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ABSTRACT

Given N regions with their associated conditional detection probabilities
JURERI N let player A choose one region to hide in, and let player B look

in one region at a time until he finds A. The payoff, to player A, is the ex-
pected number of looks required of B to find A. The form of the optimal pure
strategies for B is described, and the mixed extension of this game is shown to
have a solution. Player B has a good strategy that is a mixture of at most N
pure strategies. A numerical procedure for calculating the solution is given.

a
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A 2-PLAYER N-REGION SEARCH GAME

Suppose that player A can hide in any one of N regions, and that player B
searches until he finds A. The probability that B can detect A in region i,

given that A is there, is a and0<ci<l, i=1, ..., N. The ay are known

to both A and B. Player A chooses a region to hide in and stays there. Player
B then looks in one region at a time until he finds.A, The payoff is to player A;
it is the expected number of looks that B must make until he finds A.

The class of pure strategies for B is the collection of all sequences
y= {yl, Ypr coer ¥y ...}mwhich each yvis either 1, or 2, or ..., or N.
Given such a sequence, B looks first in the region indicated by ¥y then in the
region indicated by ¥y etc., until he finds A.r

The set of A's pure strategies is the set Jll, 2, ..., N } ; he chooses an
integer i and hides in region i until he is found by B.

For each i and each y, let M(i, y) denote the payoff to A. This is the
expected number of looks required of Bto find A, Ify = { Yy Ygr oo } » We
shall call the first k elements, Ve oo Vg of y a segment of y, k arbitrary.
Its length is k. We define, for each y, and for eachi, j, 1<i<N, 1sj<o,

< j(y) = the length of the smallest segment of y containing j i's,
if there is such a segment, and
c(y) = +=

if no segment contains j i's .
For example, suppose N = 4, and

y={2,1,3,242433 4121432 e}
Then, for j=1, 2, 3, ..., we have

clj=2p ll’ 13, ee e 9
=1, 4, 6, 12, 16, ...,
C3j=3’ 8' 9’ 15’ o ey

=5, 7,10, 14, ... .
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We have, evidently, for each i and each Y,

@®
M@y = Z o (e a-aplt, (m
=1
(The sum of the series may be + = ,)
If, in the long run, player A hides in region i with probability 3 ¢

?_: Ei =1, we denote the expected value of M (i, y), for fixed y, by M(§, y).

1

We have

N
M, y)= Zi EiM(i, y).
i=

(Of course, 0 - » jsdefined by 0: »=0,)
We shall begin by showing that for each probability vector (§ TURERY

a mixed strategy for A, there is at least one optimal y ), i.e., a pure
strategy for B such that

M, w€))s M(E, y

§9

for all y. Let us first observe that for each y, the set of finite values of
cij(y) fori=1, ..., N, j=1, 2, ... is the set of all positive integers, no

two finite c, j(y) are the same, and c,, < ¢, < ... . Conversely, if
{ \A j } is a set of positive integers having the previous three properties, then
there is a y such that

UTRRTR L

i=1, ..., NyJ=1, 2, ... . Inour example above, the knowledge of all the
Cij enables us to reconstruct the strategy y; from ¢y j we see that we must

look in region 1 on the 234, 112'-, 13E-h—, ... looks, in region 2 on the lﬂ, 4g

GE, ..., looks, etc. This remark will be useful later.
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For each y, we now have

N - j-1

M = & I §o-api™. (2)
=1 =1

Since the c, j 's run through all the positive integers, we can write

M(E,p)= Z v g+ L =-£,0) (3)

v=] i,]

in which the w, are weights from the set of all numbers eiai(l - ai)j'l ’
for which c,, is finite, 1=1, ..., N;j=1,2, ..., and Cn runs through

the fi 01(1 - Gi) )1 for which €5 =o, (Infact, if v= cij (y), then

Yy ¥) = 61 ai(l - ai)j'l.) We have L “’v(y) +}3§ij =1, Furthermore,
if y' is another strategy, then w_(y') and § i (y') are obtained simply by

rearranging the weights { fi a, (1-0 )j'l} . The optimal y( € ) can now be
described very easily. We need only recall that if {Fy (v) } is a collection
of (cumulative) distribution funcgjons on the positive v- axis, with Fy(O) =0,

