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FOREWORD

The papers contained herein were presented at the Optimum System Synthesis

Conference, Wright-Patterson AFB, Ohio, 11 - 13 September 1962, sponsored

by the Aeronautical Systems Division. The program chairman was Mr. L. Schwartz

of the System Optimization Section, Aerospace Mechanics Branch, Flight Control

Laboratory. Mr. Schwartz was assisted by Lt. R. 0. Sickeler, of the same

section.

The selection of the papers and speakers was the responsibility of the

individual session chairmen, Prof. C. T. Leondes of UCLA, Prof. D. Graham

of Princeton University, Dr. J. P. LaSalle'of RIAS, and Mr. E. L. Peterson of

the General Electric Company.

The'program chairman is especially indebted to Mr. Cannon of the Special

Activities Division, Directorate of Technical Operations for his invaluable

assistance.
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ABSTRACT-

The proceedings contain a collection of 16 papers presented at the Optimum

System Synthesis Conference held at the Aeronautical Systems Division 11 - 13

September 19 62. The meeting was direci -ýd toward defining the present position of

optimum system synthesis and determining guides for future research in both

applications and theory. Most papers are concerned with various aspects of

recent applications and theoretical developments in optimal control such as

steepest descent techniques, suboptimal controllers, optimum filtering, and

functional analysis techniques. Some earlier results are also discussed.

PUBLICATION REVIEW

This technical documentary report is a collection of the papers presented

at the Optimum System Synthesis Conference and is published to make this

information more widely available.

64: WESTBýROOK
Chief, Aerospace Mechanics Branch
Flight Control Laboratory
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INTRODUCTION

Since the Optimum System Synthesis Conference was a limited-attendance
meeting, which was not meant to be widely publicized, many readers will be
interested in some background information. The major aim of the conference
was to bring together some prominent mathematicians and engineers working in
the various phases of optimum system synthesis to discuss both what has been
accomplished and what needs to be done to make optimum synthesis a practical
reality. Three sessions were set aside for the presentation of papers;
these papers constitute this volume.

In addition to the symposium sessions there was a panel and forum discussion
of the general topic, "Is optimum synthesis practical ?", and an evening session
devoted to informal discussions by small groups. Each group had a particular
subject to discuss, which lasted until either the subject or, the group was ex-
ha-usted.

Admittedly, the question, "Is optimum synthesis practical?" is much too
ill-defined to admit of a concise reply. However, some attempt should be made
to summarize the prevailing opinion -- A task one or two levels less difficult
than predicting the wave form of white noise. Despite the clamor for control
system optimization techniques, it appears that quite often the "optimum!" is
a chimera, a situation which results in what might be called The Great Optim-
ization Paradox. On the one hand we find an ever-growing body of theory and
technique for solving variational problems of one sort or another. On the other
hand we have the problems of the control system designer, many of which can-
not or, perhaps, should not be cast in the form of variational problems. Yet
there seems to be a vigorous attempt by both sides to get together, even though it
is not entirely clear that there is any extensive common ground.

The major difficulty is, apparently, our inability to clearly and unambig-
ously specify control requirements. Often, the critical factor is not performance,
but cost, weight, or reliability. When we seek to "optimize" a control system,
we do not have a precise way to characterize the optimum. How much perform-
ance are we willing to trade for a given amount of reliability ? Indeed, how do
we measure performance? These are far from trivial questions; the utility of
the powerful synthesis techniques depends upon meaningful answers, answers
which are not readily available.

Not all control problems are so ambiguous, particularly the outer-loop or
path problems (usually associated with guidance, although guidance and control
are the obverse and reverse of the same coin). In cases where there is a clear,
quantitative requirement (e. g., minimum time, minimum fuel, minimum ex-
pected miss distance) the techniques hold a great deal of promise, and we can
find examples of actual optimizations. It is when we misapply the syntheses to
ill-defined problems that we suffer our worst failures.

vi



Another obstacle to practicality is the complexity of the optimal control
law, often referred to as the problem of orbiting a 7090. Quite often the criterion
functional that is being optimized is not too sensitive to changes in the control
law, and we can do "almost as well" with a much simpler system. The only
other answer seems to be picominiaturization of computing equipment, or similar
equipment breakthroughs.

As a final point, the panel-forum session evidenced a healthy trend towards
finding out what can and/or cannot be done with optimum synthesis techniques.
The practitioner is now attempting to apply the theory.

i
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Feedback Design and Optimal Control Theory
by

John G. Truxal and Peter Dorato
Polytechnic Institute of Brooklyn

ABSTRACT

The optimization techniques of Pontryagin (maximum principle) and
Bellman (dynamic programming) are evaluated as feedback design tools.
The first part of the paper is devoted to a discussion of the advantages of
optimal closed-loop (feedback) operation. The second part of the paper is
devoted to an analysis of the feedback nature of the two optimization tech-
niques cited and an analysis of the current computational difficulties in
applying these techniques.
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FEEDBACK DESIGN;AND OPTIMAL CONTROL THEORY

John G. Truxal and Peter Dorato

Polytechnic Institute of Brooklyn

INTRODUCTION

Recently a great deal of interest has been gene'rated in the application of
modern optimization techniques to problems in control. In the past the term
"control" has been associated with closed-loop (feedback) systems. Yet the
current literature on optimal control theory is largely devoted to open-loop
systems. There appears to be some limitation to the application of the modern
optimization techniques to the feedback design problem. The purpose of this
paper is to evaluate such presently available optimization techniques as the
maximum principle and dynamic programming as tools for the design of feed-
back systems. To simplify the discussion the plant, object being controlled,
is assumed to have dynamics given by the first order scalar equation

k = f(x, u) (1)

where x represents the plant output and u the control input. The performance

criterion is assumed to be given by

T

S F(x,u)dt (2)
Jt

0

The object of optimal control theory is to determine a control input u which
causes S to be: an extremal. When the optimal control law, denoted uO, is
obtained as a function of the initial output, i. e.,

uo *LX(to); t] (3)

thA system is said to be operating open-loop. When the optimal control is ob-
tained in terms of the current value of output, i. e.,

0 LIwx(t;t] (4)

the system is said to be operating closed-loop.

The first part of the paper is devoted to a discussion of the advantages of
closed-loop operation. The second part is a study of the present status of
optimization theory as a feedback design technique.
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ADVANTAGES OF CLOSED-LOOP CONTROL

Classically feedback systems have been employed to solve the problems of

(1) Plant dynamics rnodific ation
(2) Sensitivity reduction

It is fairly easy to demonstrate in linear time-invariant systems. that feedback
does provide a convenient means of improving system dynamics and reducing
plant parameter sensitivity (ref. 1). In nonlinear systems the advantages of
feedback are not as easily demonstrated, at. least not theoretically. If the system
performance is measured in terms of relative stability then such techniques as'
equivalent linearization, describing functions,- and Lyapunov's second method
may be used to evaluate the effectiveness of feedback as a plant-dynamics modi- ,
fication tool. To show that a given f~eedback control law, say u = IP (x), reduces
the sensitivity of the output with.respectt.o a plant parameter w, one might
proceed as follows. Express the'plant dynamicIs with parameter w as

k = f(x, u;w) (5)
, •.0 . . , . .. pg

and define the sensitivity measure as

ax (6)

.8w

From the theory of differential equations with parameters., the function s is
known to satisfy the equation (ref. 2):

af af,
F-S + -

x w - - - ( 7 )

with the initial condition s(t ) 0. With no feedback, interpreted in this case
to mean u = 0, obtain a solulion of equation (7). Denote this solution so. Denote
by sf the solution of (7) with feedback applied, i. e., .with u = 4(x). The s ensi-
tivity improvement may then be evaluated, for example, fromn the relative values
of Isf1 _a and ISo . Note that equation (7) is linear and time-varying and
requires•a solution NOi&e original nonlinear equation (5.) via the term Waf/x. A
discussion of computer solutions of (5) and (7) has been given by Miller and
Murrary (ref. 3). However to obtain closed form solutions of (5) and (7) is,
except for very special cases, almost impossible. Hence the question of
sensitivity reduction in nonlinear systems via feedback is still an open question.

In optimal control systems the feedback is applied to modify the plant
dynarhics in an optimal way, hence plant dynamics modification is automatically
taken into account. The stability of optimal closed-loop systems is generally
assured by the properties of the performance criterion chosen(ref. 4). The
result follows from the fact that S°, where S° denotes the value of S when
optimal feedback is employed, serves as a Lyagunov function for the optimal
closed-loop system. Thus if F(x, u°):, where u = i(x(t);t), is positive definite,
then the Hamilton-Jacobi equations of the optimal path guarantee that Ao is
negative definite; indeed the Hamilton-Jacobi equation requires that

dS°
- F(x, U0 ) (8)
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In optimal closed-loop systems then, stability does not play the dominant
role it does in classical feedback theory. One clear advantage of closed-loop
control is that the current state of the output is used to generate the control
input u. Thus if the output is suddenly displaced at time t' by some disturbance,
closed-loop operation assures optimal operation in the remainder of the optimi-
zation interval (ti, T), assuming no further disturbances. A similar disturbance
in an open-loop system destroys the optimality of operation in the interval
(t', T) since the control input is preprogrammed for a fixed initial output x(t^).
A compromise between closed-loop and open-loop operation can be achievecd
with the use of a periodically updated (with respect to the value of x(t )) open-
loop control law. This approach has some practical advantages whicd are
discussed in the next section. However beyond the point just demonstrated it is
difficult to illustrate further advantages of closed-loop optimal. control. Al-
though a sensitivity analysis similar to the one previously indicated can be
performed, the optimization. technique.s in current use do not assiure that feed-
back reaults in a lower sensitivity value than open-loop operation , in spite of
the fact that experimental studies seem to indicate that feedback in optimal
systems does reduce sensitivity. Thus the sensitivity problem in optimal con-
trol systems is much like the sensitivity problem in classical nonlinear feedback
systems, very little can be said theoretically about the relative merits of feed-
back as a means of reducing sensitivity. The only distinct advantage of closed-
loop optimal control then appears to be in terms of possible output disturbances.

- OPTIMIZATION THEORY AS A FEEDBACK DESIGN TECHNIQUE

* As is well known the optimal closed-loop control law may be obtained, at

least in theory, from Pontryagin's maximum principle in the following steps
(ref. 5).

(1) Determine the function u which maximizes, for a minimum of S, the
Hamaltonian

H = pf(x,u) - FCx, u) (9)

" Note that the maximizing u, denoted u°, is a function of both x and p, and
hence may be written

u0 (t) = 4(t), x(t)] (i 0)

(2) Solve the set of equations

Sf(xu o (1 a)
U=U

OF I- 1 jb)u=u u=u

+Indeed a basic requirement for optimization is complete knowledge of the plant

dynamics, in the deterministic case, and complete knowledge of the pertinent
statistics, in the. stochastic case.
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subject to the boundary conditions

X(to) = x° (iZa)

p(T) = 0 (1 Zb)

It is assumed here that the final time T is fixed while the final output x(T) is
free. Note that the solution for p is a function of the initial output x(to) and
therefore may be written

p(t) = • (xo;t) (13)

(3) Substitute expression (13) back into (10) and let t = t to obtain

u 0 (to) = a EP (x ; to), xo] = h [x(to); to] (14)

If now one allows t in expression (14) to take on arbitrary values in the
original interval oioptimization (t , T'), the closed-loop control law (4) is
obtained.

As is also well known, the basic difficulty in applying the above procedure is
the problem of obtaining a solution to the nonlinear two-point boundary value
problem of step 2. Basically what is required to obtain the closed-loop control
law is a mapping of the values of x(t ) into values of p(t ). This suggests thai
arbitrary values of x(T) be chosen and then that equations (I ha) and (jIb) be run
backwards a length of time T-t at which time the values of x(t 0) and p(t ) are
recorded for the required mapping. Of course this procedure must be repeated
until all the appropriate values of X(t ) are spanned and all values of time in the
interval (t0,~ T) are exhausted. The computer time and storage required for such
a procedure is however prohibitive, for most realistic problems. A current ap-
proach to the problem is to use some steepest descent technique, to obtain an
open-loop control law and then update from time to time the value of x(t ) (ref. 6,
7, 8). The success of such a method depends on how quickly the particular
,steepest descent technique used converges and how often the output data must be
updated. Further application of the maximum principle to feedback design
depends largely on the development of numerical techniques for the solution of
nonlinear two-point boundary value problems.

In some special cases the maximum principle does yield an explicit solution
for the optimal closed-loop control law. A notable example is the case of a
linear plant with unconstrained input and integral-quadratic performance
criterion (ref. 9,10). +

Dynamic programming is a feedback design technique by its very nature. +
Unfortunately, however, dynamic progr3-mming also suffers from some basic
computational difficulties. To illustrate the feedback nature of dynamic pro-
gram-aning and also its computational difficulties the technique is briefly outlined.

Of course in the determinstic case any feedback solution can always be con-
verted, via the plant dynamics, into an open-loop solution. The basic feedback
nature of dynamic programming is inescapable, however, in the study of stoch-
astic systems. See, for example,Bellman (ref. ll),, sec. 10.4.

6



First Assume that the plant dynamics and performance criterion have been

made discrete in time, thus consider

Xk+1 = g(xk, Uk) (15)

and N

S = G(xk, Uk) (16)

k=l

where, for convenience, the notation x(kAt) =xk is used. Denote by Sk the
value of S which results from an optimal input policy uk over the interval jk, N)
and note that Sk is a function only of xk, hence may be written Sk (xk). The
optimal controllaw is then determined in the following steps.

(1) Start at the end of the process and search for a value of u which mini-
mizes, assuming one wants to minimize S, the function G (xN, UN. Note that
uN is a function of xN. Let

uN = •N(XN) (17)

and evaluate
0

S(XN) = min G(XN, uN) (18)
uN

(2) Proceed one step backwards and minimize, with respect to u.l. the
function LG(x ,1' u.i) + So (xN)] , where xN : g(x . UNi) h es-ults

of this step then yie -TY -,

UN-I = N-l (xN-l) (19)

and

MN-l (xNl) = mn

uN-l 1 N1 ~ sf~~~~~ 0

(3) Proceed backwards, iterating the above procedure, until the entire

interval (1, N) is exhausted, to obtain the closed-loop control law

uk '4)(xk) l<k< N (21)

7



Note that the minimization technique just described requires, at any stage
k, a search for u in terms of all possible values, of x. and storage, for use in
the next stage, o~the function Sk(xi,). In addition all e functions 4 kK) must
also be stored. For practical prollems the amount of storage requirea
exhausts the capacity of most modern day computers. The application of
dynamic programming as a feedback design technique then seems to depend

c ritically on the development of methods which reduce the amount of storage
required and/or the design of computers with larger storage capacity.

Even if the computational difficulties of the maximum principle and dynamic
programming are solved, there still remains the problem of implementing the
closed-loop control law with currently available hardware.. In this connection
it should be noted that the control law is generally a nonlinear function of the
state of the plant. Here two separate problems arise: one is the problem of
measuring the state of the plant, which often requires the measurement of high
order derivatives, and the other is the problem of generating the required
nonlinear function to the plant state. If a computer (digital) is used as the
controller element in the feedback loop, then the computer must accomodate
the storage of the control Ilaw 4],(xk) for all possible values of xk and for all k
in the range (1, N). One possible solution to this aspect of the problem is the
use of "approximations in policy space" which yield simpler control laws, at
the price of suboptimal operation (ref. 11,12).

In spite of the difficulties cited above, optimal control theory does provide
an organized approach to the design of complex feedback systems. The compu-
tational difficulties encountered should, in fairness, be weighted against the
rather sophisticated nature of the problem considered. Indeed in many
applications, especially nonlinear stochastic systems, the alternative to optimal
control theory is no theory at all.

8
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FUNCTION SPACE METHODS IN CONTROL SYSTEMS OPTIMIZATION

A.V. Balakrishnan
H.C. Hsieh

Department of Engineering
University of California

Los Angeles

I. INTRODUCTION

Much of the current work on control systems optimization has centered
on the establishment of necessary conditions that the optimum solution must
satisfy. In many cases these conditions take the form of a functronal equation
or a vector partial differential equation that the solution must !,atisfy. Much
less volume of work has been devoted to the equally important problem of ob-
taining efficient computational algorithms based on successive iteration
schemes which converge to the optimal solution. [ 1, 2,3, 4]. This paper deals
with such a procedure introduced in [3] for a class of dt. cermin/istic control
problems using methods of abstract functional analysis: which afford a succinct
and general solution in many cases and offer a point of departure for problems
where any systematic analysis of a general enough. nature would, appear to be
difficult.

The computational method employed here is the method of stec.pest de-
scent in Hilbert space, an early version of which is due to Kantorovich [5].
In setting the control problem in the function space format, we make use, for
instance, the Theory of (Frechet) analytic functions over ab,;ract spaces,
specialized to Hilbert space [6].

In Section II, we consider the general problem for linear systems Zan•'
show how it can be set entirely as a function-space problem leading to yS.•e r y
general results. In Section III, we specialize to linear dynamic systemsex
ploiting the compactness of the operation involved, The computat method
is explained in Section IV. The specialization to the final value roblem for
linear systems is contained in Section V. In Section VI, extions to non
linear systems are indicated, and finally in Section VII, •sults of some com-

puter studies based on the proposed method are given.

;/



II. FORMUIATION FOR LINEAR SYSTEMS

We begin by consideiig a linear system., since it is important in its
own right and, moreove?, provides a point &d departure for the extension to
nonlinear systems t'y'erpte.d in Section VI, Let x(t) represent the output vector
of a linear system a6,9 result of the applied control vector iat). Then x(t)
will be related funclonaIy to u(t) oftea, though not necesearily, by means
of a differential e¢¶,iati~on. Let xd(t) i-epresent the desired response. The
optimization pre is one of riimmizing some functional of the difference

e(.0) = x(•,.l_ t

SThe ý'riterion chosen' L this paper is the ýcategral of the squared magni-

"ter, some finite interval which we can normalize to [0, T]. Thus we
wils/o determine u(t) which minimizes

I: e( p (t) dt e = e (t)* e (t)

//0

A Here p(t) Is a non-negative weight function and the asterisk denotes the ad-
joint. To avoid the language Af 6-functions, we assume more generally that
we ha-ie a finite measure mrn over the Borel sets of [0, T] and we wish to
mini.nize

e(t) I dI

where ? denotes the interval [0, T]. Here e(t) will be continuous by virtue of
x(t) and xd(t) being continuous. Usually, there will, in addition, be some con-
straint on the control vector such as

!,u (t) 11 ' d M
2dm

whr. 'e m 2 is another finite measure on the Borel sets of 7r, and again u(t) will
be Borel-measurable. By taking the measure ml to be a jump at T, we
.ý.pecialize to the "final value problem". But we shall see that this class of
problems can be solved constructively with no restriction on m 1 and m2,
other than finiteness. For this it is convenient to introduce the real Hilbert
space (actually L 2 space) H, of n-dimensional functions square integrable over
I with respect to measure m 1 and H2 , the L 2 space of m-dimensional
functions square integrable over 7 with respect to measure mi2 . Then x(t),
0 -5 t -5 T, will be in HI and the control vectors can be taken in H2 . Moreover,
for a linear system, we have

T

c(t): -- T W(t, a) u (a) da ()

12
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Of course, for physical realizability, unessential restriction for our problem
is

t
x(t) - oW(t' a) u (a) da (2)

0

Such a relation may come from a differential eauation but not necessarily so.
Now, assuming W(t, a) to be continuous for instance, (1) defines a linear
bounded operator from H2 into H1 . We denote this operator by L, so that we
represent (1) by

Lu = x; u e H2 , x E H1

In this frame then, we want to minimizet

11 Lu _g112

The subscripts 1 and 2 denote the norms in H1 and H2 respectively. "g" is
a given element in H1 and minimization is over a sphere of radius M in H2 ,
or more generally it can be over any closed convex set (with non-empty in-
terior usually). The minimization can be made slightly more general by
adding another perturbing term and considering

C(u) = JLu -g + Ku, u (3)
1 12

where K is a linear bounded non-negative operator on H2 into H2 . For ex-
ample, it may be multiplication by a non-negative number corresponding to
a "Lagrange multiplier", or more generally it may be multiplication by a
positive-definite matrix K(t). Let L* be the adjoint of L, then L* maps H1

and H2 . We can then rewrite C(u) as

C(u) = [(L*L +K) uu]- 2 [u, L*g] +[g,g] 1

Now L *L is also non-negative, so that so is the sum

L* L+K = R (4)

Assume that K is such that

[Ku, u ]>OwheneverL*Lu = 0

tMore generally, we c n consider the minimization of

[P(Lu-g), Lu-g

where P is a linear bounded positive definite operator on H1 into H 1 .

13



Then R has a bounded Linear inverse. Let

Ru 0 - L L+K] U0 =L g (5)

That u is then the unique optimal minimizing solution is apparent fromO
[see Reference 4]

C(u) = C[uo] + R(u-u ), u - u ] (6)

and the second term is non-negative. This establish-. C(uo) az the unique
absolute minimum, whereas the fact that it is a 1,.'al M-.,imum may be
shown in various ways. Moreover, the optimal solution uo is of the form
by using (5)

Ku 0  L* [ g - L u

or

u = (LK g)[g-Lu]

If K is just a positive multiplication k, this reduces to

* [g -L Uo]
u =L (7)

so that u itself is in the range of L . Hence using this and setting
0

u = L y

in (5), we obtain an equation in. H 1 .

.LL y + ky= g

This yields a simplification if HI is finite dimensional, as would be the case
if m 1 has a jump at T.

The main reason for introducing K is the application to the constraint
problem: Suppose the convex set A is the class of all u such that

flu 2 M

Then we have the following theorem: There is a. non-increasing sequence of
positive number k such that

14



LL+k I L gfiu

I being the identity operator, where u. c A and
n

limn (,Lu - g[1 2 = Inf 1i Lu- gK[ 2  (8)
n uEA

The proof of this theorem uses (6) and may be found in [4]. Here we shall
sketch it for completeness. Suppose there is an element u in A such that

L L u = L g (9)

Then it is clear that we can find a decreasing sequence of posit ive numbers
kn such that

un L LL+k n I L g

belongs to A. Since for each n,

L L+k I

has a bounded inverse, then

II U =I 1[L,*L+ k I]-1 L*L I1 Iull-5 Ijull

Thus using (6) we have

C(u) = C(u n)+ kn [un, u- un

and from which it follows that, as k.- 0
n

C(un) -n C(u)

as required. If there is no u in A such that (9) holds, then we can clearly
find positive k such that

L L+k I L]gl u

and

I I'/Iu--5

01



It may be shown as in [4] that this element yields the unique minimum, since
for any k < k

i + k I ]-1 L*g > M

and hence is not in A. In particular, we note that the optimal element is al-

ways in the range of L*, or possibly its closure.

III. THE MINIMIZATION PROBLEM FOR LINEAR DYNAMIC SYSTEMS

In this section, we shall specialize our discussion to the minimization
problem for a linear dynamic system. We shall take m 1 and m 2 to be
Lebesgue measure. Suppose now that the dynamic system is described by
a differential equation:

k(t) = A(t) x(t) + B(t) u(t)

where A(t) is an n x n matrix and B(t) is an n x m matrix. We shall have

T

x(t) x(t) + ,5 W(t, T)u(T) dT (10)

with

W(tT) =0 for T>t

Here W(t, T) is an n x m weighting function matrix of the system and xo(t) is
the output due to initial condition. We can now define a linear operation L
from H2 into H1 as

T

v(t) io W(t,T) u(T) dT ; Lu = V
ý0

0 _-t_-T

The main simplification that we shall exploit in this section is the com-
pactness of the operator L by virtue of

$T$ToIIW(t¶'T)I dt d¶<-

Here the adjoint L* mapping H1 into 1142:

T
h(T)=5 W*(t, T)g(t) dt; L*g =. h

ý0

0 <_-: T _S: T

16



Now

C(u) = ILu-gIl2

= [Lu'Lu [2 g, Lu ] + 11g,12

1 1 1

- L Luuu -2[L g, u + IIgll2
2L2 1

where

g(t) = xdlt) -xo(t).

Denoting L L by R, we note that R is non-negative, self-adjoint and an in-
tegral operator with kernelT *

GIT 1, T 2) = WW (t, T2 )dt
0

It is also compact and thus is characterized by a countable number of non-
negative eigenvalues. Moreover, for any u in H2 , we have

00

Ru E X. [ii. ][u
where {Xi} are the set of non-zero eigenvalues and are ti_- set of corres-
ponding orthonormalized eigenfunctions, and, {XIx} are arranged to be monotone
nonincreasing.

We can now phrase the minimization problem entirely in terms of the
eigenfunctions. For this we note that for any u in H2 , we have the unique
orthogonal decomposition

00

U Z a, .+U (11)
inl

where

a,,=[u U'. ]; L Lu 01 [Ru, U] =0

Similarly, since {LO•} are orthogonal, we have the orthogonal decomposition

17



(o g, L~i]
g =o L k ~+go

0 o [g,,L 2
L go 0; E

i=1 X

Hence we have
CO

C(u) X.a2. -2a. [gL i 211 1 ai[g ] i'l1

and completing the square in each term

0 ( [g,LO.] 2 [gLi] 2

00 [g, Loi] 2 2
-E X. + IigII -Ig o
izl 1 1

Hence it is clear that if we set

n [g, L .]
n O.

We have that.

lim C(un) jIgo Ij12 = Inf C(u)
n u

and

limRu =L g
n

n

A necessary and sufficient condition for an element h in H2 such that

Inf C(u) = C(h)
n

is then of course that
2CO [g, L Oi1

18&



and in that case
0 [g, L~i] *

h -' Rh z L g
.i,,l I

Suppose now, in addition, that h is such that
Inf C(u) = 0

u

Then we notice that go = 0 and

Lh=g

and what is more important, for any u such that

Lu g

we have

[u-h, 0i]= for, everyi

.and

1jull 1ih l

by virtue of the orthogonal decomposition (11). If We want

Inf C(u) 0
u

for every g in H., then of course we must have that {L Oil is complete in H1 .

On the other hand, the more common problem is one which constraints u to
be in some bounded convex set. Suppose we enclose this set in a sphere of
radium M and consider, instead, u such that

iolul< M2

First of all, if we take a k> 0 and minimize

C(u) L u,-gj2g + k 1Iu (12)

we have in terms of the decomposition (11)
00ý [g: L2] 2 -0(u) = g (X.+k) O i] il

i=l 1 \i X+ (.+)

1.. 1

k+ k 2

0 2 19



Hence setting

ai=[g,j Loi]
a X.+ k ; U 0

1

We note that
CO[ g, L~.l

[R +k] u =(R +k) g, 1ki

Xi X+k 1ii=l 1

o[g, Loi] Li *f Lg

i=l 1 g
or

u = [R + k]- L* g

To answer the constraint problem, we may look upon (12) as the usual per-
turbation using a Lagrange multiplier, and hence all we have to do is to use
the smallest k so that

o [g, Lil 2

i fi I (k+ k)

unless of course
c ( g, Lo ill

E 2 < M2

i=l X.1
That this does yield the absolute minimum has already been shown generally in
Section II.

The derivation given above for obtaining the optimal control depends on
the knowledge of the eigenvalues and eigenfunctions of the operator R. Since
they are, in general, infinite in number, this approach is not suitable for
solving the synthesis problems. In the next section, we shall present a
method of steepest descent in Hilbert space, which will overcome these
difficulties.

IV. THE METHOD OF STEEPEST DESCENT FOR MINIMIZING A
QUADRA TIC FUNCTIONAL

In this section we shall indicate a computational method based on the
steepest descent method in Hilbert space for solving the minimization prob-
lem associated with a quadratic functional. An early exposition of such a
method is due to Kantorovich [5]. The essential idea of this method is con-
tained in the following: In seeking the minimum of a quadratic functional
Q(u), an arbitrary initial guess uo is assumed. We obtain the gradient at this

0o



point, i.e., finding an element z such that - Q(uo + cz) will be maximized
at c = 0. Let zo be such an element. Since Q(uo + c zo) is a second degree
polynomial of e, it will attain a minimum for some co. Then the element
uI = U 0 +ozo will be adopted as the next approximation and the whole pro-
cedure can be repeated as many times as accuracy required.

A geometrical interpretation of this method is fairly clear. In the space
where Q(u) is defined, the surfaces Q(u) - C are, in general, a family of
similar ellipsoids with center at the minimum point. The initial approxi-
mation uo shall lie on a certain ellipsoid of the family. From this initial point,
we shall move along the direction of the gradient at this point, i.e., along the
normal to this ellipsoid. We shall reach a point uI where the value of Q(u) is
the least on this normal, i. e., a point where the normal line is tangent to
some ellipsoid of the family. From this point ul, we shall go along the new
normal to this ellipsoid Q(u) = Q(ul), and the whole process is then repeated.

The quadratic functional to be minimized has the general form

Q(u) [Tu, u -2 h,]u (13)
2 J2

where T is a positive definite or a non-negative definite operator in H2 . Let
us now substitute u by uo + Ez. Then

Q(u +cz) = Q(uo)+2E[Tu - hz] +C2[Tz, z] (14)

In seeking the direction of the gradient, it is necessary to find z such that

S-Q(u + E z) 2 T u - h,z
Oo 2

is maximized. According to Schwarz's inequality, it will be achieved if

z =Tu -h (15)
Here R u L 0g shall be referred to as the gradient of the functional Q. With

the choice of z0 as given by (15),,(14) will attain its minimum if

0 - o l2  ( 16)

By repeating the above procedure, it is evident that at the nth step, we have

21
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u =fn u1 + (Tun -h) (17a)n n- 1 n-1 n1

with
2

n-i 2 (17b)On-1,= [T Zn_ 1, Z n-1]

z fiT u -h (17c)n-1 n-i

We note that we improve performance at each step, that is to say:

n 112
Q(u )Q(u) (18)

n+1 n [Tzn, z]n

It can be shown [3] that Q(u ) decreases to the optimum:n

lim Q(un) = Inf Q(u)
n u

Many variations on this basic idea are possible. However, the method
has to be substantially modified when the control u is constrained, such as u
is restricted to some closed bounded convex set with the origin as an interior
point. In this case, we can try adjusting c and zn to satisfy the constraint

n n
in many ways but the convergence of the sequence to the optimum would
appear to be difficult to obtain in general. By slightly enlarging the convex
set to be the smallest sphere containing it, we can obtain a general con-
vergence proof for a modified steepest descent method, as shown in [4]. Let
us assume that the radius of the sphere is M. Then we have seen that the
optimal solution is given by

u = (R+ k)'l L*

for some k such at 11 u ll2 = M.

Let us assume that at the nth iteration, we have

2 M2,

n IM2

We shall now-consider, as a function of positive k,

u n+(k)- u -n z
n+1 n n n

where

Z2



n - [(R+k)z n z n].

z= (R+k) u - L g

Now
2

! Un+ (k) I1
2

is a continuous function of k and approaches to zero as k goes to infinity.
Suppose 22

I Un+ (0) II -< M2

2

Then we define

Un+1 = Un+l(0)

Otherwise, let k be such that
n
2 2

uI Un, 1(kn) II = M2

2

and define

Un+1 U Un+1 (kn

It can then be shown that

lim Q(u) = Inf Q(u)
n u

for 11 u M1 - M. It must be noted here that the sequence is not necessarily
2

monotone at the early stage of the iteration.

In practice, we are not really interested to have IIu 11 exactly equal to M.
A more realistic constraint for u is that for some small. 0, either

2

2

or

23



- u _2= 2M•. 6 :< l1u 112 <

Thus we shall define

Un+ 1 =Un+1(0)

if 2

II usn+1(O) II M2

and

U n+ -u n+l(kn)

if
2M 2 -< II M2(k) 2

-= 6 11U n+l1(

This is actually what we would do when we carry out the computation on a
digital computer.

V. THE FINAL-VALUE PROBLEM FOR LINEAR SYSTEMS

In solving the general control problem, the steepest descent method can
be used to obtain the optimal solution. However, when we are only inter-
ested in controlling the final output vector, then there is a reduction in dimen-
sionality affording a corresponding simplification. In fact, the range of L be-
comes finite dimensional so that matrix methods suffice.

More specifically, we want to minimize

II x(T) - gl1l 2 .; x(T) T W(T, t) u(t) dt

where now g is a finite dimensional vector. In our general treatment, we
have only then to take m 1 to be a jump at T. Hence H1 is finite dimensional.
For simplicity let us take m 2 to be Lebesgue measure. Then again L is com-
pact, and moreover

L *g = W(T, t)* g

so that, using (7) we know that the optimal solution is of the form

u=Ly

Also we need to consider

24



A L+I] L y = L [(LL* +I) y =L g

and now

LL

being an operator on a finite dimensional space must be a square matrix, and
indeed it is the n x n matrix

T
A(T) = LL = W(T, T) W(T, T) dT

and the optimal vector y is given by

A(T) + k I y = g (19)

for some k. The constraint

11 u 112 :5 M

now becomes

y* A(T) y 5 M 2

The steepest descent can then proceed using (17a) and (17b), so that for

instance

Yn+1 = n + 'n[(AJ)+kYn-g]

On the other hand, we can also use the eigenfunction approach, the eigen-
functions of R being finite in number, since range of R is finite dimensional.
In particular we note from Section III that for the minimum to be zero for every
g, we must have that R must have exactly n eigenfunctions corresponding to
non-zero eigenvalues. It should be noticed that the eigenvalues for R is exactly
the eigenvalues for A(T). We can, of course, readily translate (19) in terms

of the eigenvectors of A(T). Let Pi be the orthonormalized eigenvectors cor-
responding to the non-zero eigenvalues Xi of A(T). Then the optimal y is
given by

Z : X .+ k
i=I i

It may also be, noted that a necessary and sufficient condition for A(T) have a
zero eigenvalue is that

25



W(T, t)* y -0 for0 : t 5T (20)

for some non-zero y, since

y *A(T) y = ý ITW(T,t)*y ii dt = 0

For dynamical systems characterized by differential equations, (20) can of
course be carried further.

VI. NONLINEAR SYSTEMS

In this section, we shall indicate some extensions of the previous theory
to nonlinear systems. We shall not strive for maximum generality here, al-
though much of the theory is capable of further generalization. A key point
in dealing with nonlinear systems is the specification of the nonlinear system.
We may consider a dynamic system characterized by a nonlinear differential
equation

x = F(x, u, t) (21)

where x(t) is the system state vector and u(t) is the control vector. We want
to minimize, as before

2 2

C(u) = Ax(t)-g(t) d m1 +k 11(t) dim2  (22)

1T V

where j Jf denotes the Euclidean norm. Assuming there is a unique so-
lution to the Equation (21) for fixed initial conditions, we have then a mapping
from H2 into H1 as before, except that now in

A x = AN(u)

N is not a linear operator but rather a nonlinear operator or function. We
shall assume that F(.,.) is such that N(u) is analytic--that is,, locally bounded
and G-differentiable. Then we wish to minimize

2 2
C(u) = IjAN(u) - g + k j11 u1 (23)

From this point of view then,; all we need is N(u), and it does not matter
whether it comes from a dynamic system or not. It is clear that (23) is also
analytic. Moreover, the Frechet derivative is (in the notation of Reference 6)



6 [ C(u); h = 2 A6[ N(u);h ] , AN(u) ]

- 2[A6 [N(u);h , g ]1 (24)

+ 2k u,h

But, since 6[C(u); h] is a continuous linear homogeneous polynomial, we must,
have

6 N (u); h -- LJh

6[1C (u); h = v,h]
2

where, now, from (24), we note that

v= 2 AL A N(u) - 2 AL g + 2 k u (25)

and moreover, the derivative zero leading to an extremum for C such that

0 = v= IAL AN(u)- AL] gku

or

[u AL g - AN(u) ] (26)

This result generalizes (7). Substituting

u = (AL)* y

in (26), we again obtain for y the equation in H1

AN [(AL)*y 1+ky=g (26a)

We note that (26) and (26a) are no longer linear equations, although if H' is
finite dimensional, (26a) is of course also a finite dimensional vector equation.
On the other hand, steepest descent method in this context becomes:

Un+l Un eZn (7)
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where

z L AL] AL, g+ku

and c is chosen to minimizen

C(u +CUn+ 1)

Although we can thus inprove the approximation at every stage, convergence
to the optimum is, in general, much harder to prove.

The main calculation is the derivative 6[N(u); h]. We shall now examine
this in some special cases. First of all, being analytic, we know that we can
expand N(u) as a power series which can then be approximated by a polynomial
of degree m say. For example, suppose that u(t) is one dimensional, and.we
take m = 2:

T T T

x(t) = 1oW(t s) u(s) ds+ o so W2(t SlS2) U(s )U(s 2)ds ds2 (28)

then

6 N(u); h ] =Lh

=o w 1 (t, s) h (s) ds + 5o W 2 (t, s, a) u(a) da ] h(s) ds

So that, taking A as the identity matrix, and m1, and m 2 as Lebesgue measure,
we have

v $TI W 1(t, s +5 W 2 (t.,S, a). u(u)da]Y [SWI (t,oa)u(a) da

+ Wo 2(t, s 2 )u (s )u(s 2 ) d s 1 ds 2 ] dt (29)

[WT I[W(t, s) + W2 (t, s, a) u(a) da ]g(t) dt

+ k u (s)
Setting this equal to zero, we have a nonlinear integral equation to solve for
obtaining a local extremum. On the other hand, since the explicit functional
representation x(t) in terms of u(t) is known, the steepest descent procedure
can be applied directly.
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When u(t) is of dimensionality higher than one, the representation of N(U)
by an approximating polynomial is somewhat more complex. A polynomial of
degree m being written as the sum of homogeneous polynomial of lower degree
will be:

N(u) k= "( u(s )o u(s ).. u(s ds.. ds (30)
k=o 

1

where for each t

Lk(t, x x2... xk)

is a vector, each component of which is a continuous K-linear form in the
vector x 1 , x2 , ... xk. The Frechet derivative can again be calculated in a
similar manner.

IIf the system is described in terms of the nonlinear differential Equation

(21), it is possible to obtain 6[N(u); hi as a solution to a linear time varying
equation. For, in

x = F(x, u + X h) (31)

for fixed u and h, we have a function of X for each t, and at X = 0

dk F [x,u] dx (32)
da- 7x d" .+ 7 F [x, u.] h

where VxF(x, u) and VuF(x, u) are the gradient matrices. Now (32) is a linear
dx

equation for , and taking initial condition for (21) to be zero, so that

d x(t)
dX = 0 for t = 0, X = 0

we have

S (t) - (s) ( F x(s), u(S) h (s) ds (33)

where c?(t) is the fundamental matrix solution of

Y = • F[x,u] Y

From (33), it follows that

L h = 6[ NX(u) ; h]

corresponds to the operation
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1t VF [x(s). u(s) ]1
0

To use this, x(s) must be known, so that if one solution is known, we can
perturb it to obtain a better approximation to the minimization problem using
Equation (27). Some simplification in these considerations occurs, if, as is
usually the case,

F(x, u) = flW + f2 (u)

so that

V xF(x, u) V f 1f(x)

V uF(x, u) V f 2(u)

VII. COMPUTER STUDIES

In this section we shall present the results of some computer studies of
the steepest descent methods espoused in the paper. These applications are
not meant to be exhaustive or even representative but rather to illustrate
some of the specific considerations that arise in such application.

Example 1. Let us now consider a second order linear system which is
described by the differential equation

d~x dx
d 2 + d- = u(t)
dt2

Assume that the desired output over the control interval [G, 1] is a step

function, i.e.,

xd(t) = 1 0O < t = 5 1

Let the initial conditions be

x(0) = 1 x' (0) -1

Then

-t
x(t) e

and
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-t
g(t) = 1 -e

The problem then is to have the position output of the system following the
step function subject to the energy constraint that

2

1 ull 2 < 3
2

This is a one-dimensional problem.

The weighting function of the system is

-t
W(t) I -e

Then

G(TI T) =-Max (TI T) + e + e 2 1 e, +e 1 2)
12 12 2~

and

L g =0.3678 - T -0.5 e + 0.3001 e

Here Max (Ti. T 2) denotes the maximum of T and T2.

In carrying out the computation, we take 6 = 0.2. The initial guess for
the solution is arbitrarily chosen to be uo(t) = 1. Some of the computational
results are listed in Table 1. At each iteration step, we have to adjust kn
such that

2
2.8 u n 1unl :3

2

The increment of adjustment for kn in this problem is chosen to be 0. 005. It
is interesting to see that, after the first iteration, the number k1 is already
very close to its optimal value. At the third iteration, kn has reached: its
optimal value.

The closeness of the approximate solution for u(t) to its optimal one can
be measured by the ratio

ii (R + k,) u -L*gn gi 2ER=

{l L g 112
Thus at the 4th iteration. with ER 0. 0044, we can stop the process. The sys-

tem performance is plotted in Figure 1 and the sequence of control inputs is
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TABLE I

COMPUTATIONAL RESULTS FOR EXAMPLE 1
2

No. of 2 (R+kn)un-L g11 2 :11+LnU n-gn 1l

Iteration k fn12L* g 2 Q(un) Q(u )+k U 1 g
n 2n1

1 0.0065 2.949360 0.515050 -0.155592 -0.136421 0.074357

2 0.0060 2.859088 0.069710 -0. 159816 -0. 142657 0.049229

3 0.0055 2. 996001 0.024473 -0.160658 -0.144180 0.044222

4 0.0055 2.969426 0.004438 -0.160531 -0. 144200 0.044976

5 0.0055 2.999596 0.005363 -0.160701 -0. 144203 0.043963

6 0.0055 2.992307 0.000992 -0. 160662 -0. 144205 0.044196

7 0.0055 2.999195 0.001222 -0. 160700 -0.144205 0.043969

8 0.0055 2.997514 0.000226 -0,160691 -0. 144205 0.044024

9 0.0055 2.999088 0.000279 -0. 160700 -0. 144205 O0.43973

10 0.0055 2.998706 0.000052 -0. 160698 -0. 144205 0.043985
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K,: 0.0065

Ksc 0,.0060

K3: 0.0055

0.2 K 4: 0.0055

0 L
0 0.2, 0.4 0.6 0.8 1.0

t

FIGURE 1. PERFORMANCE OF THE SYSTEM IN EXAMPLE 1
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NO. 4

4 .- o.2 1__ _ _ _ _

K, a 0.0065

Kt = 0.0060
K5 : 0.0055

3 -K 4 cO.0055-

un( t)

2

N I
NO. 0

0 0.2 0.4 0.6 0.8 1.0

t

FIGURE 2. THE APPROXIMATION SEQUENCE un(t) FOR THE
SYSTEM IN EXAMPLE I
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plotted in Figure 2. It should be noticed that the oscillation of Q(un) after kn
has reached its steady value of 0. 0055 is due to the variation of 11 u(kn) 112.
However, Q(un) + kn II un 112 is indeed a non-increasing sequence for the same
values of k 

2

n

Example 2. Let us consider the same system as given in Example 1.
However, we shall now try to control both the position and velocity outputs of
the system to follow the ideal step function by using a single control input. In
this case, we have a 2 x 1 system. Thus

X d [ O]

W(t) L:
e

g(t) - xd(t) -x (t)

-e

e

Then
-(I-TI) -(1-T ) -(2-T1- T)

G(T1 T 2 Max (TV T"2 + e +e -e

* 7
L g 0.3678 - 7 - 0. 2324 e

The constraint for the input is taken to be
2

Iu ]1 --< 5
2

In carrying out the computation, we again choose 6 0. 2. Hence when

u1 U1 exceed 5, we shall adjust kn such, that
2
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TABLE II

COMPUTATIONAL RESULTS FOR EXAMPLE 2

2
No. of 2 11(R+k )u -L gil 2 IILu - gll
Iteration k n lunil Q(u) Q(un)+k IuIISteps n2 IIL*glln2 n 2 ligI1

n __ 2t

1 0 2.515420 0.396180 -0.437727 -0.437727 0. 396180

2 0 1.970645 0. 241534 -0.487548 -0.487548 0.241534

3 0 3. 240699 0. 196627 -0. 513064 -0. 513064 0. 145496

4 0 3. 295242 0. 126567 -0. 527287 -0. 527287 0. 121808

5 0 .4. 184334 0. 112038 -0. 535891 -0. 535891 0. 107479

6 0 4.307971 0.079227 -0. 541763 -0. 541763 0.097699

7 0 4.975983 0.078128 -0,546090 -0. 546090 0.090491

8 0.001 4.978586 0.059593 -0.548912 -0. 544033 0.085792

9 0.008 4.866785 0.030549 -0. 549684 -0. 510750 0.084506

10 0.005 4.961765 0.029163 -0. 551068 -0. 526259 0.082201

11 0.009 4.953561 0.018552 -0. 551326 -0. 516744 0.081772

12 0.008 4.908812 0. 014031 -0.551118 -0. 510848 0.082118

13 0.008 4.984433 0.012147 -0.551844 -0. 511969 0.080909

14 0.008 4.955171 0.011334 -0.551709 -0. 512068 0.081134

15 0.009 4.927553 0.008125 -0.551580 -0.507232 0.081348

16 0. 008 4.942081 0.009304 -0. 551775 -0. 512238 0. 081024

17 0.009 4.947917 0.005447 -0. 551861 -0. 507330 0.080880

18 0.009 4. 919139 0.006306 -0ý. 551625 -0. 507353 0.081273

19 0.009 4.933637 0.00,3887 -0. 551774 -0. 507371 0.081026

20 0.009 4.914428 0. 004794 -0.551614 -0. 507384 0.081291

21 0.009 4.930254 0. 003020 -0.551767 -0. 507395 0.081036

22 0.009 4.916224 0.003880 . -0.551650 -0. 507404 0.081232

23 0.009 4.930914 0.002415 -0.551789 -0. 507411 0.081000

24 0.009 4.920170 0.003067 -0.551698 -0. 507416 0.081152

25 0. 0G9 4.933092 0. 001959 -0. 551819 -0. 507422 0-.080951
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The increment of adjustment for this problem is taken to be 0. 001. The
initial guess is still chosen to be u (t) = 1. The computational results are
listed in Table II. When kn are slightly different, Q(un) sometimes show
oscillations as in Steps No. 11 and No. 12, or in Sters No. 14 and No. 15.

This is due to the fact that we are not adjusting 1 u 1to be exactly equal to 5
2

and it is not practical and necessary to do so. It is seen that larger norm
always corresponds to smaller Q. Thus the finer the adjustment for kn and
the smaller the value for 6, the better will be the monotonocity for Q.

Figure 3 shows the system performance and Figure 4 shows the sequence
of controls. It is seen that the iteration process can be stopped at the 15th
step with ER = 0. 008. In the practical application of this method when on-line
computation is required, a proper threshold level for ER will be chosen. The
choice of this threshold should be based on the desired accuracy of the solution
and the computing time whigh we can afford.
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ABSTRACT

Control systems may be designed to operate in different modes. In
some cases these modes may be switched to obtain various system trajec-
tories. The optimization of the trajectories can be considered as a deter-
mination of the switching times and other mode parameters. The optimiza-
tion, problem is to determine these times and parameters. First order
computations can yield a descent method but convergence is not assured.
Theorems which deal with the existence of solutions to optimal control prob-
lems which have been recently proved indicate that it is better to relax the
dynamic restrictions during the optimization than to work only with the
admissible class of switched controls. The resulting optimal trajectory is
then approximated by one of the trajectories from the admissible class.

