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Abstract MA( 7 1963

Two results have been established concerning the existence.-K

(of localized electronic states cassociated with a point impurity

-• in a substance having a spherical energy band, E(k) = + • xSo 1

cosk + 2 cos2k, where k = k , with a subsidiary minimum at
2

k = 0. The 1st result is a generalization of Slater and Koster's

result, that in 1 dimension an energy band with a subsidiary mini-

mum has no localized states associated with this minimum if the

impurity potential is of the 8-function type; i.e., it has only

1 matrix element between Wannier functions, a diagonal one refer-

ring to 1 site. We show that this result also holds for a spheri-

cal band in 3 dimensions. Our 2nd result is that, for the Coulomb-

impurity potential screened by the static dielectric constant, and

the above spherical band, there are hydrogen-like localized states

built out of states near the subsidiary minimum, even when all

powers of k in E(k) are taken into account in the equation for the

envelope function. The deviation of the impurity potential from



slow variation causes a long lifetime for decay of the localized

state into conduction states of the same energy. For a typical
~ i -8 i -

shallow impurity state, the lifetime is =10 -- 109 sec.
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Recently the existence of discrete localized electronic states,

arising because of a localized impurity, and coincident in energy with

states in an energy band has been invoked in order to explain a number
1

of observations in semiconductors. These states are of two slightly

different types.

The first type is associated with the valence band systems in silicon

and germanium. Spin-orbit coupling causes a partial breakdown of what

would otherwise be a sixfold degeneracy at k = 0 into two- and four-fold

degeneracies, the fourfold degenerate band having the higher energy.

If the perturbation potential caused by a localized impurity such as a

type III or type V substitutional atom is sufficiently weak (i.e. its

matrix elements are not comparable in size to the spin-orbit splitting

at k = 0), and it varies slowly over distances of unit cell dimensions,

so that effective mass theory holds, one can inagine that the two-fold

and the four-fold degenerate bands separately give rise to hydrogen-like

localized states. In this case a localized state arising from the two-

fold degenerate band will have the same energy as some continuum state

of the four-fold degenerate band.

A second, similar situation arises when one considers the conduction

band of germanium, which has four absolute minima at the ends of the

(1,1,] axes in the Brillouin zone, and a subsidiary minimum at i = 0.

As above, one may suspect that localized states arise composed of Bloch

states with k vectors near the subsidiary minimum, in addition to the

localized states that arise from Bloch states near the absolute minima.

The weak point in such speculations is that the usual effective mass

theory, upon which they are based (a form of perturbation theory) ignores

the existence of possible continuum states degenerate with the localized

"-3-



state that is created. Although a slowly varying potential has very

small matrix elements between states with widely different k values, a

small or vanishing unperturbed energy difference between these states
may cause appreciable mixings of these types of unperturbed stages in any

state describing the perturbed system. As an example of such mixing we may

mention that for a strongly localized impurity potential perturbing a mon-

atomic one-dimensional solid hL-ring an energy band with a subsidiary minimum,

Slater and Koster2 have shown that no completely localized state exists

associated with the subsidiary minimum regardless of the strength of the

localized impurity potential. The purpose of this paper is to show that if

certain restrictions of the effective mass approximation are removed, allow-

ing one to effectively include interactions of all Bloch waves in an

energy band, and if, in addition, the effective potential caused by the

localized impurity is still slowly varying, rigorously localized states

exist associated with a subsidiary minimum of the band. The remainder

of the perturbation potential is estimated to be responsible for a life-

time long compared to a typical lifetime caused by the electron lattice

interaction.

Let us first review some aspects of Slater and Koster's one-dimensional

calculation. They consider an infinite one-dimensional monatomic crystal

which contains a localized impurity. The wave function *(x) for the

perturbed problem is expanded as a linear combination of Wannier func-

tion 0n(x-pa) for the different bands defined by the unperturbed, peri-

odic Hamiltonian. Thus, *(x) = E U (P)0(x - pa) where p is an integer,
p.,n n n

n is the band index, and a is the lattice spacing. The sum over p extends

from -w to +-H. The simple case is treated in which the bands are

decoupled, i.e. the impurity potential energy has no interband matrix
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element between Wannier functions, and further, for any one band only

one matrix element of the perturbation is non-zero: f0 (x-pa) V(x)o(x-pa) =

Vo qop. We consider a simple energy band having a subsidiary minimum

in E(k) defined by the rnupert---xcd problem:. The equations defining the

amplitudes U(p) for the unperturbed problem are taken to be

(1)

where LC = fO(x)Ho(x)O(x-1a)dx. Only enough terms E have been kept

so that the subsidiary minimum can occur in E(k). The solutions of

this problen are

and E- cei; h (2)

If > 0 and 4 C2 < - 6I, E(k) exhibits a subsidiary minimum as shown

in Figure 1.

