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NOMENCLATURE

dimension of U-shaped configuration defined in Figure 8
constants defined by Equation (97)

constants defined by Equation (101)

material parameter of Equation (48)

constants defined by Equations (67)

half-thickness of elastic zone in plastic bending analysis
flexural rigidity

effective flexural rigidity for plastic behavior

value of D' at end of i-th element

average value of D' during application of load increment
value of D' at end of i-th element

modulus of elasticity

effective elastic modulus defined by Equation (42)
functional relation of Equation (45)

shear modulus

torsional rigidity per unit length of cross section of axial strip
in convoluted cylindrical structure

thickness
index

effective elastic constant for idealized convoluted cylinder,
defined by Equation (80)

constant defined by Equation (92)
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NOMENCLATURE (cont'd)

~

length of cantilever beam of Figure 1; width of axial strip defined
in Figure 25

)

length of i-th elemental cantilever beam

height of convoluted cylindrical structure

moment per unit length

reference moment per unit length, T2

average value of AM during opplication of load increment

valve of AM at end of i-th element

effective incremental moment defined by Equation (9)

average volue of 4 M' during application of load increment

| dzd g =7

value of AM' at end of i-th element

X

maximum bending moment, Tz

3

value of M at proportional limit

zT T T b
p

~

value of M corresponding to O‘;

index; material parameter defined by Equation (48)

z

number of axial strips in convoluted cylindrical structure

differential pressure across convoluted cylindrical structure

p-'b

initial radius of convolute
R radius of cone
R‘ average radius of convoluted cylindrical structure

s coordinate of length along convoluted curve
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NOMENCLATURE (cont'd)

load per unit length

reference load per unit length, D//i.2

average value of T during application of load increment
value of T after application of n=th load increment
n~th load increment

elastic strain energy of bending per unit width of cantilever beam
of Figure 1

value of U after application of n-th load increment
bending energy in convoluted cylindrical structure

bending energy required to form convoluted cylindrical structure
from straight convoluted strip

twisting energy in convoluted cylindrical structure
total energy in convoluted cylindrical structure
axial coordinate of convoluted cylindrical structure

Cortesion coordinates with x-oxis tangent to convoluted curve for
given load; coordinates of Figure 4 used in plastic bending analysis

values of x,y corresponding to initial undeformed structure
values of x,y after application of load increment (Figure 2)
moment arm in two-dimensional structure

value of z at end of i-th element

average value of z, during application of load increment
maximum vaive of z for a given load

valve of z o ofter application of n-th load increment




Fir

A%

NOMENCLATURE (cont'd)

cone half-angle

parameter defined by Equations (19) or (26)

parameter defined by Equation (27)

constants defined by Equations (70)

end deflection of elemental cantilever beam

end slope of elemental cantilever beam

deflection of end of i=th element relative to (i - 1)th element
slope of end of i-th element relative to (i - 1)th element
plastic bending strain

"plastic strain" at proportional limit defined by Equations (48) and (49)
slope of tangent to two-dimensional structure

initial value of © corresponding to unloaded structure

valve of @ at end of i-th element

average value of Oi during application of load increment
change in slope, © - Oo

parameter defined by Equation (41)

Poisson's ratio

horizontal and vertical deflections, respectively, of end of
cantilever beam of Figure 1

horizontal and vertical deflections, respectively, of end of i-th
element of Figure 1c, relative to (i = 1)th element

incremental change in E during application of n=th load increment
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NOMENCLATURE (cont'd)

bending stress
maximum bending stress
proportional limit stress
yield strength

angle defined in Figure 25; change in slope of S=shoped strip of
convoluted cylindrical structure

maximum value of ¢ for S-shaped strip of convoluted cylindrical
structure

minimum and maximum values of ¢ , respectively, defined in
Figure 25

material efficiency factor defined by Equation (56)

value of W after application of n-th load increment
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FINAL REPORT ON "RESEARCH ON ENERGY ABSORBING STRUCTURES"

l. SUMMARY

Theoretical and experimental studies of convoluted type structures are
described. An incrementol method for predicting the nonlinear large-deformation
behavior of two-dimensional convoluted strips is shown. The method is applicable
for elastic as well as plastic stress-strain behavior of the material. The results of
the two~dimensional analysis are extended to an analysis of a circumferentially-
convoluted cylinder which deforms into a conical shape. Tests on typical two- and
three-dimensional convoluted metal specimens are described and correlations of

theoretical predictions with experimental results are shown.

il. INTRODUCTION

Flexible metal structures which can grossly change their shape by the
absorption or release of energy to their environment offer an attractive potential
for aerospace applications. In particular, it would be desirable to be able to utilize
a passive metal structure of preset convoluted geometry which, when acted upon by
external environmental forces, would vary its geometry in a predetermined manner.
These forces can arise from numerous sources; e.g., aerodynamic pressures, thermal
stresses, variations in material properties due to temperature changes, etc. In view
of the limited knowledge available on this type of structure a theoretical and experi-

mental program is being carried out to develop methods suitable for their analysis.
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Hi. SCOPE OF WORK

The scope of the work performed under this study is summarized as follows:

(1) An incremental technique was developed for predicting the large-
deflection load-deformation behavior of two-dimensional convoluted metal strips
of arbitrary shape which exhibit elastic and plastic material behavior.

(2 The load-deformation behavior of two-dimensional convoluted
strips loaded within the elastic range was computed for several typical configura-
tions and is presented in nondimensional form.

(3 The load-deformation behavior of two-dimensional convoluted
strips of semi-circular-arc configuration was computed for several conditions of
yielding and plastic stress-strain behavior and is presented in nondimensional form.

(4) The results of the two~-dimensional analyses were extended to an
analysis of a three-dimensional circumferentially-convoluted cylindrical structure
which deforms into a conical shape .

(5) Tests were performed on typical two- and three-dimensional

structures and the results were correlated with the theoretical predictions.

IV.  TWO-DIMENSIONAL ANALYSIS

The large-deflection analysis of convoluted metal structures is severely
complicated by the fact that the large deflections give rise to nonlinearities in the
load-deflection behavior. Even when the material stress-strain behavior is elastic,
geometrical nonlinearities are present. If, in .oddiﬁon, the material is deformed

into the plastic range, nonlinearities result in the stress-strain behavior and the
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problem is further complicated. Because of these complications, analytical
closed=-form solutions can only be obtained for the simplest cases, and severe
assumptions and approximations are usually required.

In order to arrive at more general and useful results, an incremental
approach has been taken in the analysis of two-dimensional convoluted strips.
Solutions are developed in increments of load, and the incremental deformations
resulting in each load increment are determined by dividing the structure into
incremental segments. This technique is described in detail in the following

sections.

A, Development of Incremental Method

Consider the simple two-dimensional strip shown in Figure la,
which is deformed by loads applied to its ends. As the load increases, deformation
results from changes in the bending moment distribution and, if the material is loaded
into the plastic range, changes in the effective flexural rigidity of the structure.
Since large deformations are being considered, changes in the bending moment at
any point are due to changes in the load as well as changes in the effective-moment
arm. Because of symmetry it is necessary to analyze only one typical section of the
strip, such as the curved contilevered beam of Figure 1b. At a point "a" the change
in slope is zero and at point "b" the moment is zero since the moment arm vanishes.
As the structure deforms, the edge load T (load/unit length) remains horizontal so
that the bending moment at any point is the product of T and the moment arm, z.