Fy(°)=l, and if for some vy, i vd Fy(v) < o then

E(v)= j VAF (V)
0

-J(; vd[l-—Fy(v)]

i[l-?y(v)]dv
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(since v[l -Fy'(v‘)-} < -j vd (1 -Fy(v))—— 0 as v— =),
v

Therefore, if for some Yo We have

Fy (v) 2 Fy(V)

0

for all v and for all y, then f vd Fy (v) is the minimum with respect
0 0 o
to y. In our situation, we take, for each y, Fy( vo) =)y wv(y) for each Vo -
v=1
(Note: There is a y for whichE(v) <=, e.g., y=(1, 2, ..., N, 1, 2, ...
N, ..., 1,2, ... N, ...).) Then an optimal y =y(§ ) is obtained by taking
w, to be the largest of {Ei Gi(l - Gi)j-l} ,“’2 the next largest, etc. In case

there are two or more weights remaining that are equal, we can choose any of
them for the next w, . We shall refer to such a situation as a "tie”. When

the wv's have been determined, our optimal policy is also. We summarize
the result in the following:

Lemma : If(§,, ..., ¢ N) is a mixed strategy for A, then an optimal
pure strategy y = y(& ) for B can be obtained as follows: Take all the numbers
Ei ai(l - cxi)j'1 ,i=1, ..., N; j=1, 2, ... and order them in a decreasing

sequence, {wv } . If w, = fi ci(l -~ ai) j-1 , then the \J-ﬁ—‘ look must be in
region i.

In the following, we shall restrict player B to those pure strategies y for
which

M(@i, y)< =,

i=1, ..., N. We shall see that in the mixed extension of our game, this is
no real restriction on B.

Let us now proceed to the mixed extension of our game. The mixed
strategies for A are the probability vectors ( § R £ N ).

N
£ {20, r ¢ ;= 1. The class of mixed strategies for B is the collection
i=1
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of all functions 7m = 7(y) defined on the set of pure strategies y for B, such

that 7 (y) = 0 except for finitely many y's, 2 5(y) = 1 (i.e., B is allowed to
y

mix over any finite number of y's). Such a game, in which player A has a
finite number of %ure strategies, is called an S-game, cf.[1] . The payoff
is denoted by M(C , 1 ) :

N
M(§, ) = Z:l L&, 14y MG, y.
i= y

The relevant theorem in this situation is as follows [1; 49] :

Theorem 1: Every S-game has a value v. Player A has a good strategy
*, e,

v < M, y)
for every y. For every € > 0, thereis an 7 such that
M@, 7 ) <v+e,

i=1, 2, ..., N(where M(i, 7 )= ¥ 7(y) M(i, y).
y
That an S-game always has a value v means that

inf sup M(&,7m) =sup inf M((, ) =v.
7 € 3 N

The main task remaining before us is to prove that player B has a good strategy.
The theorem tells us only that B has an "e-good"” strategy for every € > 0.

The discussion of S-games is based on the following construction. For
each y, let s(y) be the point in RN (real N-space) with coordinates M(i, y),

i=1, ..., N:
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s(y) = | M(1, y)

M(N, Y)

Let S denote the set of all s(y)'s in Ry . Let S* denote the convex hull of
S, i.e., the set of all finite convex combinations of points in S .

For any two vectors ¢ and u in Ry » We write the inner product of € and
u thus:

N
(€,u = El fiui.

Now, if  is a mixed strategy for B, then 3~ 7 (y) s(y) belongs to S*.
y
Conversely, if u is in S*, then there is an 7 = 7 (y) such that u = 3" 7(y) s(y).
y

It follows that our S-game is equivalent to the following: player A chooses a
probability vector £ , player B chooses a point u in S*, and the payoff is

M= (£, u).

Let us note that in our case the set S, therefore also S*, lies in the pos‘tive
orthant of RN -- all points have positive coordinates.

We shall briefly sketch one way to prove Theorem 1. Define, for each
real v , the open orthant

Ty= u:ui<y. i=1, 2, N}

Let
y‘=sup{y:TynS‘=0} .
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Then, if we write C1(E) for the closure of any set E in RN » we have

CAT, ) A CI(S*) # 0.

