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UPPER AND LOWER BOUNDS IN PROBLEMS OF

MELTING OR SOLIDIFYING SLABS

by

Bruno A. Boley

Columbia University

ARSTRACT *

The problem studied is that of a slab, heated in an arbitrary manner

on one face and insulated on the other, which melts (or solidifies), the mate-

rial being allowed to remain stationary after change of phase. Variable ma-

terial properties are taken into account. After preliminary general consider-

ations, it is shown that the solution to the stated problem is unique. It is

then proved that higher rates of melting and higher temperatures will result

from certain combinations of the magnitude of the applied heat input and of

a fictitious heat source traveling with the solid-liquid interface. From this

result a method is developed for the construction of upper and lower bounds to

the solution of the problem; an example is also presented. It is also shown

that, under the same arbitrary heat input, the rate of melting in the present

problem is always lower than that in the companion problem in which the mate-

rial is instantaneously removed after change of phase.

SThis work was performed as part of a project sponsored by the Office of
Naval Research.
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1. Introduction

The solution of heat conduction problems of L-1ting or solidification

often presents considerable mathematical difficulties, and is therefore often

approached either by numerical or approximate techniques. A different approach

was described in [I], in which a method of constructing upper and lower bounds

for the temperature and for the unknown loration of the melting front in this

type of problem was devised. The problem considered there was that of a slab,

initially solid , insulated on one face and subjected to an arbitrary heat input

on the other; after melting starts, the known heat input is applied directly

to the moving boundary of the solid. In the present work the same type of ap-

proach is extended to include the problem of a melting slab, in which the melted

material is not removed, but remains stationary.

Many of the theorems proved in (L] will be needed in the course of the

present proofs, and are therefore restated here (with some minor extensions) for

the sake of convenience, at the beginning of Section 2. The principal results

required for the establishment of bounds in the present problem follow in the

same section, while a statement of this particular melting problem and a proof

of uniqueness of its solution are given in Section 3. Two types of upper and

lower bounds are established in Section 4: the first compares melting rates and

temperatures in the prese[it problem under certain combinations of the magnitude

of the applied heat input and of a fictitious variable heat source traveling

with the liquid-solid interface, while the second compares the solution of the

present problem with that of (1]. The construction of the first type of these

bounds and their use in obtaining estimates of solution is discussed together

with an illustrative example, in Section 5.

The work of (1], as well as the present one, apply equally to the problem

of melting and of solidification; for convenience, however, only the former
type of problem will henceforth be referred to.
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2. Basic Theorems

The first two of the following theorems are listed here for ease of ref-

erence; their proofs may be found in [1].

Theor__ I Let u(P) be a solution, in class C (2) of the equation

a(P)TL + b(P)B- A . 0 e a t 0 (i)

-x ýx atO(

at all points P(xt) of a domain D in the xt-plane where a and b are real fi-

nite continuous functions, and let

-- f(P), P on B-B_t (2a)
x

u u k at sone point P1 on B-B-t (2b)

where n denotes the direction of the component parallel to the x-axis of the

interior normal to the boundary B, k is a constantand where B -t is that part

of B which includes all points P such that (a) the interior normal to the

boundary exists and is directed in the negative t direction, and (b) each

point P is an interior point of B_-t * Then:

(a) if f(P) a Op u m k throughout D;

(b) if f(P) is prescribed throughout B-B t, then u is uniquely deter-

mined throughout D.

Theorem II2 Consider a simply connected domain D in the xt-plane,

whose boundary is (Fig. I) formed by segments of the straight lines x a x0 , and

2 This is a slight extension of Theorem II of El].



t - t2 and by a line defined by a continuous single-valued function x = F(t)

satisfying Lipschitz conditions for t 1 < t < t2 and intersecting the line

t = t at a point P3 : (xl,tl). Let u(P) be the solution of Eq. (2) in D with

au 0 on x x
bx 0

(3a)

u =uo(x) on t = ti

and

either - -f(t) or u . f(t) on x - F(t) (3b)

Then, in either of these cases, if f(t) 1 0 and u0 (x) 1 0, u ; 0 throughout D,

and if f(t) < 0, and u0 (x) : 0, then u f 0 throughout D.