The basic problem is to describe the deformation of a convoluted

strip of arbitrary shope as the load increases from zero to some arbitrary value. For
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this purpose the following assumptions are made:

1. The thickness of the material is small enough in relation to the
other dimensions that classical bending theory can be used to relate change in
curvature to bending moment.

2. The effects of normal forces acting in the tangent plane at any
point can be ignored.

3. Material stress-strain behavior in both the elastic and plastic range
occurs.

4. The structure is deformed in a state of plane strain bending and
end effects can be ignored.

With the above assumptions the deformation behavior is determined by o
step-by~step procedure in which an incremental load is applied and the incremental
deformation is estimated from the inital shape and the applied load. Since the
moments and (in the plastic range) the effective flexural rigidity change during
opplication of the load, average values are used which con be determined by trial
and error. In order to determine the incremental deformations a second incrementel
procedure is utilized in which the curved cantilever beam of Figure 1b is approximated
by straight segments, as shown in Figure 1c. The onalytical development of both
incremental procedures is given below.

The bending equation can be expressed by

d0 A
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where @ is the slope, @, is the slope for the initial undeformed shape, s is the
coordinate of length along the curved section, and D' is an effective flexural
rigidity.

The moment M is given by

M = T-i . 2)

For elastic material behavior,

£4°

D=0 =
12 (4-9v*)

! (3)

where E is Young's modulus, h is the material thickness, and 4/ is Poisson's
ratio.

Equation (1) expresses the change in curvature due to the moment M.
The curvature d@/ds can also be expressed in terms of Cartesian coordinates x,y

by the relation*

oLy
de _, _ __dx*
«S ofy \& 7 3/a ) (4)
[1#(2)']

Since the location of the x,y-axes is arbitrary, it is useful to consider a "moving"

set of coordinate axes with the origin on the curved beam and the x-axis tangent

“ It is convenient to select the coordinate axes so that a positive change of curvature
in the x,y coordinates corresponds to a decrease in the original curvature of the
convoluted shape.
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to the beam at the point s. The first derivative term in Equation (4) is then zero

and Equations (1) ond (2) may be written

ody _ L% _ Tx
Ax® odx} b’ > (5)

where the subscript o denotes the initial undeformed shape. Equation (5) expresses
the curvature relation at a particular point s since the coordinate axes of x,y are

now functionsof s and T, and those of x correspond to T =0, However,

o’Yo

if Equation (5) is extended to a small finite range of x obout x =0 for fixed

coordinate axes of x,y and x the error will be small since the first derivative

o'Yo!
term in Equation (4) will be small compared with unity. This is the basis for the
present incremental procedure.

Consider, first, an incremental change in the load AT and express the

resulting change in curvature from Equation (5). This result can be written

dzx -‘ | ! T, ’
45 .lr( D,)d’ =g (2+7 *-,,--—-Ef "’r.)A7 ) 6

provided the load increment is sufficiently small. The term on the left of
Equation (6) can be interpreted, with the aid of Figure 2, as follows: Let x,y
represent the coordinates at point s which correspond to the load T, and let
x',y' correspondto T+ AT, asshown in Figure 2a. By superposing the
coordinate axes, as indicated in Figure 2b, the incremental change in curvature

is seen to be
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ay
\j T+AT
—p- x,x’
(b)

F16.2 GEOMETRIC INTERPRETATION OF LEFT SIDE
OF EQUATION (6)
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where Ay is the incremental deflection normal to the tangent at the point s.

Equations (6) and (7) con be written

oA Say _ am’

oAx* o’ @)
where
’ r'4
Td2 _Tg A0
M s (= + i _D’i‘ 77 )47— . )

The quantity AM' is an effective incremental moment which also takes into
account variations in D' which result if the material is in the plastic range.
Equations (8) and (9) form the basis for the incremental technique by which
the incremental deformation is determined for each load increment. As mentioned
earlier, the cantilever beam of Figure 1b is approximated by a series of straight
elements, shown in Figure lc. If the increments of length and load are small
enough, each element can be treated as a cantilever beam with linearly varying
moment and, in the plastic range, linearly varying flexural rigidity. The incremental

changes in lateral deflection and slope of the end of each element relative to its
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base are determined from Equations (8) and (). The gross deflections are then
determined by accumulating rotations and deflections of each element starting from
the base of the original contilever beam.

Let the relative incremental slope and bending deflection for the i-th
element of Figure 1c be denoted by 5: and gi , respectively * Positive values
for ‘i’ and ‘i correspond to a clockwise rotation of the element, as shown in
Figure 3. The total lateral deflection of the end of the i-th element relative to
the end of the (i = 1)th element results from Ji and the rigid body rotation

rid
iS; produced by the bending of all the preceding elements, and is given by
£=1
i-1

total lateral deflection of end of i-th element _ ,
relative to end of (i - 1)th element - ;i * '[i Z ‘k (10)
k=1

where 1 .

; is the length of the i~th element. The average slope of the i-th element

53 during application of the load increment can be approximated by

- "_,
9' = o ._' 2 ’
r = & -3 2.5 (")
k=
where 9, is the slope before application of the load increment.

The horizontal and vertical incremental defections of the end of the i-th

element relative to the (i = 1)th element are, from Equations (10) and (11),

e &~
A —4E. =(C 4+ 2. "\ s, ‘
-4k, = (§ +!,g;s* ) sin (€ -4 é‘; 5, )

ey é-1 (12)
49. 4y, = (& : ' .
Bl = (6t S8 ) cor (-4 2:5%)

#Tn terms of the previous notation, S/ & 44 nd .
S, 2-;I/x-v,l.. ¢ ‘l "X/X-[‘.

.’.




Fi1e. 3 INCREMENTAL ROTATIONS AND DEFLECTIONS
FOR LTH ELEMENT
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With the fixed end boundary conditions for the original cantilever beam denoted by

AEo = 4% = g./ =0 (13

J

the incremental deflections of the end of the i-th element can be written

0
¢

A%, —.:EI(AE‘&—A £ )

47, = qu (U?* = 8% )

(14

Equations (12) - (14) constitute the relations from which the gross deflections of
the original cantilever beam can be computed for each load increment, provided
the quantities Si and S: are known. The determination of Si and {; for

elastic and plastic material behavior is described in the following sections.

B. Incremental Slopes and Deflections for Elastic Material Behavior

For elastic behavior Equation (3) applies so that dD'/dT is zero

and Equations (8) and (9) become

Loy 4

15
Tex N ) (15)
where
— ol»

The quantities Si and S; can be determined froin these two equations. Since

“]l=
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finite variations occur in z, T, and dz/dT during application of the load increment,

average values of these quantities are used to compute AM.
As was mentioned earlier, if the increments of length are small enough the

variation in AM over each elemental beam can be assumed linear. Thus, let

&M (x) = 4M,, (1-; 5 ), 0L xsd (17)
where
57 = [5+7 (D), ] aT w
¢ - . ATl J

and the bars denote average quantities during application of the load increment. The
subscript i on M and z denotes a quantity evaluated at the end of the i-th

element, and O(i is defined by

oA, = — . (19)

Substitution of Equation (17) into Equation (15), and integration of the result with

the boundary conditions,

o &
yields
d 4y AM:, £ .
o= W) —= -%) (21
-12-
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ond

M
S = ayld) < U- &) . (22)

Equations (21) and (22) with Equations (18) and (19) constitute the required

relations.