Let u* ¢ Cl(TY o) N CI(S*) . Let

(§*, u=v
N
be the equation of a hyperplane separating T, , and S*, with ) E"‘i =1,
i=1
Then
a) E*izo, i=1, ..., N,
c) (€* u)2 v forall u in S*,
d) (€%, u)s v for all u in Ty,
e) vy*=v,
f) max u* = v,
1sisN !
g) Foreachi, 1sisN eitherf'i =0 or else u"i =v.

Once these facts have been established, we set

Vv, = sup inf ¢, v ,
ueS*

ik inf sup(f,u) ,
ues* £

in which § ranges through the set of probability vectors. Then vy, S YU



INTERIM RESEARCH MEMORANDUM
IRM-31

of course. Now
2 jof (&, u) forall § .

v
L u eS*
Therefore
\{9 2 inf (§* u).

ueS*

Since u* is a limit point of S* , we have from c) and b) above,

Vi z2 v, (3)
Also,
vy S sup (£ , u) for all u in S*;
£
therefore
vu < max u, for all u in S*,
1<i<N

and since u* ¢ C1(S*), we have also

<  max u‘i=v : (4)
1<is<sN

Yu
by £). Now (3) and (4) show that VLEVy= V.

Then{ * is a good strategy for A, using c). Also, if € >0, there is a u in
S* such that

- 11
'\l1 ul|<e

10
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fori=1, ..., N, sothat

ui< v+e;

u is of the form

u= 3 () sly)
y

for some 7, and 7 is an "e-good"” strategy. This completes the proof of
Theorem 1.

We shall prove that u® belongs to S* ; then u* will be a convex combination

ut= 2 7n*(y) sly)
y

of points in S, and 7 * will be a good strategy for B. First we require two
more lemmas.

Lemma 2: Let W bea boundary point of S*, and suppose there is a
sequence ]s(yn) } in S converging to w’, Let (§, u)=v, with

N
r ¢ { = 1, be the equation of a supporting hyperplane through u®. Then
i=1

fi>0fori=1, .oy N, andthereisay0 such that u°=s(y°), i.e., Wes.

Proof: It is clear, in the first place, thatfl 20,i=1, ..., N, since if,
for example, { 1< 0, then by taking a sequence of pure strategies yn in which
player B looks less and less frequently in region 1, we will have

€, syh))—--=,

contradicting
(6,u)2y20 forall u in S*.

11
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Let u° have coordinates u':)i . Since s(yn )— uo, we have, if ¢ >0,

i = _ j-1 o
M (i, yn) jE=1 cij(yn) ci(l ni) <u;+te,
i=1, ..., N, for all n large enough. Therefore, for each i and j,

0< ¢ y) < @+ €) / a1 -apl!

for all n large enough, i.e., for fixed i, j, the sequence {ci j(yn) } is bounded.

Therefore, for a subsequence of {yn } , cll(yn) converges; for a subsequence
of the latter, Cy l(yn) converges, etc., and by the "diagonal” procedure, we

obtain a subsequence, call it {yn } again, for which ¢ j(yn) converges for
every ij. Let

lim < (yn) =

p—w 1]

Yij ’

=1, ..., N;j=1, 2, ... . Itisclear that for each i, j, y” is a positive
integer, all the \f j are distinct, and vy i < Yk if j<k. Also, every
integer v appears among the Yi i Indeed, for each n, the number v must
appear somewhere among the vN numbers cij(yn) »i=1, ..., N;j=1,

ceey V. Since we have c”(yn) = for all n large enough fori=1, ..., N,

Y
i)
j=1, ..., v, it follows that v is equal to some Yij

From our previous remarks (before Lemma 1), we see that {Yi § } comes
from some pure strategy y ,

Yij = c”(yo) .

12
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For each integer q, we have
lim g: c(y)c(l-a)j'1= ?: Y cx(l-cx)j'l
n—ew  j=l ijva" "1 i =t ij 1 i
< u°i .
Therefore,
ad §-1 0
1§1 vig Gt T o)t s (5)
i=], , N, or
o o
M@, y) s u, . (6)
It follows, since { i 2 0, that
€, sy’ns €, %=y,
and therefore
o
(§£,s(y D=y V)

(because (€ , u) 2y for u in S*). This means that yo is optimal against ¢ ,
and from Lemma 1, we see that everyf i 0; indeed, if & 1= 0, say, then

the optimal strategy y° would require no looks in region 1, contradicting
M(1, y°)< ®, Butif § i > Ofori=1, ..., N, then we must have had
equality in (6) for i =1, ..., N in order for (7) to be valid. This means that
s(y°) = u°, and the proof is complete.

