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ABSTRACT

Given N regions with their associated conditional detection probabilities
M 1i ..... a, let player A choose one region to hide in, and let player B look

in one region at a time until he finds A. The payoff, to player A, is the ex-
pected number of looks required of B to find A. The form of the optimal pure
strategies for B is described, and the mixed extension of this game is shown to
have a solution. Player B has a good strategy that is a mixture of at most N
pure strategies. A numerical procedure for calculating the solution is given.

((REVERSE BLANK)
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A 2-PLAYER N-REGION SEARCH GAME

Suppose that player A can hide in any one of N regions, and that player B
searches until he finds A. The probability that B can detect A in region i,
given that A is there, is a, , and 0 < a, < 1, 1 = 1, ... , N. The ai are known

to both A and B. Player A chooses a region to hide in and stays there. Player
B then looks in one region at a time until he finds.A. The payoff is to player A;
it is the expected number of looks that B must make until he finds A.

The class of pure strategies for B is the collection of all sequences
Y={Y1 , Y2 # "'" Y,, .... I in which each y. is either i, or 2, or ... , orN.

Given such a sequence, B looks first in the region indicated by yIp then in the

region indicated by Y2 , etc., until he finds A.

The set of A's pure strategies is the set {1, 2, ... , N ; he chooses an

integer i and hides in region i until he is found by B.
For each i and each y, let M(i, y) denote the payoff to A. This is the

expected number of looks required of B to find A. If y = { Yl' Y2' ... I , we

shall call the first k elements, yl .. Yk of y a segment of y, k arbitrary.

Its length is k. We define, for each y, and for each i, J, 1 i i<N, 1 !j< ,

cij(y) = the length of the smallest segment of y containing j i's,

if there is such a segment, and

c ij(y)= +

if no segment contains j i's

For example, suppose N = 4, and

y =f2, 1,3, 2, 4, 2, 4, 3, 3, 4, 1, 2, 1, 4, 3, 2, ...

Then, for j =1, 2, 3, ... , we have

c 1 j 2, 11, 13, ... I

c 2j 1, 4, 6, 12, 16, s

c3 j 3, 8, 9, 15, 9

c4j= 5p 7, 10, 14, ...

3



INTERIM RESEARCH MEMORANDUM
IRM-31
We have, evidently, for each i and each y,

M(i,y)= ci (y) (1- i)- (1)iji J

(The sum of the series may be + i .)

If, in the long run, player A hides in region i with probability Ci'
N e = 1, we denote the expected value of M (i, y), for fixed y, by M( C y).
1

We have
N

M(C, y)= C iM(i ,y).
i=1

(Of course, 0 • - is defined by 0 = 0.)
We shall begin by showing that for each probability vector (l' C N)'

a mixed strategy for A, there is at least one optimal y (i), i.e., a pure
strategy for B such that

M (C, Y•c) ) ! M ( C, y)

for all y. Let us first observe that for each y, the set of finite values of
c i j(Y) for i = 1, ... , N, j = 1, 2, ... is the set of all positive integers, no
two finite c (y) are the same, and ci < ci 2 < .... Conversely, ifij 1
{ i j } is a set of positive integers having the previous three properties, then

there is a y such that

Yij = cij (y),

i = 1, ., N; J 1, 2, ..... In our example above, the knowledge of all the
ci j enables us to reconstruct the strategy y; from c, j we see that we must
look in region I on the 2-4, L ---, I A, . looks, in region 2 on the Is,
6-, .... looks, etc. This remark will be useful later.

4
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For each y, we now have

NNC Y) 's- J-1
Z:, cyi (Y) Cai(a ) i (2)i=l J=1 J- )

Since the cij 's run through all the positive integers, we can write

M(f, y)= : V WV(y) + c ij (Y) (3)

V-1 i, J

in which the w are weights from the set of all numbers ai ( - J-

for which cij isfinite, i=1, ... , N;J=l, 2, ... , and •i, runs through

the C i ai (I - i) J-1 for which cij = . (In fact, if v = cij (y), then

"WV (Y) = C i a(i -a )J-1 . ) We have E wo (Y) + r' t = I . Furthermore,

if y' is another strategy, then w V (y') and CiJ (y') are obtained simply by

rearranging the weights fC i ci (1 - ai )J -} . The optimal y(f) can now be

described very easily. We need only recall that if Fy (V ) } is a collection

of (cumulative) distribution functions on the positive v - axis, with F (0) =0,

F( )=, and if for somey, 6vd Fy( v) < *, then

0

E( v)= j v dF (V)

