the thirteenth
order vehlcle, There are tried and proven methods for
obtaining the control variable as a function of time which
takes the system from an initlal condition to the target set
in minimum time. It 1s shown that a sultable collection of
these open-loop trajectories can be used to define a closed-
loop control law. Results of an analog simulation are pre-
sented which show that thils control law properly applied to
the flexible vehicle results in good control.

Section II considers finding the optimum path from an
initial condition to a target set. The problem is reduced
to an inltial value problem 1n which the minimizing initial
values of the adjoint variables or multipllers are sought.
(Inequality constraints are included in the formulation,)
The problem then becomes one of minimizing a function of
several varlables subJect to constraint equations in those
variables. This 1s a problem for which necessary and suf-
ficient conditions for a strong relative minimum are well
known., A second order Newton-Raphson iteration procedure for
numerdcally finding the minimum is described. Finally,
experiences in the use of the Newton-Raphson method are des-
cribed,
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SECTION I

A AN APPLICATION OF TIME-OPTIMAL
CONTROL THEORY TO LAUNCH VEHICLE REGULATION*

In spite of the relatively large effort which has gone
into the study of optimization during the last few years, there
have been few applications to significant, practical closed-
loop control problems, This 1s true in splte of the fact that
theoretical developments promise solutlions or potential solu-
tions to control problems for which conventlonal synthesls
procedures are not completely satisfactory, Among the diffi-
culties which have hindered practilcal applications are: ade-
quate description of real plants often requires differential
equations of quite high order, the control law 1s usually a
non-linear function of many variables and difficult to imple-
ment, and the fact that the theoretical solution of the optimi-
zatlion problem most often ylelds the open-loop control law
u (t, x(o)) rather than the required closed-loop law, u(x),

The flexible launch vehicle 1is used in this paper to i1llustrate
these problems and to demonstrate the use of some techniques to
overcome them,

1.1 Eqguations of Motion The assumed equations of a typilcal
250,00% pound flexible launch vehicle are given in Table 1,
Poles and zeroes of the R transfer functlon are listed in

u
Table 2, Airframe coefficlents are taken at the maximum dyna-
mic pressure flight condition with flight speed assumed con-
stant. The equations 1nclude dynamics of the rigid body,
three body flexure modes, tall-wags dog, actuator, rate servo
and an integration of plitch rate for control of pitch attitude.
A single control varilable is assumed ava_lable from gimbaling
of the engine, A maximum gimbal rate of 0.2 rad/sec 1s com-
manded at all times. :

1.2 Specification of the Controller In applying optimal con-
trol theory to the synthesIs of controllers for practical
plants it 18 necessary to specify both the optimization cri-
terion and what is to be controlled., With the criterion used
here, minimum response time, it has been common to apply the
criterion to the state vector y, of a plant in the form,

(1.2.1) y = Ay + Bu

However, when this is done the resulting response in multi-
degree of freedom systems may be entirely unacceptable. Thils
is forcefully demonstrated by time optimally regulating the
state vector of the rigid launch vehlcle given in Figure 1.
When all components of the state vector, pitch attitude, pitch
rate, angle of attack and gimbal deflection are brought to
zero in minimum time from an initlal displacement in pitch
attitude of 0.01 radian, displacements of attitude and angle

of attack greater than 0.15 radian occur, Although this is the

.*WorEfrepdrted‘in Section I was accomplished under NASA Con-
tract NASr-27.
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time-optimal response for regulation of the state vector, 1t 1s
certainly not acceptable since it would literally destroy the
vehicle, On the other hand, if the problem posed is that of .
bringing the single component, pitch attitude, to zero in mini-
mun time and holding it there then the deadbeat response to
step input of attitude is obtained (Figure 1). In this case
angle of attack and gimbal deflection are not zero at the re-
sponse time (time when 6 and 8 are first zero) but decay with
a 21,7 second time constant characteristic of the plant, It
has been shown that single component control can be described
as motion to a region in the n-dimensional space. The target
reglon 1s determined as that reglon in n-space where the com-
ponent being controlled is zero and is capable of being held
there with a bounded control variable, (Reference 1, 2) The
necessary and sufficilent conditions for minimum time motion to
such a region have been obtained (Reference 3).

In the work presented In this paper, optimum control syn-
thesls techniques are demonstrated for control of pltch atti-
tude. The controller obtalned is fourth order, one dimensional.
That 1s, the control variable 1s a functlion of four variables,
and the target set 1s a line segment in this four-space.

Cholce of pitch attitude was arbitrary. The techniques apply
équally as well to control of other components of the state
vector or to control of a linear combinatlon of them such as
minimum drift.

