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Abstract

Two results have been estzblishad concerning the existengel,:‘.
of localized electronic states cssociated with a point impurity

in a substance having & spherical energy band, E(k) ==C; + dfl x
¥ , with a subsidiary minimum at

cosk + 62 cos2k, where k =
The lst result is a generalization of Slater and Koster's

k=0.
result, that in 1 dimension an energy band with a subsidiary mini-

mum has no localized states &ssociated with this minimum if the

impurity potential is of the §-function type; i.e., it has only

1 matrix element between Wannier functions, a diagonal one refer-
We show that this result also holds for a spheri-

ring to 1 site.
Our 2nd result is that, for the Coulomb-

cal band in 3 dimensions.
impurity potentiel screened by the static dielectric constant, and

the above spherical band, there are hydrogen-like localized states
built out of states near the subsidiary minimum, even when all

powers of k in E(k) are taken into account in the equetion for the
The deviation of the impurity potential from

envelope function.



slow variation causes & long lifetime for decay of the localized

state into conduction states of the same energy. For a typical

shallow impurity state, the lifetime is = lO-8 -- lO.9 sec.



Recently the existence of discrete localized electronic states,
arising because of a localized impurity, and coincident in energy with
states in an energy band has been invoked in order to explain a number
of observations in semiconductors.l These states are of two slightly
different types.

The first type is associgted with the velence band systems in silicon
and germanium. Spin-orbit coupling causes a partial breakdown of what
would otherwise be a sixfold degeneracy at_gv= O into two- and four-fold
degeneracies, the fourfold degenerate band having the higher energy.

If the perturbation potential caused by a localized impurity such as a
type III or type V substitutional etom is sufficiently weak (i.e. its
matrix elements are not comparable in size to the spin-orbit splitting
ath§'= 0), and it varies slowly over distances of unit cell dimensions,
so thet effective mass theory holds, one can imagine that the two-fold
and the four-fold degenerate bands separately give rise to hydrogen-like
localized states. In this case a localized state arising from the two-
fold degenerate band will have the same energy as some continuum state
of the four-fold degenerate band.

A second, similar situation arises when one considers the conduction
band of zermenium, which has four zbsolute minima at the ends of the
(1,1,1,] axes in the Brillouin zone, and a subsidiary minimum atJé = 0.
As above, one may suspect that localized states arise composed of Bloch
states with‘g_vectors near the subsidiary minimum, in addition to the
localized states that arise from Bloch states near the absolute minima.
The weak point in such speculations is that the usual effective mass
theory, upon which they are based (a form of perturbation theory) ignores

the existence of possible continuum states degenerate with the localized



state thet is created. Although a slowly varying potential has very

small matrix elements between states with widely different k values, a

small or vanishing unperturbed energy difference between these states

may ceuse appreciable mixings of these types of unperturbed stages in any
state describing the perturbed system. As an example of such mixing we may
mention that for a strongly localized impurity potential perturbing a mon-
atomic one-dimensional solid heving an energy band with a subsidiary minimum,
Sleter and Koster2 have shown that no completely localized state exists
associated with the subsidiary minimum regardless of the strength of the
localized impurity potentiel. The purpose of this paper is to show that if
certain restrictions of the effective mess espproximetion are removed, sllow-
ing one to effectively include intercctions of 211 Bloch waves in an

energy bend, and if, in addition, the effective potentiel caused by the
localized impurity is still slowly verying, rigorously localized states
exist associated with a subsidiary minimum of the band. The remainder

of the perturbation potentiael is estimated to be responsible for a life-~
time long compared to a typicael lifetime caused by the electron lattice
interaction.