0

= -j �v d[l-Fy(V)]

0

= f [l0Fy(V)]dV
0

S
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(since v 1F Y(v\)] j Jvd (I - F (v))-O0 as v-s)

Therefore, if for some y 0o we have

FYo (v) Y F( v)

for all v and for all y, then T vd F (v) is the minimum with respect

0 YO
to y. In our situation, we take, for each y, Fy( v 0 ) = W V (y) for each v 0 "

V= 1

(Note: There is a y for which E() <, e.g., y = (1, 2, .... N, 1, 2,
N, ... , 1, 2, .... N, ... ).) Then an optimal y = y( C) is obtained by taking

I to be the largest of {Ci ti(l - ai)i' 1 } w the next largest, etc. In case
there are two or more weights remaining that are equal, we can choose any of
them for the next w. We shall refer to such a situation as a "tie". When

the ur 's have been determined, our optimal policy is also. We summarize

the result in the following.

Lemma I: If ( C , ... , C N) is a mixed strategy for A, then an optimal

pure strategy y =y(t ) for B can be obtained as follows: Take all the numbersij-i
i a i( -ai , i=1, ... , N; j=1, 2, ... and order them in a decreasing

sequence, {wa} V IU - = iia a(I - a )i J 1 then the v----look must be in

region i.

In the following, we shall restrict player B to those pure strategies y for
which

M(i, y)< <,

i = 1, ... , N. We shall see that in the mixed extension of our game, this is
no real restriction on B.

Let us now proceed to the mixed extension of our game. The mixed
strategies for A are the probability vectors ( 1 ' ...""CN )I

N
2i ,0 = 1. The class of mixed strategies for B is the collection

6
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of all functions i} = 71(y) defined on the set of pure strategies y for B, such

that '7(y) = 0 except for finitely many y's, Z 17(y) = 1 (i.e., B is allowed to
y

mix over any finite number of y's). Such a game, in which player A has a
finite number of gue strategies, is called an S-game, cf. (1] . The payoff
is denoted by M( ,17 ) :

N
M= f,7 '(Y)M 0,y).

1=1 y

The relevant theorem in this situation is as follows [ I; 49)

Theorem 1: Every S-game has a value v. Player A has a good strategy
C * , i.e.,

v -5 M(W, y)

for every y. For every e > 0, there is an 77 such that

M(i, 77 ) < v+ ,

I = 1, 2, ... , N(where M(1, 1} )= . i7(y) M(i, y)).
y

That an S-game always has a value v means that

inf sup M(C, 17) = sup inf M(C,7?)=v.
"17C C 7?

The main task remaining before us is to prove that player B has a good strategy.
The theorem tells us only that B has an "c-good" strategy for every e > 0.

The discussion of S-games is based on the following construction. For
each y, let s(y) be the point in RN (real N-space) with coordinates M(i, y),
i=I, ... , N:

7
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s(y) M (M1. y)1

[M(N, Y)

Let S denote the set of all s(y)'s in RN . Let S* denote the convex hull of

S, i.e., the set of all finite convex combinations of points in S .

For any two vectors C and u in RN , we write the inner product of C and
u thus:

N
S~= 1

Now, if q is a mixed strategy for B, then r 17 (y) s(y) belongs to S*.
y

Conversely, if u is in S*, then there is an 77 = 77 (y) such that u = • 77(y) s(y).
y

It follows that our S-game is equivalent to the following: player A chooses a
probability vector • , player B chooses a point u in S*, and the payoff is

M = (C, u) .

Let us note that in our case the set S, therefore also S*, lies in the pos'tive
orthant of RN -- all points have positive coordinates.

We shall briefly sketch one way to prove Theorem 1. Define, for each
real Y , the open orthant

T {=u:ui<y, < =1, 2, ... N}.

Let
Y* sup{Y: T YlS n f0 = 0

8
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Then, if we write CI(E) for the closure of any set E in RNo we have

CI(T Y)fl CI(S) 0 .

