
, •TM-1o.2/102/oo

0

"-< ! [MEMORANDUM
C/.)

(TM Series)

- ASTIA AVAILABILITY NOTICE

C -Qualified requesters may obtain
copies of this report from ASTIA.

This document was produced by SDC in performance of U. S. Governmenrmt Cont.-acts

SYSTEM
Control of and Automatic Allocation DEVELOPMENT

for Large-Scale Cyclitg Systems
CORPORATION

by
2500 COLORADO AVE.

C. P. Earnest

March 15, 1963 SANTA MONICA

CALIFORNIA

The views, conclusions or recommendations expressed in this document do not neces-
saily reflect the official views or policies of agencies of the United States Government.

Permission to quote from this document or to reproduce it, wholly or in part, should
be obtained in advance from the System Development Corporation.

Although this document contains no classified information it has not been cleared for
open publication by the Department of Defense. Open publication, wholly or in part, is A S T I A
prohibited without the prior approval df the System Development Corporation. K --

A- 1159

SMarch 15, 1963 1 TM- 1042/102/00

CONTROL OF AND AUTOMATIC ALLOCATION FOR

LARGE-SCALE CYCLING SYSTEM

by

C. P. Earnest

1. INTRODUCTION

The computer chosen for a large program system will almost always have a

primary store too small to contain the entire system at once. Rather, parts

of the system are shuffled in and out as needed. Thus, part or all of the

store has two dimensions effectively: space and time. Allocation of this

two-dimensional store (hereinafter referred to as "working storage") presents

a highly complex problem because of the interdependence of space allocation

and transfer scheduling and because of the large number of independent vari-

ables involved in the allocation.

In most cases at present, any sort of reasonably sophisticated working-

storage allocation is done by hand. This has the obvious disadvantages of

requiring a great deal of time and being highly subject to human error. These

two drawbacks, in turn, create a third: rigidity. Once an allocation is

made, it is seldom changed completely; instead, slight changes are made infre-

quently. This creates a less than optimum allocation, and inhibits system

change in general. Any change requiring an extensive reallocation is extremely

dirricult to implement, and might, therefore, not be made at all.

This paper presents a programmable method of storage allocation, along with

a scheme for system control, suitable for large-scale systems vhere something

t:

March 15, 1963 2 TM-1042/102/00

is known in advance about the sequence of program operations, and where time

of system operation is an important factor. This includes, but is not limited

to, most, or all, real-time systems. The allocation is static, because

dynamic allocation in systems of this type usually costs more time than it

saves. The primary store is assumed to be of the continuous, random-access

type, such as a core memory. Throughout the present paper, the terms "primary

store" and "core" are used interchangably.

The SAGE and SATIN systems have been used as models in developing the

method. These systems are real-time, of very large scale, have a fairly com-

plicated and flexible program sequence, devote about 1/3 of the computer core

space to working storage, and seem to embody most of the problems common to

all systems of similar type. Any methods of control and allocation that work

for SAGE and SATIN should be applicable, in whole or in part, to a great many

other systems. However, the study undertaken to develop the method has not

been limited to these two systems; an attempt has been made to keep it as

general as possible, within the framework stated in the previous paragraph.

2. OBJECTIVES

The systems used as models are run in a computer (the AN/FSQ-7), with core

memory as the primary store, and drums as the major secondary store. Tapes

are used for backup, simulation inputs, and system recording. The separable

entities of the system are programs and tables of various lengths. These

facts are included merely to establish a frame of reference for specific

examples, not to limit the scope of the paper.

March 15, 1963 3 TM-042/102/00

Certain basic assumptions must be made about the desirable and necessary

characteristics of an optimum system allocation and control scheme; these

assumptions follow:

1. The areas occupied by each program and its environment must be pro-

tected from the time they first appear in core until they are no

longer needed.

2. Transfers should be overlapped with program operations whenever

possible, in order to save time. It follows from this that:

a. The environment of each program should already be in the primary

store by the time the previous program finishes operating, insofar

as possible.

b. The transfer sequencing must be as flexible as possible. Even in

a constant load situation, a given program's operating time may

vary greatly.

c. Programs and tables should be read into primary storage in the

order in which they are needed, except where to do so would pre-

vent a transfer from taking place when one is possible. For

example, if program ABC operates before program DEF, DEF's

environment should not be read in until all of ABC's environment

is in, unless it happens that no entity for ABC can presently be

read, whereas one for DEF can.

3. As few transfers as possible should be made. Transfers take time,

even when overlapped with program operations.

(

March 15, 1963 4TM-10142/102/00

The space available for working storage may be thought of as a limit or

constraint in achieving these objectives.

Methods are presented herein which are intended to satisfy the stated

objectives for working storage. A method is furnished for deciding how large

working storage should be, and vhich entities it should contain. In addition,

a method of drum allocation for systems with drums as the secondary store is

presented.

3. DYNAMIC-CONTROL PROGRAM

Any allocation of core that allows for both the protection of necessary

areas and the overlapping of transfers with program operations in a flexible

manner is completely dependent on the scheme used to sequence programs and

transfers. The allocation method to be presented assumes the existence of a

central control program within the object system as the best method of handling

this sequencing.

A system control program is, of course, usual; the methods it uses, in

contrast, are open to wide variation. A control scheme is presented here

which, it is hoped, will satisfy the requirements better than usual. The

control program will be referred to as CTL; a description of it and its tables

follows.

CTL will be entered at the start of each cycle (or at the beginning of

the entire system run) at CTI. after the completion of each program's operation

at SCX, and at intervals during the operation of all programs at SCI. The SCI

entrance is used to allow CTL to initiate a new transfer if possible. It

March 15, 1963

would therefore be used only when no transfer was presently in progress,

either when an I/O interrupt (indicating the completion of a previous transfer)

occurs or when a prograumned branch to SCI is reached.

Sequence control will be defined by two tables (SPP and SPT) of sequence

parameters, which will be constructed prior to and apart from the cycle itself.

SPP will contain one entry for each program that is to be operated; SPT will

contain one entry for each transfer that is to be made. CTL will step through

these two tables in an orderly way initiating transfers and operating programs

in as efficient a sequence as possible.

To describe the operation of CTL, it will be easiest to first define several

items:

PDPY - in SPT Program dependency. Contains the number of the

program entry in SPP that must have finished

operating before this transfer can be initiated.

TDPY - in SPP Transfer dependency. Contains the number of the

transfer entry in SPT that must have been completed

before this program can be operated.

TSTI - in SPT Transfer started indicator. Set for each transfer

in each cycle as soon as the transfer has been

started (or omitted because of conditionality).

All TSTI's are cleared at the beginning of the cycle.

PUNC - Single Item Program unit count. Set to the number of the

program currently operating.

March 15, 1963 6 TM-1042/102/00

TUNC - Single Item Transfer unit count. Set to the number of the

first transfer that has not yet been made.

XR5 - Single Item Temporary TUNC. Set to the number of the next

transfer that is to be made.

CTL will handle program sequencing in a straightforward manner. The pro-

grams will operate in the order they are listed in SPP. (Those whose

conditionality is not met will, of course, not operate.) The only dependency

on the transfer sequence is that no program will operate until its environment

is in core; this, CTL will determine by checking the TDPY of the program

against the current TUTJC.

Transfer sequencing will be handled largely independently of program

sequencing, and is somewhat more involved. CTL will attempt to initiate

transfers in the order they are listed in SPT. However, if a particular trans-

fer cannot yet be made because its PDPY is greater than or equal to the current

PUNC, CTL will temporarily skip the transfer and continue stepping through SPT.