For computational purposes it is convenient to introduce the reference
load and moment,

D
A /

o

it

and to express the above equations in nondimensional form. Here £, is a typical
dimension of the convolute, such as an initial radius of curvature. Equations (21)

ond (22) become

4 A-/-‘Z'. L .
S‘. = T' o (/—{‘) J (24)
and
&1 f—_—"" LY | &
-13-
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C. Incremental Slopes and Deflections for Plastic Material Behavior

In the plastic case both AM' and D' vary over the length of the
element. As before, if the element length is sufficiently small, both of these

quantities can be assumed to vary linearly. Thus, let

¢ 47'1:{: ) (26)
and
o-1o,
B = — } (27)
b,
so that
M) = amMl, (1o ) (20
ond
D'ty = O (/"'F’ii?) . (29)

Substitution of Equations (28) and (29) into Equation (8), and integration of the

result with the boundary conditions of Equations (20), gives

’ M' L
§ = —=— a7 < [(3 (/+—!)L(/+/e)__.] (30)

‘

and
PO k
aMl 4o
g‘. = -—D:"— { o (H--.t)[ (/+F )»&.(H(S) i] } (31
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As before, it is convenient to use Equation (23) and to write Equations (30) and

(31) in the nondimensional form,

r (47'7:'7., /M.)(l.'//c) 1 o, .
= [tos2 )bty @)

[

S (ML m)ES (1 .
— ¢=¢ d —_— o) L . . _d,
r B /D (“'Wr'o')[m('*"‘““’*("*"'] 2p: " @

If the value of . is small these equations are difficult to evaluate due
to small differences between lorge numbers. For this case the following series

expansions ore useful:

¢! o (ML /M)
B >/

[1- vy (4 - &+ £ - S e

S (aFL /m)nY .
- = ~leote )2 -8, ®
3 2 BZ'/D [, ("("I'FL)(.? Z + /ﬁ‘o_.....)z. (35)

D. Plastic Bending Relations

in the plastic analysis described above a knowledge of the moment-

curvature relation is required in order to calculate the effective flexural rigidity

-15-
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and the parameter [3i. Because of the numerical procedure involved this relation
can be determined from the actual stress-strain behavior of the material and utilized
in graphical or tabular form. However, in order to illustrate the method, an ideal
elastic-plastic material behavior is first assumed, for which an analytical solution
can be obtained in closed form. The following analysis is based on that described

in Reference A.

1. ideal Elastic-Plastic Behavior

Consider the bending of a uniform sheet of nonhardening
material under conditions of plane strain. The material is assumed to have the
stress=strain behavior of Figure 4a in both tension and compression and is assumed
to yield in accordance with the Tresca law. It is further assumed that the radius
of curvature is so large in relation to the thickness that the induced transverse
stresses in the direction normal to the sheet can be neglected.

The coordinate axes are chosen as shown in Figure 4b with
the z-axis in the direction in which strain is prevented. When the moment per unit
width is greater than the yield value,

2
M:.%i;) (36)

elastic and plastic zones are produced, as shown in Figure 4b. The moment is

expressed by

2E d(6-8) (° g
M= (1-9%) ¢ rly + 2°;£§Yd/
3
_2Ect dls-8) 2, (37)
T 831-v) de * 0; (;~c ) )
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and the parometer ¢ is given by

c (1-27) G
- E oA (9-6,) ) (38)
ol

Solution of d(0 ~ 0,)/ds from Equations (37) and (38) gives the result,

Sy
de-6)_ 2(-V) g,

ols . (39)
3Y /-4
137 o

This result with Equations (1), (3), and (36) gives for the effective flexural

rigidity,
D’ M 2z M
DgﬁM, / M, M,sMefM, : (40)

With this material behavior one additional structural parameter is required
in order to describe the load or deflection value at which the material first yields.

For this purpose it is convenient to introduce the parameter A , defined by

)= 2 @
G /Ey ~

where G;L is the proportional limit, eqbol to Q’Y for this case, and Ey s
defined by

E, e

E
> (42)

=18-




Equation (40) with Equations (3) and (23) can then be written,

>

3 /M M
(T =35, 26,5

I
>

Uio
]

(43)

Equations (40), or (41) and (43), constitute the required relations. A treatment of

the problem for more general stress-strain behavior is given in the following section.

2. Arbitrary Stress-Strain Behavior

In the previous section relations were derived for plane
strain bending of @ wide sheet of ideal nonhardening elastic-plastic material. The
present analysis, based on that of Reference B, extends the treatment to arbitrary
stress-strain behavior. As in the former analysis, the following assumptions are made:
(i) The material has the same stress-strain behavior in

tension and compression.

il bl wedd et nEE BN R D oes eas e

(i1) Transverse stresses in the direction normal to the

] sheet can be neglected.

. (iii)  The neutral axis remains coincident with the midplane
of the sheet.

(iv)  The total strain component in the restrained direction
is zero.

In addition to the above, the usual laws of plasticity are

{ imposed, which include the constancy of volume condition, the von Mises condition,

and a criterion of plastic flow. For the latter the. "maximum shear stress vs.

|

-19=
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numerically largest principal strain" criterion is used.* With these conditions the

result of Reference B may be written as

y = (I- :’)6,,+ (2-27-7%)

W, ' L
+Z—E {[z&'e,. +(z-v)o']’_4(,_2,,)56-éf§ ., e

where §” is the bending stress and €P is the plastic bending strain.
In addition to Equation (44) there exists a stress-strain

relation between GP and G,

€ = () (45)

which con be determined from a tensile test. The present flow criterion is such that
the functional relation of Equation (45) is the same as that between axial stress and
plastic strain in a tensile test.

Equations (44) and (45), with the expression for moment

per unit width,
hl2

can be used to compute the moment-curvature relation. For a particular value of
d40/ds, values of @ can be selected for which the corresponding values of y
con be determined from Equations (44) and (45). Equation (46) can then be used

to compute the corresponding moment.

¥ Although the von Mises-Hencky criterion is generally considered to be slightly
better, the added complexity is not warranted in this analysis.

-20-
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If, instead of Assumption (iv), which is the usual condition
for plane strain, it is assumed that both the elastic and plastic components of strain
are zero, the result is

Jd4e 2y &
Y S = (-7t 6 (47)

which is considerably simpler than Equation (44). A comparison of Equations (44)
and (47) is given below.

For many structural metals the stress-strain relation of

Equation (45) can be expressed in the form
€p = Ac" . (48)

With the addition of the elastic strain, /€, the expression for total strain becomes
identical to the well-known Ramberg-Osgood relation (Reference C) by proper
definition of the constant A. It is convenient to express Equation (48) in terms of

the proportional limit stress @7, and some corresponding plastic strain ePL' This

PL
result con be written as
& a \"
Z - (z) - 49)
L

Although, strictly speaking, there is no plastic strain at the proportional limit,
Lubahn and Felgar* have suggested 20 x 10-6 as a svitable value since this is

close to the minimum value that can be detected experimentally.

FReference B, p. 111

<21-
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In Reference B a comparison of Equations (44) and (47) is
given for a particular case of bending, using the expression of Equation (48) with
n =5. Further comparisons are shown in Figure 5 for n =3, 5, and 10. For each
of these cases the maximum plastic bending strain is half of the total strain. From
these results it appears that Equation (47) provides a good approximation to
Equation (44).

With the stress=strain relation of Equation (49) analytical
expressions can be determined from Equations (46) and (47) which relate d48/ds

and M. Substitution of Equation (49) in Equation (47) gives
—1 —
T E, (°7- )+ 6y, (o;L> ) 0)

where E4 = E/() -7’2). Substitution of y and dy from Equation (50) into

Equation (46), ond integration over the half-thickness of the sheet, gives the

mulf
0z, ? 2
49
35 PL ned E), O;L
(51
2
(2n+1) ) — 2
T ’
where MPL is the moment at which the moximum bending stress is GI;L’ given by
2
h oz
Mp, = =22, (52)
6
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and O, is the maximum bending stress corresponding to the moment M.