Let us first review some aspects of Slater and Koster's one-dimensional
celculetion. They consider en infinite one-dimensional monetomic crystal
which contains a localized impurity. The wave function y(x) for the
perturbed problem is expanded as a linear combination of Wannier func-
tion ¢n(x-pa) for the different bands defined by the unperturbed, peri-
odic Hemiltonian. Thus, y(x) =p§npn(p)¢n(x - pa) where p is &n integer,

n is the band index, and & is the lattice spacing. The sum over p extends
from -» to +w. The simple case is treated in which the bands are

decoupled, i.e. the impurity potentiesl energy has no interband matrix
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element between Wannier functions, and further, for any one band only
one matrix element of the perturbetion is non-zero: [@ (x-pa) V(x)@(x-pa) =
Voaqospo' We consider a simple energy band heving e subsidiary minimum

in E(k) defined by the 'mperti.».d problem. The equations defining the

amplitudes U(p) for the unperturbed problem cre taken to be

O =(-E +&,)Up) tE [Hptlp-1)f

(1)
* &L Ulpra) +U(p-2)] £="519

by
where EZ = f¢(x)H.O(x)¢(x-za)dx. Only enough terms Qz have been kept

so that the subsidiary rinimum cen occur in E(k). The solutions of

this problen are

U/f’)zc"%/%

L) =¢ +28 con b +2£‘zcw?é, (2)

(4 i

If El > 0 and 4 52 < - El’ E(k) exhibits a subsidiary minimum as shown

in Figure 1.

The perturbed problem has solutions that are either symmetric, U(p)=U(-p)
or sntisymmetric U(p)=-U(~p), in p and because of the simple nature of the
impurity energy qu it only affects the symmetric solutions. The equations
for the perturbed problem are the same as for the unperturbed problem except
for p = 0, + 1. By making use of the remaining unperturbed equations
and the boundary condition that the wave function U(p) must not become
indefinitely large as p gets large we find that we may write

TP

U(p) = Ae '* + B cos(kp-t) for p > O, when we are in the energy range &

in Fig. 1, in which localized states associated with the subsidiary minimum
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would be expected to occur. Here k = kl and iY = %1 are given)for E
fixed, by the two solution for k of the dispersion relation , BQe (2). The

coefficients A and B are now determined by the homogeneous equations

L/(') - {-/('(} 0

d o

Velte, (Ve - uen] =0, O

where in these equations U(-p)recans U(p) for p > O evaluasted formelly
for negative values of p. The existence of a localized sclution regiures
B = 0, and it is easy to show that no such solutions exist in the energy
range A.
Let us now consider a three-dimensional problem analogous to

Slater and Koster's one-dirensional model. We consider an infinite
three-dimensional crystal with one substitutional localized impurity.
We assume that there is an energy band of the pure infinite crystal which
is far from other bands and hes a subsidiery minimum, and that there are
no matrix elements of the impurity potential energy between states from
different bands. The Schrodinger equation in the Wannier representation
cannot be solved exactly in this casz and it is more convenient to work
with the '‘summation equation" form of the difference egmtions for the
Wennier function amplitudes as derived by Slater and Koster,The summation
equation is
.= G.. .
Y= 2 Ty Vi Ue

J

Here, U, (= U(R)) is the amplitude of the Wennier function centered at

()

* VA fem Va3
lettice point 31' Vig = fg (5-5‘1) V(r)¢(£-§k)d r is the mstrix element

J

of the impurity potentisl enerzy between Wannier functions on aitesig

anddgk, and G1 is the Green's function defined by the unperturbed

J
-6-



periodic potential problem:

§ AR -2 ) . _
o=ty s LGB (plik G4,
iV b E - EL) @Tm)y’ E -E) (5)

B.Z. Bz

where E(gj = % Enﬁ'igfﬁm. ¥y wiil now stuly a model which approximetes
our problem but for whiech ensl;tic answers can be cobtained. We consider

a spherical band (E(k) only where k = L&é) end also consider the Brillouin
zone to be spherical. A typical form for E might be E(k) = EiCOSk +
£2c052k and kmax = it would be the radius of the zone. We keep two
terms in E(k) in order thet there be & subsidiary minimum, &and will
evaluate the Green's function for «n enerzy below the subsidiery mini-
mum, but ebove the bottom of the benl. Becouse we are only interested
in a qualitetive question, nemely the admixture of continuum and bound
components of states lying within en unperturbed energy band but below

