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California, for the Mechanics Division, Directorate of Engineering Sciences, 0!:'
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geometry energy absorbing structu6 res. T. is 9782n
.The project engineers were Mr. Howard S. olko and Dr. Jacob Pomerantz.

I ~eej~ The studies presented began in ebrmW62-7"ad*md-ween&mdad~j&

iFeb2f!q!!63.j M~r. rnard Mazeisky president of ARA, Inc., was the principal

Although the studies were a group effort, the chief contributors were
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NOMENCLATUREI
I a dimension of U-shaped configuration defined in Figure 8

a1 'b 1  constants defined by Equation (97)

i a2 ,b 2  constants defined by Equation (101)

J A material parameter of Equation (48)

BnICn constants defined by Equations (67)

c half-thickness of elastic zone in plastic bending analysis

SD flexural rigidity

D' effective flexural rigidity for plastic behavior

I D' value of D' at end of i-th element
1

1 D' average value of D' during application of load increment

5. value of V' at end of i-th element

E modulus of elasticity

j E$# effective elastic modulus defined by Equation (42)

f functional relation of Equation (45)

I G shear modulus

GJ torsional rigidity per unit length of cross section of axial strip
in convoluted cylindrical structure

I h thickness

i index

k effective elastic constant for idealized convoluted cylinder,

defined by Equation (80)

I k constant defined by Equation (92)
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j NOMENCLATURE (cont'd)

1,2 length of cantilever beam of Figure 1; width of axial strip defined

I in Figure 25

length of i-th elemental cantilever beam

IL height of convoluted cylindrical structure

SM moment per unit length

M reference moment per unit length, T0 A,-

o average value of AM during application of load increment

A •-Mi value of I1- at end of i-th element

A M' effective incremental moment defined by Equation (9)

2 •-average value of A M' during application of load increment

-M• value of Z-'W at end of i-th element
Mm maximum bending moment, Tzo

I MPL value of M at proportional limit

M value of M corresponding to Or`
y y

n index; material parameter defined by Equation (48)

IN number of axial strips in convoluted cylindrical structure

j p differential pressure across convoluted cylindrical structure

4' initial radius of convolute

SfR radius of cone

I 1  average radius of convoluted cylindrical structure

s coordinate of length along convoluted curve
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NOMENCLATURE (cont'd)I
ST load per unit length

To reference load per unit length, D/A.2

IT average value of T during application of load increment

IT value of T after application of n-th load increment

AT n-tn load increment
n

U elastic strain energy of bending per unit width of cantilever beam. of Figure I

Un value of U after application of n-th load increment

" UB bending energy in convoluted cylindrical structure

UF bending energy required to form convoluted cylindrical structureJ from straight convoluted strip

UT twisting energy in convoluted cylindrical structure

W total energy in convoluted cylindrical structure

Sx axial coordinate of convoluted cylindrical structure

x~y Cartesian coordinates with x-axis tangent to convoluted curve forI given load; coordinates of Figure 4 used in plastic bending analysis

xo, Y° values of x,y corresponding to initial undeformed structure

xvy' Ivalues of x,y after application of load increment (Figure 2)

Sz moment arm in two-dimensional structure

z. value of z at end of i-th element

Zi average value of zI during application of load increment

fzO maximum value of z for a given load

mZan value of zo after application of n-th load increment
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I NOMENCLATURE (cont'd)

I cone half-angle

I •parameter defined by Equations (19) or (26)

parameter defined by Equation (27)

On' 2n constants defined by Equations (70)

I oend deflection of elemental cantilever beam

end slope of elemental cantilever beam

deflection of end of i-th element relative to (i - 1)th element

Ii slope of end of i-th element relative to (i - 1)th element

e •p plastic bending strain

SPl. "plastic strain" at proportional limit defined by Equations (48) and (49)

j 0 slope of tangent to two-dimensional structure

" a goinitial value of 0 corresponding to unloaded structure

9i value of 0 at end of i-th element

I 'i average value of 9i during application of load increment

Ag change in slope, 0 - go

parameter defined by Equation (41)

I 4)• Poisson's ratio

v ,horizontal and vertical deflections, respectively, of end of
cantilever beam of Figure 1

horizontal and vertical deflections, respectively, of end of i-th
element of Figure 1c, relative to (I - 1)th element

AI incremental change in 9 during application of n-th load Increment
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I NOMENCLATURE (cont'd)

I
bending stress

nI'm maximum bending stress

S•PL proportional limit stress

(ry yield strength

angle defined in Figure 25; change in slope of S-shaped strip of
convoluted cylindrical structure

maximum value of f for S-shaped strip of convoluted cylindrical
structure

I | ' minimum and maximum values of P, respectively, defined in
'2 Figure 25

"�Imaterial efficiency factor defined by Equation (56)
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i FINAL REPORT ON "RESEARCH ON ENERGY ABSORBING STRUCTURES"

1 . SUIMMARY

Theoretical and experimental studies of convoluted type structures are

I described. An incremental method for predicting the nonlinear large-deformation

I behavior of two-dimensional convoluted strips is shown. The method is applicable

for elastic as well as plastic stress-strain behavior of the material. The results of

the two-dimensional analysis are extended to an analysis of a circumferential ly-

convoluted cylinder which deforms into a conical shape. Tests on typical two- and

three-dimensional convoluted metal specimens are described and correlations of

theoretical predictions with experimental results are shown.

III. INTRODUCTION

Flexible metal structures which can grossly change their shape by the

absorption or release of energy to their environment offer an attractive potential

for aerospace applications. In particular, it would be desirable to be able to utilize

a passive metal structure of preset convoluted geometry which, when acted upon by

external environmental forces, would very its geometry in a predetermined manner.

These forces can arise from numerous sources; e.g., aerodynamic pressures, thermal

stresses, variations in material properties due to temperature changes, etc. In view

of the limited knowledge available on this type of structure a theoretical and experi-

mental program is being carried out to develop methods suitable for their analysis.

= I
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Ill. SCOPE OF WORK

I The scope of the work performed under this study is summarized as follows:

I (1) An incremental technique was developed for predicting the large-

deflection load-deformation behavior of two-dimensional convoluted metal strips

1 of arbitrary shape which exhibit elastic and plastic material behavior.

I (2) The load-deformation behavior of two-dimensional convoluted

strips loaded within the elastic range was computed for several typical configura-

1 tions and is presented in nondimensional form.

S(3) The load-deformation behavior of two-dimensional convoluted

strips of semi-circular-arc configuration was computed for several conditions of

i yielding and plastic stress-strain behavior and is presented in nondimensional form.

S(4) The results of the two-dimensional analyses were extended to an

analysis of a three-dimensional circumferentially-convoluted cylindrical structure

which deforms into a conical shape.

(5) Tests were performed on typical two- and three-dimensional

structures and the results were correlated with the theoretical predictions.