Theorem III Let ul(P) and u2 (P) be solutions of Eq. (1), respectively

in the domains DI and D2 of the xt-plane defined in Fig. 2, and let

aul(xrpt)
- f(t), to<t<t 1 (4a)

a- 0, t0 <t <t 2  
(4eb)

(o -f(t) , Ft t < t < t(4c)

;3 2 2hf

ax 0, a x on x,, F(t) , ti < t < t 2 (4f)

u 1 U2
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where M(P) > 0 and N(P) > 0 and where F(t) is a given Lipachitz continuous

single-valued function of t. Then

(a) if f(t) I 0 in t 0  < t<t 2 , u 0 and u2 s 0 throughout their

domains of definition;

(b) if f(t) is arbitrarily prescribed in t0 < t < t2 x then u, and u2

are uniquely determined throughout their respective domains;

(c) if f(t) 0 in t0 < t < t 2 , then u1, 0 and u2 f 0 in their re-

spective domains, and

(d) if f(t) 2 0 in t' < t < t'2 then u 1 k 0 and u2 a 0 in their re-

spective domains of definition.

Statement (b) is a corollary of statement ka), and it will be apparent

that the proof of (c) requires only obvious modifications to apply to part (d)

as well. Hence only parts (a) and (c) need be considered below.

Proof of (a) Clearly (Theorem I) u 1 0 for t 0 < t < tie For

I< t < t 2 , uI and ý!Z have opposite signs or vanish on x = F(t). If
tnx < <t

they are both zero, Theorem I again applies and u1 • 0, u2 a 0. If they were

not identically zero, then on x a F(t) one could find values t'(2 t1 ) and

6 > 0 such that

bn eean
S- - t 1 < t <t (5a)

x x

and

either 1  > O, o < 0
an I

r < t < t+(5b)

or an 0 an
x x
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Then, by Theorem II, for the first of these possibilities ul i 0 and u2 k 0 in

to < t < to + 6 ; therefore, on x - F(t), u1 3 u2 - 0 in this interval of time,

and similarly for the second of the possibilities in Eqs. (5b). But then

Theorem II (applied first to the domain to < t < to + 6, x1 < x < F(t) and then

to the domain t' < t < to + 6, F(t) < x < x1 + L] shows that in either case

u 1 u2 s 0 at any point within this time interval, so that neither of (5b) can

exist. Hence part (a) of the theorem is proved.

Proof of (c) From Theorem II, u1 : 0 in t0 < t ! t1; for t1 < t < t2

two possibilities can arise, depending on whether initially lj is negative or

positive on x = F(t) in this interval. In the former case Eqs. (4f) give

a-- ko on xM F(t) and hence u ! 0 in domin 2, and thus u 0 on x = F(t).
x

Hence, by Theorem II, u1 is non-positive throughout, as was to be proved. Sup-

pose now that a later time t' exists, at which 1-l on x - F(t) changes sign,

or, in other words:

u= u 2 : 0 tI < t : t' throughout

- . -a. -t (6)
a - 2x -At

onf x F(t)
I > o - > 0 t' < t <t' + 6 P 6> 0

Then (Theorem II) u, ! 0 in t' < t < t' + 8 for all x and so u2 S 0 in this

time interval on x = F(t). Now if u2 were non-positive on x w x,, Theorem I

would insure that it be non-positive throughout, as was to be proved; if, on

the other hand, u2 were positive on x - xi at some time t" (t' < t" < t' + 8),

then some time within t' < t < tie the condition e > 0 as well as (to avoid



-7-

an interior miximja as required by Picone's theorem 11,2]) the conditions

-' . 0 and 2 : 0, all on x a xl, would have to prevail. The conditions

are however in contradiction with Eq. (1), and therefore u2 must be non-posi-

tive again. Now it may happen that at a later timeau 1 on x = F(t) once

more changes sign: then the first part of this proof applies once again, and

similarly for any further changes in sign. There now remains the second pos-

sibility alluded to at the beginning of this proof, namely that au I is iui-

tially positive on x - F(t); in this case the second part of the above proof

applies first, and any later changes in sign of this derivative can be taken

care of as above. Then proof is thus completed.