Equations (47) and (49) evaluated at y =h/2 give the relation

d 2 [ Gn
w23 e, 5, -
PL

The required moment-curvature relations, from which the effective flexural rigidity
can be determined, are expressed by Equations (51) to (53).

It is convenient to introduce again the parameter 7,
defined by Equation (41). With this relation and that of Equations (23 ),

Equations (51) to (53) give for the effective flexural rigidity,

s GNE) o
=3 ) 2=
° [(%’)(;%)*-érz.( %) ] " >
where
ng2 " a ne+d
w, BETE R S e
G- - o2 %" (55)
[N e (2)]

=24~




By substituting values of rm/ P into Equations (54) and (55) a curve of

D'/D vs AM/M, can be constructued for use with the incremental procedure.

[ ] —y e

This result may be compared with that of Equation (43) for the ideal nonhardening

"

material. It should be noted that the ideal nonhardening material can be con-
sidered as a limiting case of Equation (48) as n approaches infinity.

For the analysis of two-dimensional convoluted structures

in nondimensional form with the material behavior of Equation (48) only four of
] the parameters introduced need be specified. These are, for example, chL/ E,,

GPL' n, and A . For most cases of interest the value 20 x 10'6 for €PL will

U

probably suffice, so that only three parometers may be required. Moreover, for

} the case of Equation (43) only one parameter is required.
Examples of stress-strain curves, based on the material
} behavior of Equation (48), are shown in Figure 6 for cases of strain-hardening

1 exponents corresponding to n =5, n =10, ond the nonhardening case, n=9°°,
| -
The other material parameters assumed are CPL = 20x 10 6 and O’PL/E,, = 10-3,

1 The corresponding flexural rigidity-moment curves are shown in Figure 7.

| E. Computational Procedure

’ The procedure by which the incremental technique is used to compute
the deformation behavior of a convoluted strip is described in the following steps:

I 1. The typical cantilever section is divided into suitable

l increments of lenghand the initial values of z; and O; are determined, as shown

in Figure lc.

-25-
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2. A small increment of load is applied and the corresponding
deformations are computed from small-deflection elastic theory. For simple shapes
classical analytical methods can be used. However, if the shapes are more
complicated the present increment technique can be used. For this purpose the
values of mi— are computed from Equation (18), taking T = 0 and using
the initial values of z; for ;i . The incremental cantilever slopes and deflections
are then computed from Equations (19), (24), and (25), and the resulting deflections
Aii and Ani are determined from Equations (12) to (14).

3. The deformations corresponding to the first load increment
are recomputed using the results of Step (2) to determine better values for the
effective incremental moments, KTA:_ . The valuesof T, ;;, and Wﬂ;—
are computed using one-half the values of AT and a7y . If the material is in
the plastic range values of the effective flexural rigidity -D_; are computed from the
average moment Tz, and the appropriate relations of Section IV-D. The values of
—A_MT are computed from Equations (18) or (9), depending on whether the material
is in the elastic or plastic range. The deformations are then computed using
Equations (24) and (25) or Equations (32) and (33) for the incremental cantilever

relations.

4, The values of (dz/dT); are computed from the results of

-Step (3) and compared with the initial values used in Step (3). If the agreement

is unsatisfactory, Step (3) is repeated using the final values of (dz/dT); until

agreement between two successive values is attained.
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5. Subsequent load increments are applied and the procedure of
Step (4) is used to obtain the incremental deformations.

Although an iterative technique is used for each load increment,
convergence appears to be sufficiently rapid in most cases that the method can be
used with a desk calculator. In the case of a plastic analysis with the nonhardening
material behavior some difficulty was experienced due to the severe variation of
effective flexural rigidity with moment, as illustrated in Figure 7. However, if
the load increment is sufficiently small it is expected that this difficulty can be
avoided. Moreover, with the present incremental technique it is just as easy to
use a more realistic material behavior, such as illustrated in the other curves of
Figures 6 and 7, which converge more readily. A more complete discussion of the
computations is given in the following section.

If the material behavior is limited to the elastic range, it is pasible
to use a direct procedure for each load increment and to correct the value of the
load increment on the basis of energy considerations. For this purpose it is con-

venient to introduce a material efficiency factor defined by

elastic strain energy in structure v
Y = elastic strain energy capacity —_—
corresponding to maximum stress ¢,:_f._ L
2E,

where U is the elastic strain energy per unit width of the cantilever beam of
Figure 1, £ is the total length of the beam, and T is the maximum bending

stress. With the expression for U in terms of bending moment, given by

(56)



puse—

2.
s 2
U’;eo =-:?,!M ds

and the maximum stress, given by

6 M
W

where M. is the maximum bending moment, " may be written

v—-—f(

Since the elastic strain energy in the structure is equal to the work done during

deformation,
£
U=[T(e)ds’

where & is the total horizontal deflection, as indicated in Figure 1d.

Equations (56), (58), and (60) yield the relation

/9,( /‘1’

The maximum bending moment is

Mm = Tio

/

(57)

(58)

(59

(60)

(61)

(62)
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where z, is the maximum moment arm, as indicated in Figure 1c. With this

result Equations (56) and (59) can be written

“”37;(2%) ols (63
and
= E‘)’ ’ |
18 LT3 '(T(E)“ (64)

It will be shown in the numerical examples that ¥ is a slowly
varying function of the load and deflection. Therefore, by determining the value
of a given load increment so that the expressions of Equations (63) and (44) are
equal, a more accurate result can be obtained on the basis of total energy absorbed.
In addition, it is useful to evaluate Y as a function of load and deflection, since
this quantity is a measure of the effectiveness with which the available material is
being utilized. The procedure by which the corrected load increment is determined
is described below.

After application of a particular load increment ¥ is determined
From Equation (63) by numerical integration. This value of ¥ is then used in
Equation (64) to determine the corrected load increment. Let AT denote the
n-th corrected load increment, and let the subscript n denote values of the

parameters of Equations (60), (63), and (64) ofter application of the n-th load

-31-
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increment. Then, assuming a linear load-deflection relation for each load

increment, Equation (64) can be expressed in the form

Ey 4
184 %, Z

(T, n-y "'47; )‘ =

[u, + (T, + 24T, )45, ] (65)

The solution for A Tn from Equation (65) is

B, 2
AT = - 5+ (B¢, (66)
where
B,=2T,., - _Lé. £,
" 364 % a
(67)

2
EF (Yo r T A5 >
/gl ’W,“ Z,: h-,

Cn

For the first load increment corresponding to n = 1, the solution is

3

E, % 45
AT 2
! 6L (¢8)

Equations (66) and (67) may be written in the nondimensional form,

47, B, >
T - f+1/(-gi)+1{, , (69)
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where
Y = = -
° T/ 34y (2
U,- T sk, (70)
y = & _2 i *'('7".")('2')} (I_)‘
n - 7—! - 3 2 - 7;
" ()% (%) )
F. Computational Results

The accuracy of the elemental beam approach was investigated by
the application of this part of the method to the small-deflection analysis of a
semi-circular-arc convolute for which the true solution is known. The quarter
circle corresponding to the cantilever beam of Figure 1 was divided into three,
four, and five increments, and the resulting load-deflection relations are compared
with the known solutions. The results are summarized in Table |, in which £ and
7. represent the horizontal and vertical deflections, respectively, and A s the

initial radius of curvature. The true solutions are,

y/
5|-7/f-’°— = 0.785, %ﬁ— = 0.500 ()

Table I.  Small-Deflection Solution for 3, 4, and 5 Beam Increments

No. of E/n 7/n % error % error
Increments T/To T/To in& in%
3 757 .505 3.6 1.0
4 770 .504 1.9 0.8
5 775 .501 1.3 0.2
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It is seen that the incremental beam technique gives rather accurate
results for relatively few increments. For example, according to Table | the use of
four beam elements for the large-deflection analysis should introduce less than 2%
error in 5 and less than 1% in 7. particularly since the straight beam approxi-
mation improves as the curvature decreases.