IV. TWO-DIMENSIONAL ANALYSIS

I The large-deflection analysis of convoluted metal structures is severely

complicated by the fact that the large deflections give rise to nonlinearities in the

load-deflection behavior. Even when the material stress-strain behavior Is elastic,

geometrical nonlinearities are present. If, in addition, the material is deformed

f into the plastic range, nonlinearities result In the stress-strain behavior and the

-2-



I
problem is further complicated. Because of these complications, analytical

I clelmd-form solutions can only be obtained for the simplest cases, and severe

assumptions and approximations are usually required.

In order to arrive at more general and useful results, an incremental

I approach has been taken in the analysis of two-dimensional convoluted strips.

j Solutions are developed in increments of load, and the incremental deformations

resulting in each load increment are determined by dividing the structure into

I incremental segments. This technique is described in detail in the following

J sections.

1A. Development of Incremental Method

Consider the simple two-dimensional strip shown in Figure la,

which is deformed by loads applied to its ends. As the load increases, deformation

I results from changes in the bending moment distribution and, if the material is loaded

into the plastic range, changes in the effective flexural rigidity of the structure.

Since large deformations are being considered, changes in the bending moment at

I any point are due to changes in the load as well as changes in the effective-moment

arm. Because of symmetry it is necessary to analyze only one typical section of the

strip, such as the curved cantilevered beam of Figure lb. At a point "a" the change

f in slope is zero and at point "b" the moment is zero since the moment arm vanishes.

As the structure deforms, the edge load T (load/unit length) remains horizontal so

that the bending moment at any point is the product of T and the moment arm, z.

[ The basic problem is to describe the deformation of a convoluted

strip of arbitrary shape as the load increases from zero to some arbitrary value. For

!-3-



FIG. I GEOMETRIC, PAMAMSETURS AV40 C.0ORtiNkATUi
USED IN TME kNA.LYSIS OF

bob

I VT

I to T

T A



I
I

this purpose the following assumptions are made:

I 1. The thickness of the material is small enough in relation to the

other dimensions that classical bending theory can be used to relate change in

curvature to bending moment.

1 2. The effects of normal forces acting in the tangent plane at any

i point can be ignored.

3. Material stress-strain behavior in both the elastic and plastic range

I occurs.

14. The structure is deformed in a state of plane strain bending and

end'effects can be ignored.

I With the above assumptions the deformation behavior is determined by a

I step-by-step procedure in which an incremental load is applied and the incremental

deformation is estimated from the inital shape and the applied load. Since the

I moments and (in the plastic range) the effective flexural rigidity change during

I application of the load, average values are used which can be determined by trial

and error. In order to determine the incremental deformations a second incremental

I procedure is utilized in which the curved cantilever beam of Figure lb is approximated

I by straight segments, as shown in Figure Ic. The analytical development of both

incremental procedures is given below.

I The bending equation can be expressed by

I -(-)
do'

LI
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I

I where 0 is the slope, 0o is the slope for the initial undeformed shape, s is the

i coordinate of length along the curved section, and D' is an effective flexural

rigidity.

ritThe moment M is given by

SM -= T7 (2)

For elastic material behavior,

A D = D = 5 .2
I20-02.) ( (3)

Swhere E is Young's modulus, h is the material thickness, and -) is Poisson's

ratio. Equation (1) expresses the change in curvature due to the moment M.

I The curvature dQ/ds can also be expressed in terms of Cartesian coordinates x,y

by the relation*

I
Since the location of the x,y-axes is arbitrary, it is useful to consider a "moving"

I set of coordinate axes with the origin on the curved beam and the x-axis tangent

It Is convenient to select the coordinate axes so that a positive change of curvature
In the x,y coordinates corresponds to a decrease In the original curvature of the

[ I convoluted shape.

?oII -5...



I to the beam at th, point s. The first derivative term in Equation (4) Is then zero

and Equations (1) and (2) may be written

4 dx~ dx:(5)

"where the subscript o denotes the initial undeformed shape. Equation (5) expresses

I the curvature relation at a particular point s since the coordinate axes of x,y are

now functions of s and T, and those of xo,yo correspond to T = 0. However,

if Equation (5) is extended to a small finite range of x about x = 0 for fixed

I coordinate axes of x,y and xoyo, the error will be small since the first derivative

term in Equation (4) will be small compared with unity. This is the basis for the

present incremental procedure.

I Consider, first, an incremental change in the load 4T and express the

resulting change in curvature from Equation (5). This result can be written

O( D, 7-)DO (6)

provided the load increment is sufficiently small. The term on the left of

j_ Equation (6) can be interpreted, with the aid of Figure 2, as follows: Let x,y

represent the coordinates at point s which correspond to the load T, and let

x',y' correspond to T + A T, as shown in Figure 2a. By superposing the

Scoordinate axes, as indicated in Figure 2b, the incremental change in curvature

is seen to be

[6
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I~ all 01Y o/lyy)~ y'X ' - if-". (7)

I where A y is the incremental deflection normal to the tangent at the point s.

Equations (6) and (7) can be written

}dX•' I (8)

I where

V*4M'.( 7 D

Ad D" cT A 7T (9)

The quantity A M' is an effective incremental moment which also takes into

account variations in D' which result if the material is in the plastic range.

I Equations (8) and (9) form the basis for the incremental technique by which

tthe incremental deformation is determined for each load increment. As mentioned

earlier, the cantilever beam of Figure lb is approximated by a series of straight

I elements, shown in Figure 1c. If the increments of length and load are small

j enough, each element can be treated as a cantilever beam with linearly varying

moment and, in the plastic range, linearly varying flexural rigidity. The incremental

changes in lateral deflection and slope of the end of each element relative to its

[I

1 ,8



I base are determined from Equations (8) and (9). The gross deflections are then

determined by accumulating rotations and deflections of each element starting from

I the base of the original cantilever beam.

I Let the relative incremental slope and bending deflection for the i-th

element of Figure Ic be denoted by S, and i, respectively! Positive values

I for 1 and 4i correspond to a clockwise rotation of the element, as shown in

I Figure 3. The total lateral deflection of the end of the i-th element relative to

the end of the (i - I )th element results from Si and the rigid body rotation

I £.• produced by the bending of all the preceding elements, and is given by

total lateral deflection of end of i-th element +. 1 i ()
relative to end of (i - 1)th element = •' k

k= I

I where ", is the length of the i-th element. The average slope of the i-th element

I Ii during application of the load increment can be approximated by

l z• '(11)

I I

where 0i is the slope before application of the load increment.

I The horizontal and vertical incremental defections of the end of the i-th

1 element relative to the (i - I)th element are, from Equations (10) and (11),

""- I-

[ 4  .- v, (' ,'+1 -, a)l (12)

ji .-9-
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I With the fixed end boundary conditions for the original cantilever beam denoted by

I ( (13)

I
the incremental deflections of the end of the i-th element can be written

- (14)

1 Equations (12) - (14) constitute the relations from which the gross deflections of

the original cantilever beam can be computed for each load increment, provided

the quantities ýi and 9! are known. The determination of Si and f! for

Ielastic and plastic material behavior is described in the following sections.