3. Staiement of the Melting Problem3

Consider a slab, initially (i.e. at t - O) solid at zero temperature

and occupying the region 0 < x < L, and insulated at x = L. An arbitrarily

prescribed heat input Q(t) is applied at x n 0, so that the temperature in the

slab rises and at x w 0 reaches the melting temperature Tm at the time t a tMO

Melting continues to take place thereafter, and a portion of thickness s(t)

is taken to have melted at any time t 2 t m while the prescribed heat input

Q(t) still continues to be applied at x - 0. Thus at any time t > t s, the

portion of the slab within s(t) < x < L is still solid, while that within

0 < x < s(t) is liquid; the subscripts S and L will be used in what follows to

distinguish quantities pertaining to the two phases of the material. The math-

ematical formulation of the problem is as follows for the temperature

3 A statement and discussion of this and of the analogous solidification prob-
lem were given for example in 13]. An approximate solution of this problem
was presented in (8].
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Ts(Ixt) f T in the solid:

a (ks !ES-). pScs !ES- s (t) < x < L, po < t < tL (7)

Ts(xo) - 0; O<x<L (8)

S (,t) Q(t) 0 <t<t (10)

and for the temperature TL(xt) k Tm in the liquid:

xL L atL

- L(°,t) ax t < t < tL (12)

with the following interface conditions:

T s((t),t] - TL[a(t),t] - Ta t M < <= ( 13 )
k rLm ,I(t),t] L st.(t),t] .( ) .=)• t

and with

T (t) n 0 ; ee til d e b

The times t M and t L are respectively defined by the equations
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T(0o, t)- Ta and s(tL) -. L (15)

The thermal diffusivity K - k/(pc), the conductivity k, the specific heat c.

and the density p are assumed to be functions of the temperature and therefore

vary with both x and t. The subscript m, affixed to any quantity, indicates

that the value at the melting temperature T must be used. The latent heatin

of melting is denoted by A.

The heat input Q*(t) appearing in Eqs. (13), has the physical meaning

of a variable heat source traveling with the interface, and is identically

zero in the problem whose solution it is desired to find; nevertheless it will

be included in all the derivations because it is a convenient quantity to deal

with in the calculation of bounds for the solution of this problem. Q* has

not been defined for t < t; it will be convenient to take it as zero in this

range*

It can be readily shown by means of an overall heat balance that

t s(t) L
f [Q(t)+Q*(t)] dt - f Hdx+f H dx+(pSA+Hm)s (16)
0 0 s(t)

where the heat contents HS and HL are defined as

T
Hs(T) = f Ps(T')cs(T)dT' (17a)

0

The derivation is very similar to that of [41, [5] or (61; the extension to
the present case of variable properties presents no difficulty since in terus
of the heat contents HS and HL the right-hand sides of Eqs. (7) and (11) re-

duce respectively to (aI SIAt) and (OUL/c).
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and
T

HL()- f PL(T')cL(T')dT' (lTb)
T

m

Note that the integrands of Eqs. (17) are positive and therefore both HS and

HL are monotonically increasing functions of T(x,t). The symbol H m stands for

H S(T ).

Theorem IV: Uniqueness of Solution It will now be proved that there

exists at most one solution5 to Eqs. (7) to (14), corresponding to prescribed

functions Q(t) and Q*(t). To prove this, assume that two distinct solutions

exist, and denote them by the subscripts 1 and 2; then Theorem III insures

uniqueness if sa a 2* Only the possibility * 1 0 s2 need therefore be con-

sidered, or, without loss of generality, we may set

a =2 0 !r t g t'

(18)

a2 > l t o' < t :g t' + 6 , 6 > 0

Since the solution is known to be unique before melting starts 14,7] tm is the

same for each solution; hence to A tm* After the start of melting, write Eq.