INTRODUCTION

Some vehicles have control systems which operate in various modes,
such as an angle of attack hold mode, a bank angle hold, a flight path angle
hold, and a pressure altitude hold. For the control of a re-entry vehicle
one might include other hold modes such as acceleration,, attitude, thrust,
or temperature. One approach to trajectory optimization is to select the
appropriate combination of modes at each time. For some optimization
criteria, however, the optimum switching will "chatter" or change rapidly
from one position to another. This type of behavior has already been noted
in connection with relay controllers. A necessary condition for the existence
of chattering in optimal controllers can be based on the application of the
maximum principle. This condition turns out to give information about the
optimal trajectory in trivial examples, although it is questionable whether
or not this result is of practical significance. Warga, Roxin, Filippov, and
Chang (References I through 4), deal with the problem of existence of solu-
tion for the general control problem. This general theory seems to indicate
that optimization of the mode switching problem should be accomplished by
generalizing the problem. The method consists of first relaxing the restric-
tions on the switching, finding the optimum, and then approximating this
optimum by the restricted switching trajectories.

A sub-optimal trajectory can be constructed using a fixed switching

sequence and adjusting the switching times by a steepest descent procedure.

DISCUSSION

A class of mode switching systems will be considered. These systems
will be represented by the vector equations
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dx
= f (x, u)

at tt (1)p
t0 :t 5t2

X(to) = Eo -•) e Bo

x (tI) e BI

For each admissible u (t) the solution of the differential equation is
assumed to be well defined. The initial condition on the n-dimensional state
vector is in some region B0 and the terminal condition is required to be in
some region BI. The r-dimensional control vector u is chosen from a set
of functions

k 2.k) k = 1,2...m
Pz)

rLk constant vectors

The value of u is chosen from the set of possibilities. This method of
formulation is male in an attempt to incorporate the design restrictions
into the optimization problem. Instead of formulating a completely "open
loop" set of dynamics, a set of closed loop systems is considered. The
formulation is motivated by the current practice of designing control systems.
For example, the attitude control system of some satellites have different
sensor and feedback configurations for acquisition, earth pointing, and
eclipse operation. The application of these systems requires some sort of
switching logic, but in many cases the logic is very simple. Since the sys-
tem designer is generally willing to, sacrifice some performance for a
simple mechanization, it is of interest to explore the possibilities of mode
switching logic.

A particular application which motivates this study is the trajectory
control of a vehicle, and while this problem has been explored in some
detail to find optimum trajectories and means of following them, it seems
reasonable to consider "sub-optimal" trajectories if they are easier to
implement.

One requirement of the trajectory problem is to transfer the system
from an initial state in some region B 0 at to to a terminal state in another
region B 1 at some reasonable time t, ! tZ. The fundamental question aboutý
whether or not the vehicle is capable of making the trip is of interest to those
concerned with the journey. To satisfy doubts on this subject, it is worth-
while to find at least one control sequence which makes the trip possible.

If the journey is so difficult that only one control scheme will work,
then the question is how to find and mechanize it. But if there are many
possibilities, then some choice of route must be made even if it is made by
chance. In some "games" random selection is the "optimal strategy"; in
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other cases there is some "cost" which is to be minimized. Again, existence
and uniqueness are of interest. When there is a control which completes the
journey at some cost, then the existence of a minimizing trajectory is of less
importance since the cost can be made reasonably close to the minimum.

The lack of uniqueness of the optimizing trajectories merely requires an
additional decision. Some writers indicate that the problem "is not properly
formulated" as long as any ambiguity remains, but even without admitting this
one can conceive of a hierarchy of "play-offs" leading to the final choice of
controls. For this discussion the first component of the state vector xl (tl)
at the terminal time t1 will be taken as the cost function to be minimized.

THE SWITCHING CONCEPT

The control problem is to select one of the possible switch positions.
A block diagram of the system described above is shown in Figure 1.

INPUT DATA SWITCHING
LOGIC

"•u21 , 
M.ODIE SWITCHING

Figure 1L Block Diagram of Mode Switching System.
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The switching logic is required to give a trajectory which satisfies
terminal conditions. For linear systems this requirement may be imple-
mented by a final value controller (Reference 5). The significant computa-
tion carried out in the final value control problem is the conditional response
prediction. This computation utilizes the known dynamics of the system to
extend the trajectory to some future time under the assumption of a particu-
lar control sequence.

This idea is applicable to nonlinear as well as linear systems. Let
I (t, x0 , to) designate the solution of the equations at time t with the

initial• state x0 at time tO and using the kth mode of control. This solution
is a conditional response predictor if the present state is used as initial
condition and if the terminal time is used. That is,

x,(t1) = ±k Eti x (t), t]

if

= uk (x) for t ! T < t1

The system may start in mode j and switch to mode k at time t1 in
this case

x (tL2) = 0k[-!2 ±j.(tl' - . to), tli

The effect of small changes in the switching time tI are of interest and
can be estimated on the basis of first order computations.

Computation of the First Order Influence of Switching Time
and Initial State

The computation of the first order effects of changes in t , x0 , and to
on j (tl x0 , to) can be made for the general mode and the moAe subscript
will be dropped. The first order effects describe deviations from some
"nominal" trajectory. The deviations from the nominal will be designated
by the vector z, and the nominal by the vector y(ty with y(t 0 ) = x0 . Then
z = x - y and Die dynamics of the deviation are

S= f (y + z) - f (Y) (3)

Assuming that the first partial derivatives of f are continuous, define
the matrix A. with elements

a. (t) M -- (4)

As usual, the fundamental solution of the adjoint equation will be used.
Define the matrixc W(t), such that
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dW WA W(tl) = I

By combining Equations (3) and (5) one may obtain

d (wz) = w[j (y + z) f (y) - Az]

and thus

d (Wz) = 0

where 0 IO2z indicates the terms of second and higher order. Integrating,
one obtains t

W (t)Z (t_ ) W wt 0) !Eo + J 0J.j 2 dT

0

or

. (t'' •0, to) W 1 (tl) W (to) z 0 + 02 ZI2 (6)

Thus, to a first order of approximation in I z , one obtains

z(tl) = W 1 (tI) W (t 0 )z(to) (7)

This will be designated by

z(tl) = K (t 1 , t 0 ) z (to) (8).

A first order approximation. to the effect of switchirng time on the final state
can be obtained by considering the equivalent perturbation Az due to a change
in switching time and propagating the perturbation to the final time. For
switching from the jth mode. to the kth mode this perturbation is

Az (ti) = [f(x., uj)- f,(x, J)].Ati (9)

and the effect on the final state is

At (tn) Y K (tn , ti). A z()

(10)-
- K (tn, tl ( f (X Un A _ - 4dx Ati
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Defining

v = K (t n td[f (x, u)f(x, k)]

one may write the final perturbation vector as

n= I
Az (t_) = K (tn, to) Az (to) + v i at (12)

i=l

A linearized mode switching controller could be designed by setting z (tn) = 0
and solving for Ati using a psuedo inverse if necessary. The effect'of small
changes in the switching times Ati can be used to "improve" the nominal by
the usual steepest descent method. The switching influence vectors nj may
span a subspace of the state space z even if the number of switching times
is large.

At each step of a descent procedure the values of Ati must be chosen.
This can be done by making Ati the "solution" to the equation

v Atl +vZ At2 + .... +v Ats = Az,(tn)

using a psuedo inverse if necessary.

This procedure will not conve•rge in many cases, and the real problem
is to determine the conditions under which it will converge. A fairly trivial
example will now be discussed to illustrate the descent procedure.

EXAMPLE

The computations of the descent procedure will be illustrated in the
usual first order system with mean square error. The system is shown in
Figure 2 and is described by

x = (x- 1)i

2 ={-a(x +2) a= 0 or I

-a2x
x (0) = -0o.5

x (0) 01 2
x4(27= 1.5
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22

Figure 2. System for Example.

As will be shown later, this system will be required to chatter in order
to approach the non-attainable minimum of xl(2). During this chattering
the process will "slide" along the trajectory x 2 = 1. For the present, a
sub-optimal trajectory with only two switches will be considered., The
switch parameter a will be taken ae

0 for 0 < t < t

I for tI <t! t 2

0 for t 2 <t' 2

and the nominal trajectory will switch at tI = 0. 5 t 2 = 1. 5.

The adjoint equations are

11 w12[ Z1 11

Lw 21  w 22. :w 2 w 2jL O Q+( a
21

and since x does not depend upon x these equations may be solved along,

:I [2 (t,) + 2]1[expý 2 (2 - 2 -If

w3 [ +6 -exp (2- t)]2 ]
LO exp (2 - t 2 )
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x2

"- (t1 ) [exp 4 (t 2 - td) -

LO -exp - 2 (t 2 - t1)

The velocity difference (f- --fI) is given by

-o "-fl = (x2

Along the nominal mentioned above

V 1 (0: 76

0.762J 3 61 /

Thus the switching time increments are related to the changes in the
terminal state through the equation

F-1.62 Oý 7661F't Ax 1 x(2)1

0.762 -3-61 [at 2j= AxZ(z)J

to a first order approximation in Atk and Axi(t). The nominal trajectory
does not quite satisfy the terminal conditions,. and the increment in terminal
state is taken as

Ax -.

-Ax21LO0.071
This choice gives switching increments of AtI = 0. 0556 At2 = - 0. 0133.

The modification of the switching times does improve the trajectory.
Repeated application of the procedure gives the sequence of trajectories
tabulated in Figure 3.
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to X 2(to) tI X20tI t2 X2(t2) t3 x t)

NOM. 0 -0.5 0.5 0.437 1.500 0.0640 2 1.403

TRIAL I 0 -0.5 0.537 0.566 1.481 0.0857 2 1.504

TRIAL 2 0 -0.5 0.565 0.692 1.494 0.1123 2 1.503

1.5

1.0

0.5 2

0

-0.5 V
0 1.0 2.0

t: (TIME)

Figure 3. Sketch of Trajectories.

The steepest descent procedure outlined above can be used in more
complicated examples, and the principle saving of computation and storage
is due to the fact that the influence matrices only need to be stored at the
switching instants. If two switching times t and z approach each other
nearer than some specified c, that is if It] - t2l < C the intermediate mode
may be omitted and the numiber of switches reduced. This procedure leads
to a sub-optimal policy in the mathematical sense, but there are often
practical reasons for avoiding a large number of switches. The available
knowledge about the desired trajectory and mode properties can. be used to
select a reasonable nominal sequence.
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A Necessary Condition for, Optimal Switching

The system described by Equations (1) and (2) has the following, adjoint
to the first variation.

-- GkPj +-i -1 C-
j= I =I a= I u x j

The Hamiltonian is

H = GkEp.f(x, ak)]

For a minimizing trajectory the maximum principle (Reference 6)
requires that the ak be chosen to maximize H for suitably chosen boundary
conditions on the multipliers Pi. As an alternative to steepest descent com-
putation of a fixed number of switching times, a steepest descent procedure
for determining the initial conditions on the multipliers may be attempted.
The relative merits of these two procedures are of interest. One problem
which may arise in the optimal switching case is the problem of chattering.
The necessary condition outlined above gives an unambiguous specification
of the switch position when one of the quantities p • f (x, uk) is actually
greater than any of the others. However, when thiere ari-e-two or more of
these quantities equal to the maximum, then the choice is not clear. This
equality occurs at each switching instant, and if the equality only holds for
an interval of measure zero, there is no ambiguity of the resulting trajec-
tory.,

If-the multiple maximum persists, then the switching choice is not
defined by the maximum principle, although it may possibly be defined by
\the persistence of the multiple maximum. The optimum switching choice
may not exist in piecewise continuous form, and the optimal control choice
"chatters" between the two or more possibilities. In this case the sub-
optimal choice of a fixed number of switches may be more desirable com-
putationally.

A more rigorous discussion of chattering may be based on the work of
Warga, Roxin, Filippov, and Chang (References I through 4). The switching
problem is first associated with a relaxed problem by considering values of

0k: 0 K ak < 1 Ec.k = I instead of only c1k = 0 or 1, ak = 1. This relaxation
allows the velocity vector to take on all the values in the simplex with
corners at f (x, 2ýk) instead of only the value of the corners. For the
relaxed pro'l1m a solution exists as shown in the above papers. Warga
also shows that this optimal solution can be approximated arbitrarily closely
by using only the original switching control. The application of this result
to the problem of optimum, mode switching seems to indicate that the relaxed
problem should be solved for the optimal trajectory and then approximated
by the switched trajectory. However, if one is going to attempt to follow a
nominal, then one of the other perturbation techniques (Reference 7) may be
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more feasible for closed loop operation. It appears that switching modes
does not simplify the optimum trajectory computation unless a sub-optimal
trajectory with a fixed number of switches is accepted.

"A EXAMPLE

The dynamics of the previous example are used, but an attempt is made
to find the "optimal" switching. The multipliers pi satisfy the equations

= 0 P 1 = -1

- 2 (x2 - 1)P 1 - p2 [(I - a 2 )- ZaJ2]

and the Hamiltonian is

H = Pl (x 2 " 1)2 + P 2  l - a2 ) (x 2 + 2) - oZ 2x2]

2
This quantity is a constant and switching can only occur when x - 2/3 or
pZ = 0. If p2= 0, j2 = 0 only if x2 = 1 and thus a necessary condition for
chattering is x2 = 1.

CONCLUSION

A steepest descent modification of the switching times in a mode switch-
ing control system can be based on first variation computations, and the
computer storage requirement less than that required for functional descent.
By introducing control variables the mode switching system can be put in the
format usually used in the study of control optimization. The application of
the maximum principle yields a necessary condition for optimum switching
and a necessary condition for chattering. If the switching problem is relaxed
to assure the existence of an optimal solution the computational problem of
finding this optimum is not simplified by the switching approach although
mechanization of the control system may be simplified. The use of steepest
descent procedure for determining the sub-optimal control using a fixed
number of switches is only based upon differential arguments and some
knowledge of the global properties of the trajectory is required to assure
the usefulness of the procedure.
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ABSTRACT

The problem of specifying the minimal fuel thrust program for guiding
a space vehicle in its midcourse phase is formulated as an optimization
problem. The task of the thrust program is to transfer the vehicle from a
given initial error state (position and velocity) to a terminal error state of
zero with minimum fuel subject to a magnitude constraint on the thrust vector.

The form of the optimal thrust program is derived and shown to be of an
"on-off" nature with time-varying direction during periods of thrusting.

The problem of synthesizing the optimal thrust program is reduced to
the problem of maximizing a particular function whose gradient is readily
computed. An iterative computational procedure for synthesizing the optimal
thrust program is then developed utilizing the method of steepest ascent.

INTRODUCTION

Let us consider the problem of guiding a space vehicle during the mid-
course phase of its mission. Basically, the problem is that of correcting the
space vehicle's ballistic or "free fall" trajectory. In general, this involves
thrusting at low levels in contrast to the large amounts of thrust required for
launch or deboost operations. We indicate a typical mission involving a mid-
course maneuver in Figure 1.

There are two primary functions which a midcourse guidance system
must perform. The first is one of sensing and processing information to
determine the vehicle's state, such as position and velocity, in an appropri-
ate coordinate system. This is the navigation function. The second is that
of utilizing the navigation information to generate thrust control signals so
that mission objectives are achieved. This is the thrust programming func-
tion.

Numerous problems dealing with the optimization of flight paths and
guidance systems have been treated in the literature (References 1 through6).
Here we shall consider the specific problem of minimal fuel thrust program-
ming for midcourse flight where the corrective thrust vector is amplitude
constrained. The central result of the paper will be the development of an
iterative computational technique for generating the thrust program. With
respect to the navigation functions, we shall assume that midcourse guidance
is to be initiated at a specified instant of time at which the vehicle's state is
known to a desired degree of accuracy.
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Figure 1. Typical Space Mission Involving Midcourse Maneuver.

THE MINIMAL FUEL PROBLEM

If launch or deboost operations, that is, phases of a space mission
involving periods of relatively high level thrusting, could be executed per-
fectly, a given space vehicle would free fall to the desired destination along
a path which we shall term the nominal trajectory. However, imperfect
launch or deboost operations cause errors to exist along the ballistic or
free fall portion of the mission. We use the term errors here to denote
position and velocity deviations from the nominal trajectory. We assume
these errors are small enough to permit a linearization of the vehicle's
equations of motion.

To within the accuracy limitations of the guidance elements utilized, we
shall require that the corrections reduce the errors to zero at the conclusion
of the midcourse phase. We shall also require that the midcourse phase be
executed in a fixed time so that the vehicle will arrive at the same terminal
state at the bame time as a vehicle following the nominal trajectory. By
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imposing these two requirements, we have considerably reduced the task of
the terminal guidance system in executing re-entry, rendezvous, or docking
type maneuvers.

In order to maximize the useful payload, we shall choose quantity of fuel
as the system parameter to be minimized. Moreover, for obvious practical
reasons, we shall assume the corrective thrust is amplitude constrained.

The equations of motion of a space vehicle subject only to gravitational
and propulsive forces may be written as

S= P (y, t)+ Q (y) T (t) (1)

for either cartesian or spherical coordinates. In Equation (1), y is a six-
dimensional column vector whose elements are the position and velocity
coordinates of the vehicle, P is a six-dimensional column vector represent-
ing the gravitational forces, and Q (y) is a 6 x 3 matrix which relates the
three-dimensional thrust vector T to y.

Assuming small errors, we shall now linearize Equation (1). We let
y = Y + 6 y where Y is the nominal trajectory which satisfies the free fall
equation

Y = P (Y, t). (2)

The initial conditions on Equation (2) are those which would result from an
ideal (perfect) launch or deboost operation.

Since y satisfies Equation (1), 6 y satisfies the equation

6i- (p)6y+Q(y)T(t)+ (3)

where (aP/ay) is a 6 X 6 matrix (evaluated along the nominal trajectory Y),
and the dots on the right denote higher order terms in 6y.

Assuming Q (y) is approximated closely enough by Q (Y) and neglecting
the higher order terms, Equation (3) becomes

6i = ) 6y + Q (Y) T (t). (4)

Since the time history of the nominal trajectory is known, we observe that
(aP/2y) and Q (Y) are explicit functions of time. Hence, defining

x(t) = 6y (t) A (t) = AP)

u (t) = T(t) B(t) = (Y)
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Equation (4) becomes

x(t) = A (t) x (t) + B (t) u (t). (5)

In Equation (5), x (t) is a six-dimensional column vector, the vehicle state
vector; u (t) is a three-dimensional column vector, the thrust vector; and
A (t) and B (t) are 6 x 6 and 6 X 3 matrices, respectively.

We shall let the time interval over which midcourse guidance is per-
formed be the interval 0:9 t:9 T, where T is a known constant. We shall
denote the initial errors or deviations from the nominal trajectory by x (0).
The task of the midcourse guidance system is then to null these errors so
that x (T) = 0.

For low-level thrust propulsion systems operating in free space, it is
reasonable to assume the specific impulse Isp, given by

S IT (t)li (6)
sp g m

is constant (Reference 7). In Equation (6), IT (t)I is the magnitude of the
thrust vector, go is the acceleration of gravity at sea level, and rh is the
time rate of change of the fuel mass. Cross-multiplying in Equation (6),
and integrating the result between the limits 0 and T, we obtain

fT IT(t)I dt = g Isp fT m dt r= g 0 sp I dm. (7)

But go JT dm is simply the total weight of the fuel consumed during the mid-
course phase. From Equation (7) then, we see that the time integral of the
thrust vector magnitude is proportional to the fuel consumed. Therefore, in
order to minimize the fuel consumed during the midcourse phase, we shall
choose

S IT (t)I dt,

or equivalently,

T l~u (t)II dt, (8)

as the design parameter or cost to be minimized. In Equation (8), the
symbol I H denotes the Euclidean norm as given by .
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Iur 2t)tI = 1 (t) + U4(t) + u3 (t)2

This is simply the magnitude of the thrust vector.

In minimizing Equation (8), we shall restrict ourselves to thrust vectors
for which: (a) Iju (t)II : 1, and (b) each component of u (t) is piecewise con-
tinuous. Thrust vectors which satisfy these two restrictions for 0 : t < T
are termed admissible.

In practice, condition (a) is equivalent to requiring IT (t)I ' To where
To is a known constant equal to the maximum thrust available from the pro-
pulsion system. For analytic simplicity, we have normalized this constraint.
Condition (b) is one of requiring that the thrust vector be physically realiz-
able.

We now summarize the problem formulation: We are given the linear-
ized system of Equation (5) of a space vehicle in midcourse flight. We wish
to determine an admissible thrust program u (t) which will transfer the
vehicle from a known initial state x (0) to the terminal state x (T)= 0 in a
fixed time T such that the cost (Equation (8)) is minimized. Such an admis-
sible thrust program will be called an optimal thrustý program.

DERIVATION OF THE OPTIMAL THRUST PROGRAM

For a given initial state x (0) and an admissible thrust program u (t),
the state of the system (Equation (5)) at any time t, 0 5 t 5 T, is given by

x (t) = X (t) (0) + X"I (s) B (s) u (s),dd s (9)

where X (t) is the 6 X 6 matrix solution of k (t) = A (t) X (t), and X (0) = I
identity matrix.

From Equation (9), we see that we can achieve the desired terminal
state x (T) = 0 if and only if

-x (0) X" 1 (s)B (s) u (s)lds. (10)

Let us define an additional state variable y byit
y (t) = AIu (s)U, ds.

We note from tquatIon (8) that S = y(T).
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Let us consider the set 0 defined by the relation

0 X" 1 (t) B (t) u (t) dt, j I1u (t)JI dt: u I(t) admissible.

We see that 0 is a set in seven-dimensional Euclidean space, and that a
point (x, y) belongs to 0 if and only if there exists an admissible thrust pro-
gram u (t) which transfers the initial state -x to the origin in time T with a
cost y.t

It is shown in Reference 8 that 0 is convex, closed, and bounded, and
that it is symmetric about the y (cost) axis.

For a given x (0), the minimum cost to reach the origin in time T is the
least y (T) for which (-x (0), y (T)) C 0. We shall denote this minimum cost
by yO (T). Clearly, (-x (0), yO (,)) is a boundary point of 0. We let

= (-x (0), yO (T)). (Bold faced letters will be used throughout to indicate
seven-dimensional vectors.)

Since Q is convex, there exists at least one seven-dimensional column
vector n such that

- --o

for all w e 0 where the prime denotes the transpose. That is, we may con-
struct a hyperplane of support to 0 at xo with il as any vector normal to
this hyperplane at •o.

From the properties of 0 it can be shown that the last (seventh) com-
ponent of IL is nonpositive. With little loss of generality, we shall assume
it is negative. Moreover, since the length of is immaterial, we shall set
its last component equal to -1 for all the work which follows.

From Equation (11), we see that the function w' . w attains its maximum
in 0 when = xo. For any e 0 given by

=f XI (t) B (t) u (t) dt, f Iu (t)I1 dt,

this function becomes

fit is conceivable that for sufficiently large initial errors x (0), it would be
impossible to achieve x (T) = 0 even if full thrust 11u (t)j = 1 were utilized
throughout the interval 0 f t : T. In our work here, we shall consider only
those initial errors which can be transferred to the origin in time T using
admissible thrust programs.
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Xt -='•X 1 (t) B (t) u (t) - Nu (t) dt, (12)

where, from above, 71 = (tl, -1) and 7 = ( *1.1, T6)"

We wish to select an admissible thrust program u (t) which maximiz~es
W. w. We maximize this function by maximizing the integrand of Equation

2) ior all t, O: t : T. Thus, we wish to maximize the function

f (t) = 71 X" (t) B (t) u, (t) - I u (t)l (13)

with respect to the variable u subject to the constraint Nuh :9 1.

We observe that i' . X- 1 (t) B (t) is a three-dimensional row vector.
If 71' • X-(t) B(t) = 0, we maximize f(t) by setting u(t) = 0. If
71 - X-1 (t) B(t) A 0, f(t) will be maximized only if u(t) has the same
direction as •i . X-1 (t) B(t). We shall assume this is the case in the work
which follows. Hence, for rw . X-1 (t) B (t) ;ý 0, Equation (13) becomes

f(t) = Nu(t)H X' (t) B(t)II " 1]. (14)

If X-' x 1 (t) B (t)II > 1, f(t) is maximized by making Ru(t)I = 1, the
maximum allowable. Since u(t) has the same direction as il X-I (t) B (t),
we obtain

u(t) = X-1 (t) B(ti'M In . X'l(t) 
B (t)I

If u' X- 1 (t) B (t)I < 1, f(t) is maximized by setting 1[u(t)J, = 0 which
means u(t) = 0.

Finally, if In' • X-I (t) B(t)I: = 1, we have f(t) a 0 for any admissible
u (t). For purposes of our work here, we shall assume that the set of points
in the interval LO, TI" at which fin' • X-1 (t) B (t)o = 1 is of measure zero for
every vector 71. For the sake of completeness, however, we set u(t) = 0
whenever Ji • X-I (t) B(t)h = 1. For the above assumption then, we have
that the thrust program u(t) which maximizes iJ • w is unique and defined
almost everywhere.

Because of the uniqueness, we can replace inequality (11) by the strict
inequality

ill. x >rn'.w, weil and wo x (15)

In summary, the thrust program which maximizes T' w (and thereby
minimizes the cost) is ,given by the relation
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B 'tWhenever Ii '1 X 1 (t), 1 (0 > I
u (t) ine Xwhen.ee ()Bt' " x'I(t) B (t)I S 1, (16)

for Ot T.

SYNTHESIS OF THE OPTIMAL THRUST PROGRAM

We see from Equation (16) that the problem of generating the optimal
thrust program is one of computing an i for a given initial state x(0).

Let us consider a seven-dimensional column vector X = (k, -1) where

(k1 X...... 6. For a given k), let us define the function

I'• X"I (t) Bt 'whenever IV • X (t)B(t)I > I
IV- x (t) B (t)lV{(t, k) 1L (17)

v =0 whenever Ix' -X-(t) B (t) S 1,

for 0 : t ! T. Let us introduce the vector function

z [ x'l(t) B(t) v(t, k) dt, Iv(t, k)I d (18)

Analogous to Equation (15), we obtain

' • z(k)>X' C; 0'C and j#: z(X). (19)

Hence, S(k) is a boundary point of D and a hyperplane of support to 0 at

&(.X) has the normal vector X = (,, -1).

14ww if a vector il is known for a given initial state x(0), the corres-
ponding point on the boundary of C) has the coordinates

z.l) = (-x(0), y°(T)). (Z0)

Let us consider any vector k for which z(X) k j(r). We shall denote
the hyperplane of support to ft at z!(k) by B(k). If I= (91, -. 96- 7) is
any point in the seven-dimensional Euclidean space which also lies in B(k),
we obtain

" z(X) = k) (1)

as the equation for this plane.
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The line through the point (-x(O),, 0) parallel to the y axis intersects

B(X) at come point t= f-x(0), p]. Setting • = t in Equation tZ1), we obtain

X'- Z(X) = )' . (-x(0), p) . (22)

Recalling E(k) A z (71), it follows from Equation (19) that

1-. 0x > X•, • _Z(70. (23)

From Equations (20), (22), and,(23), we obtain

V • (-x(O), p) >V' • (-x(O), y 0 .(T. (24)

From Equation (24), it then readily follows that

p < y°(T). (25)

Solving Equation (22) for p yields

p(X) = -)' - x(O) - g( ), (26)

where we have made the definition g (X) = X z () and have introduced the
notation p (X) to emphasize the fact that p is a function of X. We note,
from Equation (18), that

g(X) = = f [ X~1 (t) B (t) v (t, X) - liv(t, X)I] dt,(27)

which is clearly a function of X.

Now if z(X) = z(L), we see from Equations (20) and (22) that

p(X) = y0 (T). (28)

From Equation (25), we recall p(X))< y°(T) if z(L) * z.(). Thus, Equation
(28) holds if and only if ()) = z(t).

From Equations (25) and (28) then, we see that the problem of synthe-
sizing the optimal thrust program is one of determining a six-dimensional
vector X which maximizes the function p () given in Equation (26). We
shall perform this maximization using the method of steepest ascent (Refer-
ence 9).

The method involves making X a function of some parameter p and
solving the differential equation
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,-- k Vj(X) 0(9)

for X (p). In Equation (29), k is some p mutant and.v denotes the

gradient.

Let us now consider the limit

, = lirn X(p)
p-+oo

We shall show that if this limit exists, it is precisely a desired X for
synthesizing the optimal control for a given x(0).

It can be shown (Reference 10) that Vp (k) (note Equations (26) and (27))
is continuous in X and is given by

VP(,) = -x(0) - f X-(t) B(t)v(t, X)ldt., (30)

Assuming
lim ) (p) = k°

P-O4o

where XO is a constant six-dimensional column vector, we obtain

lim V P [X(pI = V P(0)
p.#Co

since Vp (k) is continuous. From Equation (29) it now follows that

d, kVp(X°) = 0

Thus, as X-#iX, we have dk/dp-,O. (Otherwise, X would grow without bound
as p-+oo contradicting our assumption that X approaches a limit.) Then,
for )X = XO, we see from Equation (30) that

-x(0) = f X 1 (t) B(t) v(t, X)• dt. (31)

This means v (t, XO) is precisely the thrust program required to transfer
the space vehicle from the point x(0) to the desired terminal state x(T), = 0.
It is very easy to show (Reference 8) that ,(X0o) =z(), and, therefore, that
v (t, Xo) is an optimal thrust program.
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If we substitute Equation (30) into Equation (29), we obtain

-k [x(0) + X'l(t) B(t) v(t, X) dtl

or equivalently,

dX k X-1(T) (T) (0) + X (t) B(t) v(t, X) d. (32)

We observe that the term within the braces is simply the solution x (t) of
Equation (5) with u(t) = v (t, %) evaluated at the terminal time t = T. Since
this solution depends upon the choice of X, we shall adopt the notation

x(T, X) = X r) (0) + xl(t) B(t) v(t, X) dt. (33)

Substituting_ Equation (33) into Equation (32), we have

- = -kX (T) x(T, X),

or, in discrete form,

X(i+1) = x(i) - KX" (T) x(T, x(i, (34)

where K is some positive constant and i is the index of iteration.

We now outline the steps of an iterative computational procedure for
determining a correct X:

(1) Make an arbitrary initial "guess" X(o) for X.

(2) For this value of X(i), compute v(t, X(i)) from Equation (17).

(3) Integrate the equations of motion (Equaticn (5)) using the thrust
program of step (2) to determine x(T, 0(i))., Equation (33) maybe used
directly for this purpose.

(4) Substitute this value of x(T, 0(i)) into Equation (34), solve for
x(i+l), and return to step (2).

(5) Terminate the iteration process when fX(i~l}- k(i)l] < € where
c is a small positive number.

The optimal thrust:program is then given by Equation (17) using the last
iteration on k.



DISCUSSION OF RESULTS'

The utiUty of space missions is directly dependent on their payload
capability. In minimizing the amount of fuel used in the midcourse phase,
our intent has been to increaae this capability, that is, to permit the inclu-
sion of additional useful equipment. We must bear in mind that a savings of
only a few pounds may permit a mission to include scientific experiments
which would not be possible otherwise. This is a significant factor when
viewed in terms of the over-all cost of a space mission.

In developing the equations of motion of a space vehicle in midcourse
flight, we assumed the mass M of the vehicle was appreciably larger than
the mass of fuel m consumed during the midcourse phase. More realistic-
ally, of course, we should have considered the variations in total mass along
the flight. However, if the fuel mass for the midcourse phase should turn out
to represent a significant percentage of the total vehicle mass, this would
raise the question of the effectiveness of the launch or deboost guidance sys-
tem. In general, we would expect errors to be small at the conclusion of
launch or deboost operations. The task of midcourse guidance then becomes
that of making small corrections so that these errors do not propagate along
the trajectory and cause large misses at the destination. Hence, for pur-
poses of this preliminary study, it is felt the assumption M >> m is reason-
able.

We observe from Equation (17) that whether or not the vehicle is thrust-
ing is controlled by whether or not I 'X X- l (t) B (t)I exceeds a threshold
equal to unity. Moreover, we note that when the vehicle is thrusting, the
system utilizes the full thrust capability by making IIv (t, X)f = I and changes
only the thrust direction in accordance with the components of V' - X-1 (t)B (t).
As a result of this "on-off" nature of the thrust program, non-throttleable
propulsion can be used. However, since the direction of thrust is time-
varying, the attitude control system must be utilized during periods of thrust-
ing.

Since the initial error x(0) is a measured quantity, i. e., the output of
the navigation scheme employed, the thrust program performance is directly
dependent upon the quality of navigation. By allowing the navigation system
more smoothing time, i. e., deferring the initiation of midcourse guidance,
one obtains a more accurate estimate of x(G). However, in waiting, one
allows the launch or deboost burnout errors to propagate unchecked. A trade-
off between these two factors is essential in the selection of the time at which
midcourse guidance should be initiated.

In conclusion, we point out that whether or not the midcourse guidance
scheme developed here is practical from a systems-hardware point of view
is a question requiring further study. In this section, we have pointed out a
number of factors, pro and con. Certainly, the discussion is not exhaustive.
In any event, it is felt that results developed here could be exploited as guide
lines in other similar studies. For example, the amount of fuel required to
execute a mission using the above scheme could be used as an ultimate per-
formance limitation in the design of other midcourse guidance systems for
the same mission.
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SUMMARY

A review of the literature shows that the problem of optimal
control synthesis is not completely solved although many aspects
of the problem have received considerable study. An iterative
procedure for the synthesis of time optimal controllers is des-
cribed and some experimental results are presented. It is well
known that the optimal control law for the time optimal control
of linear systems with bounded control amplitude is of bang-bang
type while the time optimal rocket steering control law is con-
tinuous. In both cases, the solution of the associated two-point
boundary problem requires the determination of (n - 1) parameters
for an nth order system. The computational procedure described
here is based on the idea of optimal evolution and uses the method
of steepest descent to obtain the proper values of the n - 1
parameters. The geometrical significance of these parameters as
well as their relationship to the reachable sets is discussed. An
experimental, investigation of the convergence of the iterative
procedure is described for both. regulator and controller problems.
The use of this iterative technique for variable input signals has
been found to work in those cases investigated. The development
of the theory shows that convlergence to the correct solution can-
not always be guaranteed when working with variable inputs. For
example, it is possible for moving targets to "out run" or "out
maneuver" the system.

The results presented for the bang-bang problem were obtained
on second order systems. The rocket steering problems provided
third and fourth order examples. A closed loop optimal controller
for optimal rocket steering has been programmed and is presently
being studied on a digital computer.

INTRODUCTION

A. A dynamic system is to be controlled in such a way as to
maximize or minimize some performance functional. The state of the
system at any instant is described by n-independent variables
Xi(t), 1 < i < n. These variables change with time according to a
set of di-ferhntial equations xi = fi (X, UK, t) where the UK are
independent controls, 1 < K < R < n. These are the governing
equations for the system-. TTe variables Xi may or may not cor-
respond directly to the physical variables naturally associated
with the process. In addition to the governing equations there

70



are constraints on the state variables and on the controls. These
constraints are often in the form of inequalities A(Xi, UK) < 0 or
f9 B(Xi, UK) < M. The functional to be extremized is often Taken
to be an integral of the form S = f0T L(Xi, UK, t)dt where the
function L is called the error criterion and the functional S is
called alternatively the performance index, the payoff or the cost.

In realistic cases unwanted disturbances enter the system
along with noise in the sensors that observe the state variables or
the measurable physical variables. The controller may also suffer
from imperfections of various types and in addition the controller
may have only imperfect knowledge of the process or system being
controlled.

The initial and desired terminal states of the system are
prescribed. The problem consists in finding a control law u(t) in
the class of allowable controls that brings the state point from
initial to terminal locations and extremizes the payoff or cost.

A synthesis procedure for an optimal system results in a
closed feedback loop representing the system being controlled and
a computer to select the optimal control law. The block diagram
in Figure 1 illustrates the main ideas.

FIGUR.E 1. OPTIMAL FEEDBACK CONTROLLER

It is necessary to incorporate the noise and random inputs

from the beginning and to determine the extent to which these dis-
turbances must be taken into account in selecting a performance
criterion.

The synthesis procedure involves several distinct steps.
Each of these steps is an interesting area for research on its

own merits. However, no single step, by itself is sufficient to
constitute a synthesis procedure. These steps include the selec-
tion of a performance criterion, determination of the system state
point from noisy data,, estimation of statistical properties of
noise and random inputs, and computation of the optimal control law.

B. Historical background. A search of the literature dis-
closes many examples of a specific nature as well as several
thorough treatments of general methods of formulating problems of
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optimal control. However, very little has been published regarding
actual synthesis of real time optimal controllers. Research on
real time optimal control appears to be confined in the main to
separate studies of one or more of the individual steps described
previously. However, there are some results on synthesis of pre-
dictive but not necessarily optimal controllers.

The reduction of the synthesis problem to studies of individual
simpler problems follows the traditional pattern. General studies
of dynamical systems lead to special studies of properties of con-
trolled systems. The historical development of control theory
usually emphasizes stability. Although this is always a considera-
tion, it is not the main concern here. The optimization problem
is frequently treated separately and ordinarily is formulated in
terms of calculus of variations, either in classical form or by
using direct methods. The treatment of the optimization problems,
in a great many cases, is aimed at finding solutions for a few
initial states and limited number of terminal states. The two-
point boundary problem is ordinarily solved for only a restricted
class of initial and end conditions. The solution of two-point
boundary problems constitutes another large area of research and
again there are a number of general studies and a number of very
specific studies.

Finally, there is a class of papers devoted mainly to appli-
cations of previously derived theoretical and computational results
to specific systems. These papers encompass aircraft performance
studies, space travels, chemical plant operation, instrument servo
designs, optimal noise filters, and a variety of other special ap-
plications. It goes without saying that there are papers that fit
into more than one of the general categories described as well as
articles of interest that do not fit well into any one of these
general areas.

The behavior of dynamic systems subject to random inputs or
disturbances has some connection with research on optimal control
synthesis. There is a relation between certain random problems of
control theory and problems arising from physics, for example
Brownian motion. The similarity between problems is very close
and the same kind of equation (Fokker-Planck) arises from both
classes of problems. Blackman (1) Hopkin and Wang (2) and Barrett
(3) have studied this. The book by Wax (4) contains a collection
of stochastic problems of physics that relate to control theory.
Texts by Tsien (5) Lanning and Battin (6) and Petersen (7) have
discussed random processes and control theory in detail. In ad-
dition, recent papers by Aoki (8) Bellman (9) Adorno (10) and
Zadeh (11) have also been concerned with control and random proces-
ses.

The design of optimal controllers depends upon the selection
of performance criteria. Various kinds of standards, performance
criteria, and error indices have been proposed and investigated
(12,13).
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The theory of optimization has developed along two parallel
branches stemming from mathematical and engineering interests.
Formulations of the mathematical problem have been made by Bliss
(14) Hestenes (15) Kalman (16) Marcus and Lee (17) Breakwell (18)
Bryson (19) Bellman (20) Kalaba (21 La Salle (22) Pontriagin (23)
Kipiniak (24) Chang (25) DeSoer (26) and many others. A review of
the literature relating to time optimal control has been prepared
by Paiewonsky (27). At the present time, the formulation of
optimization problems and the resulting necessary conditions are
fairly well understood. A possible exception is the case of in-
equality constraints on the state variables.

Once the problem has been formulated in precise mathematical
terms, the next step is to obtain solutions. The solutions can be
the optimal path that the system should follow or the optimal control
law to be applied to the system.

The solution of the optimization equations has been attempted
by many investigators using several different techniques. For the
most part, these investigations have been directed towards solu-
tions of a special class of optimization problems.

The direct integration of the Euler equations has been tried
many times. Integrations are tried forward, backwards, or in
combination. There are several ways to satisfy the boundary con-
ditions. These include (a) trial and error searching for the
Lagrange multipliers, (b) flooding or calculating a great number
of trajectories by systematically varying multipliers at initial
or terminal points, (c) guessing and refining the initial results
by Newton's method, influence funbtions methods and other means.

It has been known for a long time that the direct integration
of the equations of the system coupled to the Euler equations re-
sults in a set of equations with extreme sensitivity to initial or
terminal conditions.-

Another approach to the solution of the optimization equations
is the partial differential equation or payoff surface approach.
The Justification for these methods is based on the fact that for
most systems the surfaces of constant optimal payoff are boundaries.
of convex sets and the gradient of the surface (if it exists) cor-
responds to the Lagrange multipliers of the classical approach or
the adjoint variables of the maximum principle. These. optimal
payoff surfaces are solutions of a partial differential equation
analogous to the Hamilton-Jacobi equation obtainable from the
maximum principle. The properties of these surfaces, also called
reachable sets, have been studied by Halkin (28) Paiewonsky (27)
Roxin (29) and Anderson (30). The characteristics of this partial
differential equation satisfy the Euler equations. A discrete
version of this partial differential equation is the basis for the
method of Dynamic Programming developed by Bellman. This approach
has been applied to many problems with varYing degrees of success.
A technique based on results of Neustadt (31) appears promising
for optimal problems with linear processes. This will be dis-
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cussed in more detail in a following section.

The methods listed above have in common the idea of searching
for a function that satisfies initial and terminal conditions
among a class of functions satisfying certain necessary conditions.
An alternative approach has been taken by several investigators.
In particular, Kelley (32) Bryson (33) Swanlund (34) Kipiniak (24)
Ho (35) and Dreyfus (36) have investigated the gradient methods.
These methods seek a control function that extremizes the perfor-
mance functional from the class of functions that satisfy the
boundary conditions. The method depends upon successive approxima-
tions to continually improve the value of the performance index.
In the course of the "descent" it is necessary to adjust the pro-
cedure to satisfy the boundary conditions which may be drifting
off. 'Several special procedures developed to do this have been
reported on and are included in the bibliography. Analog computers
for solving these problems have been investigated by Kipiniak (24)
and Meers (37).

The optimal control of quantized or discrete systems has been
studied by DeSoer (38) Friedland (39) Kulikowski (40) Neustadt (41)
and Zadeh (11) among others.

The idea of a field of extremals is fairly old, however, it
has been only recently that this notion has been applied to optimal
control problems to obtain neighboring solutions to a known optimal
trajectory.

Perturbation techniques designed to obtain additional solu-
tions to boundary problems by examining neighboring solutions have
been studied by Bryson (42) Kelley (43) Kipiniak (24) Swanlund (34).
and Dow (44) among others.

There is such an abundant literature on applications of opti-
mization procedures to problems in flight mechanics that it is
impractical to do more here than to cite some of the more prominent
works and to describe in generalities what has been accomplished.

It is important to observe that the objective in many of these
studies is to find only a few solutions to a limited class of
boundary conditions and the question of synthesis of a controller
does not arise.

Classical variational theory has been used by Leitmann (45)
Behrbohm (46) Miele (47) Melbourne (48) and Edelbaum (49) among
others to study optimal paths for aircraft, rockets, and space
craft.. Lawden (50) employed direct methods for optimal orbital
transfers, while Bellman (51) and Dreyfus (52) and Smith (53) use
dynamic programming.

Optimal reentry and optimal climbs have been among the ap-
plications of the gradient methods empleyed by Bryson (54) and
Kelley (55). These investigators have also given some considera-
tion to the synthesis problem. Friedland (56) has considered the
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synthesis problem and has described in general terms the structure
of a class of optimal controllers.

At this point it is useful to look back for a moment and take
stock of what has been said. Optimal control and optimal path
problems can be formulated and solved for a number of special ap-
plications. In general, though, these are idealized cases. That
is, given a typical problem as posed in the preceding sections, it
is usually possible to find a solution to the two-point boundary
problem, if one exists, by some one of a variety of means. Never-
theless, this is not enough to constitute a synthesis procedure,
although it is a step in the right direction.

A closed loop optimal controller must be able to determine the
optimal control law at each instant of time. Except for some
special cases, i.e. time invariant linear processes with quadratic
error and quadratic fuel cost, the two-point boundary problem re-
quires iterative solution in one form or another.

The determination of the optimal control. may be accomplished
by looking up stored results of previous calculations, by actual
solution of the two-point boundary problem with fast-time-scale
computers, or by a combination of these methods. For example,
controllers have been described by Bryson (57) and Kelley (43)
that would use stored nominal optimal paths together with a fast
computer to determine, neighboring optimal paths. Alternatively,
nominal paths can be stored and the optimal control for an "initial'
point not on a stored path can be approximated by an interpolation
scheme.

There are many alternatives available and only a few seem to
have received any serious study. For the most part, these studies
are idealized by excluding noise, random disturbances, and
component imperfections. There are exceptions however. Studies
of satellite attitude controllers have included these effects and
considered the behavior of the systems, (usually relay type), in
the small signal region with component imperfections present such
as dead time and hysteresis (58). The effect of these real
characteristics on limit cycle size and fuel consumption are es-
pecially important in those applications involving a service life-
time that is long compared to system time constants. An optimal
system designed, for example to reduce large errors in least time,
should be expected to spend most of its life in the small signal
region where the effects of imperfections and noise are important.

Returning again to the synthesis question, it has been found
worthwhile to examine some results of studies of non-optimal con-
trollers that use techniques similar in principle to those re-
quired for optimal synthesis. These are the predictive controllers
and the terminal controllers. Some results of automatic predictive
controllers are available. (Chesnut and Sollicito (59) Steeg and
Morris (60).) The applications studied include reentry guidance,
satellite rendezvous and airplane automatic landings. In ad-
dition, studies of predictive controllers with human pilots in the
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loop have also been made (NASA) (61,62). These have also been
idealized problems as various simplifications or approximatloni
have been made to facilitate the studies.

These predictive controllers have been made to work at least
in ideal simulation and there seems to be no fundamental reason
why similar controllers based on an optimal control logic could
not be made to work under the same ideal conditions. The important
question is how to design an optimal controller to operate under
real conditions and very little is known about this at present.

The next section will describe some results of optimal synthe-
sis studies for linear systems.

SYNTHESIS OF OPTIMAL CONTROLLERS FOR LINEAR SYSTEMS

A. Preliminary remarks. The discussion in the preceding sec-
tion defined an optimal controller as a closed-loop feedback system
that repetitively solves the two-point boundary problem. It was
pointed out that there are several ways to accomplish this de-
pending on the amount of pre-computation and storage allowed. The
studies reported on here use the minimum amount of precomputa-
tion. The minimum time performance criterion was selected for
these synthesis studies for several reasons. The main reason being
the belief that a synthesis procedure could be achieved for this
case. The reachable sets are generally easy to obtain, yet the
problems are not trivial. The next step was to try to obtain a
computational solution to the time optimal control problem. The
closed-loop system that was envisioned would frequently sample the
measurable system output variables and estimate the system state
point. On the basis of this estimate, the controller rapidly ob-
tains the optimal control manipulation by finding the proper state
for the adjoint system. Section B contains a description of the
studies directed towards developing a useable computational pro-
cedure. The incorporation of this procedure into a feedback
controller is described in section C. Some applications to simple
problems of flight mechanics were used to provide a framework for
the synthesis studies.

B. Solution of the time optimal control problem. It is al-
ready well known that the solution for the classical time optimal
control problem is of bang-bang type and the control law can be
given in terms of the response of the system adjoint to the given
system. It is possible to obtain these results bv% several different
procedures and a review of the field is contained in reference (27).

In spite of the fact that the optimal control law has been
known for a long time, very few optimal controllers have been built
for systems of order higher than two. The principal drawback has
been the difficulty in solving the two-point boundary problem, or
what is the same thing, finding the optimal initial state of the
adjoint. This section is intended primarily to show how previously
published techniques can be combined to successfully solve this
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problem. In addition, some experimental results are presented that
provide verification of the convergence of tne proposed procedure
for-a class of linear time invariant systems. The problem can be
stated as follows: Given a linear system of the form

i = A(t)X + B(t)u (1)

where

X is an n-vector
A is n x n matrix
B is n x r matrix
u is r vector,

It is desired to find the control law u0 that takes the system from
initial state X(O) to terminal state Xf(or catches input signal
e(t) in least time, To.

It is well known that the optimal~,control law is given by the
expression

O1
S= sgn (TI X 1B) (2)

where x- (t) satisfies the adjoint differential equation

(i_') = -(X-I)A

The solution of the equation (1) can be written as

x(t) = X(t) [ x(o) + (T) B(T)u(-)d i

After subs~tituting the terminal condition xi(t) =i(t) and equa-
tion (2) the following expression

-x(o) = x-l(t)m(t) +f TX- I(T) B(T)sgn (1X1(¶)B(¶))i (4)
0

is obtained.