XR5 will be used for stepping through SPT; TUNC is stepped only to the first

transfer that has not yet been made. When each program finishes operating

(SCX entrance), CTL will reset XR5 equal to TUNC, and so will again attempt to

make any transfers that have been skipped. TSTI is used to prevent a transfer

from being made more than once per cycle. It will probably pay to include a

"skippable" indicator in SPT, because it is worthwhile skipping a transfer

only if a following transfer has a smaller PDPY.

March 15, 1963 7 TM-102/102/100

Any transfers that must be made at fixed time intervals would be made,

when the time interval had elapsed, in preference to (before) any other trans-

fer except a critical WRT.* A critical WRT transfer is defined as one that

must be made as soon as possible after a given program has finished operating

(weapons output tables, for instance).

A few words on the structure of the SPT table are in order here. The RDS

transfers will be listed in the order that the entities are needed by the

programs; the desirability of this has been previously explained (in Objectives).

The PDPY of each will be set to as small a value as possible, based on the

core allocation. Where two RDS are needed at the same time, the one with the

smaller PDPY will be listed first. The critical WIRT transfers will be placed

following the last RDS for the program which makes up the table for the WRT

transfer, and will, of course, have a PDFY of that same program. The non-

critical WRT transfers will also have a PDPY of the program which makes up

the tables. They are expected to be in core for a certain amount of time (set

to as large a value as possible, based on the core allocation) after that pro-

gram finishes operating, and will be listed following the last RDS for the last

program that operates during that expected time, after any critical WRT

transfers at the same point. In other words, if it is possible, a backlog of

The assumption is made here that the area for these transfers is reserved
permanently. If this is impossible, it would be necessary to restrict the
time during which the transfers could be made or to dynamically find space
for them.

March 15, 1963 8 TM-1O42/1O0/O0

environment for several programs is built up, to allow the WRT to be made

without delaying the system.

It mst be kept in mind that the order of listing in SPT is not necessarily

the order of actual transfer; in fact, it is probably very rarely so. A few

facts are pointed out which may serve to clarify the working. of the control

method and demonstrate its extreme flexibility:

1. A critical WRT transfer will almost certainly be skipped at least once.

Transfers will continue to be made until the program making up the

critical WNT table has finished operating. The next transfer to be

started will then be the critical WRT.

2. If one program sets the conditionality for another, the second program's

environment obviously cannot be read in until the first program has 0
finished operating. However, there is no reason that environment for

future programs cannot be read in if there is room for it in core. It

should perhaps be pointed out here that each entity is allotted a space

in core for a certain number of program operations, and that this space

is thus available for it whether or not any of the surrounding environ-

ment is in core. (The same area, however, may be allotted to more

than one entity, if they are mutually exclusive.)

3. In some situations it may be necessary to read in a table Just before

a program operates, not sooner. (The radar input tables in SAGE are

presently handled this way, for instance.) Again, there is no reason

to stop and wait to make these transfers; following transfers can be

made until the program Just preceding the one in question has finished

March 15, 1963 9 TM-1042/102/00

operating whereupon the next transfer to be initiated will be the

skipped one. If there is not time to make any following transfers,

the critical RDS transfer will not be skipped, and the system will

not be delayed.

Note that the construction of the two sequence parameter tables is a

trivial task, once the core allocation has been accomplished.

It seems to the author that the outlined method of program control almost

completely satisfies the basic properties assumed to be desirable. It allows

for great flexibility and perfect control at the same time. It should be

pointed out that this control method can be used even if the method of allo-

cation to be presented is not. It should also be pointed out that, with a

few minor modifications, the method can be quite readily used on computers

with more than one I/0 channel or more than one compute module.

4. WORKING -STORAGE ALLOCATION

Several definitions are needed for the discussion:

ADVANCE AREA (A area) - That area of storage that is reserved for an

entity (which mast be read in) before it is

actually needed by a program (i.e., it mast be

in core before the program can operate). This

area is, of course, equal in length to the

entity in question. 0

HOLDOVER AREA (H area) - That area of storage that is reserved for an

entity (which must be written out) after it is

actually needed by a program.

March 15, 1963 10 TM-1042/102/00

CO•I•UNICATION AREA (C area) - That area of storage that is reserved for a

(nontemporary) entity after it is needed by

one program, and before it is needed by another.

MUTUALLY EXCLUSIVE ENTITIES - Two entities are mutually exclusive if they

can never appear in primary storage at the

same time, even though they appear in the

environment of the same program.

It is clear from the description of the system control program that the

amount of flexibility realizable in the transfer sequencing is a function of

the working-storage allocation. The sequencing gains flexibility as the

advance and holdover areas increase in width. 0
The problem of optimum static allocation of working storage is thus one

of maximizing these areas, subject to the constraint that all entities must

fit in the available space without overlap.* When the problem is stated this

way, it sounds as though one of the mathematical programming techniques such

as linear or dynamic programming might provide a solution. However, a moment's

reflection will show that the function determining whether a given set of

entities will fit is not linear, or even continuous; further, adding or deleting

one entity may change the value of the function completely. The function is

in fact combinatorial. Therefore one method of solution is to try all the

possible combinations of locations of entities for all the possible combinations

of advance, holdover, and cmnmunication areas to find the optimum solution.

This is clearly impractical.

O 0Overlap is of course permissible for, but only for, mutually exclusive entities.

March 15, 1963 11 TM-1042/102/O0

It is possible, however, to split the problem into two parts: that of

setting advance, holdover, and communication areas optimally, and that of

fitting the resultant fixed-dimension entities into the available space.

Because of the constraints acting on each of these parts of the problem, it is

necessary to allow for trial of only a small subset of the total possible

number of combinations.

The splitting of the problem has several important advantages in addition

to that of making a practical solution possible. The setting of A, H, and C

areas is highly system dependent; moreover, it is quite difficult to define

and obtain a rigorous solution for this part of the problem. The problem of

fitting fixed-dimension entities into the available space, on the other hand,

is almost completely system independent; furthermore, its solution can be

much more easily defined and the problem solved much more rigorously. (This

is not meant to imply that arn great degree of rigor, in the mathematical

sense, has been achieved in the present paper. The orientation herein is

completely toward a workable, more than an elegant, method.)

For the above reasons, then, the problem has been split into two parts,

which will be presented separately.

4.1 SETTING ADVANCE, HOLDOVER, AND CO1AUNICATION AREAS

Working storage can be thought of as a rectangle representing a single

complete system cycle, with time as the horizontal dimension and space as the

vertical dimension. The horizontal measurement is in units of program

operations, with each column representing a single program; space is measuredr

March 15, 1963 12 TM-1I02/102/O0

in machine registers or words. The programs and tables (entities) of the

system can be thought of as individual blocks of fixed vertical dimension

(length) and horizontal position (sequence), with the horizontal dimension

(A, H, and C areas) and vertical position (address) variable as shown in

Figure 1.

Working Core Rectangle With Entity

Prog. ops.

", IBI.C IDIEIFIGI tAd. I, I I I i I I I I,

-~I

I I

addresses

4,.