(16) for each solution (at some time t" in the interval where a2 > 8l) and sub-

tract the results to get

o 1(t') s2 (t") L
0 f (H L2-LI + f 11(HLL-HS:1 )dx + f tooHS2-Hl) +

+c) (P5  + l.3)[, 2 (t")-,l(t")] (l,)

5 That is, a twice continuously differentiable function T(xpt) and a Lipschitz
continuous function s(t). Except in the special case of Eqs. (24); this char-
acter of the solution is assumed throughout the reminder of this paper.
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on x a as(t), T1 - Tm and T2 k TMIS while on x - s 2 (t), T 1 :Tmaand T2 - Tim;

hence Theorem III. applied in turn to the regions a2 <x <L and 0 <x •sl)

insures that T2 2 T in these regions, so that the first and third integrals

in (18a) are non-negative. Furthermore

s2 82

f HRldx k 0 and f Hsldx : Hm [s 2 (t")-s1 (t")] (18b)
sI s1

Hence the right-hand side of (18a) cannot be zero, this equation cannot be

satisfied, and uniqueness is assured.

4. Upper and Lower Bounds

Theorem V Consider two solutions of Eqs. (7) to (14), denoted by the

subscripts 1 and 2, corresponding respectively to heat inputs Ql(t), Q*(t) and

Q (t), Q*(t) such that

Q* aQ1; Qa(t) +w Q*(t) k Q (t) + Q*(t) (19)

Then

as2(t) I, sl(t) ; t Z 0 (19a)

T 2 (x,t) k Tl(x,t) ; 0 - x -- L (19b)

It is understood, in Eq. (19b) and elsewhere, that for the temperature T one

must read the pertinent one of the functions TS and TL.

The case in which in both Eqs. (19) the equal signs hold throughout is

covered by Theorem IV aid need not be considered further. To prove the present
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theorem in the general case, it may first be assumedp without loss of general-

ity, that a time t' exists such that

Q1(t) + Q(t) - Q2 (t)+Q*(t) for 0 r t : t'

(20)

Ql(t)+ Q(t) <Q 2 (t) + Q*(t) for t' < t g t' + 6 , 6> 01 2+

It will now be shown that a time t"(t' < t" £ t' + 6) exists such that

s2 (t) > s 1 (t) for t' < t I t" (20a)

Assume in fact that this is not so; then the situation is that shown in Fig.

3a (aote that it is immaterial in the proof whether t' > tm or t' < tm, though

only the former case is shown in the figure). Eq. (16), written for each so-

lution at t a t", gives after subtraction,

ts 2(t) s 1 (t" )
0 < f 1(Q2  Q2)-(Q1 + Ql)]dt f (Ht2"H)l)dx + f (H 2 _'Ll )dx

0 0 s2 (t"

L
+. f( t,,HS-.sldd -(ps 2  + Hm)[sl(t")-s 2 (t")] (21)

However, on x - a,, T, - T, and T. Tm, while on x = s2 , T2 a Tm and T1 k Tm;

hence the first and third integrals on the right-hand side of (21) are negative.

Furthermore,

s1 '1

f .L dx k 0 and f dS2. H I,,(al -" 2) (21a)

2 2
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Hence the right--hand side of (21) cannot be positive as required, and (20s) is

proved. Note that the validity of inequality (19b) for the ranse of times con-

sLdered has also been proved.

It has been thus proved that initially s1 cannot exceed a2 and it mist

be shown next that no later time can exist at which aI exceeds a2* Indeed, if

there were such a time, there would have to be at least one instant at which

a2 a 8,; let the first of these instants be t"' (> t'), as shown in Fig. 3b.