Let u* Cl(Ty,) NCI(S*) Let

* u)= v

N
be the equation of a hyperplane separating Ty, and S*, with .= 1.

i=1
Then

a) k O, i=1, ... , N,

b) ( , u*) = v,

c) ( *, u) > v for all u in S*

d) (•*,u)! v for all u in T

e) y*= v,

f) max u*.= v.
l1!5N N

g) Foreachi, I 5i<N eitherC* Oorelse u*i v

Once these facts have been established, we set

"VL =sup inf (,u),
C u CS*

"vU= inf sup (,u)
ueS* C

in which C ranges through the set of probability vectors. Then vL VU,

9
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of course. Now

vL I inf (,u) for all
u CS*

Therefore

VL• 2! i*,u).
u C S*

Since u* is a limit point of S*, we have from c) and b) above,

"vL L v. (3)

Also,

"vU < sup (C ,u) foralluinS*;

therefore

vU < max ui for all u in S*,

and since u* e CI(S*), we have also

vU ' max u*i = v (4)

by f). Now (3) and (4) show that vL = vU = v.

ThenC * is a good strategy for A, using c). Also, If £ > 0, there is a u in
S* such that

1u - u*0 I < e

10
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foriI, ... , N, sothat

ui< v+C;

u is of the form

U 7••(y) s(y)
y

for some 77, and 77 is an "c-good" strategy. This completes the proof of
Theorem 1.

We shall prove that u* belongs to S* ; then u* will be a convex combination

u*= '7?* s(y)
y

of points in S, and 77 * will be a good strategy for B. First we require two
more lemmas.

Lemma 2: Let u° be a boundary point of S*, and suppose there is a

sequence {s(yn) I in S converging to u°. Let (C , u)= y, with

N
22 1 = 1, be the equation of a supporting hyperplane through u°. Then

> >0for ia1, ... , N, and there isay such that u =s(y ), i.e., u 0S.

Proof: It is clear, in the first place, that k 0, i= , ... , N, since if,

for example, < 0, then by taking a sequence of pure strategies yn in which

player B looks less and less frequently in region 1, we will have

(C , s(yn) )

contradicting

(C ,u) 2¥: y20 for all u in SO

II
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00 0Let u° have coordinates u Since s((y )n -u ,we have, if e >0,

M(i, y)= . cij(Yn) oi(l J- 0 I 0
M , n) : j~ y )li( - a i) J1< u i + C,

i - 1, .... N, for all n large enough. Therefore, for each i and J,

0< cij(Yn)< (u0 i+ C) / ai(l - ai)J-I

for all n large enough, i.e., for fixed I, J, the sequence {ci j(yn) I is bounded.

Therefore, for a subsequence of {yn }' C1 1(yn) converges; for a subsequence

of the latter, c2 1(yn) converges, etc., and by the "diagonal" procedure, we

obtain a subsequence, call it yn } again, for which c ij(Yn) converges for

every ij. Let

lir cij(Yn) = Yij'n Go

i = 1 .. , N; j = 1, 2, .... It is clear that for each i, J, yiJ is a positive

integer, all the Yij are distinct, and y ij < Yik if J < k. Also, every

integer v appears among the y ij . Indeed, for each n, the number v must

appear somewhere among the vN numbers cij(Yn) , i = I, ... V N; J = 1,

v. Since we have cij(Yn) = YiJ for all n large enough for i = 1, ... , N,

j= 1, ... , v, it follows that v is equal to some Yij "

From our previous remarks (before Lemma 1), we see that { yij } comes

from some pure strategy yO

Y iJ = Ci J(yO)

12
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For each integer q, we have

q a,)j. q a J-1
lira cij(Yn)ai(l - = " iJ a, (Ia)n-n ---- J=l in- = J=1

0! ui 0"

Therefore,

i y (Idl J-1) 5 u (5)
J=l

i = 1, ... , N, or

Moi, yO) uol (6)

It follows, since 0 i 0, that

s(y°)) ( ,u°)

and therefore

(C, s(y)) Y (7)

(because (C , u) 2 y for u in S*). This means that yo is optimal against C,
and from Lemma 1, we see that every I > 0; indeed, if I = 0, say, then

the optimal strategy y 0 would require no looks in region 1, contradicting

M(I, yO)< -. Butf C i > Ofori=1, ... , N, then we must have had
equality in (6) for i = 1, ... , N in order for (7) to be valid. This means that

s(y°) = u0 , and the proof is complete.