Dotted lines indicate variables

Figure 1

March 15, 1963 13 TM-1042/102/O0

As has been explained, the two variables will be set separately in the

method presented here. First, C areas are inserted where necessary and

possible, based on the available space. Next, all A and H areas are set to

zero or some other minimal value. Then the vertical positions of all entities

are assigned. If it is possible to fit all entities into the available space,

the A and H areas and times are increased to some larger value, where it is

possible to do sq and another attempt is made to obtain a fit. This process

continues until a fit is impossible, whereupon the previous allocation is

used, or until the horizontal dimensions of all entities can bc increased no

further.

A clear constraint on the amount of A, H, and C area allowable is the

length of working storage; each column individually can be no longer than

this.

It is harder to arrive at a definition of optimum for these settings because

it is greatly dependent on the object system and on the individual programs

within the system. For instance, a simulation or system test program will

usually be allotted less advance area than a program performing an essential

system function.

In every case, however, it is possible to construct a function which yields

a value, for each possible setting of advance and holdover area, for each entity,

such that an optimum solution results when these values are as nearly equal

as possible. The required function can be in the form of a matrix, if no

other method is feasible. In some cases maximum and/or minimum desired times

might be used in conjunction with the function.

March 15, 1963 14 TM-10142/102/00

One possible such function, which applies to the systems used as models,

represents the amount of probable program operating time contained within

advance and holdover areas. If these probable times, (not areas), weighted

appropriately for special cases, are as nearly equal as possible, an optimum

or near optimum solution should result. An approximate formula for such a

function is given:

n

A = P (L Tc)
C=l

where: A is probable advance time for the entity.

w is a weighting factor for the entity.

c is any one of the n columns in the core rectangle (each

representing the operation of a single program) in which an

entity has space reserved for it before it is needed by a

program.

P is the probability that the program in the cth column will
C

operate in the same cycle for which the entity in question is

needed. It could be set to zero for all simulation or system

test programs if desired.

T is the probable operating time of the program in cth column,c

assuming that the program does operate and the system load is

that for which optimization is desired.

March 15, 1963 15 TM- 104i2/102/00

The function is admittedly a crude one, except where only one conditional

program appears in the advance time for an entity. However, it is quick to

compute. It may also be that some other weighting factor than probability would

be more useful; if so, this could be supplied to the allocation program in its

place. The decision as to what does indeed constitute an optimal setting of

advance and holdover times is left open; the function above is included only as

one possible answer.

A function similar to that defining advance time will, of course, be used

to define holdover time. A definition of communication time is unnecessary,

because a communication area between two appearances of an entity either exists

completely or not at all.*

It is clear that, aside from hand designated entities and areas of storage,

all system entities can be considered to be in working storage. This is not to

say that transfers are necessary for all; some entities in working storage may

well remain in primary storage throughout the system cycle. One of the goals

of the allocation process will be to minimize the number of transfers required.

Including all entities in working storage merely allows for a consistent treat-

ment of A, H, and C areas for all entities. If the designation of a permanent

The question of whether an entity must have the same or can have a different
address for different appearances is system and computer dependent. The allo-
cation methods can easily adapt to either case.

March 15, 1963 16 TM-1042/102/O0

storage area is desired, this can be done after the working storage allocation

is finished, and will consist only of renaming a storage area, not of moving

any entities. Entities which remain in primary store throughout the cycle will

be kept together automatically by the working core allocation method.

It should be re-emphasized here that a practical, rather than a rigorous

method is aimed for particularly in this part of the problem. A great deal of

sophistication in setting A, H, and C areas does not seem warranted unless more

stringent standards for the desired outcome can be established. This does not

seem likely with a static allocation.

The process of fitting the entities into the available space, once the

horizontal dimensions have been decided upon, is described in the next section.

For the present, it is necessary to know only that such a process exists, and 0

that if it cannot fit the entities, no direct clues are available to indicate

the probable reason (or at least none have occurred to the present writer).

The complete method of vorking-storage allocation is now presented:

1. Insert communication areas wherever they are necessary, in other

words, wherever two nonconsecutive programs have the same non-

temporary entity in their environment.

2. Determine the environment for every program with no advance and

holdover areas and with the comiAnication areas presently extant.

If all environments individually fit into working storage, proceed

to 3. If not, remove comnmunication areas* according to the follow-

ing rules until a fit is obtained:

* S
If any column is too long after all C areas have been removed, the problem is
not one of allocation.

March 15, 1963 17 TM-1042/102/00

a. Remove first that area which appears in the largest number of

columns which require shortening. (The columns which need shortening

may change with each removal; a re-appraisal is therefore necessary

each time).

b. If a does not determine a unique entity, temporarily change the

cmmunication areas involved into advance and holdover areas by

removing them only from the columns which require shortening and

any columns in between. Then, using A for the advance time and H

for the holdover time thus created, compute for each entity involved:

A (A + H) or H (A + H), whichever is smaller.
H A

Choose the entity which has the largest value for the above function

and remove that communication area (and restore the others).

3. Attempt to fit all entities into the available space, with no advance

and holdover areas. If they do not fit, go back to 2 and remove addi-

tional communication areas by using a smaller value for the available

space.

4. Increase advance and holdover times as follows:

a. Choose a maximum value for A and H times which is larger than the

previous one.

b. Insert, up to the capacity of each column, advance and holdover

areas to bring the times up to the maximum desired, if possible.

Do this by an iterative process, on each pass increasing areas by

March 15, 1963 18 T1042/102/00

one column only, until a pass is made with no possible increase.

If more than one entity can be extended into a column, choose that

one which presently has the smallest value for the time being ex-

tended. Never extend a time so that it exceeds the maxinim value.

5. Attempt again to fit the entities into the available space. If they

fit, return to 4. If not, the most recent allocation that did fit is

the final one.

A few facts about this process should be pointed out. The reason for re-

moving as few communication areas as possible is that each such removal

necessitates two transfers: a WRT and a RDS. The reduction of advance or

holdover areas can only necessitate a single transfer. The function given in 0

2, b is intended to ensure, if possible, that when a communication area is

removed, the holdover and advance times for the necessary transfers are both

as large as possible.

The process as given will almost izmediately produce an allocation which

fits, then will improve upon it steadily. This is desirable if the time avail-

able for running the allocation is limited; a usable allocation is obtained

even if the program is cut off before it is finished. The amount of increase

in the maximum value for A and H times for each iteration will have to be

determined empirically. In certain situations it might be better to increase

the time greatly eacn time a rit is obtained and decrease it greatly when a

fit is impossible using a sort of binary bracketing technique. However, the

attempted fitting of the entities will often require more time when a fit is

impossible than when one is possible. 0

March 15, 10-3 19 TM-1o42/102/oo

Note that the amount of secondary storage available is not a consideration

in choosing communication areas to remove. The scheme as outlined minimizes

the number of transfers, and therefore the amount of secondary storage, required.

If space is not available for all necessary entities, the problem is one of

system design, not of allocation. This assumes that secondary storage is not

time-shared as is primary storage. The problem of time-sharing secondary

storage is not approached here.

4.2 FITTING ENTITIES INTO WORKING STORAGE

Once the horizontal dimensions of entities have been set by whatever method,

the hardest part of the allocation job must be tackled: that of fitting the

entities into the primary store so that the total amount of space required is

as small as possible. A fit satisfying this condition will henceforth be

referred to as a solution to this problem.

The method outlined here, of finding a solutionworks as follows: successive

complete allocations are tried, each an attempted improvement on the previous

one. The improvement scheme is designed to reduce drastically the size of the

subset of combinations that is tried, without ever eliminating from this sub-

set all solutions. No proof presently exists that the subset tried will indeed

contain at least one solution; all that can be said at present is that a

solution has been found in every case that has been tried. It should be pointed

out that a solution is often not necessary; it is required only that the entities

fit into the available space, not the shortest possible space. It should also

be pointed out that a solution may sometimes be possible, but impractical of

(attainment, because of time restrictions.