This equation in effect is a mapping of vectors 11 into vectors

Z . .... dr e(t) = 0

The problem is to find an Tj that maps Z into -x(o). This was
recognized in a somewhat different form by Krasovskii (63). How-
ever, Neustadt provided a key to a steepest descent procedure by
means of an elegant result (31).

Before proceeding directly to the main idea., it is desirable
to insert a brief discussion of some geometrical aspects of the
problem. The, idea of optimal isochrones, or the boundaries of the
reachable sets,, plays an important role in the development of
optimal control theory. To each point in the x-phase space, there
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is assigned a value of the optimal time required to reach the target.
Through each point there passes a portion of a surface of constant
optimal time to reach the target (Figure 2). The normal to this
surface defines the direction of the optimal T1 vector. These sur-
faces need not be smooth, in fact, there may be corners, sharp .
edges and points. Therefore, the gradient may not exist at certain
points or along certain curves or hypersurfaces. Figure 3 shows a
typical set of isochrones for a second-order system.

The hyperplane passing through the point -x(o) and defined by
the 11o vector is a support plane for the convex set formed by the
optimal isochrones. Therefore for all unit vectors 1, the inner
product (ii, -x(o)) < (T_ -x(o) 5 or qo maximizes (nl -x(o)).
Neustadt (31) suggests the following iteration procedure. Select
a trial value of n. This determines a trial hyperplane at -(x(o))
in the Z-space. Examine the locus of points mapped by q into Z
using t as a parameter, and select the values of Z and t correspond-
ing to the point where the locus pierces the hyperplane. The
geometrical ideas relating the optimal control problem to the
notion of expanding convex sets are believed to have been first
explored by Bellman, Glicksberg, and Gross in a study of the bang-
bang problem (20).

Figure 4 illustrates this procedure. The point of inter-
section of the Z trajectory and the hyperplane will not generally
coincide with the desired target; -x.(o). If this point does
correspond to -xi(o) then the optimaI initial conditions of the
adjoint have been found and are equal to the components of the
normal to the hyperplane. A series of corrections to the TI-vector
is usually necessary to find the optimal initial conditions. A
steepest descent procedure is effective. The changes in
Ti( )V+4 = V + 6 I) are given by a result of Neustadt, namely
6 = K[x(o) + Z%(,t)]. The correction to qV should lie along the
"error vector" (i(o) 0 (,t)) in the hyperplane determined by 1.

A starting value for the 7 vector must be obtained. The re-
sults of previous studies have shown that there is a relation
between the optimal isochrones and Liapunov functions (27). This
observation leads to a means of approximating the optimal iso-
chrones by quadratic forms. These quadratic forms are then used
to obtain the starting values for the iteratiofi. The-se studies
used

= - x(o)H x (o) U
The initial studies were based on simple systems. Using the ARAP
analog-digital computer, a second order undamped oscillatory
system with one control force was simulated and regulated in a
time optimal fashion.

The equations are:
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x2 = +W 2 (i+)
uo sin cot

sgn[-T1l -w + T2 Cos Wt] (2')

zl(t) : f * sin t[u]dT (4a')
0

Z2 (t) ft cos oYr[u]d¶ (4b')

T1l[Zl(t) + xl(o)] + 'q2 [Z2 (t) + x2 (o)] < 0 (5)

S n-ln-K 1 [Zi-(T) + xi(o)] -K 2I[Zi(T) + xi(o)] 2 (

l ,(6a)
n 2

Z ni- -K1 [Zi(T) + xi(o)] - K2 [Zi(T) + xi(o)] 2 11
n-i

The analog computer is started with a first guess of the

adjoint system initial conditions Il-, 112
X toN

ni =- II xi(o)

This initial guess is obtained from a Liapunov function. The
computer then runs until mi[Zi(t) + Xi(o)] becomes positive. The
analog machine is then transferred into the hold mode; Zl, Z2
sampled; and a new initial condition vector ql, T2 found for the
adjoint system. This cycle is repeated until the terminal point
in Z-space is within distance E of -xi(o),

For the examples shown here, the system parameters are:
W2 = .1 and F = + .5, giving steady state rest points of x= + 5.
In all tests, the effects of the gain constants KI, K2 in (6a)-on
the convergence characteristics were noted. The general trend ob-
served was that increasing the K's resulted in fewer iterations
required per solution with five iterations being the minimum
number. Further increases then resulted in large and undesirable
oscillations about the correct solution. The values of the gain
constants at which the cycling occurs depends upon the system in
question and its initial conditions. For the time optimal regula-
tion of the harmonic oscillator values of K1 = 1; K2 = 1 were
satisfactory under all conditions.

Using these nominal values, the iterations shown in Figures 5
and 6 were obtained. Each of the trajectories shown in the Z-phase
space represent one of the iterations in the search for the correct
initial conditions for the adjoint system. The trajectory of the
physical system in x-phase space corresponding to the correct il
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vector is also shown. Figure 6 illustrates the same data in time
history form.

In addition to oscillatoFs, the regulation of double integra-
tors was also investigated (w = o). A sample case is shown in
Figure 7. The hyperplane is almost parallel to the trajectory of
the system in the region of the solution. Under these conditions,
a small angular change in the adjoint initial vector, (producing
an equal angular change in the trial tangent line) will result in
a large displacement of the point of intersection. It is necessary
to reduce the steepest descent gains if oscillations are to be
avoided. In the case shown, K1 = .1, K2 = .1 were used in the
region sufficiently near to the correct solution (use of these
gains throughout the problem results in an excessive number of
iterations). It will generally be necessary to program controller
gain variations.

In addition to regulation (returning the system to its null
point) it was decided to investigate the capabilities of this
technique in following command signals. Referring back to Equa-
tion 4, it can be seen that the ability to follow variable input
signals is obtained by retaining the terms el(t); i.e., the target
point coordinates, ei(t), are no longer located at the origin.
For the second-order example, the equations used by the controller
are

>1 (t) = xl(o) -f sin onr[u]dT -•i(t) cos at + • 2 (t) sin wt

0
(7a)

x2 (t) .x2 (o) + f cos = [u ]d T - ýl (t) w sin wt -• 2 (t) cos wt
o (7b)

where Xi(t) = xi(o) + Zi(t) terms resulting from ei(t) / o.

Ill(T) + T2 [x 2 (T).] 0 (5')

ai_lKl D,(T)] -K D'i(T) j2

.i nli-K) 1[xi[(T)]ITK (8)

These equations reduce to those given previously by setting

ýl(t) = ý2 (t) = 0 and transposing the xi(0) terms to the left hand
side of the equations.

The two forms of input signals investigated in this portion
of the study were:

(a) Arbitrary stationary points in the phase space, i.e.
going to a prescribed position and attaining a prescribed velocity
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at that point.

(b) Step and ramp signals. In phase space, the target starts
with initial horizontal and vertical displacements from the origin
and moves horizontally at a rate proportional to its vertical
displacement. Figure 8 shows the iteration process for the first
type of input.

It is important to remember that Neustadt's procedure is
based on finding the maximum time for which the condition
-q [Z(T) + x(O] = 0 can occur. The error vector, [Z(t) + x(O)]
need not decrease at each step of the steepest descent and may be-
come very large even as the time T approaches the optimal time.
In order to speed up the convergence of the iterations, a change
is made in the procedure if successive changes in T are observed
to be growing small without reduction in the size of Z(T) + x(O).
There are several other ways to use the Z-equations and two of
these have been employed during the terminal phase of the itera-
tions. Gamkrelidze suggests a method (also described by Kras-
ovskii) for a steepest descent procedure, keeping T fixed, and
varying Ti to make Z(T) parallel to x(o). The final time T is to be in-

creased from something small until Z(T) = -x(o). In this method, as in
the previous one, there is still the question of determining the maximum
T (i.e. distinguishing local minima) in the case of moving targets.

It is also possible to seek the value of n that minimizes
the error at the time ri • [Z(T) + x(O)] = 0. This is a modifi-
cation of a search method investigated by Paiewonsky (27). The
latter method usually requires an experimental determination of
the gradient in practice, although a closed form solution is
sometimes available. The results obtained to date on these tech-
niques are not sufficient to allow a complete comparison with
Neustadt's method regarding speed of convergence, practical dif-
ficulties, etc. It is hoped that it will be possible to do this
soon. It is possible, however, to state that the problem-of the
vanishing of the gradient of the error (as a function of the
initial TI) as described by Paiewonsky in reference (27) can occur
for the latter method. This does not occur with Neustadt's
method as the gradient ther4\is always given by the error vector,

C. Applications. The applicability of this technique to
problems of flight mechanics depends upon a linearization of
some kind. Many possibilities suggest themselves; one is to
find a problem that can be linearized from the start. If this
cannot be done, it may be possible to apply a method of suc-
cessive approximations to the equations solving a succession of
linear problems. The following example was prepared in order
to study the properties of a closed loop optimal controller using
a repetitive computer. Consider first the problem of determin-
ing the optimal steering program for the upper stages of a
booster rocket. If the ocket burns continuously then the
minimum fuel problem is a minimum time problem. The gravitational
field will be assumed to be uniform in this example. The equa-
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tions of motion are

:x2

x2 = A cos u

x3 = x4

X4 = A sin u - g

The convexity of the reachable sets can be verified directly.
The adjoint equations are:

P =0 2 P1

(10)
P3 0 -4 0 3

The optimal control is the well-known bi-linear tangent law:

Tan uo = P4 (t) P4 (°) - P3(O)t
a 2• (t= P 2 (0) - P7(7)t

In this example, the equations for the Z's are

Z1 - t A cos u

2 = A cos u

Z3 = - t(A sin u - g)

Z4 = A sin u - g

The particular numerical example chosen is the optimal
steering of a nuclear powered upper stage rocket. The initial
conditions are

Vx(O) = 10,330 ft/sec

Vy(O) = 5,500 ft/sec

y(O) = 20 miles

and the desired terminal conditions are:

VX,= 25,300 ft/sec

V = 0 ft/sec

y = 200 miles

The horizontal range was not prescribed. These equations were
set up on the ARAP analog-digital computer at first for the
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special case of A = F/m(t) = 5. The objectives of the initial
study were to determine the sensitivity of the convergence of
the iteration procedure to computational errors and to determine
the number of iterations required as a function of the initial
starting value of the adjoint. These studies showed that con-
vergence of the iterations depended to a great extent on the ac-
curacy with which the stopping time could be determined. For
systems of order higher than two, Z(T,q) proved to be a highly
sensitive function of il. The maximunrc--t-olerable error in
determining the timý at which i • (Z(T,-r) • x(o)) vanished was
of the order of 1 0-4 seconds. This is illustrated by Table 1,
which represents a typical case.

Components of 7) F(q) Components of Z(F(i) ),1)--x(o)

.54580027 .01316405 1.0729829 148.56863 .830 22,700 -7.373

.54580027 .01316405 1.0729839 148.56906 .397 52,705 -16.369

.54580027 .0o316405 1.0734830 148.56824 1.259 -7,410 1.640

.54580027 .01314405 1.0734830 148.56763 10.711 -121,610 31.768

TABLE I

This extreme sensitivity makes it difficult to reduce the
error, IIz(T,ri)-x(o)II when the time T is close to the optimal
time. Two steps were taken to overcome this difficulty. First,
a special program for the step size was developed. Second, when
successive values of stopping time, T, differed by a pre-
selected amount of different computational scheme was used to
obtain reduced values of the error I[JZ(T,7)) - x(o) II and precise
estimates of q The details of these computational studies

ill be contained in a forthcoming ASD report.

The next step was to program a computational model of
closed-loop optimal controller for simulation on an IBM 7090.
This is shown schematically in fig. 9. The' controller samples
the output of the system and determines the value of the control,
uO(t) on the basis of the noisy measurements. The possibility
of filtering the noisy measurements was included.

It takes a finite amount of time for the computer to
determine the control and a variable length delay was incor-
porated to study the effect of this time lag. Provision was
also made for a calculation in the controller to simulate
compensation for the delay. The control computer requires an
estimate of the system parameters, in this case the initial mass
m(o), the propellant mass flow rate P, and the thrust F or the
effective exhaust velocity c. The control computer does not
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know the exact values of these parameters and a study was made
to determine the effect of uncertainties in system parameters
on overall performance. The mass flow rate, P, was allowed to
have random variations corresponding to rough burning, or in
extreme cases, a "chamber out" condition. No adaptive features
were included in the controller although it is clear that the
system parameters needed are capable of being estimated in flight.

In order to reduce the number of iterations required during
the computation of the control, a "nominal" trajectory was
introduced. The nominal trajectory used was the optimal path
from the initial point to the terminal point. That is, once the
optimal initial values for the adjoint are found by the computer,
after the very first sample period, the nominal values for the
state variables and adjoint can be obtained by a faster than
real time integration. These values of the adjoint are stored
and used as starting values for the subsequent iterations at
later sampling periods.

This work is not yet complete. However, some preliminary
results of the computer studies are available. The objective
in the perturbation studies is to observe the behavior of the
iteration scheme as the initial conditious are perturbed away
from the starting values. Two types of investigations were
made. In a typical run of the first series, the initial point
in phase space is fixed, the starting value of the adjoint is
varied and the number of iterations required to converge to the
optimal value of the adjoint is obtained. The second series of
runs is similar but the starting value of the adjoint is fixed
and the initial state of the system is varied. The number of
iterations required to find the optimal state of the adjoint is
obtained here also.

A series of runs to observe the closed loop system be-
havior in the presence of noise and parameter uncertainties is
also being carried out at the present time as part of the
computer studies. The results of these studies will be re-
ported in detail at a later date.
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ABSTRACT

Section I considers the practical problem of closed-loop
control of linear plants. A minimum response time criterion
is used in the design of a pitch attitude controller for a
flexible launch vehicle. The criterion is applied to a fourth
order model containing the primary dynamics of the thirteenth
order vehicle. There are tried and proven methods for
obtaining the control variable as a function of time which
takes the system from an initial condition to the target set
in minimum time. It is shown that a suitable collection of
these open-loop trajectories can be used to define a closed-
loop control law. Results of an analog simulation are pre-
sented which show that this control law properly applied to
the flexible vehicle results in good control.

Section II considers finding the optimum path from an
initial condition to a target set. The problem is reduced
to an initial value problem in which the minimizing initial
values of the adjoint variables or multipliers are sought.
(Inequality constraints are included in the formulation.)
The problem then becomes one of minimizing a function of
several variables subject to constraint equations in those
variables. This is a problem for which necessary and suf-
ficient conditions for a strong relative minimum are well
known. A second order Newton!Raphson iteration procedure for
numerically finding the minimum is described. Finally,
experiences in the use of the Newton-Raphson method are des-
cribed.
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SECTION I

AN APPLICATION OF TIME-OPTIMAL
CONTROL THEORY TO LAUNCH VEHICLE REGULATION*

In spite of the relatively large effort which has gone
into the study of optimization during the last few years, there
have been few applications to significant, practical closed-
loop control problems. This is true in spite of the fact that
theoretical developments promise solutions or potential solu-
tions to control problems for which conventional synthesis
procedures are not completely satisfactory. Among the diffi-
culties which have hindered practical applications are: ade-
quate description of real plants often requires differential
equations of quite high order, the control law is usually a
non-linear function of many variables and difficult to imple-
ment, and the fact that the theoretical solution Of the optimi-
zation problem most often yields the open-loop control law
u (t, x(o)) rather than the required closed-loop law, u(x).
The flexible launch vehicle is used in this paper to illustrate
these problems and to demonstrate the use of some techniques to
overcome them.

1.1 Equations of Motion The assumed equations of a typical
250,00O pound flexib-=Tunch vehicle are given in Table 1.
Poles and zeroes of the OR transfer function are listed in

U_
Table 2. Airframe coefficients are taken at the maximum dyna-
mic pressure flight condition with flight speed assumed con-
stant. The equations include dynamics of the rigid body,
three body flexure modes, tail-wags dog, actuator, rate servo
and an integration of pitch rate for control of pitch attitude.
A single control variable is assumed ava-lable from gimbaling
of the engine. A maximum gimbal rate of 0.2 rad/sec is com-
manded at all times.

1.2 Specification of the Controller In applying optimal con-
trol theory to the snthesis of controllers for practical
plants it is necessary to specify both the optimization cri-
terion and what is to be controlled. With the criterion used
here, minimum response time, it has been common to apply the
criterion to the state vector y, of a plant in the form,

(1.2.1) y = Ay + Bu

However, when this is done the resulting response in multi-
degree of freedom systems may be entirely unacceptable. This
is forcefully demonstrated by time optimally regulating the
state vector of the rigid launch vehicle given in Figure 1.
When all components of the state vector, pitch attitude, pitch
rate, angle of attack and gimbal deflection are brought to
zero in minimum time from an initial displacement in pitch
attitude of 0.01 radian, displacements of attitude and angle
of attack greater thanO.15 radian occur. Although this is the

*Work reported in Section I was accomplished under NASA Con-
tract NASr-27.



time-optimal response for regulation of the state vector, it is
certainly not acceptable since it would literally destroy the
vehicle. On the other hand, if the problem posed is that of
bringing the single component, pitch attitude, to zero in mini-
mum time and holding it there then the deadbeat response to
step input of attitude is obtained (Figure 1).' In this case
angle of attack and gimbal deflection are not zero at the re-
sponse time (time when e and 6 are first zero) but decay with
a 21.7 second time constant characteristic of the plant. It
has been shown that single component control can be described
as motion to a region in the n-dimensional space. The target
region is determined as that region in n-space where the com-
ponent being controlled is zero and is capable of being held
there with a bounded control variable. (Reference 1, 2) The
necessary and sufficient conditions for minimum time motion to
such a region have been obtained (Reference 3).

In the work presented in this paper, optimum control syn-
thesis techniques are demonstrated for control of pitch atti-
tude. The controller obtained is fourth order, one dimensional.
That is, the control variable is a function of four variables,
and the target set is a line segment in this four-space.
Choice of pitch attitude was arbitrary. The techniques apply
equally as well to control of other components of the state
vector or to control of a linear combination of them such as
minimum drift.

1.3 A Truncated Model Although time-optimal control theory
applies in principlpeto regulation of plants of any order, it
is not desirable nor necessary to apply it in controller design
to the complete plant representation when the motion of the
variable being controlled is primarily influenced by relatively
few variables. In the launch vehicle considered, the flexure
mode frequencies are quite high and aero-dynamic coupling small
so flexure has only minor effects on rigid body pitching motion.
The same is true of the actuator dynamics. Consequently there
is a natural division of the plant into a set of dominant and
a set of secondary dynamics. Time-optimal synthesis is applied
to control the dominant modes only, and conceptually the second-
ary dynamics act as a filter on the primary modes. This is
shown in Figure 2. The transfer function eR, for the entire

U
plant of Table 1, has been divided into two parts

eR(s) G G
U(S) 1 " 2( i)

Primary dynamics are contained in
G = - 0.8808 (s + o. 04181

I s(s + oos) s-.o'r)8( + 1..92)0 (32)
and secondary dynamics in G', Feedback of the fictitious out-
put of G is used for contrgller design. The partial principle

coordinate methods of Reference 4 permit one to derive the
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linear transformation relating the y coordinates to the state

of the system, x. The transformation

y = Lx (0.3.3)
where y is an m-vector, L an mxm-matrix and x an n-vector, in
general, then permits the fictitious control loop of Figure 2
to be changed to the one which is physically realizable in
Figure 3.

A plant in state vector form which gives the transfer
function of equation (1.3.2) is,

0 0 1 0 0 1  "0

Y2  0 -0.0394 2.1403 -4.4•04 Y2

Y3! 0 1.00 -0.02738 -o.o421 y 3 + 0 u (1.34)

Ly4  o 0 0 -0.02 y4  .2

This was obtained by deriving Yl(s) and Y (s) transfer func-

tions from a set of equations of this form but with unknown
coefficients and then adjusting coefficients to give the pro-
per poles, zeros and gains. A similar set of equations could
be obtained directly from the transfer functions of equation
(1.3.2) and the transformation to continuous coordinates of
Reference 5.

The transformation matrix L, which relates the output of
the flexible vehicle to the y variables contains many elements
which are very small. It is possible to neglect these. The
transformation used in the analog simulation was,

eF " l1 0.0341 o 0 0 eR

eF Y2  0 0.999 0.0729 0 -0.15 eR

aF Y3  0 0.0341 0.999 0 -0.001 aR (1.3.5)

5F .y L 0 0 0 10 1 B

e

It is seen that y1, corresponds very closely with eR, Y2 with

eR, Y3 with aR and Y4 with 6c. Motion of eF corresponds very

closel with that of % , so it is reasonable to take equation
(1.3.4L) as the truncat d model of the full system.

Two points should be emphasized in the choosing of a trun-
cated model for controller design. First, division of the
plant into primary and secondary dynamics cannot be made until
the variable to be controlled has been specified. This vari-
able may be one of the physical variables appearing in the
state vector x or may be a linear combination of them. Second,

103,



even if the secondary dynamics are a result of a limited num-
ber of physical variables in the equations of motion (equation
1.2.1), the primary dynamics cannot be obtained by simply
neglecting these variables and equations. For example, if
the equations for the flexure modes and actuator were omitted
in truncating to a fourth order model corresponding to G ,
the poles at -1.4962 and 1.4296 would be at -1.47 and 1.403.
1.4 Closed-Loop Time Optimal Control Law The next step in
the synthesis procedure is to derive a closed-loop controller
for the model of equation (1.3.4). The criterion for design
is time-optimal regulation of pitch attitude; that is Yl is
to be brought to zero from an initial condition in minimum
time subject to a bounded control variable, and then held at
zero. This corresponds to motion to a one dirpensional line
segment in the four dimensional space of e eF, a., 6 F.
There is no known method for obtaining a useful closed form
expression for the closed-loop control law u(x) which moves
the plant to the desired line segment optimally. However, it
is possible to compute open-loop solutions u(t,x(O) ) for
any initial condition x(O) using the computational techniques
described in Reference 6. These techniques solve a set of
transcendental equations for a control variable u(t,x(O) )
which is constrained to satisfy the maximum principle. Since
the maximum principle has been shown to be a necessary and
sufficient condition for the optimum solution, the u(t,x(o) )
obtained is the optimal one. It is not practical to solve
the required equations on line to achieve effective closed-
loop control. Instead a collection of open-loop optimum
trajectories from a set of initial conditions distributed
evenly throughout the phase space region of interest is used
to define a closed-loop control law by the method described
in Reference 7. Each of the variables eF, F', aF, and 5F is
dlvided up into 32 regions called quanta. A Boolean variable
Xj, is defined for each quantum (i= 1, 2, 3, 4, J=l, 2,9...32).
The variable X1 takes a value one if the measured magnitude
of the ith variable is within the j th region and takes the
value zero if the magnitude is within any other region. A
logic form,

u(x) = sign Z Z X (1.4.1)
I =l J=l 1 :,

is assumed capable of mechanizing the control law and the 128
constants, Al, are experimentally adjusted to make u(x) agree
with the opt imum control at discrete points on the optimum
trajectory. This adjustment or training procedure is shown in
Figure 4. Switch S is opened at t = 0 and the open-loop
optimal solution u(t) applied to the simulated plant. Output
of the plant x(t), is the input to the logical net and the
output of the net u(x(t) is compared with the optimum
control variable u(t,x(0) ) at discrete intervals of time.
If the control variables are different Al corresponding to
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the X s which are one for that x(t) are incremented in the
direction to make the sign of their sum the same as the sign
of u(t,x(0) ). If u(x(t) and u(t,x(O) ) are the same then no
adjustment is made. This procedure was carried out on a
general purpose digital computer using a set of 198 optimum
trajectories for the plant of equation (1.3.4), distributed in
the space,

0 < eF 0o.1

-0.12 < 6F < 0:.12 1.4.2)
-0.1 < a 0.1
-0.12 < 6F < 0.12

Control variable comparison points were at intervals of 0.1
second. As the adjustment is carried out the number of
differences (called errors) between u(x(t) ) and u(t,x(0) )
is an indication of the convergence of the procedure. The

per cent errors, 10 No. oferrors in N ont is plotted

as a function of the number of trajectories in Figure 5.
First switch points are those between t = 0 and the first
switch time, second switch points between the first switch
time and the second, etc. Initial Xq were all taken to be
zero. It is seen that errors drop vtry rapidly at first,
being less than 10 per cent after only 100 trajectories. At
5000 and 7500 trajectories the resolution of the logic of
equation (1.4.1) is artifically increased 1y multiplying all
Xjj's by two. At 11,000 trajectories the Xý s are multiplied
by a factor of ten. Typical closed-loop control responses
using the logic at the stages of training shown in Figure 5
are presented in Figure 6. At 198 trajectories the controller
has not yet stabilized the statically unstable vehicle. At
2100 trajectories the closed loop is apparently stable but
responses are poor. At 11,000 trajectories responses closely
approximate optimum. (Limited hardware did not permit
evaluation of closed-loop responses at 13,500 trajectories).
The logic of equation (1.4.1) with constants at 11,000
trajectories is taken as the closed-loop controller for the
plant of Table 1.

1.5 Control of the Flexible Vehicle A block diagram of the
control system is given in Figure 7. Mechanization of the
logical net for this optimal control of the fourth order
plant was accomplished using standard, commercial analog to
digital converters for quantization and. diode-transistor
logic in conjunction with standard ladder networks to form
the logic of equation (1.4.1)(Reference 7). A linear
switching mode of the control variable was used when the
plant output was within approximately one quantum of the
target set. This reduced residual errors due to switching
on a quantized switching surface and held the plant within
the target set. The linear switching used in this mode was,
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u = sign [e F+ 1.25 6V + 0.65

No attempt was made to minimize the steady state limit cycle
with the control variable in this mode.

Two schemes for measurement of the variables fed back to
the controller were investigated. The first measured the
state of the system using the method of Reference 8 which
uses a complement of n sensors in measuring the state of an
nth order system. In the second, a rigid body pitch rate
signal was derived using the phase blending technique of
Reference 9. This provided a signal which could be freed of
first mode influence, however, in this case a slight amount
of first mode feedback was included in the signal to damp
the first mode bending.

Typical analog responses are shown in Figure 8, 9, 10 and
11. Rigid body pitch attitude responses are quite similar for
rigid body feedback and for blender feedback of pitch rate.
The small amount of first mode feedback (blender gain kl=0.9)
causes the first mode to damp out with the blender system
whereas with rigid body feedback there is a sustained
oscillation. When the blender gain K1 was set to cancel all
first mode feedback (K1 = 1.0), the blender system also
exhibited a sustained oscillation of the first mode. Responses
to 40-fps sharp-edged gusts are shown in Figure 10. The
single component attitude regulator essentially ignores the
gust disturbance and maintains the desired attitude. Figure
11 illustrates response to various command inputs. Although
the system was designed to approximate time optimal regulation,
it exhibits a very good following capability.

1.6 Conclusion It has been shown that the collection of
experimental procedures and theoretical knowledge is sufficient
to use a time-optimal regulation criterion for rational design
of controllers for a high order plant with known coefficients.
The synthesis procedure includes obtaining a representative
set of open-loop optimum trajectories for a truncated model
which is based on the dominant dynamics of the plant. The
set of open-loop trajectories is used to define a closed-
loop control law for the model. When this controller is
applied to the full plant, the output is effectively that
of the optimally controlled model filtered by the secondary
dynamics of the plant. The resulting controller is relatively
simple. However measurement requirements are severe in that
the entire state of the system must be measured. This is
feasible using the methods of Reference 8 but undesirable be-
cause of the large number of sensors required. Such schemes
as the gyro blender give promise of relaxing these requirements.
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SECTION II

THE EQUIVALENT MINIMIZATION PROBLEM
ANM THE NEWTON-RAPHSON OPTIMIZATION METHOD*

2.1 Introduction The purpose of this section is to develop
a second-order optimization scheme for the control optimization
problem. The particular form of the problem of Bolza which
is considered is first stated. This is followed by the three
necessary conditions for the given form of the problem. These
are used to develop the reduced differential equations of the
extremals, which must be satisfied by the optimum path. It
is then shown that the solutions of these equations are
functions of the independent variable and the initial cond-
itions for the problem. It is further shown that the solution
has continuous partial derivatives of at least second order in
these variables. This immediately suggests the simpler
equivalent minimization problem; that of minimizing a function
of several variables subject to constraint equations in those
variables. This problem has well known necessary and suffi-
cient conditions for a relative minimum. These are then used
to develop the second-order Newton-Raphson optimization method.
The sufficiency condition for a relative minimum is incorpor-
ated in this method. The Newton-Raphson method for the fixed
end-point problem is then presented, followed by the method
of steepest descent.

Three example problems are presented. The first of
these, in which the integral of the square of the control
function is minimized, is simple enough to allow an
analytical solution. It is shown that a relative minimum
does exist, and furthermore, that it is a global minimum.
The presented concepts are also illustrated by this problem.
The second example is the time optimal bang-bang problem.
This is presented as an example of a problem with corners
which can be treated by the Newton-Raphson optimizing scheme.
The third example is a re-entry problem which must be solved
on a computer. The deviation of heating rate from a given
constant is to be minimized. An inequality constraint on the
sensed acceleration is included in the problem formulation.
The reduced differential equations of the extremals are de-
rived for this problem.

A special form for the Newton-Raphson method is then
developed. This assumes that the terminal surface is des-
cribed by a given terminal time alone. Conclusions from the
application of this method to the third example problem are
summarized.

2.2 Problem Formulation The problem considered here is a, 2
special form of the problem of Bolza as formulated by Bliss(2)

* Work in Section II was supported under U. S. Air Force

Contract AF 33(657)-7383, ASD.
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and extended to include inequality constraints by Valentine.(7)
It is desired to find that path which minimizes the function

T
J = g((T), T) + f f 0 )d'r (2.2.U)

tO

subject to differential equations of the form

(7= ( ,) (t 0 ) = --o (2.2.2)

inequality constraints

G(7U) > Z (2.2.3)

and terminal surface equations

V(T, •(T) ) = Z• (2.2.4)

In the above, x and U are n and m dimensional state and control
column vectors respectively, and () represents differentiation
with respect to- the independent variable, t. The dimension of
vector equation (2.2.3) is q, and that of (2.2.4) is r, where
r < n + 1. Z represents the zero vector of appropriate
dimension.

Following Valentine,(7) equations (2.2.3) are rewritten
in the form

-& _(•,U) (2.2.5)

where the components of • are H, j l,...,q. The ;'s
are real slack variable derivati 4 es, introduced to complete
the set of differential equations for the problem of Bolza.
No more than m of the a's may be zero at any point on the path.

It is assumed that fo(,-) and the differential equations.
(2.2.2) and (2.2.5) have continuous partial derivatives of at
least third order in all variables in an open region S1 about
the minimizing path. Furthermore, the. matrix made up of the
partial derivatives of the differential equations with respect
to all derivatives and the control functions must have rank
n+q at each point of the minimizing path. This insures that
the differential equations are independent. The matrix has
the form

S 3(2.2.6)
,Z' VuG -Z

where I is the nxn identity matrix, Z is an nxq zero matrix Z'
is the transpose of Z, and Z is a qxq diagonal matrix whose
elements are 2 . In addition,
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Vuf= ji, .... u•_1 (2.2.7)
7.1 rni

n ,fn

L = •1 mG

6G 1 6G.V .... , (2.2.8)

The solution, x(t), of the differential equations (2.2.2)
and (2.2.5) is supposed to be continuous, with at least
absolutely continuous first derivatives. In some instances
it will be possible to consider corners, i.e., points at which,
the derivatives are discontinuous. The control functions are
treated as derivatives in (2.2.6) so that they can be dis-
continuous, as in the bang-bang problem. Potential corners
are those points at which inequality constraints change from
greater than to equality states or vice versa. They may also
be defined by switching points, as in the bang-bang problem
where the constraint is always zero. A subarc is defined as
that part of the path between corners or potential corners.

Finally,. the functions g(T, X(T) ) and (2.2.4) are assumed
to have continuous partial derivatives of at least third order
in an open set S2 of points (T, 5ý(T)), and the matrix

J. n

r, r r

1 n

is assumed to have rank r. An admissible arc is defined to be
a path, where all of its elements (t,7,7,U) and (T, 7(T)) lie
in Si and S2 respectively.

It might be remarked that differential equations and
inequality constraints containing t explicitly can easily be
brought to the form of equations (2.2.2) and (2.2.5). The
independent variable is. changed from t to s by adding the
differential equation

dt
Us =1to (2.2.10)
ds 0
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and noting that

dX dx ds dx2

Then t becomes a dependent variable, and the resulting n+q+l
differential equations are in the desired form. It should
be noted that the order of the system has been increased
by one.

2.3 The Necessary Conditions and the Initial Value Problem
The multiplier rule and the necessary conditions of Wierstrass
and Clebsch are given here for this problem without proof.
The reader is referred to references (1), (2) and (7) for
their derivation. It is then shovn that if these necessary
conditions -rovide unique descriptions of the control functions
over every subarc of the path, then the optimization problem
is an initial value problem.

The first necessary condition for this problem is
The Multiplier Rule. An admissible arc E, defined on an
interval • is said to satisfy the multiplier rule if
there exist constants p = 1, e= [e,, ... er], not all
zero and a function r]

F(t,,u,xpj,) = f 0  -P(f-X) + p.(f -7) (2.3.1)

twith multipliers P(t) =[Pl(t),.,,,Pn(t)], contin ous o

Ito,T] and 4(t)= [Ilj(t),..• Lq(t)] contihuous on [to T1
except possibly at corners of E where unique right and
left hand limits exist, and satisfying the Euler-
Lagrange equations

- =K-o + p V + • VX-] (2.3.2)

Z = V ±o + p Vuf + 4 V G (2.3.3)
uo0 u u

0 = LjGj, J = l,...,q (2.3.4)

where

Z (2.3.5)

and differential equations

x = f; 7(to0) = x0 (2.3.6)

-• > (2.3.7),

along E, and furthermore, such that the equations

+t 17eT dT + (2.3.8)
T
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- (V N + V N71- I dx(T) = 0, 7

hold for every choice of the differentials dT, dx(T). The
multipliers p9 , p, p. do not vanish simultaneously at any
Doint of the Lnterval Fto T- for an arc E satisfying the
multiplier rule. Furthermore, the function

H -- fo + pf (2.3.9)

is a constant on E. Every minimizing arc E. for the given
form of the problem of Bolza must satisfy the multiplier
rule;.

In the above -,

ff 0 0~x~~ o .,.. , Vuo =L (2.3.10)V X 0 f jX 7•''f 0 0-n"0fl n- - l 1m-

=x •' 1 1 .. , • 'n ' V G 1 1' ' ' - - ( 2 . 3 . 11 )

n n4
n

w ,ith Vuf and Vu• defined by .equations (2.2.7) and: (2.2.8)
respectively. The vector •I T is the first column of thematrix (2.2..9) and V5IT, is the remainder oft

The vanishing of the coefficients: of dT and dx(T) inequation (2.3.8) constitutes the transversality condition on

the arc E. Thus,

p(T) = (Vxg + k •x)T. 2.3.13)

The Hamiltonian,. equation (2.3.12), is often called a first
integral for this problem. It has further significance in thesecond necessary condition.

The Necessary Condition of Weierstrass (The Minimum
Principle). An admissible arc E Satisf'ying the multiplierrule pith anultipliers Po = 1, p, •m , is said to satisfy
the necessary condition of Weienrstrass with these
multipliers if the condition
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Hi(t,xpu) < H(t,',',U) (2.3.14)

is valid at every element (t 2_7x._i) of E for all admis-
sible points (t,x,XI,U) : (t,x,xr,u) satisfying the equations
(2.2.2) and (2.2.3). Every minimizing arc E for the given
form of the problem of Bolza must satisfy this condition.

A consequence of the Weierstrass condition is

The Necessary Condition of Clebsch. At each point of E
let U be a vector whose components are those components
of G which vanish, and • the corresponding multipliers.
Then the inequality

7'V
2 (H + .')"r> 0 (2.3.15)

u
must be satisfied for every vector 7 # Z where

[ = P,...,T.] and satisfies the equations

V G7T=Z (2.3.16)

Every minimizing arc for the given form of the problem of
Bolza must satisfy this condition.

In equation (2.3.15) the operator V2 is the matrixu

ý2 2 62

u 6U2  bu 6U
.1 1 M

62 62

3u mdu1 6U
m

It will now be showm that the problem can be considered
to be an initial vaJue-problem. For this purpose, the arc is
split up into subarcs. On each subarc a given subset of the
inequality constraints are equality constraints, and all the
rest are greater than zero, except possibly at a finite
number of points, It is supposed that there are no corner -
points anywhere on the path. For simplicity, it will be
assumed that all the constraints are greater th zero along
the first subarc. Then according to Valentine,M ) the in-
equality constraints may be neglected over-this subarc. The
function (2.3.1) may thus be written

F1 = f0 + P(' - x) (2.3.17)

The corresponding Euler-Lagrange equations (2.3.2) and (2.3.3)
are

= -LVX + p V.f = X(F1  2.3.18)

V=Vf 0 7 pV ut f VuF±1. (2.3.19)
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It is well knoim from implicit function theo r that equations

(2.3.19) can be solved (at least in principle) in the forua

U= (2.3. 20)

if the determinant
-F1 1S!

R 1 = det V2 F =det -,. , (2.3.21)uu1 .1 .1 m

S, 1 e 2F 1

ýU u ýiu
mU1 1

is different from zero. Equation (2.3.21) is the determinant
of the Hilbert differentiability condition for this problem.
Substitution of (2.3.20) into (2.3.18) and (2.2.2) thus
produces a 2n set of differential equations

S0 0( )(2.3.22)

= VxF1 (X, p) (2.3.23)

These will be called the reduced differential equations of the
extremals. It is well knownm from the theory of differential
equations that (2.3.22) and (2.3.23) have a unique solution for
a given set of initial conditions. But half of these, x , arc
given for the problem._ The solution is thus a function 8f the
n initial conditions, PO, and is said to be imbedded in an n-
parameter family of extremals. Over the first subarc, then the
solution has the form

x = •(t,3Eo,Po) = ý(t, (2..2

S= F(t,X0 ,P 0 ) = •(tP 0 ) (2.3.25)

u"= U(t,X--o, P-o )= u (t,Po-) (2.3. 26)

It is further known from the theory of differential equations
that equations (2.3.24) and (2.3.25), and consequently (2.3.26),
havecontinuous partial derivatives in the variables, t, 7o
and Po of at least second order.

Before continuing, it should be remarked that the above
results are of course obtainable from the, general form of the
problem of Bolza. It is known that the arc can be imbedded
in a 2n + 2m parameter family of arcs, and that there are
2n + 2m differential equations of the extremals. The 2m
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differential equations become the m algebraic equation~s
(2.3.19) and their time derivatives (which introduce no
new information) when initial conditions are imposed. Further-
more, the determinant in the Hilbert differentiability
condition reduces to the form (2.3.21).

Over the second subarc it is assumed that one of the in-
equality constraints, say G1 , is equal t9 ero. The function
(2.3.1) is written, following Valentine,'7 as

F2 = fo0 + p (T - _) + 4lG1  (2.3. 27)

and the Euler-Lagrange equations as

p = - [Vfo + T VxI + 01 G = VxF2  (2.3.28)

Z= Vufo + p VuI + . uVG1 =VF 2  (2.3.29)

To this is added the equality constraint

0 = (1 2.3.30)

If the m+l equations (2.3.29) and (2.3.30) are to be solved
for the m+l variables u and ILl' the determinant

R2 = det (2.3.31)

must not be zero. Here, V' is the transpose of the operator
Vu. Equation (2.3.31) is u the determinant of the Hilbert
differentiability condition for this arc. It is then found
that

S= i(x, •) (2. 3. 33)

and consequently that

X- = 2 (3, T) (2.3. 34)

p. =VxF2 (H, (2.3S. 3 5)-
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the reduced differential equations of" the extremals for this
arc. These equations again have a unique solution for a
given set of initial conditions. Furthermore, the solutions
possess continuous partial derivatives of at least second
order with respect to t and the initial conditions x, and pI"
It remains to be shown that the solutions over this arc
are continuous functions of the initial conditions, po, and
that partial derivatives of at least second order exist.

The terminal point of the first subarc is defined by the
equation

G1 (x (tl, 0o), (t 1 ,Po)) = 0. (2.3.36)

This may be solved for tl([o) if the derivative

1L-VG X VG 1 x + V G p'

is non-zero. Equation (2.3.36) represents the equation for
the terminal surface of the family of extremals which are
solutions of equations (2.3.22) and (2.3.23). This terminal
surface represents the initial surface for the family of
extremals over the second subarc which are solutions of
equations (2.3.34) and (2.3.3 5). For a given set Po, the
terminal values x(tl, P0), P(tl, o) are the irtial values
for the differential equations p2.3.34) and (2.3.35). This
follows from the continuity of x(t) and •(t). Then since
the solutions

1(t) = X(t,xlPl), t > tI (2.3.37)

_P(t) = -p(t -xl,1Pl),1 t >-•'l (2.,3.38)

are continuous functions of X and pl, and since

xI= 1(t1  •o = 3I(Po) (2.3.39)

p1 = P(tl' O) = P1 (PO) (2.3. 40)

are continuous functions of Po alone, it follows that

•(t = (t, 0o) t > tI . ... (2.3. 41

-5(t) = -P(t, TO-), t - t1. '(2.3.42)

Furthermore,. since continuous partial. derivatives of at least
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senond order exist for equations (2.3.37) - (2.3.40) in the
indicated variables, it follows that (2.3.41) and (2.3.42) _
possess partial derivatives of at least second order in t, po.
Since there are no corners, p, is at least absolutely
continuous.

Further subarcs may now be added, so long as the number
of equality constraints does not exceed m, the dimension of
the control vector. Each subarc possesses control functions
and multipliers of the form (2.3.32) and (2.3.33), and
furthermore, differential equations similar to (2.3.34) and
(2.3-35). It is readily verified that the solutions are
continuous functions of the initial conditions, Po, and
that continuous partial derivatives of at least second order
exist.

Points where equality constraints change to the "greater-
than" state will now be examined. For this purpose it will be
assumed that only one of the constraints, say GI, is zero
over the first subarc, and that it is greater thlan zero over
the second. Equations (2.3.32-) (2.3.35) 1(iold over the first
subarc, and (2.3.20), (2.D.22) nd 23.23) over the second
subarc. The terminal surface, (26-.3.), is replaced by the
equation

•l( (tlPo), •( 1 --OPo)) (2.3.43

since •l is a continuous function, and must go to zero before
Gl can be greater than zero. It is then seen that the
arguments follow through as before, provided the determinLants
RI and R2 are different from zero, and that the derivative

V! = Vx•I + VpIL±! pi

is non-zero on the terminal surface of the first subaire. On
the second subiarc, then, the solution is a continuous function
of t and po, and partial derivatives in these variables of
at least second order exist. The resuilt is easily generalized
to several equality constraints going to the greater than
state over a series of subarcs.

To sum up, a path is comliposed of a finite number of sub-
arcs, each of which has its owvn set of differential equations
and terMinal surfaces. The first subarc has a specified set
of initial conditions, Xo, and the last one has a specified
terminal surface, equations (2.2.'). The equations of this
terminal surface have continuous partial derivatives of at
least second order with respect to the initial conditions,,
To, and the terminal value of the independent v-,ariablc, T.

2.A The Equivalent Minimization Problemi It will be s~hov.m
here that the minirization probl-ema cn be reduced to the
more familiar one of -,inimizing a function of several



variables subject to constraint equations in those variablcs.
For this purpose, the integral term of equation (2.2.1)is
written as a differential equation

Yn+1 =fo' xn+1(to) 0 (2.4.)

and added to the differential equations of the c.trei,,mals.
The solution to this is easily seen to be of the form

t
Xn+l (tpo)= f f0 (x,p)dT (2.4.2:

t
0

over the path, and on the terminal surface,

Xn+I(T) = xnl (T,Po). (2.4.3)

Furthermore, since g of' equation (2.2.1) is a functional of
continuous functions,

J(T) = J(T,•o) g(T, WE(T,P 0 )) + xn-1-1 (T,-po) (2.4.4)

The terminal surface equations (2.2.4) may be expressed in
the form

?(T) = T(T,To) = T(T, T(T,Po)) 0 . (2.4.5)

It is assumed for the present that the dimension, r, of
(2.4-.5) is < n. The minimizing arc must satisfy the three
necessary conditions, and hence the differential equations
of the extremals. Since the solutions are functions of the
initial conditions, po and t, the problem is thus one of
minimizing (2.4.4) in the variables T, p0 , subject to the
constraint equations (2.4.5). This is a problem for which.
necessary and sufficient conditions for a relative, minimum
are well knowm.* The first necessary condition requires
that the partial derivatives of' the function

F = J(T, -P)+ (T, -o) (2.4.6)
0 0'

with respect to T, p , all vanish at the minimizing point.
Here 7 = .... , is a set of constant undetermined
Lagrange multipliers. One thus finds

* for example, see Bliss, reference (2), pp. 210-211.
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ýF
~= f + + V gx) + + -lV 7 ) =0 (2.4.7)

Vp F = Vp xn+i1+ V xvg p + TVxV = Z (2.4.8)

p0  p0  PO P0

where VPO xis the matrix composed of partial derivatives of

the functions

IT) = PO (2.4.9)

with respect to the initial conditions pc. This nxn matrix

is non-singular.

Equations (2.4.7) and (2.4.3) must, of course, be re-
lated to the boundary condition (2.3.3) of the multiplier
rule. The relationship can be found by substituting

d7II(T) 7 x dT + V PO x dp (2.4.10)

into the, boundary condition (2.3.8) and rearranging. Here,
dp is a column vector. This gives

0

ff + (- + V~ g": + e +5- dT + [ (T)7~5

SF V G, V -X + e V, V ldpo = 0. (2.4. 11)

Vanishing of the coefficients of dT and dpo in this equation
is equivalent to the transversality condition. Comparison of
(2.4•.7) with the coefficient of dT in (2.4.11) then shows
that

= e, (2.4. 12)

:..e., the undetermined Lagrange multipliers of the boundary
condition for the problem of Dolza are the same as those for
the equivalent problem. Furthernore, from (2.1.-') and the
coeffic-ients of dpo of (2.4.11), one finds

V -p (T) V X Y. (2.4.13)
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If x n+1 is assumed to be a function of the state of the

system, i.e.,

x n+1 = Xn-.l1(T, -X(T)), (2.4.14)

then equation (2.4.13) can be rewritten in the form

V x n+1 VP P -P(T) V PO. (2.4. 15)

Since V PO is non-singular, it is seen that

Vx -1 = -(T). (2.4. 16)
x 1n-F1l

Equation (2.4.16) is a well-known result(5) which finds use
in dynamic programming. It is further known that (2.4.16)
is valid for all values of the independent variable, t. Thus,
equation (2.4.13) reduces to an identity.

Equations (2.4.6) - (2.4.8) will now be written in
simplified form. Using equation (2.4.12) and the chain rule
for partial derivatives, it is found that

F J(T, P-o) + e T(T, _P") (2.4. 17)

3F fo + g + e 7 = 0 (2.4. 18)

VPOF = VPO Xn+l + VPOg + 5-v PO (2.4. 19)

It will further be assumed that the problem is normal, i.e.,
that the matrix

S, ' " "
::0 n (2.4.20)

: •)•£r , ... , )~r o1 On
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is non-singular. This is equivalent to stating that the
solution is normal for the problem of Bolza. Then the
sufficiency condition for a relative minimum for the equi-
valent problem is that the quadratic form

*-F
0 1 F VPOF 71 r0 [>0O (2.4.21)

JVFL J L J
be greater than ero for all non-zero vectors 0 Tit

LO' hl'"'''n which satisfy the equations

•o + V 7r =Z z. (2.4.22)

In the above,

F= o+g+ e- "

V = V ( +° +• -+Ci )"

This form of the sufficiency condition is rather awl'ward
to satisfy. An equivalent condition, which reduces to
showing that a matrix is positive-dcfinite, will now be
developed.