Large-deflection elastic cases were carried out for the semi-circular-
arc configuration and two U-shaped configurations, illustroted in Figure 8. The
principal results for the semi-circular-arc are shown in Fi_ures 9 to 12, and those
for the two U-shapes, in Figures 13 to 20. The results include the load-deflection
curve; acurve of %/r vs. &/r which indicates the "flattening” of the convolute;
a curve of the yield parameter (h/r) / ( O’PL/E,) which indicates the deflection at
which the proportional limit is reached; and the variation of the material efficiency
factor ¥~ with £/r.

For comparison, the small-deflection solutions for the U-shaped

convolute are given by

S _ T4, xay, saf
= 4 AT 2 2) *3(%)
7 . (72)
/4 2 a
7'2__—3 2 +0_§70?I

Plastic cases were run for the semi-circular-arc configuration with
the material behavior of Figures 6 and 7, and two values of the yield parameter ] .

The resulting load-deflection curves are shown in Figures 21 and 22. As mentioned
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earlier, some difficulty was encountered with convergence of the nonhardening
material case due to the sensitivity of effective flexural rigidity with bending
moment. The curve of Figure 21 corresponding to n = o0  was computed with
only three load increments, although as many as six iterations were required for a
particular load increment. |In order to test the accuracy of these calculations, the
some case was repeated using load increments of half the magnitude, and six instead
of four length increments. These results are shown in Figure 23 and indicate only
small deviations from the original solution. The curves corresponding to the other
cases of strain hardening were computed with considerably more ease, with only

one or two iterations being adequate for some of the load increments.

V. THREE-DIMENSIONAL CONVOLUTED STRUCTURES

In a two-dimensional convoluted structure, such as the strip of the previous
analyses, deformation arises from bending in the plane of the convolute which is
essentially constant over the width of the strip. In the usual three-dimensional
convoluted structure, however, additional restraints are present so that the structure
is not free to deform by a uniform bending in the convoluted plane. For example,
in the common bellows of Figure 24a, extension or contraction of the bellows is
accompanied by changes in the diameter which produce lateral "hoop" stresses.
These stresses impose severe restrictions on the flexibility of the bellows, particularly
in the case of large deflections. Similarly, in the deformation of a convoluted
structure from a cylindrical to a conical shape, as shown in Figure 24b, the non-

uniform circumferential expansion is accompanied by twisting of the longitudinal
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elements. This produces restraints which, although not generally as severe ;:s in
the bellows, can significantly affect the behavior of the structure.

For the present analysis, two cases of the circumferentially~convoluted
cylinder of Figure 24b are treated. The first case represents an idealized structure
of saw-tooth configuration which expands into a conical shape, and illustrates in
a simplified manner the three~dimensional restraining effects. The second case
deals with a more realistic structure in which the convolute has one of the U-shapes

considered earlier. These analyses are described in the following sections.

A, Circumferentially-Convoluted Cylinder with |dealized Saw-Tooth
Configuration

In the present example the idealized cylindrical structure is restrained

at one end and is expanded into a conical shape by a uniform pressure differential
across the walls. The following assumptions are used in the analysis:

1. The convolute span heightis small compared with the radius
of the cylinder.

2, All of the deformation in the plane of the convolute occurs
at the bends so that only the angle of the saw-tooth is changed.

3. A linear relation exists between bending moment and
convolute (saw-tooth) angle.

4. The centerline of each longitudinal strip remains straight so
that twisting but no bending occurs in the longitudinal direction.

5. Small-deflection torsion theory applies to the twisting of the
strips.

6. The material behavior is elastic.




[
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With the above assumptions expressions can be derived for the elastic
energy of bending and twisting of the longitudinal strips and the work done on the
structure during expansion. By equating the work done with the total elastic energy
the relation between differential pressure and cone angle can be determined.

The coordinates and some of the geometric parameters are shown in
Figure 25. Because of symmetry it is necessary to treat only one of the longitudinal
strips.

The twisting energy for a structure componed of N strips is given by
L
NET AP .
(/_r = 3 f(dx)a(x, (73)
4]

where GJ is the torsional rigidity of the strip. From Figure 25 we have the

geometric relations

AR = ML smdp 74)
and
Slv\cP-:.(/*-é—'fm'o()s'"‘pr -
Equation (75) and its derivative with respect to x give the result
o/__d’)"= in” o
dx ' (76)

2 . i
R, Cfr;“,; _ZR,)( smol = X*8m oL



Figure 25. Coordinates and Geometric Parometers
for Convoluted Cylindrical Structure
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Substitution of Equation (76) into Equation (73) and integration gives the result

NET i -1 L .. . -1, -
UT‘ E-E'—- Sinef) Simel {fmh [(/""5: s"“‘)"" #T— Youh (sm €} 0 . (77)

The change in Uy due to the change oot in the cone half-angle is, by

differentiation of Equation (77),

NGT .. : i
AU, = MET ¢y co;.z[T;..,;,' (55 &) = Tank (sin &)

ZR,
L ¢m fﬁ flna(
{ * < R, Co;" ‘ﬂ. ]4‘ J (78)
where
' - L .. .
CP,_ = Sm'[(/-l-E;fma()Smcp,] . (79)

The bending energy for the strip can be expressed by

L
Us/w = % § (p-b) dlx (60)

where % is an effective elastic constant for the joint. With the substitution of

@ from Equation (75) into Equation (80), the result of the integration can be

expressed by
N ] — e
UB = - iE.' [u (sin 'u\‘—2u+ 21//-(4‘ Cin 'U
Smef dim & il (81)
~ 2 (usiny +1l-«‘)] +NiLCP,t.
Sincf
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The change in U, due to the change in the cone half-angle can be written as

:(_.(:E _ oA Us of S <h,
oA T plg ¢, olu. . (82)

Differentiation of Equation (81) with Equations (79) and (82) gives the result

_N‘R, c.*d _L_ . g L4
dUs-T[ZR‘ sind ~ (e, -f)) -2(%-#)%‘2 Ta[at, (83)

The work done on the structure by the differential pressure p during

the expansion Jo¢ is, from Figure 26,

L
oAW = p [(2nRdx)xdu | (84

X= 0O

Integration of Equation (84) with the relation,

R= R, + xeinu , (85)

gives the resuit

dW=TTR,LP(/+—§—%;S/'n¢L)o/d.. (86)

The work done on the structure can be equated with the total energy

absorbed in the structure, to give

dw:dUT'*O(UB . (87)
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Substitution of Equations (78), (83) and (86) into Equation (87) gives the
required pressure relation,

rrR.‘L‘r Sinch Cosot o 4 Ry
= an ] -t 7 . L 1n @ Sty
NGT 2([-}-_;.%""‘) L (s ¢t) f"\l\ (SM@)"'R —— I

' ca;‘qg_

(88)

&R‘l Cotot Eseol L. .
+ ey A —— - o -.-
GT(/+§R£,,,-,,¢)[2 R, ¢ = (A-4) -2(4-4) 0% I

Sin 4
This example illustrates the manner in which three-dimensional
restraints can give rise to twisting as well as bending energy absorption by the
structure, and might provide a first-approximation solution for certain convoluted
configurations. However, a more realistic analysis is presented in the following

section.