1B. Incremental Slopes and Deflections for Elastic Material Behavior

For elastic behavior Equation (3) applies so that dD'/dT is zero

and Equations (8) and (9) become

1- (15)

where

1 (16)

IT
The quantities •. and • can be determined from these two equations. Since

-11-



I
I finite variations occur in z, T, and dz/dT during application of the load increment,

average values of these quantities are used to compute 4M.

I As was mentioned earlier, if the increments of length are small enough the

I variation in AM over each elemental beam can be assumed linear. Thus, let

-) ( O- ' (17)

I where

A A d' T (18)

I
and the bars denote average quantities during application of the load increment. The

I subscript i on M and z denotes a quantity evaluated at the end of the i-th

} element, and aI is defined by

(19)

Substitution of Equation (17) into Equation (15), and integration of the result with

I the boundary conditions,

4Y(oA (0) (20)

I yields

, •Ay. Z -,,. i_ )()

D (21)I
I

il -12-
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and

II -

Equations (21) and (22) with Equations (18) and (19) constitute the required

I relations.

I For computational purposes it is convenient to introduce the reference

load and moment,

D D (23)
e~a *o *A = &

and to express the above equations in nondimensional form. Here A, is a typical

dimension of the convolute, such as an initial radius of curvature. Equations (21)

and (22) become

•.= i2/- •')(24)

I and

I&
It. "(25)

F

-13-



I
C. Incremental Slopes and Deflections for Plastic Material Behavior

In rhe plastic case both A M' and D' vary over the length of the

I element. As before, if the element length is sufficiently small, both of these

quantities can be assumed to vary linearly. Thus, let

4'-V4

I- (26)

I
and

I
(27)

so that

and

(29)

Substitution of Equations (28) and (29) into Equation (8), and integration of the

result with the boundary conditions of Equations (20), gives

+ - j (30)I,.• __ _' (30)+/,) •

and

i1 -14-



i
As before, it is convenient to use Equation (23) and to write Equations (30) and

1 (31) in the nondimensional form,

I _ ._ ,_______.

1 (32)

12 F; (47/i (33)

If the value of is small these equations are difficult to evaluate due

to small differences between large numbers. For this case the following series

expansions are useful:

-,,±-+ -"" (34)

S,-+2 3;(+ .. . (35)

D. Plastic Bending Relations

Ii In the plastic analysis described above a knowledge of the moment-

f curvature relation is required in order to calculate the effective flexural rigidity

1I -15-



and the parameter Pi. Because of the numerical procedure involved this relation

can be determined from the actual stress-strain behavior of the material and utilized

Iin graphical or tabular form. However, in order to illustrate the method, an ideal

elastic-plastic material behavior is first assumed, for which an analytical solution

can be obtained in closed form. The following analysis is based on that described

in Reference A.

I . Ideal Elastic-Plastic Behavior

Consider the bending of a uniform sheet of nonhardening

material under conditions of plane strain. The material is assumed to have the

1 stress-strain behavior of Figure 4a in both tension and compression and is assumed

to yield in accordance with the Tresca law. It is further assumed that the radius

of curvature is so large in relation to the thickness that the induced transverse

1 stresses in the direction normal to the sheet can be neglected.

The coordinate axes are chosen as shown in Figure 4b with

the z-axis in the direction in which strain is prevented. When the moment per unit

1 width is greater than the yield value,

(36)

I
elastic and plastic zones are produced, as shown in Figure 4b. The moment is

expressed by

S,- d(37)

i -16-
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i and the parameter c is given by

S '-(38)

j Solution of d(g - Go)/ds from Equations (37) and (38) gives the result,

_____(39)

I This result with Equations (1), (3), and (36) gives for the effective flexural

I rigidity,

With this material behavior one additional structural parameter is required

"in order to describe the load or deflection value at which the material first yields.

I For this purpose it is convenient to introduce the parameter / , defined by

A /A . (41)

where (3"pL is the proportional limit, equal to Zy for this case, and EV is

"defined by

w - (42)[ , - ,,.(,

1 18
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I Equation (40) with Equations (3) and (23) can then be written,

I D
TI__ LAf (43)

I Equations (40), or (41) and (43), constitute the required relations. A treatment of

the problem for more general stress-strain behavior is given in the following section.I
2. Arbitrary Stress-Strain Behavior

I In the previous section relations were derived for plane

I strain bending of a wide sheet of ideal nonhardening elastic-plastic material. The

present analysis, based on that of Reference B, extends the treatment to arbitrary

stress-strain behavior. As in the former analysis, the following assumptions are made:

I(i) The material has the some stress-strain behavior in

tension and compression.

(ii) Transverse stresses in the direction normal to the

I sheet can be neglected.

(iii) The neutral axis remains coincident with the midplane

of the sheet.

(iv) The total strain component in the restrained direction

is zero.

In addition to the above, the usual laws of plasticity are

imposed, which include the constancy of volume condition, the von Mises condition,

and a criterion of plastic flow. For the latter the. "maximum shear stress vs.

1II-9



numerically largest principal strain" criterion is used.* With these conditions the

Sresult of Reference B may be written as

. +

Jwhere T is the bending stress and Cp is the plastic bending strain.

In addition to Equation (44) there exists a stress-strain

Irelation between Cp and G,

I =(45)

which can be determined from a tensile test. The present flow criterion is such that

I the functional relation of Equation (45) is the same as that between axial stress and

plastic strain in a tensile test.

Equations (44) and (45), with the expression for moment

per unit width,

N=2f0> y ,(46)
o

can be used to compute the moment-curvature relation. For a particular value of

d AQ/ds, values of CT can be selected for which the corresponding values of y

can be determined from Equations (44) and (45). Equation (46) can then be used

I to compute the corresponding moment.

[
SAlthough tWhvn Mises-Hencky criterion is generally considered to be slightly

j better, the added complexity Is not warranted In this analysis.

-20-
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I

If, instead of Assumption (iv), which is the usual condition

for plane strain, it is assumed that both the elastic and plastic components of strain

Sare zero, the result is

1ý e ro (47)

I which is considerably simpler than Equation (44). A comparison of Equations (44)

I and (47) is given below.

For many structural metals the stress-strain relation of

I Equation (45) can be expressed in the form

6P.= A (48)

With the addition of the elastic strain, T'IE, the expression for total strain becomes

identical to the well-known Ramberg-Osgood relation (Reference C) by proper

definition of the constant A. It is convenient to express Equation (48) in terms of

the proportional limit stress O and some corresponding plastic strain Cr 1L This

result can be written as

= ) (49)

I Although, strictly speaking, there is no plastic strain at the proportional limit,

Lubohn and Felgar* have suggested 20 x 10-6 as a suitable value since this is

close to the minimum value that can be detected experimentally.

j 'Reference B, p. III
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In Reference B a comparison of Equations (44) and (47) is

I given for a particular case of bending, using the expression of Equation (48) with

n = 5. Further comparisons are shown in Figure 5 for n = 3, 5, and 10. For each

of these cases the maximum plastic bending strain is half of the total strain. From

these results it appears that Equation (47) provides a good approximation to

Equation (44With the stress-strain relation of Equation (49) analytical

I expressions can be determined from Equations (46) and (47) which relate dAQ/ds

and M. Substitution of Equation (49) in Equation (47) gives

Y _s 'P (50)

where E 5. E/(1 - V2). Substitution of y and dy from Equation (50) into

Equation (46), and integration over the half-thickness of the sheet, gives the

result

A~ )M- =_ M PS)+%L M+

(51)
+ 2. 21+

aPL

where MpL Is the moment at which the maximum bending stress is given by

L 
P ' (52)
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I
and (fm is the maximum bending stress corresponding to the moment M.

