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ABSTRACT

Guided electzr gnetic modes along a homogeneous circular column of

plasma imbedded In free space are examined for the two extreme cases of

zero and large axial magnetic field. The plasma in assumed to be cold

and collisionless and ion motion is neglected. The assumptions made are

arxmated. by certain laboratory plamas end hence the results may be

of practical Importance.

For the zero field case the modes vith azimuthal variation are

found under certain conditions to exhibit backward vave characteristics

and previously published results of a quasl-static analysis are modified.

In the case of large magnetic field, the occurrence of unique wavegulding

features is discussed.
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This study is concerned with the high frequency modes of guided

electromagnetic propagation along a circular plasma column of infinite

length and finite radius, b, as shown in Fig. 1. The plasma density is

homogeneous for r < b and decreases discontinuously to zero at r n b

where a free space region begins. There may also be present a d.c.

axial magnetic field, BO.

Specifically the cases of B0= 0 and B6- cD are investigated in detail,

modes with azimuthally varying fields being included in the investigation.

Although it has long been recognized that Maxwell's equations in these

two extremes of magnetic field are tractable, previous investigation into

the mode structure of an unenclosed column has been incomplete.

Trivelplece and Gould' have presented an exact treatment of the

azimuthally symmetric mode, and Trivelpiece2 has presented a quasi-static

treatment for the mode of one angular variation for the unenclosed column

in zero magnetic field. The existence of backward waves end cutoff was

indicated for the azimuthally varying mode, but the usefulness of these

conclusions is limited by the nature of the quasi-static assumptions.

Linhart3 has examined the dispersion curves for the circularly

symmetric modes in the limit of large magnetic field.

This paper begins with a tutorial derivation of some basic equations

governing high frequency wave propagation in a homogeneous plasma for the

general case of arbitrary magnetic field. Subsequent sections apply these

equations to the derivation of dispersion curves for the two extreme

cases under investigation.
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Il. BASIC EQUATIONS

A. Capacitivity Tensor

A plamma may be represented by a tensor capacitivity whose substitu-

tion into Maxvell's equations yields the field defining equations. The

use of a tensor of relatively simple form involves the adoption of an

idealized plasma model. The plasma is assumed to consist of a cold

collisionless electron gas of density, n, imbedded in a stationary back-

ground of neutralizing ions in the presence of an axial magnetic field,

BO. Then with linearization appropriate to small signals the motion of

the electrons is given simply as the response to a Lorentz force

my - -e El + v x Bo] (1)

where m is the electron mass

e is the magnitude of electron charge

v is the electron velocity.

By defining a polarization current density P .nev and assuming time

dependence as ejwt, the polarization P may be easily determined from (1).

Then, setting _D - * B - eOB + P defines the tensor capacitivity e

2 2

22 22 0

0)• -G)C ( -Mc2' 2

D~ T2 60 j 2 2 1-- 0

2

D 0 01- • E
z ~2z

1 1

4- -1e2jeI 0 I' (2)

0 0 e 3 L Iz



where T1 , T2  are subscripts denoting arbitrary orthogonal

coordinates transverse to the axis

-(n ) 1/2 is the radian electron plasma frequency

eB0 

,

C I is the radian electron cyclotron frequency.

B. The Fields of a Magneto Plasma

Consider Maxvell's equations in general orthogonal cylindrical coor-
d wnateswith line element d - b dq+h 2 d +dz in a homogeneous

medium whose capacitivity has the form of (2) and whose permeability equals

the free space value, po. The curl equations may be written

(VT -J154) x(Qk+N t 5 ) - -30-O(AZJ+ 9zfz) (3i)

where T denotes the transverse part and axial variation

as e"jl is asumed.