B. Circumferentially-Convoluted Cylinder with U-Shaped Configuration

The present analysis is similar to the preceding one except that
lateral bending of the longitudinal strips is treated more properly, and the resulting
effects on the twisting of the strips is taken into account. A typical strip of the
present structure has an S-shaped cross section which deforms as shown in Figure 27.
The lateral deformation of the strip ot a particular axial location is determined from
the two-dimensional analysis. [t is seen from the sketch of Figure 27 that the angle
of twist P wvaries over the cross section of the strip, as compared with the uniform

twisting in the previous analysis. This variable twisting is taken into account by




[RD————

Fie. 27 CROSS -SECTION OF TYPICAL
LONGITUDINAL STRIP
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treating the strip as though it were made up of many smaller strips, each of which
twists a different amount. From symmetry it is necessary to treat only half of the
S-shaped strip, as in the two-dimensional analysis.

The following assumptions are made:

1. The convolute span height is small compared with the
radius of the cylinder.

2, The center line of each longitudinal S-shaped strip remains
straight as the cylinder deforms into @ conical shape.

3. The load-deformation behavior due to lateral bending at
any axial location is the same as that determined in the two-dimensional analysis.

4, Small-deflection torsion theory applies to the twisting of
each element of the S-shaped strip, and a constant torsional rigidity relates
twisting moment per unit length of cross section with the local angle of twist.

5. The material behavior is elastic.

With the above assumptions the twisting energy of the structure

per unit length in the axial direction con be written

Y]
LU, *

where N is the number of S-shaped strips and GJ is the torsional rigidity of the
strip per unit length of cross section. The angle of twist Cf (x,s) is a function of
both the axial coordinate x and the cross section coordinate s. For a strip of

narrow cross section the torsional rigidity per unit length is, from Reference D,

Gt
6T = F - (90)
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If it is assumed that the functional form of @ (x,s) with s is the same for all

values of x, Equations (89) and (90) can be written

AU NGRBL [ ddy 7*
i 3 [“ m] ®1)

where k‘ is independent of x and is defined by

£
!
e g ([#eers

and ﬂ" is the maximum angle of twist, corresponding to s= £ . Although
k, appears to be a function of x by Equation (92), it will be shown in the
example that it is nearly invariant in x.

Integration of Equation (91) from O to L gives for the total

twisting energy,

NGtil 2
Ur = f[a(("/l.)] “(L) - (93)
-:O

For the U-shaped configuration discussed earlier, the fractional

expansion f/,g is related to the present structural parameters by

;/A. = 'é,—' flnd (94)
and
L) = & () ol §) (95)
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so that Equation (93) con be written,

NG i i. £ o
Ur ==25 S f [ ’((5/4,)] "/(A_ . (96)

The functional relation for d CPm/d( E/p) vs. £/ canbe approximated by

44,

= £
d(‘/fi) dl +L’/L

(97)

where a_ and b] are determined from the two-dimensional analysis. Substitution

of Equation (97) into Equation (96) and differentiation with respect to o gives

du.  mer% L
;J%: —?’—R:-L—[zaté Slnc( + 34 L ( )Smo( + ‘ (R)gl"djc“o( e

This expression can be used with the differential energy relation, as in the preceding

analysis, or integrated to give the total twisting energy as a function of o ,

l
Uy [ cmu +-4L,(R)s:na+3 l(':';)zsf;t(}, (99)

The bending energy can be expressed in the form,

AU $/a(x)
8 ’ ’
77'2’\/"7.‘! F(£)4(£), (100)
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where T is the circumferential load per unit length and T, is the reference load
of Equation (23). The function T/To (8/A) can be approximated from the two-

dimensional analysis by

T
= ( )_a(_) w b (52 (101)

Substitution of Equation (101) into Equation (100) and integration gives the result

ol Us -,_

N b, 83 (102)
dx =2 AT[ ?(Z) ] J
which, with Equation (94), can be written

AdUs

= WA 3

G%) ANA T B, (c¢¢.<)[ x(=) +;,z({.) 1. (103)
Integration of this equation from E/ne =0 to ;//g = (L/Rl)sina( gives
the result

U 3 /V/L R, T, a, (,—2-) (/ é E— ;:,.a) :n;"d . (104)

The differential bending energy expression, analogous to Equation (98), can then

be written

4y o ;
v 2:1//..&7‘.’[-5‘—( ,-t;) Sin ol +.lf:.(£;) sﬁ."«]cose( . (105)



With the expression for T° from Equation (23), and the relations,

- E [~V
G = 2(1+v) = 2 & (108)

Equations (99) and (100) can be combined to give the total energy input W as a

function of o ,

W'-' UT*UB
36NE,f4 (/L (K {(/4'7_ -: L'-cl.h'() (107)

+‘('_,) I l..—[l"- —Su.d'l‘-L(—) (R Su,,{]fSl;z;( .

The present method is illustrated with an example based on the
U-shaped configuration with a/2. = 1, used in the two-dimensional analysis.
The determination of the constants kl' ay bl' 9y, ond bz from the two-dimensional

analysis is described in Appendix A. These results are as follows:

k‘ = 0.460, o, = 0.647, by =0.121,
(108)

°, = 0.213, b2 = 0.0612

With these values, and V4 /A& = 2.571 for this configuration, Equation (107) can

be written
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W = 0.00592 NEs /-t—R; {(/-I- 0./1¢43¢% E, cmoc)

!

2 . : :
+ /3.73(I—V)(‘3) [I +0. /37,5% Smd + 0.0//, (i—'l)s,.,tdgg,}&.(loﬁ

if the span height of the convoluted structure is not small compared
with the radius of the cylinder, as assumed in the foregoing analysis, the resulting
equations are not strictly applicable, due to the significant curvature imposed on
the (gross) structure. This curvature gives rise to additional twisting deformations
as the cylinder is expanded into the conical shape and also affects the bending in
the planes of the convolute. However, one simple correction can be applied in
order to improve the theory for this case.

Figure 28 illustrates the manner in which a circumferential strip is
deformed during forming of the cylinder from a straight convoluted strip. It can be
seen that significant bending occurs during the forming operation. Here, "A"
represents the undeformed shape and "B" is the shape in the cylindrical structure.
If the cylindrical structure is not stress-relieved prior to expansion, as in the
experiment described in the following sections, some of the elastic strain energy

will be released during expansion. Conversely, if the structure is stress-relieved,
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some aodditional energy will be required to expand it. The energy required to deform

the strip of Figure 28 from "A" to "B" is

_F= LDf'{ )a/‘ ) (110)

where 2 s the length of the S=-shaped strip and UF is the total energy required
to form the cylinder. Since the total angle of rotation of the ends of the strip is

2m /N,

A4g _ _-—’; = (1)

ds

N

x
NL
and Equation (110) becomes

3
UF _ EphlL

E vyl (112)

where the relation of Equation (3) has also been used. During expansion of the
cylinder into the cone the angle of rotation of the ends of each S-shaped strip is reduced
by the factor cosol , where ol is the cone half-angle. * The change in Ue
during expansion is, by Equations (110) and (112), proportional to the square of the

angle of rotation. Thus, the release in energy for the nonrelieved case is given by

AU = Up (1-cos®s) (13)

¥ Due to the twisting, the strip is not rotated uniformly over its length. However,
since this is a second order effect, the average cone angle is taken for simplicity.
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or, with Equation (112),

AUy = T BFTL e (14

o —sm,(

1z N U )

Subtraction of this result from Equation (107) yields

W= /VE,,{d (Z‘)( {,.,._L %,FLS""“) _dﬂtf(,e,)z

For the U-shaped configuration with a/2£ = 1 and the parameters of Equations (108),

Equation (109) becomes
?