The set (2.4.5) is extended to nH-l equations by adding
equations of the form

T, , po) + b , j=r+1,...,n-.Ll (2.4.23)

where b is a parameter which is zero at the minirimizing point,
These equations are to be chosen such that the

(n+ lx(n+l) matrix

V Po

PO
rI1-l- V 7r+l (2.4.24A

Sn+l Vp n-:-l
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is non-singular. This is equivalent to completing the set

(2.2.4) with the equations

(T,x(T)) = T(T, x(T)) + bC J=r+l,.. n-1-l (2.4.25)

since the transformation

EdT 1 (2.4.26[

d7(T) = (T) V X(T]jrd(.
P0

must be non-singular. Bliss(2) shows that

dT = (2.4.27)

d = T= 
(2.4.28)

Then differentiation of equations (2.4.5) and (2.4.23) with
respect to the parameter b gives

Tol =[~](2.4. 29)

where Z is the rxl zero vector and T is an (n+l-r)xl column
vector whose components are C P is the matrix (2.4.24).
Then since this is non-singulLr, (2.4.29) may be rewritten

[;loJ (lI2.4.30)

Equation (2.4.30) may be. thought of as a transformation which
relates the 7's to arbitrary f. Substitution of (2..4.30)
into (2.4.21) then gives

[zT'](0-1), 1.VF •-[]> 0. (2.-4.31)

Call. the product matrix of (2.4.31) A, and partition it into
four sub-matrices, A1 -A4. Then (2.4.31)1 becomes

A A > 0 (2.4. 32)

[A3 3 JA4
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Upon performing the matrix multiplication, it is found that

(2.4.32) reduces to

T1 A4 T > o (2.4.33)

Since T is arbitrary, equation (2.4.33) is true if and only
if the matrix Ai4 is positive-definite. This is a very useful
form of the sufficiency condition for the equivalent mini-
mization problem.

2.5 The Newton-Raphson Scheme A second order scheme, based
upon the equivalent minimization problem, is presented here.
It is suitable for computer solution of the optimization prob-
lem, and has the advantage that the optimization process can
be made to be automatic. The reason for this is that both the
direction and the amount by which to move the solution can be
computed. Gradient schemes, on the other hand, provide only
the. direction of changes. Human intervention is generally re-
quired to assertain the amount of change from step to step.

At this point, the-subscript on p will be dropped, since
only initial values of p will henceforth be considered. It
will be assumed that a non-optimal solution for the reduced
differential ecjuations of the extremals has been found for the
initial values p. One of the components of 7, say T1, has
been used as the stopping condition on this path. Thus, the
condition

= 0 (2.5.1)

is satisfied, and furthermore, the terminal value of the
independent parameter, T, is known. The other components of
T are not necessarily zero, but their values are novwn. It
is further assumed that the partial derivatives in (2.4.20)
and (2.4.21) are kcnown. A method for estimating these for
the general problem is given below. It is desired to compute
new initial values, b, which will simultaneously satisfy the
terminal conditions (2.4.5) and minimize the function J(T)
of equation (2.4.4). The terminal value or the independent
variable for this path will be designated T., Taylor's series
expansion of the functions J and 7 through second order terms
then gives the approximate equations

J(T,'*) =J(T,F)D+J(T,-)(Ti-T)+V J(Tj(-p pp p p

+ 2_ J (T~p .D T
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l i (T,p), 0 o = 7 •(T.P )+ii(T,f )(-T)+VPq (T,py (p-p)

-17(TT)VpYi(T,p)(^-P) fI'" P (Tý)

i(l,...,r. (2. 5.3)

Here, p, p are column vectors. These quadratic equations
approximate conditions at the minimizing point. One can thus
write the function F of (2.4.6) and apply the necessary and
sufficient conditifons of the equivalent problem. Thus

A A A

J(T,p) + e Y (T, ). (2.5.4)

It is convenient, at this point, to introduce the function

F1  J(T,•): + • (T,P). (2.5.5)

F 1 has partial derivatives made up of the partial derivatives
in equations (2.5.2) and (2.5.3). Thus,

1 = J(T,p) + e f (T,-) (2.5.6)

7 F - v J(T,-P) + -& T (T,F) (2.5.7)

and so forth. Then the first necessary condition for equation
(2.5.4), gives the equations

0 = + . (T-T) + Vi(. (2.5.8)

V'F =Z = V F +V Fl(T-T) + V2?F (-) (2.5.9)
p p1 p1 p

These equations, together with (2.5.3),^constitute n+rFl

equations in the n+r+1 unknornms, p, T, T. The interated
solution of these equations then constitutes the Newton-
Raphson method, provided that, for the matrix

V2 F = V2 F 1  (2.5.10),

the matrix A4 of (2.4.33) is positive-definite. Otherwise,
the solution would be driven toward a saddle point, or worse,
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a maximizing point.

If the dimension of 7 is n+l,, the method reduces to the
simpler and.more familiar form of the Newton-Raphson method.
In this case, one is trying to determine the minimizing path
which' passes through given initial and terminal points.
Satisfaction of the three necessary conditions for the problem
of Bolza, and hence, the reduced differential equations of
the extremals, insures that the path will indeed be the
minimizing path. The Rroblem then reduces to one of finding
those initial values, p, which satisfy the n+l terminal con-
ditions (2. 4 .5).A T e Newton-Raphson equations, to be solved
iteratively for p, T, are then

+ T + pp(T= Ti(T,P)(+-[), ,)(Ti-T)

Truncation of these equations after first-order terms in the
expansion is a consequence of seeking a root, rather than a
minimizing point. The matrix (2.4.20) must be non-singular
for the method to work at all.

It might be remarked that some pre-digesting of the
roblem can be done to eliminate the variable T. If equation
2.5.1) is the stopping condition on the problem, then the

equation (2.5.3) for Yl can be used to perform the elimination.
The result is an n+r~system of equations, (2.5.8) and (2.5.9),
in the n+r unlknomons p, e. The elimination is more readily
performed for the fixed terminal point problem and the method
of steepest descent which follows.

2.6 The Method of Steepest Descent If the original guess on
the initial conditions, P-, is too far from the minimizing
values, p, equations (2.5.2) and (2.5.3) will not apply. In
this case, the matrix A4, of equation (2.4.33) will not be
positive-definite. The simpler method of steepest descent
may then be used to drive toward what is hopefully the
minimizing point. Equations (2.5.2) and (2.5.3) are truncated
after first order terms, and written in the form

dJ = J(T,p) dT + V pJ(T,•) d• (2. 6. 1

df = t(T,P) dT + V p(T,p) dp (2.6.2)

where
dT = T-T (2.6.3)
dT = -P - _p (2.6.4.)

dJ = J(-T,'p) - J(T,P) (2.6. 5)'
d= (Tj5) " p(T,') (2.6.6)
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and T, p are better estimates of the minimizing, point which is
to be determined. Equations (2.0.1) and (2.6.2) may be written
as a vector equation

dT = VT dy (2. 6.7 )

where

dT=[dJ dS7 =dT VT=[* V J] 6,8)
d V~p]

then the change, dy, is chosen in the gradient direction as

(2.6.9) d[ = v'R (2.6.9

where VIP is the transpose of VT, and R_ is an (r+l)xl constant
vector to be determined. Substitution of dy from. (2.6.9 into
(2.6.7) then gives
(2.6.10) dT = V9 V'T K. (2.6.10)

The (r+l)x(r+l) symmetrical matrix, V9V'O, is in general non-
singular, but is singular at the minimizing point, , Then
excluding singular points,

T7 = - (2.6. 11i)

The required change, from (2.6.9), is thus
dy-= V'•(Výý Vtq'))-I d7. (2.6.12)

In using this method, appropriate changes, dT, are selected.
This is generally done manually. Then the new estimates of the
initial values, •, are computed from equations (2.6.12), the
second of (2.6.8) and (2.6.4). It should be noted, however,
that the method blows up as the minimum point is approached.

2.7 The Partial Derivatives For only the simplest of problems.
is it possible to compute all of the required partial deriya-..
_ives •xplicitly. Those which can always be computed are J, J,
T and , since analytical expressions for these are available.
The other partials will, in general, have to be approximated.
There may be several ways of doing this. The method given here
is suitable for computer solution, and corresponds to the re-
sults of differentiating a Lagrange three point interpolation
formula.

It is assumed that a solution of the reduced differential
equations of the extremals for the initial conditions, p, is

Inovm, which satisfies the stopping condition, equation (2.5.1).
This establishes a terminal value of the independent variable,
T, as wel.l as values for J, J, . and .. These will be denoted
T0o J 0' J 'T 1 and To respectively. Now suppose that a new

solution of the reduced differential equation of the extremals
is found for the. initial conditions. ý[Pl+ 46P' P 2 " "" " Pn, [I

where 5p, is a small positive increment. The stopping condi-
tion for this path is
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t = To (2.7.1

and the value of J, J, T and.T will be denoted J(p - 6p ),
J(p +6p ), 'T(p + bp ) and T(P + 6p ). It is noCed that of
the n+l ýariablhs T, b, only p 'has b~en changed to obtain
these values. A third solutioý may now be obtained for the
initial conditions Pl - 5Pi P2 ... " Pn] and stopping c~ondi-

tion (2.7.1). The values for.this path are denoted J(p 1 - bpi),$
J(Pl - 4P1 ), T(pl - 5pl) and T_(pl - bpl). These values will e

used to determine the partial derivatives.

Now consider the function J. It may be expanded in a
Taylor's series through second order terms to give

J(Po + =Pl . . 2 (Pl)2 (2.7.2)

Similarly,

J~ -~p =J ~. pl 2 61 2 5 1  (2.7.3)

Solution of these equations gives

61 J(pl+§pl) - J(pl-bpl)"77l 2-p (2.7.4

2 _ J(p 1 +5pl) + J(pl-bPl) - 2Jo0
(2.7.5)

S(bp 1)
2

These equations are generalized to
61 J(pil~bpi) - (pi-6Pi)
FP i _ . 25p i ~, . , 2.7.6)

j _ J(pi+6pi) + J(Pi- 6Pi) - 2J° i=l,...,n (2.7.7)

by perturbing the ith element of b by the amount - bp Simi-
lar equations can be written for J, T, and Y. Equations (2.7.6)
and their counterparts then establish the required first partial
derivatives, V pJ Vp T•.•Equations (2.7.7) are used to determine

the diagonal elements of V2 J and V2 'if i=l,y...,r Some of the
-p p i

cross partials, V J, V pV, are determined by applying equations
p p.

(2.7.6) to the function J and '. The others, of the form

dp i pi, J are determined from the, following procedure. If two of

the elements of p, say pi and p , are perturbed by the small

positive amounts 5p,. 6pJ respe 4 tively, the corresponding solu-
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tion of the reduced differential equations of the extremals
will be J(Pi+SP., -pJ+Hpj) Taylor's series expansion then
give s

J(pip6Pi, p.p +pi ; __pj

8l2j
+ 8p62j 5pi 5pj

+1 ýLJ~bpi 2 ± - -(bp )2 (2.7.8)
2 p2 21 J6p

Substitution of equations (2.7.6) and (2.7.7) into (2.7.8) and
rearrangement then gives

6 2 p ++p_ +j _ ( 2 .7 9 )

cTp.77. bpi bpj

Equations similar to (2.7.9) can be found for either or both of
5 p. and 5p. considered negative. It is recommended that cross
partials b4 computed for the perturbations 5p , bp taken in
the direction of expected change in the solution. 3This can be
found from the direction of steepest descent.

Since one solution of the reduced differential equations
9f .te exereaals is required to determine values for the set J,
J, J, ", )T, T, one might ask about the number of solutions re-
quired per iteration step. For the method of steepest descent
and the fixed terminal point Newton-Raphson method this turns
out to be 2n, not counting the initial solution. The general
Newton-Raphson method requires n(n+3) solutions. For small n,

say 2 or 3, and moderate computer solution time, this is not
unreasonab.e for the general Newton-Raphson method. For larger
n the computer time might become excessive. Under these condi-
tions it might be wise to use the method of steepest descent
initially and finish off with the general Newton-Raphson
method.

'No tricks might help when n is large. If the second
partial derivatives do not change rapidly, they need not be
recalculated every step. This is especially true in the vici-
nity of the optimal point. The required number of solutions
then drops to 2n. Secondly, one might try a shift of coordi-
nates to principle axes. This can be accomplished by a trans-
lation, a rotation, and finally a stretch to reduce the matrix
of second partial derivatives to the identity matrix. Then the
cross partials disappear and the required number of solutions
is again 2n. An iterative method can be constructed for this
process.

2.8 Example Problem I The following simple analytical example
illusrates the for(m 2.3.24)-(2.3.26) of the solution. It
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also shows the necessary and sufficient conditions for the
equivalent minimization problem. The problem chosen is the
two dimensional harmonic oscillator with a single control
function. The problem was found in reference (5). The equa-
tions of motion are:

dx 1  , Xl(to) = x0 (2.8. )

d x 2  _ + u X x 0 (2 .8 .2 )aT-= 1X u×2(to) = x
It is desired to minimize the control effort over the path.

This may be expressed in integral form as:

T

ju f U d (2.8.3)
to

The terminal surface is specified by a given terminal time and
by xI(T) = 0. Thus,

"12. T-K = 0 (2.8.4)

-2'
"~2 =Xp(i) = 0 (28 e5)

where T is the value of t on the terminal surface. The Hamil-
tonian for this system is

p(-x1 + u) u2. (2_8.6
H=Plx2 + P2 (x 286

The Euler-Lagrange equations are thus

Pl= P2  (2.8.7)

140



P2 = -Pl (2.8.8)

P2 2u = 0. (2.8.9)

T•he optimal control function, from (2.8.9), is seen to be

P
2U - (2.8.10)

rThis control function automatically satisfies the minimum prin-
ciple and the Clebsch necessary condition. Equations (2.8.7)
and (2.8.8) are linear equations with constant coefficients,
and may be solved directly. In terms of initial conditions,

EP(t) cos t sin 1  (2.8.11)

p2 (t~ L-sin t cos tJ0LP 2J2 2

where p0 and p0 are the initial conditions on p1 and P2.

The homogeneous part of equations (2.8.1) and (2.8.2) is
the same as that for equations (2.8.7) and (2.8.8). The sys-
tem is thus self-adjoint. The solution of equations (2.8.1)
and (2.8.2) can then be written as:

[xl(t)][ cos t sin t' [x0

X2 (t [-sin t cos t L0J

c o t s i n t o s T -s i n T 0 2 ( -r )d r 2 8 1L-sin t, Cos L~isin T cos T1[11 2 a8.

0

After substitution and integration, one find s
Xlcos t sin

(t -sin t cos t l]
F01

L(itcos t -sin t.),t sin t P1 '-t t,(sin t -: t cos t)[ 2

where to has been taken as zero. 1F'inally, the solution of
equation (2.3.3) is

j(t) = KLP•(t-sin t cos t)-2 popo sin t

-i pO2(t - sin t, cos t),1. 2,4. 14 )

Equations (2.8.11), (2.8.13), and (2.&8.14) are the solutions
referred to in equations (2.3.2)4) and (2.3.25).

On the terminal surface, then,
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J(T) 02 ipo2(T' -sin T cos T) - 2 pl02pO sin 2 T

+p0-(T-: sin T cos T)] (2.8.15)

x 1(T) _I[cos T sin T' 1x

X2 (T)J -sin T cos Ti0

I(T cos T- sin T),T snT 1 [
-T sin T,(sin T A' T cob T)J [P

The function F of equation (2.4.6) for the equivalent minimi-
zation problem may be ifritten, from (2.8.15), (2.8.4) and
(2.8.5) as

(2.8.17) F = J(T) -I e 1 (T-K) + e 2 x1 (T). (2.8.17)

The first necessary condition then gives

3F = 0 = l(pl sin T - p2 cos T)2 + e

0 op sin lT
+e2 -xI sin T Y 2 cos T + [ITsin T

b O (sin TT -si' cos T)] (2.,.18]
•F o- 0 = (T -sir, - cos T) -Po inT

e 2

- (T cos T - sin T) (2.8.19-)
4
[._sin T o (T2 - sin T cos T)]

6i? 0=[p IF (T-2

- -T sin T (2.8.20:)

These, together with (2.8.4) and (2.8.5) are to be solved for

T, p , p , e1 and e 2 . The solutions are

T IC (2.8.21)

o A cos K (2.8.22)

o- A sin K (2.8.23)

A[xo K sin K - xo (K cos K, - sin K)I

el ... (K - sin K cosiT (2.8.24)
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4+x° cos K- +'o si n 1I
e2  A (K - sin K c s K) (2.8.25)

provided K / 0.

The point defined by equations (2.8.21)-(2.8.24) is truly
a minimizing point. This will now be shown by constructing
the matrix A of equation (2.4.33). The set (2.8.4) and (2.8.5)
is first completed by adding the equation

If 3 2 -; b . (2.8.26)

Then the equation (2.4.29) may be written, for the critical
point as

I X11 X 121 (2.8.27)
x2 '21 x22J, p2

where 0

A 1 1  -~l dJ:.-- OX 2N0l °o'2 °2
01)1•o ' 2 - o 1 -21 22 oP 'P'2 EPoI 6P2

Equation (2.4.30) then becomes

T1 a 2 a22 a 23 [ (2.8.28)
71 2 a3 a 32 a 3 3•

whereL 
L

a21 = 1(X2-2 - '22x2), a 22' " 22, a23= -CXl2

a 3 -llý2), a 3 2 =-Cx21 , a 3 3  Cx11

1
'a = (x1 1  x22 - x2 1 2)'

Also,

0A -A sinK+KcosK)
V2 FF A KsinK 1 (K-sinKcosK -sin2 K (2.8.29)

.(sinK+KcosK)-sin 2 K.(K+sinKcosK)

After all the substitutions have been made, it is found that
the matrix A4 of equation (2.4.33) is the scalar
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A4 = (K-sinKcosK) (2.8.30)
4(K 2 -sin2 K)

Since K > sin K for all K > 0, A 0. It is thus concluded
that the solution is indeed a minimizing solution, since there
is only one critical point.

As a final comment for this problem, it is noted that 8he
minirVzing path is uniquely specified by the constants K, X1 ,
and x, 2

2.9 Example Problem II The problem considered here is the
time optimal bang-bang problem. The objective is to show that
at least some problems with corners can be treated by the
methods described above. The problem will not be solved. It
will only be shown that the function F of the equivalent mini-
mization problem has partial derivatives of at least second
order in the variables T, p . It is thus possible to show
sufficiency and to use the %ewton-Raphson method.

The differential equations for the time optimal bang-bang
problem with a single control function are linear, and may be
written X = 7,u ~t. • (2.9.1)

where U and x- are rnJl matrices and L is n;xn. The elements
of b and B are constants. The control function is constrained
by the equation

lul < (2.9.2)
which] may be rewritten as

1 - u 2 > 0 (2.9.3)

It is recalled that inequality constraints must be in the form
7 > Z and that continuous partials of at least third order
muast exist. It is "Mown that there is no optimal solution
when lu I < 1. The function F for the problem of Bolza, desig-
nated L here, .may thus be wrcitten.

L = 1 -:- bu -1)", L-L (1-u 2 ) (2.9.4)

The Euler-Lagrange equations are then

-p = p B (2.9.5)

0 pb - 21i u. (2.9.6)

Equations (2.9.6) and (2.9.3) can be, solved for P and u
provided the determinant f2 of equation (2.3.31) is non-zero.
Thus,

-2p 2

R det -24 u2  (2.9. 7)

- 12U 01
is always non-zero since I ul= 1. The proper sign for the con-

trol function is found from application. of the minimum prin-
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ciple. Thus, it is found that

p bu < 7 U (2.9.8)
where U is any admissible control function. It is concluded
that

u = -sgn pb. (2.9.9)

Then from equations (2.9.9) and 2.9.6),
= 1- P 10 (2.9. 1,

It is noted that P. is always negative.

There are two types of subarcs for this problem, corres-
ponding to u = +1 and u = -1 respectively. If u = +1, then
p-5 must be negative. The reduced differential equations for
this arc may thus be wr-itten,

_ (u = +l)
p -pB (2.9. 12

'Purthermore,
-L= 1 P (2.9.13)

UhTen u -1, the differential equations are
3•. , " b (2.9. 14)

p (= -- -1) (2. 9. 15)

and the multiplier equation is

P 2 p (2.9. 16)

Now i- is at least absolutely continuous, since p is continu-
ous and F is constant. Furthermore, since [L < O, it is con-
cluded that the switching points iaust be the Zeros of P.
1hus, the terr:.iinal surface equation for each subarc (except
for the last one) is

0 pT. (2.9.17)
So long as p / 0 at these points, the arguments of article
2.3 hold. It is then concluded that the solution is a con-
tinuous function of the initial conditions, p , and that con-
tinuous partial derivatives of at least secona order in the
variables t, p exist. The time optimal bang-bang problem
is thus one prSblem with corners which can be treated by the
methods given above.

2.10 Example Problem III The problem chosen is that of mini-
mizing the deviation of heating rate from a specified heating
rate for a re-entry vehicle.. This corresponds physically to
a radiating vehicle which radiates heat most efficiently at a
specified temperature. 11athematically, the quantity to be
minimized may be written as an integral over the path,
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T
J (T) = iT~ ]f (.01

o t
0

where to = initial time

T = terminal time

Q= specified constant heating rate

q = calculated heiating rate, a function of the path.

The unit of J(T) is heatinig rate squared. Thus, if J(T) is
minimized, then so is[,J(Tr2, the heating rate.

An inequality constraint on the problem is that the sensed
acceleration never exceed a specified constant. This may be
iwritten as

a p < D (2.10.2)

where .D - specified constant

ap = instantaneous sensed acceleration, a func-
tion of the path.

.he model chosen for this problem is two dimensional with
a spherical earth and e:xonential atmosphere. The equations
of motion are.d tV - -SIm 1 )2

VaCD-go ,- sin - (2.10.3)

d°-, v c os - S .o Sll- PTh P VCL - _ ,..- cos -Y (2.10. 4)

v sin y (2.10. 5)

dc _ v cos-y7, (1.,o.6

where: S = reference area (constant), (ft) 2

m vehicle mass (constant), slugs 2

= value of gravity at sea level,, ft(sec)-
R earth radius, ft.
v velocity, ft(sec) 1

flight path angle, positive up, radians
h dimensionless altitude

h = altitude, ft.
= IR, great circle range, ft. a

p = p0 exp (-. R), density in slug (ft)-

p0 = sea level density

= atmospheric exponential constant (ft)"

T•he aerodynamic coefficients are based upon flat plate New-
tonian flow. They may be i-roitten as:

CL = CL0 sin a cos a sin az
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CD = CDO CDL Iin 3I

where: CL0O CD0 and CDL are constants

angle of attack, the control function of the
problem.

The heating rate equation is assumed to be that given by
Chapmian: (4)

q c p2  vs (2.10.7)

w:ihere: c = constant.

It is realized that equation (2.10.7) is an approximation to
the convective heating rate, and that radiative heating plays
an important role in the super-circular re-entry region.
Equation (2.10.7) was chosen to simplify the overall problem.
Finally, the pilots$, or sensed, acceleration is:

ap = ° 2V C 2 (2. 10.8)2mg 0  aL D

To completely specify the nature of the solutions, one
must provide initial conditions for the differential equations
(2.10.3)-(2.10.6) as well as terminal conditions. It is
assumed that initial conditions are known, and that terminal
conditions can be written in the form:

1i(x(T), T), = 0, = , ... , q < n+l (2.10. 9)

where: H(T) has components v(T), o,(T), .(T) and C(T)
n = number of components of ) ( )4.

Equations (2.10.9) represent surfaces in phase space. The
intersection of these surfaces is a surface upon which the
terminal point of the optimal path must lie. Hence, equations
(2.10.9) are said to describe the terminal surface. if q=n+l,
then the problem is a fixed end-point problem. If q = n then
the terminal surface is a curve. For q < n, (2.10.9) describes
a surface in phase space.

Initial conditions for this problem are assumed to be in
the super-circular velocity region. The terminal surface
equations are

T1 = a1 - T = 0 (2.10. 10)

2= a 2 -v(T) = 0 (2. 10. II)

T 3 = a 3 - y(T) = 0 (2. 10.12)

T4 = a 4 - (T) = 0 (2. 10.'13)

"5= a- (T) = 0 (2. 10. 14)ý

where the constants al, a2 , a 3 , a, and a5 are specified values
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in the sub-circular velocity region. Various combinations of
equations (2.10.10)-(2.10.14) can be used to obtain different
terminal surfaces, and hence, different optimal solutions.

The problem may now be stated: Find that programming of
the control function, a(t), such that the solution of the dif-
ferential equations (2.10.3)-(2.10.6) for given initial condi-
tions satisfies the inequality constraint (2.10.2), ends on
the terminal surface defined by the chosen combination of
equations (2.10.10)-(2.10.14), and yields the minimum value
for the function (2.10.1) (if a solution exists).

To facilitate the problem solution, a new variable will
be defined by the differential equation

x (_q)2, x5(to) = 0 (2.10.15)

This is added to the set (2.10.3)-(2.10.6). Equation (2.10.1)
may then be written

J(T) x5(T) (2. 10. 16)
0

The solution is assuLmed to consist of two types of subarcs,
one for which a < B (except for possibly a finite number of
points) and thePother foiý which a = B. The function F of the
multiplier rule can then be writtin in the abbreviated form

F = xl(fl-v) 3,2 (f 2 -1') ,3 (f 3 -) -' f4-

+x5 (fs- 5 ) + P'(B-ap), (2. 10.17)

where it is understood that the multiplier I.' is zero whenever
a < B, and < zero when a = B. The coefficients of the multi-

piiers,. ?' are the differential equations (2.l0.3)-(2.l0.6)
and (2.10.15). f , i=l, ... , 5, represents the right-hand
sides of these differential equations.. The Euler-Lagrange equa-
tions for (2.10.17) can then be written

d;l f 6f2 + '6f3 +f4

- dE- 1 ýLX + 2 - v `3 3-v -4 3v

f5.
+ TV- 41d v (2. 10. 18)

dX1 flf2 3f f
- i- >1 +j __Y 2 7-- ?1 3 'j-- X4 a< (2. 10. 19)

dX= Xl + X 2  + X4 7f

dt 1 TT 2 &

+ X 5 VI - _, (2.1o. 20)
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d ,4

- =0 => 4  C1  ( 2. 10. 21)

S 0 => 5 C2 (2. 10. 22)

1f + x 2 ý1 a
1 • + 2• - I' -s-- 0 (2. 10. 23)

The multiplier X4 of equation (2.10.21) is a constant because
of the original choice of coordinate system for the dif-
ferential equations. Polar coordinates always give a cyclic,
or ignorable, coordinate. This is the angle 0, which never
appears on the right-hand sides of the differential equations.
In Cartesian coordinates, there would be four variable multi-
pliers instead of three. It is advisable to use that coordi-
nate system which yields the greatest number of cyclic coordi-
nates. The corresponding multipliers are constants. X5 is a
constant because of the definition of x . Its value, from
equation (2.10.16) and the transversaliýy condition (2.3.13).,is found to be

15 = T-t (2. 1QOL 24)

0

This follows since x (T) is not present in the terminal surface
equations (2.10.10)-5(2.10.14) and since J _ g in equation
(2.2.1). The Hamiltonian for this problem can be written

5 ZJ
H= Pifi =c- - el (2. 10. 251

i=1 0

It is a constant, and Its value (the right-hand side of
(2.10.25)) is found from equations (2.10.16), (2.10.10) and
the transversality conditon (2.3,12). The constant el is zero
if equation (2.10.16) is not present for the problem under
consideration. Finally, terminal values for the other multi-
pliers are seen to be

xY(T) = e: (2. 1:0. 26)

x2 (T) = ej (2. 10. 27)

X3 (T) = e4 (2. 10. 28)

e (2. 10;29)
X4 5.

Any one or all of these are zero if the corresponding equations
(2.10.1l)-(2.1o.14) are absent from the problem formulation.

It is convenient to normalize the multipliers at this
point. This will be done by multiplying each multiplier by
the time interval, T-to, viewed as a constant. Thus
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pi = (T-to) Xi, i=l,...,5 (2.10.30)

0
e. = (T-.to) e'., J=1 ,.,r (2.10O. 31)

S= (T-to) i'. (2. 10. 32)

Then equations (2.10.18)-(2.10.20), (2.10.23), and (2.10.24)-

(2.10.29) become

1 1 •f2 - f3 _f4

"p 1 p V P2 U-3- + P4 dv
6 f 5 6a

± .- Pv (2. 10. 33)

6f2 1+ f2 6 6f4= +p 2 + P3  P4 F--- (2. 10.34)

6fl 6f 2 bf4
-P3 = P 1 P 2  P4

5 o (2. 10.35)

ý-fl f2 i

0'--- P2 6a a (2.10.36)

5

H1  PiZ i =J -:- eI (2. 1037)
i=l

Pi(T) ei_.1 , i-l,..., (2. 10. 38)

P5 (2. 10. 39)

Computational equations will nowt be developed for the con-
tro l function, a, and the multiplier p. Consider first those
subarcs for which a < B. Over these subarcs P = 0. Then equa-
tion (2.10.36.) becomes

fl 6f2
Pl 7,- + P 2  7- = 0, (2. 10.40)

or 6f 1 CD . f2 6CCL
p 1 D I i- p 2- (2. 10.41)

From the aerodynamic coefficients one finds
6cD•-- sin a cos a sin f.10. 42)
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6C L C 
'. S2 2t

LoCL 0o5Ifl c ( cos a 1. (2.10.43)

and Ofl 1 .
.3. vsandD2 (2.10.44)

S2 S . v (2 .10.45)

GL

from equations (2.10.3) and (2.10.LL). Substituting these into
(2.10.41.) and rearranging then gives

Sp v sin d [-3 CDLPl v sin a cos a

_' CLOP2 (3 cos 2 c. - i)] 0. (2.10. 46)

Assux.iing re-entry conditions, the leading tern,,s of (2.10.46)
are non-zero if !sin a / 0. '!he bracketed terms may then be
rewritten in the form

3 CDL Plv
tan2 a , tan ca - 2 -0 . (2.10.47)

CLO P2

One is thus led to the equation

tan a = -a -: a, .2 (2.10.48)

where
3 CDL Plv
2-LO P2

It is noticed that the sign of' tan a is determined by the choice
of the -: sign in equation (2.10.48).

The lift-drag polar is traversed once as a ranges through
Tr radians. it is thus advisable to limit the control-function
to a range of 71 radians to avoid double values. Furthermore,
the points a = 0,7 are singular points since 62F (the deter-

minant of equation (2.3.21) is zero at these points. The range
0 < U < 7r is chosen here since then I sin ax = sin a, and the
proper sign for equation (2.10.48) is most easily chosen. The
singular points are removed by defining a = 0 at these points.
Thus, the range of a is

0 < a < 7r . (2.10.49)

Application of the minimum principle gives the equation

sin a [-CDL plv sin 2a + CLO P2 sina cosa]

< sin A[-CDL plv sin2 A + CLO P2 sinA cosA] (2. 10.50)

where A is any value of the control function satisfying equa-
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tions (2.10.49) and (2.10.2). Substitution of (2.10.47) into
(2.10.50) and rearranging then gives

P 2 sina tanm < P 2 sin A tanA (2.10.51)

Since sina > 0 and the sign of tanm is determined by the sign
of equation-(2.10.48), it is seen that (2.10.51) is satisfi ed
by the choices

If p2 > 0, choose - sign (O < a < Tr)

If P2 < O, choose + sign (0 < a <

Equation (2.10.48) thus becomes

tan a = -a -(sgn p92 ) I-a ' (2 .10.52)

The behavior where p = 0 will now be ex:amined. This -. illbe done as a limiting pro ess, since pI, P2 and v are continu-

ous functions of time. The binomial series e,:pansion,
assuming large a, gives

lal-

It is seen that:

If a > 0 and the minus sign were chosen, then
tan a = lim -21a1 , a L' (from the left).

a-> oo2

If a < 0 and the plus sign chosen,
tan a, lira 21aI , a -> (from the right).

-a-> oo

On the other hand, if a < 0 and the minus sign chosen,.

tan a = lii .i0• 0, a -> w (from the right).
- a> i O al

Finally, with a > 0 and the plus sign,

tan a = lir _> 0, a-> 0 (from the left).

The last two cases show that it is possible for a to be
discontinuous. For example, if p2 passes through zero anda
was near ',. then a will jump to zero as p2 goes through
zero. This difficulty is cleared up if the proper interpreta-
tion is made. Since tan (OT -; ) = tan a, ao may be thought of
as being continuous across jumps, but in the disallowed region
7r < a < 2w. The control function discontinuity will be re-
taThed since computer results can be properly interpreted and
since it allows Isin a I sin a in all equations. Finally,
although of little practical importance, if po and p.are siMul-
taneously zero at a point, the limit ratio plop2i is pl/ý2 at
that point by L'Hospitalts rule.

152



To sum up, the reduced, differential equations of the
extremals for subarcs having a < B are (2.10.3)-(2.10.6),
(2.10.15) and (2.10.33)-(2.10.•5) with P- 0. The control func-
tion is computed from equation (2.10.52) in the range 0 < a < • .
The subarc terminal surface is seen to be a = B, provided that
6 0. p

When ap B, one must calculate both a and k.. The method
chosen for doing this her'e is to find a. from a = B and I1. from
(2.10.36), E:ý..pansion and rear-ranr•ement of the Pconstraint
equation a = B gives:

(2.10.53) b 2 
- C20 = sin' c cI sin-' a,-- c sin a c 3  (2.10.53)

where: b 2go

C C2  2
1 DL -LO

C2
c2 LO

c3 : 2•DO CDL"

The i:iht ha nd side o-' (2.10.53) is a function only of
the vehicle aerodvnamic coefficients (constants) and sin a. It
is zero when a = 0 or ',, and ma:imimn when a "I . From this it
follows that b must satisfy

(2.10.54) CDO < b 1 (CDL -• OD0) (2.10. 54)

Physically speaking, -if CDO > b at any point of the path, then
ahas gone to ..ero in the futile attempt to keep a ý B. The
path must then be disqualified as a candidate for tRe optim=1
path.

Newton's method was chosen to e.tract a from (2.10.53).
The iteration equation is

(b 2 -C2 0 ) - sin.3 CZcsinoo; c 2 sin a cj
(2.10.55) Aa = (2.10.55)

sin 2 a cos a 6clsin-ýa -; 4c 2 sin a -; 3c 3

A Aa is calculated from (2.10.53). using an assumed a (usually
the last integration step. value). This is added to a, and the
new a is used to calculate a new A!a. The process continues
until Aa is negligible.

In the vicinity of a = 0, 7 or 7T, the denominator of
(2.10.55) is likely to be quite small. To avoid this difficulty
equation (2.10.53) was expanded as a series. The results are:

(2.10.56) If a-0, (sin a =-3T) then a (2.10.56),
5 3  }
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if a-yr. (sin a - (Or-a) - ) (2.10.57)

then a = T C2 DO) l /3
03 /

if cz-f (co R ~-a ~ - cO)') (2. 10.58)

then a - 7 + CbL L +CD( ) ] 102

where: use + sign if P2 > 0

use - sign if P2 < 0.

If p2 = 0, choose sign so that tan a is continuous. The
choice of signs again comes from the minimum principle.

Finally, I' is calculated from equation (2.10.36) in the
form:

6f 1 6f 2 " (2.10.59)

Now a may be written in the form:

=B (2.10.60)
CL2 + CD2

where:

CD D + C L =1 sn cos a[6cslIn3aDO 'E-+ L M- 1

+ 4c 2 sin a + 3c 3 ]1 (2. 10.61)

This is proportional to the denominator of equation (2.10.55).

It is also noted that the determinant R2 of equation (2.3.31)
is

6a )2

R2 = (2.10. 62)

Since this must never be zero when ap = B, it is seen that a
must never be 0, ?T or 7r.

The reduced differential equations of the extremals for
the subarcs for which a = B are equations (2.10.3)-(2.10.6),
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(2.10.15) and (2.10.33)-(2.10.35) with ýL < 0. The control func-
tion is determined from the iterative equation (2.10.55) or the
small angle equations (2.10.56)-(2.10.58) in the range (2.10.49),
except a • 0, 7r . The multiplier 1± is determined from equation

(2.10.59). It is easily seen that ýL is continuous, and that
the subarc terminal surface is, consequently, P = 0, provided

0.
Potential corner points will now be examined. First, the

points a = 0, 7r must be ruled out as candidates for these

points since both R and R,, equations (2.3.21) and (2.3.31),
must be non-singula; at potential corner points. Then for all
other values in the range (2.10.49) it turns out that a must be
continuous at these points. This is seen most easily by look-
ing at the Hamiltonian. It is a continuous function of 3E, 1
and a. Since x and p are continuous at potential corner points,
then a must be continuous at those points. Similarly, examina-
tion of equation (2.10.36) shows that P must be continuous at
those points. Thus, P must start and end with the value zero
on those subarcs for which ap = B.

Finally, from sections 2.3 and 2.4, it is seen that this
problem can be solved as an initial value problem.

2.11 A Special Form of the Newton-Raphson Method Several
optimal trajectories have been obtained for the above problem
using the Newton-Raphson method. The terminal surface for all
of these has been described by equation (2.10.10). For this
terminal surface only, the Newton-Raphson method reduces to an
especially nice form. This will now be developed.

The function F for the equivalent minimization problem
with the constraint equation (2.10.10) can be written

F J(T, p) + el(a - T). ( 2. 11., )
A -A

The values T, T, p, p are defined as in section 2.5. Then
using equation (2.5.2) and the first necessary condition for
the equivalent minimization problem, one finds

0 v + (J-+) - e1  (2. 11.2)

VAF = vJ(-p (2. 11.53)
p Ap p.

0 -a - T (2. 11. 4)

These are partially solved by
T a1  (2. 11. 5)

1-• + VJ (•.) . ,2.11.6)

The problem then reduces to solving (2.11.3)for P subject
to the sufficiency condition (2..4.21).



The sufficiency condition will now be reduced to the equi-
valent from (2.4.33) by completing the set of constraint equa-
tions. %Te constraint equations need only be independent func-
tions ofT and p. Consequently, the equations (2.4.23) may be
chosen as

-A

p + b (2. 11.7)
Then equation (2.4.30) becomes

where I is the (n+l)x(n+l) identity matrix. Substitution of
(2.11.8) into (2.4.31) then gives, for the form (2.4.33),

p' V2 J " > 0 (2. 11. 9)p _

It is thus seen that the matrix V2J dfust be positive-definite.
The special form of the Newton-Ra~hson method then, consists
of the iterative solution of equation (2.11.31 provided the
matrix V2 J of that equation is positive-definite.

p
2.12 Experiences in the Use of the Newton-Raphson Method The
problem of section 2.10, as stated above, has been solved using
the special form of the Newton-Raphson method. The overall per-
formance of the method has been very satisfactory. Once the
initial values, 1, are close enough to the minimizing values,
p, the method converges quite rapidly to the minimizing point.

There are certain problems involved in the use of the
Newton-Raphson method, as there are with any other optimizing
scheme. The first of these is the number of solutions of the
reduced differential equations of the extremals required per
Newton-Raphson step. As stated in section 2.7, n(n+3) solu-

2

tions are required. Gradient schemes, (6,8) on the other hand,
require one forward and one backward solution per step. However
the convergence properties of the Newton-Raphson method theo-
retically become better and better as the minimum point is
approached, whereas gradient schemes tend to blow up. It is an
open question, then, as to whether one method requires more
total computer time than the other. Furthermore, one is never
certain that a relative minimum has been obtained using grad-
ient techniques.

The biggest problem involves the integration accuracy.
Since the partial derivatives are approximated by differencing
integrated solutions, the random error generated by the inte-
gration algorithm may result in bad predictions of the minimiz-
ing point. The value of the Hamiltonian, theoretically a con-
stant, may be used as a measure of the goodness of the solution.
It should be remembered that any integration algorithm will
blow up after a sufficient number of integration steps.

Closely related to the above problem is that of picking
the perturbations, 5p, of article 2.7. If these are too small,
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the partial derivatives will reflect integration error alone.
If they are too large, the partial derivatives will not reflect
the nature of the surface in the vicinity of the point T, P-.
Intermediate values must be picked from experience.

Solution of the problem of article 2.10 was orijinally
attempted using Bryson's method of steepest descent.'•" The
terminal surface in this case was

=v 2  .r 0 (2.12.1)

This equation describes circular velocity at a given altitude.
The problem turned out to be extremely sensitive for this termi-
nal surface. Nevertheless, one trajectory, thought to be fairly
close to optimum, was obtained. When the Newton-Raphson method
was used for the same problem, the steepest descent value of J
(equation.(2.10.1)) was halved before the sensitivity problem
became severe. Furthermore, the amount of human intervention
required for the Newton-Raphson method was much less than that
for the method of steepest descent. It is the writer's opinion,
considering the problems involved with both methods, that the
Newton-Raphson scheme is by far the more superior method.,
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INTRODUCTION

This paper describes some of the results of a current research pro-
ject* to apply optimal control techniques to the design of flight control sys-
tems. The project will be completed in October 1962, and a final report
containing the complete findings will be published soon thereafter.

The area of optimal control theory of primary interest in this study has
been the optimal regulator problem for a constant linear plant with a per-
formance index extended over an arbitrarily large time interval. The opti-
mal control for this problem is a set of feedback loops with constant gains if
the control input amplitude is not constrained. (Although the control is not
restricted, the integral of control input squared is minimized.) This solution
is of interest to flight control because constant feedback gains are easy to
mechanize and because computer solution of the optimal regulator problem
under these conditions is straightforward (non-iterative). It is also of inter-
est as a possible technique for automatic digital computer synthesis of multi-
input, multi-output linear systems of high dimension.

The paper briefly outlines the theory, discusses the flight control ap-
plication in general and then presents some results on two specific problems:
1) the problem of obtaining adequate lateral handling qualities in an X-15-
type aircraft, and 2) the attitude control problem in large, flexible boosters.

The optimal regulator problem for constant linear plants has been
solved by S. S. L. Chang and others for the single-input, single-output case.
R. E. Kalman, at the Martin Company's Research Institute for Advanced
Studies, has solved the general linear case with a constant or time-varying
plant. The authors are indebted to Dr. Kalman for his advice during this
program and to RIAS for the use of their IBM 7090 computer program.

THEORY 1

A constant, linear plant in state-vector form is represented as:

- Fx + Gu (1)dt

*Sponsored by the Flight Control Laboratory, Aeronautical Systems Division,

USAF - Lt. Edwin Stear, ASD Project Engineer.
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where x is the n-dimensional state vector of the plant, ueis the m-dimensional
control vector, and F (dimension nxn) and G (dimension nxm) are constant
matrices. There are no constraints on x or u.

Define the output of the plant as

y = Hx (2)

where y is a p-dimensional vector and H is a constant matrix of dimensifn
pxn. (The output can have more than one interpretation - vector of measur-
able quantities, error vector for the regulator problem, arbitrary linear
function of the state, etc.).

Define a performance index as

2V = lim x(T),Sx(T) + I [y(T), Qy(T) + u(Z), Ru(?)]d2 1  (3)
T-.OO t J

where t = present time
T = terminal time
S = non-negative definite symmetric matrix (nxn)
Q = positive definite symmetric matrix (pxp)
R = positive definite symmetric matrix (mxm)

and the notation a, Aa denotes the scalar product of the vectors a and
and Aa. The forms x(T), Sx(T) and y(?'), Qy(2C) and u(2'), Ru(21 are quadratic
forms in the terminal state, the output and the control input respectively.

The optimal regulator problem is the problem of finding u as a func-
tion of x such that the plant moves from some initial x to the point x = 0 by
the path that minimizes V. This problem was solved by Kalman 2 using the
Hamiltonian calculus of variations and the work of Carathgodory. The re-
sult is briefly stated as follows:

Assuming that a minimum of V exists and that it can be written as:

ZV min x(t), Px(t), (4)

we have

U = -Kx(t) = -R- IG'Px(t). (5)Uopt~t

P is the positive-definite symmetric solution of the matrix equation

F'P + PF - PGR 1IG'P + H'QH = 0 (6)

[V . satisfies the Hamilton-Jacobi differential equation, and equation (6) is
themPeady state of the matrix Riccati equation,

dP = F'P + PF - PGR'GG'P + H'QH, that results when
d't

Vmin is substituted into the Hamilton-Jacobi equation.]

Kalman has shown that the sol0tion exists whenever ,Ae plant is cor,-
pletely controllable, this quality bei~ig defined as the ability of finite control
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inputs to return the plant from any initial condition to the origin in finite time.
The solution is unique if the system is completely observable, this quality
being defined as the ability to determine the state vector at present time by
observing y and its past values. It should be emphasized that these are suf-
ficient conditions for existence and uniqueness. Solutions have been computed
even when the plant lacks controllability and observability. However, the
uniqueness of these solutions has not been investigated.

Substituting uo,• for u in equation (1), we find that the closed-loop
optimal system is desctribed by the equation

dx^

- (F-GK)x i Fx (7)dt

This system is asymptotically stable itn the large, since, Vmin is a Lyapunov
function.

Some examples of optimal regulators are illustrated in Figure 1.
These examples are all single-input, single-output, second-order plants.
Therefore the Q and R matrices in the performance index are scalars denoted
as q and r. Since one of the scalars can be factored outside the integral sign
in equation (3), there is only one parameter, q/r, that expresses the criter-
ion of performance. By increasing q/r, we more heavily weight errors in
output over control input action. Figure 1 shows the loci of the closed-loop
poles as q/ris increased. These plots can be generated in two ways. First.
'the roots of F can be computed for each q/r by computing P (and thus K) from
'the Riccati equation. Secondly, the work of Chang3 on single-input, single -
output systems (root-square-locus teedhnique) can be applied. The right-half
plane images of the plant poles and zeros are added to the actual plant open-
loop roots, and a standard root locus plot is constructed. The left-half
plane poles of this root locus plot are then the closed-loop poles of the opti-
mal system. The performance parameter q/r is related to the gain param-
eter of the plot. (The actual feedback parameters are represented by a ma-
trix of loop gains, )

Using this second technique, it is relatively easy to examine the char-
acteristics of optimal single-input, single-output systems. It is readily ap-
parent how the optimal system will behave as a function of the performance
index being minimized. At this point we can say that:

1. Not every stable linear system optimizes a quadratic index
of the form of equation (3). The process of optimization
is truly selective.

2. Not every optimal system is of high bandwidth and adequate
damping (witness the pole positions. for low q/r).

3. As q/r -o oe the optimal closed-loop poles notcancelled by
zeros approach a Butterworth configuration (poles sym-
metrically arranged on a semicircle whose center is the
origin).
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GENERAL REMARKS ON FLIGHT CONTROL APPLICATION

The equations of motion of an aerospace vehicle are nonlinear. How-
ever, the motions of these vehicles can usually be adequately described by
linearized equations if the perturbations from equilibrium are small. If the
equilibrium conditions change due to changes in altitude, airspeed, gross
weight, or other similar flight parameters, the coefficients in the linearized
equations also change. If it can be assumed that the vehicle will not stray
very far from some precalculated flight trajectory, then these coefficients
can be specified by functions of time only. Frequently these coefficients
change so slowly that they can be considered constant. It is therefore evi-
dent that the plant in this case fits the general linear optimal control theory
and often the theory for a constant linear plant.