The perturbed problem has solutions that are either symmetric, U(p)=U(-p)

or antisymmetric U(p)=-U(-p), in p and because of the simple nature of the

impurity energy V it only affects the symmetric solutions. The equationsPq

for the perturbed problem are the same as for the unperturbed problem except

for p = 0, + 1. By making use of the remaining unperturbed equations

and the boundary condition that the wave function U(p) must not become

indefinitely large as p gets large we find that we may write

U(p) = Ae"•p + B cos(kp-a) for p > 0, when we are in the energy range A

in Fig. 1, in which localized states associated with the subsidiary minimum
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would be expected to occur. Here k = k and iY = k, are given)for E

fixed, by the two solution for k of the dispersion relation , u3q (2). The

coefficients A and B are now determined by the homogeneous equations

'JUCo).-8 J)- o j(.,(3

where in these equations (-p)ircans U(p) for p > 0 evaluated formally

for negative values of p. The existence of a localized solution reqiures

B = 0, and it is easy to show that no such solutions exist in the energy

range A.

Let us now consider a three-dimensional problem analogous to

Slater and Koster's one-dimensional model. We consider an infinite

three-dimensional crystal with one substitutional localized impurity.

We assume that there is an energy band of the pure infinite crystal which

is far from other bands and has a subsidiary minimum, and that there are

no matrix elements of the impurity potential energy between states from

different bands. The Schrodinger equation in the Wannier representation

cannot be solved exactly in this case and it is more convenient to work

with the 'ummation equation" form of the difference eqntions for the

Wannier function amplitudes as derived by Slater and KosteroThe summation

equation is

Here, U. (= U(R)) is the amplitude of the Wannier function centered at

lattice point i" Vi, fO*(r-R) V(r)o(r-_)d 3r is the matrix element

of the impurity potential energy between Wannier functions on sites 1j

andl, and Gij is the Green's function defined by the unperturbed
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periodic potential problem:

"IT EV E -Te) W YJ (5)

where E(4') w -Am eL ,illl now stuly a model which approximates

our problem but for which anae stic answers can be obtained. We consider

a spherical band (E(k) only where k =k ) and also consider the Brillouin

zone to be spherical. A typical form for E might be E(k) = •lcosk +

E cos2k and kmax = A would be the radius of the zone. We keep two

terms in E(k) in order ttat there be a subsidiary minimum, and will

evaluate the Green's function for L.n energy below the subsidiary mini-

mum, but above the bottom of the bani. Because we are only interested

in a qualitative question, namely the admixture of continuum and bound

components of states lying within an unperturbed energy band but below

a subsidiary minimum, we may further approximate E(k) by E(k) = k2- Ok4

where both a and ý are greater than zero, thus ensuring the existence

of a subsidiary minimum. We are particularly interested here in the

case of the very localized impurity potential

bK~~(& ) £~0) (6)

In order to study this case we must have a finite value for G 0. In

the case that no subsidiary minimum exists and E(k) may be satisfactorily

approximated by E(k) = aY k2 it is necessary to treat seriously the

existence of a high wave number cutoff (the Brillouin zone boundary)

in the integral for G 0. Failure to do so leads to an infinite value

for G o. However, in the case we are treating such a cutoff is not
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necessary to avoid a divergence of Go o and for mathematical simplicity,

we extend the range of the integration in k space to include all of ,k

space. In- this i.ray we find

(7)

- .J.gz,• .1

2 2 2 k4
where b and -c are solutions of E - 2k + k= 0. We may of course

add to this result any solution of the homogeneous equation, i.e. the

Schrodinger equation in the Wannier function representation for the peri-

odic potential problem with enerzy E. We nay usefully consider such solu-ik.( (-n ,)
tions to be e - where E(k) = E. We thus consider Green's func-

tions of the form

G i W() -5

which give rise to solutions of a perturbed problem resembling as closely

as possible unperturbed Bloch states. If the impurity potential is of

the form (6) then the equation (5) gives rise to the eigenvalue condition

or (9) C

We see that for any energy that would give rise to a discrete level

associated with the subsidiary minimum we may choose K(1) to satisfy

equation (9). Thus we see that no completely bound state can exist for
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a very localized potential. Even if equation (9) could be solved with

K( k) = 0, the resultant solution (for a single energy) would contain

almost equal portions of localized and continuum parts. We have thus

extended Sloter and Koster's result for the absence of localized levels

associated with a subsidiary minimum of an energy band and a strongly

localized impurity potential to a three dimensional case.