Note that then

T a T = T a " do d at P (2)

T1  2 m 1 2 Z t 2  (2dt dt

The second of Eqs. (13), written for each solution at t'n" gives, after subtrac-

tion

kjA (tTLl-%) -ks (T -Ts1  - S A(& -1 (22a)

where dots indicate differentiation with respect to time. Nov TL2 -L X 0

on x = s1 and hence also to the left of P2 ; in view of (22), then,

tTt 2 --TL1) ' 0 at P 2 (22b)

SimLlarly, TS2 -Ts 1 k 0 on x - s2 and hence also to the right of P 2P so that

"-T ".Ts )' 0 at 2 (22c)

This means that the left-hand side of (22a) is non-positive; however the right-

hand side of this equation is non-negative in view of (19) and (22) and there-



fore this implies a contradiction if at least one of the inequalities a2 < a

or 4> Q* hold. In the special case

Q1 a Q s2 ms a; 1 2 at t - t.. (23a)

the above proof fails since then

b(T L2-T L d) SC 2 -T s I)
k- - a ks ax 0 at P2  (23b)

In this case, assume that

B(t) t- (t") + • 1 (t"3 += 21 31

t I t "' (2 4)

Q*(t) - (t-t") ý*(t"• + ( q*(tt")+

where clearly

Ga(t,,, Ift-

(24a)

Differentiation of the second of (13) along a gives 6

6 In the equations which follow, all quantities must be evaluated at x a s(t).

The similarity of this portion of the proof with that corresponding one of
Theorem IV of [1] will be readily noted.



"-15-

I' + !L + !Lax kSui9aa

=T S) PSiA ( dTS)Q + at) (25)

while the first of (13), written in differential formp is

Ss. S . L aL

V 8 + at - -- - = 0 (26a)

With (7) and (11), Eqs. (26a) can be rewritten as

(26b)

aTL #I- F& / 2 a 2TLa LCL [:TL 
- 0

Writing each of Eqs. (25b) for solutions I and 2 and subtracting the results

in each case one obtains, with the aid of (23b),

•(Ts 2Ts 1 ) a2(T -T.l)2 _ 0 at P (26c)

The same process, applied to Eq. (25) now gives7 at P2 , with the aid of Eqs.

7 After use oi Eq. (7) to give S2 . a . a !aLi f2TT
"xat .S -. I'. " +

and similarly for Eq. (11) and 2TL
axat
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(23) and (26):

k. b3( 12- -k~ P( S -T SA~ (27)n Klm ;ý3 "sm KsM 6X3 2" m

In view of Eq. (23b) and (26c), the argument immediately following Eq. (22a)

now requires that the left-hand side of (27) be non-positive; this again leads

to a contradiction unless both equality signs hold in Eqs. (24b). The case

QQ* t; V -4*
attmt... (28)

al as 2 1 e 2 1 -' " 2 1

must therefore still be investigatedp as well as subsequent special cases of

this type. These are treated by means of further differentiation of Eqs. (25),

(26a), (7) and (11), along a; but inspection reveals that. in general, the

result will be (at P2):

___l(T______ a~n~'(Ts2 T dt

12n~ (T Ll) __ 2______57_1
1'Lmn 4ILn Wn+l kSm -Sm --n+I de~

P A (29a)m• dt 1+

- . 0 ; m 0, 1, 2p, "e"s,2n (29b)

when

- 0 ; w 0, 1, 2, *.*, a - 1 (29c)
dtm
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d - 0 ; m = O, 1, 2, -.. , n (29d)dt m

Choose n as the smallest integer for which at least one term of the right-hand

side of (29a) does not vanish, and then note that, Just as before, this leads

to a contradiction with the non-positive character of the left-hand side of

(29a). The proof of the theorem is thus complete.

It should be noted that the converse of this theorem is false, that is,

the validity of Eqs. (17) does not necessarily imply the validity of (16). As

a corollary of this theorem, the statement

tl12 tL1 (30)

follows directlyp where tL is (cf. Eqs. 15) the time at which the entire slab

has melted.