Lemma 3: Let E be a closed convex subset of RN lying in the positive

orthant (all coordinates uI of u in E are non-negative). Then E contains an

extreme point.

13
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Proof: Let

flu) =ul +... +uN,

and let

c= mikf (u).

ucE

The set

G= {ucE: c5*(u)5c+1 }

is closed, bounded, and non-empty. Therefore there is a u° in G for which

'k(u0) = c.

Let

H= {ucE: k(u)=c}

Then H is non-empty, closed, bounded, and convex. Therefore H contains
an extreme point u*. This point u* is also an extreme point of E. (If
u 1 (uI +u 2  1 2 1 2

)/2 withu , u inE, then u')('*'(u ) + (u ))/2c;

since * (ul ) c and * (u) 2 c, we have (u)= I (u )= c, uI u2
belong to H.)

Theorem 2: S* is closed.

Proof: Let u° be a boundary point of S*, and let

(C , u)=y
N

be the equation of a supporting hyperplane through u with Z C = 1.

Then

( C , u) a

for all u in S*, and ai 0, i=i, ... , N, as indicated in the proof of Lemma 1.

14
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Let J be the hyperplane just described, and set

E =J A Cl(S*).

Since E is closed and convex, and lies in the positive oxthant of RN, E

contains an extreme point u#, by Lemma 3. Then u must also be an extreme
point of CI(S*).

Now every u in S* is a convex combination of at most N + I points of

S [1, 36 ]

N

j=0

At least one of the X must be 2 1 . If we lump the remaining sj
FN +

together, we can write, for every u in S*:

u = a s +(I - a) v

with s inS, v inS*, A/(N+l) !; < 1. Now let un--u#,

n = 5n n
u nf sn+(I -an)v, (8)

nnvn

ns~~ an in SvnifIN+1 ! Ln!
It follows that on the line joining sn and vn, there is a point wn such that

u nsn/(N+1) + Nwn/(N+1), (9)

s n in S, wnin S*. Let

N

-0%5
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Since u-.n u , we have

(e, un) = (e, sn) / (N + 1) + N (e, wn) / (N + l)--(e, u#

Since s and wn have positive coordinates, it follows that (e, asn) is bounded;

so is {snn} . Therefore, a subsequence converges and we may suppose

n # n #
s---s ;by(9), w--w

* # w#
u =s /(N+1)+NN /(N+1).

Since u is an extreme point of Cl(S*), we have

U =6 =W

# n n # yO
i.e., u =limrs , s inS. By Lemma 2, we conclude thatu =s(y )for some

0 n # 0y , and that the hyperplane through u , passing also through our original u
whose equation was

J: (0, u)=Y,

must be such that ý. > 0 for I = 1, ... , N. From this, we see that our set

E =J fl Cl(S*) is bounded as well as closed.

We. have shown that every extreme point of E belongs to S. Since E is
compact, E is generated by its extreme points. Therefore our original bound-

ary point u°, which belongs to E, is a convex combination of extreme points of

E, i.e., of points of S, so that u° eS . The proof is now complete.

Corollary- The mixed extension of the original game between A and B in
which Biicanmix over all of his pure strategies (even if M(i, y) = - for some
i) has a solution; it coincides with the solution of the modified game (M(I, y) <

i - 1, ... , N). Player Bhas a good strategy q thatisa mixture over at most

N pure strategies. We have "7 *(y) M(i, y) =v, 1=f-1, 2, ... , N.

16
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Proof: It is clear from the preceding that if C* is a good strategy for A
(cf. Theorem 1), then C*i > 0, i = 1, ... , N. We have seen that S* is closed,

so that the point u* e CI(S*) n T v, described in the discussion of Theorem 1,
belongs to S*;

u= 7 *(y) s(y)
y

for some . We have

(•, u*) <v5C*, u) (10)

for every probability vector C and every u in S*. Since C * > 0 for i = 1,

N, we have u*. = v for i 1 1, .... N, from g) (preceding (3)), i.e.,

E '1*(y) M0i, Y) =v,
y

i = 1, ... , N. Equation (10) implies that

v !5( * s(y)) (1

for every pure strategy y for which s(y) is finite. Since *. >0, i = 1,1 '

N, (11) is a fortiori true if y is a pure strategy for which M(i, y) = for some i.