1.3 A Truncated Model Although time-optimal control theory
applies in principle to regulation of plants of any order, it
1s not desirable nor necessary to apply 1t in controller design
to the complete plant representation when the motion of the
varlable being controlled is primarily influenced by relatively
few variables, In the launch vehicle considered, the flexure
mode frequencles are qulte high and aero-dynamic coupling small
so flexure has only minor effects on rigid body pitching motion.
The same 1s true of the actuator dynamics. Consequently there
1s a natural division of the plant into a set of domlnant and

a set of secondary dynamics, Time-optimal synthesis is applied
to control the dominant modes only, and conceptually the second-
ary dynamics act as a filter on the primary modes., This is
shown 1in Figure 2, The transfer function GR, for the entire

u
plant of Table 1, has been divided into two parts

Op(s) N
Primary dynamlics are contained in

G = 0.8808 (s + 0,0478)

1 = S(s ¥ 0.02) (s - L.02%] (s + L.o%eq) (!-3-2)

and secondary dynamics in G,. Feedback of the fictitious out-
put of G1 is used for contraller design, The partial principle

coordinate methods of Reference 4 permit one to derive the
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linear transformation relating the 'y coordinates to the state
of the system, x, The transformation

y = Lx (1.3.3)
where y 18 an m-vector, L an mxm-matrlix and x an n-vector, in
general, then permlts the flctilitious control loop of Figure 2
to be changed to the one which is physically reallizable in
Figure 3.

A plant in state vector form which gives the transfer
function of equation (1.3.2) is,
(yl_ [0 1 0 0 [ K
Yo 0 -0.0394 2.,1403 4,404 |y, 0|
33| T |0 1.00 -0.02738  -0.0u21ly,|" [o* {134
Lylt_t | O 0 0 -0,02 .J;y”u LQ

This was obtained by deriving y1(3) and Y (s) transfer func-

u(s) u(s
tions from a set of equations of this form but with unknown
coefficlents and then adJusting‘coefficients to give the pro-
per poles, zeros and gains. A similar set of equations could
be obtained directly from the transfer functions of equation
(1.3.2) and the transformation to continuous coordinates of
Reference 5,

The transformation matrix L, which relates the output of
the flexible vehicle to the y variables contains many elements
which are very small. It is possible to neglect these, The
transformation used in the analog slmulation was,

A 1 [ . 11
6 vy 1 0.,03%1 0O o o eq
ap|T|vs| 7|0 0.0341 0.999 0 -0,001§ g
& |

L e

It 1s seen that ¥y corresponds very closely with GR, Yo with

R’ y3 with aR and‘yu with 6 Motion of GF‘corresponds very

closel with that of 9,, so 1t 1s reasonable to take equation
¥ as the truncatgd model of the full system,

(1.3.5)

Two points should be emphasized 1n the choosing of a trun-

cated model for éontroller design, First, division of the
plant into primary and secondary dynamics cannot be made until
the variable to be controlled has been specified., This vari-
able may be one of the physical variables appearing in the

state vector x or may be a linear combination of them. Second,
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even if the secondary dynamics are a result of a limited num-
ber of physical variables in the equations of motion (equation
1.2.1), the primary dynamics cannot be obtained by simply
neglecting these varlables and equations. For example, if

the equations for the flexure modes and actuator were omitted
in truncating to a fourth order model corresponding to G4,

the poles at -1.4962 and 1.4296 would be at -1,47 and 1.&03.

1.4 Closed-loop Time Optimal Control Law The next step in
the syntheslis procedure 1s to derive a closed-loop controller
for the model of equation (1.3.4). The criterion for design
is time-optimal regulation of pitch attitude; that is y; is
to be brought to zero from an initial condition in minimum
time subJect to a bounded control variable, and then held at
zero.. This corresponds to motion to a one dipgensional line
segment in the four dimensional space of GF, GF, Qs BF’

. P

There is no known method for obtaining a useful closed form
expression for the closed-loop control law u(x) which moves
the plant to the desired line segment optimally. However, it
is possible to compute open-loop solutions u(t,x(0) ) for
any initial condition x(0) using the computational techniques
described in Reference 6. These techniques solve a set of
transcendental equations for a control variable u(t,x(0) )
which is constrained to satisfy the maximum principle. Since
the maximum principle has been shown to be a necessary and
sufficient condition for the optimum solution, the u(t,x(0) )
obtalned is the optimal one, It is not practical to solve
the required equations on line to achleve effective closed-
loop control, Instead a collection of open-loop optimum
trajectories from a set of initial conditions distributed
evenly throughout the phase space reglon of interest i1s used
to define a closed-loop control law by the method described
in Reference 7. Each of the variables 6p, 6p, ap, and bp 1s
divided up into 32 regions called quanta. A Boolean varlable
X4, is defined for each quantum (i= 1, 2, 3, 4, j=1, 2,...32).
The variable X3 takes a value one 1f the measured magnitude
of the ith varfable is within the jth region and takes the
value zero if the magnitude is within any other region. A
logic form,