& subsidiery minimum, we may further approximate E(k) by E(k) = axka- Bku
where both a and £ are greater than zero, thus ensuring the existence

of a subsidiary minimum. We are perticularly interested here in the

case of the very locelized impurity pétential

N A C/ ‘
B -o) (R'o).
ng' v, S(R;,2) 2 (&, (6)
In order to study this case we must have a finite value for Goo' In
the cese that no subsidiery minimum exists and E(k) mey be satisfactorily
approximated by E(k) = a:xk2 it is necessary to treat seriously the
existence of a hizh wave number cutoff (the Brillouin zone boundsry)

in the intezral for Goo' Feilure to do so leads to an infinite velue

for GOO' However, in the case we are treating such a cutoff is not

~T=



necessary to avoid a divergencc of Goo’ end for mathematical simplicity,
we extend the renge of the integration in k space to include all of k,
space, Ir this wvay we find

e [ el Gos)]

N

‘J %
' ol E - 2d»€‘+/3ﬁ

(1

a1 cen 44//? /* [ -2 /- C/ o K /]
= [smp(e? - i H(
[Wﬂ'wﬂ{ /ﬁ“ﬁw 1

. L
where b2 and -ca are solutions of E - 20k~ + Bk4 = Q. We ey of course

add to this result any solution of the homogeneous equation, i.e. the

Schrodinger eguation in the Wannier function representation for the peri-

odic potential problem with enerzy E. We may usefully consider such solu-
1k- (8, -R. Y

tions to be e “3" yhere F(k) = E. We thus consider Green's func-

tions of the form

o, o
G = 6+ K@) tp[ Bk,

which give rise to soluticns of a perturbed problem resembling as closely
as possible unperturbed Bloch states. If the impurity potential is of

the form (6) then the equation (5) gives rise to the eigenvalue condition

‘/0 6':00

or } C (9)
v = + K&,
Vo ‘I~7I',9(g,‘z+ca) e
We see that for any energy that would give rise to a discrete level

agsociated with the nubsidiary minimum we may choose K(ﬁ) to satisfy

equation (9). Thus we see that no completely bound state can exist for
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a very localized potential. Even if equation (9) could be solved with
K(k) = O, the resultant solution (for a single energy) would contain
almost equal portions of localized and continuum parts. We Lave thus
extended Sloter and Koster's result for the absence of localized levels
associated with a subsidiary minimum of an energy bend and a strongly
localized impurity potentiasl to a three dimensional case.

Let us now for comparison examine the case of a Coulomb impurity
potential screened by the static dielectric constant. The main point

of our work is to show that this potential gives rise for a sphericel

)
band)rigorously_ in the limit that the potential is slowly varying, and
approximately in other ceses, to bound states which are coincident in

energy with continuun states of the nerturbed problem. For this purpose

it is convenient to write the Schrodinger eguation in the Bloch

representation:
! 3,0 -
3 (nalHOl A R AREAR).
) 10

£

Here U(r) = e2/6»r ( € is the slatic dielectric constant) and

H = @52/2"9 ok V() where V(r) is the periodic potential. U(r) is,
of course, an approximate impurity potential energy which has been Justi-
fied for semiconductors by many workers using recent many-body theory.3

Following Kohnu we now write these equations in a form which separates

the isolated band (subscript O) under discussion from ell other bands’



[ER)-E) A(R) + = (o £|ufok) A ()

R

+ 2 /0& (U] %)/4 <~w
-'n';b/) \ A
4; ') (11)

E)-E)AR)+ 2, (r&U]0 )AL

. ' =0 M,
+ ;*O(Q&Wmé)/im{é) O, M #0,
where A (k) is tne emplitude of the Bloch function with wave vector k

in band n. Here we have used the fact that

(b Kk )= ELEDS . G 4

The matrix elements of the perturbetion are given by

bt 4 : e‘( \
(m'élulm,{?):zcmk,,”’é‘éz . ! .2,)
M PO ‘(”6’,,,‘)*” -é‘ / (12)
where KV is a reciprocal lettice vector and CvﬂEinﬂK' is the vth coef-

ficient in the fourier expansion of the product of the periodic parts
of the Bloch functions wn&(s) and Wﬁ'&:(i)' In particular C° sic;n ' =5

The Coulomb potential is slowly varying except in the cell containing
the impurity atom. In the femiliar situation of a band with no subsidi-

.