Equations (47) and (49) evaluated at y = h/2 give the relation

1 (53)

IThe required moment-curvature relations, from which the effective flexural rigidity

I can be determined, are expressed by Equations (51) to (53).

It is convenient to introduce again the parameter •,

I defined by Equation (41). With this relation and that of Equations (23)t

7 Equations (51) to (53) give for the effective flexural rigidity,

y (54)

where

__ [~~~(~ ~ in(+) 16 T.' ~ +(n+) V

Vp( 5 5 )

1 -24-



j By substituting values of rm/ QPL into Equations (54) and (55) a curve of

D'/D vs )%M/Mo can be constructued for use with the incremental procedure.

This result may be compared with that of Equation (43) for the ideal nonhardening

I material. It should be noted that the ideal nonhardening material can be con-

1 sidered as a limiting case of Equation (48) as n approaches infinity.

For the analysis of two-dimensional convoluted structures

1 in nondimensional form with the material behavior of Equation (48) only four of

the parameters introduced need be specified. These are, for example, O'pL/E ,

CPL, n, and A . For most cases of interest the value 20 x 10-6 for CpL will

I probably suffice, so that only three parameters may be required. Moreover, for

the case of Equation (43) only one parameter is required.

Examples of stress-strain curves, based on the material

I behavior of Equation (48), are shown in Figure 6 for cases of strain-hardening

exponents corresponding to n = 5, n = 10, and the nonhardening case, n =

The other material parameters assumed are CPL 20 x 1-6 and trpL/Es= 10-3.

I The corresponding flexural rigidity-moment curves are shown in Figure 7.

E. Computational Procedure

The procedure by which the incremental technique is used to compute

the deformation behavior of a convoluted strip is described in the following steps:

1. The typical cantilever section is divided into suitable

increments of lenth and the initial values of zi and Gi are determined, as shown

in Figure Ic.

1 -25-



I

I
I

3

I /

Elastic /

1 /0

0 1 _ _ 4_ _ _

M.I

I
II

I ,'

4 5
!e

Figure 6. Strss-Strain CurvesF

I -



II

I
Fla. 7 FL-EXURAL RIG.IrITY-

n .8 0 NA M FOMNT CURVES

D'

.7
II

I

1 .5 l 10

.4

0 14 6 o -27- Ko

•10



I
2. A small increment of load is applied and the corresponding

deformations are computed from small-deflection elastic theory. For simple shapes

I classical analytical methods can be used. However, if the shapes are more

complicated the present increment technique can be used. For this purpose the

values of AM; are computed from Equation (18), taking T = 0 and using

I the initial values of zi for .i . The incremental cantilever slopes and deflections

are then computed from Equations (19), (24), and (25), and the resulting deflections

and &ji are determined from Equations (12) to (14).

1 3. The deformations corresponding to the first load increment

are recomputed using the results of Step (2) to determine better values for the

effective incremental moments, Z- . The values of T, -zi, and (dz/dT)F

are computed using one-half the values of A1 T and ."i . If the material is in

the plastic range values of the effective flexural rigidity D! are computed from theII
average moment T-i and the appropriate relations of Section IV-D. The values of

are computed from Equations (18) or (9), depending on whether the material

is in the elastic or plastic range. The deformations are then computed using

Equations (24) and (25) or Equations (32) and (33) for the incremental cantilever

relations.

4. The values of (dz/dT)i are computed from the results of

Step (3) and compared with the initial values used in Step (3). If the agreement

is unsatisfactory, Step (3) is repeated using the final values of (dz/dT)1 until

agreement between two successive values is attained.

1-
i[ -



15. Subsequent load increments are applied and the procedure of

Step (4) is used to obtain the incremental deformations.

Although an iterative technique is used for each load increment,

1 convergence appears to be sufficiently rapid in most cases that the method can be

used with a desk calculator. In the case of a plastic analysis with the nonhardening

I material behavior some difficulty was experienced due to the severe variation of

I effective flexural rigidity with moment, as illustrated in Figure 7. However, if

the load increment is sufficiently small it i! expected that this difficulty can be

avoided. Moreover, with the present incremental technique it is just as easy to

use a more realistic material behavior, such as illustrated in the other curves of

Figures 6 and 7, which converge more readily. A more complete discussion of the

computations is given in the following section.

If the material behavior is limited to the elastic range, it is paisible

to use a direct procedure for each load increment and to correct the value of the

load increment on the basis of energy considerations. For this purpose it is con-

venient to introduce a material efficiency factor defined by

elastic strain energy in structure U

L. Welastic strain energy capacity = - (56)

corresponding to maximum stress A I

where U is the elastic strain energy per unit width of the cantilever beam of

Figure 1, ,1 is the total length of the beam, and rm is the maximum bending

stress. With the expression for U in terms of bending moment, given by

[ -29-



I - / V

V 0(57)I
J and the maximum stress, given by

S=,(58)

I where Mm is the maximum bending moment, 'Y may be written

-- (59)

Since the elastic strain energy in the structure is equal to the work done during

I deformation,

f/ 7-5' (60)
0

where ý is the total horizontal deflection, as indicated in Figure id.

Equations (56), (58), and (60) yield the relation

1W 4C (61)

The maximum bending moment is

I (62

[ -30-



1
where zo is the maximum moment arm, as indicated in Figure Ic. With this

I result Equations (56) and (59) can be written

1 .L
1 (63)

I and

43

1 'T ~(64)
]0

It will be shown in the numerical examples that V is a slowly

varying function of the load and deflection. Therefore, by determining the value

I of a given load increment so that the expressions of Equations (63) and (64) are

equal, a more accurate result can be obtained on the basis of total energy absorbed.

In addition, it is useful to evaluate V as a function of load and deflection, since

I this quantity is a measure of the effectiveness with which the available material is

being utilized. The procedure by which the corrected load increment is determined

is described below.

After application of a particular load increment V' is determined

From Equation (63) by numerical integration. This value of "Y is then used in

Equation (64) to determine the corrected load increment. Let ATn denote the

n-th corrected load increment, and let the subscript n denote values of the

parameters of Equations (60), (63), and (64) after application of the n-th load

1 -31-



i1

I
increment. Then, assuming a linear load-deflection relation for each load

increment, Equation (64) can be expressed in the formI '

*AT - - 71,. . + ( r, 4 (65)

I The solution for A Tn from Equation (65) is

I4M- 4 +.- •' (66)

1 II

I where

, (67)
S•,, _ -- w• ( - ,- . A•-,,.

