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Bracket and Exponential for
a New Type of Vector Field

by

H. H, Johnson

In (2] Robert Hermann introduced the concept of
tangent vector fields on the space of functions from
one manifold to another. He applied these to give a
new proof of the Cartan-Kahler theorem. An example
of such vector fields are maps from the jet space to
the tangent bundle of the target space which commute
with projections., It is this class of vector fields
which we study here,

Using prolongations a Lie bracket operation is
defined and justified on the grounds that it agrees
with the primitive definition when the latter has
meaning here., By similar methods an exponential ex-
pansion is deduced. An example is given which shows
that the l-parameter transformation groups on the
function space cannot be considered a parameter space
for a pseudo group in Kuranishi's sense [3], for it
need not involve infinite analytic mappings.

1. Introduction

Every mapping and manifold will be smooth of

class C%® wunless otherwise noteds If N and M
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are two manifolds, 5K a Jk(N,M) is the manifold of
k-jets J‘;(f) of order k of maps f:N = M (see

(1])s @ and J dencte the customary source and
target projections. T(M) is the tangent bundle of
M, My the tangent space at y € M., m:T(M) - M

is the bundle projection. C®(N,M) is the set of

all ¢c® maps on N into M.

Definition 1. A k-vector field on C% (N
is a map Q_:Jk - T(M) such that 7 - @ = 3.

Hermann studied k-vector fields as a «:tecial class
of ™ formal *angent vector " fields [2, p. #]. If
f:N - M, a "vector * along £ is a map ¥:N =+ T(M)
with ¢(x) €My ) for all x €I, This is what one
would get as the derivative of a l-rarameter family
ft. € Cm(N,tf.) where fo = f, Zach k-vector field
Q@ defines a vector along f by Y(x) = 0(:]:\!‘);.

Let I = (-€, €). An integral curve of ©
starting at f_ € C®(N,M) is a l-parameter family
of f:NXI-¥ with f(x,0) = fo(x) and

2L(x,0) = a(sk(e)).

In coordinates this is seen to be a Cauctzx-xowalewski
system of order k. By uniqueness of C~ i{i.e., analytic)
]

solutions we see that in the C~ case if g (x) = f(x,t),
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and g(x, ¥) is an integral curve starting at €o?

then gi(x, g) = fix,t + €), Thus, these integral
curves, when they exist and are unicue, behave as
the orbits of a local l-parameter pgrcur.



2, An Example

let N=M= El, Euclidean l-space. Let (x),
(y), and (;,y,p) be coordinates on N, M, and

Jl(N,M), respectively. Consider the l-vector field
o(x,y,p) = p(? /‘2y)y. Given f_(x):N =X, fix,t)

must satisfy

2L .2 r(x,0) = £ ()

We think of f(x,t) as the image of f_ = under a
transformation F, on functions: f(x,t) = Ft(fo).
To compare the action of F, with M. 'Kuranishi's

concept of infinite analytic mappings (3., consider all

convergent power series at the orisin: fo = Z;anxn.

Then

m {n+m)! , n
Fulfy) = 2 (2 Lpa o SEFS )

1s not an infinite analytic mapping in Kuranishi's
sense because the coefficient of x" in Ft(fo)
is an infinite series in the coefficients of fo

rather than a polynomial,
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3. Lie Bracket

If @ 1is a k-vector field let hy:J¥ =M for
-€<t <g satisfy h =3 and (dh/2t) 4 = Q.

It £e€ C®(N,M), the Kth prolongation of f,
p(£) € €@ (N,0%) 1s defined by pX(£)(x) = 3X(£).
Similarly, the rth

pi(h,) € C®(J*T,JT), is defined by

prolongation of ht’

P (h, ) (SEK(£)) = sE(hgo p¥(1)).

Definition 2. PF(Q), the rth

is defined to be

prolongation of 9,

PR(0)(E(£)) = 2 (pT (I I (N o

Then Pr(g):Jr+k - T(J7), and if © denotes the rro-
jection of T(J¥) onto J¥ and C;*k carries ji‘r(f)

in T o sE(£) in I, then nme FT(Q) = @L7F .

Kuranishi's notion of formal partial derivative is
very useful in describing PF(Q) in coordinates. If
(xl,...,xn) and (yl,...,ym) are local coordinates

on UCN and VC M, respectively, let



6.

(xi A A A
y Y s P jl,...,p Jl""’k) be local coordinates on

E.l(U)ﬂ é-l(v), Whe!‘e }._ - l,cl.’m; ih bd l’.l.’nt

If u:d® + R (real numbers), define #Ju:dkd

- R to be

k+1 u 2y du
{Ju(dx (f)) '#‘;’y_*;- p j '*Ooo+}pL‘i ) }jl"'JkJ

Vl.."k

This ojerator is linear and has the important uroperty
that if f:U - 7, then d(u o pk(f))/'be =E~ju(l‘k+lki‘)) .
Using these facts and Definition 2, it is rossible to

prove the following

Lemma l. If on g_-l(U)f\ﬁ-l(V‘ y 9= 0 (3/33’}' )

o 1)

A )
37 j%—]T— *...*fjl(... L g -—-—)\-.-————— .

P'Q = Qk-é'x 2
-r p—.

Moreover, pr s linear.

Definition 3. Let @ and f be r- and s-vector
fields, resyectively. Then the Lie bracxet of © and ¥
is

By the composition notation we mean to intercret ‘f as an
.operator carrving CP (M,R) into Cm(JB,H). Similarly,
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P’Q carries C®(J%,R) into C®(J7"S,R).