Since

( *, s(y))= v

for every y for which ) "(y) > 0 (otherwise we'd have ( C *, u) > v), u* is a
convex combination of points s(y) of S lying in an N - 1 dimensional space.

Hence [I, 36 ], u* can be expressed as a convex combination of at most N of

these s(y)'s, and the proof is complete.

17
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Let E denote the closed simplex of all probability vectors

N
€i0 E .i=1.

ii ~ 1

Let

F(C) in! (C , s(y)). (12)
y

By Lemma 1, there is a y that is optimal against C , so that we can write

F(C) = min(C , s(y)) = (C, s(y( C))),

y

in which y(C ) is some pure strategy optimal against C.

Theorem 3: 1 0 F(C ) is concave on E,

20 F(C ) is continuous on E,

30 max F(C)= v,

0C'
40 F ( ) achieves its maximum

at an interior point of C'.

Proof: 10 By (12), F(C) is the infimum of a collection of linear functions
of C ,lbounded below, by zero.

3 0 max F() = max inf (C,u)=v.

C e ucS*

4° IfF( C*)= max F(N ), then

v = (C = (C *, y( C *)), and from the preceding discussion (e.g., Lemma
2) >*i0, 1i=1, ... , N.

18
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2 Since F(C) inf , s(y)), bounded below, and each (C , s(y))

y
is continuous in C , F( C) is upper semi-continuous. Therefore, whenever

C -C o, we have

1ira F(Cn) S F(C 0 ). (13)
n - w

Also, F(C) is concave, so that if C• Co, then also (C n + Co)/2.C0o and

F((C n+ Co)/2) . (F(C n)+F((C ))/2

By (13),

F(C)0 11w F(l/2(C n + C)) 1/2 11w F( C n) + 1/2P(C 0)

n - an - -

so that

F(C) 11mw F(Cn) ,
n-r

and by (13),

lira F (C F) F(C o).

Since this is true for every sequence converging to C o, we have lir F (C n) f
F(C o), and the proof is complete.

Theorem 4: Let

E {C C E: y(C)isnotunique}

Then E is a countable union of N - 2 dimensional flat spaces in E ; in particular
E has (N - 1 dimensional)Lebesgue measure zero.

19
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Proof: We know that C e E if and only if there is a tie somewhere

after we have arranged the weights C i CLi(I - a 1) 1 , I = 1., ... , N; i = I,
2, ... in decreasing order, by Lemma 1. This means that C e E if and only
if we have

C ii10 - a)dJ 1 = Ck ak(l - ak)m' I

for some i, J, k, m; this completes the proof.

It would appear plausible from this fact that the maximum of F (C), which

yields the value of the game, is achieved at a point C # for which y(C #) is
almost certainly unique (so that player B has a good pure strategy) but we have
no proof of this. There are certainly cases for which player B has no good
pure strategy, e.g., if the detection probabilities a are all equal, in which

case, we. must have e = = C N = i/N.

To compute (approximately) th• solution to a particular game of tljis type,
we can proceed as follows: Find a * that yields the maximum of F( t ).

[For each C , we know how to find an optimal y(C ); then F(C ) = ( C , s(y( C ))).
The maximum of the function F (C) can be found by some variant of the steepest
ascent method. j Express C * as a convex combination of C , ji, ... , N,

withC I close to ¶ #, e.g., let

C J = (l- e)C* + e(0, 0.., lI-, 0..., 0)

with e small and positive. Let be a pure strategy for B, optimal against

Sj Then 1 -(yJ) }, j = 1, , N, will approximately "straddle" the

critical point u* in S* . Let

M i = Mll, yi) ,

i, j = 1, 2, ... , N. Solve the N-rowed matrix game with entries M. . Let

its solution be o, 717, vo. Then v° is an upper bound for v, VI is an
approximate solution for B, and C 0 and ý * are each possible mixed strategies

for A. Take C 0 or C , whichever yields the larger F(C).
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