I For the first load increment corresponding to n = 1, the solution is

l 4"r4, = 3" -e
n (68)

Equations (66) and (67) may be written in the nondimensional form,

7- .-- 4-(69)
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i where

- = 2 = _ r

I I - ~(70)

F. Computational Results

I The accuracy of the elemental beam approach was investigated by

Ithe application of this part of the method to the small-deflection analysis of a

semi-circular-arc convolute for which the true solution is known. The quarter

I circle corresponding to the cantilever beam of Figure 1 was divided into three,

four, and five increments, and the resulting load-deflection relations are compared

with the known solutions. The results are summarized in Table I, in which C and

• represent the horizontal and vertical deflections, respectively, and A is the

initial radius of curvature. The true solutions are,

""T7 = 0.785, y = 0.500 (71)

Table I. SmalI-Deflection Solution for 3, 4, and 5 Beam Increments

No. of .E/&. .A, % error % error
Increments /70- 170 in ,: in

3 .757 .505 3.6 1.0
4 .770 .504 1.9 0.8
5 .775 .501 1.3 0.2
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1
It is seen that the incremental beam technique gives rather accurate

results for relatively few increments. For example, according to Table I the use of

Ifour beam elements for the large-deflection analysis should introduce less than 2%

error in 5 and less than 1% in '?, particularly since the straight beam approxi-

mation improves as the curvature decreases.

1 Large-deflection elastic cases were carried out for the semi-circular-

arc configuration and two U-shaped configurations, illustrated in Figure 8. The

principal results for the semi-circular-arc are shown in Fi ures 9 to 12, and those

for the two U-shapes, in Figures 13 to 20. The results include the load-deflection

curve; a curve of 'ý/r vs. ./r which indicates the "flattening" of the convolute;

a curve of the yield parameter (h/r) / (Opk/EV,) which indicates the deflection at

which the proportional limit is reached; and the variation of the material efficiency

factor V•" with .E/r.

For comparison, the small-deflection solutions for the U-shaped

convolute are given by

7 .7 (72)

Plastic cases were run for the semi-circular-arc configuration with

the material behavior of Figures 6 and 7, and two values of the yield parameter A .

I The resulting load-deflection curves are shown in Figures 21 and 22. As mentioned

1I -34-
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I earlier, some difficulty was encountered with convergence of the nonhardening

I material case due to the sensitivity of effective flexural rigidity with bending

moment. The curve of Figure 21 corresponding to n = cO was computed with

only three load increments, although as many as six iterations were required for a

jparticular load increment. In order to test the accuracy of these calculations, the

same case was repeated using load increments of half the magnitude, and six instead

of four length increments. These results are shown in Figure 23 and indicate only

I small deviations from the original solution. The curves corresponding to the other

cases of strain hardening were computed with considerably more ease, with only

one or two iterations being adequate for some of the load increments.

V. THREE-DIMENSIONAL CONVOLUTED STRUCTURES

In a two-dimensional convoluted structure, such as the strip of the previous

analyses, deformation arises from bending in the plane of the convolute which is

essentially constant over the width of the strip. In the usual three-dimensional

1 convoluted structure, however, additional restraints are present so that the structure

is not free to deform by a uniform bending in the convoluted plane. For example,

in the common bellows of Figure 24a, extension or contraction of the bellows is

1 accompanied by changes in the diameter which produce lateral "hoop" stresses.

These stresses impose severe restrictions on the flexibility of the bellows, particularly

in the case of large deflections. Similarly, in the deformation of a convoluted

structure from a cylindrical to a conical shape, as shown in Figure 24b, the non-

uniform circumferential expansion is accompanied by twisting of the longitudinal

-50-
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I
elements. This produces restraints which, although not generally as severe as in

the bellows, can significantly affect the behavior of the structure.

I For the present analysis, two cases of the circumferentially-convoluted

cylinder of Figure 24b are treated. The first case represents an idealized structure

of sow-tooth configuration which expands into a conical shape, and illustrates in

a simplified manner the three-dimensional restraining effects. The second case

i deals with a more realistic structure in which the convolute has one of the U-shapes

considered earlier. These analyses are described in the following sections.

A. Circumferentially-Convoluted Cylinder with Idealized Saw-Tooth
1 Configuration

In the present example the idealized cylindrical structure is restrained

at one end and is expanded into a conical shape by a uniform pressure differential

I across the walls. The following assumptions are used in the analysis:

1. The convolute span heightis small compared with the radius

I of the cylinder.

2. All of the deformation in the plane of the convolute occurs

at the bends so that only the angle of the saw-tooth is changed.

3. A linear relation exists between bending moment and

I convolute (saw-tooth) angle.

4. The centerline of each longitudinal strip remains straight so

I that twisting but no bending occurs in the longitudinal direction.

1 5. Small-deflection torsion theory applies to the twisting of the

strips.

1 6. The material behavior is elastic.

I
-53-

i



1
With the above assumptions expressions can be derived for the elastic

I energy of bending and twisting of the longitudinal strips and the work done on the

structure during expansion. By equating the work done with the total elastic energy

the relation between differential pressure and cone angle can be determined.

1 The coordinates and some of the geometric parameters are shown in

1 Figure 25. Because of symmetry it is necessary to treat only one of the longitudinal

strips.

I The twisting energy for a structure componed of N strips is given by
L

/4 (73)

0

where GJ is the torsional rigidity of the strip. From Figure 25 we have the

geometric relations

2•. = P /-I r (74)

and

To (75)

Equation (75) and its derivative with respect to x give the result

(L ) - __ ,z .K,

dx ~ .L(76)at •',', - 2 R, X $in'; -4 X= I,;,777
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1 Substitution of Equation (76) into Equation (73) and integration gives the result

U = .2 R, CA 'm0 t (77)

The change in ULT due to the change •4( in the cone half-angle is, by

differentiation of Equation (77),

2 R, d~o&[ Id S';(g CP)

I R~~+ (78)

where

•k + r, S; .)$',• cp, (79)

The beading energy for the strip can be expressed by

L

()A/N >CP- CP')? W (80)

where • is an effective elastic constant for the joint. With the substitution of

qP from Equation (75) into Equation (80), the result of the integration can be

expressed by

U3  - + 2 ('" (-A24 . "

I - ( (N* 41 x.

1 -56-



I The change in U8 due to the change in the cone half-angle can be written as

S- ,.(82)
I

Differentiation of Equation (81) with Equations (79) and (82) gives the result

N A, e .. ho L ý C;- .4 - -( ,)'-CO 2 (CP.-90e, -.SC,,--.
ti ( 1 R / dc , 1 (83)

I The work done on the structure by the differential pressure p during

Ithe expansion ,/lo is, from Figure 26,

T L

Integration of Equation (84) with the relation,

R go, * X . (85)

gives the result

dW= 7 rRe L' A$+~-Ls (86)

The work done on the structure can be equated with the total energy

absorbed in the structure, to give

Ot =(87)

Ii-57-
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I
Substitution of Equations (78), (83) and (86) into Equation (87) gives the

I required pressure relation,

N -I 2 (1 +7:t )It f66

1 I(88)

I+ ý 2g' C-f ( -C L'[2'.-3 g, co,, • .