S .
Alternatively, if ht:Jr +M and ggd” =+ M

satisfy hy =3, g5 = 8, -€<t <E, ~-E<T<E,
and (Ih,/dt) o =6, (3gt/a'5)t.0-‘f, then

2
(PP o P)(35*2(1)) = 2 [

S S of 43
309% he (35 (r))]I_ £ = 0°

op
b4
This representation is convenient when vroving

Lemma :. (@,¢] is an r + s-vector field.

Lemma 3. FI(P*Q oY) = P**9% o rdy,
Proof. This follows from Pq(gz 0 psht) -

pqgI o ps*qht, which 18 a consequence of the definitions,

Lemna 4. {(Lie Identity)

(Q,ple) + g, Q] + L{g,0ly. = C.

Proof. Suppose 0, ¢, ¢ are r-, s-, and
g-vector fielis, respectively, The left side of
the above equatio: 4s

p3(PQ o - PT¥ o Q)oY - Ps*rgo (1% o ¢ - PFY¥ 0-0)
+ PF(Pigo@- P’Pog) 08 - "% o (Fipo ¢ - PPoy)
+ PS(PTPo @ -PR o) o ¢¥- 2o (Figo@-Fop)

This equals zero by the Lemma 3 above,
It follows from Definition 3 of the Lie bracket that
[@, 9] < O. Hence we have rroved
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Theorem 1. If Ve is the linear space of &ll
k-yector fields, k = 0,1,..., then the direct sum

)

v-;bovk

is a graded Lie algebra under the Lie bracket.

A definition of Lie brucket in the older litera-
ture used local l-rarameter transformation srous.
If @ and Y are vector fields on a manifold
generatine local transformation rroups @t and 20

resrectively, then |Q, Y] 1is the vector field ob-
tained by transforming @t by YJ. That is,

(e,¢] = E\EI O@E OEI]

It t=g=C °

We do not have l-tarameter local crou.s on Cm(N,M
in general. However, one may observe how individual
functions behave when they belong to interral curves
of @ and Y.

Theorem 2. Let @ and ¥ be r- and s-vector
fields, respectively. Let I = {-€, €) . Let

f{x):N - M, Suppose:
a. I(x,t):NX I <M and satisfies

eyt ¢ GEEN, T(x,00 = i),
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be f*(x,t,T):NXIAKI *M and satisfies

2x,t,7) = Q(5(e%)), £2(x,2,0) = Fix,t);

ce I*(x,t,T,E):NXIXIXI > M and satisfies

o)

22, 0,58) = RUR(T), Teixe,g,0) -

*(x,t,T) .

3

53T (e )

2
.s..amrt(x,-t,g,t)lti,c = 16,¥3(5;

Proof.

2 2
- . - bl )
%.t_a_&__r*(x, t»Lt)lt.Izo Tg%-f*‘x,t,;,gl ‘t=g-_r._=c

2
P
Ty

2
- ‘a)kl'_;f*‘x't'!”ug-o * 'i?z:_‘tL Ji(f”)jtq-('

C 2B, o+ 2 IHEOTNT £

*(x,t,T,t! Iggt-t,-o

We can calculate these using local coordinates (see above),
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) X j 28 i
at_(x’ ’_;;3'0.0’ j j;)
dX eeedX
A seiz A4
L2 Y, o FrY . @ »_f
L2 o 3p£33t8x3 71:&31...J 3t Ix ..’4))(:Ig

A A A
- ‘)0.- téi‘ 'io-—a' 6‘*ooo§ }o- a*j Leoe a“- (_
Sl apy J )p‘—'“jlm .l Is
- Pr‘_f‘og .

In the same way the last term in the first ecuation be-
comes }°¢ o ¥ . <.E.D.



11.
3. The Exponential Map

Lemma 5. Let © and Y be r- and s-vectors,
respectively. Suppose f(x,t):NXI - M satisfies

O(J3(£)) = (3 £/3t)(x). Then

LW 32r)) = PP o ¥ (5E*5(1))

Proofs In the previous local coordinates, we

are given that Q&(jr(f)) = (DfZ‘-/Zt)(x,t) . Hence
i 4 2 &
by
%’E@(Ji(f)) -;ayl—%it-#ap 3 atax *e00

. _ayd is+lf'—‘-"'
“ N

APy g ax b 7B

.k P I S N #
- . e 2% 2y ajl(...ajs(g“),

pl Jpeeedg

evaluated at J:‘r(f). The result follows from Lemma 1,
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Theorem 3. Let 9 be an r-yector field, where
N=E" M=E" Let f(x,t):E"X I +E® satisfy
(2f/2t)(x,t) = g(j;(f)), where

n

®
flxyt) = T =7 £, (x)

converges on E® I. Then
£ (x) = plA=llrg o pln-2Irg o | o BTG o 0(5 rix,00 ..

Proof. By repeated application of Lemma 5 and from

/2t = 8(JF(f)) it follows that

-?é‘(.m) = FTe 0 0(327(1)) ,
1t

~i§(x,t) = Pzrg [o] Prg 0 Q(Jir(f)),cnu,c{uf‘o”-
ot

Theorem 3 shows that in thinking of © as an
infinitesimal transformation on C°°(N,M), one should
consider

xpl(g)(£,) = 3 Ly plnmllrg o L o PFg o a(3I7(e,))

as a generalized exponential formmla,

University of Washington
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