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ABSTRACT

Theoretical and experimental statistical analysis of the random response of a
continuous bar in tension is presented. Particular attention has been paid to the
probability distribution of the strain response which, for a linear second-order
system under gaussian excitation, follows a Rayleigh distribution. However, when
the excitation level of the clamped-clamped continuous bar is sufficiently high so
that the tensile strain becomes comparable with the bending strain, then the strain
crest distribution no longer follows the Rayleigh prediction. At high strain levels
the distribution of positive crests as well as maxima is greater than the Rayleigh
prediction and the distribution of negative crests as well as minima is less. The
distribution of positive maxima falls below the positive crest distribution as the
Q of the system decreases. Similarly the distribution of negative minima falls
below the negative crest distribution as the Q decreases.
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Section I. Introduction

In many investigations of response of mechanical systems to random excitation
determination of mean square response (displacement, velocity or strain) is deemed
sufficient as an end in itself. This is reasonable, since often only these quanti-
ties are measured in the laboratory; hence, at most, we need the probability distri-
bution of the values of the random variable at a given time. However, when the
extremal statistics of the response are of interest, i.e., the distribution of the
maxima or minima of the response, more statistical information is needed, preferably
the simultaneous joint probability distribution of the random variable and its first
two derivatives. Such considerations arise when fatigue theories are to be developed
and/or checked. Fatigue theories will not be discussed further here but they will
serve as the motivation for the following theoretical and experimental investigation.
The reader is referred to the literature for such discussions (refs. 1,2,3,18,19).

In order to analyze the vibrations of an actual mechanical system it usually
is approximated by an ideal system such as a plate or a bar; the bar often is deemed
sufficient for illustrating the type of results to be expected for more complicated
systems. This report will deal with the vibration of a bar with a dynamical non-
linearity in the form of a tensile stress; for the sake of analysis it will be as-
sumed that there is only one mode of the bar set into vibration. This procedure
parallels that of Lyon (ref. 4), where the resulting differential equation for the
displacement of the fundamental mode is reduced to a hard-spring oscillator equation.
For experimental and theoretical reasons to be elaborated on later, the displacement
response will be equivalent-linearized so that the strain extrema, consisting of
bending plus a tensile component, can be studied. The approximations hold so long as
the single mode model is valid; it must be remarked that at higher strain levels
(i.e., larger displacement amplitudes) various assumptions break down; the mode shape
changes from the "linear" shape, mode coupling cannot be neglected and, moreover,
the modal damping must be considered nonlinear even if linear stress-strain relations
are assumed (see for example, refs. 13,14)..

In this work, the so-called crest statistics are studied in detail although
theoretical results also are giv m for the extremal statistics. In addition, ef-
fects of the strain nonlinearity on the average number of zero crossings and maxima
per second are considered theoretically. It was found theoretically and experi-
mentally that the distribution of the maxima of strain as well as the positive
strain crests lie above the linear (gaussian) Rayleigh values for the higher stress
levels studied. On the other hand, the negative minima and negative crests fall
below the Rayleigh curve.

Manuscript released by authors 5 February 1962 for publication as an ASD Technical
Documentary Report.
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Section II. Statistical Theory of Continuous Bar

A. Displacement of a bar with tension

Effects of a small stress nonlinearity on the extremal statistics of a simple
supported bar forced by gaussian random noise have been studied theoretically by
Lyon (ref. 4). A parallel analysis for a bar clamped at both ends but extended to
somewhat larger strain nonlinearities is here reported.

The equation of motion for the displacement of a bar with tension is of the
form:

K2YoS;X4 T,Sd2+ r + p,-t2 y(x,t) F(x,t) (-)

where the tensile stress T1 is:

a-.Ž dx (12

For the fundamental mode of the clamped bar with tension we have, approximately:

y(x,t) = yi(t)*(x) (11-3)

with

*1 (X) = AL(cosh,,x - cosXlx) - 0.9825(sinhXix - sinXix)J

as explained in section III of this report.

Substitution of Eq. (11-3) into Eq. (II-1) yields the following equation of
motion for yl(t):

-L + 2a-L + o + Sy1 ) y, f(W) (11-4)

where
2 2

r 'PdTi * 2

PA2Jok dx) ) 24.529 A
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can be regarded as the nonlinear stiffness term of a hard spring oscillator. The
forcing term for the first mode is:

f(t) = p f F(x,t)*,(x)dx

In this report, we shall assume f'(t) to be a bandlimited gaussian random process
of white noise type and zero average. Of greatest interest are the probability
distributions of the displacement crests and extrema of a hard spring oscillator
under gaussian forcing.,

1. Displacement crests

The average number of positive-slope crossings of the level y, per second, is
given by (ref. 5)

CO
nr(y) = uW(y,u) du (11-5)

Writing the equations of motion in the following "system form", for a general
g(y) g(-y):

du
= - 2au - g(y) + f

dl
(11-6)

dy
dt

we find the following Fokker-Planck (F-P) equation (ref. 6) for the joint distri-
bution of y and u: i.e., for W(y,u,t)

dW + u - 6 2au+ g(y) W : D (Of-7)

at dy du d2 u

assuming white noise excitation of spectral density D.