L 54‘0 A
W= 000572/\/5,#4—;—{({-}-0/#39/?m.c) f)

+/3.73(/-v)[7_/5)1[/+0./y7k—5 Sin oL (116)
i

+ 0. O//‘(RAI)‘S;:;{] }S‘l;zo( .

If there is an appreciable difference between the inner and outer radii of the cylinder,
it is expected that Equations (115) and (116) will still be only approximately correct

due to the twisting effects mentioned earlier. As the cylinder expands into a conical
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shape the nonuniform circumferential elongation produces a nonuniform flattening
of the convolute, with the maximum flattening occurring at the expanded end.
Consequently, the inside generators of the cylinder rotate through a greater angle
than those on the outside, producing additional twisting deformations. Thus, the
results of the two-dimensional bending analysis are not directly applicable since
some of the circumferential elongation is due to this twisting deformation. A more
proper onalysis of the problem should treat the bending and twisting deformations

simultaneousiy .

VI, EXPERIMENTS

Tests were conducted with several two-dimensional specimens and o three-
dimensional cylindrical structure similar to that described in the preceding section.
Descriptions of the test procedures and the experimental results are given in the

following sections.

A. Two-Dimensional Strips

Lood-deflection tests were conducted on two-dimensional Type 304
stainless steel specimens with semi-circular-arc and U-shaped configurations, as
used in the previous numerical examples. Samples of the specimens are shown in
Figure 29. The specimens were fabricated from 0.002" and 0.003" annealed
sheet material. Some of the specimens were tested in the as-formed state and others
were process annealed prior to testing. The radius-to-thickness ratios were selected
to give approximately 20 percent expansion prior to yielding for the semi-circular-arc
specimens and 63 percent expansion for the U-shaped specimens. A summary of the

specimens tested is given in Table II.
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Figure 29.

Two-Dimensional Specimens and Small Weights
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Table 11.  Two-Dimensional Specimens

Specimen No. Type Nomim(:ilnT;\ickness Condition h:::::;i:;:m
1 U .003 os formed 4
2 U .003 as formed 4
3 v .003 annealed 4
5 semi-circle .003 as formed 8
6 semi-circle .003 as formed 8
8 semi-circle .003 annealed 8
9 U .002 as formed 4

10 U .002 as formed 4
12 v .002 annealed 4
13 semi-circle .002 as formed 8
14 semi-circle .002 as formed 8
15 semi-circle .002 annealed 8

Width = 4.00 inches (all specimens)

Nominal (thickness/radius) = 0.00730 (all specimens)

Estimated variation in thickness + 0.00005 (all specimens)

Estimated variation in radius = 10% (os-formed specimens)

I+

Annealed specimens exhibit considerable distortion.
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The specimens were suspended on knife-edges, as shown in Figures 30
and 31, in order to produce zero moment loading conditions at the ends of the active
length of the specimens. This was accomplished through the use of fine wires wrapped
around thin metal strips and passed through small holes in the ends of the specimens.
Loading was accomplished by the addition of calibrated weights to o light pan
suspended from the lower end of the specimen. Deflections were measured with o
vernier height goge and attaching telescope by sighting on the upper and lower ends

of the specimen.

B. Three-Dimensional Cylindrical Structure

A circumferentially-convoluted cylindrical structure was formed by
joining the ends of two convoluted strips. The material and dimensions were the same
as U=shaped specimens Nos. 1 and 2, and the total length~to-radius of the strips
before joining was 40. Manner of loading is illustrated in Figures 32 to 35. The
energy required to deform the structure into a conical shape was measured for
various cone angles and compared with the theoretical predictions.

Loading was accomplished by the use of ten mass balanced frames
secured to the outermost generators of the cylindrical structure and pivoted about
the base in radial planes. Fine wires, used to attach the frames to the structure,
were passed over slots in the frames and joined to a common point below, from which
o light balance pan was suspended. Calibrated weights were added to the pan and
the corresponding inner and outer diometers of the upper end of the structure were
measured. The changes in diameters were used to compute the cone angle and the

movement of the pan, from which the corresponding energy inputs were computed.
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Figure 30.

Two-Dimensional Load-Deflection Test Setup
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Figure 31.

Two-~Dimensional Test View Showing Upper Knife Edge
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Figure 32.

Convoluted Cylindrical Structure Unloaded
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Figure 33.

Convoluted Cylindrical Structure Loaded to Partial Expansion
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Figure 34.

Convoluted Cylindrical Structure View of Loading Segments
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Figure 35.

Convoluted Cylindrical Structural Test Setup, Side View
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C. Experimental Results

1, Two-Dimensional Specimens

The load-deflection curves for the two~dimensional specimens
are shown in Figures 36 to 39. The corresponding theoretical curves are also shown,
based on the nominal dimensions and values of 29.4 x 10° psi for E and 0.29 for
9 . The considerable scatter in the data can be attributed, in part, to variations
in the dimensions of the spec'imens. This is suggested by the fact that the initial
slopes of the curves are also in disagreement with the smali-deflection values and,
consequently, these curves appear to be rotated about the origin. In order to
obtain more valid comparisons with the large-deflection theory, the data have been
replotted in nondimensional form by using the initial slopes, with the small-deflection
theory solutions, to compute values of the reference load T . These curves are
shown in Figures 40 to 43.

2. Convoluted Cylindrical Structure

Figure 44 shows the energy-deformation curve for the
convoluted cylindrical structure, in which energy input is plotted against cone half-
angle. The corresponding theoretical curve, based on Equation (115), is also shown.
For these computations the nominal dimensions of the two-dimensional strip were used,

with a measured value of 3.142 inches for the average initial cylinder radius, R,.

Vil. CORRELATION OF THEORY AND EXPERIMENT

A. Two-Dimensional Analysis

The scatter in the curves of Figures 36 to 39 can be attributed, in part,

to the variation in specimen dimensions, as noted above. For example, the 10%
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Fi16. 40 NONDIMENSIONAL LOAD-DEFLECTION CURVES
. FOR 0.003-INCH U-SHAPED SPECIMENS
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NONDIMENSIONAL LOAD-DEFLECTION CURVES
FOR 0.003 - INCH CIRCULAR ARC SPECIMENS
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FIG. 42 NONDIMENSIONAL LOAD-DEFLECTION CURVES
FOR 0.002-INCH U-SHAPED SPECIMENS
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FIG. 43 NONDIMENSIONAL LOAD-DEFLECTION CURVES
FOR 0.002-1NCH SEMI-CIRCULAR ARC SPECIMENS
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variation in radius can produce over 20% variation in load, and the 0.05 mil
variation in thickness can give rise to variations of approximately 5% and 6%
in load, respectively, for the 2 and 3 mil specimens. These variations can
accumulate and thereby account for most of the scatter in the data.