This example illustrates the manner in which three-dimensional

restraints can give rise to twisting as well as bending energy absorption by the

i structure, and might provide a first-approximation solution for certain convoluted

1 configurations. However, a more realistic analysis is presented in the following

section.

B. Circumferentially-Convoluted Cylinder with U-Shaped Configuration

The present analysis is similar to the preceding one except that

lateral bending of the longitudinal strips is treated more properly, and the resulting

effects on the twisting of the strips is taken into account. A typical strip of the

present structure has an S-shaped cross section which deforms as shown in Figure 27.

The lateral deformation of the strip at a particular axial location is determined from

the two-dimensional analysis. It is seen from the sketch of Figure 27 that the angle

of twist Cf varies over the cross section of the strip, as compared with the uniform

twisting in the previous analysis. This variable twisting is taken into account by

1. -59-
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Streating the strip as though it were made up of many smaller strips, each of which

twists a different amount. From symmetry it is necessary to treat only half of the

S-shaped strip, as in the two-dimensional analysis.

I The following assumptions are made:

1. The convolute span height is small compared with the

radius of the cylinder.

2. The center line of each longitudinal S-shaped strip remains

1straight as the cylinder deforms into a conical shape.

3. The load-deformation behavior due to lateral bending at

Jany axial location is the same as that determined in the two-dimensional analysis.

4. Small-deflection torsion theory applies to the twisting of

each element of the S-shaped strip, and a constant torsional rigidity relates

twisting moment per unit length of cross section with the local angle of twist.

5. The material behavior is elastic.

With the above assumptions the twisting energy of the structure

per unit length in the axial direction can be written

0 (89)0

where N is the number of S-shaped strips and GJ is the torsional rigidity of the

strip per unit length of cross section. The angle of twist Cf'(x,s) is a function of

I both the axial coordinate x and the cross section coordinate s. For a strip of

narrow cross section the torsional rigidity per unit length is, from Reference D,

S3- 1(90)

-61-



I If It is assumed that the functional form of 4F (x,s) with s is the same for all

values of x, Equations (89) and (90) can be written

I d N ,(91)

Iwhere I I is independent of x and is defined by

I 0 (92)

I °X
and IPm is the maximum angle of twist, corresponding to s = ,. Although

tk1 appears to be a function of x by Equation (92), it will be shown in the

example that it is nearly invariant in x.

Integration of Equation (91) from 0 to L gives for the total

twisting energy,

/V /

u•~ ~~~~E = - 0 ,,J ()•€3

For the U-shaped configuration discussed earlier, the fractional

expansion 1/4 is related to the present structural parameters by

" •/ -•,to •, (94)

and

S , -(95)

il6



j so that Equation (93) can be written,

R, C~oJ (96)
-C=0IA

The functional relation for d C~m/d(,C/& ) vs. .4/4 can be approximated by

1
A) ~ (97)

where a1 and bI are determined from the two-dimensional analysis. Substitution

of Equation (97) into Equation (96) and differentiation with respect to a• gives

_, _, +• L S;,(9+)
3 R Q, 3~s..

This exprension can be used with the differential energy relation, as in the preceding

analysis, or integrated to give the total twisting energy as a function of 01

= e A [ 1 aL L L(3ZI~
Ur41R (99)

The bending energy can be expressed in the form,

- o(100)
0
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I
where T is the circumferential load per unit length and T is the reference load

of Equation (23). The function T/To (0 /,) can be approximated from the two-

jdimensional analysis by

a +(t-, ()( (101)

I Substitution of Equation (101) into Equation (100) and integration gives the result

I -us /7 (102)

!
which, with Equation (94), can be written

1 d'((a)-d (103)

Integration of this equation from /A. = 0 to S,/ = (L/R 1)sin.ý gives

the result

3~N R ~ L ~ ( + Z ' (104)

The differential bending energy expression, analogous to Equation (98), can then

be written

(105)
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SWith the expression for Ta from Equation (23), and the relations,

I 7- (106)

Equations (99) and (100) can be combined to give the total energy input W as a

I function of 0(

1f( -" (107)

The present method is illustrated with an example based on the

U-shaped configuration with a/& a 1, used in the two-dimensional analysis.

The determination of the constants k1, a1 , b1, a2 , and b2 from the two-dimensional

analysis is described in Appendix A. These results are as follows:

It 0.460, a1 - 0.647, bI = 0.121, (108)

a 02 = 0.213, b2 = 0.0612

With these values, and A/N - 2.571 for this configuration, Equation (107) can

I be written
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1 If the span height of the convoluted structure is not small compared

with the radius of the cylinder, as assumed in the foregoing analysis, the resulting

I equations are not strictly applicable, due to the significant curvature imposed on

the (grass) structure. This curvature gives rise to additional twisting deformations

as the cylinder is expanded into the conical shape and also affects the bending in

the planes of the convolute. However, one simple correction can be applied in

order to improve the theory for this case.

Figure 28 illustrates the manner in which a circumferential strip is

I deformed during forming of the cylinder from a straight convoluted strip. It can be

seen that significant bending occurs during the forming operation. Here, "A"

represents the undeformed shape and "S" is the shape in the cylindrical structure.

If the cylindrical structure is not stress-relieved prior to expansion, as in the

Sexperiment described in the following sections, some of the elastic strain energy

will be released during expansion. Conversely, if the structure is stress-relieved,

I
I
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some additional energy will be required to expand it. The energy required to deform

the strip of Figure 28 from "A" to "B" is

UF L 0 1ý4 z(110)
0

where 21 is the length of the S-shaped strip and U F is the total energy required

to form the cylinder. Since the total angle of rotation of the ends of the strip is

21r /N,

__ -N -2 (1 7r

and Equation (110) becomes

3

U . (112)

where the relation of Equation (3) has also been used. During expansion of the

cylinder into the cone the angle of rotation of the ends of each S-shaped strip is reduced

by the factor cosoC. , where of, is the cone half-angle. * The change in UF

during expansion is, by Equations (110) and (112), proportional to the square of the

angle of rotation. Thus, the release in energy for the nonrelieved case is given by

A Up - /-cot . a (113)

Due to the twisting, the strip is not rotated uniformly over its length. However,
since this Is a second order effect, the average cone angle is taken for simplicity.
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1 or, with Equation (112),

I~~ A U ' '7L '(114)

/7- I N Si

I
Subtraction of this result from Equation (107) yields

1 ~ *#()~e~jL~?L ~(115)L R," 4-, Uj•+ ,

For the U-shaped configuration with a/& = 1 and the parameters of Equations (106),

Equation (109) becomes

R,.~pv RI A/ L.•7

+ 3. 3/?7 L(116)

I If there is an appreciable difference between the inner and outer radii of the cylinder,

it is expected that Equations (115) and (116) will still be only approximately correct

due to the twisting effects mentioned earlier. As the cylinder expands into a conical
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shape the nonuniform circumferential elongation produces a nonuniform flattening

of the convolute, with the maximum flattening occurring at the expanded end.