March 15, 1963 20 TM-•0•2/102/OO

Determining the minimum possible space required for a given set of

entities is by no means a simple problem; indeed, in soae cases it cannot be

done without actual allocation. It is fairly easy, however, to decide upon

the lower limit of this minimum. If the longest column is allocated in the

shortest possible way, the total space required cannot be less than this for

any column. It is quite often possible to pack the longest column in this way;

this then indicates a solution and further trials are pointless.

The working storage allocation algorithm for entities of known dimensions

is now presented:

1. Set the addresses of all entities equal to the first address of work-

ing storage. Put all entities into Class 1.

2. Allocate the entities one by one as follows:

a. From among the entities not yet allocated, choose the one with

the smallest address. If more than one of these exists, choose

the one which appears in the most columns; if more than one such

exists, choose the one which has the greatest distance from its

first to its last column; if more than one of these exists, choose

any one of them. The entity thus chosen will be referred to as

Entity A.

b. Allocate Entity A to its present address. Change the addresses

of all entities meeting the following criteria to the address of

Entity A plus the length of Entity A. The criteria are:

March 15, 1963 21 T14-1042/102/00

1) The entity must be as yet unallocated.

2) It must have an address less than or equal to the address of

Entity A plus the length of Entity A.

3) It must appear in at least one column in which Entity A also

appears, and must not be mutually exclusive with Entity A.

c. In preparation for future improvement of the allocation, set up

a parenthetical list of entities for Entity A. Eligibility for

tnis list depends on the class of Entity A, as follows: If

Entity A is in

Class 1 - include all entities which meet the criteria listed below.

Class 2 - include all and only those entities which appeared in

parenthesis for Entity A in the previous allocation.

Class 3 - include all entities which meet the criteria listed

below, and which also appeared previously in parentheses

for the entity which Entity A replaced.

Criteria referred to above for an entity to be put in parenthesis

for Entity A:

1) Its address must have been changed by the placement of Entity A.

(This excludes Entity A, among others).

2) Its address, Just before Entity A was allocated, must have

been the same as that of Entity A.

3) It must appear in some column in which Entity A does not appear

or Entity A must be mutually exclusive with some third entity

(with which this entity is not mutually exclusive.

March 15, 1963 22 TM- 1042/102/00

3. When 2 has been performed on every entity, a complete allocation

has been made. Only one allocation is kept at any one time; this

most recent one will be kept if it is the first one, or if it requires

less total space than the previous one (i.e., if the largest ending

address of any entity is less than the largest ending address of any

entity in the previous allocation). "Kept" means that the complete

allocation, together with its parenthetical list, will be stored, and

any further manipulations will be performed on it only.

At this point, if an improvement is to be attempted* (on the

best allocation chosen above), try to realize one as follows:

a. Determine which entity has the largest ending address; call this

Entity B.

b. Choose the entity (most recently inserted in a parenthetical list)

which has at least one common column with Entity B, or which

appears in parentheses for an entity which has at least one common

column with Entity B. If no such entity exists, no further improve-

ment is possible, and the allocation is finished. Call the chosen

one Entity C. Call the entity in whose parenthetical list Entity C

appears, Entity D.

c. Change Entity C's address to that of Entity D; Entity C thus re-

places Entity D. Put Entity C into Class 3, and remove it from

Entity D's parenthetical list.

*An improvement might not be attempted if:

a) It is clear that a solution has been found, or
b) The entities have been fitted into the available space, or
c) The allotted time has elapsed.

March 15, 1963 23 TM-1042/102/O0

d. Reset the addresses of Entity D, and all entities which were

allocated after Entity D, to the first address of working core.

Put all these entities into Class 1.

e. Put all entities which were allocated before Entity D into Class 2.

f. Repeat 2 completely (for all entities). Note that the Class 2

and 3 entities will retain their present positions.

4. When an improvement is no longer deemed necessary, the allocation is

finished. This could happen either when the entities have been

fitted into the smallest possible space, or when they have been

fitted into the available space.

A more informal description of the allocation process will doubtless make

it easier to grasp. In addition, since no proof exists that the process out-

lined will always lead to a solution, the only way to support whatever validity

it has is to outline some of the reasoning which led to it.

The basic process of allocation on each single pass is to start at the

top of working core, locating entities one by one, in each case pushing down

all other entities with which an unwanted overlap would occur. Locating the

widest one that will fit in every case tends to lead to a picture which looks

roughly like Figure 2. However, it can also lead to a situation like the one

in Figure 3, which can obviously be improved upon, as shown in Figure 4 or

Figure 5.

It seems to the writer that when two entities are located in one of the

relationships shown in Figure 6, no improvement is possible. Only when the

relationship is one of those shown in Figure 7 does the choice of which entity

r. to locate first depend on what other entities are present. In other words,

March 15, 1963 24 TM-1042/100/O0

Figure 2

F
F

F F

G
G F

ig

Figure 3, Figure i

March 15, 1963 25 TM-10o2/102/oo

Figure 5

Figure 6

Figure7

March 15, 1963 26 TM102/102/00

where the first entity completely "covers" the second, the pair cannot exert

any adverse influence on the location of other entities, and only one way of

allocation need be tried.

The parenthetical lists, then, are made up of all displaced entities

which are not completely "covered" by the displacing entity for which they

are in parentheses. Because the goal is to pack the longest column if possi-

ble, the displaced entities are not included in parentheses unless they could

be packed as tightly as the displacing entity. The parenthetical lists are

thus intended to be lists of all entities which might profitably be placed

in place of the entity for which they are in parentheses.

Each attempted improvement is accomplished simply by changing one of the

previous choices as to which entity should be located at a specific point. 0
At least one of the entities involved in the change is required to have a

common column with the last entity, because, if the allocation can be improved,

the last entity must obviously be located at an earlier address; this can be

accomplished only if something in one or more of its columns is moved out of

the way. The improvements are always attempted on the best allocation attained

thus far; much time is saved by so doing. If the improvement scheme is valid,

it is valid for any allocation, including the best so far.

Consider the effect of removing the restrictions described, that is, to

include all unallocated entities in parentheses for the entity being

allocated, and when attempting an improvement, to do so on the most recently

obtained allocation, changing any of the previously made choices without aMy

restrictions on columns. The allocation scheme as outlined. but with these

restrictions removed, will cause a trial of all possible orders of allocation.

March 15, 1963 27 TM-1042/102/00

Note that the maximum number of passes that can be made, before the

allocation is either improved upon or finished, is equal to the total number

of entries in the initial parenthetical list for the allocation. This number,

in turn, has a maximum equal to n(n - 1)12, where n is the number of entities;

in practice, because of the restrictions, the actual number of passes made

between improvements is a tiny fraction of this maximum. Note also that the

improvement sequence must terminate, because on each pass one possible order

of allocation is tried and eliminated from further consideration.

Therefore, if the reasons for the restrictions are valid, the method

exactly as outlined will find a solution.

The restrictions were arrived at by observing the action of the scheme

on actual allocations, then attempting to improve the efficiency of the

scheme without impairing its validity. Further refinement may be possible.