However, for optimal control to be meaningful, we must attach some
physical-meaning to the performance index. The error portion of the -index
is not difficult to justify. In the attitude control problem, we would like to
minimize errors in attitude from some reference. In the handling qualities
problem, we have a set of desirable closed-loop dynamic characteristics.
We can represent these characteristics by a model. Thus using Kalman's-
model formulation of the performance index described below, we can effec-
tively minimize the errors between model and system outputs. The second
piece of the performance index requiring minimum control inputs is not as
,easily inte preted. In many applications, we don't really care to minimize
control input as long as the control input and rate limits are not exceeded.
Minimizing control deflections helps to accomplish this, but the requirement
of minimization is basically too strong. We do not desire minimum control
input -- only input smaller than a given level.

The real weakness in the perfcrmance index as a meaningful criter-
ion of performance is the fact that the choice of relative weighting between
the output error and the control input is arbitrary. It has already been
pointed out that the closed-loop poles are sensitive functions of the param-
eter q/r for a single-input, single-output system. The same is qualitatively
true of the parameter IIQII/IIRII for multidimensional input and output
(hA IB: norm of A).

This point is illustrated by the simple example of an aircraft pitch
axis control system. The linearized equations assumed to represent the: dy-
namic longitudinal-mnotions-of the-aircraft for- small- deviations- from an-equi-
libriurn flight path are:

M l0 M oLM.& + MS e (7)

/-&i-L,,oc ÷s 8 e, (8

where • = pitching velocity
C = incremental angle of attack
Se= incremental elevator angle

and M• ,Me , M,& S, 4- and £.s are- constants.
[(Q) dendte-s d( ) / dt].



The elevator is driven by an actuator whose dynamics are represented

by the equation

rie +e a Be (9)

where = command input to the actuator

= elevator actuator time constant.

These equations written in state vector form are

K- L¢ 1 - Lse 0

Me - M LO M 9 + M& Mse-M& LMSe • + 0 [8,,]

L o - K/"M L'e01l/rt (10)

Choosing w and 3 as system outputs, and choosing

Q= R 1 ] 1 ], and S = 3 x 3 null matrix

P q22

(the matrix S does not influence the solution as long as it is non-negative def-
inite and the plant is completely controllable and observable), we formulate
the performance index

T
V= lim f (q1 21 +qi 2 qZ+S - )d?' (1i)

T-boo 
t

Taking numbers representative of the X- 15 aircraft at a Mach number of 4.8
and an altitude of 77, 000 feet (Table 1), we obtain the optimum responses to
initial angle of attack shown in Figure 2 for several choices of Q with qli
= q 2 2 "

Some of the responses are '' more optimum'' than others on the basis
"of what we know to be a desirable transient response, although all the closed-
loop responses optimize their specified performance index. The choice of
relative weighting between output erro~r and input gives a wide range of closed-
loop dynamics and there is no a priori basis at present for choosing the
weighting factor.

However, this is not to say that optimal system synthesis is useless
in flight control application. Quite to the contrary, it is evident from the ex-
ample that, for the proper choice of weighting factor, a control system haviiig
an acceptable response has been synthesized. Figure 3, showing the control
input necessary to produce the responses of Figure 2, indicates that quite
reasonable magnitudes of elevator deflection are required.

Figure 4 - a flow diagram of the optimal system - shows that the
system would not be difficult to mechanize. Examination shows that the feed-
back gain k 3 (where Km [k 1 k2 k 3]) serves to vary the equivalent time constant
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of the elevator actuator. This equivalent time constant is given exactly by
the relationship

Sclosed-loop = 6.67 (1 +k 3 )

Since K = R 1 G'P from equation (5), and P must be positive definite, then
k3 = i/7' P33 > 0. Therefore for this application the equivalent actuator
closed-loop time constant is always smaller in the optimal system.

It is usually desirable to reduce the number of feedback parameters
of a closed-loop system. This fact is particularly true of a system designed
by optimal techniques because the optimal system nominally requires that
each state variable be fed back to each input variable. The above example
shows clearly that once a desired optimal response is achieved, it may be pos-
sible to replace an existing component by one having the characteristics re-
quired for optimal system response.

Another interesting point can be made from the example. Comparing
closed-loop characteristic equations we have:

Q Matrix Characteristic Equation

qll = q2 2 = 0 (open loop) X' + 7. 13A' + 20. 09A + 114.3 = 0

qll = q2 2 = .2 A'+ 10.67A2 + 51.7A + 120.5 = 0

qll = q22 = .5 A' + 12.5AV + 72. 9k + 129.3 = 0
qll = "22= 1.0 A' + 14. 33Ae + 97. 3A + 142. 1 = 0

In each case, as Q is made larger, not only does the sum of the roots of the
characteristic equation become larger, but the sum of the product of the
roots taken two at a time and 'the product of all three roots increases. It is
suspected that the characteristic equations for other optimal systems will
also exhibit the properties shown above.

Throughout this study, choice of a performance index has been made
using the two steps illustrated in the example. From physical intuition we
would like to minimize errors in cc and q. So we include cc and q in the per-
for-manceindex. Then a weighting factor is selected that produces a desir-
able transient response. Thus the performance index is used as a perform-
ance index - that is, we choose elements of the H and Q matrices to minimize
what we would like to minimize from physical considerations - and it is used
as a system synthesis tool - that is, the weighting factor is used as a "cut-
and try" parameter. The real criterion of performance is judgment applied
during the ''cut-and-try"' procedure.

The beginnings of. a straightforward synthesis procedure have been
made by recognizing such generalizations as the image root interpretation of
the single-input, single-output optimal problem, due to Chang. It is possible
that more general results can be obtained by examining the so-called "reverse"
optimal solution. That is, given a system and a feedback matrix, what per-
formance index, if any, is minimized by this feedback matrix. The equations
of the "reverse" solution are equations (5) and (6) with P, Q (or H'QH) and
'R as unknowns and F, G and K as knowns. These equations can be written as



F'P + PF + HQ'H = 0 (12)
and RK - G'P = 0 (13)

Equations (12) and (13) are now linear in the unknown matrices. By virtue
of the linearity some facts are readily apparent. Depending on the number
of inputs and outputs and the order of the system the ''reverse" solution has
more, less, or the same number of scalar unknowns as -equations. When
there are more unknowns than equations, a solution always exists for any
assumed K matrix satisfying the inequalities that make P, Q and R positive
definite. However, if the number of unknowns is less than or equal to the
number of equations, a solution exists only if equalities are satisfied by the
elements of the K matrix. Both the inequalities and the equalities become
important when the designer is seeking optimal systems that are physically
realizable, since the size of the numbers in the K matrix determines di-
rectly the feedback configuration by determining how many, if any, feedback
gains can be neglected.

A brief example of the equalities that arise is the optimal feedback
for the plant y(s) / u(s) = i/s2. In this case k, =(k?) 2 /2 is the equality and
the ''reverse'' solution is q/r (k)Z .

An example of the case where the number of unknowns exceeds the
equations is the following:

Give- F• = -41, G = ,- H = [10,, and K =[.828 -. 038],
L 2  - 3 'ir[ q.0 ]8.

then the "reverse" solution is any Q and R satisfying Q =L r 2
12 r+4q12?

and R [r], r > 0, and -. 24 r < q 1 2 < 16. 12 r.

SPECIFIC RESULTS

I. Lateral Handling Qualities Problem

The criteria for the cesign of the primary control system for a manned
aircraft are generally expressed in terms of what are known as handling
qualities. Handling qualities are a description of the match between the sta-
tic and dynamic characteristics of the pilot and aircraft to accomplish the
mission of the man-machine combination. Good handling qualities are
achieved when the level of performance of the combination satisfies the mis-
sion objectives with the least amount of pilot concentration and compensation.

The Cornell. Aeronautical Laboratory has done considerable research
in the past fifteen years toward determining the optimum handling qualities
of aircraft. 4 (Reference 4 is a representative recent publication.) The re-
sult of this. research has led to a definition of combinations of dynamic and
static characteristics judged by pilots to provide good handling qualities.
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From these characteristics, and from general past experience, a mathemat-
ical model of- the desired dynamics of an aircraft, can be constructed. An
optimum control system, in order to provide good handling qualities, must
therefore satisfy two criteria:

1. The minimum of the quadratic performance index
must be obtained.

2. The dynamic characteristics of the resulting system
must be within the area defined by pilots as desirable.

There are at least three ways this problem can be approached.

The first is to obtain by trial and error a number of optimal solutions.
From these solutions, it will probably be possible to choose a combination of
H, Q, and R that results in a closed-loop optimal response acceptable from
a handling qualities point of view.

The second approach is to obtain a direct relationship between the
technique of design by performance index and design by time and frequency
domain criteria. Preliminary steps have been taken along this path via the
root-square locus and the "reverse'' solution as described above.

The third approach is to include the mathematical expression for the
model directly in the formulation of the system. This is equivalent to re-
defining the origin of the output space. The inclusion of the model redefines
the origin to be a desired trajectory. This desired trajectory can be ex-
pressed explicitly by including in the system an actual physical model, or it
can be implied by expressing the performance index in a manner that ea-"ses
that part of the performance index weighing the state variables to go to zero
as the optimal response approaches a desired response.

The use of a model simplifies the design procedure considerably. Its
use is justified for a number of reasons:

1. A dual performance index is realized; one part expresses dy-
namic criteria on the output, the other as the optimality con-
dition that minimizes a. quadratic function of control action.
The best use is made of the control to minimize those errors
expressed in the performance index.

2. To approximate the respo se of the model more and more
closely, it is necessary olly to increase the IIQII'/IIRII ratio.
The IIQI[/IIR I ratio will be limited by physical limitations
.on the feedback gains.

3. The time constants of higher-order plant dynamics can be
made small by choosing a model that is lower-order than
the plant.

The model is included in the performance index by Kalman* in the
following way:

The, model is expressed as the matrix L giving, the, autonomous dynamic
system = LI1 (f a fi*cticious state vector). Forming the difference

SReference I, Volume II
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- Ly and minimizing this difference, the plant output is forced to- act like
the system L = This leads to the performance index

T
2V lim f [Ilk - Lyll' +I1ullz ] dT (14)

T e0 t Q R

where the notationhla l' denotes the quadratic form a, Qa where Q is positive
definite. Substituting 9quations (1),and (2) we have

lim T

2V = T =o If[[(HF-LH)x 4HGuhl +IluIIZ ]dT (15)
t Q R

If HG = 0 (which is trzue for single-input, single-output systems with the num-
ber of poles exceeding the number of zeros by at least two), then we define
a new H matrix H = HF - LH and proceed as- before. If HG / 0, new La-
grangian and Hamiltonian functions must be constructed, but the solution is
similar in form to the previous one.

The optimal control system for achieving good lateral handling qual-
ities is synthesized as follows, using the model formulation proposed by
Kalman. The plant is assumed to be an X-15 - type aircraft on a re-entry
flight path. The lateral-directional motions are described by

+ 9 y ,. I1

V

/V= Lig L., Lr.",L;S&÷ Z#,gr

7.N. INN+,, . , N , N1,s,. (16)

where /9 = sideslip angle
= rolling velocity

r = yawing velocity

er = rudder deflection,

8,Z = aileron deflection

and the remaining parameters are constants for a given point on the trajectory.

The aileron and rudder actuators are described by

& +S.S -(

"z'=s, ÷& =s=•(17)
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The resulting six-dimensional system is written in state vector form as

0 1 0 0 0 0 0 0

/ -NS YS (9/ V-N ) -N r (NS,+ ") - N, ý 3

p L, 0 L L Lsr LS p 0 0
p r -i

r Ne 0 N N Nsr NS r 0 0p r a~ $ •]

LL

0 0o 0 0 - 1 / 0 , 8,. 1/2I ,.,

(8)

Numbers for three flight conditions are listed in Table 2.

The model is exactly the same form as the plant with actuator dynam-
ics omitted and numbers describing a near-optimum aircraft substituted for
the re-entry aircraft numbers. In this case the model was chosen as the
characteristics of a T-33 aircraft at 25, 000 feet and 250 knots with some
artificial damping added to the Dutch roll mode. The resulting L matrix is

L 1 0 1 0 0

L 2 -3.72 -2. 156 .0526 .317

L -8.54 0 -2.56 2.50

L4 3.72 2.00 0 -. 317

0 0

H = x4 0
x4 0

0 0

From previous experience we know that matching the/3 and p time histories
of the model results in adequate overall matching. Therefore we choose
Q and R to be



0 0 0 0o o o
Q and R = •

0 0 q 3 3  0[

0 0 0 0

(Although Q is non-negative definite he~re for convenience, the results show
no detrimental effects of this choice.) The choice of Q and R gives the per-
formance index

zv lir T [q2 ( .. Lzy) q +s+ - +S2 ]dT (19)
T - M t C

which expresses the desire to make the aircraft side force and yawing equa-
tions (combined in the canonical formulation) and rolling equations match those
of the model.

Figure 5 shows the response of the open-loop system and the closed-
loop optimal system at the first flight condition listed in Table 2. The choice
of q2 ? and q2 3 is shown in the figure. The aircraft is nearly out of the at-
mosphere, where the natural frequency of the Dutch roll mode is very low,
with practically no damping. The optimal response does not follow the model
closely, but achieves good Dutch roll damping with feedback gain values that
are probably physically realizable (with the possible exception of / feedback
to the rudder actuator).

Figure 6 shows the same series of responses except at a later time
during the re-entry. Again the optimal system does not follow the model
well but the improvement over the open-loop is considerable.

At a still later time, t = 40 sec, the aircraft follows the model more
closely and, from a handling qualities point of view, would probably be re-
garded as a good aircraft. The transient responses are shown in Figure 7.

By increasing the ratio of IIQ 11 to 1I R11:, it is presumed possible to
make the aircraft follow the model as closely as desired. Figure 8 shows
the response of an optimal system where. the I1Q11 to LJRII ratio has been in-
creased by a factoxr of 5. The open-loop aircraft is that of Figure 7. The
closed-loop aircraft follows the model closely and it may be presumed that
this fidelity can be improved even more by increasing lIQII/IR II,. Figure
8 shows, however, that as this ratio is increased, a corresponding increase
in the feedback gains is required.

If one desired to build these systems without simplification, two ob-
vious disadvantages of the optimal systems from the hardware viewpoint can
be seen from these results. Assuming that the feedbacks of actuator position
can be incorporated in the original actuator design, one must still provide
sideslip, roll rate and yaw rate sensors. Adding, a differentiating network
for the sideslip signal brings the total number of channels up to eight. This
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is a lot of complexity. Also, the feedback gains must be programmed as a
function of time or changed in some other manner during the re-entry. This
also adds complexity. The advantages of designing a control system of this
complexity are not apparent in the results.

It should be emphasized, however, that these results do not preclude
the possibility of deriving optimal systems that are less complex or closely
approximating optimal systems with less complex systems.

2. Booster Pitch Attitude. Control Problem

The first-stage attitude control system of a large booster must be
designed to satisfy several criteria. It must stabilize a usually unstable
airframe; it must maintain deviation from commanded attitude at a minimum;
it must respond to wind disturbances so that angle of attack does. not exceed
tJ-i design value, at the same time limiting drift off the nominal trajectory;
and it must accomplish the control task without exceeding engine deflection
limits and rate limits. The quadratic performance index by itself cannot ex-
press all these desires. However, for present purposes the problem is re-
stricted to that of maintaining minimum attitude errors - a simplification that
will yield results and yet that is not far removed from the real problem.

The motions of the flexible booster in the pitch plane and the engine-
leflection actuator are described by:

Rigid Body { .

- G, e2 N,OR NS8+N 3 o N 4 Sg

Structural f + ÷ 2 'Cwzi, +,w, 1 9, l * k, #.B

Modes \. 2,e 1  G,= sk;

Actuator a 5 8"+a.a6 4 at&÷*6 = Sc (20)

where 9V = pitch attitude erior from nominal trajectory

O*-- rigid body angle of -attack

8 =engine deflection

= local attitude of structure relative to

rigid body mode (ith mode)

= commanded engizie deflection,

and M, N, W, CO,° al, etc. are constants.

Written in state-vector form, these equations are as follows



0 1 0 0 0 0 0 0 0 0 Ole 0

0 0 -Mo -M 2  0 -M 3 o 0 0 0 Olt 0

061 -N 1 1 -N 3  -N 2  0 -N4 0 0 0 0 .4cle 0

S 0 0 0 0 1 0 0 0 0 0 8 0

0 0 0 0 0 1 0 0 0 0 0
d .. 1 . a 1 a 2 ' + od- * - 0 0 0 -- .... 0 0 0 0 $[I+1

a 3  a 3  a 3  a-3

1 0 0 0 0 0 0 0 1 0 0 e, 0

• 0 0 0 0 k,'-W&,, -2?,0o 0, 0 o

8 0 0 0 0 0 0 0 0 0 1 0 8 0S I

0, 0 0 0 k 2 0 k2' 0 0 Gs 0

(21)
One flight condition is examined here - Mach Number = 5 at

160, 000 feet. This condition is typical of first-stage burnout (numbers
given in Table 3).

Since we desire to minimize rigid body attitude errors but have no in-
terest in adding to the structural damping or changing the actuator in any
way, the H matrix is chosen as:

H= [ 1 0 0 0 0 0 0 0 0 0].

This makes the Q and R matrices both. scalars and leads to the performance
index

lim 'r T( a Z
2V = lim t(q/r E" + Se )dx (ZZ)

(The choice of H in this case gives a plant that is not completely observable.
However the optimal regulator solution may, nevertheless, be unique, due to
the stability of the unobservable part of the plant - the structural modes.)

After running several solutions, the ratio q/r = 10 was chosen as
giving a good compromise between speed of response and peak engine deflec-
tions. This choice, of course, had to be based on previous experience with
the booster problem. The transient response to the initial condition GI =
1. 0 deg, CaC = 1. 0 deg, is shown in Figure 9. The closed-loop structural
damping is no greater than the open-loop damping (Q = .01 from Table 3),
but this is to be expected since the structural mode state variables are not
included in the performance index.

The feedback gains for Figure 9 are
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S= -Kx

so = 3. 16 E) + 1.62 4, + .018cc? - .468- .0007

- .194 x I0-4 5 - (0) eg, - (0) 9), - (0) eg - (0) 4,2. (23)

This result is both encouraging and discouraging, for although 4C*, 8, 8,
es, ,9 2 ,e , and GSa can be omitted from the feedback equation without
deviating appreciably from the optimum system, the remaining rigid-body
variables cannot be measured without sensing some structural motion. For
some sensor positions, this structural feedback is destabilizing.

The booster representation was next simplified to shed some light on
the question of ignorable higher-order dynamics. The designer would like to
know whether it is legitimate to ignore higher-order dynamics in constructing
an optimal solution when physical intuition indicates that they can be ignored.
For the flight condition examined here, one would suspect that the structural
modes might be ignorable (that is, ignorable when determining the feedback
equation, not when mechanizing it). This was shown to be the case, because
the feedback equation for the booster without flexibility is the same as equa-
tion (23) with es, , Gs , etc. omitted. Dropping the actuator and the heaving
degree of freedonr from the booster formulation, we find the feedback equa-
tion is

Se = 3. 17 We + 1.45 el (24)

Comparing equations (23) and (24), we suspect that the omitted dynamic ef-
fects are almost but not quite ignorable. The feedback of actuator position
is the only significant term omitted in equation (24).

These results indicate that dynamic effects far outside the bandwidth
of interest can be ignored in determining the optimum feedback configuration
much the same as they are ignored in conventional design practice.

The final result in the booster application is the comparison of the
optimal system with a realizable system. Figure 10 is the block diagram of
a realizable system. This loop, taken from a previous study, was not de-
signed to approximate the feedback of equation (23) except in the sense that
low-pass filters are included to greatly attenuate the feedback of 9S, and
The compensation is lead-lag. However, plotting ZV from equation (2Z)
versus gain gives the following picture.

16

14 Realizable
2V System

deg 12
sec

1-0

81 2 Optimal) .
r Sys te/

0 .4 .8 142 1.6 2.0 2.4 (Gain)
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The realizable system, in this flight condition, approaches the optimal sys-
tem quite closely although the transient response is slightly oscillatory. As
gain is increased from the minimum point, system oscillations increase

(so 3 8:dt increases), but the bandwidth also increases so that 9 GadZ.
0 6

continues to decrease. Figure 11 shows the transient response at a gain of
2. 2. As is shown on the plot, the error portion of the performance index is
almost equal to that of the optimum, but the control input integral is consid-
erably larger.

CONCLUSIONS

Only some of the results of the study mentioned in the introduction have
been included in this paper, but they illustrate the general experience gained.
Both success and failure have been encountered in choosing performance in-
dices giving satisfactory optimum systems. However, the following conclu-
sions can be made:

1. State variables characterizing higher-order system dynamics
need not, in some cases, be fed back to obtain an optimal system
if they do not appear explicitly in the performance index.

2. Choosing the performance index from physical intuition, ex-
cept for the relative weights given to the error and the con-
trol, works fairly well in obtaining satisfactory transient
response, although this procedure will not usually lead to a
feedback configuration that is easily realized physically.

3. Further work is needed to establish general relations between
the performance index and the resulting feedback configuration
if the optimal control theory is to be useful as a practical
system synthesis tool.
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TABLE 1

X- I- AIRCRAFT LONGITUDINAL DERIVATIVES

M = 4. 8, h = 77, 000 feet
-1 -1

M = -. 132 sec L• = .277 sec

M = -046 sec -s = .07_sec -1

Ma = -17.1 sec 2  =.15 sec
-2

Mse = -12.2 sec

TABLE 2

RE-ENTRY AIRCRAFT DERIVATIVES

time after h Y1 , L.ts L L N
re-entry p r
initiation Mach (1000 -1 -2 -1 -1 -z

(sec) No. ft) sec sec sec sec sec

0 5.3 226 -. 0018 .0208 -. 0062 -. 0002 .492

20 5.6 211 -. 0036 .0637 -. 0123 -. 0004 .932

40 5.5 147 -. 0019 .5140 -. 0625 +. 0376 2.95

Nr Yg6  LSI L$Sr N$& N 6r g/V

-1 -2 -2 -2 -2 -2 -1
sec sec sec sec sec sec sec

-. 0015 .0003 -. 335 .150 -. 0161 -. 178 .00552

-. 0028 .0007 -. 647 .353 -. 0311 -. 349 .00550

-. 0103 .0025 -5.11 -2.32 -. 249 -1.43 .1 00535
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TABLE 3

BOOSTER DERIVATIVES

Mach No. = 5.0 h = 160, 000 feet

M-. 036 (sec- ) a1  = 56.3 x 10-3 (sec)

M = 3.02 (sec- 2  .809 x 10-'3 (sec)2

M3 =.00175 (---) a 3  = .00447 x 10-3 (sec)3

N1 = .0292 (sec-) (O,, = 15. 1 (rad/sec)

2 = 2 0 48 (sec0,, 86. 1 (rad/sec)

N3 = .0012 (sec- ) : .01 (...)

N = .9.36 x 10`5
42

kI = 6.21 (sec-2

k'= .00515 ( --- )

k = 59.6 (sec- )

k .0843(---)
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ABSTRACT

A three-dimensional trajectory optimization com-

puter program is described for determining vehicle

performance boundaries. Simultaneous prdgrams for

angle-of-attack and bank-angle, with specified initial

and terminal conditions, are determined by this pro-

gram using steepest-ascent computational procedures.

Terminal constraints in the form of upper bounds on

total stagnation point heat absorption and total accel-

eration dose and in-flight constraints in the form of

upper bounds on altitude and stagnation point heating

rate are also included. The vehicle is treated as a

mass particle and the earth is approximated as on

oblate-spheroid with an ARDC atmosphere rotating

with the earth. Only coordinated turn maneuvers are

considered. The terminal functions which can be

optimized include all the state variables individually

and a number of functions of the state variables. These

computer programs are specifically oriented for com-

putations on the IBM 7090.

A numerical example is given for a SORTIE con-

figuration consisting of a three-stage booster system

and a payload, the re-entry vehicle, SORTIE. Three

separate but related performance boundaries, were

computed for this configuration: 1) the boost boundary

for the three-stage booster system, 2) SORTIE re-entry

and glide, 3), SORTIE lateral maneuvers in the recovery

area.
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1. INTRODUCTION

The determination of the performance capabilities of a hypersonic vehicle

requires a three-dimensional analysis because of the rotation of the atmosphere

with the earth, the oblateness of the earth, and the fact that the vehicle is capa-

ble of making lateral turns. Constraints on acceleration dosage, heating,

heating rate, and altitude may also be placed upon the vehicle.

To map out the performance boundaries of a givenvehicle by a cut-and-try

approach requires many individual tries. The technique. presented in this

report allows one to proceed in a systematic and efficient manner to map out the

performance boundaries. It requires the use of a high-speed computer to

determine each trajectory and employs a steepest-ascent or successive-

improvement method.

Two major computer programs are presented: 1) for a gliding vehicle and

Z) for a vehicle which has a fixed direction of thrust relative to the' vehicle.

Only coordinated turns are considered for both gliding and thrusting vehicles;

thus angle-of-attack and bank angle are the control-variables. The vehicle is

approximated by a mass particle acted upon by aerodynamic, propulsive, and

gravitational forces. This represents a considerable simplification over

treating the vehicle as a rigid body, which would involve, in addition, the pitch,

This study program was supported in part by funds under USAF Contract
No. AF 33(616)ý-8300, Task No. 143107 of Project 1431. This paper consists
of a condensation of References (10-12).
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yaw and roll dynamics. It is believed that this approximation is reasonable

when determining performance boundaries.

In-flight constraints are satisfied by the use of penalty functions which

effectively converts them into terminal constraints. Two in-flight conwtraints

are considered, either one of which may be applied in a given problem:

1) An upper bound on altitude during the flight and 2) an upper bound on the

heating rate at the stagnation point during the flight.
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2. COORDINATE SYSTEMS

2. 1 Spherical Coordinate System

The choice of the coordinate systems is an important part of the optimiza-

tion analysis. Since the atmosphere and the desired landing point both rotate

with the earth, it seems that a simple and desirable coordinate system to use

is the conventional geographic coordinate system. This coordinate system is .

spherical polar coordinate system described by a radius from the center of the

earth, r, a co-latitude angle measured from the.North Pole, 0, and a longitude

angle measured from the Greenwich or prime meridian, *. (See Figure 1).

The earth is assumed to be an oblate spheroid with an equatorial radius, R

of 20. 925631 x 106 feet and a polar radius, Rp, of 20. 855965 x 106 feet.

(See Reference 1.) Thus the radius of the earth becomes a function of the co-

latitude and can be given as

RR(o)=

R R1- e " 2i~ (2-1)

1 R- sin2  ()
Re

Since the second term in the radical is much less than unity, the radical can

be expanded into a series. Retaining only the first two terms, the radius of the

earth is given approximately by:

R - R,
R(8) = Re (1- R co210

Because the earth is an oblate spheroid of eccentricity near unity, the radius

vector ie not quite perpendicular to the local earth mean-surface. However,

the maximum angle between the radius vector and the normal to the spheroid

is 11. 5 minutes of arc and occurs at a co-latitude of 450. Thus the error in

assuming that the altitude is given by:
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NORTH POLE

GREENWICH MERIDIAN

S~~POSITION*

S---REQUATOR

Figure 1 - Geographic Position Coordinates r, 0, $

h = r - R (e) (Z-3)

is negligibly small. The atmospheric density is assumed to be a function of

altitude h above the earth's surface and is taken to be the standard 1959 ARDC

atmosphere model.

2. 2 Auxiliary Coordinate Systems e: , and b, v

Two auxiliary coordinate systems are used for convenience in determining

vehicle performance. One coordinate system is described by the angles 9e,

This system places a "north pole" at the initial point of the problem located by

the geographic angles 00 and 0o" The "prime meridian" is oriented to lie in the,

great circle plane of the initial flight path direction. Thus, * is the great

circle distance from the initial point and 0 is the lateral longitude from the

initial great circle. (See Figure 2).

The "equator" of the second coordinate system is located on the initial

great circle and the "prime" meridian lies through the initial point at right

angles to the "equator". ýL is the longitude measured along the "equator" and
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NORTH POLE

GREENWICH MERIDIAN2#0)

S• -PRESENTmoo POSITION,

SEQUATOR

Figure 1 - Geographic Position Coordinates r, 0,

h r - R(0) (2-3)

is negligibly small. The atmospheric density is assumed to be a function of

altitude h above the earth's surface and is taken to be the standard 1959 ARDC

atmosphere model.

2. 2 Auxiliary Coordinate Systems e , # and p., v

Two auxiliary coordinate systems are used for convenience in determining

vehicle performance. One coordinate system is described by the angles 8e,

This system places a "north pole" at the initial point of the problem located by

the geographic angles 90 and 0o" The "prime meridian" is 6riented to lie in the

great circle plane of the initial flight path direction. Thus, 9 is the great

circle distance from the initial point and • is the lateral longitude from the

initial great circle. (See Figure Z).,

The "equator" of the second coordinate system is located on the initial

great circle and the "prime" meridian lies through the initial point at right

angles to the "equator". ý. is the longitude measured along the "equator" and
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INITIAL POSITION

V FIH PATH

PRESENT POSITION

INITIAL GREAT CIRCLE 9 -

Figure Z Auxiliary Position Coordinates 0*, * or v

v is the great circle distance from the initial great circle plane, i. e. latitude

from the "equator". (See Figure 2).

The radius vector, r, is the same in all three coordinate systems.

Knowing the initial co-latitude, 00, the initial longitude, 4o , and the initial

flight path heading angle, 03 , along with the present co-latitude, 6, and -longi-

tude, 4, the coordinates e , 4 , ± and v can be found from:

cos v cos j =cos( =sin E)o sin e cos (-0 ) +cos 00 cose

sin v =-sin e * sin = sin 6 0 cos E sin 00

0 0

-sn [sie o6 os - )+o~ in*- (24

-gingo s!in (9 5cos0sin0coo8
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or

,sin . V.,.,v + in, jscos v
' (z-5)tan a •v cac

and

tan ji w tanG0Cs4 (2-6)

sin v w sin 0 swi
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3. STATE EQUATIONS

3 1 Equations of Motion

Vehicle position is described by the spherical coordinates r, 0, and .
A A A

(See Figure 3). Let r, and 0 be unit vectors in the direction of increasing

r, 9 and 0, respectively; then the velocity of the vehicle relative to the

rotating atmosphere is given by

-- A A A
VT = u r + v O + w 0 (3- 1)

It is convenient at times to describe the velocity vector by its magnitude VT,

its elevation angle above horizontal, y, (actually above an r a constant surface),

and its azimuth angle (or heading) counter clockwise from south, 1. Thus,

from Figure 4.

VT =v +v +w

tan t =
v

u utany V• u"(3-2)

vz + W

1/ Z Z

V H= V- +w

The relationship between position and velocity components is

r u

r (3 -3)

w

197



L SIN 0

L Cos o"

NORTH POLE I /

GREENWICH
PRIME MERIDIAN

"" -
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Figure 3 - The Coordinate System, and Forces of the Problem
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A

rA

Figure 4 -Velocity Components u, v, w or V T,'

The dynamic equations for the mass, center of the vehicle are given as:

u v w- 1 2 2 2.2E)+2 12wsnE+ L .
r e em r

v=-(w? cot e - uv) + rjj e sin e cos e + 2 12 w cos 0 + F
r~~ ee

* 1 (woOu)2 (3-4)
w =-~ ev co w 1 u sin E) + v cos0)+

where. the components of the force vector

-~A A A
r= r+F e + F* (3-5)
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are given by JR 2
e e fR

Fr -m =+ 4 0(1-3 cos ) +A+ T
r 

r 
r

2
m2,ue JRf (3-6)

F - "-4 cos 9 sinO+A +T
r 4

F -A+ T

The thrust components Tr, To and T0 are given in terms of the components

of thrust along the vehicle axes by the transformation:

STr a 11 a12 a 13 'Tx"

T[ = a; .:,; a3 [y (3-7)
L T ý a 31 a 32 a 33 JLT zI

The a. .'a are functions of P, y, a, and a, given in the Appendix. Two constant1J

offset angles (iT' 6 T) orient the thrust vector relative to the vehicle axis system.

The thrust components in the vehicle axis system are given as

T T cosi cos6
Tx iT T

T = T coo iT sin 6T (3-8)

T - T sin iT

where T is a knqwn function of time and stage number.

The aerodynamic force components Art A0 , and A* are given in terms of

force components perpendicular and parallel to the velocity vector (lift and drag)

by the transformation:
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A b b
r 11 12

A 0 b 21 b 22 D (3-9)

A b 31 b 32
L

The bij Is are functions of P, y, and a, given in the Appendix.

Derivations of the thrust transformation matrix, and the aerodynamic

force transformation matrix are given in the Appendix.

3. 2 In-Flight Constraints on Altitude and Heating Rate

Two in-flight constraints are considered, either one of which may be used

in any given problem:

1) An upper bound on the altitude, h, during the flight.

2) An upper bound on the heating, rate at the stagnation point, q,,
during the flight.

These constraints are handled by the use of penalty functions:

F p A P, 2 h > A p2

p (3-10)

10 h < A P2
2

2)F Ic A q > A P2P P1 ý2 
(3-11)

0 q < AP2

whe re

1/2 3
q P VT

See Refierence(2) for details about penalty functions.
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If the nominal trajectory exceeds the. desired upper bound on altitude (say) then

the terminal value of p will be positive. The successive-improvement scheme

will reduce this terminal value of p to a small positive quantity which will cause

the final trajectory to exceed the desired upper bound on altitude by only a negli-

gibly small amount.

3. 3 Terminal Constraints on Pilot Acceleration Dose and Total Heat Absorbed

A measure of the acceleration dose absorbed by a human pilot subjected to

an acceleration history a(t) is given by

e z, F =(3-12)

where T(a) is the time (empirically measured) that. a human pilot can stay use-

fully conscious under a constant acceleration level a. Whenever e exceeds a

value of unity, it is assumed that the pilot has had an excessive dose of acceler-

ation and cannot any longer perform a useful piloting operation. Figure 5

shows a plot of T vs a using data from Reference (3).

An approximate measure of the rate of heat absorption at the stagnation

point of an ablative nose is given by

X 1/ 2 VT3 A V1/ 2 VT3 (3-13)= q = s V =~ T

.where A. is a constant. This relation does not include the heat due to radiation
q

from the hot gases surrounding the nose. It should be noted that A. can be
q

specified so that 4 will be a normalized value. For further details on the heat

absorption equation see, for example, Reference (4).

z0z



GOO' - -I

400

200--

100---- - - - -

T-ENDURANCE

LIMIT FOR 40-
USEFUL
CONSCIOUSNESS

(SECONDS)

20- - - -203-

I0- - - - - \ -

0 2 4 8 S 10 12: 14 IS IS 20
a - ACCELERATION FELT BY THE ,PILOT (g's)

Figiare 5 - Limiting Acceleration Dose for Useful Consciousness, r" vs ,a

.20:3



3. 4 Summary of State Equations

The eight first-order non-linear differential equations of state

are summarized below:

u= vH + r Sin2 0 +2 2 w sin0 + 0 [-CDUVT

r e e MJRf rT

+ cos rCLVHVT -- ----- 4 --.$.... (1 - 3 cos 2) + Tm (3-14)
r r

2uv w ctnG 2
S-- + + r Q sin e cos E + 2 1e w cos 0

r r e e

u v V w V T
2mIC DvV VT + Cos o-C L .V.H + sinorC L vH

S[~H]

+ 2 e JR 2  cos 0 sin e + T- (3-15)
r

Su.w. v w ctnn 2 Q (u sin 0 + v cos6)
r r e

u wV Tv V2T T~
VT+cos a si sa CLV.- +-~ (3-16)- [7 CDw VT + oJCL VH Ln H M

r fu (3-!7)

O fi -(3,- 18)r

= sinO (3-19)

e =F (3-20)
e

q = F( 3-21)
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where m = vehicle mass

JA a go Re 2 a 1.407698 x 1016 ft 3 sec-

Rf * 20. 925631 x 106 ft

J ' 1623.41 x 10"6

•e = 7 .29211508 x 10-5 rad/sec
p VT 2

L C L (0, M) __-- S lift

D CD(a. M) T S drag"D--"-7- Swd

p - p (h) a air density ARDC tables

S = reference area

M = VT
c
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4. OPTIMUM PROGRAMMING PROBLEMS AND
THEIR SOLUTIONS

4. 1 Optimum Programming Problems

A process which develops in space and/or time in which one or more
control variables must be programmed to optimize a performance criterion is

an optimum programming problem. The problem is to determine, out of all
possible programs for the control variables, the one program which maximizes
(or minimizes) the performance criterion (often one of the thermal quantities)

while simultaneously yielding specified values of certain terminal quantities

and satisfying the in-flight constraints of the system.

A formulation of a general class of optimum programming problems is

given below:

Let the system or process be described by n first-order non-linear (or
linear) ordinary differential equations of the form

dx. = x. =f. (X1 , x?, " " Xn a1, aZ . ." a, t) (4-1)

where i = 1, 2, 3, ... , n, and the control variables are given by a..

j = 1, 2, 3, ... , m, which are free to be selected. The problem

is to determine the a.'s in the interval t < t < T, such that some quantityJ 0-- -

* = [xi(T), T] (4-2)
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is a maximum (or a minimum), subject to satisfying the physical equations

given by Equation (4.1) and certain other specified terminal constraints

Ol ( xi(T), T)

.( xi(T), T) (4-3)

Op (xi(T), T)

2= (xi(T), T) = 0 "(4-4)

All the terminal constraint functions are known functions of the state variables

and time. The stopping condition, Q, determines the final time T and is a known

function of x. (T) and T.
i

4.2 Classical Approach to Solving Optimum Programming Problems

The classical approach to solving optimum programming problems is

by the use of the calculus of variations. In the classical formulation, these

problems are two-point boundary value problems for a'set of non-linear

ordinary differential equations. The boundary conditions for the physical

equations are usually specified at the initial point, and the boundary conditions

for the Euler-Lagrange equations are usually specified at the terminal point.

Thus, solving the set of equations numerically requires that a "guess" be

made for the initial values of the Lagrange multipliers in the Euler-Lagrange

equations and the two sets of equations must then be integrated to the terminal

point. A check of the terminal boundary conditions is then made to see how

badly they were missed. A correction must then be made to the "guessed"

initial values to improve agreement with the desired terminal boundary

conditions. This process must be repeated until all of the terminal boundary

conditions are satisfied. This process is not only tedious, expensive and

frustrating, but great patience must be exercised before any worthwhile

results can be expected.
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4.3 Steepest-Ascent Technique for Solving Optimum Programming Problems

A systematic and efficient method of solving an optimum programming

problem on a high-speed digital computer using the steepest-ascent technique

will be described.

Recently, a little-known procedure for determining numerical solutions

to complicated optimum programming problems has been revived by Kelley

(Reference 2) and Bryson et al (References 6, 7 and 8). These references

present a number of examples using the steepest-ascent technique.

In this method the control functions a .(t) are guessed and a trajectory is

computed. The equations adjoint to the equations describing small perturbations

about this trajectory are integrated backwards over the trajectory with suit-

able boundary conditions. The results of this integration yield the impulse-

response functions of the final conditions to small changes in the a .(t) programs.

By suitably combining these impulse-response functions, changes in the a.(t)

programs can be made which will simultaneously increase the final value of the

optimizing function and approach more closely the desired values of the terminal

constraints. This process is repeated until it becomes apparent that only

small changes are occurring in the optimizing function and for all practical

engineering purposes this last trajectory is the optimum trajectory.

4. 4 Adjoint Equations for Steepest-Ascent Optimization

The influence (adjoint) functions are devoted by

Xu" Avo Xw, X r , ?L0' ,X C X e' , (4-5)

where, the subscript refer to the physical variable associated with that particular

influence function. The eight first-order non-linear differential equations of

state given in Section 3.4 can be written in the shorthand form of Equation (4- 1)

where

(x , x , x 3 , Xn' al, a 2 , ... ,am) = (u, v, w, r, 0, ,, e, q, a, a) (,4-6)

The adjoint differential equations can be written as:

8 af.

r + ..• . =0, i= 2,, 3,..., 8 (4--7)

jl
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where (A Ix2 ... X8) = (Xu' Xw' 'r' •X' XO' xe' xq

And the impulse' response functions for the angle of attack and the bank angle,

a and a, respectively, are
8 If. 8 Of.

1, aL~ad-1 (4- 8)
j=l j=l

The ten relationships given by Equations (4-7) and (4-8) are quite lengthy

when written out but can be obtained by straight forward differentiation. Hence,

the ten relationships are not given here, however, they are written out in full

Reference (10), which also gives details on the boundary conditions and the

computational procedures used, as well as other details on the computer

programs.
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5. EXAMPLE PROBLEM-THE PERFORMANCE BOUNDARIES
FOR A SORTIE CONFIGURATION

5. 1 The Example Problem

As an example three separate but related performance boundaries for a

typical three-stage booster system with a re-entry vehicle as its payload is

presented. This example demonstrates the main features of computer programs

developed to solve trajectory optimization problems. The first part demonstrates

the practical way of determining control programs for a booster system with

specified terminal conditions. The second part of the example presents an

example problem with an in-flight constraint during the re-entry phase for

near escape speeds. Finally, the third part presents the computer program

capability to determines lateral maneuvers for a gliding vehicle. Each of these

examples are presented in turn.
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6. THE VEHICLE STAGE AND AERODYNAMIC DATA

The booster used in calculating the SORTIE performance was the Atlas-

Agena. Figure 6 shows the lift and drag characteristics for the vehicle during

first stage and second stage boost. Figure 7 shows the lift and drag character-

istics for the third stage boost and for the re-entry SORTIE vehicle. Figure 8

shows a sketch of the SORTIE vehicle and Figure 9 presents the L/D ratio vs

c for this vehicle. (L/D)max is equal to 1.59 at a = 17. 5*.
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7. BOOST TRAJECTORY

The trajectory optimization computer program for vehicles with thrust has

been demonstrated by determining the maximum velocity at burnout with speci-

fied terminal values for the altitude and flight-path angle for the three-

stage booster system. The specified terminal conditions were hf =

400, 000 ft and yf = -5 degrees. The initial conditions for the optimization

procedure were determined by integrating the equations of motion, neglecting

the effects of drag, for a period of 15 seconds for a vertically launched vehicle.

The following conditions were used as the initial conditions for the optimization

of the launch trajectory:

V = 190 ft/sec0

0 = 890
0

h = 130.0 ft

030 = 700

0 = 61. 5*

=o = -80.,5"
00

The angle-of-attack program for the nominal trajectory was taken from a

preliminary series of boost trajectories which had been run to check out the

computer program. It should be noted that the terminal, values of h and y for

the nominal case, were at least one order of magnitude too large. The nominal

trajectory had the following terminal conditions:

Vf = 28,530 ft/sec

hf = 4, 603, 350 ft

Yf = 32i 39"
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The computer program in 34 iterations, very effectively, reduced the terminal

values of h and y to within 90% of the specified values. The terminal conditions at

the end of 34 iterations were

Vf = 35,620 ft/sec

h = 430, 579 ft

yf = -4.96°

with an increase of 7090 ft/sec in the terminal velocity, nearly a 25% improve-

ment over the nominal case. The altitude differential has been reduced from

4, 203, 350 ft to 430, 579 ft and the flight-path angle is within . 04 degree of the

specified value. Two additional series of iterations were made and the results

of these runs are presented in Table 1.

TABLE 1
SUMMARY OF SUCCESSIVE IMPROVEMENTS FOR THREE-STAGE

BOOST TRAJECTORY

Case VTf-ft/sec 2  Yf-deg hf-ft Tt - deg2

0

Nominal 28. 530 32. 391 4,603,350 1.0 x l0o

34 35,620 -4. 963 430,579 1.0 x 10"2

36 35, 665 -4. 974 404,696 1.0 x 10"3

38 35,700 -44 991 401, 559 1. 0 x 10"4

For all practical purposes, the 38th iteration is an optimum trajectory having

maximum terminal velocity for the specified terminal values on altitude and

flight-path angle.

Figure 10 shows h, y, VT' and a vs t for the nominal and optimum

trajectories. The angle-of-attack program for the optimum trajectory is a

modest program, starting from 0 decreasing slowly to -7 degrees and

increasing to 2 degrees before falling off slowly to -17. 5 degrees at the end of

burnout of the three-stage. A maximum altitude of 630, 000 ft occurred 370 sec-

onds after launch for the optimum trajectory.
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This example has demonstrated how efficiently and effectively the trajec-

tory optimization procedure can determine the optimum trajectory, maximizing

the terminal velocity and meeting the specified terminal conditions, even though

the terminal constraints on the nominal trajectory differed by an order of mag-

nitude from the specified values.
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8. SORTIE GLIDING RE-ENTRY WITH A STAGNATION-POINT
HEATING RATE IN-FLIGHT CONSTRAINT

The second part of the demonstration example considered the problem of

determining the re-entry glide trajectory with minimum stagnation-point heating

rate penalty function, P, for the SORTIE vehicle. (See Section 3. 2 for

details on in-flight constraints. ) This example has demonstrated the trajectory

optimization computer program for gliding vehicles with an in-flight constraint

for the following initial conditions:

V 0 34,000 ft/sec0

_50

h = 400,000 ft
0

= 70"
0

1o = -6o6

00g]o = 700

One of the conditions of the re-entry trajectory was that the vehicle reenter

within the Atlantic Missile Range; thus, trajectories which require more than

one pass over the range were not considered. The re-entry angle of -5 degrees

was determined from a series of trajectories in which the re-entry angle was

varied for a fixed re-entry velocity of 34, 000 ft/sec. The re-entry velocity of

34,000 ft/sec has been specified by ASD as a possible lower limit for the SORTIE

te st vehicle.

The re-entry angle (for fixed re-entry velocity and altitude)ý determines a

peak value for the stagnation-point heating rate. The flight-path angle, Y, is

principally dependent upon the centrifugal and gravity forces acting upon the

vehicle during the initial phase of re-entry. Aerodynamic forces of drag and
lift do not affect the vehicle, motion until the vehicle enters appreciably into the

atmosphere. Thus, during the initial phase of re-entry (approximately the first
90 seconds in this problem), the flight-path-angle program is solely dependent

upon the initial velocity, flight-path anale, and altitude. Therefore, there is an
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initial flight angle (for every initial velocity and and altitude) for which the vehicle

can just stay in with the application of maximum negative (negative is defined in

the -r direction) lift. For larger (less negative) initial flight-path angles the

vehicle will skip out and a single-pass re-entry within the Atlantic Missile Range

is not possible. For these initial re-entry conditions, the peak value of the

stagnation-point heating rate, 4, will be determined and will occur at the point

where the effect of\lift enters. Thus, associated with every initial velocity

and re-entry angle, there will be a fixed value for q.

Once lift can be used to alter the flight-path angle, a modulated lift reentry

is possible. The minimum flight-path angle for reentry in a single-pass tra-

jectory vas found to be in the neighborhood of -5° for the specified initial condi-

tions. 'This value was selected as being well within the re-entry capability of

the vehicle, but not so sensitive as to allow the vehicle to skip out with small

changes in the angle-of-attack program. The angle-of-attack program for the

nominal trajectory was a positive constant angle-of-attack (maximum lift) until

the flight-path angle reached a value close to zero, at which point the vehicle's

maximum negative lift capability is utilized to keep it from skipping out. This

negative lift is used for the remainder of the flight, and the bank angle is used to

400-
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Figure, 11 - h VT, Y and 4 vs t for SORTIE Re-Entry which Minimizes
Stagn~Ktion-Point Heating Rate Penalty Function
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modulate the negative lift component. A bank-angle program to keep the vehicle

as near as possible on the original heading angle was used; however, the vehicle

did wander off course.

I Figure 11 shows the velocity, altitude, flight-path angle and the stagnation-

point heating rate as a function of time. The stagnation heating rate for the

nominal case peaked at 371 BTU/ft sec 205 seconds after reentry. This shows

that the lift program could be improved upon as well as reduce the value of the

penalty function for stagnation-point heating rate from a value of 29. 2. The pen-

alty function level, qio was set at 186 BTU/ft2 sec, a value considerably below

the 220 BTU/ft2 sec peak reached at the bottom of the first skip-out point.