ery minimum it is assumed that only Bloch functions with wave vectors
near the minimum will contribute appreciably to any bound impurity stete
wave functions. Thus &ll terms in Eq. (12) withjsv = 0 are neglected,
end all interband terms are at first neglected because the impurity poten-
tial matrix elements are much smaller than typical interband energies. Further-

‘

more E(K) is epproximated by E + % (¥ - 20)2, an expression valid near

-10-



the band minimum&,,The restriction that kX lie within the Brillouin zone
is then lifted end the usuel slowly varying hylrogen atom type envelope
functions result )together with & hydrogen atom energy spectrum, for the
bound levels., Finaliy one can check that the envelope functions only
involve small \.lf values, thus establishing the conéistency of the “solution.
When a subsidiary minimum exists it is not e¢lear that all 3‘(\/ #£0
cen be neglected. Let us nevertheless make the same assumptions for the
subsidiary minimum problem as were made in the case in which there is
only an absolute minimum and examine the justificetion later. We neglect
all l{v # 0, and interbend effects, and we extend the range of k out of
the Brillouin zone into all reciprocal spacc. However we now use an
E(k) that sllows a subsidiary minizuz., In addition we assune a spheri-
cal band in order that we can solve the equations for the envelope func-

tion. The impurity equation in X space then becomes

) OQ AWEAL
Ew)-€) A(8) ’-‘%ﬁk%’{ r ARE=O, o

where the sum over k' in (11) has been changed to en integral.
We take E(k) = £+ El cosk + Eacoszk where the conditions
fl + b €2 < 0 and £l > 0 establish a subsiaiary minimum at k¥ = 0 end
an gbsolute minimum at li = . Here k is the magnitude of 5

If we now return the problem to '"real" space by multiplying by
315'31 and integrating over reciprocal space, we find the following

equation for the envelope function x(r)

7/

[Ct?‘l([‘ V&]I'} +$ aov(a([ Vf’ﬁ)“ W/w]R’(.'E)Z _{X@m)

-11-



vhere S = 52/21, = ee/(gl, end € = (E- 50)/5 )+ Here we understand
the cos terms to mean their power series. Because the Hamiltonian is

spherically symmetric we can write
Xiz) = R Y, (69,
We then find that |
VX =[0,R-4GIR] T &7,
vhere _ | 61
O/z, B ?Zﬁ(/fﬁ)'

(K = (6 - ) RO e

Let us first treat the case £ = O. We let R(r) = F(r)/r and find that

the equation for F becomes

o5 2 N '
;:-620‘ + 7o RF - :ZL,f:' =-f F
mé @)’ d 4\{0 Rn)! v > 9
vhere an = —ngg— .

This equation is a generalization of the confluent hypergeometric
equations, and it is thus not surprising that vhen we try a solution of

the form R(r) = e T the resulting equations for a,

col & +Scoddad +E =0,
— ik & =25 ash Rt =71 =0,

(16)
(v)
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have a solution with & real. These equations arise when tﬁe coefficients
of the different powers of r are set equal to zero. Eq. 16 (a) gives
the energy when @ is known and Eq. 16 (b) gives a in terms of the para-
meters of the problem, including the strength of the impurity potential.
Equation 16 (b) hes two solutions for a, one real and positive, and the
other of the form & - in + y, vwhere y is positive. These solutions cor-
respond to bound states splitting off from the band atA§‘= 0 andA5‘= n
respectively.

For & or v small the equations may be solved approximately yielding

the usual effective mass results:

Q
X = - /. ) é; = —'S“ / -+-:E?Li17;'z~ )
|+%$ 4 Li+4o
2 (17)
Y = -1 , €. - G4+ A
-1+4$ Y 21+49

It can be seen that for the form of E(k) that we used a > y no matter
what the values of n and & but that equality of these quantities is
approached when 8 becomes large. Bound states of higher energy for
£ = O can undoubtedly be constructed. For g #0it is not possible to
solve the differentiel equation exactly. However, for large r all con-
tributions from ,c(z+l)/r2 in Equation 1L are negligible so that the
asymptotic solution e41r, vhere a has a positive reasl part is agsain
possible,

Qur result shows that, to the extent that the potential energy in
the equation for the envelope function can be assumed to be Coulomb-like,
bound impurity states of the effective mass type may be associated with a

subsidisry minimum in e sphericezl bend. In contrast with the case of

-13-



the very localized impurity, it is not true that all states with energies
in the unperturbed band region contein admixtures of continuum stetes.