4.3 GROUPS AND HAND ALLOCATIONS

Cases may arise in which it is necessary or desirable to locate a set

of entities adjacent to each other in working storage; such a set will be

called a "group." It may likewise be necessary in some cases to assign an

absolute address to an entity, to hand allocate it. Both cases can be

handled by the allocation method described, with some modifications. The

necessary changes are described separately only for clarity.

Groups may be necessary, either because parts of the same table must be

read or written separately but must be together and in order in primary

storage, or because it is profitable to read at one time several different

entities, which must therefore be adjacent to each other in both primary and

March 15, 1963 28 TM-1042/102/00

secondary storage. The first of these reasons would necessitate a group of

fixed order, the second a group of variable order. At present, it is intended

that the decision to group entities will be made by the programmer, and not

by the allocation program.

It is useful to divide groups into two classes. A group will be called

"normal" when it is possible to arrange the entities in the group in order

such that each succeeding member never appears as environment for any program

for which its predecessors do not also appear. (A fixed-order group is con-

sidered to have only one possible order). All groups not meeting this

restriction will be called "unwieldy."

Normal groups fit in very neatly with the logic of the allocation method,

and present only a small problem. Unwieldy groups, and individual hand allo-

cations, on the other hand, may present the problem of optimally filling a section

of working storage, while at the same time achieving an optimum allocation of

the entire area. The problem of optimally filling the space between members

of an unwieldy group, as shown by the arrow in Figure 8, is in itself complex

enough so that the cost of solving it would be inordinately large. The problem

is therefore not approached here; it appears far more practical to put on the

user the burden of wisely grouping and hand allocating entities. A method will

be outlined, however, whereby the allocation process can be made to respect,

if not to optimize in every case, hand allocations and unwieldy groups.

IF I gure

Figure 8

March 15, 1963 29 TM-l1042/102/00

One restriction on groups is included here: no entity can be a member

of more than one group. This rule eliminates the necessity for elaborate

legality and relationship checks; the allocator is not intended to be a

list processor or tree-structure analyzer.

The only effect that groups and hand allocations have on the setting

of advance, holdover, and communication areas is that unvieldy groups should

be avoided by selective setting of these areas, if possible; this is a simple

matter. The following additions and changes to the placement scheme will

allow it to handle all groups and hand allocations:

1. Allocate all hand allocated entities first, and include them on a

"protected entity" list. Do not change either these allocations or

this part of the protected list in any future allocation pass.

2. When choosing an entity to allocate, choose the eligible one that

has the smallest address. An entity is eligible if it has not yet

been allocated and also satisfies any one of the following conditions:

a. It does not belong to a group.

b. It is the first (that one occupying the most columns) of a

normal group.

c. It belongs to an unvieldy group.

3. Before allocating a chosen entity which is not a group member, make

sure that it does not overlap with an entity on the protected list.

If it does, change its address to the address plus the length of

the protected entity and rechoose an entity to allocate. If no

overlap occurs with any protected entity, allocate the chosen entity

at its present position.

March 15, 1963 30 TM104 12/102/00

4. Before allocating a chosen entity which is a group member, proceed

as follows:

a. Collect all the members of the group and arrange them in order,

according to address if the group is variable order, according

to the given order if the group is fixed order.

b. Increase the addresses, if necessary, of any members of the

group, so that the address plus the length of each member is

greater than or equal to the address of at least one other

member of the group (in other words, pull the group together).

If it is necessary to change any addresses in this way, rechoose

an entity to allocate.

c. If no addresses were changed, make a trial allocation of the

group in its present position. Increase the addresses of any

group members necessary, so that there is no overlap between

members.

d. If any member of the group, as placed in the trial allocation,

overlaps with any protected entity, change its address to the

address plus the length of the protected entity, and rechoose

an eligible entity to allocate. If no such overlap occurs,

allocate the entire group to its present (trial) position.

e. If the group placed is of the unwieldy type, put all of its

members on the protected entity list.

5. In setting up parenthetical lists, add the following rules:

a. Do not set up a parenthetical list for any group member except

the first of a normal group.

March 15, 1963 3l TM-1o42/1o2/o0

b. Include, in the parenthetical list for the first of a normal

group, all entities that would normally be eligible for inclu-

sion in parentheses for any member of the group, if a were

not followed.

c. Never include a group member, other than the first of a normal

group, in any parenthetical list.

6. Before each attempted improvement pass, remove from the protected

list all entities except hand allocations.

The purpose of these additions and changes is of course to cause groups

to be treated as single entities, and to protect hand-allocated entities.

Variable-order groups are allowed to fall into place in the order in which

they fit tightest with other entities.

It should be mentioned that the grouping of entities in normal groups

will usually have no adverse effect on the allocation, and will not inter-

fere with the search for an optimum allocation. Unwieldy groups and hand

allocations, however, unless wisely chosen, may adversely affect both these

things. It will be noted that some improvement in the packing of entities

around unwieldy groups and hand allocations my be achieved by the normal

improvement scheme; however, no attempt is made to go further than this.

5. DRUM ALLOCATION

A simple method of drum allocation has been developed for the systems

used as models, and is presented here. It should be applicable to any system

with the following characteristics:

4

March 15, 1963 32 TM- 1042/102/00

1. Drums are used as a major secondary store.

2. The chief problem to be solved by the allocation is that of fitting

all necessary entities on the available drwns in such a way that as

few drum accesses as possible will be needed to transfer any single

entity.

3. The sequence and timing of drum RDS is unpredictable enough so that

minimizing drum latency time by locating entities optimally is

impossible, except as in 2.

A nominal drum field length of 2048 registers is assumed for the purpose

of illustration. It is also assumed that the total length of entities needing

drum assignzient does not exceed the drum space available; if it does, the

problem is not one of allocation.

It follows from 2 that as few entities as possible should be unnecessarily

split across drum fields. In other words, a 3000-word entity should appear on

two and only two drum fields, if possible.

Each entity may be thought of as occupying a certain number of drum fields

plus some excess number of registers, in other words, modulo 2048. Thus, a

5000-word entity consists of two full durr fields and 904 registers on a third

field. It is obvious that if this entity has a starting address less than or

equal to 1144 0 (2048 - 904) on one drum field, and is continued on consecutive

drum fields, it will appear on the mininum three fields. In other words, if the

entity modulo 2048 will fit in the available space on one drum field, the

entire entity will occupy the minimum number of fields. 0

March 15, 1963 33 TM-104.2/102/00

The basic allocation method is now presented:

1. Determine the modulo 2048 length (length.) of all entities and

arrange them in order, based on this length. Imnediately, assign

all entities that have a zero lengthm to entire drum fields.

2. Assign the unassigned entity with the greatest lengthm starting

at the beginning of the first free drum field. This entity may

or may not occupy several drum fields; in any case, the available

space on the last drum field it occupies will be 2018 minus the

lengthm of the entity.

3. Choose the unassigned entity with the greatest lengthm, whose

length, is less than or equal to the available space. Assign

this entity starting immediately following the most recently

assigned entity. The available space will now be the previous

available space minus the length, of this entity.

4. Repeat 3, until there is no entity whose length is less than

or equal to the available space. At this point a string has been

completed. Start at the beginning of the next drum field and

assign the next string in the same way. Keep assigning strings

until all entities are assigned or no unassigned drum fields

remain.

It may clarify matters to think of all entities as having an actual length

equal to their length,, so that each string occupies a single drum field. The

two strings in Figure 9 are logically equivalent, for purposes of drum allocation

((ignoring nmber of dums available).