Consequently, the inside generators of the cylinder rotate through a greater angle

j than those on the outside, producing additional twisting deformations. Thus, the

results of the two-dimensional bending analysis are not directly applicable since

some of the circumferential elongation is due to this twisting deformation. A more

Jproper analysis of the problem should treat the bending and twisting deformations

simultaneously.

VI. EXPERIMENTS

Tests were conducted with several two-dimensional specimens and a three-

dimensional cylindrical structure similar to that described in the preceding section.

Descriptions of the test procedures and the experimental results are given in the

following sections.

A. Two-Dimensional Strips

Load-deflection tests were conducted on two-dimensional Type 304

stainless steel specimens with semi-circular-arc and U-shaped configurations, as

used in the previous numerical examples. Samples of the specimens are shown in

Figure 29. The specimens were fabricated from 0.002" and 0.003" annealed

sheet material. Some of the specimens were tested in the as-formed state and others

were process annealed prior to testing. The radius-to-thickness ratios were selected

to give approximately 20 percent expansion prior to yielding for the semi-circular-arc

specimens and 63 percent expansion for the U-shaped specimens. A summary of the

specimens tested Is given In Table II.
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j Table II. Two-Dimensional Specimens

I
Specimen No. Type Nominal Thickness Condition Nominal

(in.) length/radius

I U .003 as formed 4

2 U .003 as formed 4

13 U .003 annealed 4

5 semi-circle .003 as formed 8

6 semi-circle .003 as formed 8

1 8 semi-circle .003 annealed 8

9 U .002 as formed 4

10 U .002 as formed 4

112 U .002 annealed 4

13 semi-circle .002 as formed 8

14 semi-circle .002 as formed 8

15 semi-circle .002 annealed 8

Width = 4.00 inches (all specimens)

Nominal (thickness/radius) = 0.00730 (all specimens)

Estimated variation in thickness = + 0.00005 (all specimens)

Estimated variation in radius + 10% (as-formed specimens)

Annealed specimens exhibit considerable distortion.
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1 The specimens were suspended on knife-edges, as shown in Figures 30

and 31, in order to produce zero moment loading conditions at the ends of the active

I length of the specimens. This was accomplished through the use of fine wires wrapped

around thin metal strips and passed through small holes in the ends of the specimens.

Loading was accomplished by the addition of calibrated weights to a light pan

I suspended from the lower end of the specimen. Deflections were measured with a

l vernier height gage and attaching telescope by sighting on the upper and lower ends

of the specimen.I
B. Three-Dimensional Cylindrical Structure

I
A circumferentially-convoluted cylindrical structure was formed by

joining the ends of two convoluted strips. The material and dimensions were the same

as U-shaped specimens Nos. I and 2, and the total length-to-radius of the strips

before joining was 40. Manner of loading is illustrated in Figures 32 to 35. The

energy required to deform the structure into a conical shape was measured for

various cone angles and compared with the theoretical predictions.

Loading was accomplished by the use of ten mass balanced frames

secured to the outermost generators of the cylindrical structure and pivoted about

the base in radial planes. Fine wires, used to attach the frames to the structure,

were passed over slots in the frames and joined to a common point below, from which

a light balance pan was suspended. Calibrated weights were added to the pan and

the corresponding inner and outer diameters of the upper end of the structure were

measured. The changes in diameters were used to compute the cone angle and the

movement of the pan, from which the corresponding energy inputs were computed.
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Figure 31. Two-Dimensional Test View Showing Upper Knife Edge
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i Figure 32. Convoluted Cylindrical Structure Unloaded
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Figure 33. Convoluted Cylindrical Structure Loaded to Partial Expansion
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Figure 35. Convoluted Cylindrical Structural Test Setup, Side View
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C. Experimental Results

1. Two-Dimensional Specimens

I The load-deflection curves for the two-dimensional specimens

I are shown in Figures 36 to 39. The corresponding theoretical curves are also shown,

based on the nominal dimensions and values of 29.4 x 106 psi for E and 0.29 for

s; . The considerable scatter in the data can be attributed, in part, to variations

in the dimensions of the specimens. This is suggested by the fact that the initial

slopes of the curves are also in disagreement with the small-deflection values and,

consequently, these curves appear to be rotated about the origin. In order to

obtain more valid comparisons with the large-deflection theory, the data have been

replotted in nondimensional form by using the initial slopes, with the small-deflection

theory solutions, to compute values of the reference load To. These curves are

shown in Figures 40 to 43.

2. Convoluted Cylindrical Structure

Figure 44 shows the energy-deformation curve for the

convoluted cylindrical structure, in which energy input is plotted against cone half-

angle. The corresponding theoretical curve, based on Equation (115), is also shown.

For these computations the nominal dimensions of the two-dimensional strip were used,

with a measured value of 3.142 inches for the average initial cylinder radius, R1 .

VII. CORRELATION OF THEORY AND EXPERIMENT

A. Two-Dimensional Analysis

The scatter in the curves of Figures 36 to 39 can be attributed, in part,

to the variation in specimen dimensions, as noted above. For example, the 10%

-so
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I FIG. 40 NONDIMIUNSIONAJL LOAD-DEFLECTI0N CURVES
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FIe. 41 NONDIMINSIONAL. LOAD-DEFLECTION CURVES5 I'FOR 0.003 INCH CIRCULAR ARC SPECIMENS
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FIG. 42 NONDIMENSIONAL LOAD-DEFLECTION CURVES
FOR 0.002-INCH U-SHAPED SPECIMENS
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FIG. 43 NONDIMENSIONAL LOAD-DEFLECTION CURVES
FOR 0.002-INCH SEMI-CIRCULAR ARC SPECIMENS
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Fie.44 ENERGY-DEFORMATION CURVE FOR

CONVOLUTED CYLI NDRICAL. STRUCTURE
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I variation in radius can produce over 20% variation in load, and the 0.05 mul

variation in thickness can give rise to variations of approximately 5% and 6%

in load, respectively, for the 2 and 3 mil specimens. These variations can

I accumulate and thereby account for most of the scatter in the data.

A considerable improvement results in the "rotated" curves of

I Figures 40 to 43. It is interesting to note the similarity in the curves for the 3 mul

I cases and the closer correlation than in the 2 mil cases. This would be expected

since the dimensional tolerances that can be attained are about the same for both

cases, but a given dimensional error in a 2 mil case has a greater effect than in a

f3 mil case.

It is expected that the consistently lower curves for the as-formed

specimens, compared with the annealed specimens, are due to the Bouschinger

effect. * This effect is related to peculiarities in the stress-strain curve, particularly

the earlier yielding and lowering of the curve, when a polycrystalline metal is

plastically deformed in one direction and then loaded in the reverse direction. This

situation occurs with the convoluted specimens. The forming operation produces

plastic bending deformation in one direction, and elongation of the specimens

results in bending in the reverse direction. Moreover, a mild annealing is known

to remove these effects and restore the metal to its normal behavior.