After 21 iterations, the penalty function P was reduced to 18. 3 and the maximum

heating rate has dropped to 302 BTU/ft sec. Ln 7 additional iterations, 4ma.

was reduced to 218 BTU/ft2 sec and P to a value of 1. 4 drops from the peak.

value of 218 to approximately 175 and remains close to this value until the

velocity drops to about 18, 000 ft/sec and the altitude at this point is approxi-

mately 180, 000 ft. From this point on, the stagnation-point heating rate drops

rapidly as the velocity drops. A summary of these computations are given in Table 2.

TABLE 2

SUMMARY OF SUCCESSIVE IMPROVEMENTS FOR SORTIE RE-ENTRY GLIDE'

Case m BTU/ft sec P(q 186 BTU/ft sec) (dP) /T -deg2
Cs max o

nominal 371 29. 2 1 x 10-

21 30Z 18.3 5 x 10-

28 218 . 99 5 x 10-2

Figure 12 shows the angle-of-attack programs for these re-entry traj:ec-

tories. Note that the angle-of-attack program has had only minor changes for

the first 90 seconds of flight; however, these small changes are important for

they determine the peak value -for the stagnation-point heating rate. The "spike"

appearing in the angle-of-attack program at 200 seconds appears to be due to an

error in input for the angle of attack in the nominal program. The value used

in the nominal program was +50 degrees and the final trajectory has smoothed

out this value to about -8 degrees. The angle-of-attack changes are again

modest, though important. The bank-angle program is presented in Figure 13.
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The nominal aprogram was modulated to minimize vehicle wander from the

original heading. The optimum bank-angle program has had a significant

change over the nominal one, especially d.aring the time period of 180 to 230

seconds. This time period corresponds to peak stagnation-point heating rate

for the nominal trajectory. Note that the bank angle can be used to modulate

the component of lift in the plane of the velocity and radius vectors to maintain

the desired relation of VT and y to minimize the stagnation-point heating

rate. Since q peaked during this period on the nominal trajectory, the

assumed bank-angle program was not a good one and large changes in this

program could have been expected to reduce P to a minimum value. To

reduce the peak 4 , the bank angle would have to be changed such that the

flight-path angle decreased as the velocity dropped. The velocity drop

depends upon the drag of the vehicle, and thus, high values of angle of attack

are needed to achieve maximum velocity changes.. The increment of lift

needed to change the flight-path angle a desired amount is achieved by the

proper bank angle and bank-angle modulation determines the minimum value

for the heating-rate penalty function.



9. RECOVERY AREA FLIGHT BOUNDARY FOR. SORTIE

The recovery area for the SORTIE vehicle has been determined for the

initial condition given by

V = 15,282 ft/sec0

h = 151,617 ft
0 -7.Z9"

go = 83.960

690 = 81. 310 (latitude = 8.69°)

00 = -32. 340

The initial conditions were arbitrarily selected from the re-entry trajectory

given in Section 8.

Three optimum trajectories were calculated for these initial conditions:

maximum downrange, 0 , maximum, and minimum lateral latitude, v. The

stopping condition was altitude, hf = 1,000 ft. Figure 14 shows these trajec-

tories on a geographic Mercator projection and a "footprint" is sketched through

the three points. Figure 15 shows the same trajectories on a Mercator pro-

jection of the auxiliary coordinate system p vs v, and Figures 16 and 17 show

the control function histories u and a vs t for the three extremal trajectories.

The angle of attack for the maximum downrange trajectory is close to the value

for maximum lift-to-drag ratio, namely a = 17.50

The maximum and minimum lateral latitude trajectories use essentially the

angle of attack for maximum lift-to-drag ratio. The bank-angle program reaches

values slightly less than 50 degrees and then gradually tapers off to zero when the

turn angle approaches 90*. For comparison purposes, trajectories with constant

bank angles were run and the dashed footprint in Figures 14 and 15 show the

results of these runs. All of the constant-bank-angle trajectories show a spiral-

ling tendency near the terminal portion of the flight. Two other trajectories are

shown for the case of a = ±45°, in which cases the bank angle was set equal to

zero when the turn angle reached 90'. These two trajectories were used as the

nominals to determine the maximum and minimum lateral latitudes. Figures

18 through 20 show the altitude, velocity and flight-path angle as a function of

time for the three sets of trajectories.
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The flight boundary near the initial point was not investigated since structural

and other vehicle limitation data, which would determine the trajectory, were not

available at the time of this investigation. The maximum downrange, 9 , was

determined from the nominal trajectory for the angle of attack for maximum lift-

to-drag ratio of 17. 5 degrees and a bank angle equal to zero. The nominal tra-

jectory had a range of 1008 nmi (0 16.. 8 degrees) and the maximum downrange

was 1026 nmi (0 = 17. 2 degrees), an increase in range of about 18 nmi or about

a 2% increase. Classical use of (L/D)max angle of attack gives a good approxi-*

mation. for the nominal trajectory to be used to determine maximum range capa-

bilities. Maximum and minimum lateral latitude, v and -v respectively, were

equal to

V = 6.590
max

V min = -6. 60*

which were approximately 8. 2:% increase over the nominal values. Table 3

shows the summarized results.

TABLE 3

MAXIMUM AND MINIMUM LATERAL LATITUDES IN RECOVERY AREA

Vm l deg V - deg Av.- deg AV

nominal max Vnominal

Left Turn 6.10 6.59 .49 .0816

Right Turn -6. 10 -6.60 -. 50 .0820
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10. RESULTS

A demonstration problem has determined certain of the performance

boundaries for a typical three-stage booster system and the SORTIE vehicle

during reentry and recovery. Three phases of the computer program developed

to solve three-dimensional trajectory optimization problems were demonstrated.

These phases included the determination of trajectories for 1) vehicles with

thrust, 2) re-entry glide vehicles with an in-flight constraint and 3) lateral

maneuvers for a gliding vehicle. Starting from a nominal trajectory, each

series of trajectories was computed using the steepest-ascent computational

procedure. This computational procedure has shown that the method can

determine in an efficient and in an effective manner the optimum trajectory

satisfying not only the specified terminal conditions, but in-flight constraints

as well. The efficiency of the computer program depends upon the ingenuity of

the engineer and the nominal trajectory selected. However, even with the

selection of a nominal which does not satisfy too closely the desired terminal

conditions, the computer program is able to determine in a very short time

the optimum trajectory.

The computer programs can greatly aid the engineer in solving difficult

trajectory optimization problems. Careful analysis of each set of runs by the

engineer can also point the way for a better nominal to be used in obtaining the

optimum solution in fewer iterations.

These computer programs are especially valuable for the determination of

solutions to problems with in-flight and terminal constraints. This study

indicates that areas where significant gains can be achieved occur during the

flight when the constraints are the Overriding considerations of the problem.

Thus, for vehicles reentering the earth's atmosphere at near orbital speeds

and greater and during high-speed maneuvers when the angles of attack and

bank angles may become quite large, the in-flight constraints play a very

important role in determining the control.-variable programs. Optimum paths

in this region of flight lie in a very narrow band, and the control programs

must be exact if the specified conditions of the problem are to be met. This
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has been shown by both examples of the thrust-direction program for a typical

three-stage booster system and the SORTIE re-entry glide with stagnation.-

point heating rate in-flight constraint.

Control programs determined by the cut-and-try approach do not, in

general, sat'sfy the constraints imposed upon the problem and to satisfy all

the constraints simultaneously would be impractical except for the fortuitous'

exceptional problems. The steepest-ascent technique can determine these

control variable programs in an efficient and effective manner; starting with

a reasonable nominal contral program each iteration approaches closer to the

optimum, eventually satisfying simultaneously the imposed constraints and

extremilizing the payoff quantity. This technique has been shown to be espe-

cially valuable in solving complex optimum programming problems.
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APPENDIX

THRUST AND AERODYNAMIC
COMPONENTS TRANSFORMATIONS

Let the x, y, z axis system be aligned in the vehicle as shown in

Figure 21, with the two thrust vector offset angles of 6 T and iT. The
components of thrust along the three axes are given as follows:

T T cos iT cos 6T

T z T cos iT sin 6T ()Ty )

Tz •T sin iT

where the magnitude of the thrust is given by T.

T Ft +(e go P e) (2)

Z y

T'

ZERO-LIFT AXIS OF VEHICLE

XTxxTX

Figure Z - Thrust Vector Orientation
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F(t) is a given function of time and/or stages and is the basic thrust usually

given for sea level pressure conditions. The second term of the equation

represents the effect of altitude in the basic thrust. Where P is ambientC

pressure at sea level or reference altitude, P: is the ambient pressure at

altitude and A is the reference exit area associated with the rocket engine

for each stage.

The components of the thrust vector given in body axis components must

be transformed into components in the geographic coordinate system to be use(

in the optimization program. The overall transformation can be obtained as

a product of four transformations, each one representing a rotation about a

single axis.

The first rotation is about the body y axis through the angle-of-attack a:

L sin a 0 cos 1 x

A A
V cos a 0 -sin a y[ A. ~ (3)y0 1 0 1 Z i

where the hatted symbols represent unit vectors. This transformation
A

rotates the body z and x axes into the lift direction, L, and the velocity
A

direction, VT.

The second rotation is about the velocity vector through the bank-angle
a':

" cos a 0 -sin a LA AI V= 0 1 0 (4)

L L sJ L Y cJ
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A
This transformation rotates the lift axis and the body y axis into the Y and
AP directions, where Y lies in a vertical plane defined by the radial direction
AA

r , nd he elocty ireti T The ft vector thus lies in a horizontal plane.
The third rotation is about the • vector through the flight path elevation

angle, V:

r -sin cosm 0 , (5)

A A A( A
This transformation rotates the V and VT vectors into the r and VH vectors

A A AA

where r is the direction of the vertical and VH is the direction of the

horizontal component of the velocity.
A

The fourth and last rotation is about the radial vector r through the flight

path heading angle, P:[1] [ 0 o [A A
r 101 0"

A A

0 cost -sin V (6)^H
0 sing cos [

A A A A

This transformation rotates the VH and P vectors into the 0 and 0 vectors of

the geographic coordinate system ....
The overall transformation matrix is therefore given by the product of

the four transformation matrices of equations 111-6, 5, 4, and 3:

ai IK a12 al.3 x

H :zA (7)
a• = 1 a a22 a 23 y(7

A

La31 a32 a 3 3 .

Due to the earth's oblateness r is not quite the vertical direction (See, for
example, Reference 1).
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where the a. .'s are given below. The a i's are as follows:

u V H
al V Cooa + r coo" sina

VH
a -a sin r

T
u .. VH

a 1 3 = - i a + _ coca, coola
T T

a =v Cox s-uMna( W sina + v u coo 0)

v 11 w
V Uw Ua2 2 = ama - H c-oa (8)

T H

W V W ua231  z V- cosina-coa (.-V amic +~ r-- coo*W)

T H H T

w v w u

"a 3  - +sn a s cooa,.• aa- Wo

where

VT ,=-u I+ v2 +w

VH3=•v2 + w
V

co, " •(:9)

v W

co y u VH

a cy +
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The aerodynamic force components may be written as

A A A
A = LL _ DVT.

Hence, the components in the geographic coordinate system are given by

the product of the three rotations of equations 111-6, 5, and 4:

Aa b21 bZ2 -D (10)

A L b31 b 3 2 1

where

b = cos a coso

b12 sin y

b = - sin y cos cos r - sin sin a

b 2 2  cos v cos

b31 - cos fsin -siny sin cos or

b 3 2  = cos y sin ,
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THE DOLIAC MACRO-MICRO CONTROL LOGIC, ITS SYNTHESIS,
EVALUATION, POTENTIAL AND PROBLEMS

Daniel 0. Dommasch, DODCO, INC* '

Abstract

The acronym, DOLIAC, is formed from the first letters of the title, DODCO
OPTIMUM LIMITED INFORMATION ADAPTIVE CONTROLLER. The term macro-
micro signifies that both the over-all guidance function (macro control) and the
autopilot function (micro control)ý are accomplished within the same logical
optimized system.

The DOLIAC logic concept of autopilot system optimization was developed by
DODCO, INC., in 1958, and subsequently has been examined in detail by the
Cornell Aero Lab. and other investigators, References pertaining to the logic
are provided- in the paper, The macro-micro additions to the logic were
accomplished early in 1960 and have since been subject to continued research
and development effort. The basic DOLIAC logic is obtained using either
standard differential or variational calculus procedures and both the necessary
and sufficient conditions for solution existence are satisfied by the analysis
(which is based on the use of an inequality boundary constraint on system
action). The research leading to the development of the DOLIAC logic has
been conducted under Air Force contracts directed by Mr. P. C. Gregory of
the Flight Controls Laboratories, ASD.

It is demonstrated that the Lagrange multiplier acting on an inequality restraint
performs the same function as the slack variable in linear programming analyses
and that the basic DOLIAC logic defines a simple non-linear gain switching system
requiring error and error rate data for its functioning. Since system perform-
ance depends on the direct sensing of error rates, adequate sensing of these
rates must be possible or system performance is sharply degraded. Thus, there
is no point in employing the DOIUAC logic to try to provide a control precision
which is beyond the precision of possible error measurements.

Although simple heuristically based system stability criteria for the DOLIAC
logic are presented in the paper, these criteria are known to be too restrictive,
and much work remains to be done in the, area of analytic stability analysis.
Although the non-linearities of the DOLIAC logic are of an apparently simple
sort, their nature precludes the definition of an equivalent linear system and,
therefore, precludes the direct use of existing linear stability criteria for
analysis. Whereas the analytic treatment of DOLIAC stability is incomplete,
extensive numerical studies on both digital and analog computing equipment
reveal, without question, the superiority of the non-linear optimized logic
over conventional linear system performance In many cases. In other cases,
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the DOLJAC theory may be used to demonstrate that linear error and error
rate systems themselves form a degenerate class of optimum systems which,
in these cases, may represent the only practical optimums obtainable.

It seems apparent that the mere existence of the DOLIAC logic provides an
affirmative answer to the question "Is optimum synthesis practical"; how-

ever, it is shown that the DOLIAC theory is, in and. of itself, still rather
crude, representing only a single, step forward from conventional linear
theory and there exists the potential for improvements in the future.

LIST OF SYMBOLS

C Restraint limit

e error quantity (desired - actual value)

e error at point n, time t
n

e ~~error at point n+1i, time t+÷At

e n + 2 error at point n + 2, time t + 2 A t

(en + 1)c controlled error at point n + 1

(en + 1)nc uncontrolled error at point n + 1

e error rate

e error acceleration

A • commanded error accelerationc

f function to be made stationary

fL stationary value of f along root locus curves- in plane of'

f and commanded error acceleration

j" Level line value off

.g Equation of ray in the A, -ee plane joining the maximum

and minimum solutions of fL
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LIST OF SYMBOLS (Crnt' d)

k Inverse gain factor

K Forward loop gain factor

m derivative level of Taylor expansion, Lagrange! multiplier ratio

n as a subscript, point in time

r response factor

t time

at pprediction or lead time

At ssample time of sample data system

e pitch attitude

X Lagrange multiplier

* Restraint function
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THE DOLIAC MACRO-MICRO CONTROL LOGIC, ITS SYNTHESIS, EVALUATION,

POTENTIAL AND PROBLEMS

1.) INTRODUCTION

The word "optimum," in common with such words as "logical" and "objective,"
is normally subjective in its connotations to any given individual. Thus, most
people consider themselves as logical and objective which is, of course,
paradoxical, since any consideration of oneself is, by definition, subjective.
The fact that a similar paradoxical situation exists concerning the word
"optimum" requires us at the outset, if we want to deal with specifics rather
than generalities, to limit our concept of optimum in such a way that we can
obtain a mathematical statement capable of defining what we mean by "optimum."
We must, furthermore, limit ourselves to consideration of practical (i.e.,
physically obtainable) optima which are respectful of the governing laws of
physics, otherwise we are likely to obtain solutions to problems which exist
abstractly but which have no real physical counterparts. These restrictions
on acceptable methods of synthesis are not peculiar to any field of analysis,
nor are they in any sense new, novel or original. Indeed, the need for
restricting optimum solutions to obey the laws of nature was recognized long
ago by both Euler and Lagrange (the historical fathers of mathematical
optimizing procedures) and, as a matter of fact, the most widely used method
of introducing restraints of a physical nature into maximum-minimum problems
carries the name of Lagrange.

In the event that we are able to completely define the nature of a restraint
either in the form of a differential equation (e.g., when applying the laws
of motion) or in some other specific way (e.g., isoperimetric restraints),
the approach to problem solution using the method of undetermined Lagrange
multipliers is rather formalized although it is necessary to properly inter-
pret the nature of the restraints. On the other hand, if the restraints are
not so well defined, as in the case of inequality conditions, then there may
be room for argument as to the applicability of the particular method of
employing a given restraint and as to the meaning of the results obtained
from a given application procedure. For the class of •,u;- we are going
to discuss, the restraints are of the inequality type, and the Lýgrange multi-
plier takes on some of the characteristics of the "'oack" variablb mcountered
in the theory of linear programming. Thur,, the physical significan,%' of the
multiplier is somewhat obscure, and .his is one of the reasons why L"he new
logic represents only a basic first-s•;ep in improvement over simple linear
error and error rate feedback controi Laieory. It does, however, represbrt
an improvement and it does work. Although the basic DOLIAC logic is non-
linear in nature, in a degenerate form it includes the entire set of linear
error and error rate feedback systems as a subset which is extremely interest-
ing since this offers some proof of the thought that linear feedback may con-
stitute an optimum solution to specific (if restricted) classes of problems.
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With these introductory thoughts in mind, we now seek to define a practical
optimum. criterion, and to do this we need to ask just what actually can be
accomplished by a real control system.

In general sense, any control logic system seeks to control some variable
so that the error, defined as the difference between a desired value of the
variable and the existing value, vanishes, at all points and for all time. In
a dynamic problem, this is an impossible assignment--unless we are willing
to hedge a bit on the meaning of the term "vanish," su that practically speak-
ing we can only require that the error be minimized on an absolute or magnitude
basis. We, therefore, have the practical requirement that we should seek the
minimum possible numerical value of error regardless of sign, and this is a
requirement which is meaningful mathematically. We need to acknowledge the
fact that all systems have inertial of one form or another so that, in the absence
of infinite command authority, no instantaneous changes in system displacement
state are possible. This means that there is nothing we can do to instantaneously
change the displacement error pattern, but that we must wait a finite time for
control action, to have its effect on an existing error state. This is a physical
limitation which cannot be circumvented, but rather must be accounted for,
by modifying our criterion to state that all we can hope to accomplish is a
minimization of absolute error sometime in the future, with this future time
depending on the command authority at our disposal. In the absence of a change
in command, and considering only a small time increment, Atp, we may relate

the state of error in the future to the present error state via a Taylor expansion
about a present time point 'In," i.e., we may write that

(t e +(+A (1"1)
(ren÷)nc = e pn + Lt pen + en +... .+ ,

In the presence of external disturbances which are random in nature, the
higher derivatives are, uncertain and, moreover, although we cannot instan-
taneously alter en, we can produce an almost instantaneous change in the

error acceleration, P. These factors together prevent the use of the fulln
Taylor expansion as, an accurate representation of the uncontrolled error
history and, therefore, the series must be truncated at the 6 level (as the11

highest order term) and At restricted in magnitude accordingly.
p

If we now postulate that a command is generated on the acceleration level,
then, if the command is kA where k is an inverse gain factor, we have, as
a matter of defintion,
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(en+l)C = (en+) + (1+ 2 )

If there were no restraints imposed on the operation of the system, we could
require that (en + I)c, the error at time t + At in the presence of a command,

be zero. In this event, the error command would be

-2(eg) (-" 3)C nc p

in which it is apparent that 2/kA---t Z is equivalent to the conventional forwardp
loop gain factor which we will designate simply as K. Thus,

K = 2/k0I-2 (1'4)P

and

tlc = K(en+l )n (1 5)

If we now limit ourselves to simple error and error rate systems, then,
from (1:1)

(en+l)nc = en + i'tpen (V 6 )

so that

K(en + '6Ate) (I7 ;

This is the conventional equation of a fixed gain error-and error rate feed
back controller, and it is important to note that the equation is the result
of our making the idealized assumption that control authority exists to
properly implement a desired command. This assumption is seldom correct
in practice, yet equation 7, when K is properly selected, frequently yields
satisfactory control. We will return to this point later on in the, paper.
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In conventional linear theory, the term At is referred to as a "damping"P
factor. Such usage follows by analogy with the equation of motion of a linear
system wherein the coefficient of the rate term represents the systems
equivalent fluid damping constant. This usage, although conventional, is
inexact and possibly misleading when we use equation 7 to control a system
having non-linear dynamics. As a matter of fact, At is properly referred

to as a "prediction time," although the term "lead time" is also applicable.

Since, historically, direct application of equation 7 is known to provide
adequate results, one must suppose that the crudeness of its development
is justified by the fact that it works, but by the same token it must also be
supposed that improvements can be made without too much trouble, and that
these improvements need not be sophisticated to provide substantial gains
in performance.

The first improvement, which is more or less obvious ought to be made,
is to provide information in some form or other that the command authority
is limited. This statement is an inequality restraint on the problem, which
introduces a Lagrange multiplier, but being that the restraint is indefinite,
the multiplier cannot be defined directly by the optimum analysis for if it
were, then the restraint would be isoperimetric and control authority would
always be set at the limiting value. In this event, our problem would be
determined beforehand and optimization would be impossible. This use of
the Lagrange multiplier as a method of taking, up the "slack" in the inequality
restraint is analogous to the introduction of a "slack" variable in linear
programming analysis to account for inequality type restrictions on the
objective fL.ction.

As we shall show, the Lagrange multiplier, introduced as an indicator of
an inequality adjoint condition, has an intimate relationship with the sys-
tem gain and, therefore, is subject to all problems characteristic. of the
gain selection process. There is, however, an important difference which
should be kept in mind. The introduction of a simple restraint renders the
logic nonlinear and, therefore, no direct use can be made of linear theory
for the establishment of the proper value of the multiplier. Thus, we
emphasize at this point that despite the disarmingly simple form of the
equations describing the DOLIAC logic, that this logic is intrinsically non-
linear and cannot be analyzed in general using root-locus ,procedures, the
first method of Liapounoff, describing function techniques or similar pro-
cedures which sometimes are useful In the study of "mildly" nonlinear
systems. On the other hand, there are some indications that conservative
stability boundaries can rather readily be established for the DOLIAC type
logic on a comparative basis. We shall say more about this point later on
in the paper.
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To complete our introduction, we make note of the fact that since our
criterion for optimum performance is to minimize numerical error at
some short time in the future,, it is no rossible to directly operate on
the error and set the derivative d(en 41 , ) /dAe to 0, since this pro-

cedure as a mathematical definition ,e v Lpable e, finding only maximum
(large plus values) or minimum (largo' negative values) of (en + 1)c rather
than minimum numerical values.

This difficulty can be avoided by secktpg the stationary values of the

quantity (en + lc ; owever, this .nodifiles the basic criterion in a

fashion which emphasizes large errs.-- while de-emphasizing small errors
and, accordingly, although the error squared criterion produces satis-
factory control in some instances, it is inherently a poor regulatory
criterion. Evidently, the artifice of modifying the criterion to suit the
mathematics is hardly desirable. We could directly seek the maximums
and minimums of absolute error; however, this involves some definition
difficulties which can be avoided by seeking the stationary values of 1/e.
The maximums and minimums of this inverse function represent the
closest approach of the error to a zero value regardless of sign of the
error and permit the direct utilization of both the maximum and minimum
solutions which evidently must exist for an arbitrary function. It is of
interest to note that the use co the error squared criterion effectively
eliminates one class of solutions immediately and leads only to the
conventional error and error rate linear feedback hypothesis. On the
other hand, the use of an inverse error function immediately introduces
switching logic into the problem and, as well, a requirement for the
selection of the best of two answers available in any given case. We thus
obtain, without ambiguity, a direct and proper solution to the postulated
optimum problem.

In the following section of this paper we shall develop the method of intro-
ducing inequality restraints into the reciprocal error stationary point
analysis and this will lead directly to the basic DOLIAC logic concepts.

2.) SYNTHESIS AND ANALYSIS OF THE DOLIAC LOGIC

We have indicated that the, DOLIAC logic is obtained directly by seeking
the stationary points of an.inverse error function subjected to an, inequality
restraint which limits the magnitude of possible control action. To provide
a physical basis for the mathematical development, we need to discuss some
basic concepts applicable to the, problem.
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The Lagrange multiplier technique of ordinary differential calculus and the
technique of linear programming (which finds wide application in operations
research for problems where Linear restraints with "corners" are involved)
are both based on the same geometric considerations. This geometry is easy
to visualize in a three-dimensional problem space as illustrated by Figures
2:1 and 2: Z.

S. g (z y) =

MAXIMUM
SOLUTION

MINIMUM
SOLUTION •

Y CONTINUOUS RESTRAINT BOUNDARY

Figure 2:1. Lagrange Multiplier Technique

MAXIMUM SOLUTION

MINIMUM

"POLYGONAL RESTRAINT
y BOUNDARY

Figure 2:2. Linear Programming Technique
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Figure 2:1 illustrates a standard Lagrange multiplier problem involving
the determination of the maximum and minimum values of a function subject
to the restraint that these stationary poiqts shall lie on a cylindrical (not
necessarily a circular one) surface g(x,y) = C. The geometric solution is
apparent from the figure. Figure 2:2 presents a typical linear programming
problem showing a plane of solution and a polygonal prismatic restraint which
limits the problem. The maximum and minimum solutions are those corres-
ponding to the maximum and minimum values of z on the solution plane which
lie on the boundary of the polygonal cylinder.

Although a three-dimensional solution space has been considered for illustra-
tion purposes, the same geometric concepts apply to an "n" dimensional solu-
tion space, even though one cannot use a physical model to illustrate this
general 'In!' dimensional case.

In the theory of linear programming, iterative techniques exist for handling
inequality types of restraint conditions in a precise fashion. The commonly
used procedure is to introduce so-called "sl•acW variables which transform
the inequality restraints into apparent equalities; in other words, the slack
variables take up the slack in the inequalities. The slack variables are
eliminated from the solution during iteration on the problem matrix.

No apparently comparable technique exists for handling inequality restraints
for problems involving continuous, but nonlinear functions. However, the
Lagrange multiplier itself may be considered a slack variable which is
determined by conditions external to the basic problem stipulation.

The development of the theory of optimum control synthesis methods involves
the use of a simple inequality restraint, which is introduced via an indefinite
Lagrange multiplier. The multiplier itself is not established by the analysis
because the restraint is an inequality, and, indeed, were the restraint of any
other type optimization would not be possible. Thus, the multiplier takes up
the slack or uncertainty of the formulation and performs the function of a
"trade off" parameter in the sense used in game theory. Although the im-
position of the inequality restraint adds sufficient information to provide
an order of magnitude of improvement in control system performance,
further improvements should still be obtainabLeL if the physical action of the
multiplier can be established more precisely.

The particular problem we are immediately concerned with is summarized by
the statements:
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if, e = error at apoint nn

e = error rate at point n
n

S= error acceleration at point nn

then at some point At in the future, (n + 1) we predict that the error will be
p

(en 1) = e +eA' + e (2 : I)

provided no command is imposed.

If a command is generated at the acceleration level, then if this command is
kA e where k is an inverse gain factor, the error we command at the point

c
n + 1 is

(en+0c = (en+l)nc + kL,€ c ( 2 : 2)

We seek to find that command value which makes (en + 1)c as numerically

(not algebraically) small as possible and, therefore, seek the maximums and
minimums of 1/(e 1 )e, while recognizing that (e+ 1)c can be zero in an

unrestrained case, and that this solution will be found unless the physical
restraints imposed by the systems dynamics are recognized. We give recogni-
tion to these restraints by the inequality condition that a command kA• mustc

be numerically less (regardless of sign) than some boundary value, C, i.e.,
kAe < C, (where the sign of C depends on whether Ae is plus or minus).

In reciprocal form, we write that 1/kAe > C, where the value of C has been

changed accordingly. We thus define a function *, such that

, =-- C>O(2"3)

In accord with the classical Lagrange technique, we observe restraint (2:3)
by forming the function
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f ____ I , + -C) I2'4
8*f(n+I)c (en+l) nc (24

and seek the stationary values of I, defined by 8f/A'e = 0. In this formu-c

ation the constant AC vanishes on differentiation so that its sign is of no
importance; however, the actual sign of C is determined by the following con-
siderations: If A 6 is positive, inequality 2:3 is satisfied as long as A& isC C

sufficiently small. However, as A16 grows, we ultimately find that C dominates,
c

and for C being a positive real number, we reach a command limit on& Aeoif

A e is negative, C must be negative and the inequality reversed; thus, for A ec C

negative

+ +C< 0(2 5)ka~C

and, in general

I -+ C>o, <o (: 06)

We again recall that the sign of C is of no importance in the classical

approach, since XC vanishes on differentistion.

In general, equation 2:4 may be written as

= 111ý + ;- + XC C(2:7)

(en+l0n k P Me C
ki t -Z

Accordingly, f is a function of the single independent variable A 6., and only

a single minimum condition can be imposed so that X remains undetermined
by the optimizing process, i.e., it depends on conditions external to equation
2:7.

At any given point XC being a constant, serves merely to move the entire function

curve upwards or downwards along the f axis in a plane defined by the orthogonal
axes / and A'e9, and this is the reason why the term XC contributes nothing to a

maximum-minimum. aolution.
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If we were to plotf as a function of (en + 1)nc, we would find that there exist

two solutions for any given combination of (en + 1)nc, X and k with these

solutions being located on either side of a discontinuity of the function 1/(en + 1)c

This discontinuity represents the uiirestrained solution at which (en + 1)c is zero.

Such a solution is normally far from desirable in a real system which possesses
inertia since to obtain it for reasonably high gains, one must force an overshoot
at a point n + Z, approximately as large as the error at the point n.

The locations of the roots of the optimizing equation, by themselves, do not
fix the command, since the command must be selected from the two available
possibilities. The selection criterion is based on the fact that control is
applied steadily so that we seek the minimum error at all times. Thus, if en

is the error at n and (en + 1)c is the predicted error, we select the value, of.

A ec leading to the minimum numerical (not algebraic) value of en + (en + 1)c°

The root loci of the two possible solutions in the f, A C space and their

movements relative to the unrestrained, solution are of interest and can be
defined by the following analysis.

Let
Sn -2/6tp 2  (2:8)

and define a ratio m by the statement

m %- /min. (2:9)

so that m varies directly with A. Also, let

K = 2/klt p 2  (2":10)

so that K varies inversely with k, then the condition, af/aA =, 0, yields
the optimum command equation c

K (en+I)no (2 11
S_+

which has two roots.

254



For various values of (en + 1)nc and m and K equation Z:11 specifies the two

root locations along the A6c axis. The vertical dibplacement of the function f

at these points is then defined by the fact that,

1= _ 7.- +

(en+l)nc +ktŽZtt42 /2 k49

or in terms of m and k

. (2: 12)

+ a ~/K(en+1)nc C 68K •c:

and on substituting for A e the function along the root locus curves fLC'

is defined by

fL = K 2 :13)
(en+ I nc {I+ ' K(en+I )rjC

-, _+[I/M -I

which simplifies to

"I + m 2 ,2-J
(en+1)nc

For the cases, (e. + 1)nc = k I, K= 1, plots of

- I

(en+,)c (en+) )nc + be/K

and

+ I +m+ 2,Jm (2: 14)
"(en+ inc
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as functions of e*, appear as in Figure 2:3, with equation 2:14 defining
C

the loci of the roots of the control equations as m varies from 1 to o.
Note that it can be shown that the values of m are limited to the range 1
to -o, with the region m <1 being outside of the area where valid solutions
can be proven to exist, and also note that the root loci curves are not plotted
in the plane commonly used for root locus plots in linear control theory.

The, selection of the root to be used in any given case is determined by the
criterion that the one yielding the minimum numerical value of en + (en +)

is proper, and this statement may be shown equivalent to the stipulation:

Use the numerically larger value of A e ifc

(en+I) nc

0 < < (M- I) (2'15)e n

otherwise, use the smaller.

It is not known whether the focal nature of the "m" rays revealed in Figure
2:3 is significant, nor if the level line passage through this point is theo-
retically meaningful; however, all numerical work conducted to date seems
to indicate that the m = 9 value and its associated 2 to 1 gain switch provides
consistently excellent results.

It is readily demonstrated that the level line of Figure 2:3 is independent
of gain and of (en + *)nc. This is accomplished as follows. .We first recall

equation 2:14,

I + m ';
"A = (en+I)nc

and findfL at the limit, m = 1 (which requires use of the minus, root), so

that we get, in general at m = 1, letting fL be the function value along the.
level line,

4
S= (2 16)
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FIGURE 2:3. ROOT LOCI FOR VARIABLE m IN fL' VAC PLANE; K = 1
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This same value of fL is obtained for m = 9, since for m = 9 (accepting the

high gain root), regardless of the value of K,

, ,eo+) - 4 (2: 17)
-(en+l)nc (n+l)'nc

which completes our proof. For this fL value,

c= (3/2)K(en + l )n

To establish if the bundle of m rays always penetrates the same point, regard-
less of the K and (en + 1)ne values, it is necessary to show that this point is

common to all rays.

The general equation for any ray is

I, + m - 2-V' r + 2(m - ') K(en+l)nc (2
(G+ nc K(On+i) -I

if all rays pass through the focal point at A = - (3/ 2)K(en+ 1)nc, then

substitution of this value of A7e should provide that g = , and this is foundcL

to be the case; therefore, in general, all rays pass through the point

S(en+l)nc = (3/2)K(n+)c

which is the high gain root for m = 9, which defines the two-to-one gain
switching condition. This alternatively proves that the m = 1 ray (or level
line) passes through the same point since it. is a member of the family defined
by 2:18.

Keeping in mind the relative locations of the root loci curves and the unrestrained
solution value for Ae4 (at the discontinuity ci the curve 1/(en + l)), we seethat

X serves to keep both the high. and low gain roots away from the unrestrained
solution with the high gain case representing a greater gain than, called for by
the unrestrained case and with the low gain case: calling for a lesser gain than
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represented by the unrestrained case. The separation of the root loci curves
from the unrestrained solution is a measure of the undetermined parameter C
(I.e., C and X are directly related) and the sign of C is seen to be established
by the root selection process. Thus, C is seen to be the equivalent of the slack
variable of linear programming, inversely the multiplier X serves the same
purpose as C, since C and X are not independent.

If we presume a perfect system such that a given command A'e , could be

perfectly fulfilled, the unrestrained solution would represent a boundary of
neutral stability, with each command Ad resulting in overshoot in error atC

the (n + 2) point equal to the error at (n). In an actual system, this boundary
is reached by increasing K of a linear error and error rate system until
neutral stability is achieved. Assuming that this K is shown (and it can be
found by standard linear methodology), then the damping of an optimum con-
trol system using this same value of K should be a function only of X or its
equivalent m. It would appear, therefore, that a stability criterion can be
devised for the optimum micro control logic by extension of linear theory,
with the recognition that the high gain roots will lie beyond the unrestrained
stability boundary in all cases. At this point it appears (intuitively) that the
m = 9 root has some special significance; however there is at present no
abstract proof to substantiate the intuitive reaction. Numerical data are
available which establish only that m -- 9 is an excellent average or basic
value for the switching logic.

A review of macro-micro control theory is pertinent, since this theory
provides variations not considered above.

It can be demonstrated that the introduction of a response factor relating
a macro command to a micro (or autopilot) function is equivalent to the
inclusion of the term n in the relation for (en + , i.e.,

n n!ln

A2

(en+I)n = e + At; + t (-2 :19)

and that the response factor '"r" is given as r = (enlen) At/2 where is the
n n

micro control rate and ý is the error acceleration of the macro controlled
quantity.

When r is included in the analysis, we get that
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m = XrAt 2/2 2: 20)

K = 2/krAlf2  (2 :21

It is clear that for a given value of X, r must be limited to those values
which produce a value of m greater than one.

In a macro control case, the generation of a command is removed from the
macro control quantity level by at least one step and, therefore, ; cannot
be instantaneously changed. Thus, for fixed X, there can exist a variable
switching ratio. Under direct control (micro control), e" can be changedn

instantaneously and, therefore, cannot be used to alter gain switching
characteristics.

It has been found that in a sample data system, the prediction time must
be greater than the sample time (preferably at least 5 times as great), so
that the system stability is associated with the ratio of conditions expected
at two different times in the future, i. e.,: at t + At and at A t., where

At - prediction time and A t = sample time. In an analog system thep s
ratio of prediction to sample time is infinite so that such systems display
better damping than sample data systems.

Aside from the effects of the ratio At p/Ats , it appears that K and m may

be independently established and that K should be equal to or greater than
the value leading to neutral stability of an average linear system.

This completes our basic though brief analytic examination and development
of the DOLIAC logic concept, and we can now list a few pertinent conclusions.

(1) The logic can properly be called "optimum" in a
mathematical sense since it was devised using a
mathematically proper optimum definition.

(2) Although we have not carried forth the development
here, it is shown in the book, "Principles Underling
Systems Engineering" Pitman Publishing Corporation,
1962, that the sufficient conditons for the existence
of a solution are satisfied by the DOLIAC logic. Thus,
both the necessary and sufficient conditions are ful-
filled.
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(3) The logic is practical, since it does not require a
complex network of sensors for its operation, nor
more than an elemental computing system for its
implementation. Moreover, it requires a minimum
amount of input data and, therefore, may be referred
to as a "limited information system."

(4) Because the Lagrange multiplier behaves like a
slack variable, one must still face the problem
of proper gain selection.

(5) The theory is nonlinear because of its optimum
switching criterion, and, therefore, stability
studies have, up to this time, had to be carried
forth using full digital and, analog simulation
methodology. Studies carried forth at Cornell
Aero Laboratories and at DODCO have demon-
strated that linear stability analysis techniques
do not apply. Indeed, the logic is stable in
regions where conventional linear theory indi-
cates it to be unstable.

(6) The theory presented represents only a first step
beyond linear theory and, therefore, future improve-
ments are possible; however, the direction which
should be followed is not defined at this time.

In the, next and final section of this paper, we shall discuss the more pragmatic
nature of the DOLIAC logic, and the nature of the results obtained from extensive
application studies of the DOLIAC logic in its micro and macro-micro forms.

3.) RESULTS AND CONCLUSIONS

Over the course of the past four years the group at DODCO, as well as, other
investigators, have extensively analyzed the nature of the DOLIAC logic from
various standpoints, and these investigations have shown that the logic is
inherently "lazy" in that it does not switch gain unless drift occurs or external
disturbance and/or abrupt changes in command are introduce. Thus, for long.
periods of time the system lies partially dormant operating principally at one
gain setting; however, even in such regulatory phases, as drift develops, short
bursts of high gain operation occur in accord with the switching logic require-
ments. Under idealized circumstances, therefore, it is possible to achieve
system states which call for almost completely linear operation of the DOLIAC
logic, and studies based wholly on such circumstances can produce extremely
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misleading results, since under these circumstances one can readily find a
describing function which apparently represents the system, but which has,
in fact, no meaning outside of the simplified set of operating circumstances
assumed for"9iaiysis. Similarly, If the problem given to the system is
idealized, one can be led to the false conclusion that stability is predictable
using the Evans root locus technique, but again the application is quite
meaningless (in a general sense) since the switching characteristics depend
on what occurs ta any given time and, therefore, the poles and zeros of any
assumed linear equivalent system move about as functions of time (and
incidentally as functions of the particular error state).

As mentioned in the introduction, the fact does remain that the DOLIAC
logic will assume a quasi-linear state whenever possible, and this indicates
that simple error and error rate logic can indeed be optimum under some
circumstances. The difficulty here, however, is that these circumstances
can never continuously be obtained in any practical application, and the
main reason for using optimum or adaptive logic is to account for real
rather than purely idealized situations. Thus, the superiority of the
DOLIAC logic over linear logic, per se, resides only in the fact that the
DOLIAC logic, because of its switching law, can instantaneously and
"logically" shift gain whenever it needs to.

At this point it is of interest to note that if we sought to minimize the

quantity (e ) as a criterion for optimum performance, subject to the

same type of inequality constraint introduced in Section 2, then, by simple
manipulation, we at once obtain a command logic of the form

L• =K(On+l )m•

which is readily verified by the reader. This is the standard linear error
and error rate control equation. Now, since this equation is derivable
from an error squared criterion (recall that the error squared criterion
tends, to diminish emphasis on regulation as contrasted to control), we see
that another way to separate the DOLIAC and linear logics is purely on a
criterion basis. Thus, if we tamper with the criterion, we can eliminate the
switching logic and end up with what is still mathematically an optimum
solution, but not to the problem we are obliged to solve. We conclude that
linear theory, therefore, seeks to minimize error squared and if this is
desirable, then linear theory should be employed.
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It is now pertinent to ask, how is the DOLIAC logic related to other
switching logics, of which several have been proposed? The answer to
this is simple. The DOLIAC switching logic is a result of applying a
specific criterion and a specific root selection process both of which
are entirely independent of the specific control problem. Thus, this
logic results from definition and analysis rather than from empiricism
and extrapolation. In other words, the DOLIAC logic has been designed
on the basis of purely fundamental considerations, and as such is related
to conventional control logic only after the fact. Its resemblance to con-
ventional logic is conicidental--not purposeful, and because this is true,
the DOLIAC developments serve to justify the efforts in classical control
theory.

To the control engineer, one of the major theoretical drawbacks of the
DOLIAC logic resides in the fact that its development provides no clue
as to its stability characteristics. This is a theoretical problem re-
quiring further study; however, the application of linear control logic
to non-linear dynamic systems is equally displeasing in a theoretical
sense, and since no physical system is really linear, the practical dif-
ferences in the application of the DOLIAC logic and linear theory do not
constitute a problem of real magnitude. As a matter of fact, a simple
rule of thumb exists which, although conservative, makes practical appli-
cation of the DOLIAC logic rather simple. The rule is "If one analyzes the
DOLIAC logic as a constant gain linear system and it is stable for the low
gain, then the full logic is also stable although a linear study will show
that constant high gain operation would be unstable." "This provides a
simple method of selecting the gain constant K. Additionally, the ratio
of prediction to sample times should be five or more. A system designed
on the basis of these considerations will perform more effectively than
any stable linear logic; however, there are some limitations to observe.

The switching logic and the location of the switching lines in an error-
error rate phase plane are entirely dependent on the measured error to
error rate ratio and should this ratio be improperly determined, the
systems performance suffers. The most critical sensor is the one which
is used to find the highest level error derivatives, and as a rule of thumb,
the natural frequency of this sensor should exceed the system normal
response frequency by an order of magnitude. Because of this restriction
the DOLIAC logic should not be applied to the control of systems wherein
reasonably accurate measurements of error rate are not possible. As a
matter of fact, basic error and error rate linear systems exhibit this
same characteristic and, frequently, poor sensor information may be
worse than none. The sensor problem is not one of resolution but rather
of phase lag since the logic can readily handle consistent residual errors,
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but phase lags of anywhere near 900 cause trouble unless the prediction of
time At and the basic gain factor K are reduced, with a reduction of bothP
of them leading to poorer command following ability.

It should now be of interest to briefly review the applications of the
DOLIAC logic which have been investigated to date and to note the
successes of the logic together with a significant failure.

The first application was to a simple micro control problem (auto pilot
Logic) involving a prefilter on command inputs. The analysis was by means
of digital simulatlbn of control of a non-linear vehicle throughout a com-
plete environmental spectrum including the subsonic, transonic and super-
sonic regions both at high and low altitudes and subject to various classes
of command input. Both perfect and imperfect sensors were examined.
The results were extremely satisfactory and superior to those obtained by
linear error and error rate comparison systems, and also superior to other
types of gain switching logics which were simulated. The results obtained
were subsequently checked at CAL using analog simulation of parts of the
environmental pattern; duplication of conclusions was obtained. Additionally,
autopilot operation was checked digitally without a prefilter and satisfactory
results were again obtained.

The second application involved a macro-micro control problem, namely, the
control of skin temperature of a re-entry vehicle by means of altering the
flight path through a directly coupled autopilot. The basic error signal in
this case being the difference in desired and sensed skin temperature. A
sensed response factor "r" was used in the logic. Results were entirely
satisfactory.

The third application was an attempt to, control ICBM type flexible missiles
for which accurate measurements of pitch rate by even complex sensor net-
works were not possible. Results were unsatisfactory since satisfactory
error rate data could not be provided to the logic, and less sophisticated
control configurations proved superior under simulation.

The fourth application was to, combine longitudinal, lateral range and
skin temperature control of a re-entry vehicle. An entirely satisfactory
unified descent control system was evolved capable of handling, adaptively,
and environmental pattern encountered. Error display information for pilot
control was also generated by the, logic.

The fifth application was to automatic landing descent and flare control,
and an entirely satisfactory macro-micro control logic was: synthesized.
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The sixth application was to an automatic trim control system designed to
operate in parallel with a human pilot,, and study of the interaction of
the control logic and the pilot is now being carried forth at ASD. A human
pilot is included in the ASD simulation.

The seventh application has been to macro-micro control of explicit point
and explicit orbit guided trajectories, again with entirely satisfactory
results.

The eighth. application was to quasi-optimum performance guidance and con-
trol of spaceplane type vehicles using limited sensors. Insufficient work
has been conducted to fully evaluate this system; however, data obtained to
date are favorable.

The ninth application was to the problem of macro-micro control of orbital
docking maneuvers, and the results of the extensive simulation study of
this system have been extremely satisfactory.

Thus, so far, we have a batting average of eight successes in nine appli-
cation studies with one failure, with the reason for the failure being
quite clear.

It should be recognized that because we have so far been unable to find
an entirely proper stability criterion (the rule of thumb presented
earlier is known to be too conservative), that the study of the DOLIAC
logic and its applications have been largely pragmatic in nature and that
the stipulations presented here are in no way based on abstraction or
idealization, but rather upon the very practical criteria: "Does it work?"
and "How does it work compared to other systems ?" The answers to these
questions have been "Yes, it does work in all cases where the theory makes
sense" and "on a comparative basis it seems to work better than other sys-
tems we have compared it to. ", By no means have we compared all possible
systems, nor do we in any sense feel that the present logic is an ultimate
form, rather we feel that it represents a first step forward, that is, it
doubtlessly can be improved upon, that it does call for more study and
that it provides an affirmative answer to the question, "Is optimum synthe-
sis practical ?" Space has not permitted more than a summary of the several
thousands of pages of analyses and data which have resulted from study of
the DOLIAC logic. However, the basic theoretical elements are contained
in this paper and listed below are a group of selected references which may
be consulted for further information.
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12inally, we want to note that the present logic is the result of evolution
and that the early DODCO attempts at optimum adaptive synthesis reported
on in reference 3 were vastly different from those discussed in this paper.
Also, we want to express our thanks to ASD and to Capt Raymond Rath and
Mr. P. C. Gregory for their initial interest in this effort and for their
continued support of a rather complex area of research which has had its
moments of extreme frustration.
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ABSTRACT

The paper describes two ways of approximate realization

of Pontryagin and Bellman theories. The more sophisticated method

involves combining the features of both theories and use of both

disital and analog feedback. The less sophisticated but more eco-

nomical method employs simple analog nonlinear elements. Both

methods are applicable to high order systems with random as well as

deterministic inputs. A comparison of the limitations and similar-

ities of the two methods are given.

Both methods display bang-bang characteristics for large

inputs, but linear stable characteristics when the error signal is

low. A reserve control force is provided (in both methods) to

counteract random distrubances, and minor variations in plant trans-

fer function.