March 15, 1963 3 TM-1042/102/00

Drt A
Field

(2048)B
A UI A

Lengths Lengths,

BA: 3o48 1000

B: 500 500

C C: 2300 252

D: 4246 150

E: 146 146

Totals: 10240 2048

-D

Figure 9

S

March 15, 1963 35 1042/102/O0

It is obvious that the above scheme does not necessarily produce the

best possible allocation; that is, it will not always fit all the necessary

entities on drums. The drum-allocation problem, too, is combinatorial in

nature. No clues pointing to possible ways of improvement such as exist in

the vorking-storage allocation seem to be available in drum allocation. In

general, it in manifestly not feasible to try all possible ways of allocation.

All that can be done, therefore, is to include some improvement scheme which

maximizes the probability of indeed finding an improved allocation. A few

as yet untested suggestions for such a scheme are advanced.

Same improvement could probably be produced either by trying all combi-

nations until no more than a specified minimum number of blank registers

remain at the end of each string, as the strings are initially allocated, or

by trying certain predetermined subset of combinations over the entire allo-

cation, and choosing the one which fits the most entities without unnecessary

splitting. It is probably best, when trying combinations, to change the

selection of the earlier entities in each string, as this will tend to pro-

duce more of a change in the string as a whole. It will probably accomplish

more to choose a new entity that differs noticeably in length from the pre-

vious selection when changing a selection. Whether or not an improvement

scheme is warranted at all will, of course, depend on how tightly the object

system fills the available drums.

The method as it stands is expected to produce good results, especially

in a large system with a great number of entities of varied length. The

reason for picking the longest entity that will fit in all cases is that

March 15, 1963 36TM-102/102/00

this will tend to save the shorter entities until last (when they vill be

most needed for filler) because fever unassigned entities remain. 7his is

easily seen if the outcome of assigning the shorter entities first is

considered.

It will be noted that the method as described will cause no unnecessary

splitting of entities across drum fields. If all drums are assigned, and

unassigned entities remain, it is sometimes possible to split these across

drum fields wherever there are spare registers. Note that if two adjacent

strings have spare registers, the second string can be moved down so that the

spares are on consecutive drum fields. Note also that the order of entities

in the strings (once they have been picked) matters not a whit, so that

exchanging within the string can be done so that the least important entities

are split across drum fields. (Figure 1 makes this immediately clear.)

Only hand-allocated entities remain to be mentioned. If these exist,

they must be assigned to drums first and other entities assigned around them.

If an entity is chosen for assignment that will conflict with a hand-allocated

entity, it is necessary only to choose the next entity in the list that does

not, if there are any such. A string must end before each hand-allocated

entity and a new string must be started Immediately after it, if there is

amy available space.

6. ImLEMEmTATION AND PRELIMINARm TESTIEo

Certain portions of the allocation methods described have been programmed

for the SAGE computer (AN/FK-7), with the SAGE application primarily in mind. 0

MArch 15, 1963 37 TM- 10142/102/00

Other portions are presently being written and checked out. A certain

amount of testing has been accomplished; the results of this may be of

interest.

A brief description of the allocation system, which is presently called

ALLOCATOR, is necessary. Because the present SAGE control program and sequence

parameters are different from the ones presented, the advance and holdover

areas cannot be set for SAGE as outlined. In fact, these areas cannot

profitably be set by a program at all until a change is made in the present

control program. Therefore, it has been decided to require a programmer to

construct the sequence parameter table (there is only one in SAGE at present);

this table rigidly fixes advance and holdover areas. A program has been

written to analyze this table, make legality checks for misplaced transfers,

columns of excess length, etc., and determine from it what the advance and

holdover areas are. The fitting of entities into core is then done as

described.

A program to set advance and holdover areas and construct sequence para-

meters for a system with a control program similar to the one outlined is

being written. It is expected that this will make AILOCATOR usable for the

new BUIC system. This effectively demonstrates both the flexibility of the

allocation methods and the advantages of splitting the working-storage-

allocation problem into two parts.

March 15, 1963 38 TM-1042/102/00

The following programs are presently included in ALLOCATOR:

CTR - system control program. Reads inputs, operates other

programs, etc.

SPZ - sequence parameter analyzer program. Described above.

ALC - working-core-allocator program. Fits entities into avail-

able space.

APR - ALLOCATOR-print program. Puts out documentation, including

a two-dimensional working-core picture,* on the direct or

delayed printer.

CPL - compool-construction program. Makes legality checks and

outputs a binary and symbolic compool.

PRM - permanent-core allocator.

DRM - drum allocator.

Under construction are the following:

ADV - program which sets advance and holdover areas and constructs

sequence parameters.

ITM - a simple item allocator. (Based on the saew basic design as

the drum allocator.)

A very small amount of testing has so far been accomplished; even so,

the results so far are quite encouraging. ALC has operated quite fast, even

in situations where it was impossible to pack the longest column. Most of

the tests so far have been run on a working storage environment of approximately

70-80 entities, 35-45 program operations, with approximately 1/2 to 2/3 of the

*The picture is illustrated in an appendix.

March 15j, 1963 39 TY,102/102/00

total available core area filled. In these tests, ALC has required approxi-

mately one second for its first pass, and about 1/3 to 1/2 second for each

complete iteration thereafter. Its longest total time so far has been 192

seconds in a situation where it was necessary to try all combinations (within

the restrictions previously outlined).

In contrast, running ALC on the same environment with only one restriction

removed (that of column "cover") has yielded operating times of 15 or more

minutes, in some cases without producing a solution.

No tests have yet been run on any of the other parts of the allocator.

7. CONCLUSION

The chief concern of this paper has been the solution of the working-

storage-allocation problem. A basic approach to the problem has been presented,

together with programmable and practical solution methods for its various

facets and for closely connected problems such as that of system control.

There may be many improvements possible in the techniques outlined. Neverthe-

less, the methods are usable, at least for some systems, as they stand;

vhere thcy are not, they can serve as a useful starting point.

It should be pointed out tNzt, although the methods presented were

designed to function best in. conjunction with each other, they are not

necessarily interdependent. For instance, the dynamic-control program, or

the drum-allocation scheme, can be used independently, if desired. Even the

working-storage-allocation scheme, although it can be used to fullest

advantage only with the dynamic-control program presented, can be used with
C

March 15, 1963 40 TM'10,/102/00

other control methods. In point of fact, the presently implemented version

of the allocator does just that.

It should be clear by now that the entire allocation of a large-scale

system revolves around the working-storage allocation. The methods outlined

here can be used to build a system-generating system, which would fit any

large-scale system into a computer with minim human effort. It would seem

that all such systems have enough in common to make it possible to write one

allocator system for all, in which minor adjustments for individual systems

could be made. This conjecture could be proven only by further study.

It would also seem but a short step from the methods outlined here to a

completely item-based system where the allocation began at the item level.

Items would be placed in tables according to their content and use, and the

tables would then be allocated as outlined here. At present, items are

usually assigned to tables by humans directly. Here again is a subject for

a future study.

One problem not approached here at all is that of changing allocations

and compools with minimum effort. It should be possible for an allocator

to not only fit a system into the machine initially but also to determine the

cost of proposed changes and to make these changes with minimum cost. These

seem, however, two completely different problems. Muich work remains to be

done in this area.

Nevertheless, the methods presented here make possible the construction

of a very powerful allocation tool. With such a tool, organizing or changing

a large-scale system would be a far simpler and safer task than it is at present.