The asymptotic (i.e., stationary) solution of this F-P equation can be found
by analogy with a quantum mechanics problem (ref. 7) to be:

W(y,u) = Aexp[- L (u 2+2yg(r')dg ) ]-

-A exp L (u 2 + 2JYg(V)

3



where

2 D (11-9)
4a

which can be regarded as the actual mean square df if the bandwidth of the f process
is sufficiently large.

The expression for n+(y) now becomes, in the hard spring case:

I 2) (1-4o
n+(y) Ao-rexp 2%2+ -J- y 4

L 2u 2j

where Ao-12" represents the average number of positive-slope zero crossings,
0 ,and can be expressed as:

v' • (Z)P4 [3.6256,F,(_;±W 2Vr I.2254,F,(i _•,z)] (TI-IT)

where
= 4 4

49 m.2 )9D

after making a change of variable and using a published definite integral (ref. 8).
This integral also gives alternate expressions for the moments of y, which are
practical for larger values of D, by interpolating between tabulated values for the
confluent hypergeometric functions ,IFI in Jahnke and Erde (ref. 9).

For computing the relative crest distribution we need not know t,' however.
There we need: 0

c n(Y) (Y _'(Y = ePxp1 y (11-12)n(O) n÷(O) 2 o-, 2 (I - 2

Thus, if displacements exhibit hard spring behavior the deviation from the gaussian
crest distribution (P = 0) should be discernible. Experimental displacement crest
measurements do not indicate appreciable deviation from the gaussian crests so that,
for strain calcul-ations at least (see §liB), we may consider the y process as ap-
proxima-tey gaussian. At worst, we may be said to have "equivalent-linearized" the
y process. More incentive to use such an approximation scheme will be provided by
the fact that the distribution of the maxima for this process cannot be normalized
in terms of known functions, as outlined in the next section.

2. Displacement extrema

The probability distribution for the maxima of the stationary y process is
given by (ref. 5):

Wmox(y) - At W(y,o,v)vdv (11-13)

4~



where W(y,u,v) is the simultaneous joint probability density of y, u d and

F t

v d 2 y ; and AI is the normalization constant making/ Wmax (y) dy = i.dt2 I- a)

If f(t) has sufficiently wide bandwidth, B, we may treat y and f, and u and f,
as approximately statistically independent, since y and u will fluctuate much more
slowly than f (here we have tacitly assumed ergodicity (ref. 10)). Thus, to find
Wmax(Y) we perform the following equivalent integration by using the following
result obtained from Eq. (11-6):

W(y) =-A, W(y,O)W(f)df d'Y v(f) 2.0

max dt2 u20 u -0

to determine the limits of f. We use the W(y,u) cited earlier, and our hypothesis
implies that:

W (exp ((--fLOW=f) a -f a2€f2

We let 4f = DB and hence assume bandlimited white noise for a sensible calculation.
Thus, for the maxima:

max [ 2v;Y ý+ef

+7: exp - (way+f)P exp 20(2 Y

The above formulation can be extended to cover the arbitrary odd-function re-
storing force of formula (11-6) which predicts that

W(y)=A1  9( LI+ erf ( 9y )+ .exp( 9 2 ()} W(y, 0), (11-16)

The first term on the right hand side, i.e., 2 g(y) W(y,o) can be interpretsd
as the distribution of the excess of maxima over minima, and can be obtained by dif-

ferentiatin- the crest distribution. Here the minima are treated like negative maxima
and subtract out in the countin,, process; under the assumption of no negative minima,
as made by Lypn (ref. 15), this can be interpreted as the d.istribution of positive
maxima. The other two tarms on the right hand sids in Eq. (11-16) can be considered
as "correction" terms due to the existence of positive minima and also negative
maxima of displacement.