Lemma 3: Let E be a closed convex subset of RN lying in the positive
orthant (all coordinates u of u in E are non-negative). Then E contains an
extreme point,

13
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Proof: Let

W(u)=ul+...+uN.

and let

c= inf Y(u).
ueckE

The set

G= queE: csy(u)s c+l}

is closed, bounded, and non-empty. Therefore there is a v’ in G for which
o
y(@u)=c.

Let
H= {ucE: !p(u)=c}.

Then H is non-empty, closed, bounded, and convex. Therefore H contains
an extreme point u®*. This point u® is also an extreme point of E. (If
ut = (ul +u2)/2 with ul, u2 in E, then ¥ (u*) =(Vy (ul) + 4l(u2))/2 =c;

since (ul) 2cand ¥ (u2) 2 ¢, we have ¥ (ul) = W(uz) =c U, U,
belong to H.)

Theorem 2: S* is closed.
Proof: Let u’bea boundary point of S* and let

(., u=y
o N
be the equation of a supporting hyperplane through u with r¢ i = 1,

i=1
Then

(£, u2y
for all u in S*, and 5120, i=1, ..., N, as indicated in the proof of Lemma 1.

14
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Let ] be the hyperplane just described, and set
E=]JNCI1(S*).
Since E is closed and convex, and lies in the positive orthant of R E

N ’
contains an extreme point u*, by Lemma 3. Then u# must also be an extreme
point of C1(S*).

Now every u in S* is a convex combination of at most N + 1 points of

s[1, 36 |:

o !

At least one of the xj must be 2 1 . If we lump the remaining sj
N+1
together, we can write, for every u in S*:

u=as+(l-0)v
with s inS, v inS*%, 1/(N+1)<a < 1, Now let un-u#,
n_ n _ n
u'=aqa s +(1 an)v , (8)
n n
8 inS, v inS* 1/(N+1)< a.nsl .
It follows that on the line joining s" and vn, there is a point w" such that
n_n n
u =8/(N+1) + Nw /(N+1), 9)

s" in S, w"in S*. Let

N
e:’(l. l’ s 0 0 ly .

15
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#
Since u— u , we have

(e, U™ =(e, 8" / (N+1) +N(e, W) / (N + 1)—(e, u").

Since s" and w" have positive coordinates, it follows that (e, sn) is bounded;
so is {sn} . Therefore, a subsequence converges and we may suppose

st s# ; by (9), W w#.
u#=s#/(N+l)+Nw#/(N+l).

#
Since u is an extreme point of C1(S*), we have

n

#
i.e., u =lims", s%inS. By Lemma 2, we conclude that u# = s(yo) for some

n
yo. and that the hyperplane through u#, passing also through our original uo,
whose equation was

I: (¢, w=v,

must be such that fi >0fori=1, ..., N. From this, we see that our set
E =] A C)(S*) is bounded as well as closed.

We. have shown that every extreme point of E belongs to S. Since E is
compact, E is generated by its extreme points. Therefore our original bound-

ary point uo, which belongs to E, is a convex combination of extreme points of
E, i.e., of points of S, so that w e S#. The proof is now complete.
Corollary: The mixed extension of the original game between A and B in

whi can mix over all of his pure strategies (even if M(i, y) = = for some
i) has a solution; it coincides with the solution of the modified game (M(i, y) < =,

i=1, ..., N). Player B has a good strategy 7 * thatisa mixture over at most
N pure strategies. We have ; n*(y) M(i, y)=v, i=1, 2, ..., N,

16
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Proof: It is clear from the preceding that if {* is a good strategy for A
(cf. Theorem 1), then £€* >0, i =1, ..., N. We have seen that S* is closed,

i
so that the point u* ¢ CI(S*) 0 Tv' described in the discussion of Theorem 1,
belongs to S*;

u* = X N%y) sly)
y
for somen *. We have

(€, u*)svs=(E{* v (10)

for every probability vector £ and every u in S*. Since § * >0fori=1, ...,
N, we have u‘i =vfori=1, ..., N, from g) (preceding (3)), i.e.,

ZnMy) M(i, y)=v,
y

i=1, ..., N. Equation (10) implies that
vs(£* s(y) (11)

for every pure strategy y for which s(y) is finite. Since ¢ ‘i >0,i=1, ...,
N, (11) is a fortiori true if y is a pure strategy for which M(i, y) = = for some i.