March 15, 1963 41 TM- 102/102/00
(Page 42 blank)

APPEN•fDIX

The computer-produced picture on page 43 shows the working-core section

of the SAGE system (Model 9). ALLOCATOR was used to determine program

environments, from the program listings and the sequence parameter table, and

to allocate working core.

In this particular situation, the allocation is less than optimum because

of the existence of a (fixed-order) unwieldy group: TAPO, TCPO, TDP0, TEP",

and TFPO. Reversing two transfers to make the group normal has enabled

ALLOCATOR to produce an allocation more than 700 registers shorter.

March 15, 1963 43 TM-1042/102/00

I XKT I CFO I K14T I KAS I KW ISIS I46A 1 W IC11 1 1IP 1 4C" I C'tS I TRC I AM I TRK I C I AAP I CTA ICTS I AO I C*4 I WAP BIDIN

S................ I~o~o,.00 -- I1----. ---..--- * ----- -- I 023000--- 1 23000 ---- --- - ---. ..

ICFm I- "IATSO . 0J IaI I WAP * 4 . 4 I...
I. "II
:r24023----- ---- 1024023 ---- 4 1024023---- ----- ---- ---------- 4

IKATO IMA o ITRC s "

1025372 1025355 1I .

I ------------- --- I-- I....I I I- I
126124 1025373 YAK -.. " 1 I. .. 1 I. . .

------- 1...-025555 I... I .
... 6125.. IK 5 - I" " I. " 1 .. I .

XKT I° ". .. "I .* .. .• II

03I I..I I" . II I. ..

. I . "3 .. .•

. . " I. . .I l. . . IS.. I " I -- - - - - - - - - -- - - - - - - - - --. II • •

. I 103i51032015

.1. . I1 I -. AAO SIXPO 1B13N
'. . I .. 1 1.

.

. 32 I- •.............3371a 1033712 - I
S..... I I XXXX .10344131034413 -.--- 1034413 ---- ITPC 1. 01.

. I Io...........XXXXXX 0346541MIP CIS * IR •O • I . .34614 ;A- I- -- I-1

S............. I -------------I A 1 .103562 . I

" I I... ... ".. I 103517 : :036053 I

I 'ýSITO ..------------ I .. 0356.261.
. II 03 103•434 1 .1- -10360: 4----I

. I I 0366321- .. .AC -:c355 I.
." I I I" ------ . .1 ... I I................. .. I

.........................." I.......... ... 5 • •IO 1- --- ---: 10..... ---.. I

..................... I• • I.............................i.............................. I- -................ * I
..................... I • • XXX I.................II 03157•--------"-I-----I..---..--........l

... .. •" I........................I IS........ S II.......... I.................I

.. 1 1.. 0 I I• 00 I I .I.... I
.. I" I :I ...OI...I

S- - - ." . I• . I I 1- " -104114..•......... 04.
KW I 1 104210 1- IAAP * w

SI--------------------------------....... 1. I04
... I................ I.. 104e40. .I ..

I I. 1043260:RAP"
S.............I

I10452611- .. 10J43261 '---- 1. .1 I *

................. *

I. Ii I- .. .I . .
.....I

KAS ISIS • " . • I. •. • .. ----- .I....I I.
.... I 10465 0 . 104500 1 - I.04-1411. -1-..... .. •..

................. I " ." "".I---------------. I I. .. .
S. " I I

..... .• I 04 5076 - 1 I I-
.. I I .- -....i I. I . .1.. I

. 4 - 4 - I....I.I.. .. I I .. ." -..I

................... • IS • I...... .. .I
"" i i I I. .I"
............ II".".. "... l....05070I 0 5 I.....

• . .. I " • I. i I...••• •• IX

I 105.1..----............................... II
" I.......0"1... 10........XI

................... I.........."..................."O.I.. ".........I

....................I I I•..1:: : : :: : : :: .-------------..... -- 0 I
....................I I" .. ITRIK • I........... ". •................"...I

. I .1 .1 9 I

. I I. •". I I I - :........... I I' •" I I•...•I I I.....................•"• •••• I
........ I II• '. I • " " I I........................ •••• I

I.... . . I I". . ..I I.. ..I I I........... ""..... ""........

"WAR I+ 4I I................................•""" " •" "" •I

" . ." '• I I" "" .i I-------------...............................°
*....... . "I I------------I • o• I I• •• I I•............................... '••• "••o I
*.........I I.................. I Io •o I I............................... "•••°••• •• I
I. . I I ' I"..I I"" II. • I...

*........ . "I I"...............••'••0534711. ." olO17471 I......I...................................... •

........ I 10o 47..o "I.......I<.....i............7............................... • I. .. 1•••• •'•• ••

........... I W14, , 4 4 I...........I1510 IO I................................"I

...............I II... • ...•• ...••...••.. .. .i.............. 1 I I "104....0421 .. i "

)42/102/00

5TRK I (X I I A P I CTA I CTB I 0 I O(4 I WAP I BIN I 4 I G I I W14 I CO I MIC I SID I DID I XDT I D o4 I XDD I POD I PO4 I 14 I

...
,.....•,,.., ,,,•, ••*..•,• ,.,..o.,.,,...**.

""_. " "; •" .'x xx so xxxxo ooo oo • ,' t . .i

23000o-- 123000..S5S030555520Ol20C.1030
*gclI.uu - A * * XXXXXX SD4 XXXXXX $E4 ITAPO * * ro 0"

"I"I • XXXXXX xxxxxx I 1023623l" :: ";023623 - •

" I l. .. . s sXXXX XXXsXX I *i0o- .

•.I* 55XXXXXX 5 X5X5 I I I1

f• *• 5 5xxxx5 1025367 I, • 1 *.

I * XXXX
Ix" ** • XX XXX xxxxxx I * *0.50 "" '. * • . . • • il •"

.I ": XXXXXX0 026407 X00264071• 3 --l ----------------------

*• . *I XXXXXX 0 4XX0X : I** .1 f

.I 1026410 X5XXXX 026410!" 1 .I• 1 l,4 1g. SSX SSSX I M G I•. •. •1 I . -.. .tI

.1 I I " • X XX * * 1t....I I 55555 l *•1

• 1T••**1 I 555555 I•I 1F • lL •*

• II.... I I 555X555 I •~** ,Il *,fI•*

|I • 031 I xx2671 1 I. * 1051267 IX • I*• ! I• *• *1 I xxxxxx I• •* • j• • I1 • •

.1 03?A I• *• • k.,031270: XXXXXX5 I032701031270 " "l l*

----- -------------- ------------------ *-- 9 GAPO i XsXs IGAPO ITDO• 1 l • •I

""032015 -- 10321510321L I I 555555

. .O * SXTPO I|BIN I 5 5 I I Iý •.

II xs.** I I .0334621" " 1033462 *I.

034051 1 :033711. I• .. I 55555 I I--- ---------------I I

:0....... I I I XXXXXI I 0334631. 1' 31033463 I *

: 0340521- . ,33712 '033% -2 I I
lo5X5w

I : . I* . .-• •• •I

ITPC t O.4 * I 10347001 XXXXXX 10 04700i
-- .

S 10346'4 -I "----- I I - I . .55.... I '335167 0155+67:034567 "-'- I .*• -10345671• • 1
I I•'TA • t * *I03•6•.• I• •• *J XX XXX I• *• *I...... X D *I • •F O l • *

CTA -1035625 I I. .. II 55 5----------------- ------- .0 I- *. IFE0 1- -1
IT.. 031701 XXXXXX 1035170 -------------------- -------03607 I. *..