Equating the transverse parts in (3) and (4) yields the dependency

equations which express the transverse field components In terms of the

axial ccponents

whe reO% C A - 1 ( T x tzH2 J ] VT (5)I,-- VT X Ifz + 0(s)A
where A a 244 2(7



It remains to find wave type equations governing the axial field

Components. We proceed as is usual by taking the curl of (J) and substi-

tuting from (4) which gives

~~~ (.IT+ z + VT z)T ~ (~ ~~

S ( •_ +~ ,..) (8)

PO0 (IT + 3%z

Bquating the axial components of (8) gives

V2~ n 2 ~&eza (9)

In a similar manner by taking the curl of (4) one may show that

IT% 13Z~2 % - -JG'(VT x1'T *Ih) *-(10

The expressions on the right of (9) and (10) met now be expressed In

term of the axial components. To get an expression for I s. ye consider

S( ) since this i kno• to equal Joe, from D -0. In

Sthe notation of general curvilinear coordinates

IVT-(ST hJ)"'~ j (bh1.11 + jhe2@2) + (-Jhl~ecA + e%

I!b- (~ a f (hAZ)+ -!(l%] + :4[ý

11 VT +wV6

so that

1T 1 ¢2Iv• ••- • , • (1I
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In a sa'Ilar manner ve may evaluate

~TxT!~,) 4 63 + 2

Then substituting (13) into (9) and (12) into (10) produces the

desired rave type equations

(w+ (1o06 3 ,2) E,.= J oP=- (13)
2 2

2 .+(, 2
1 -e 2 ) , -R•c (1

1 o 1

In circular cylindrical coordinates with azimuthal variation as

•ejn$ the dependency equations (5) and (6) become

) 2  js -L E

and the CO~il~ed wave equations in the axial cowponents become22 21

w Pogl 15 Za J04A

• ) •• o 1• 17,

r1"P)+( i. "F 2(8

10 n
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Equations equivalent to (15), (16), (17) and (18) have previously

appeared in the literaturek. 5 They are in general applicable to any

medium with tensor capacitivity of the form shown in (2) and by a scalar

permeability. In particular, we will apply them to a plasma in two

limits of magnetic field where degenerate forms of the capacitivity

tensor hold and the wave equations become uncoupled.

These field equations are also of course applicable to the very

degenerate case of free space, and we next proceed to use them in finding

the fields of the free space region surrounding the plasma column.

C. Solutions in the Free Space Region

In free space the use of equations (15), (16), (17) and (18) entails

setting 2= 0 and el= ¢3= eO. The wave equations uncouple and reduce1!02
a1) _ 2

to Bessel equations with eigennumber - . . The appropriate solutions
c

for bound modes are hyperbolic Bessel functions K (O) where
n b

2 2 (19)q= --b•b
c

q is real indicating that 0 >c

The axial field components are then given by

E A Kn (it) eJ(wt'Pz-nO) Hzo = B Kn( 9 r) ej(wt-Pz-nO) (20)

where A arnd B are constants to be determined by conditions at the

interface r = b, and by the strength of excitation.

The transverse fieldsmay be found from (15) and (16), the azimuthal

components being



2

11A0 - [A B r K( j J(wat-pz-nO) (21)q2 Br Kn€) ÷ •¢r

B .a€K ) - B 1O (22)
. - nq 2

In the next section we obtain the plasma fields and the associatedI dispersion relationship for a plasma colwm in zero magnetic field.

I

0

IjI 4

I
I
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nII. Tu PLASMA coW0I IN ZzRO KAmhITIC FPE=

As mentioned in the introduction, the case of no azimuthal variation

(n 0 O) has been treated previously1 ' 2 , and therefore this investigation is

confined to the higher order modes (n > 1).

A. The Characteristic Equation

(a) Derivation

With B0 a 0 the capacitivity tensor of equation (2) degenerates into

the scalar c0(l - A ), and the wave equations, (17) and (18), reduce to

Bessel equations with eigennumbers 2- (1 1 . The plama region

solutions are accordIngly

Ezi " Rrn%) eHzi - )nn( DI) ej(WAzn) (23)

p2 . P bp 2b2+ m2 b

P c2  qc2 c2 (24)

Note that the factor OL is always positive so that the radial

eigennumber in the plasma region, p, is always greater than that in the

free space region, q. Equation (24) is a hyperbola on the p, q plane

which intercepts the q - 0 axis at p a c .

Transverse field components may be determined from equations (15)

and (16); the azimuthal components are

n ~b22 1 2

- D 7 IIn D (I (25)

[Lf• (2 . 1)•i(?)+ D 2 i( e1(a.-ftz-n,) (26)

I



- 10 -

Imposing the condition that the tangential (0 and z) field components

be matched at the boundary r a b gives a set of four homogeneous equations

in A, B, C and D. For nontrivial solutions the determinant of the