Let us now for comparison examine the case of a Coulomb impurity

potential screened by the static dielectric constant. The main point

of our work is to show that this potential gives rise )for a spherical

band )rigorously. in the limit that the potential is slowly varying, and

approximately in other cases, to bound states which are coincident in

energy with continuum states of the perturbed problem. For this purpose

it is convenient to write the Schrodinger equation in the Bloch

representation:

k,3
VW A,4(10)

Ik 
2

Here U(r) = e2 / r ( E is the slatic dielectric constant) and

H0 = • 2 /2• VC() where V(r) is the periodic potential. U(r) is,

of course, an approximate impurity potential energy which has been Justi-

fied for semiconductors by many workers using recent many-body theory. 3

'4
Following Kohn we now write these equations in a form which separates

the isolated band (subscript O) under discussion from all other bands
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+ • ' l'',•JL& o 2

where A nk) is the amplitude of the Bloch function with wave vector k

in band n. Here we have used the fact that

The matrix elements of the perturbation are given by

t,••l l,','J= Z C"

where X is a reciprocal lattice vector and C is the vth coef-

ficient in the fourier expansion of the product of the periodic parts
of' the Bloch functions 0nk(r) and *nfk,(t) In particular C°

In patclrCnk; n'k n'

The Coulomb potential is slowly varying except in the cell containing

the impurity atom. In the familiar situation of a band with no subsidi-

ary minimum it is assumed that only Bloch functions with wave vectors

near the minimum will contribute appreciably to any bound impurity state

wave functions. Thus all terms in Eq. (12) wither = 0 are neglected,

and all interband terms are at first neglected because the impurity poten-

tial matrix elements are much smaller than typical interband energies. Further-

more 3(k) is approximated by E + 2 (Q - ko)2, an expression valid near
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C

the band minimumAoThe restriction that k lie within the Brillouin zone

is then lifted and the usual slowly varying hydrogen atom type envelope

functions result) together with a hydrogen atom energy spectrum, for the

bound levels. Finally one can check that the envelope functions only

involve small k values, thus establishing the consistency of the solution.

When a subsidiary minimum exists it is not clear that all K • 0
.. V

can be neglected. Let us nevertheless make the same assumptions for the

subsidiary minimum problem as were made in the case in which there is

only an absolute minimum and examine the Justification later. We neglect

all K X 0, and interband effects, and we extend the range of k out of_V

the Brillouin zone into all reciprocal space. However we now use an

E(J) that allows a subsidiary minitu2:. In addition we assume a spheri-

cal band in order that we can solve the equations for the envelope f'unc-

tion. The impurity equation in RI s-ace then becomes

-E~) A0(j 20 (13)d

where the sum over k' in (11) has been changed to an integral.

We take E(k) + E cosk + 2e cos2k where the conditions

C1 + 4 2 < 0 and El > 0 establish a subsidiary minimum at k = 0 and

an absolute minimum at k = n. Here k is the magnitude of k.

If we now return the problem to "real" space by multiplying by

eik'r and integrating over reciprocal space, we find the following

equation for the envelope function x(r)

-114)
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where S = &2  , r• = e2/a, and • = (E-€o)/6 l" Here e undersn

the cos terms to mean their power series. Because the Hamiltonian is

spherically symmetric we can write

We then find that

where

Similarly,

Let us first treat the case 1 - 0. We let R(r) = F(r)/r and find that

the equation for F becomes

F FF2 F-=-Et- (15)

where F a d2n

This equation is a generalization of the confluent hypergeometric

equation5, and it is thus not surprising that when we try a solution of

the form R(r) = e r the resulting equations for a,

(b)-
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have a solution with a real. These equations arise when the coefficients

of the different powers of r are set equal to zero. Eq. 16 (a) gives

the energy when aX is known and Eq. 16 (b) gives ag in terms of the para-

meters of the problem, including the strength of the impurity potential.