• I I I.* ** i0356261 . I IT e xxxxxx I .. .i
i 1 I . ..-. '4P0 .I * * XX X * • I I 5 55.I•

* • *• *

~XXXl 1 555 I . .1I10I - 1I.I • IX X X • • Ir * - * • • • • • • I I

... I.. I- I 1"I

S.
.

5 I
. .*

.I~~X *I Ix I X 5555 I .*.

.I------------------------- .- .555.5.I. .. .IxX1
.•*1041543............... 1041250 10410671 XXXXXX I. .1041/067 I.*

--- - I --------- - - - - - - --....... I. I

.1041144 ------ ------ I................................045251 *-'. I 5:5 :: I* 1O .104LO701041070----------- --- "---i.*

*42354 1 XXXXXA . .. I. . .I. . ..

....................................... 14"34 5555.......... I ..

. I I 5 5 *i I....l II

1........................... ... l.. 1043-- 3 5 043 3.4 - - IXI-............
I

•.""......" •55555................5".... " "•"•...•.. * ••• •-------

...10i------ . I : I043554 I.I

..".** • • •• * I 14 4 i tI" " •
•i.............................. o • 10447671 i .044767 .. I

..I I- II--

............ I .044770. I "0447701" " 07 -• I • "

.1 I.......................... * }i0474 I I -.. • *
.. . .•141 DI

• 1 :* , . I I • I. • t • " • • 1I * •

• I ,~~~~.IX X X X X X 0 7 • ' - " '9 . .9 . . . *I " •

.

..
. I I.

. .. .
• * • •• 1047i47 1

" 514 " " .IZOi. " IXIXXI.XXXXXXXXXIIX I.. .1I
"•

SI""- 10453 1047" • I• .. .1

..................................: ýXI..-----------------------.......

....." " "" " - "-"1 0 --
I • "1

*'.s" s ss"" " " 1I•
. ..

.

055142"0555"05••[. . .

.......- -- i•• *• * II•• I

.......... 0............*I I. •,7
.I .

.I
I.

. . .

1I
I.

.
..I................•"" •• °• •• I

I• •"

I...•.•... . . .• I • o •I•
° I

I' "•, I..*"" •"" I I" iIo
•* "I

*,-",I.•. . . .• * " • ° I I" ""
.

I,5 ,42......................... ••"" *"** I I* **.
I " I

.. • *• •" • ° " I I I
I• • •

I................ :I Il
I. . .I

•. -- I...I I .* •
I* I.

. I.•• • • , ° • • o i I " ° .* I * ** *

.o • I . . .* * • • • • • • • ° + o I.I
+-I

•++
I.......... ,;I ; - + • + I l

..

w
I ..• *• I 1*. •• * 1 l(P I" •••• •• •°*.•* .•••• •••

*i I... .. . I

.*
... * . I........ I............ ...

S.. I

------ :...
...... .*..•

.... 4 i
04 10646521 .

..• 4 *1..... • . .

:; 06614 01: 1066540::
...............

.. 7-541 * •067M54 I--- • 067752• 106755 . . *

* C • I "

.1 I

0120141 .•. -...

...........................
*~~~~~ .0.3, .1 .. .07.34.

. , I

1............................ 0 5 I. ,... ,.

TOTAL Wt4DMS OF Spt.90.-
.7223 17IZ' 12586 6175 3064 12219 14207 7996 14875 7967 9619 12099 3069 16941 8482 711, 9538, 14724 1694M 16105 17062

SPIRE &REAS-
070241 026125 r23r.•0 061711 055447 025356 025356 036435 036435 050761 036633 035173 067753 023000 036576 034052 032,15 041144 034614 036377 032566

"4L144 04'1144 024022 075747 057471 045144 057471 043260 046500 052141 037575 037575 075747 034412 041143 034613 033"711 075747 075747 075747 033711

r45145 G45145 025555 066541 055447 064425 046501 050761 057472 042140 042140 037576 051144 055143 055143 035626

C,075747 067553 041144 067553 057471 075747 052141 075747 075747 043260 052141 052141 052141 057471 075747 075747

0720 35 061711 073116 064425 066541 046501 060652 060652 060652 0604652

0375747 075747 075747 067553 075747 052141 075747 075747 075747 067553

073016 06065? 072035

075747 075747 075747

0*71710.5 INCLUDED IN OVERLAP$-

034413
CIS

035172

034413

034653

034654

036434

.......

.o I .I... . .6 6 I - -- , I *1

.. * I. I.

S............... I I. I .

.1 I..

• * .I" • * • " " " * • 1II • ° " " * o
........ I ". I.

. I. .. I

.70
' ..--

.. ..

'.. .. 0

.1

0465533I QI.

554 .067554 .- **. .067555 07 o1067554 .-6 I..
" OI .. * . CT * *..D. . !DID

0. .1 5 I. .* *.I

.................. *I* .* ..
072016 .. .3 3

S.I

070730 0 . i 747

..I - - - - --7

:; T•, I•(! .•,,• CT i 'r, i •O CX [I IN •[14 l B I I R,•G I WOM I CXO I MIC I SID I iI I .•4 IXD D I .ý;W .

.

'941 8482 7110 9538 14724 16988 16105 17062 L1257 430' 1006 7211 267 14976 8679 2034 4002 1346 1131 27 13144 A2724 10865 10765 21992

30 036576 034052 1,3",1 041.44 034614 036377 032566 041251 023000 034701 051610 047250 073016 025370 047505 046106 044770 065401 C54G01 S360'0 C236 23 034567 034733 023o00
4412 041143 034613 033711 0W5747 075747 075747 0337L1 067553 O3214 035167 067553 047553 075747 03267 047553 047553 047553 067553 075747 044767 034566 044767 044767 075747

17'576 t0j144 055143 055143 035626 073016 042355 041070 075641 075641 034701 072035 067554 065000 036020 060770 060770

2141 052141 05747L 075747 075747 075747 043553 04L250 075747 075747 043553 075747 075747 075747 044767 075747 075747

10652 060652 060652 07564L 042355 067554 065000
75747 075747 067553 075747 043553 075747 075747

072035 07t641
075747 075747

043554 023000 023000
WIU TAPO TAPO

051607 025367 025367

047554 023000 023000
SID 1 S4 SW4

067553 026407 026407

025370 025370

TCPO TCPO

03,267 03L267

043554 0264J0

051607 043553

047554 031270
SID TDPO
067553 035167

035170
TEPO
041067

041070
TFWO
044767

UJNCLASSI•RD

System Development Corporation,
Santa Monica, California
COTROL OF A AUTOM&TIC ALLOATION
FOR LARGE-SCALE CYCLYING SYSTESM.
Scientific rept., TM-1042/102/00,
by Co P. Earnest, 15 March 1963, 4 3p.

Unclassified report

DESCRIPTORS Programming (Computers).

Presents a programmable method of storage

allocation, along with a scheme for
system control, suitable for large-

scale systems where something is known UNCLASSIFIND

in advance about the sequence of UNCLASSIFIED

program operations, and time of

system operation is an

important factor. Reports that

the allocation is static, because
dynamic allocation in systems of

this type usually cost more time

than it saves. States that the

primary store is assumed to be of

the continuous, random-access type,

such as core memory. Also states

that the SAGE and SATIN systems have

been used as models in developing

this method. UNCLASSIFIND