Since

€ * s(y))=v

for every y for which 7 *(y) >0 (otherwise we'd have ( E*, u®)>v), v*isa
convex combination of points s(y) of S lying in an N - 1 dimensional space.

Hence [l. 36] , u* can be expressed as a convex combination of at most N of
these s(y)'s, and the proof is complete.

17
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Let I denote the closed simplex of all probability vectors ¢ ,

N
¢€,20 351 &, =1

Let

F(&)= inf ({, s(y)). (12)
y

By Lemma 1, there is a y that is optimal against €, so that we can write

F(§) = min(, s(y)) = (£, s((€))),
y

in which y(§ ) is some pure strategy optimal against § .
Theorem 3: 1° F(£) is concave on I,
2° F(f ) is continuous on I,
3° max F(§)=v,

4° F( £) achieves its maximum

at an interior point of § .

Proof: 1° By (12), F( €) is the infimum of a collection of linear functions
of £~ all bounded below, by zero.

3° max F(§) = max inf (§, u)=v.
£ £ ues*

L UF(EY-= mgx F(£), then

v=F( *=(*, ¥( € *)), and from the preceding discussion (e.g., Lemma
2) 5'1"" i=1, ..., N.

18
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2° Since F(§)= inf ({, s(y)), bounded below, and each ({ , o(y))

y
is continuous in § , F(§) is upper semi-continuous. Therefore, whenever
¢"< ¢°, we have

“Tim~ F(M = F(¢9). (13)

n—e &

Also, F(€)1s concave, so that if £ 2w &°, then also (£ " +£%)/2=£° and

F(€ "+€%2) 2 FREYH+FE Y2,
By (13),
F({ )z Tm  F@2¢"+ %) 212Tm F(EM+172FE 9

n-—.ﬂ n_.O

so that

F( )z Tm F(§Y,

n—.@

and by (13),

Tm F(€MH=F(E9.

n—e®

Since this is true for every sequence converging to{ €, we have limF (¢ n) =
F(§ ©), and the proof is complete.

Theorem 4: Let

E= {f € I: y(§)is notunique} .

Then E is a countable union of N - 2 dimensional flat spaces in I ; in particular
E has (N - 1 dimensional)Lebesgue measure zero.

19
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Proof: We know that{ ¢ E if and only if there is a tie somewhere
after we have arranged the weights ¢ a (l -a )l -1 ,1=1, ..., N; =1,
2, ... in decreasing order, by Lemma l This means that & ¢ E if and only
if we have

_ j-1 - _ m-1
Eial(l a,) Ek a (1 -a)
for some i, }, k, m; this completes the proof.

It would appear plausible from thls fact that the maximum of F( f ), which

yields the value of the game, is achieved at a point f for which y(e ) is
almost certainly unique (so that player B has a good pure strategy) but we have
no proof of this. There are certainly cases for which player B has no good
pure strategy, e.g., if the detection probabilities o, are all equal, in which

case, we must have § LTI 3 N - 1/N.

To compute (approximately) thi solution to a particular game of this type,
we can proceed as follows: Find a & * that yields the maximum of F(< ).
[For each £, we know how to find an optimal y(f ); then F(f ) = (f s{y( £ ».
The maximum of the function F(f ) can be found by some variant of the steepest
ascent method. _| Express € * as a convex combination of § j, j=1, ..., N,
with Jclose tof » €.8., let

1% 4 .., 0)

El=g-e)*+¢00..,1
with € small and positive. Let yj be a pure strategy for B, optimal against
3 } . Then {s(y j) } » =1, ..., N, will approximately "straddle" the
critical point u* in S* . Let

M,y = MG, v,

i, =1, 2, ..., N. Solve the N-rowed matrix game with entries M“
its solution be € °, "l°. v®. Thenv®isan upper bound for v, "l is an
approximate solution for B, and € %and € * are each possible mixed strategies
for A. Take § © or & *, whichever yields the larger F(£ ).

Let
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