The y process is statistically symmetric about the origin, as can be verified
by substituting -y for y in the equation of motion for y, and also by noting that the
f process possesses this symmetry. Thus the probability density of the minima is

5



given by: Wmin(Y) = Wmax(-y)

Unfortunately, difficulties arise when it is attempted to find the normalizationconstant A, for the maximum distribution; numerical integration appears to be

necessary. Apparently only the linear oscillator case, P = 0, yields A, in closed
form. This, plus the experimental displacement crest measurements already cited,
forces us to approximate the y process by a gaussian. Thus, we proceed as if P=0,
in the sequel.

We now assume that the joint probability density of y, u, and v is of the form
(refs. 5,11):

____________ rr/z Y2-+2m2 yv + moV2

W (y ,v) = 2 \ + .mm M OV2)] (11-17)

(2w1u ) VM, M4 - M?)M 2

which is the gaussian distribution specialized to the case where the correlation
mvatrix is:

KyU> <.u> <Yv> m 0 -m 2

L<UY> <vu> <UV> M o2 j

as demanded by the stationarity assumption. Here

OD /S (f) f 'd f =() d n ) ( <y tyt + r)> (11-18)

For this case the normalized variable 7=--L possesses the following distri-
bution of the maxima (ref. 11):

Wm0x[]X [-] e x -p: + -L/•-2 exp (--)++ ' l7exp (11-19)

where the parameter c can be found, variously, as:

= 0 = - - 2r) 2 (11-20)
morn4  \V=mox/-,

where r - avg.no. of negative maxima per second/V maC

6



Let us now compare the above result for a general gaussian process with the

expression for Wmax(y),evaluated at =.

In the linear oscillator case:

V - 2U - wy + f

(II-21)

Stationarity demands that <vu> =<yu> = 0. Thus, the following "consistency
relations" must hold:

<vu> =0 2a <U2> - 4 <yu> +

i.e.,

<fu> 2a <U

However, from formula (11-9) and from a- DB

<Ku> _ 2a,_ ____ (11-22)

4 B 13

and for a sufficiently large bandwidth B, f and u may be regarded as uncorrelated;
for gaussian statistics this means statistical independence. For 0 = 0, of course
(ref. 6),

in 2 - u wo Oy'~wM0  (11-23)

Also

m4  <KV 2  0aK2  + 4y> + <f> -4a <uf> + 4aw. 4 2w 0 4~
0 0

Since u and f may be regarded as practically uncorrelated, we expect that y, an even
more regular function of time than u, is uncorrelated with f. Using <uf> = a <U2
we find that:

m4  0B 0 womo 4a=m 2

which may be rewritten as,

= (4caw2B + - 4a2w2W2)mo (11-24)

7



Thus,

2M 2±0
(w4+4aw2(B- 0))2 C%+-0-B-0)

for sufficiently large B. This formula for e, when substituted into the "exact"
expression for WM ,(y) evaluated at 1 = 0 provides the proper gaussian limit for
Wmax(Y), as expe ed.

The y process, then, will be considered to be gaussian in discussions of strain
statistics in the following section.

B. Strain equations

The bending stress at the bar surface is given by

2

T2  Yoh y (11-26)

where h is the half-thickness of the bar. For the fundamental mode of a clamped-
clamped bar:

T2 =-Yoh XAA [coshX~x + cosx~x - 0.9825 (sinhx~x 4- sinX~x)](t). (11-27)

Evaluated at the center of the bar this becomes

S27.197 Y( Yl (11-28)

while at 3/8R , the experimental location of the strain gages:

T2(V)=.7T(p- (11-29)

The corresponding ratio of the corresponding displacements, for the fundamental mode,
is:

S= .872y(-L-t) .(11-30)

The tensile stress term, constant along the bar, was given earlier in Eq. (11-2).

If linear stress-strain relations are assumed, then the total strain at a given
point on tUe-rface of the bar is proportional to the sum of the tens--Eestress and
the bending stress at that point, and can be written in the following manner:

s = ay + by 2  (11-31)

where y is a convenient displacement variable.

8



F

Various choices of displacement variable y may be made; y may represent the
displacement at x = 112 or at 3/81 , with the necessary changes in the constants a
and b. We may then write

s(ft4) ay( ) + b y2(? ) (11-32)

with

17.125

(11-33)
Yo

b, = 2.446--

A theoretically convenient normalization scheme for describing the statistical
behavior of the strain involves normalization with respect to the rms bending
strain, i.e., we take U= S

a 0-y
Thus

,= + [b 77 +) Y 17 (11-34)

where 2'• 01 2o c)- 4 h
: " 7r + Y o-Lk) = 7( + (11-35)

i'= a2 8777a

or 2gy\A

where 
b " , -

2777).872)a7 h h

also, __

.677

Experimentally, of course, it is more convenient to measure the rms of the total
strain, or rather this rms value without inclusion of the dc component. This means
that a strain renormalization process is necessary before the theory can be compared
with experiment; a discussion of this appears in Appendix I.