coefficient matrix must be set equal to zero, which results as usual in

the characteristic equation. It proves convenient to formulate the

characteristic equation in terms of the following functions,

Kn+I(x) Kn 1 (X) In 1 (x) In l(X)I K+(X) (y• K_(X)" r(Xy' I+(X)a , I(X)- (27)K n X K X X ( )n X X ln ( X )

I The characteristic equation is then

2

[I+(p) + K%(q)] [(l- ) In(p) + Kn(q)] + (I(p))+ K(q)]

[(1- 1) I(p) +K(q) 3 - 0 (28).

The higher order modes (n > 1) governed by this equation are hybrid

possessing axial components of both E and H. The existence of TE or fl

modes would imply n(p 2 - q2 ) - 0 which contradicts (24).

The hyperbolic Bessel functions of first and second kind which

appear in equation (28) are monotonic, indicating the existence of a

single mode for each value of n.

(b) Non-Existence of Solutions for co >

It msy be shown that no solutions exist for (28) when w > fR

This implies that for the existence of guided waves there is a maximum

frequency limit or equivalently the constraint that the capacitivity

must be negative and greater in magnitude than go.

The characteristic equation (28) may be written in the form



3.1

22 %~(q) K.(q) + Ký(q) 1-(:p) + Ký(q) 1:(p)

CD+2 I(p) I+(p) + 1 e~) ýp + ]K1q 3+p (29)) + + ..... (p •)~~

Demonstration of the fact that m < is thus equivalent to showing that
+.2

0 )ý(~Kq) j()> I1(p) I (p) which may be expended as

q Kn+l(q) %.l(q) In-l(p) .÷l(:)

Note the following integral expressions6 for the products of

hyperbolic Bessel functions.

CD

KI (q) K,(q) - 2 j K,,+,(2q cosh t) cosh ($&-r) t dt (31)
0

x/2

I (p) I~p) - 7 f I (2p cos Q) cos (p-r) 6 dS (32)

0

÷)•m (31),
00

K1(q) Kc_1(q) -2 j' YK.(2q cosh t) cosh 2t dt (33)
0

00

and K2q) 2j 2(2q coh t) dt (4
* 0

Now cosh 2t> 1,, and q is real so that the integrands in (33) and (34) are

always positive. Thus we see

%.•¢q) K._,¢q) >_ 4(q) (35)
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In a similar manner using (32), it my be shown that

12(p) > n41(p) In-.l(p) (36)

Then (35) and (3) together with the fact that p > q establish the

required inequality (3o).

(c) Cutoff and Resonance

The characteristic equation (28) is represented by the solid lines

in Fig. 2 for n a 1 and in Fig. 3 for n = 2 for various values of the

parameter - . The features of the curves for n a 2 my be taken as

representative for modes of larger n.

Note that the curves for n - 1 begin at the origin of the p, q

plane whereas for n = 2 the curves intersect the q = 0 axis at some non-

zero value of p. Also, both sets of curves intersect the line p m q for

small values of -. These features are of physical significance and it

is of value to trace their occurence mathematically.

The q = 0 axis represents a cutoff for bound modes; from (19) it

may be seen that at q m 0, 3-= which is the transition point

between alov and fast waves. The line q = p is a resonance since frao

(21&) it implies jS- D

At cutoff (q . 0), note the following limits of the functions of q

appearing in (28)

ql'0 Ký(q) a7- ", n >1 (37)

lim 1C(q) a -lnq, n - 1 (38)

lim )(q) - 1 n > 1 (39)
q "0 on-l)

I .1
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because of the distinct cases in (38) and (39) the n u 1 mode must be

treated separately from n > 1.

For the mode of one angular variation, the characteristic equation

in the cutoff limit becomes

o q2 n
q - 0 q 1 o

where the finite nature of I+n(p) has been considered. Equation (40)

can be satisfied for nonzero w only when In(p) - co which impliesn

p 0 0. This result wil• be seen to lead to a zero cutoff frequency for the

n= 1 mode.

For the modes with n > 1, the characteristic equation at cutoff for

nonzero co becomes

'L 2

q -*0 q 2 (

This can be satisfied only when

1()-1 (42)

(A - 2)(n-1)

The value of p defined by (42) is the intercept on the q = 0 axis

which starts at p = 0 for the marginal case - 2 and rises to higher

values of p with decreasing w. The nonzero value of the intercept will

be seen to imply a nonzero cutoff frequency for modes with n > 1.
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Next consider the resonance limit q - p. The characteristic

equation (28) becomes

(In+1 Kn + Kn+1 In) ((I- a In4 1 Kn + Kn. 1 In)

% n 1 ) ([- n1 Kn + K%1 In) , 0 (43)

where the argument of both the I and K functions is p.

The identity

I n+l(p) Kn(P) + Kn+I(p) In(p) " (44)