Another type of bound on the solution will now be established, namely

one obtained by comparison of the rate of melting in the problem defined in

Section 3 (in which the melted portion remains stationary) with that in the

companion problem in which the melted portion is instantaneously removed. This

is done by means of the following:

Theorem VI Consider two pairs of functions Tl(xt), sl(t) and T2(x,t),

s 2 (t), such that the pair T1, 11 is a solution of Eqs. (7) to (14) with

Q*(t) a 0, and the pair T2, '2 satisfies Eqs. (7), (8), (9), (10) and (14) in

s 2 (t) < x < L as well as the following two equations:

T2 [s 2 (t),t] - Tm

-m ax 2 (t),t] - Q(t) - PsMA dt
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where the same function Q(t) is used in Eqs. (10), (12) and in the second of

(31); then

s1t I W s a2(t) ,t a t m (32a)

and

This theorem therefore states that, under the same heat input history, a more

repid advance of the interface occurs when the melted material is instantane-

ously removed (problem 2) than when it remains stationary (problem 1). This

conclusion was already reached in [3] for the special case of Q = constant; it

was also noted there that for very short times after the onset of melting the

solutions to the two problems are identical.

To prove this theorem, we start with the heat-balance equation (16) for

problem 1 (with Q* m 0) and the corresponding equation for problem 2, namely

t L
f q(t) dt - f HS2 dx + (PSm + H m) S2(t) (33)
0 s 1 (t)

Assume now that sI 1 s2 (Fig. 4); then subtraction of (33) from (16) gives

s1(t) L si(t)
o dx + f (H5s-Hs2 ) dx - f Hs2 dx + (p "mL )Ll~t)"(2 Ct)] " °
0 s1(t ) S 2 s (t)S2m 1 2

(33a)

Now, on x = S1 (t), T1 = Tm and T2 :Tm, so that T1 -T2 2 0 (and therefore

HSl-HS2 2 0) for the entire range sl(t) : x • L, by Theorem II. Furthermore
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s 1(t) s

a t)HS2 d:r-Hm [s1 (0-82(t)] 
(33b)

Therefore the left-hand side of (33a) is composed only of non-negative terms

and as a consequence this equation cannot be satisfied. Hence the differ-

ence s 1 -S 2 cannot be positive (and thus neither can T1-T 2 ), and the theorem

is established.

Problem 2 is thus seen to provide an upper bound to the solution of

problem 1; a fortiori, upper bounds to the solution of problem 2 are also upper

bounds to the solution of the present problem. A method for constructing bounds

for problem 2 was developed in [1].

Between the two extremes of instantaneous removal and of stationary melt

there may be defined intermediate problems corresponding to finite rates of

ablation. It may be conjectured, as an extension of the last theorem, that a

monotonic relationship exists, in the problems, between the rate of ablation

and the rate of advance of the solid-liquid interface; this question is however

not examined here.

5. Construction of Bounds; Example

The procedure for the use of the bounds previously derived, in estimating

the solution to an actual problem, consists essentially of constructing a solu-

tion of Eqs. (7) to (14), with a heat input ý(t) at x = 0 which may or may not

equal the prescribed input Q(t), disregarding however the last of Eqs. (13).

The latter equation is then used to calculate Q*(t), and Theorem V insures that

either an upper or a lower bound has been found in a range 0 < t < tl, according

to whether the relations
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Q*(t) 2 ! ; + Q*(t) a Q(t) (34)

are always satisfied or always violated in that range. It will be noted that,

though a little more complicated in practice, this procedure is quite analo-

gous to that described in [11 for the problem in which the melt is instantane-

ously removed, and therefore will be discussed only briefly here.

It is cotvenient to split the solutLon in two parts, the first pertain-

ing to the solid portion and the second to the liquid portion. The solution

for the solid is easily derived by consideiring a fictitious extension to a slab

of the original thickness L, under an arbitrarily chosen fictitious heat input

ý(t) at x a 0. It is shown in [l,3] that the relation TS(s't) = Ta then leads

to the following equation for s(t), for the case of constant properties in the

solid:

f yfYY (e •-[{2nL'+C(Y)2Y + e'-[2(n+I)L' •Y1/Y'j] dy,

0 7Y nyO

y+l f(Y-Yl •.[e[2nL'+79-CY)] /Y, + e[2(n+l)L'-t(Y)?/Yl] y

= •- f YI l
0 n=O

with the following dimensionless notation:

y -in 
1 Y9; (Y) - t ; 1 Oa 2 stm

L'e f ( f (y) 2L ; 1(y) !L" -1 (}5.)

where Q is a constant reference heat input. In deriving this equation, the

convenient choice Q(t) .Q(t) for t < tm aWas made.