9



1. Strain crest statistics

To find the average number of crossings per second of the level 13 with positive
slope, we have to evaluate the analog of Eq. (11-5)

n÷(w)
0

where o However, since we know the relation between • and 71 , we can perform
an equivalent 1) integration instead.

Since,

dd7
1 4- 2Y 77)d (11-37)ddt

a positive slope crossing of the level 7 must be produced by either of two possi-
bilities, either i) by"? going through the appropriate value above - 1 (to be
called 17+(U) later) with 1 > 0 or ii) by 77 going through the proper•y value below

_ 1 (to be called 77 ())and " < 0. Thus:2y

nw) y (7A=%u)udu - W(ýI~w'~u)u du V+C(w) .(1-)

For a general odd-function restoring force:

n++ = PdC + exp

For a hard-spring oscillator excited by white noise:

+ exp -- W2 T 2 77•-ur) + _ 0.4 4[ 2 aC 2

while for a linear oscillator (P = 0) this becomes:

n+(W) = o+ xp 2 w- exp I 2

10



Thus, the average number of positive-slope zero strain crossings per second,
in the general case becomes:

n+(o) =v + exp - g(11-4?)

where •y/y is a constant (i.e., is independent of •y) we recall. For a linear
oscillator:

n+(o) = 41 + exp(-

2. Extrema of strain

At the extrema of strain, from Eq. (11-37)

o = 0 = (I + 2x7?)i
• 1

Thus, either 7 = 0 (displacement has an extremum) or 77 -•.-. The latter produces
the absolute minimum value of w , Wmin = - 1/4y. To investiga~t'e the Specific nature
of these extrema we need the second derivative:

dI + Y 77 + 2Y d (11-44):

Thus, extrema of 77 occurring for 77 above - 1/2Y (i.e., extreme of y above
the appropriate constant multiple of h) produce extrema of m having the same sign
of i ; i.e., maxima of 71 go over into maxima of m , and minima of 17 go overin- o
minima of w . If y is small enough this is all we need consider; this is the
approach of ref. 4, 18.

However, the sign of the second derivative of w is opposite that of 7 for
extrema of w occurring for 77 below - 1/2y; maxima of 77 go into minima of w , and
minima of 77 go into maxima of w in this range.

Extrema of 77 occurring precisely at 77 =1- /2y produce an inflection point
of -u since both- =& = 0, while '7 crossing of the level 77 =- l/2y (making

0) with 7 0 0 produce minima of ur , since-w- = 2y( 77 )2 > O.

Thus, we are able to designate extrema of mr as appropriate extrema of 77 or
as crossings of the level 7" = - 1/2y. We may then find the statistical properties
of the extrema of w from knowledge of the properties of the 77 process.

a) The maxima of wr are thus caused either by maxima of 77 above - 1/2y, or
by minima of -Eoccurring below - 1/2y. In particular the number of maxima of w
per second is given by the sum of the average number of maxima of 77 above - 1/2y
and the average number of minima of 77 below - 1/2y. For gaussian 7? this is:

111
VMQX = V.,.. [I + • exp(- -.1-2) (11-45)

M7 7lý



The equation y 2 + 7) - 'o= 0 admits to two roots:

S~~I I l4To
I+4Y~(11-46)

"-'2 Y 2)(

Evidently, 17 + is in the range of 77 values above - 1/2y, while is always below
- 1/2y, as anticipated earlier.

The probability distribution for the maxima of wr can be obtained by performing
the appropriate 17 integrations once Wmax( 17 ) and Wmin( - ) are known. From:

P(wU,-wmax E 42) A 7'. 7Wmi n(7-)d77- • l Wmoa (71)d 7) (11-47)

7727wi

we deduce, after changing the integration variable to w , that:

A (IWmin[?PW)l + W krcuo (11-48)

/I + -u

where A' is the normalization constant. Here Wmax( 7) = Wmin (-77) so that

6wA' WmO°7Wl - Wmax[7+ (')l (11-49)Il + -4Y"Ur

The second term on the right hand side of Eq. (11-49) is the only term of importance
for small y, and hence is the only one appearing in Lyon's analysis (ref. 4). His
analysis appears formally different because he normalizes the y process with respect
to its "linear" rms value. The analysis of P. W. Smith, Jr. (ref. 17) also assumes
small y but uses, in effect, the previously discussed first term of Eq. (11-15) asWmax'

b) Similarly, the minima of w can be attributed to either minima of 77
occurring for 77 > - /2y, or to maxima of 77 , occurring for 77 < - l/2y, or to
crossings of the level - 1/2y by the 77 process.