may be used to reduce (43) to the form

(02
2 p[Inl(p) + In+l(P)] Kn(P) (45)

This relationship is sketched in figure 4.

It will be noted that for small -M- equation (45) does not have a

solution. However, for values of w approaching there are two

values of p which satisfy (45) for a given - . It will subsequently
(Op

Sbe shown that these solutions indicate the presence of backward waves.

B. The Dispersion Curves

Substituting for p and q from (24) and (19) into the character-

istic equation (28) results in a dispersion relationship between - and
c

Ob with a-b as a parameter.

I+ (P) + KI(q (;(p) + K-(q)]Sn~p n NK:(

[In(p)+ Kn(q)] e . -2 I( I(p) + K+(q)]

q " [b)2. (al)2] 1/2 p _ [( ')2.- (y)2ý (ae)2] 1/2q DJ
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Points satisfying this equation may be obtained by finding the

intersection of a hyperbola

p2  q 2  . a%2-q (24)

with p ots of the characteristic equation for various values of ()

A point of intersection gives q, p, i , and ibc which yields

W c
UIP(q c-.-

From the hyperbolas for cLb = .25 and -(b- .75 plotted as dashed
C C

lines in figure 2, it may be seen that the dispersion curves for the mode

of one angular variation (n =1 ) passes through the origin, Ob - 0,C

Sand asymptotically approaches -- = as A - co For small valuesSC •c
of the dispersion curves will be triple valued in 0 for a single

C

value of c as indicated by the triple intersection of the hyperbola for

c .25 with the characteristic equation curve for = 2.3; this

implies the existence of a region of negative slope or backward wave

propagation.

Hyperbolas for 5= . and - 1.5 are represented by dashed
c c

lines in Fig. 3. The nature of their intersection with the plots of the

characteristic equation for n = 2 show that for n > 1 the dispersion

curves will begin on the line - Ob at some point other than the origin.

This cutoff frequency, a 3cutoff is determined from (42) as

(n-1) (I
"Mcutoff - b (47))

The curves 2(n-l)

The dispersion curves asymptotically approach P. . For small

values of c-, the dispersion curves will be double valued in 1 again

implying the existence of backward wave propagation.
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Dispersion curves for n - 0 are reproduced from previously

1published data in Fig. 5 for purposes of comparison. Dispersion curves

for n = 1 are plotted in Fig. 6 and for n = 2 in Fig. 7 for revealing

values of the parameter i . As indicated above, an important difference

between the curves for the n =0 mode and the modes of higher order is

the appearance of backward waves in the azimuthally varying modes. The

portions of the curves exhibiting this behaviour are enlarged in the lower

right corners of Fig. 6 and 7. The phenomena of backward waves must be

t associated with either the properties of the plasma as a negative

dispersive permittivity or with the hybrid nature of the higher order

modes or both. 7

The disappearance of the backward wave characteristics for large

values of •.- should be noted. Increasing this parameter increases p

relative to q (see (24)] and this has the effect of decreasing field

penetration into the body of the plasma and of concentrating power flow

in the free space region as may be seen from consideration of the nature

of the hyperbolic Bessel functions.

All three sets of dispersion curves, Fig. 5, 6 and 7, show resonance

at ) = i.e., p increases without limit as this frequency is
V2

approached. Increasing 1 implies increasing p and q and consequently

increasing confinement of field energy to the region of the interface.

Furthermore, group velocity &i/bp rapidly approacihes zero at the

resonance so that energy does not propagate.

roAs 13 increases, the phase velocity, to/p, of course decreases, and
when its value approaches the electron thermal velocity, the assumption

of negligible thermal pressure made in section II becomesuntenable. An
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analysis that includes the effect of thermal pressure would indicate

that as phase velocity approaches electron thermal velocity, damping

set in 8 '9, the field energy being converted to electron kinetic energy.

C. Comparison with Quasi-Static Analysis

It is of interest to compare the modal properties presented above

with the predictions of approximate analysis using the quasi-static

assumption as carried out by Trivelpiece2 for the n a 1 mode.