o3 Ly
u(x) = sign| = = Xy M| (1.4.1)
1i=1 J=1
is assumed capable of mechanizing the control law and the 128
constants, A, are experimentally adjusted to make u(x) agree
with the optlmum control at discrete points on the optimum
trajectory. This adjustment or training procedure is shown 1n
Figure 4, Switch S is opened at t = 0 and the open-loop ,
optimal solution u(t) applied to the simulated plant. Output
of' the plant‘x(t), is the input to the logical net and the
output of the net u(x(t) ), is compared with the optimum
control variable u(t,x(0) 5 at discrete intervals of time.
If the control variables are different'xi corresponding to
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the X% s which are one for that x(t) are incremented in the
direction to make the sign of thelr sum the same as the sign
of u(t,x(o) ). 1If u(x(t%nand u(t,x(0) ) are the same then no
adjustment is made. This procedure was carried out on a
general purpose digital computer using a set of 198 optimum
trajectories for the plant of equation (1.3.4), distributed in
the space,

-0.12 < 6 < 0.12
= F = (1.4.2)
-0.12 < B < 0.12

Control varlable comparlison points were at intervals of 0,1
second. As the adjustment 1s carried out, the number of

differences (called errors) between u(x(ts ) and u(t,x(0) )
is an indication of the convergence of the procedure. The

per cent errors, 100 No. °fAerr°?s in N points s 18 plotted

N
as a function of the number of trajJectories in Figure 5.
First swlitch points are those between t = O and the first
switch time, second switch points bezween the first switch

time and the second, etc. Initlial AY were all taken to be
zero., 1t 1s seen that errors drop véry rapidly at first,
being less than 10 per cent after only 100 trajectories., At
5000 and 7500 trajectorles the resolution of the logic of
equation (1.4.1) is artifically increased hy multiplying all
NM s by two. At 11,000 trajectories the AY's are multiplied
by a factor of ten. Typical closed-loop control responses
using the loglic at the stages of training shown in Figure 5
are presented in Figure 6. At 198 trajectories the controller
has not yet stabllized the statically unstable vehicle. At
2100 trajectories the closed loop is apparently stable but
responses are poor. At 11,000 trajectories responses closely
approximate optimum. (Limited hardware did not permit
evaluation of closed-loop responses at 13,500 trajectories).
The logic of equation (1.4.1) with constants at 11,000
trajectories 1s taken as the closed-loop controller for the
plant of Table 1.

1.5 Control of the Flexible Vehicle A block diagram of the
control system is given in Figure 7. Mechanization of the
logical net for this optimal control of the fourth order
plant was accomplished using standard, commercial analog to
digital converters for quantization and dlode~transistor
logic in conjunction with standard ladder networks to form
the logic of equation (1.4.1)(Reference 7). A linear
switching mode of the control variable was used when the
plant output was within approximately one quantum of the
target set. This reduced residual errors due to switching
on a quantized switching surface and held the plant within
the target set. The linear switching used in this mode was,

105



No aftempt was made to minimize the steady state 1limit cycle
with the control variable in thils mode.,

Two schemes for measurement of the variables fed back to
the controller were investigated, The first measured the
state of the system using the method of Reference 8 which
uses a complement of n sensors in measuring the state of an
nth order system, 1In the second, a rigid body pitch rate
signal was derived using the phase blending technique of
Reference 9. This provided a signal which could be freed of
first mode influence, however, in thils case a slight amount
of first mode feedback was included 1n the signal to damp
the first mode bending.

Typical analog responses are shown in Figure 8, 9, 10 and
11. Rigild body pitch attitude responses are quite similar for
rigid body feedback and for blender feedback of pitch rate,
The small amount of first mode feedback (blender gain kj=0.9)
causes the first mode to damp out with the blender system ‘
whereas with rigid body feedback there is a sustained
oscillation. When the blender gain K3 was set to cancel all
first mode feedback (Kl = 1.0), the blender system also
exhlbited a sustained oscillation of the first mode. Responses
to 40-fps sharp-edged gusts are shown in Figure 10. The
single component attitude regulator essentially ignores the
gust disturbance and maintalns the deslired attitude. Figure
11 illustrates response to various command inputs. Although
the gystem was designed to approximate time optimal regulation,
1t exhiblts a very good following capability.

1.6 Conclusion It has been shown that the collection of
experimental procedures and theoretical knowledge is sufficient
to use a time-optimal regulation criterion for rational design
of controllers for a high order plant with known coefficients.
The synthesis procedure includes obtaining a representative

set of open-loop optimum trajectories for a truncated model
which is based on the dominant dynamics of the plant. The

set of open-loop trajectories 1s used to define a closed-

loop control law for the model. When thls controller 1s
applied to the full plant, the output is effectively that

of the optimally controlled model f