It is reasonable to expect that this result does not depend critically
on the use of a spherical band but we have not studied this point in
detail.

Of great interest is the possible effect of a deviation of the poten-
tial that should be inserted in the envelope equation from the Couiomb
form. In this connection we remember that therc ere two effects to con-
sider: the neglect ofzxv # U and the extension of the Brillouin zone
to all of_g’space. These effects are indeed connected. Consider first
the effect of the extension of the band to all reciprocal space on the
tern l/LE - 342. If the bend were not extended we would be omitting
high~5 -33', thus putting a bottom on the potential well., This should
not matter os lonz as no bound states lie near the bottom of the well.

. 2 . s
Now consider the term nroportional to l/lk - kf- Kv, « The coefficient

v

of this term, C dg;o

1> 1is not likely to be greater than unity but can
be counted on to be of order unity until y gets large, in which case no
large contributions are expected anyway. We will neglect the‘E_andji’

dependences of )¢

ok ok? and set this coefficient cqual to unity. We are
v..’«,

thus led to terms in the potential cnergy of the form

VJ” él4£f9/-l (:jé‘ﬂﬁé:)'/zigl

. (18)
B2 |-

-1l



If we extend the boundery of the Brillouin zone to infinity this term
gives (:K JJL . "ﬂ/—K) ] -
AMy d L MJ‘/ ’jL ’ j
o M A (Hplllt 5l (A-4-5)
)
ST E-2 R ~
LI, n

A

(
o\

S

Including bothﬂgv and :gv’ we get a contributioh to the potentiel of the
form
Vo tev K, lv
N ’
/e (19)

Terns such as Eq. (1G) are sualler thon the 1/r we have been using.
If the zone 1s not extended to infinity, the integrals become very hard
to do, and it is questioneble whether the approximations of the problem
warrant such a calculation. This discussion shows thet it is not easy
to find the proper potential to use in the envelope function equation
when the real potential {for low lying states) in the Schrodinger equa-
tion is the Coulomb potentisl. However, it is also indicated that the
Coulomb potential is surely of the right order of magnitude and it is
a bit surprising that bound states coincident in enérgx with continuun
states exist for this potential. DPerhaps there is a m;thematical con-
nection with the fact that the Klein-Gordon equation, in which the
kinetic cnergy can also be thought of as a series in powers of the
Laplacian operator, hes bound solutions for the hydrogen atom.

A change in the potentiel from the Coulowb form will probably change

the wave functions enough to cause bound states coincident in energy with



continuum states to no longer be eigenstates of the impurity problem,
bul if so the lifovimes of these sletes will probadbly be longe An
estimate was made.of the lifetime of a bound state of the f‘ormuo(«z.':)e-ar
with respect to decay into continuum states of thne same energy, using
a potentisl of the form (13) summed over the smellest reciprocel lattice

vectors and a spherical band of the form used ebove. The result for

the width AE of the bound state is

1(20)

) . 2 2
AE & 05 Be)ER Jna)f X
34 ¢ )26/( )Li‘g‘

| [2E,F,

where B and 63 arise from expansions of producis of tha periodic perts
of two Bloch functions from the same band in terms of a Fourier series
in reciprocal lattice vectors? and are of order of unity; a is the
Bohr radius, and all othcr symbols hove been defined ecrlier. Here
e%J/EE' is the energy of a shallow impurity end we see that AE is
smaller than this by two factors, the first being the ratio of the
impurity energy to an energy of the order of a band width, and the
second the ratio of the Bohr 1cdius to the impurity orbit radius.

Eq. (20) gives a lifetime for a typical shallow impurity of 10-8--10-9
sec.

In summary, we may say that impurity levels with very long
lifetimes are associated with subsidiery minima for a Coulomd impurity
potential, although no such levels exist for a very localized impurity
potential. It would be interesting to know how slowly the impurity

potential must vary in order that localized impurity levels be associated

with subsidiory minime.
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Figure Captions.
Figure 1. E(k) for an energy band having a subsidiary minimum

at k = 0.
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