The more economical method is applied to the positioning

and stabilization of an inertial platform which has a fourth order

transfer function and appreciable load disturbances. Analog studies

show that the approximate optimum control not only out-performs lin-

ear controls in every way by a wide margin, but is also much simpler

to implement and requires less weight.
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INTRODUCTION

Two types of difficulties are encountered in applying

optimum control theories:

1. Physical difficulties,

a. the existence of random noise and disturbance.

b. the lack of knowledge and/or the change in plant dynamics.

2. Computational difficulties

a. the two point boundary value problem in maximum principle.

b. the requirement of large storage capacity in dynamic pro-

gramming.

The present paper deals with methods of overcoming these

difficulties. For the convenience of utilizing an earlier report

without costly revision, the paper is made up of two integral parts

with independent equation and figure numbers. Part I (by Chang) is

on the general philosophy and method. Part II (by Alexandro and

Chang) is on a special application in which the general philosophy

of Part I is realized in a very simple and practical manner. It

should be noted that while the special problem dealt with in Part II

is that of optimum control of an inertial platform, the method is

applicable to any system with no more than two dominant lagging time

constants.
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PART I

GIMMAL PHILOSOPHY AND METOD

Systems with Random Noise and Disturbance

A system with random disturbances can be described by the

set of equations

f N fx, _u,vt) (1)

where x. u, and v are the state vector, control vector, and distur-

bance vector respectively, and f is a vector function. Generally,

x and f have the same dimensions, while the dimensions of u and v

are different. The function f has the proper continuity properties

so that given X(to), and u(t), v(t) for all t > t , x(t) is uniquely

determined.

The control vector u can be selected at will within given

constraints either as a function of x or as a function of t. Fbi-

lowing Bellman, we shall refer to such a selection as a control

policy. In a deterministic system, v(t) = 0. Given the control

policy, and x(to) the subsequent x(t) is completely determlned.

Therefore we can use x(t) to describe the system. In a system with

random disturbances, however, v(t) is not zero nor predictable.

Given the control policy and x(to), the subsequent x(t) is unknown.
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The only predictable aspect of the system is then a probabilistic

one; Let AT represent a small volume element in state space about

x, then the probability of finding the representative point x(t)

of the system in AT is proportional to the volume of AT:

p(x(t) C AT) = P(!,, t) (2)A

The probability density p is a function of two variables: the

point j under consideration and time t. The uncertain state of

the system is represented by p(xj, t). If as t increases, p con-

verges towards a small neighborhood near the desired point Ed in

state space, the system is a convergent and satisfactory system.

If p spreads out the system is not satisfactory. The speed and

compactness of the convergence of p towards Sd are measures of the

merit of the system.

Partial Differential Equation of p

In most control systems, the random disturbances are smalI

compared to the control forces, and (1) can be written as

+ vi - .- (3)
_v vi

Given the control, policy, u is a function of x and t, and f(x,u,Ot)

can be written as F(x, t).
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Eq. (3) can be rewritten as

S= F(x, t) + vi a (4)
- •vi

Eq. (4i) describes the system with a single sample of v.

Considering all possible v, the variation of probability density p

with t at any particular location E_ can be described by

27 (7'P o + P21

where (ap/at)o gives the part due to mean motion F, and (ap/at)v

gives the part due to random disturbance v.

The probability density can be thought of as the substance

or mass of a fluid. The conservation equation in hydrodynamics gives

4 o +V. (pF) = 0 (6)

The effect of the random disturbances is to cause a diver-

sion of the system from its expected path. The sum total of these

diversions is a "diffusion' of the probable states of the system.

We note that in Eq. (3) v is a linear additive term. If

a certain v(t) occurs for an interval 6t, the representative point

x is displaced by an amount 8x which is independent of x. We can
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therefore imagine that the entire distribution pattern p(x, t) is

shifted by 8x. The new p at x1 is therefore identical with the un-

disturbed p at x2 - 6x. The change in p is

8p p( -6x, t) - p(x, t)

(-xi Pi (6xi) (8xj) (7)
i X~ iji ) xiaxj,l j -

Taking ensemble average of (7) gives

6p - (6xi)( 6xj) (8)
i *J axiaxj

The ensemble averages of the odd order terms vanish because

v and -v are equally likely, and the fourth and higher order terms

are negligible.

In control systems, the disturbances generally have much

wider bandwidths than that of the system. In terms of time, the

correlation times of vi are much shorter than the system time con-

stants. We can select a 6t which is much shorter than the system

time constants but longer than the correlation time of vi, and cal-

culate the ensemble averages (6xi)(6xj;) occasioned by v in time 6t.
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Let the initial time be denoted t1. Eq. (3) gives

6k_(t). - vi(t) (YW

t t
6x(t)-- { i(') J i() d-r (10)

tj t)

The partial derivatives can be left outside the integral sign be-

cause they do not change appreciably in any interval which is much

shorter than the system time constants. It follows from Eqs. (9)

and (10)

dt Utxi)(fxj)] (8kiiMxj) + (6kj)(6xi)

t
k 1 vk - af [vk(t) vl(¶) + vk(¶) vl(t)] dT

ti

Taking. ensemble average of the above equation gives

t

d )f4)6x =f - --- 0. j (t~-t) +e Pkl(t-,r)1 dx

where ¢kl is the correlation function of vk and vI. Substituting

X for t-¶ in Eq. (11) and integrating the result from tj to t 1 +6t

gives
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t1 +8t t-tl

(6xi)(6xj) a Z...L.f2 5 OEk1(-X) + *Ok(k)] dX dt
k1ti 0

6t

a= -v (Okj-X) + Okl(k)] (6t-%) dX (12)
k Vk 1V k

0

Since the correlation time is very short,

6t

0

6t

j f.(io(X) + skl(k)] 6t dXL (13)
0

=6t * Ok(X) dX - 6t *kl(o)

where fkljjw) is the cross-spectral density of V-k and vl. Eq. (12)

becomes

(6xi)(6xj) =Dij 6t (4

The factors Dij are defined as
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Di- " j Ok(o) (15)
k 1 avk av(

Substituting (14) into (3) gives

p
6P '3 Djj 6t

ii

Therefore

a *IL E Dij a2 (16)

v 6t axi xlj

Finally, by substituting (6) and (16) into (5) we obtain

ap . -( F + I Di 2-P (17)

at - axiaxj

Eq. (17) is a partial differential equation which gives the varia-

tion of p with time. Its general solution is quite beyond our

present stage of development in mathematics. However, by examining

a few special cases,. we can gain some insight on the effects of

random disturbances on systems of different designs.

278'



OQne Dimensional Solutions

Consider the sample case with a state variable x of only one

dimension. Equation (17) is reduced to

ýO+ (pF - D 6' 18
F3t -• ) 2 2 =0 is

Example 1. The function F is given by

F = -ax

and a, D are constants. In steady state Eq. (18) becomes

ad (P)+D d" (19
ad (px) + 4 .- =o (19)

Integrating (19) gives

D dp CA_ (20)apx + • dx

where C1 is a constant independent of x. Note that in order to satis-

fy the equation

{ pdx = 1 (21)

-00

both the product px and d must vanish at infinity. Therefore C1  0,

dx9
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and (20) becomes

1 do + 2 __=o (22)
S dx D

Integrating the above expression gives

p = c2 e-x 2/D (23)

where C2 is a constant and can be determined from (21). Eq. (23) re-

presents a packet of r.m.s. distance /b7fi from the origin. The sys-

tem converges eventually into this packet.

Example 2.

F(x) = 0 for x > 0

There is no restoring force on the positive side of x. It will be

shown in general that there is no steady state solution and the pro-

bability density flows in the positive x direction until all is ex-

hausted.

The total probability of the system above some positive value

of x, say b is givcn by

CO

p(x > b) = p(x,t) dx

b

As F = 0, Eq. (18) gives
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d P ._) D (24
dt 5 -x - -xb (24)

b

Since dp/dt represents the rate of increase of p(x > b), conservation

law requires that the expression on the right hand side of Eq. (24)

represents the rate of flow of the probability density passing the

point x = b. As b is arbitrarily selected, this relation holds for

all positive values of x:

Rate (x) - -- (25)

The integrated rate of flow is

MO OD °
Rate (x) dx : D- --- f - dx = [p(o) - P(co)] (26)ý

0 0

In order to satisfy (21), p(D) = 0. While (26) does not rule out

transient flow in the -x direction at some particular location, it

does prove that on the whole the probability density moves out in the

+x direction until p(O) = 00)

Practical Implications -Measure to Counteract Disturbances

While the above Calculations are for a one-dimensional prob-

lem about x = 0, the situation is basically the same in a multi-

dimensional problem about the expected or undisturbed path. In a
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bang-bang control system, the switching surfaces can be followed only

by exerting maximum available control force. Once the representative

point is sent beyond the switching surface by the.disturbances, there

is no available control force to restore it to the expected path.

The situation is quite similar to that of Example 2. The probability

is overwhelming that the system does not follow the expected path or

even stay close to it.

A corrective measure is suggested by Example 1. If the con-

troller is so designed that a large part but not all the control

force is used to follow the expected trajectory, a linear corrective

region can be set up about the latter. The required linear range is

no more than /aJ . The probability density p is then focussed into

a small packet about the expected path or x(t). Unless the distur-

bances are extremely severe, the required margin in control force is

comparatively small. It is a small price to pay to gain surer control.

Measure to Counteract Uncertainties in Plant Dynamics

There are many papers published on the subject of adaptive

control, model feedback systems etc., and our discussion on this sub-

ject will be brief. Two methods stand out as effective measures to

counteract plant uncertainties:

1. Estimating the plant dynamics from past response, and using

the latest estimate for the computation of optimum trajectory.
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2. Employing minor-loop feedback to force the system response

to a preselected model.

Of the two methods, (1) is usually slower and more costly in

comparison, but for slow-varying systems with a wide range of varia-

tion, it has the advantage of making better or more effective utili-

zation of the control forces. For these reasons, (2) perhaps should

be employed first, and (1) is used in addition only in case of

necessity.

In order to make (2) effective, the required minor-loop

gain is usually quite high. Thus lead networks are needed with high

noise as a result. An alternative is to use the directly-measured

highest time-derivative as the feedback signal. This has the ad-

vantage of lead stabilization but without the difficulties resulting

from differentiating instrument noise.

Mathematical Difficulties and A Counter Measure

There are two basic methods of optimal control:' Bellman's

dynamic programming and Pontryagin's maximum principle. Their mathe-

matical difficulties, which are mentioned in the introduction, are

well known and do not need further explanation.. The proposed counter

measure utilizes features of both theories. Consider the problem

1. For an introductory description of these methods see Chapters 9
and 12 of S. S. L. Chang, "Synthesis of Optimum Control Systems,"
McGraw Hill, New York, 1961.
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of sending the system from a fixed initial point 2EI to a fixed final

point a with a minimum of cost. The least cost from each point x in

the neighborhood of x_2 can be computed by dynamic programming. The

constant cost surfaces in the neighborhood of x2 are then stored in

the computer. By assuming an initial covariant vector *, an optimum

trajectory can be computed to go from 2U to some point 2_2 in the

neighborhood of x2. With a fast computer, a few of these trajectories

can be computed before a decision needs to be made. The one with

least total cost is then selected. The basic idea is illustrated in

Fig. I-i.

Because only the cost values of points in a small neighbor-

hood of x2. needs to be computed and stored, the required storage ca-

pacity is usually not prohibitive. Because the final point of the

Pontryagin trajectory is a finite neighborhood rather than a single

point, the trial process in the selection of an initial covariant

vector is also not overly difficult. In any case the overall diffi-

culty can be minimized by a sensible selection of the size of the

neighborhood about xE.

A Proposed Digital Control System

A combination digital-analog controller which embodies all

the above discussed counter measures is illustrated in Fig. 1-2.

Using the method of Fig. I-1, a nearly optimum trajectory is computed
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by the digital computer on the basis of a maximum control force which

is no more than a large fraction (say 90%) of the actual available

value. There are two outputs from the computer: the optimal con-

A A
trol force u and the desired acceleration x. The actual control

A
force applied to the plant is u + 6u, where 8u is the corrective

force to keep x - x small,

Besides the immediate feedback signal x, the actual x is al-

so measured and this information is fed back to the computer. From

A
the measured x and u + 6u, the computer estimates the system dynamics

and uses this information and the measured x to revise the optimal

A A.-isuetoidce
path data u and x. The parameter a in Fig. 1-2 is used to indicate

that the system dynamics may change.

There is another reason for using the acceleration signal

for inner loop feedback: In order for such feedback to be effective,

the loop gain must be high, and time delay in measuring the feedback

variable must be kept at a minimmn. Suppose the controlled plant is

a space vehicle. Its acceleration can be measured directly and in-

stantly right on the vehicle, but position and velocity have to be

determined in roundabout ways.

The general method illustrated in Fig. 1-2 is overly elaborate

or too costly for most applications. However, if the plant has only

two dominant lagging time constant (including 1/p which represents

the limit of T - oo), and its transfer function is known, the counter-
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OPTIMAL TRAJECTORIES.
BY (DIGITIZED) MAXIMUM PRINCIPLE

X1

EQUICOST SURFACE BY DYNAMIC
PROGRAMMING

Figure I-1. Computation of Optimal Trajectory
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measures discussed above can be realized by a very simple and practical

controller using only analog elements. The simpler model will be de-

scribed in Part II.

PART II

APPROXIMATELY OPTI4•• CONTROL OF AN
INERTIAL PLATFORM WITH RANDOM DISTURBANCES

In this part of the paper we will discuss a number of tech-

niques which can be used to modify the bang-bang principle in order

to overcome some comon problems such as finite gain, random inputs,

and minor time constants, namely:

1. Automatic dual mode.

2. Provision for reserve torque

3. Means for incorporating lag compensation.
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An example will also be given in which the methods

are incorporated into an approximate bang-bang system to con-

trol an inertial platform.

Automatic Dual Mode System

The problem of positioning an inertial load which

may be subject to large inputs of displacement was considered

by McDonald in 1950. He demonstrated that the system could

be made to respond to a step input in the minimum time by

using a relay controller which reverses the torque in accord-

ance with the sign of the expression:

2T

where T = Maximum torque output

J = Inertia of load

e = Error

The dividing line is shown in Fig. 1. By ,controlling the

torque in this manner the system will follow the optimum

trajectory in the phase plane and only one torque reversal is

required in order to bring the output to the correct position.

The disadvantage of the relay controller is that due

to small time delays present, a limit cycle will normally

exist; with the result that the performance of the system will
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be marred by the presence of small oscillations in the output.

In addition, small load disturbances will cause much larger er-

rors in a relay system than they would in a linear system.

To remedy the defects of the relay system, McDonald

proposed a dual mode servo system2 which would. combine the ad-

vantages of a relay syster, and a linear system. For large in-

puts the torque is controlled by a relay so as to follow the

optimum trajectory in the phase plane. When the magnitude of

the error is reduced below a certain value, the relay is

switched out and replaced by a linear amplifier. Thus optimiu

switching can be emplayed for large errors, while avoiding

both the limit cycle inherent in a relay system, and the in-

effectiveness of the relay servo in coensating for small

random load disturbances.

It is not necessary to switch between a relay and a

linear amplifier in order to obtain the desirable character-

istics of the dual mode system; for a high gain servo system

subject to torque saturation can be designed to provide auto-

matically the characteristics of the dual mode system. To

achieve automatic dual mode operation the switching boundary

used for the relay system must be modified somewhat to account

for the effect of finite gain and to provide a linear region.

In order to force the system to follow the optim-u trajectory
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when the gain is not infinite, it is necessary that torque

saturation occur at the optimum trajectory. The system will

then follow the optimum trajectory until the linear region

is reached. Thus zero torque must occur somewhat ahead of

the optimum trajectory to insure that full torque is obtained

at the instant the optimum trajectory is reached. This can

be accomplished by constructing the neutral boundary (locus

of points in the e vs * plane for which the torque is zero)

shown in Fig. 2. This neutral boundary is constructed by

shifting the left half of the optimum trajectory to the left

by an amount A, and the right half of the optimum trajectory

to the right by an amount A; where & is equal to the value

of error which will produce torque saturation.

Thus:

T/K , (2)

where

T = Maximum Torque Output ,

K = Gain from Summing Point to Torque Output

The two halves of the curve are then joined by the straight

line whose equation is e + ti = 0; where r is chosen so that

the straight line is tangent to the two parabolas; thereby

providing a smooth transition between the nonlinear and linear
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portions of the curve. Thus by using this neutral curve, we

have obtained our goal of having the error reduced to zero in

the minimilm time, while still maintaining the desirable char-

acteristics of a linear system.

The equation for the neutral curve is given in three

parts:

-- ,j e+e 3 = . ,,.A ;. e< -e 1  ,

2T 2T

e - =- ; e>el

where eL, the value of e at which the linear and parabolic

portions of the curve join, and r, the time constant in the

linear region, can be determined as follows. At the point

of intersection to the left of the origin:

'T + 4 2(4)

where • is the value of 6 at the point of intersection.

j ex-- =+ (5)
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2T¶ I 2T¶ N 8MA
S= , •• _ ,(6)

2

If the linear portion of the curve is to be tangent to the

parabolic protion then &2 must have. only one value.

Therefore,

2Tr 8Ta=r '2 - (7)

where 2r - (8)
T

and e1 =2 . (10)

The equations (8) and (.10) give the values of Tr and el in (3).

This neutral curve can be generated by producing a nonlinear

function of e such that:

J
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2JA ,2,• > & > -

2T
J +2 2M ,<-./ •f(e)= -F-- e -" 11

The function f(i) is then added to e as shown in

Fig. 3. Since the torque is now controlled by e + f(i), the

torque is zero when e + f(i) = 0 and hence the correct neutral

curve is generated.

The function f(6) is not difficult to generate since

it consists of a linear region and a region characterized by

a square law relation.

While it may seem sonewhat arbitrary to have chosen T

so that the parabolic and linear portions are tangent, there

are some definite advantages. Not only does this insure a

smooth transition between the linear and nonlinear range, but

this choice guarantees that in the linear range the system will

be stable with a damping factor of 0.707. This can be easily

shown as follows; consider the system shown in Fig. 3. In the

linear region,

G(s) = ((1+ )12
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where G(s) - open loop transfer function.

The control ratio (closed loop transfer function) is

C G(s)
"" (s) - G+ rsT

(1 + -s) K
Js"

Js2

(1 + Ts) K
Jsa + (1+ rs) K (13)

The poles of ( Cs) are the solutions of the equation:

JS2 + (I1+ Ts) K= 0 ,

or sp + - + - 0 (14)

This can be written as

s +-2 9 s+ a0
2 0 0

vhere Kb K-
O(

2K 0-707



Reserve Torque

The foregone discussion assumes that the system is

of second order; in reality there will always be other time

constants present in any practical system. When there are

other time constants present, an exact solution to the problem

of positioning the output of the system in the minimum time is

made considerably more complicated. In this case it would be

necessary to generate neutral curves and surfaces in n-

dimensional phase space, where n is equal to the order of the

system. However if the gain of the system is not too high

the effect of the other time constants can be accounted for by

modifying the neutral curve in the phase plane so as to pro-

duce control which is approximately optimum.

Consider the case of the neutral curve that is not

modified. As a result of the storage effect of the minor

time constants, the actual trajectory BCD in the phase plane

would overshoot the trajectroy AO which passes through the

origin. This is shown in a somewhat exaggerated manner in

Fig. 4. Since the full torque is already expended, there is

no torque available to return the system to AO; with the re-

sult that more than one torque reversal is necessary in order

to reach the equilibrium point in the phase plane. This sit-

uation can be remedied by altering the neutral curve slightly
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so that it no longer has the same shape as the trajectory in

the phase plane. If the neutral curve is made somewhat

"flatterx', then less than the saturation torque is sufficient

to move the system along the upper saturation limit. The

actual trajectory will approach the neutral curve, with the

result that only one reversal of torque is required to reach

the equilibrium point. This is shown (also exaggerated) in

Fig. 5.

Notice that with this modification the applied torque

is not the maximum available torque over the entire trajectory,

but is reduced to a value slightly below maximum for part of

the trajectory. Full torque is applied only when the actual

trajectory is being forced toward the saturation limits, after

which slightly less than full torque is applied.

Thus we have provided a "reserve torque" which is

used only for a portion of the trajectory. Since this "reserve

torque" is small, full torque or almost full torque is always

applied. This system is only slightly slower than an optimum

system, in which full torque is applied for the entire tra-

jectory.

Tis reserve torque is also extremely valuable when

there are rand•a disturbances. Suppose &, disturbing torque

occurs when the system is in the unsaturated zone. Without
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any reserve torque the system can be brought back to the unsat-

urated zone only if the disturbing torque is in the same

direction as the control torque. With reserve torque the system

is brought back to the unsaturated zone irrespective of the

direction of the disturbing torque.

Saturable Lag Network

In most practical servo systems it is generally desir-

able to have a high static gain so as to keep the error due to

load disturbances low. However, as the gain is made larger the

minor time constants become more troublesome; not only because

they complicate the problem of reaching the equilibrium position

in the minimum time, but also because they may cause the system

to become unstable in the linear region.

A system could be made to have high static gain, and

still be stable in the linear range, by adding integral compen-

sation as shown in Fig. 6. However, the problem of obtaining

optimum control for large step inputs is rmade even more com-

plicated. Since no useful purpose is served by allowing the

output of the integrator to exceed the value required for full

output torque, the difficulty is resolved by limiting the out-

put of the integrator.

As the load disturbances are generally much smaller
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than the maximun output torque, the integrator output can be

limited at a value considerably less than that necessary to

provide full output torque. With this arreli'ement, a constant

load disturbance, which is not sufficiently large enough to

cause the integrator to saturate, will not produce a steady

state error. However, when a large step input of displacement

is applied, the output of the integrator will be much smaller

than either i or e, and hence will have a negligible effect

on the performance.

An Example

In order to demonstrate the feasibility of the methods

presented in this paper, they were applied to the design of a

control system to stabilize an inertial platform. A system of

this type is generally used to maintain the platform at a

fixed position within a few seconds of arc, in the presence of

load disturbances; except when the platform is moved to a new

position, at which time the input is a step of many degrees of

arc. Hence the system has the following characteristics:

1. Extremely low error for constant load torque up to

30% of full output torque.

2. Minor time constants are presented.

3. The system is subjected to step inputs of displacement

299



hundreds of times larger than necessary to produce

torque saturation.

The system is shown in Fig. 7. In the linear region:

G(s) =4 x 10(0.ls+l)(o.oA3s+l) . 1.3x xo7(s+1oI(s+3o)
s3(2 x io- s+1)2 

3( 6+500)2

(16)

The root locus plot is shown in Fig. 8. For the above value of

K the closed loop poles are in the left half plane and provide

a reasonable margin of stability. However, as the system is

only conditionally stable, instability will arise for inputs

large enough to cause saturation, if only linear compensation

is used.

The integrator output was limited at a value which

provides slightly more than 30% of full output torque, thus

satisfying the requirement of low error for load torques up

to 30% of full output torque. The function f(&) was first

generated to provide automatic dual mode operation without

provision for "reserve torque".

The system was simulated on an analog ccmputer.

Fig. 9 illustrates the response to a step input of displacement

one hundred times larger than necessary to produce saturation.

The corresponding phase plane plots with inputs of different
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magnitudes are illustrated in Fig. 10. These curves show that

two reversals of torque are required before the linea•r region

is reached. The extra torque reversal is a consequence of the

two minor time constants located at T = 2 x 103 sec.

The performance of the previous system was improved

by providing "reserve torque!'. This was accomplished by mul-

tiplying f(6) by a factor of 1.13 before adding it to e, thus

producing the necessary "flattening" of the neutral curve.

The step response (Fig. .1) and phase plane plot (Fig. 12) show

that only one torque reversal is now required in order to reach

the linear region. It is to be noted that, even with this pro-

vision for "reverse torque," full torque is provided for almost

the entire trajectory, and the settling time in Fig. 10 is about

304 shorter than trmt in Fig. 8.

Step respohses and phase plane plots were also ob-

tained for a second system employing linear compensation without

limiting the integration (Fig. 13a and 14)); for a third system

employing linear compensation with the integration limited (Fig.

13b and 15); and 'for a fourth system using the non-linear neutral

curve, but with the integration not limited (Fig. 13 c and 16).

Comparison of these curves with those obtained for the previous

system clearly illustrates the superiority of the system which

employs the non-linear curve and has the integration .limited.
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These curves show that the second system is unstable for large

inputs, and that the third and fourth systems require a much

longer time, and several more torque reversals before settling.

The importance of the integration in the system is

illustrated by the response to a step input of torque disturb-

ance. .. If "the integration is removed then-a step input of

torque disturbance results in a steady sto~te error (Fig. 17a);

while no steady state error results when the integration is

present (Fig. 17b).

The performance of a dual mode system is superior to

a relay system since the automatic dual mode system behaves

as a linear system when subjected to a random load disturbance

which does not exceed the maximum torque output; with the re-

sult that the error is very much less than would be obtained

if the system were of the relay type. This can be seen from

inspection of Fig. 18 which shows the response of the auto-

matic dual mode system to a torque disturbance which is an

arbitrary function of time.

CONCLUSION

This paper hail presented several simple methods for

obtaining approximately optimum control in a practical system
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with minor constants. These give approximately the response

of an optimal bang-bang system with large inputs, while still

maintaining the desirable response of a linear system to ran-

dom torque disturbances. The required control function, which

consists of a linear region and a region characterized by a

square law relation, can be generated by the use of a few

diodes.

The results of an Analog Computer study demonstrate

the value of the methods proposed in the paper. Comparisons

of the performance of a system incorporating these methods

with the performance of several other systems illustrate how

the proposed methods improve the stability and reduce the

settling time.

NOTE: The research contained in this report has been sponsored

by the Air Force Office of Scientific Research, Office of Aerospace

Research (USAF), Washington 25, D.C.; under Grant No. AF-APOSR-62-

321 and its predecessor Contract No. AF 49(638)-586.
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APPLICATIONS AND APPLICABILITY OF OPTIMUM NONLINEAR CONTROL

Rufus Oldenburger

Director, Automatic Control Center
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ABSTRACT

Much attention has been devoted in recent years to the problem of the
optimum control of a system where the manipulated variable is subject to a
saturation limitation. This is termed optimum nonlinear control. Much of the
effort in this area belongs to the minimal time school of Bellman, Pontryagin
and others. In 1944 the author began a theoretical and experimental study of
optimum nonlinear control where it is desired to produce response that is best
in every practical engineering sense. This work is discussed here, namely the
theory as far as appears practical for engineering, applications, limitations
on applicability, and examples of controllers patented and produced on the
basis of the theory.

INTRODUCTION

When a hydraulic governor is connected to the throttle, or eouivalent
member, of a prime mover this throttle is stroked by the servomotor of the
governor. The governor output is the piston of the servomotor. This is con-
nected to the throttle. The speed m' of this piston depends on the opening of
the control valve metering oil, or other liquid, to the servomotor cylinder.
Normally this valve is of the spool type where the position of the valve
plunger determines the valve opening. Full opening of this control valve cor-
responds to the maximum speed of the servomotor piston, in fact one can, for
practical purposes, make this piston travel at maximum speed in either direc-
tion by moving the valve plunger through full stroke to one end or the other.
Servomotors are usually built so that the maximum servomotor piston speed is
the same in each direction. For convenience this is assumed here. The problem
of optimum nonlinear control is understood to be that of bringing the prime
mover to equilibrium speed in the best manner, assuming that it is initially in
a noneauilibrium state. Although the prime mover is in the initial noneuiý-
librium state because of disturbances on the system of which it is a part, it
is assumed that the system is undisturbed after it leaves the initial nonequi-
librium state until equilibrium is attained. Thus if the load is dropped on an
engine under isochronous control, although the engine is at eouilibrium speed,
it experiences an initial acceleration proportional to the amount of load
dropped. See Fig. 1. It is now desired to return the system to eouilibrium
with the maximum error J, the duration e of the transient, the area between
the error curve and the time axis, and other numerical cuantities minimized
simultaneously. In Fig. 1 the quantity c is the error in the controlled vari-
able, i.e. engine rpm (revolutions per minute) error, and t is time. In 1944
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the writer analyzed the Woodward governors on Hamilton Standard propellers.
Here the aircraft engine speed is regulated by varying the propeller pitch.
This pitch corresponds to the position of the piston of the hydraulic servo-
motor built into the hub of the propeller. The maximum piston speed, and hence
rate of change of propeller pitch, is limited to a value depending on pilot
comfort and other factors. The writer solved the problem of optimum nonlinear
control of such engine-propeller units, and subsequently carried out the theory
for the control of one variable as far as he felt practical considerations
would permit.

The following questions arise.

1. Is there always a unique transient, optimum in every reasonable
sense?

2. If there is a best transient can it be obtained by operating the
rate m' only at its maximum numerical value or zero?

3. If there is an optimum transient does there exist a function, or
set of functions, of the controlled variable c and quantities ob-
tained by mathematical operations on c so that making the rate m'
depend only on this function, or these functions, the optimum
transient will be obtained automatically?

THEORY

Consider the eouations

0' + cc = K1 o (a)

T q' + q m (2)

where Kl, cA and T are positive numbers, while c' and q' are the derivatives
dc/dt and do/dt of c and q respectively with respect to time. t. The quantity
O•need not be a constant but may be a function of time t. Physically q may be

taken to be engine torque or proportional to it, c' as rpm/sec, c as rpm, O.c
as damping torque, and m as throttle-torque time constant. The author Ell found
early in his studies that the damping term oec may be neglected for the magni-
tudes 'of .'. that occur in engineering practise, as far as optimum nonlinear
control is concerned. This results in a great reduction in the mathematical
complexity of the problem, without adversely affecting the results.

The saturation limit on the derivative m' of the manipulated variable m is
equivalent to

for a positive number, K2 and the absolue value [m'l of mi'.
/
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The answer to the three ouestions above is "yes" for the case where T w 0.
This is also true of the initial conditions likely to occur in practise in the
case where T / 0. Some initial conditions exist in this last case where opti-
mum transients (minimum overswing and underswing, diration, etc.) can be at-
tained only by operating Im'l below saturation during at least part of the
transient, i.e.

MI•' K 2 (4.)

It is, particularly important that the answer to the third question be
"yes". For the automatic control of the variable c the controller usually

must operate on c only and from this information vary m to bring the system to
ecuilibrium. It is thus not convenient to have the variable m depend on time t
explicitly.

We define the absauare (xl of a variable x by

. - xIx (5)

Thus (xI is the signed square of x. This function comes up automatically in
optimum nonlinear control where it plays a significant role.

In as yet unpublished work the writer proved that optimum nonlinear con-
trol of the system described by relations (1), (2) and (3) with &W-= 0 is ob-
tained by letting

m' -K (6)

where K is arbitrarily large (+ 00) and :F is the control function given by

-(sgn vf)KlK2T
21n2  1 1 +[g i -.e2)7

2KIK2  (

where

c + T c' (8)

and

sgn 1'. 1,0, -1 (9)

according as

0, 0 0, or .y'0o (10)

When the log term in • is imaginary it is to be dropped.

In view of the limit (3)
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m' - - K2  when > 0

W K2  " <0 (n)

- 0 0

For a load rejection the resulting transient is as shown in Fig. 2. Similar
curves apply for other initial conditions. The quantities tl, t 2 and t 3 de-
note switching instants at which in practise T changes sign. For t -*t3 we
have C- 0 and the system is in eauilibrium with m' 0 0. From t - 0 to tI we
have 'f :P0 whence m' I -K2 . From t - tI to t - t 2 we have X-.0 whence
m- K2 . Similarly from t - t 2 to t - t 3 we have %,0 and m' = -K2 . After
t = t 3 the relation X 90 holds.

If the lag T is zero, the times t 2 and t3 coincide. In any case every
other solution lies above the curve of Fig. 2, and is thus worse in every
sense, or this solution crosses the curve of Fig. 2 after the point where
t = tl, or leaves this curve plunging below it. "In the latter case the curve
reaches eouilibrium after t - t 3 so that the duration of the transient is
greater and this curve is worse than that of Fig. 2 in every reasonable engi-
neering sense,

If the system to be controlled is of higher order than that of eouations
(1) and (2) the control functions involve the third and higher order deriva-
tives of c. Since it is not possible to obtain such derivatives in the physi-
cal world the treatment of such high order systems is largely academic.

If a system has two or more dominant lags, as when T splits up into two
time constants T, and T2 with T, - T2 the improvement that can be obtained by
going to optimum nonlinear control is negligible, and in the opinion of the
writer not economically justifiable. In any case theory and experiment indi-
cate that it is advisable to lump the lags of a system (the lag due to the
damping term P. being neglected).

To obtain stability it is convenient to have a linear band of operation
near ecuilibrium. It is advisable to use the control function

m, -K I C A4c'I)c,] (12)

for positive constants /I and K. The value of I is chosen to give good
system stability in the absence of large disturbances. Then A should be ad-
justed so that Atc'Imax dominates r for the maximum value Ic'Imax of Ic'I
to be encountered in practise. Practical experience shows that -f-is desir-
able to have

1O0 /31c'.Imax -4 25 (13)

A curve as in Fig. 1 was obtained in the laboratory for a case where the
system lags have time constants of 0.4 sec., 0.1 sec,., 0.1 sec., and 0.,05 sec.
respectively. A very great variety of physical systems and initial conditions
were tested in the laboratory by the author and his associates over a period of
several years, while hardware. was developed and patents obtained to exploit
the results.
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A reasonable compromise of the precise theory may be attained by letting

- .2KlK2

for an average value I of l for the responses to larger disturbances, so
that the nlinear controy function Y- of formula (7) is replaced by the linear
function f of relation (14).

Tests showed that in practise one can always adjust K and in I of for-
mula (12) with /3 - 0 so that the maximum error for the worst Ldden distur-
bance encountered, such as a full load change on an engine, is the same as
when optimum nonlinear control is used. Also, the curves are practically the
same in their entirety. If the magnitude of the disturbance, such as load, is
reduced, we can reach a point where the error is half as large when a nonlinear
control function £" is employed., In any case we can halve the area between
the c curve and the t axis. See Fig. 3 where the two peaks are for identical
partial load changes on the same diesel engine but the control is linear or
nonlinear as noted. Here best linear and nonlinear control are compared where
for larger disturbances these controls yield practically the spme results. If
we go to smaller disturbances the responses for the linear and nonlinear £
become identical for practical purposes.

The extravagant claims of improvement by going from linear to nonlinear
control by others is based on comparing optimum nonlinear results with certain
linear controls, but not the best that can be obtained by the use of linear
control functions. How then can the great amount of research on optimum non-
linear control be justified? One reason is that with the optimum nonlinear
control theory on hand the engineer can tell how far an actual design deviates
from the best, and he can modify the design accordingly. Also the disturbances
that occur most freouently may be the intermediate ones, where a two to one
improvement with nonlinear control is attained. A customer will often pay for
this magnitude of improvement, especially in military and since anplications.
Finally, the nonlinear control eouirment is sometimes less expensivw than the
corresponding linear device.

TW OR MORECONTROLLLD VAPIABUS

The work of the author and his associates [1], [2] has been primarily
restricted to the control of one variable. Early work on bang-bang control by
D. McDonald [3], A. M. Hopkin(4] and others was a lso restricted to one con-
trolled variable. The approach of the writer is being extended to two and.
more variables. Recently there has arisen the "minimal time" school of Bell-
man [51:, Kalman [6], Pontryagin [7) and others involving a very large number
of workers in the United States, the Soviet Union and elsewhere. This school
is concerned with systems in one or more controlled variables with manipulated
variables subject to saturation limits, where it is desired to bring the
system from an initial state to another state in such a way as to minimize the
duration of the transient, or minimize (maximize) some other functional of
time and the controlled and manipulated variables. The theory does not apply
to minimizing the maximum error. This is the performance index one is normal-
ly most concerned with in practise. Thus the user wishes to know whether the
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control will be accurate to 1/10l, 1% or; some other value. He usually does
not care about minimizing response time. Actually, the user looks at the
entire response curves in determining the goodness of a control. The situa-
tion is analogous to the determination of beauty queens. It is not enough to
make a finite number of numerical measurements and base the selection on these
only, such as on the dimensions 35-25-35. A response curve has infinitely
many numerical properties. The approach of the writer differs from the mini-
mal time school in that he looks at the complete system responses rather than
some numerical properties of these responses, selected for mathematical or
other convenience. On the other hand, the great value of the minimal time
school approach is that by minimizing time one also often minimizes every
other reasonable measure of goodness simultaneously. On the oth-er hand there
are sometimes infinitely many distinct means for bringing the given system
from the initial state to the final state in minimal time, and additional
theory must be employed to select from these and perhaps other solutions one
that is best -in every reasonable engineering sense.

Consider the system described by the equations

c! = ml m2  (15)

c2 = ml -m2

for controlled variables c, and c 2 with time derivatives cI and c2 reypective-
ly, and manipulated variables ml and m2 where the magnitudes niIi, 111I of the
derivatives mj, m2 satisfy

Imji - 1

(16)

1m1

Let

C1  c 1 + c2

(107)
C2  c Cl - c2

whence equations (15) are equivalent to

C 1 - 21 (is)

2~ =m2

We, wish to bring the system. from an initial ýstate

I' I

(cl, c2, el, CZ) -Cc 0 , C20 P r-1,0 0 ýc2 0 ) (19)
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I Ifor real numbers r~lO, c2 0 , clO, c20 to the ecuilibrium state

(C'1 , c2 , c1 , 0') - (0, 0, 0, 0) (20)

in the best manner with ml and m2 9-bject to the saturation coidition (16),
it being assumed that the initial state is not eouilibrium. If the variables
C1 and c2 are brought to equilibrium (cI 3 O, c a 0) in a minimal time M it
follows that C1 and C2 are brought to the eouilibrium (C1 W 0, C2 W 0) in this
time M. To sim'plify the argument suppose that c10- c2 0 - 0, whence CIO- C2 0 - 0.

The first equation (18) with the first condition (16) descr-ibes a singlecontrolled variable system.. For this the optimum transient is as shown in
Fig. 4a where the duration M1 of the transient is given by

(I- r2 * ) c(o,) I1 Clo - CIO ÷ c'0 (21)

For the variable C there is a second optimum transient shown in Fig. 6b where
the transient duration M2 is given by

H = (l r ' ) Co,
2 - 220 " -, c20 (22)2 2

Suppose that
I I

C1  C c 0 (23)

w*ence

Co10  Co> 0 (24)

The curves in Figs. 4a and b are plotted to the same time scale. Clearly

M H2  (25)

whence

M-H 1  (26)

In view of the ineouality (25) there are infinitel:, k~r- soLutions of C2versus time with 1m21 not at its mximum value, which ,?W bring C2 to eoui-
librium in the time MI. It follows that there are infiniteli mlnV solutions
that bring cl and c2 to equilibrium in the minimal time M. Thus the optimum
nonlinear control problem is not solved by minimizing the duration of the
transient. We are currently investigating this problem.

The work of the minimal time school must be assessed on the basis of
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engineering as well as mathematical considerations. It is one of many possi-
ble approaches to optimum control, particularly attractive because of its
mathematical elegance.

Recently N. P. Smith and the writer solved the problem of the optimum

nonlinear control of a system where a single control function optimizes the
response to all or almost all disturbances that may occur. Thus this func-
tion applies to ramps, sinusoids, etc. as well as step changes.

APPLICATIONS

A practical scheme for achieving optimum nonlinear control is shown in
Fig. 5. This involves a nonlinear device composed of a sharp edged orifice in

series with a linear (cylindrical) pipe section. We let Pl 1, P 2 and p3 be the
pressures of the liquid ahead of the linear section, before the sharp edged
orifice, and after it respectively. For a constant a

I -P aa Q (27)

where Q is the volumetric rate of flow through the unit. The pressure drop
p2 - p3 across the sharp edged orifice satisfies

p2 - p3  - b (Q] (28)

for the absquare WQI and a constant b. It follows that

S- 3 aQ+b[Q1 (29)

When Q is small b(QI becomes K3Q for a constant K(3 whence relation (29) is the

linear expression

p -p3 - (a K3 )Q (30)

This principle is used in Fig. 5 in the case of a hydraulic speed governor for
prime movers. The motion of the bellows output (B-bellows) is assumed to be

small. The output m is proportional to the pressure p 1 . Let A1 and y be the
area and coordinate of the free end of the A-bellows. The land area A3 is
small so that

A1 y' Q (31)

for practical purposes. Let K3 be the scale of the A-bellows spring. It

follows that

A1 p 3 - K 3 y (32)

The pilot valve is constructed so that
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Q = - K4 x (33)

for the coordinate x of the valve plunger and flow coefficient K4 . By rela-
tions (31) and (32)

2A1  (,
Q . I- P3 (34,)

3

whence by relation (29)

a A

p1  + p (35
Pl, P3 K 33 + K32

The force eouation for the valve plunger is now

K5 x ' K6 c + A3 P3  (36)

for constants K5 and K6 and rpm c of the ballhead. By eauations (33), (34)
and (36)

K5 A12  K6 c

A3K3 P 3 K P33 + - A3

The time constant (K5A1
2 /A3K K3 ) is taken small so that eouation (37) recdces

to

K 6 c (3@)

P3 A 

('3A

3

The stroke of the B-bellows is proportional to the stroke z of a piston %hich
controls the rate of flow of liquid to the servomotor with piston coordinate
z. For a constant K 7

me - K(72 (39).

Also for a constant K

"z K hp, (40)

By relations (35), (38) - (40) it follows that ecuation (12) is satisfied
there

K6 K 7 K&
K - K K

A,3
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a Al2  (4,1)

K3

b A1 ' K6/3"- 3 A3[3 32

The results of nrnning this governor 18] on a General Motors GM-671 engine are
shown in Fig. 3.

An electrical version is pictured in Fig. 6. The triangles represent
operat!ional amplifiers. The absquare is obtained by the use of a thyrite re-
sistor which has the property

i - c {v¢ (42)

for the current i through the thyrite, voltage drop V, and a constant C. To
satisfy relation (42) the voltage range is one for which the maximum value is
about 10 times the minimum. For small V relation (42) becomes linear. In the
controller of Fig. 6 the variable c is differentiated to obtain c'. A voltage
V proportional to c' is applied to the thyrite to yield a current proportional
to (c'). Signals proportional to c, c' and (c'1 are added to obtain a voltage
proportional to the control function 1. This voltage is employed to stroke
a valve in the usual manner [9].

A magnitude amplifier waterwheel governor version of Fig. 6 was developed
for production [(O].

The nonlinear governors discussed here are illustrative of the few opti-
mum nonlinear controllers built by industry. Although there are areas where
the improvement of performance justifies the use of such controllers, for most
control problems linear control functions are still indicated, whether or not
saturation is involved.

CONCLUSICNS

For physical systems in one controlled variable with one dominant lag and
the input subject to saturation, a two to one improvement in the maximum error
for Intermediate disturbances may be obtained by going from the best linear
control function to a nonlinear control function involving the absquare. Sharp
edged orifices and nonlinear electrical resistors make the practical produc-
tion of such control functions possible. Due to lags and other factors al-
ways present in physical systems more improvement cannot be obtained. The
writer's nonlinear approach has the advantage that all reasonable criteria for
optimum response are satisfied simultaneously. This includes minimir-1.zing the
maximum error for a transient, which the user considers a most important prac-
tical criterion of goodness. He is usually not concerned with minimizing time.
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Unfortunately minimizing the maximum error is excluded from the class of func-
tions and functionals treated by the well-known optimization school of Pontry-
agin, Bellman and others. For the case of two or more controlled variables
the minimal time approach fails in selecting the optimum nonlinear response.
N. P. Smith and the writer recently found a single control function to give
optimum nonlinear response to a large class of disturbances, if not all. Thus
optimum response is obtained regardless of whether or not the disturbance is a
step, ramp, sinusoid, or something else.
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Abstract

This paper is a brief review of the current status of optimal programming
theory as applied to multivariable control systems in the presence of noise.
Open-loop programming of control variables for a noise-free non-linear system
is discussed first, followed by a description of closed-loop gain programming
for a linearized version of the same type of system. Optimal filtering of
noisy measurements is then reviewed for linear time-varying systems. A
combination of these techniques promises to provide optimal control for a wide
class of systems and performance indices.

OPTIMAL PROGRAMMING FOR NONLINEAR SYSTEMS (NOISE-FREE)

The solution of optimal programming problems on computers may now be
considered practical and straightforward through the use of gradient (steepest-
ascent) techniques developed within the last few years (Refs. 1-7). The type
of problem that can be solved is as follows:

Given: A physical system governed by:

x - f(x, U, t)

where x(t) - n by 1 matrix of state variables

u(t) - q by 1 matrix of control variables

X(to) Given

f(x, u, t) - n by 1 matrix of known functions (non-linear)

Find: u(t) to maximize

O[x(t 1 ) , t1 l ; t1 > t0

with terminal constraints

* [x(t 1 ) , t - 0

where
0 (x, t) is pay-off function (given)

* (x, t) is an r 'by I matrix of given functions, r - n - I
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Solution: Calculus of variations using steepest-ascent numerical calculations.

This is an open-loop control system with programmed control variables,
u(t) . This is not a feasible type of control to use in many systems due to
errors in the determination of initial conditions and parameters of the system.
However, if this "path" is used as a nominal path and small perturbations are
considered around it, a linear feedback control system with programmed gains
can be synthesized that will bring the system very close to the desired terminal
conditions.

NEIGHBORING-OPTIT'U FEEDBACK CONTROL (NOISE-FREE)

A simple approach to this problem is what might be called "minimum
incremental effort" control. It is a straightforward application of a
quadratic performance index to the system linearized around the optimum path
of the previous section. This is discussed, with several examples, in Refs.
8 and 9. A slightly more sophisticated approach is used in Refs. 10 and 11
where the performance index is the same one used in the original nonlinear
problem; here a true neighboring-optimum is found using the second variation.
An outline of the type of problem solved by this latter technique is as follows:

Given: u(t) that minimizes 0[x(tl) , til with *[x(tl) , tl! - 0

and given x(to) , for c = f(x, u, t)

Find: Su(t) such that u(t) + Su(t) minimizes V[x(tI) , tl] with

*[X(tl) , tl) 0 and given x(t 0 ) + S'x(t0) for X = f(x, u, t)

Solution: Su(t) A A(t, t0 ) sx(to) , where A (t, to) is pre-calculated

from second variation.

Note 1: The concept is readily extended to continuous measurement of

Sx(t) , =0 Su(t) - - A.(t) Sx(t)

Note 2.: 8x(t) due to Su(t) governed by linear equations:

d (Sx) - F(t) Sx + G(t) Su ; Fij ( I.nom Gi, 6 U-om.
3dt j Cjno, j-Kinm...