The contribution of the extrema of 77 to the distribution of the minima of W can
be found as

71,(M) 77 +(WiP' ( " 'm in " '- w =) All mox(7?-)d ,- -i- / -min (7 +)d"77+ ](1I-5O)

1.2



which leads to:

= ( ~WMOX['1fW + WminL717+(MVI] ~I
CVM (MV)

iIn + 44y W

where All is the normalization constant making

Z 'WVm'in(w)dl v -P(%i - 4)

In this case V.min 7) = Wmax(-7) and:

+ in ( (I-52)
I + 4) W/

Note again that only the second term of the right hand side of Eq. (11-52) is
significant when the nonlinearity parameter y is small (ref. 4).

The probability that a minimum of w is caused by a crossing of the level
- 1/2y by n7 can be found simply in terms of the average number of minima of Mr per
second caused by extrema of, i.e., V r, and the number of crossings of the level

17 - 1/2y per second, i.e., n(- I/2) = 2n+(- 1/2y)

i =n-• ) (11-53)P ( Wm l .= 4 Y+ (m4in 2

For the gaussian-derived process:

•vmdii Vmox [,-,2 e xp(- ' Y2 (1-4

W 77

with Ymox . Also:

n- 2 V+ ex p (11-55)

So:

A Pwm~ -- ~-)2 (11-56)P(Mmin - 4Y - exp )• ' °
ex( 8 )

-I-I

13



Note, a Y --- 0 P( Min) -. O, while for y' #o it becomes

2 -

-2

Using this result, we find that

A! I II+ eI xZ ep(---
8y2

The distribution of the minima obviously has a jump of magnitude P(W Min. 1 "/4y)
at w = - 1/4y; and, of course, there are no minima of W below - 1/4y.

For experimental verification, of particular interest are the distributions
for negative minima and for positive maxima; i.e., we want:

P+(Wmax>O ) X--- ) (11-57)
P(Wmoxii C.

and

p (Wmin )< w)

P-(Wm n --W (11-58)
P ( Wm In <ý 0)

For the gaussian-derived square law process (ref. 12).-

-er( W(O-) + erf(7W--))

- erfi2 eKP(- + e 77-(W )(7~() '--;

2 + 2/ 4 exp( - -)

14



Of course, P(wmax > - 1/4y) = 1. From this, we get that:

P4Aw'VtR 0X ~2 + 'e2 e xp( ~W)[ -4- e r f()

+ i-e 2 exp( e!f(r )-) [I (-e-6o)

-er(±) 4erf(~ ,. ej / f 2 + IF".2
+ . ee 2 +rf(T') erf(

Simplifications can be performed on these expressions for certain cases: If

y is small (i.e., y << 1),

P+(WMOXs IV) -IF7 ex p( +7 or) e

(11-61)

erf( r- a erf( . -2

while for e = 0,

x(- 72(. + ____-

P+('m o) ex"+ expa X (11-62)

I + exp- x Lp)

Now for small e (i.e., 6 << 1) we have

P +(UmoK W) + I-- exp(' I + erf1) )-

2 2E L'exp 7 erf (AEj

+ 4 -,_ 2) (11-63)

Also, after straightforward but tedious integrations we find that (ref. 12)

P (wmln 42W) ~2J e xp L) + erf(~) erf(,W)

+.v7 ~ xp 7~r [ r(2+W T~) (11-64)2

+ 7'2 exp( X~E I + erf(~! IE

2 + 2 r, -I-:-F exp - I
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As expected, P(m /4y) 0 and P( ) = . Using this, we find
that: m: < - min -< 0 and=(

PNwmin'6 m) 2 ar~ exp(j) + e r ftr~ --- e rf~j)

+expr- e -p(- , - erf('l()-/ )]-i- _/a-ZDexl:j7?'W)) X

[ + erf(I 2 + erf

+ / -exp-g- )[I- erf

For small y, y << i, this simplifies to:

P(mmin <w) = r, + .--• ' exp(- - -- -) [2-

(11-66)

When both y and e are small compared with unity,

2

But, if e = 0 and y is arbitrary; then

P- 'min ') - exp(---) -exp(- )) (11-68)
exp( - , -- T +

This result differs from the crest distribution for large y. However, for larger y
this expression becomes of academic interest because of the proportionately few
minima occurring for negative w . The P_ curves depend more critically on y than do
the P+ curves, owing to the presence of a cutoff for V at W = - 1/4y.