Equation 16 (b) has two solutions for a, one real and positive, and the

other of the form a• in + y, where y is positive. These solutions cor-

respond to bound states splitting off from the band at k = 0 and k =

respectively.

For a or T small the equations may be solved approximately yielding

the usual effective mass results:

o- 2 (- -/ +±l4

7( +

It can be seen that for the form of E(k) that v2 used a> y no matter

what the values of 9 and b but that equality of these quantities is

approached when 8 becomes large. Bound states of higher energy for

Z = 0 can undoubtedly be constructed. For I joit is not possible to

solve the differential equation exactly. However, for large r all con-

tributions from A(2+l)/r2 in Equation 14 are negligible so that the
-a•r

asymptotic solution e , where a has a positive real part is again

possible,

Our result shows that, to the extent that the potential energy in

the equation for the envelope function can be assumed to be Coulomb-like,

bound impurity states of the effective mass type may be associated with a

subsidiary minimum in a spherical band. In contrast with the case of
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the very localized impurity, it is not true that all states with energies

in the unperturbed band region contain admixtures of continuum states.

It is reasonable to expect that this result does not depend critically

on the use of a spherical band but we have not studied this point in

detail.

Of great interest is the possible effect of a deviation of the poten-

tial that should be inserted in the envelope equation from the Coulomb

form. In this connection we remember that there are two effects to con-

sider: the neglect of IV r 0 and the extension of the Brillouin zone

to all of k space. These effects are indeed connected. Consider first

the effect of the extension of the band to all reciprocal space on the

term 1/] _- k12 . If the band were not extended we would be omitting

high k - V, thus putting a bottom on the potential well. This should

not matter as lopg as no bound states lie near the bottom of the well.

Now consider the term proportional to 1/1k - YI- X V2. The coefficient

of this term, C V. k;ox! is not likely to be greater than unity but can

be counted on to be of order unity until v gets large, in which case no

large contributions are expected anyway. We will neglect the k and k'

dependences of C k' and set this coefficient equal to unity. We are

thus led to terms in the potential energy of the form

-1-3
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If we extend the boundary of the Brillouin zone to infinity this term

gives ~ . ~L(

Including both r X and -X( ,we get a contribution to the potential of the

form

V A;

(19)

Terms such as Eq. (19) are s2ealler then the 1/r we have been using.

If the zone is not extended to infinity, the integrals become very hard

to do, and it is questionable whether the approximations of the problem

warrant such a calculation. This discussion shows that it is not easy

to find the proper potential to use in the envelope function equation

when the real potential (for low lying states) in the Schrodinger equa-

tion is the Coulomb potential. However, it is also indicated that the

Coulomb potential is surely of the right order of magnitude and it is

a bit surprising that bound states coincident in energy with continuum

states exist for this potential. Perhaps there is a mathematical con-

nection with the fact that the Klein-Gordon equation, in which the

kinetic energy can also be thought of as a series in powers of the

Laplacian operator, has bound solutions for the hydrogen atom.

A change in the potential from the Coulomb form will probably change

the wave functions enough to cause bound states coincident in energy with
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continuum states to no longer be eigenstates of the impurity problem,

bL.) .if so `the lifttAiimes of' these slAtes will probably be long* An

estimate was made of the lifetime of a bound state of the form u (f)el-ar
O0-

with respect to decay into cor:tinu'i.n states of tne same energy, using

a potential of the form (19) summed over the smallest reciprocal lattice

vectors and a spherical band of the form used above. The result for

the width aE of the bound state is

A £~ 3'~)L~E1(2)(0

where B and ( arise from expansions of products of the periodic parts

of two Bloch functions from the same band. in terms of a Fourier series

6
in reciprocal lattice vectors, and are of order of unity; a is the

Bohr radius, and all other symbols have been defined earlier. Here

e 2 /2E is the energy of a shallow impurity and we see that LE is

smaller than this by two factors, the first being the ratio of the

impurity energy to an energy of the order of a band width, and the

second the ratio of the Bohr irdius to the impurity orbit radius.

Eq. (20) gives a lifetime for a typical shallow impurity of 108_--10"9

sec.

In summary, we may say that impurity levels with very long

lifetimes are associated with subsidiary minima for a Coulomb impurity

potential, although no such levels exist for a very localized impurity

potential. It would be interesting to know how slowly the impurity

potential must vary in order that localized impurity levels be associated

with subsidiary minima.
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Figure Captions.

Figure 1. E(k) for an energy band having a subsidiary minimum

at k= 0.
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