A considerable improvement results in the "rotated" curves of
Figures 40 to 43. |t is interesting to note the similarity in the curves for the 3 mil
cases and the closer correlation than in the 2 mil cases. This would be expected
since the dimensional tolerances that can be attained are about the some for both
cases, but o given dimensional error in a 2 mil case has o greater effect than in @
3 mil case.

It is expected that the consistently lower curves for the as-formed
specimens, compared with the annealed specimens, are due to the Bauschinger
effect. * This effect is related to peculiarities in the stress-strain curve, particularly
the earlier yielding and lowering of the curve, when a polycrystalline metal is
plastically deformed in one direction and then loaded in the reverse direction. This
situation occurs with the convoluted specimens. The forming operation produces
plastic bending deformation in one direction, and elongation of the specimens
results in bending in the reverse direction. Moreover, a mild annealing is known
to remove these effects and restore the metal to its normal behavior.

The disagreement between the theory and experiment that persists in

the "rotated” curves of Figures 40 to 43, besides possible Bauschinger effects in the

7 See, for example, Reference B, Chapter 12, and Reference E, Section 3.4.
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as-formed cases, can probably be attributed to dimensional nonuniformities.
E.g., the curves were not truly circular, and variations in curvatures and other
dimensions occurred within a single specimen. This is particularly true of the
onnealed specimens in which considerable distortion resulted from the annealing
process. Nevertheless, the overall agreement appears to be quite good so that
the theory appears to be substantiated, at qust in the elastic range.

it should be mentioned that some plastic yielding occurred over the
latter portion of the load-deflection curves. No attempt was made to compute this
effect with the exception of the plastic computations on the semi~circular-arc
configuration presented in Section IV-F. The lack of adequate stress-strain data
for very thin sheet material and the scatter in the data, coupled with the slight
effect yielding has in this range, would make correlations quite difficult. The
effects of plastic deformation can be evaluated more easily with larger specimens

in which dimensions and moterial properties can be more closely controlled.

B. Convoluted Cylindrical Structure

The curves of Figure 44 disagree considerably over the lower range
of expansion but show rather good agreement at the higher range. The maximum
error is about 65% ond the average error is about 30%. This error can be attributed
to the appreciable difference between the inner and outer radii of the cylinder and
the consequent inadequacy of the theory in this case. As mentioned in Section V-B,
this difference in radii gives rise to additional twisting effects which are not accounted

for in the present analysis. A more proper analysis of the deformation should treat the
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large-deflection bending and twisting of the circumferentially-convoluted strips
simultaneously.

A more quantitative substantiation of the source of error arises from
a con;ideration of Equation (115) with the dimensions of the structure and the basic
assumption that the difference in radii is small compared with the average radius.
According to Equation (115) the energy is approximately inversely proportional to
the square of the average radius, R). In the actual structure the inside, outside,
and average radii were 2.34 inches, 3.94 inches, and 3. 14 inches, respectively.
Thus, if the inner and outer radii were used to compute the energy, rather than the
average radius, variations of approximately 80% and -37%, respectively, would
result. In view of this it appears that the theory gives a fairly good first approxi-
mation, particularly for the upper range of expansions. Moreover, it would appear
that considerable improvement in the theory would result as the difference in radii

were decreased.

Vii. CONCLUSIONS AND RECOMMENDATIONS

Theoretical methods of analysis have been developed for two~dimensional
convoluted-type structures subjected to large deformations, with material behavior
in both the elastic and plastic ranges. Computations have been carried out for
structures of several typical configurations, utilizing numerical techniques suitable
for use with a desk calculator. Results of the two-dimensional analysis have been
applied to the analysis of a typical three-dimensional convoluted cylindrical

structure.
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Tests have been performed on two-dimensional specimens and a three-
dimensional cylindrical structure similar to that used in the analysis. The testsappear
to substantiate the two-dimensional analysis within the elastic range of behavior.
The results with the convoluted cylindrical structure indicate that the simplified
theory developed can be used for a first-approximation analysis of a considerably
more complex structure. Theyfurther indicate that a considerably more refined
analysis will be required in order to accurately predict the behavior of a three-
dimensional structure of the type tested.

In view of the limited experimentation that could be performed under the
present study the following investigations are recommended in order to amplify and
extend the present findings:

A. Tests with larger two-dimensional specimens so that dimensions and
material behavior can be more carefully controlled

8. Tensile tests to determine stress-strain behavior of specimen sheet

materials

C. Simple bend tests for independent determinations of plastic bending
behavior

0. Compression tests with as-formed specimens to determine initial
slopes and evaluate Bauschinger effects

E. Tests with the same specimen in the as-formed and annealed
conditions in order to evaluate Basuchinger effects

F. Refined analyses of the convoluted cylindrical structure tested in
order to account for the large difference in radii

G. Tests with convoluted cylindrical structures having smaller differences

in the radii in order to determine the range of applicability of the simplified theory
-93-
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In addition to the above investigations it is recommended that future
theoretical and experimental studies be carried out on three-dimensional convoluted
cylindrical and conical structures in which (a) bending of the structure occurs in
the axial as well as in the circumferential directions; and (b) the convolute span
height varies axially so as to produce preferential expansions of the structure. In
particular, attempts should be made to determine if a simplified theory based on the
two-dimensional structure can be developed, as in the present study.

1t should be noted that the development of a successful theory for analyzing
the structures described by (a) and (b) would constitute a significant step toward
understanding the general behavior of convoluted shell structures. As seen from
the simplified analysis of the convoluted cylindrical structure in the pre:ent study,
the general treatment of convoluted shell structures will be extremely difficult.
Therefore, if it can be developed, a simplified theory based on an extension of the

present study would be quite useful for design purposes.
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APPENDIX A

Determination of Parameters for Convoluted Cylindrical Structure
trom Two-Dimensional Analysis

The determination of the parameters ky, a4, b‘, a2, and by, defined in
Equations (92), (97), and (101), is described b.elow. The parameter k; isa
measure of the distribution of rotation over the cross section of a typical longitudinal
strip of the cylinder and is determined from the changes in slopes of the two-dimensional
structure, as illustrated in Figures 1 and 27. The parameters a; and b, relate the
maximum rotation of the strip to the fractional elongation, and a, and b2 describe
the two-~dimensional load-deflection curve.

It was assumed in Section V-B that k], as defined in Equation (92) is, in
effect, independent of the circumferential elongation of the structure. The validity
of this assumption for the U-shaped configuration used in the numerical example and
in the experiment is demonstrated by Figures 45 and 46. Figure 45 shows distributions
of the changes in slope, ¢ , over the cross-section of the typical section for several
elongations, os determined from the two-dimensional analysis. Figure 46 shows the
corresponding distributions of the incremental changes in slopes, normalized on the
basis of the maximum values. The slight variation in the curves of Figure 46 over the
range of expansion shown justifies the initial assumption. The value for k; was
obtained from the data of Figure 46 and Equation (92), which can be approximated
as follows:

, Aty / S<p(s/e) 3%
(= § () = ([0 . w

f=0 d&m/ﬂlx o $ch,
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FIG. 46. NORMALIZED DISTRIBUTIONS OF INCREMENTAL CHANGES
IN SLOPE FOR U-SHAPED CONFIGURATION, o/r = |
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The average values of §¢/ S CPm were used in Equation (A-1) and k] was
determined by numerical integration.

The parameters 9y, b], and 02, b2 were obtained by fitting the curves
of (Pm vs. »E//L oand T/To vs. &/n , determined from the two~dimensional

analysis, to Equations (97) and (101), respectively. The original curves and fitted

expressions are shown in Figures 47 and 48.
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