Limitations in the theory

The range of validity of the single-mode model employed here is open to debate.
It is valid only if the shape of the eigen-function persists for large amplitudes?
and if contributions to the motion from other modes can be disregarded. In addition,
numerical integration is necessary to make use of the more exact expression for
W max(y) rather than gaussian approximations.
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Unfortunately, it is known from experiment (refs. 13,14) that mode coupling
cannot be neglected at larger amplitudes. Also the experimental values of the non-
linear stiffness differ drastically from the theoretical values (ref. 14). Moreover,
the mode shape changes at larger amplitudes and the modal damping must be regarded as
nonlinear. In short, this analysis breaks down for large y. However, it is expected
that analysis here developed will have validity for larger y values than preceding
ones (refs. 4,17) because of the inclusion of strain maxima (or minima) that are not
caused by displacement maxima (or minima, respectively).
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Section III. Configuration and Instrumentation

A. Design Considerations

In order to measure effects of dynamical nonlinearity on stress statistics it
was necessary to design a clamped-clamped bar and driver system such that the tensile
stress could be of comparable magnitude to the bending stress at the surface of the
bar. The bending stress at the surface is as given in Eq. (11-26),

2
~Y~hdYTZ Yoh ¥oh

where h is the half thickness of the bar.

The displacement of the bar as a function of x is of the form

*/n(X) = A(cosh Xnx - cOSXnX) -t B(sinhX~x - sinnXX) (Ill-1)

where A and B are constants, n is the mode number, and

2

K YOS

For the fundamental mode, Eq. (III-1) becomes

,(x A coshXx - cosx -- 0.9825(sinhfx,x - sinXx)]

(111-2)
3,7r

X. 1.004 -. T with A chosen so that

1 2Wd =i.e. A = .70639

By substituting Eq. (111-2) into (11-2) and (11-26), the following stress relations
are obtained:

6.1703YoA
2

T, 0 M( (111-3)

and

T2  =-,YohA LcoshXx + cosXx - 0.9825(sinhXx -+- sinXx)]y,(t) (11-4)
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The bending stress evaluated at the center of the bar becomes Eq. (11-28)

T2 = 27.1972 YohA y(t) (111-5)

and the displacement at the center of the bar is

(--2) 1.5882A

Eliminating A,Eqs. (111-3) and (111-4) become

T, =3.8851 Yo Yt 116
)•2 2 ZZ6

and

T2 1.245h y( (111-7)

Thus, the condition for these stresses to be of comparable magnitude is that the
amplitude of vibration at the center of the bar be of the order of the half-thickness
of the bar.

B. Clamped-Clamped Bar

The clamped-clamped bar, shown in Fig. i, was machined from a solid piece of
2024-T4 aluminum so that the bar and its boundaries were integral one with the other.
This configuration reduces clamping losses and hopefully effects of unwanted non-
linearities at the boundaries. The bar was excited by driving an aluminum voice
coil, mounted directly on the bar, with a field provided by a dynamic speaker field
coil. The force thus obtained was proportional to the current through the voice
coil over the current range used. This driver unit was capable of exerting a force
of up to 5 newtons per ampere. The stress was measured with strain gages in the
circuit shown in Fig. 2. This circuit makes possible the separation o.' the two
types of stress in addition to determining their net effect. Such procedures are
accomplished by mounting the gages on opposite surfaces of the bar and then adding
or subtracting their outputs as illustrated in Fig. 2. The strain gages were placed
at a distance of 3 1/8 from one end. The rms displacement was measured with a
displacement probe.

The response of the bar under sinusoidal excitation is shown in Fig. 3. The
bar was excited at its fundamental frequency, 135 cps. Figure 3a illustrates the
tensile stress, Fig. 3b the bending stress, and Fig. 3c and Fig. 3d are the net
effects. It may be noted that there is a rectification of minima, hence a tendency
to reduce the amplitude of stress minima while the amplitude of stress maxima is
augmented. The appendix gives the modifications introduced by the removal of dc strain.

The block diagram in Fig. 4 illustrates the method of measuring the distribution
of crests. The random forcing was obtained from the noise generated in a photo-
multiplier tube which was amplified sufficiently to drive a power amplifier which in
turn excited the electro-magnetic transducer. A filter in the amplifier chain
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shaped the excitation spectrum such that only the fundamental mode of the bar was
excited. The response of the bar was detected with the strain gages. The output
of the strain-gage circuit was amplified and fed into the amplitude discriminator
which produced a large pulse when a preset amplitude was exceeded with positive
slope. This preset level was set with a test oscillator, of known output, in the
circuit. The number of crossings of this level was then counted on an electronic
digital counter. This procedure was repeated for enough levels to determine ex-
perimentally a sample frequency distribution of the positive crests. The distri-
bution of the negative crests was found by inverting the signal into the discriminator
and repeating the entire process.