-21-

The solution for the liquid portion now requires the determination of

the solution of Eq. (11) in the region 0 < x < i(t)v t > tm, satisfying the

conditions

TL [s(t), t] - T m

L (o,t) km(

where the function s(t) is given by Eq. (35). Since s(t) will be in general

known only numerically, a numerical solution of the problem for the liquid is

probably the most qppropriate; the needed solution of the heat-condition equa-

tion for a domain bounded by boundaries moving in a prescribed manner can in

fact be conveniently carried out by such methods. For the purpose of illus-

trating the bounds, however, analytical expressions valid for short times will

be derived by the integral-equation method of :3]. According to that method,

TL(xt) can be obtained as the teqperature in the region 0 < x < -, under the
heat input ý(t) at x = 0 and initially (i.e. at t w tm) at an initial tempera-

ture distribution TL(X tm) - TmO(X), where 8(1) n 1 and X w x/W . The first

of Eqs. (36) then gives the following integral equation for e(X), for the case

in which the properties of the liquid are uniform but not necessarily the same

as those of the solid:

This is a special case of the n ithod of (3]; more generally, one may take

the region 0 < x < LL (LL 2 L), under the conditions listed above and in

addition under a heat unput at x = LL to be suitably specified.
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f0e(x) [e"(CX)2/y + e-(C+X)2/Dy x I

0

K Y-42D)/yl dY1

- 7 f1 f(y-yl) e (37)

with the following additional dimensionless notation:

8 ks

D - -; K"-; f(y)-" •Qo (37a)

Once Eq. (37) is solved, the last of Eqs. (13) is used to determine Q*(y).

Consider now, for simplicityp the problem corresponding to Q(t) a QO-

a constant, so that a . 1 and so that the exact solution of EA], for short

times, is:

9 3 y3/2 - 0ty+O(y5/2)

7(y) . _ _ yl/2 + y + 0(y3/2) (8)

e(x) 1 -_ K X + o(x 2 )

To establish the bounds, let then

(y) - l/2 + ay (m9)

where a is a constant to be discussed presently. Substitution of this and of

f(y) . 1 into Eq. (35) gives

'Cy ayl/2 + o(y)
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so that clearly for short times this is an upper or a lower bound according to

whether a > 1 or a < 1, the exact result corresponding to a a 1. The short-

time solution of (37) is, with I - 1,

(x) - I + oWx) (39b)

and finally the last of Eqs. (13) gives

?L (a-l) y +(y)QO it ~y 3c

Clearly, for y << 1, Q* - 0 if a - 1, as it should be for the exact solution;

furthermore, Q* > 0 or Q* < 0 according to whether a > 1 or a < I. Since here

i(t) - Q(t), the former of these possibilities corresponds to an upper bound,

and the latter to a lower bound, according to relations (34); this is plainly

in agreement with the melting rates found in Eq. (39a).

In conclusion, it may be remarked that a simple bound to the solution

of the problem defined by Eqs. (7) to (14) is easily found in the special case

in which the properties of the solid and liquid are uniform and equal. If

again Q(t) = Q0 and for a semi-infinite solid, one may take the temperature

both before and after melting as

T(x,t) - ierfc 2ý j.o < x <40 (40)

It is then easy to show that the relation T = Tm gives

1 -n vGTi-+y) ierfc (•/'l-+) (40.)
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and that

Qo m dy m iWT•yerfc (C1/VrT`) (Lob)

where
i cT

This can be readily shown to correspond to an upper bound (except in the case#

here trivial, of m - *, in which it is an exact wolution with Q* - 0): for

example, for y << 1, Eqs. (40a) and (40b) give

_. 1. 2m 53/2

(4+2)
Q*() .•-;> 0

QO n fT(

in agreement with the conclusions of Theorem V.
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