The disagreement between the theory and experiment that persists in

the "rotated" curves of Figures 40 to 43, besides possible Bauschinger effects in the

I

See, for example, Reference B, Chapter 12, and Reference E, Section 3.4.
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I as-formed cases, can probably be attributed to dimensional nonuniformities.

E.g., the curves were not truly circular, and variations in curvatures and other

dimensions occurred within a single specimen. This is particularly true of the

I annealed specimens in which considerable distortion resulted from the annealing

process. Nevertheless, the overall agreement appears to be quite good so that

the theory appears to be substantiated, at least in the elastic range.

I It should be mentioned that some plastic yielding occurred over the

latter portion of the load-deflection curves. No attempt was made to compute this

effect with the exception of the plastic computations on the semi-circular-arc

f configuration presented in Section IV-F. The lack of adequate stress-strain data

I for very thin sheet material and the scatter in the data, coupled with the slight

effect yielding has in this range, would make correlations quite difficult. The

1 effects of plastic deformation can be evaluated more easily with larger specimens

in which dimensions and material properties can be more closely controlled.

I B. Convoluted Cylindrical Structure

The curves of Figure 44 disagree considerably over the lower range

of expansion but show rather good agreement at the higher range. The maximum

I error is about 65% and the average error is about 30%. This error can be attributed

to the appreciable difference between the inner and outer radii of the cylinder and

"1 the consequent inadequacy of the theory in this case. As mentioned in Section V-B,

"[ this difference in radii gives rise to additional twisting effects which are not accounted

for in the present analysis. A more proper analysis of the deformation should treat the
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I
large-deflection bending and twisting of the circumferentially-convoluted strips

I simultaneously.

I A more quantitative substantiation of the source of error arises from

a consideration of Equation (115) with the dimensions of the structure and the basic

I assumption that the difference in radii is small compared with the average radius.

i According to Equation (115) the energy is approximately inversely proportional to

the square of the average radius, R1. In the actual structure the inside, outside,

I and average radii were 2.34 inches, 3.94 inches, and 3.14 inches, respectively.

Thus, if the inner and outer radii were used to compute the energy, rather than the

average radius, variations of approximately 80% and -37%, respectively, would

I result. In view of this it appears that the theory gives a fairly good first approxi-

mation, particularly for the upper range of expansions. Moreover, it would appear

that considerable improvement in the theory would result as the difference in radii

were decreased.

I VIII. CONCLUSIONS AND RECOMMENDATIONS

Theoretical methods of analysis have been developed for two-dimensional

convoluted-type structures subjected to large deformations, with material behavior

in both the elastic and plastic ranges. Computations have been carried out for

1 structures of several typical configurations, utilizing numerical techniques suitable

for use with a desk calculator. Results of the two-dimensional analysis have been

I applied to the analysis of a typical three-dimensional convoluted cylindrical

structure.
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I
Tests have been performed on two-dimensional specimens and a three-

dimensional cylindrical structure sim;lar to that used in the analysis. The testeappear

I to substantiate the two-dimensional analysis within the e!astic range of behavior.

The results with the convoluted cylindrical structure indicate that the simplified

theory developed can be used for a first-approximation analysis of a considerably

I more complex structure. The/further indicate that a considerably more refined

I analysis will be required in order to accurately predict the behavior of a three-

dimensional structure of the type tested.

I In view of the limited experimentation that could be performed under the

1 present study the following investigations are recommended in order to amplify and

extend the present findings:

I A. Tests with larger two-dimensional specimens so that dimensions and

material behavior can be more carefully controlled

B. Tensile tests to determine stress-strain behavior of specimen sheet

materials

C. Simple bend tests for independent determinations of plastic bending

behavior

D. Compression tests with as-formed specimens to determine initial

slopes and evaluate Bauschinger effects

E. Tests with the same specimen in the as-formed and annealed

conditions in order to evaluate Basuchinger effects

SF. Refined analyses of the convoluted cylindrical structure tested in

order to account for the large difference in radii

I G. Tests with convoluted cylindrical structures having smaller differences

in the radii in order to determine the range of applicability of the simplified theory
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I
In addition to the above investigations it is recommended that future

I theoretical and experimental studies be carried out on three-dimensional convoluted

cylindrical and conical structures in which (a) bending of the structure occurs in

the axial as well as in the circumferential directions; and (b) the convolute span

j height varies axially so as to produce preferential expansions of the structure. In

i particular, attempts should be made to determine if a simplified theory based on the

two-dimensional structure can be developed, as in the present study.

I It should be noted that the development of a successful theory for analyzing

1 the structures described by (a) and (b) would constitute a significant step toward

understanding the general behavior of convoluted shell structures. As seen from

the simplified analysis of the convoluted cylindrical structure in the pre:.ent study,

the general treatment of convoluted shell structures will be extremely difficult.

Therefore, if it can be developed, a simplified theory based on an extension of the

present study would be quite useful for design purposes.

I
I

I
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1
5 APPENDIX A

Determination of Parameters for Convoluted Cylindrical Structure
from Two-Dimensional Analysis

I
The determination of the parameters kl, a0, bl, 02, and b2 , defined in

I Equations (92), (97), and (101), is described below. The parameter k1 is a

I measure of the distribution of rotation over the cross section of a typical longitudinal

strip of the cylinder and is determined from the changes in slopes of the two-dimensional

I structure, as illustrated in Figures I and 27. The parameters a1 and b! relate the

Smaximum rotation of the strip to the fractional elongation, and 02 and b2 describe

the two-dimensional load-deflection curve.

It was assumed in Section V-6 that kl1, as defined in Equation (92) is, in

Ieffect, Independent of the circumferential elongation of the structure. The validity

of this assumption for the U-shaped configuration used in the numerical example and

in the experiment is demonstrated by Figures 45 and 46. Figure 45 shows distributions

of the changes in slope, jl , over the cross-section of the typical section for several

elongations, as determined from the two-dimensional analysis. Figure 46 shows the

corresponding distributions of the incremental changes in slopes, normalized on the

basis of the maximum values. The slight variation in the curves of Figure 46 over the

range of expansion shown justifies the initial assumption. The value for k1 was

obtained from the data of Figure 46 and Equation (92), which can be approximated

as follows:

= 05S( '-/-J " .5 (A-i)
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FIG. 46. NORMALIZED DISTRIBUTIONS OF INCREMENTAL CHANGESIIN SLOPE FOR U-SHAPED CONFIGURATION, /r I
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I

1 The avarage values of / c4 were used in Equation (A-i) and k, was

I determined by numerical integration.

The parameters a 1 , bI, and a21 b2 were obtained by fitting the curves

! of Im vs. C/,&. and T/T vs. 9/&, determined from the two-dimensional

I analysis, to Equations (97) and (101), respectively. The original curves and fitted

expressions are shown in Figures 47 and 48.
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