C. Instrumentation

Many of the measuring instruments used in these experiments were standard
commercial units as shown in the block diagram of Fig. 4. The differentiator and
amplitude discriminator circuits were developed from data furnished by the
G. A. Philbrick Co. and are shown in Fig. 5. Square wave tests of the differentiator
revealed good performance well into the upper audio range where its action was pur-
posely degraded to reduce noise problems. Differentiated noise from the amplifiers
masked the desired random response signals unless some bypassing was done. The
discriminator circuit is derived from a Philbrick operational amplifier with one of
the differential inputs biased by a three volt battery. When the potential of the
other input exceeds three volts, the discriminator output goes to 70 volts. The
device operates at frequencies up to 100 kc and its output is recorded by the digital
counter. Any significant error introduced by the discriminator circuit is due to its
50 mv threshold which represents a small correction appreciable only at low preset
levels.

The rms level of the strain voltage was measured by using a capacitor bank of
30,000 mfd to integrate the signal feeding the Ballantine 320 Voltmeter which
operates as a square-law detector. The linearity of the amplifying chains used was
excellent for the signal levels used. Noise pickup by the strain gage wiring was
reduced by electric shielding.
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Section IV. Results and Conclusions

The theoretical distribution of positive maxima is compared to the theoretical
distribution of positive crests in Fig. 6 for the nonlinearity parameter y= 0.0475.
The Rayleigh distribution which corresponds to y = 0 is also indicated. For e = 0
the maxima distribution coincides with the crest distribution. As e increases the
maxima distribution falls below the crest distribution. Similarly, in Fig. 7, the
negative minima and the negative crest distributions coincide when £ = 0 while the
minima distribution falls below the negative crest distribution as s increases.

The theoretical and experimental distributions of positive crests for two values
of the nonlinearity parameter, namely, y = 0 and y = 0.082 are shown in Fig. 8, and
the distributions for Y = 0.113 is shown in Fig. 9. The value y = 0 corresponds to
linear motion for which the crest distribution is Rayleigh. The distributions re-
sulting from nonlinear motion clearly deviate from the Rayleigh distribution. As
the nonlinearity parameter y increases the deviation from the Rayleigh distribution
increases. At small excitation levels, where the tensile stress is very much less
than the bending stress, the experimental points follow the Rayleigh curve within
the limits of experimental accuracy while at higher excitation levels the experimental
points deviate somewhat from the theoretical curves particularly at small values of
w . At high values of w , however, both theory and experiment indicate that the

positive crest distribution falls above that expected for linear motion. The number
of positive crests occurring above two times the rms stress is appreciably above the
number occurring in the same region for the linear case.

The theoretical and experimental distributions of negative crests for y = 0
and y = 0.082 are shown in Fig. 10 while the distribution for y = 0.113 is shown in
Fig. 11. The Rayleigh distribution is again shown for comparison purposes. The
distributions for nonlinear motion fall below that for linear motion, particularly
for stress levels above the rms stress. Hence, there are fewer negative crests of
large amplitude in the nonlinear case. It therefore may be tentatively concluded
that the Rayleigh distribution predicts too few positive crests and too many negative
crests for higb stress levels under conditions where dynamical nonlinearities of
this kind are important.
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Appendix I. Normalization of Strain

The expression for strain used in this report was Eq. (11-31)

s = ay + by 2

Thus, the dc component of strain is given by

<s> = b <y 2> E- b• (A-1)

Experimentally, the dc component is often removed from the strain (as was done here)
and the rms value of the remaining signal is measured. In other words, the experi-
mý-ntally measured strain is

2 2s = s-Ks,> oy + by - ba, (A-M)

and the experimental rms strain value is:

rms = aO + b- -a O-Y Y

In particular, for a gaussian y process <y4 3 <y2 2 and

,rms 2 Oy.I + 2Y, (A-4)

where, as before

a
For a hard spring oscillator, however (ref. 17)

2 2
=$- <y> ~ -K 2% - y 2> (A-1)

which can be rewritten as (ref. 13)

Y 4z (<yo - < I>.2

-4z ~22 [ 4 - rT 1.24F 4;T ;X) - i.8~ei rz F, (~-4 ; _I
'- 2.4508, F

It thus appears preferable, when applying the theory, to renormalize the experimental
strain data to be consistent with the theoretical conditions, rather than to use a
more "realistic" normalization scheme in the theory.
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The experimentally-measured strain has the minimum value:

2 2 2)2 2Si 02 + b 4)= _&_(I _t 4Y2) (A-6)
4bc~) 4bSmun =- 4b(1+ 4b - 4A-6

Thus the experimental strain, unlike the total strain, does not have an absolute
minimum value at - a 2/4b; rather its minimum value increases negatively as y increases.