The basic quasi-static assumption is E = -VV, V being a scalar

potential. For the urnmagnetized plasma column this assumption implies

not only that 12 >> -2 as with non-dispersive media but also that
2 2i2 >> c
c2

The quasi-static assumption leads to the following dispersion

equation 2 K(0b) +

!E -1 =. n_ __ n(4i8)
2 In(Pb) + I+(Ob)

Equation (48) for the n = 1 mode is represented by the dashed lines in

Fig. 6. They have intercepts with the P w 0 axis at w and

corresponding nonzero intercepts with the line p The region of

these intercepts (p <2Ž) is not with the province of quasi-static

analysis and their existence was correctly viewed with suspicion by

Trivelpiece. His curves also indicate backward waves for small Ob, a

feature which is retained in the exact analysis only for small values of

the parameter c



In the next section we consider the plasma column in large axial

magnetic field. Modal properties in that case will be seen to differ

significantly from those presented above for the opposite extreme of

the unmagnetized column.

4



-25-

IV. THE PLASMA COLUMN IN LARGE AXIAL MAGNETIC FIELD

Large axial magnetic field is meant to imply an electron cyclotron

frequency greatly in excess of either the electron plasma frequency or

the signal frequency. This condition is not unrealistic for laboratory

plasmas. Often a laboratory plasma has an axial magnetic field variable

up to 20 kilogauss, which corresponds to a cyclotron frequency,

f = 56 gc./sec., while a typical value of electron density might be

10" cm."3 which corresponds to a plasma frequency, fp W 2.84 gc./sec.;

it will be shown that for guided propagation the signal frequency is

smaller than f . The large axial magnetic field will not interact with
P

electron motion parallel to it but will effectively inhibit any transverse

motion.

A. The Dispersion Curves

In the limit of large BO, the capacitivity tensor of equation (2)

becomes uniaxial

1 0

0 0 1- &(49)= 2

fomstoBese's0o l-. ]-~whl hCo

The wave equation (17.) and (18) uncouple, and the equation in Ez trans-

forms to Bessel's equation with eigennumber ( 2 (2 - 2 the2 2

equation in H becomes Bessel's equation with eigennumber (-- -a
z c2

Consequently, Hz is unaffected by the plasma and no guided TE modes

are possible.
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The axial component of E will have the form

Ezi mn ) ej(lt-'3z-n) (50)

2 (4 _i) (P2b2 - = (02b)-1)q2  (51)C 
(c)

For bound modes pm is real imposing the constraint co < Op.

The modes are TM having field components Ez, Er, H• for the

n a 0 case and all field components except H for n > 1. The charac-
z

teristic equation may be found as outlined in the previous section and is

n m
'Jn(pm) n (q)

pm 'T pm) q Kn()(52)

10

This equation has previously appeared in the literature.

The left side of (52) is oscillatory and there will consequently be

an infinity of solutions for a given n. The modes are then doubly

infinite in number and a given mode will be designated by a double sub-

script as I4m"

The dispersion relationship is gotten by substituting in the

characteristic equation for p and q in terms of b, and

as determined by equations (19) and (51). The dispersion relation
c

is plotted for several modes in Fig. 8 with pb 1 0.
C

The curves have similar shapes for different modes; they all begin

at the origin and asymptotically approach the line aw m op for large 1.

As in the zero field case the asymptotic approach is accompanied by

resonant excitation of electron oscillations. Along the asymptote, q

increases without bound, but the plasma eigennumber pm remains
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essentially constant, and the fields are concentrated in the body of the

plasma rather than at the interface.

Fig. 8 also demonstrates that the waves become slower (i.e., phase

and group velocity decrease) as the order of the mode increases. The

initial slope of the dispersion curve may be shown to equal

S(_)2 n-,m 1/2 for the TMM mode, where z nlMis the mth

zero of Jn-1 exclusive of the zero at the origin except for n a 0.

The initial slope of the TM01 mode is unity. Trivelpiece and Gould1

found curves similar to Fig. 8 for a plasma filling a circular conducting

pipe. In that case the initial slopes of the curves were found to be

E÷* ( -2 z so that the waves are seen to be faster for the open