OPTIMSL ESTIMATION FOR NOISY TIME-VARYING LINEAR SYSTEMS

In Refs. 12-14, a practical filter was developed for time-varying linear
systems with Gaussian random noise in the system and in the measurements. The
procedure may be regarded as keeping track of the mean values, and covariances
of a multivariable Gaussian distribution in a Markov process. An easy way to
understand the optimal estimation procedure is to consider only one step of a,
discrete process where either (1) a set of measurements is made or (2), a set
of discrete forcing functions is applied. First, consider the improvement in
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the estimate as the result of a set of measurements:

Given: (1) A priori estimate of state variables and covariances:

tx] = x (an n vector)

et(x -.-- ) (x " -X) P (an n x n symmetric matrix)

(2) A set of measurements and covariances:

e[z] = i (a p vector)

e[(z - Z) (z T ) R (a p x p symmetric matrix)

where

z -Hx

Find: E'aximum likelihood estimate x , that minimizes

.1z R-i 1 T-1

where
C)-() -C)

Answer: -x + PHT R-1 (z- H i)

P - - IHz (i + H-HT)-l OF

- (P- +HR .'H),'l
where

P W ,[((x - )(x - T

Next, consider the degradation in the estimate as the result of a
set of forcing functions.:

Given: (1). A priori estimate of state variables and covariances

C[x] 3Ei

C['(x - •)(x -. )T]i

(2) A set of forcing functions and covariances:

where

Ax - Gu

Find: Revised estimate of state variables and covariances after
application of forcing function.
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Answer: x x + Gu

- T
P =P + GQb

where

P = e[(x - ý)(x -T) ]

If we now apply the above to a discrete process with a transition
matrix 9 nn-I that describes the transition from the state at the (n-l)st

step to the nth step, we have the following:

STOCHASTIC CONTROLLER FOR DISCRETE MEASUREMENTS AND DISCRETE FORCING FUNCTIONS

•n~n-i xn-i if ordinary point
*n,n-1 + xnnninI aple

xn 'n.n-i Xn-I + Kn (Zn n,n-I ;n-l) if measurement made{ n n-i n-i + Gn Un if forcing function applied

P n- if ordinary point
ST -1 HT -lPn -- [(In-n-i P n- fn,n-l H Rn,- Hn" if measurement made

f + GQGT if forcing function applied

-- ~ ~ --TRI
Kn n n n R gain in optimal estimator

In the limit, as the process and the measurements become continuous, the
result's of Ref. 14 are obtained. Instead of a transition matrix we then have
differential equations:

xmF(t) x + G(t) U

In place of covariance matrices we have the correlation matrices R(t) and
Q(t) that serve to describe the "white noise" in the measurements and in the
forcing functions respectively:

c[z(t)] - (t) t

where z - Hx , and
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cEu(t). -u(t) ,

S{':u(t) - u(t)] [u()" ()]T }= Q(t) S(t -

The optimal filter then becomes:
T--l

-F +Gu+PHT R - (z- H) x(t) = x0

P pF - PHTR"I HP + GQGT ; P(to) °

where
e[x(t)] 0 x

C ![X(t) X ] [XCto)- xo]T 0

Ref. 15 discusses the estimation problem from the point of view of maximum
likelihood estimation which, in turn, is a type of "least square" fitting..

COMBINATION OF OPTIMAL FILTER AND CLOSED-LOOP OPTIMAL GAIN PROGRA1,1ING

In Ref.16 it is shown that, for quadratic performance indices, the
combination of the optimal filter and the closed-loop optimal gain programming
technique (noise-free) produce optimal control for linear systems in the presence
of noise. There is reason to believe this combination will be optimal for a
more general class of performance indices. Using the nomenclature of the
previous sections the control system is given by

u(t) =-j(t) - (t)

x = F x + G(u + w)

T -- IS= F i + Gu + PHT R (z - F, ) ; (to) = x z = Hx + v
0 o

S= FP +PFT- PH TR-1HP + GQG T P(to) 0

where
c(w) = W(v) -- 0

e[w(t) wT (T)J = Q(t) 8(t - r)

e[v(t) vT(,) ] R(t) 8(t - T)

where A(t) is a set of pre-calculated time-varying gains determined from
noise-free. control conaiderations regarding ;(t) as though it was the exact
value of x(t) ",Note P(,t) may be pre-calculated and the time-varying gains

T -- lK-(t) = PH R stored in a memory for use during operation of the control
system (see Fig.l). Obviously this system can also be combined with theý
neighboring-optimum feedback scheme described above.
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SMOOTHING FOR LINEAR AND NONLINEAR DYNAMIC SYSTEMS

Arthur E. Bryson and Malcolm Frazier

ABSTRACT

A method is presented for making maximum likelihood estimates of
the state variables of linear and nonlinear dynamic systems over a finite
time interval, utilizing measurements made during this time interval and,
if available, a priori estimates of the initial conditions and the forcing
functions. For a linear system, the filtering results are identical to those
of Kalman and Bucy; the smoothing result is an extension of their work.
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STATEMENT OF THE SMOOTHING PROBLEM

Given: (1) A dynamic system governed by nonlinear differential equations,

x = f(x,u,t)

where

x(t) = nx 1 matrix of state variables,
u(t) = mx 1 matrix of forcing, functions,
f = nx 1 matrix of known functions of x, u, t
t = independent variable (often time)

(2) An a priori estimate of initial conditions,

E[x(t)] x-io, and

an a priori estimate of errors in xo

E{[x(t)- o x(t) -[o)T } oo an nxn matrix

(symmetric).

*Professor of Mechanical Engineering, Harvard University, Cambridge,
Mass.

**Senior Engineer, Raytheon Company, Bedford, Mass,.
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(3) An a priori estimate of the forcing functions,

E[u(t)I = i(t), and

an a priori estimate of errors in d(t),

E[ {u(t) _ ii(t)J u(T'r) 1 (T)] -a (t) 6 (t-T)

(4) A set of measurements for t< t<t

E[z(t)] I - (t), a px 1 matrix of functions,

where the theoretical relations between "exact" measurements,
z(t), and state variables x(t), is h[z(t), x(t),t] = 0, a px1
matrix of known functions, and an a priori estimate of errors
in -z(t),

E {[z(t) - 1(t)I [z(r) -- - ]T},- R(t) 6(t-T)

In the above equations E[ I means "expected value of
]", i. e. an ensemble average over many identical systems

performing simultaneously. The sumbol 6(t-T) is the Dirac
delta function and, appearing in the correlation equations
above, it indicates "white noise" in the forcing functions and
the measurements. In effect what this means is that we as-
sume the correlation times of the noise are short compared
to times of interest in the problem. The sumbol ( )T indicates
the transpose of the matrix ().

Find: The maximum likelihood estimate of u(t) = u(t) and the initial
conditions x(t ) a x . Note this gives the maximum likelihood

estimate of x(t) , X(t) from

x - f(=,X , t)

X(t) - x

SOLUTION TO THE SMOOTHING PROBLEM

The maximum likelihood estimate will be obtained by minimizing

t f
(I j= ~ R z uQ u t

t
0

whe r e
A

( ̂ ) = ()-, ,C)

with the constraints:
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(2) h(z, x, t) = 0

(3) x- f u, t)- o.

This is a standard problem in the calculus of variations. * It may be
solved by adjoining the constraints (2) and (3) to the expression for
J in (1):

(4) J =7 1 o a o ZX+jS Zx.u t)+

t
0

+ T h(Z' x, t)} dt

A
Now consider variations of u and x0 from their optimum values:

(5) 6J P x+ L

00 0 r u1

t
0

+M t 6A 6 + Oh16^d

or,

(6) 63 = 3T 1. 6° + [XT 6x]f + A( T -1 T -h0 0 t
0 t

0

+ (_iT_ xT OT T )h 8(T- Tf dt

W.-J+A -&. )X + (u QU) -Xd

Let us now choose X(t) and I(t) so that

J + JT 8f T Oh _T-1l

(7) -A T 0 O; X(tf) = 0, 0 Po X(to) 0,

(8) +T T Oh 0.

Then Eqn. (6) becomes,

(9) 6J S(1T •-_ -T = 6i udt.
t
0

*See for example Bryson, A. E., and Denham, W. F., "A Steepest Ascent
Method for Solving Optimum Programming Problems," Jour. Appl. Mech.,
June; 1962, pp. 247-257,
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If u(t) is the optimal estimate of the forcing functions then 6J 0 0
for arbitrary 6G. For this to be true, it is necessary that

(10) 1T A-l T fa
- u 0

Summarizing, the optimal estimate of u(t) and x(t) will be obtained
by solving the two point boundary value problem,

(11)f A ^ A A .8f)

( 11) a f(xu,ty) with u = 8f+ At

Eqns. 8f, T 8h.T 8h.-T--l A

(12) A = ( A - ) (•-) ( R- ( z), with h(z,xt)= 0.

(13) Boun. f c(t) = (t°) + X A(t)

(14) Cond. X(tf) 0

Note 1: If no a priori estimates of x(to) and u(t) are given, this es-
sentially means P -. c, g .o. The conditions involving x--
U, P and • above are simply replaced by,

0

(15) AT 0

(16) X(t) = 0

Note 2: A simple extension of this analysis would be to make R and
functions of x and u.

Note 3: Another simple extension would be to include estimation of
some parameters of the system.

SMOOTHING FOR LINEAR DYNAMIC SYSTEMS

If the system is linear, it can be put into the form,

(17) F(t):x + G(t) u

(18) z = H(t)x +w(t)

where w(t) is a known set of bias functions. The smoothing problem
then simplifies to the following:
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AA

(19) d F , GOGT lGx

(20) IX 1R-H, - FT X: -I

with boundary conditions,

(21) (t)-o X(t) =o
0 0 0 0

(22) X(tf) = 0

This two-point boundary value problem can be solved in a straight-
forward manner due to the linearity of eqns. (19) and (20) as follows:

Let xp (t) and X p(t) be solutions of Eqns. (19) and (20) with initial

conditions

(23) xp(t
p 0 x0)

(24) xp(t ) = 0.

Let &x(t) and 4X (t) be nxn matrices which are solutions to the

homogeneous version of Eqns. (19) and (20), i. e., with u = z- w - 0,
with initial conditions,

(25) &(t ) =

(26) ý(t) = Unit matrix = I.

It follows that

(27) X(t) p(t) + 4ý(t) X(t)

(28) X(t), X•(t) + 4ý(t) A(t)

In order to satisfy the boundary condition (22), we must have

(29) M(t) = . [1(tf)1= Xp(tf)

Combining (29) with (2 7), (28) and the relation,

A -T(30), u(t) ii(t)+ QG M(t)
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we have finally,
(31) " (t) . ""p(t) - 0 t)¢~tl-1 xp~

x X (t)14ýp~j p(tf

(32) i(t) u I(t)+ GT{ Xp(t) - 4•t) [14(tf)] Xp(tf)l

(33) •(t) A + w

This is the solution to the smoothing problem, i.e., the problem of
finding the maximum likeliood estimates of x(t), u(t), and z(t) over
an entire interval t < t < t

The filtering problem is concerned with finding the maximum likeli-

hood estimate of x(tf) only, and the prediction problem is concerned

with finding the maximum likelihood estimate of x(t) for t > tf. Ele-

gant solutions to the filtering and prediction problems have been

given by Kalman and Bucy . Solutions to these latter two problems

by the present method are given in the next section.

It is also possible to find the covariance matrix of errors in the
smoothing estimate x(t) by considering simallvariations in x, i, a, ii,
z, 7 in Eqns. (19) through (22):

(34) 6x , r; 5x G 67ud +G=G L J LHT~ -6
(34) 6X IF 1, FTj AX HT -z

(36) 6 X(tf) = 0

(37) 6^4(t)- f 6X(to) = 6_

Let

() (t) E(6x6X)

Fý7,=t) E(6 X 6X

*Kalman, R. E., and Bucy, R. S., "New Results in Linear Filtering and
Prediction Theory," Jour. Basic Engr., March 1961.
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It then follows immediately from Eqns. (34) to (37) and the relations

(39) E [6r(t) 6•(T)T] Q(t) 6(t-

(40) E [67(t) 61('r) R (t) 6 (t-

(41) E[6u(t) 6 Z() T1 =0,

that the covariance matrices (38) are solutions to

(42) P = Yp +PyT +C

where P X , FT , CJ]

QG,0
[ L0G, HTR-Hl

The boundary conditions for (42) are

PXX(tf) = 0

(45) PXX(tf) = 0

P (t-PPT (t)-P (~t) + P ()P =Pxx • o x•o 0(o o o0 (oo o oo

Thus, finding the covariance matrices is also a two-point boundary
value problem.

It can be shown that the correlation matrix of errors in u(t) is given
by,

(46) GQT = G +GT TPX+PG GT

where

(47) E[5U(t)i6(T)T] = Q(t) 6(t- T)

Similarly,

(48) HTRIR.R-H m -HTR•lHPX-• PHT'H,

where

(49) E: [62(t) 6(T) T] 'Iin R(t)(t- T)3
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FILTERING FOR LINEAR SYSTEMS

If only x(tf) is wanted, the two point boundary value problem of

Eqs. (19)- (ZZ) may be converted to an initial value problem. Referring

to Eq. (31), we define a new quantity

(50) y4t) = 4p(t) - t -p

Note that

(51) y(tf) = ^(tf)

Let us also define another quantity

(52) P Wt) = kx(t)[OX(l-1

Differentiating (52) with respect to t and using the relations

(53) d [ F ' GQGj' L:xTF~ "AIT-H, _FTIl

(., u I
&(to) a P

It is straightforward to show that
T T--lT(55) P = FP +PyF -PyH R HP +GQGT

y y y y y

(56) P (t
yo 0

Differentiating (50) with respect to t and using, (19), (20), (23), (24), (52),
and (55), it is also straightforward to show that

(57) y = Fy + Gi + P H R (z - Hy - w)
y

(58) y(t) = x

Eqs. (55) through (58) are precisely those Obtained earlier by Kalman and
Bucy (Loc. Cit. ). Fig. I shows a block diagram of this filter. Note that
P (t) may be precalculated or calculated simultaneously with y(t).

y
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The solution to the smoothing problem (linear) of Eqs. (19) through

(22) can be obtained by "filtering" to obtain y(tf) = x(tf), then integrating

Eqs. (19) and (20) backward with boundary conditions

(59, 60) '(tf) = Y(tf); X(tf) 0

A block diagram of this "smoother" is shown in Fig. 2.

Similarly it can be shown that

(61) Pytf) ( P{tf).

Hence, the solution to the covariance Eqs. (42)- (45) for the smoothing

problem can be obtained by "filtering" to obtain Py(tf) = Px(tf) then

integrating Eqs. (42) - (44) backward with boundary conditions

(62) Pd(tf) = Py(tf)

(63) P4(tf) = 0,

(64) Pxx(tf) = 0

The impulse response functions (kernels) for the linear filter are
easily found using the equations adjoint to equations (19) and (20)

(66) d-T G 4 1 F

with boundary conditions,

(67) (x~tf) = I = unit matrix

(68) *x(t P0 , + ij(t 0 ) 0

It. follows immediately that

tf
T T + T

(6) (tf) I*Gu- *ýB-R1zIw~ T -

t
0
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RFT

G5GT Pto)=Po

W+) F Py I

(• JL•_.•HHPy L

R-'H(z'-Hy-w)

_~ y(to)= X'o0 =

.Hy +w

FIGURE 1. OPTIMAL FILTER FOR LINEAR MULTIVARiABLE SYSTEM
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FIRST ORDER IMPLICATIONS OF THE CALCULS OF VARIATIONS

IN GUIDANCE AND CONTROL

by

R. E. Kalman

Research Institute for Advanced Studies (RIAS)

Baltiimore, Md.

Due to evitable conflicts of space and time, this paper

appears here only in digest form. A detailed exposition will

appear in the near future as a RIAS report [5].

The principal contribution of this paper is the recogni-

tion that Caratheodory's classification of regular extremals and

the theory of controllability are closely related topics.

1. All notations being the same as in I11., consider a

standard variational problem of the following type: (i) The

initial point P = ((to, X) )) of the motion to be optimized is

fixed; (ii) the final point must lie on the surface S1 in

I+n)- dimensional (t, x)-space; (iii) the motions are governed

by the equation dx/dt = f(t, x, u(t)), (iv) values of u(t)

lie in the set U(t) for each t; (v) the quantity to be

minimized is the integral of function L(t, x(t), u(t)) along

the motion from P0 to S1.

Under these circumstances, the problem is analyzed [1]

by defining first a pre-Hamiltonian function

(1.1) H(t, x, p, u) = L(t, x, u) + ( t, f(t, x, U)'.
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The n-vector p is called the costate.

Pontryagin's theorem states that every minimizing motion

is a pseudo-extremal. This means that if x°(t) is an optimal

motion., generated by the control function u0(t), then there

exists also a comotion p°(t) such that

(1.2) H(t, x°(t), po(t), u) k H(t, x°(t), po(t)) for all u e u(t)

along any optimal motion, and (x°(t), po(t)) are solutions of the

equations

dx/dt = HP(t, x, p, u° (t))

(1.3)
dp/dt = - f(t, x, p, u0(t)).

Any pair (x°(t), po(t)) which satisfies (2-3) is a pseudo-extrecal,

rather than an extremal, because in general one cannot prove that

such motions are optimal over any interval of time.

A pseudo-extremal is regular if (1.2) holds with a strict

inequality sign for all u u u°(t).* In that case, subject only to

mild smoothness conditions on the set U(t), equations (1.3) may

be replaced by an equivalent set, which however does not involve

u°(t),

dx/dt = H0 (t, x, p)
p

Sdp/t = -'I•(t, x, P),

where

0 0Although p 0 (t) is not uniquely defined by x (t), it can be shown

that the. choice of po(t) is immaterial as far as the definition of

regularity is concerned.
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(1.5) H0 (t, X, p) = min H(t, x, p, u),
u(t)

is the true (classical) Hamiltonian function of the problem.

(1.4) are the well-known Euler-Lagrange-Hamilton equations.

With Caratheodory, an extremal is defined as a motion

o= (x°(t), po(t)) which minimizes the integral f L &t with

respect to any comparison curve that connects two points P1 and

P2  on y9, provided PI and P2 are sufficiently close. This

is optimality over small intervals of time.

The principal theorem of the classical calculus of varia-

tions then asserts: Every regular pseudo-extremal is an extremal.

In applying the Hamiltonian theory to the problem of second

variation, several authors (Bryson, Kelley, etc.) proceed by using

equations (1.2-3), subject to a side condition which guarantees that

the first variation vanishes. In the regular case, this is unnecessary

if the formalism of (1.4-5) is used. In these equations, it is not

even necessary to know what the variation of u has to be, since

the values of u are implicitly determined once and for all by (1.5).

2. Concentrating attention on the regular case, that is,

(1.4-5), it is well known that the problem of second variation may

be studied advantageously by considering the so-called accessory

(or Yacobi) variational problem, which ha sa quadratic Hamiltonian

function. For this type of Hamiltonian, the variational problem has

linear character, and there is an extensive and useful mathematical

literature (see [E] for further references.)

To be more specific, let To = (x°(t), p°(t)) be a regular

extremal. If we consider small variations about T , that is, the

behavior of = x - x0 an rt = p - pO+ we are led to

,r/dt = P& K-3 o
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where the mtricesr H, etc., are evaluated along the path r°
and are in general functions of time. The regularity condition

is equivalent to the fact that the matrix condition Sp is non-

positive definite. The Hamiltonian function associated with

(2.1) is

(2.2) IIII2 + 2(7r, 'r > + ll Il2l .

If we define

0 (t) = F(t), Hop(t),-- G(t)G'(t),, H•(t) --, (t),

then the Hamiltonian (2.2) and the Euler equations (2.1) are pre-

cisely those which result from the following variational problem:

(i-ii) It is required to transfer the point (to, to) to the

surface Zi., which is the tangent plane to S1 at the point

where no meets S1 ; (iii) the equations of motion are

(2.3) dt/dt = F(t)g + G(t)p(t),

(iv) there are no restrictions on values of g±(t); (v) the

lagrangian is defii.d as

(2.1) 2L(t, , ) III + 11III 2.

It is then easy to verify that the Hamiltonian H corresponding

to (2.4) is precisely (2.2); moreover

(2.7) u0 =,- G'p.

To study the variational problem defined by (2.3) and

(2.4), it is important to investigate the notion of controllability

[21 of bhe system (2.3), This question, which concerns the accessory

problem, also has a natural interpretation for the original variational

problem.
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3. In a celebrated paper [31 published in 1933, Caratheodory

introduced a classification of regular extremals: Take a given

(regular) extremal To. Find all nearby extremals which termin-

ate at Pl. These extremals will fill out a "manifold" of points

which includes e . Let the dimension of this manifold by

n + 1 - q (q -_ 0). Then the integer q is the Caratheodory class

of the extremal.

Variational problems of class 0 behave as the conven-

tional variational problems without side conditions. On the other

hand, all regular extremals of a. Myer problem are of class q k 1.

Time optimal problems are often of class q = n - 1. Thus the

Caratheodory class indicates the difficulty of a variational problem

of the Lagrange type, i.e., of problemsof interest in optimal control

theory.

Caratheodory [31 has shown also- that the class number of

a regular extremal can be calculated by forming certain determinants

related to the variational equations (2.1). It turns out that his

technique is identical with methods used (independently) by the

writer for the study of controllability and observability questions

in linear systems [2]. The situations to which this technique is

applied are different, but it is possible to connect the two notions.

The following result is typical:

A (regular) extremal is of class q = 0 if and only if its

variational equations are completely controllable.

The proof is essentially the same as ws given in [41 for a

slightly different problem.

,In general, n . q = dimension of the space of controllable

states of (2.3).

A trivial, but practically necessary, extension of the

Caratheodory classification is the followlng: Given a regular extremal
° terminating on the surface Sl, let n + 1 - q(s 1 ) be the

dimension of the space, filled out, by nearby extremals which also
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terminate on S1. This defines the class q(8 1 ) of To rela-

tive to S . Since it is easier to "hit" a surface than a

point, in general we will have that q(Sl) a q. This concept has

not been investigated so far.

4. The technique outlined above can be applied profit-

ably to many problems of trajectory optimization. In fact, the

study of the "class" often coincides with the study of the Jacobi

determinant, which is necessary to locate conjugate points. By

concentrating attention on the geometric properties of nearby

extremals, one obtains a precise and intuitively appealing char-

acterization of optimal trajectories.

Full details will be found in [5].
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ABSTRACT

A method is suggested for computing optimal controls. This method is
based on the Pontryagin maximum principle, and consists in periodically
computing the appropriate initial conditions of the linearized adjoint system
as a function of the state of the system. The adjoint system is then used to
determine the optimal control. Detailed computational procedures - using
a steepest ascent method of successive approximations - are developed for
some specific optimal problems including the "bang-bang" time-optimal
and minimum control energy problems.

INTRODUCTION

One of the difficulties which arises in the implementation of optimal
control systems is the complex control law that is generally required. In
conventional control systems the controllers are made to be simple functions
of the output (or state.) of the object being controlled (the so-called plant).
However, if the plant is to be controlled optimally, the relation existing at
any time between the state of the plant and the value of the optimal control is
both difficult to precompute and difficult to implement in an actual system.

For certain types of control systems, and certain optimality criteria,
methods have been described for precomputing an optimal control (References
I through 4). In each of these methods, the entire optimal control function
can be computed once the iiiitial and desired terminal states are specified.
In principle, a system using these methods would operate as follows: the
initial state of the system is measured and fed into a computer which calcu-
lates the time history of the optimal control, stores the latter, and drives
the controller to follow the stored program. Such systems, once they begin
to operate, are, of course, "open-loop"; i. e. , no corrections are made to
the control program based on measurements of the actual state of the plant.
However, "feedback" can be introduced by periodically updating the control
program by recomputing the optimal control at any time, considering the
state of the plant at that time to be an "initial condition."

By suitably choosing our computational method, we shall describe one
such procedure which appears to be particularly suitable to such "updating'.
Our method, which is based on the Pontryagin maximum principle, can in
principle be applied to a wide class of optimal control systems. However,
computational algorithms have so far been developed for only certain parti-
cular types of systems, which do, however, include many important special
cases. These algorithms are described in Section III.
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GENERAL DESCRIPTION OF THE SYNTHESIS PROCEDURE

We confine ourselves to control systems whose behavior can be described
by a system of ordinary differential equations which have the form

x. . (x= i .( . x n, u ..... u , t) , i M()

The x. describe the state of the system, and the uJ describe the state of
the controllers. We assume the fi to be continuous in all their arguments,

and to be continuously differentiable with respect to the xi and t. If we
denote by x the vector (xj,. ... , xn), by u the vector (ui . .... ur), and
by f the vector (f, .j. . fn), Equations (1) can be written in vector form as

x = f (x, u, t) (2)

The control vector u may, of course, depend on the time, but we shall
require u(t) to be piecewise continuous for reasons of physical realizability.
Finally, we shall suppose that the controllers are constrained and that this
constraint can be described by the requirement that u(t),EC for all t, where
0 is a set in r-space which is independent of t and x. We assume that there
are no explicit constraints on the values of x.

We suppose that the aim of the control process is to transfer the system
from one given.state to another. That is, we are given two values x° and
x1 of the vector x, and an initial time, to; we wish to find an admissible
control (i. e., a piecewise continuous function whose range is in 0) u(t) such
that the solution of Equation (2) with u = u(t), X(to) = x° takes on the value
xI at some time tF > to. The terminal time tF may be fixed or free. The
case where the target position depends on the time: x1 = x 1 (t), can be put
into the same form by defining a new variable x = x(t) - xi(t) (assuming that
xi(t) is twice continuously differentiable). Also, the aim of the process may
be to attain a set rather than a point. In many cases, the treatment of the
problem is then only slightly more complicated than if a point is to be
obtained (e. g. , see Reference 4, Section IV), and we shall confine ourselves
to: point targets.

Let us suppose that the optimality criterion is given by an integral of
the form:

J ft ff (x (t) , u(t), t) dt (3)

0

where the function fo satisfies the same conditions as f,, .. fn Thus,
our aim: is to find an admissible control u(t) which "transfers" the control
system given by Equation (2) from a given state x° at the time t = to to
another state x0 at the time tF (which may be either 'ixed or free) in such
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a way as to minimize the integral (3). Let us assume that such an optimal
control exists. (The existence problem is itself of interest. For discussions
thereof see Reference 5, § 19 and References 6 through 9.) Then, accordinb
to the Pontryagin maximum principle (Reference 5, Chapters I and II),
there exists a nontrivial solution f(t)" (*o(t), Wi(t), . (t)0 of the system
of equations:

Sn f(x (t), u1* (t0, t)
*i J JiJi - a *i=1,.....n

j =0 OX

(4)
const.< 0 (

such that

n *n
Wi(t) f.(x (t), u (t), t) = max E *i(t)0 fi (x (t)' u, t) (5)

i=O ucfl i=0

at all points of continuity of u (t) - where we have denoted the optimal control
and optimal trajectory by u*(t) and x*(t), respectively.

Thus, if the initial conditions for the system (4) are known, it is possible
to simultaneously solve Equations (1), (4), and (5) (provided that relation (5)
determines u*(t) uniquely for t in a dense subset uf (to,tF)), and thereby
compute the optimal control u*(t).

Let the point xi be fixed. Suppose that an optimal control exists for
(xO•',-to) in some region R in (x,t) space, and that for each initial value in
R this optimal control is unique (if we disregard values at points of discon-
tinuity). Then, for each such initial value, there is a solution f(t) of
Equations (4), with initial value *0 which determines the optimal control
u*(t; x°, to) through relation (5). The corresponding solution #(t) is not
unique (it certainly can be multiplied by an arbitrary positive constant with-
out affecting the maximum in Equation (5)).. Let us denote by H(xO; to)
the set of all (n+1)-vectors fo which have the following property: the
control u*(t), determined by Equation (5) with *(t) the solution of Equation
(4) satisfying the initial condition +(to) : *, oRtimally transfers the control
system from x° at the time to to the state xi.

* *
If (x°, to) -is a fixed point in R, x (t) and u (t) are the corresponding

optimal trajectory and control, and u*(t)* is determined by a particular
solution * (t) of Equations (4) (so that * (to) cH(x°; to)) , it is clear that
(x*(C),T)ER and,

(F•) E H (x (t-), ) (6-):

for any t-c (t , t (since the portion of the control process for t2 t must
also be optiniail
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We are now in position to describe the suggested synthesis procedure.
At the initial time to, the initiat state of the system xO is measured.
Depending on the target state x1 and the integral functional J, one member
jo of the set H(xO; to) is found. Then, for a short time interval, Equations
(t), (4), (5) are solved simultaneously - in real time - and the optimal control
u*(t) is computed. At the end of this interval, say at the time ti, the state
of the system x(tj) is measured, and a member t1 of the set H (x(tj); tj)
is found. The procedure is then repeated until the end of the process. The
system thus operates similarly to a sampled-data feedback control system..

The principal difficulty in applying the above method lies in finding a
member of the set H(x; t). For certain particular optimal processes, as
we shall describe below in Section III, a successive approximation method
can be employed. Such a method is particularly attractive for the following
reason. if '1 EH(x(ti); ti) is the initial value for system. (4) in the interval
(ti, ti+ j), and if the corresponding solution of Equations (4)is Pi(t), then,
under ideal operation, *i(ti+i) cH(x(t.+I); ti+j) because of relation (6).
Thus, if H(x; t) is continuous at (x~ti+i), ti+t) in an obvious sense,
*i(ti+1) should be an excellent approximatiorn to a rjaermber of H(x(ti+i); ti+i)
even in the presence of disturbances.

During an interval (ti, ti+i) Equations (1), (4), (5). should be relatively
easy to compute in "real time." For example, Equations (1) and (4) may be
integrated on an analog computer. We assume, of course, that relation (5)
uniquely determines u*(t). In many problems, it turns out that the maximum
in this relation is a relatively simple function of x*, t, and t. For example,
this is true in the cases described in Section III below. In other problems,
the maximum may have lo be computed by more sophisticated techniques
such as nonlinear programming.

SPECIFIC COMPUTATIONAL METHODS

In this section we shall describe successive approximation procedures
for finding members of the sets H(x;t) in some specific optimization
problems. We shall omit the derivations of these methods since they have
been presented elsewhere (see References 3 and i0).

First, consider the well-known "bang-bang" regulator problem, Let
Equations (i) have the form

x = A(t) x + B(t) u (7)

where A(t) is an nX n matrix, B(t) is an nXr matrix, and both A and B
depend continuously on the time, t. Let 0 be the unit cnbe defined by
uiI !5 1, i = 1 .... , r; let the target x 1 be the origin: x = 0; and let

fo = i. Thus, J =t - to, and the minimization is with respect to time
(clearly, tF is free).

Let X(t) be the nx n matrix solution of the system

X(t) = A(t) X(t) , X(t) = I, the identity
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Relations (4) and (5) are now equivalent to

n
Ea.(t) *(t) , = i , n (8)j=t i" '

*(n $~)bjt

(t) = sign r # (t) bt = ... ( j r (9)

where A (a..) and B = (b-) Let us assume that the zeros of 'E!t*ji(t)bij(t)
are isolated bor every nonlrivial solution of Equations (8) (and each
j= i,... ,r), so that Equation (9) uniquely determines a piecewise continuous
control.,

For a given x° and to we wish to find ann-vector *0 such that
relation (9) - with (Wi(t), .. .. - *n(t)) = 0(t) the solution of Equations (8)
with *(to) = -0 . defines the time-optimal control which transfers the
system given by Equation (7) from xo at the time to to the origin. The
set of all such vectors *0 will be denoted by h(x°; to).

We define a function F(T; x0 , t ), where T1 is an n-vector, such that
F takes on its maximum value when, and only when, 7 1 h(x°;to). Namely,
let t

f(t, x; x0 , t) = J . X'i(s) B(s) u(s;11) ds + 71. x0

where u(s;fn) is defined by

u.(t; 'n) = sign ( • X- t (t) b3 (t))

b3 being the j-th column of B. Then, it is easy to see that f is a strictly
increasing function of t (for fixed T1 J 0). We shall restrict ourselves to
those 71 for which Tj. x < 0 so that f(O, T1; x°, to) < 0. It can be shown
that if t* is the minimum time in which the origin can be attained, then
f(t$, T; x 0° to) 2! 0, where equality holds if, and only if, T1 E h(x°; to). Thus,
if we define F(7; x°, to) as the solution of the equation

f(F(Ti; x 0 , t ), TI; x°) = 0

F has the desir�,d properties, the maximum of F being the minimum
transfer time t

Finally, the maximum of F can be computed directly by the method
of steepest ascent,: since the gradient of F(7,) is proportional to
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F(?I) X •

B(s) u(s; -n) ds + x

i 0

Also, the gradient is different from zero if i I h, so that F has no local
maxima away from h.

Generalizations of this problem., wherein 0 is replaced by an arbitrary
cynvex, compact set, and the origin is replaced by an arbitrary target point
x , are described in References 3 and 10.

Computer solutions for the problem described above, using both analog
and digital computers, have been described by Paiewonsky and Williamson
(see Reference i1).

As a second example, consider a control system whose behavior is
again described by EqiTafon (7), Where 0 is as before, the target x, is
arbitrary, the terminal time tF is fixed, and fo is given by

r
fo(u) Z X uj Ip (10)0j=J JI

p> i and Xj 0 (but not all zero) being constants. Then,

oF r X uj(t) Ip dt

and the physical meaning of J, particularly if p = I or 2, is clear.
Relations (4) are again equivalent to Equations (8). With little loss of
generality, assume that to in Equation (4) is equal to -I. Then,
relation (5); takes the form

St-1i). sign CM(t) if I't)I ( pX. and X 0

u. (t) sign C.(t) ., if I C X(01 > pX. and Xj1 0 , (I1)

ýsign C.(t) ,if X. 0
i= 0

for p> i, and
j if

u;(t) "' f (12).<x

Isign C. if ICj(t)I > XJ
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if p = i. Here, E.(t) = # i(t) bi1(t). We assume that the zeros of
Cj(t) are isolated If p> I and- X4 '-0, andthat the zeros of Cj(t) * )'
are isolated if p = i, for every I = 1 ... , r, for any nonzero solution,
of Equations (8).

We define the set of n-vectors h(x°; to) in a manner analogous to
before, and we define a function g(?1; x°, to) which takes on its maximum
value when, and only when, rleh(xO'; to). Namely, let

g(l10
1 ) _ Xi 't dt-' 0gw(h; x, to i tF)1 XJ-f tF[•• X-1 (t) B(t) ^u(t; I)+f ((t;n))] dt- 0. x

where 'u(t;n) is given by Equation (5) (or Equatiojs (ii) or (12)) with
i(t),. - - *n(t) equal to the components of ?. X- (t). (It is well-known

that the latter vector is the solution of Equations (8) satisfying the initial
values *.(t 0 ) =i.) Furthermore, the maximum of g can be computed
by the method of steepest ascent using the fact that

gradg(Q) = - x0 + Xi (tF)x i- f X-i(t) B(t)Gý(t;, )dt

0

and noting that g has no local maxima away from h.

The relations above are derived in Reference 10, wherein more general
functions f0 are also treated.

The case where f is defined by

f 0(u) = JUt

which arises in minimum fuel guidance problems, is described extensively
in Reference 12.

As a final example, consider again the case where fo is defined by
Equation (10), where now p > i, every Xj is positive, and G is the entire
r-dimensional space (so that there are no restrictions on the values of u).
Then, the treatment differs from the one above only in that Equation (ii) is
replaced by

u•'t) = f•j(t)/pX.J 1 (P_') " sign Cj(t)

and the definition of "X(t; TI) is changed accordingly.

If variations of the above examples are considered, it is often easy
to construct functions having properties similar to those of F and g which
lead to a successive approximation method of finding the appropriate initial
conditions to Equations (4):.
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ON OPTIMAL CONTROL FOR SYSTEMS

WITH NUMERATOR DYNAMICS+

C. A. Harvey* E. B. Lee* L. Marrkus**
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**University of Minnesota, Minneapolis, Minnesota

INTRODUCTI ON

Let us consider an example which illustrates the concepts
we wish to discuss.

The small amplitude pitch motions of many aircraft can be
summarized approximately by solutions of the equations

(a) & - kI a - e = k2 6 (Flight Path equation)

(b) e - k 3 - k4 a - k = 5 k6 5 (Pitch equation)

(c) 5 = u (Servo equation)

Here

a - aircraft fuselage reference angle of attack
e - pitch attitude change
5 - elevator deflection
u - control variable, and ki = constants.

We shall assume, as is natural, IuI< 1.
Consider the relationship between u and e. Letting x=e

and eliminating a, and d from (a), (b), and the derivative of
(b) gives

(d),ME +(-k 3-k5-), +(-k4-k1 -k 3 .)+x= -k1 + (kl+ 6)

Differentiating (d) and using (c) to eliminate 6, gives an
equation of the form

(e) 7 + ax+b= coi+du

+The results reported here were achieved at the Minneapolis-
Honeywell Regulator Company, under sponsorship of NASA
Contract NASr 27.
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The transfer function for is C + d ,from whichs(s 2 +as+b)
the term numerator dynamics stems.

If we consider (e) to be the equation of motion we run
into certain technical difficulties. For example, how one de-
fines a solution if the control u = u(t) was composed of a
series of step functions. There are now standard procedures
for transforming equations of the form of (e) into a system of
equations in which the derivatives of the control variable do
not appear. (See for example, Laning and Battin, "Random
Processes in Automatic Control", p. 191, or Just reverse the
above procedure.) We prefer to work with the system (a) - (c).

A typical control problem is to reduce the pitch rate,
= x, to zero in finite time and in such a manner that it will

remain zero if no additional disturbances appear. Actually we.
should impose certain conditions on the other variables, for
example, require 151< : (the bounded phase coordinate problem).

In section 2 we consider the various modes of control.
It is shown that most optimal control problems are included in
the problem of controlling only one state vector component
after choosing a suitable coordinate system. We have shown
that such problems arise in a natural way when considering
system transfer functions with numerator dynamics. Section 3
is devoted to necessary and sufficient conditions for time
optimal control. Here we show that control of one state
variable is equivalent to controlling to a closed convex set
of possible states.

Section 4 is devoted to considerations of constructing
the time optimal feedback controller.

MODES OF CONTROL

Consider a physical system as represented by the equations*
= ai xJ + biu; i, J = 1,2,...,n; (1)

or in vector form

= Ax + bu

here x is the system state and u the control variable.

We wish to determine a bounded scalar function u = u(x)
such that some or all of the solution components xi(t), i = 1,
2,..... ,n o. (J behave in a desired manner on the finite time
interval 1Oj.

* Repeated index indicates summation with respect to that index.
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We shall adhere to the following definition:
Multiple component control is defined as control of less than
n of the state variables by bringing them to zero in finite
time and holding them at zero thereafter.
Single component control is defined as oontrol of a single
state variable by bringing this variable to zero in finite
time and holding it zero thereafter.

It is seen that single component control is a special
case of multiple component control. Time-optimal multiple
component control is defined in the obvious way when u(t)
is bounded; namely, bring the state variables to be controlled
to zero in the minimum time such that they may be held at zero
thereafter with u(t) satisfying the bounding constraint. Time-
optimal single component control is discussed in section 3.

It is now our purpose to show that multiple component
control can be accomplished by single component control.

As in [o1] suppose that for a system described by (1) it
is desired o control the variables xI, x,2...,xm, 1 < m < n.
If m = 1, the problem is the single component problem--of-
controlling xl. Thus, assume m > 1 and for convenience
introduce the following notation:

""ml" _+ b• m+f

i= 2 xm+2 b2 lb. E2
Al= Al .77 1;]2=

a I aml 
a n

m m am ama a. . am am+l . . . a n :

1. m~] m+l a+1 +
.a ram+I

mn

A3= 0 A4= •

n [, n n "

Then (1) becomes
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l A1  I+ A2 t2+ 1u (2)

-2 A3 ti + A4  2 + 2u

and it is desired that ti be controlled.

Holding I zero requires that ,= 0 in which case
(2) becomes

0 = A2 t2 + 1 u

i2 = A4 t2 +p2u (3)

If P1 = 0 and A2 - 0, it is impossible to control_•1
because the first equation of (2) becanes tl = Al tI and the
proposed problem is of no interest. It P1 = 0 and A2 9 0,
it may be assumed without loss of generality that the first row
of A2 contains a non-zero element. Then the state variable

~m+l n~ a1
ym j=jm+l aJ x

is necessarily controlled when ti is controlled. Thus, the
original problem can be reformulated so that it becomes a
problem of controlling m+1 state variables, i.e. xl,x2,.•.,xm
and ym+l.

Hence, consider the case when P X9 0 and assume without
loss of generality that bmod 0. Making a transformation

y = Sx, where S = S j

bm 0* 0

in-

bm0. . 0 -bI
b m, . 0 - b 2

bm _bm-l

L 1

and setting

C S and'C2==
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equations (2) become

S= s A (Sl)-l C1 + S1 A2 C2 + Slilu

(4)
2= A3 (Sl)-I C1 + A4 C2 + p2u

S1 was chosen so that

0

S.1

If the kth row, k < m, of S1 A2 has non-zero elements,
the sontrol of C1 implies the control of the kth component
of S± A2 C2 and the original problem may be reformulated
so that it becomes a problem of controlling m + 1 state
variables.

From the foregoing considerations, it is clear that if
it is possible to control tl only, then (4) may be obtained
with

[o...... i!. (

s 1P-= : SA= SIA1 (S l)- =

bm *n(1) am(l) am( .) am(l)

Now if each a'(1)-- 0 with i < m, thl components y1  y2 .ym-1

of C1 are not controllable; hence C' and consequently 'l, are
not controllable. Thus it may be assumed without loss of
generality that am-lIX 0. Define

as2l(1) o•..0 -a4(l) 0

�- am-() . . . 0 -am(1) 0
"am 1) .a-2(1) 0

1 80
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and denote the ijth element of 52 31 AlS1 .[ [82]-bya()

Then ai(2)- O, 1 < m _ 1 @,ond aw'1(2J= );.'•ow if
T,(2)-= m wthnda< _am1,o

each ain.l 0 ihi< n-1 the first m -2 components of
S2 Cl are not controllable and hence tI is not controllable.
Thus it may be assumed without loss of generality that

am-(2) 0. Define

a m-2(2) 0 0 1(2) 0 0

.aM-2 (2) 09L2-(2) 0 0
33 = -1 am-1O0

m-2(2) *m-3(2)0a M-1  m-al-

1 0 0

01 0

1

Continuing this process, S* Sm- 1 Smm-2 . . S2 S 1 is
determined so that

a1 2a1  0 - 0

a 2  aL2  a 2
1 2 3- --

S*Al(s*)"l has the form

a ml m- -

1m

am -- a- 0

L1 m _

with a i ,g 0; 1 = 1,2,...,m-l. S*A2 -- SlA2 and sP l=S11.
i+1

Letting'z = in j x and C [3 I L-
(2) becomes

(2 _.oe S* AI(S*)"l C3 + 8* A2 C4 + sl
(5)

Z- A3 (S*' - C3 + A4 C4 +,iu
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rom (5),
k+1c 1 k k a'
z k=-T _ Z a za , k = !,2,...,m-l

ak+1L J=a

With the aid of this recursive relation, it is possible
to obtain zk as a linear combination of z1 and its first k-i
derivatives for k < m. Thusi controlling z1 accomplishes
control of l.

NECESSARY AND SUFFICIENT CONDITIONS FOR TIME OPTIMAL CONTROL

In section 2 it was shown that any multiple-component
time-optimal control problem for a linear system with a single
control variable is equivalent to a single-component time
optimal control problem. For this reason, only single-
component control problems need be considered.

Suppose xl(t) is the variable which we wish to bring to
zero and hold at zero in minimum time T withIuI< 1. If x (t)
is to be zero for t > T then 11(t) = 0 for t > T. Thus
aj xJ(t) + bI u(t) = 0 for t > T.

Let G be the set of points X1 0 , x20,..,xn in Euclidean
n-space such that the solu ion of 1) with ul(0) = Xl0 = 0,
xJ(o) = xJ0 satisfies al xJ(t) + blu(t) = 0 for all t > 0 for
some u(t) with Ju(t)j< 1. -a1 x3(t)

Asue bi .&a"
Assume �0 ; thus we can solve for u(t) =

and substitute this result into equation (1) to obtain the
homogeneous equation

b :y.

b

A point p = (xlO, x20,...,XnO) is in 0 if the solution xh(t)
of the homogeneous equation satisfies

(t<_ k for all t > 0,

* If bl - 0, which occurs frequently, we obtain the condition
that xJ=O all t > 0 which implies

d(a xj)
--- = 0, all t >_ 0.

In this manner we eventually obtain a condition for the control
as a function of the state variable and reach the same con-
clusion about optimum control to the set G.
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here the matrix (pj(t)) is the furdamental solution matrix of
the homogeneous eqUation (h).

Let J(t), t > 0, be the set of points (xiO = 0, x2 0 ,...xno)

such that

,a . .(t) xk -

thus G =/(_ J(t), which is thereby closed, convex and easily

shown to be nonempty.

We conclude that control of one component of the state
vector, is equivalent to control of the state vector to the
closed, convex set GcRn.

Consideration is now given the following problem: construct
u = u(t), with Jul< 1, such that x(t) = (xl(t), x 2 (t),...,xn(t))
moves from x(O) = xo to an intersection with the closed convex
target set G in minimum time T.

For the remaining discussion assume the system 1) is
normal, that is, the vectors b, Ab,...,An-lb are linearly
independent.

If 1) is normal it is easily proved [2] that if u(t) is
an optimal control which steers x(t) from xo to G it is the
only optimum control (in the sense of being equal almost every-
where).

We call u(t) an extremal control if

u(t) = sgn [no e-At b]

and 0oe-At is an interior normal to G at the point x(t), when-
ever the response x(t) is a point of the boundary of G. Here
flo is a row vector of unit length.

It is well known [2] that if %(t) is an extremal control
for the normal system 1) which steers x(t) from xo to G and
G is such that a nonextremal control exists so that each
solution of 1) which intersects G remains thereafter in G,
then ua(t) is the unique optimal control.

This is in effect a necessary and sufficient condition,
because optimal control is necessarily extremal control.
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SYNTHESIS OF TIME OPTIMUM FEEDBACK CONTROL

It is now our purpose to show that knowledge of the
0potimurn control u(t) for various initial states will enable
ore to construct the feedback controller u = u(x(t)). Before
pr-oceeding with this consider the question of existence of
tLsme optimal control.

It has been demonstrated [3] that if there exists even one
allowable control which steers x(t) from x0 to G for the normal
sy-'vtem 1) there will exist an optimum control. Obviously if
thne normal system 1) is stable (for example the roots of
IAA- X 1[= 0 have negative real parts) and G contains the
or-igin, optimal control exists for all initial states. Since
annything which can be done with allowable control can also be
d~one with optimal control, the synthesis procedure to be out-
iLined: will provide the domain of controllability, that is,
thne set of initial states from which the set G can be reached
ussing allowable control.

The necessary and sufficient condition discussed in
section 3 is of interest in synthesizing the optimum feedback
ccx~ntroller. The procedure used is the familiar one of
rmnning backwards in time from points of the boundary of the
taarget G.

Starting at x(O) in boundary of G with the extremal
omntrol u(t) = sgn {oe-Atb], where T1 is normal to a support
p~lane of G at x(O) and directed into G we consider the
corresponding response x(t) as t -> -r, -oo< T < 0. All such
states x(t) which can be reached in the above manner determine
thne domain of controllability. Moreover along such optimal
tr-'aJectories the control u can be specified as u(x), the re-
qmmired feedback control function.

To illustrate this further consider an example:

2 1x2 = -X + U

wLith IuI<[ 1. Suppose it is required that xl(t) go to zero and
remmain so in minimum time. We see easily that G is just the
iLIne segment: Ix2 1 < 1, xl = 0 . For this example joe-Atb =
10l(cos t- sin t )-+ T10

2 (Sin t + cos t) and the points of
inrterest are those on trajectories with x(O) 6G and
uCt) = sgn (noe-Atb)which corresponds to values of t < 0
whrere u(t) changes sign, (ii satisfying the transversality
candition at x(0)). For Ix (0)L < 1, 0o must be zero and the
z!ros of cos t - sin t are at - n •r, n = 1,2,,..... Each of
ttriese values of t gives rize to a mapping of the line segment
G (through the differential equations) onto another line
s8gnient. These line segments are joined by sets of arcs of
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circles which correspond to values of t for which 0oe-Atb
is zero for the sets of 10 allowed at the points of G where
Ix 2 (O) I= 1. All of these point sets when taken with the set
G divide the phase plane into two parts. In one part u(x) = 1
and in the other u(x) = -1 is the optimal feedback control.
This is illustrated in figure 1.

REMARKS

The results presented here, after slight technical
modification [4J, apply equally well to systems described by
recurrence equations (sampled data systems).

393



u=-I '44 i

SWITCHING

rIx e: U U hL2

Figure 1. Switching Boundary for Tiime O9timal Control Examle
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