Using the normalization scheme of the theory in this report, the normalized
experimental strain becomes:

W 77 + Y 7 (A-7)

where, as before, ? 5 y/oy. Thus w is shifted down by the amount y, and the
minimum value is

2m 1(1 + 4)Y2) (A-8)
Mn -- 4)-

However, using the gaussian-type normalization scheme of Eq. (A-4) for the
experiraental 

strain

.... - • 77 2(A-9)C C'ý J, + 2y2' J,÷ 2 t 2y
and

1 (0 + 4)Y) (A-IO)
mrain = -/ .- 

(A-hu

As y cot rin- 11V .707; thus f or large displacements Smin experi-
mentally will occur at approximately - .7S rms, and will become more negative with
increasing rms strain unlike the "total" strain which has an absolute minimum at

S =-a/4b always, provided that our single-mode model is valid.

This shift in the normalized strain W with dc removed, as contrasted with V
should be accounted for when using the formulas of this report at larger y values.
This can be accomplished easily since

W - y (A-11)

obviously. This enables us to chan;;ýe or reinterpret all the strain formulas in this
report straightforwardly. For example, the previousl designated zero crossing
formulas (for w ) now give the crossings of the level -, P(W 0 0) now
becomes P(w •- y), etc. n•

mamx
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For the y range of experimental interest in this report such corrections aqr:
insignificant and we can use or and * interchan~eably. Similarly here we can inter-
change the theoretical and the experimental rms va]u~s of strain in the normali-
zation process for strain, i.e., we can interchange I and . . As lon!; as we deal
with paussian y processes and as long as our mathematical model is va].id the
modifications entering when y is larger are straightforward (ref. 12).
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LIST OF SYMBOLS

a Coefficient giving bending strain as ay

A Constant = 0.7065

b Coefficient giving membrane strain as by 2

B Bandwidth

D Spectral density

f(t) Normalized effective force

h Half thickness of bar

S.Length of bar

M Mass of bar = pSL

P+ Rate of exceedance of positive maxima

P Rate of exceedance of negative minima

s Strain = ay + by
2

S Cross sectional area of bar

TI Stress due to tension

T 2 Stress due to bending

v d- du
dt dt

W (y) Probability density of the maxima of y

Wmin(y) Probability density of the minima of y

W(y,u) Joint simultaneous prob. density of u and u

W(y,u,v) Joifit simultaneous prob. density of y, u, and v

max(w) Probability density of maxima of normalized strain

Vmin(w) Probability density of minima of normalized strain

y Displacement of bar

P Nonlinearity coefficient

y Nonlinearity parameter = b
a -y y

77 Normalized displacement variable = -y
e Normalized rms width of power spectrum
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LIST OF SYMBOLS (CONTINUED)

'7+(U ) - '- + l+4T
+ 2y 2y

7I 03 ) -1 + 4yU•_Ty)- 'ý -

K Radius of gyration

x, Wave number of fundamental mode

v max Average number of maxima of P per second

v + Average number of positive-slope zero crossings of y(or 77 ) per second.
0

Pe Mass per unit length

c y RMS displacement of nonlinear bar

*l(x) Normalized spatial displacement eigenfunction of first mode
IS

Normalized strain variable =
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Fig. 3 Sinusoidal Stress Response of Bar
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However, when the excitation level of the
I clamped-clamped continuous bar is sufficiently

high so that the tensile strain becomes com-
parable with the bending strain, then the
strain crest distribution no longer follows
the Rayleigh prediction. At high strain
levels the distribution of positive crests as
well as maxima is greater than the Rayleigh
prediction and the distribution of negative

crests as well as minima is less. The dis-
tribution of positive maxima falls below the
ipositive crest distribution as the Q of the
system decreases. Similarly the distribution
of negative minima falls below the negative
crest distribution as the Q decreases.
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However, when the excitation level of the
clamped-clamped continuousbar is sufficiently,
high so that the tensile strain becomes com-

I parable with the bending strain, then the
strain crest distribution no longer follows
the Rayleigh prediction. At high strain
levels the distribution of positive crests as
well as maxima is greater than the Rayleigh
prediction and the distributi6n of negative
crests as well as minima is less. The dis-
tribution of positive maxima falls below the
positive crest distribution as the Q of the
system decreases. Similarly the distribution
of negative minima falls below the negative
crest distribution as the Q decreases.
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