column.

B. A Unique Waveguiding Feature

There is a rather unique feature of the equations for this case of

large magnetic field which has interesting physical implications.

Equation (51) expresses pl in terms of q independently of column

radius, b, and the characteristic equation (52) also defines a relation-

ship between the radial eigennumbers which is independent of b. Thus

either q or pm may be determined as a function of the ratio for

arbitrary column radius. Curves of q vs. S are plotted in Fig. 9
O)P

for several modes. That radial eigenvalues are independent of the trans-

verse dimensions of the column may be associated with the fact that the

portion of the capacitivity tensor pertaining to the coordinates transverse

to the magnetic field is a scalar equal to co.
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The effect on waveguiding properties of the column may be seen by

considering equation (19) which we rewrite as

2 2L + 1b2

For a fixed cu and c (and therefore a fixed q) as the column radius is

increased phase velocity approaches the speed of light in vacuo (i.e.,

1 ). Fig. 10 depicts the dependence of the dispersion curve for the

•i mode on column radius b.

The tendency of the waves to become faster with increasing radius is

opposite to the behaviour of an open dielectric rod waveguide. In the latter

case, if the radius of the dielectric rod greatly exceed the wavelength in

the dielectric, phase velocity is slowed to the speed of light in the
Cdielectric, X7 . On the other hand, if the radius of the plasma column

is much larger than the wavelength, we approach the situation of having all

the field energy stored in field components transverse to the direction of

propagation (except at resonance) so that the effective capacitivity is

€0 and phase velocity approaches c.

To calculate stored energy one uses the expression for average energy

density appropriate to dispersive media

U Rea B + 9) (514)

Then by substituting 'into (54) the appropriate field expressions for the

mode under consideration which may be obtained from equations (50), (20),

(15), and (16), and by integrating U over the cross-section one may arrive

at expressions for stored energy. Specifically, the ratio of energy in

the transverse fields to that in the axial field for the TM01 mode is
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(-1)K (il -J J 2 ) -÷ (zJ, - )bT 2  ~2 2 w 2

q7 7(2-2L + ) 2S.-

where the argument of the J's is Pm

and the argument of the K's is q

Equation (55) makes clear the increasing storage of energy in the transverse

fields with increasing b.

As the signal frequency approaches the plasma frequency the augmented

axial oscillations of the electrons near resonance is accompanied by

increasing storage of energy in the axial field and the wave is slowed.

4

I
I
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V. CONCLUSIONS

The properties of guided electromagnetic propagation along an unen-

closed circular cylinder of plasma have been shown to contrast markedly

for the two extremes of axial magnetic field.

For the case of zero magnetic field a single bound mode was found
for each value of the integer n where the azimuthal variation of the

modes is as eJno . The azimuthally varying modes (n > 1) are hybrid.

The mode of one angular variation has no cutoff and its modal properties

predicted by quasi-static analysis are significantly modified by the

results of a more rigorous treatment. Modes of n > 1 can exist only

over a narrow range of frequency having a nonzero value of cutoff

frequency. All modes experience a resonance at a = V4 and are nonexist-

ent at higher frequencies. The plasma fields vary radially as hyperbolic

Bessel functions of the first kind, In. Perhaps the most significant

feature is the appearance of backward waves for the azimuthally varying

modes for small values of the parameter c

With large axial magnetic field there is an infinity of TM modes

for each value of n. All modes begin at zero frequency and experience

a resonance at w = -p being nonexistent for w > mp. The fields in

the plasma region vary radially as Bessel functions of real argument,

J n The radial eigennumbers are independent of column thickness, and

phase velocity approaches the speed of light in vacuo if the column radius

is large compared to the wavelength.
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