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ABSTRACT

Guided electromagnetic modes along a homogeneous circular column of
plasma imbedded in free space are examined for the two extreme cases of
zero and large axial magnetic field., The plasma is assumed to be cold
and collisionless and ion motion is neglected. The assumptions made are
approximated by certain laboratory plasmas and hence the results may be
of practical importance.

For the szero field case the modes with azimuthal variation are
found under certain conditions to exhibit backward wave characteristics
and previously published results of a quasi-static anglysis are modified,
In the case of large magnetic field, the occurrence of unique vaveguiding
features is discussed.
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I. INTRODUCTION

This study is concerned with the high frequency modes of guided
electromagnetic propagationA along a circular plasma column of infinite
length and finite radius, b, as shown in Fig. 1. The plasma density is
homogeneous for r < b and decreaaeé discontinuously to zero at r = d
vhere a free space region begins. There may also be present a d.c.
axial magnetic field, Bo.

Specifically the cases of Bo- 0 and Bo-' @ are investigated in detail,
modes with azimuthally varying fields being included in the investigation.
Although it has long been recognized that Maxwell's equations in these
two extremes of magnetic field are tractable, previous investigation into
the mode structure of an unenclosed column has been incomplete.

Trivelpiece and Gouldl have presented an exact treatment of the
azimuthally symmetric mode, and 'h':l.velpi.ece2 has presented a quasi-static
treatment for the mode of one angular varieation for the unenclosed column
in zero megnetic field. The existence of backward waves and cutoff was
indicated for‘ the azimuthally varying niode, but the usefulness of thgse
conclusions is limited by the nature of the quasi-static assumptions.

L:I.nhart'.5 has examined the dispersion curves for the circularly
symmetric modes in the limit of large magnetic field.

This paper begins with a tutorial derivation of some basic equations
governing high frequency wave propagation in a homogeneous plasma for the
general case of arbitrary magnetic field. Subsequent sections apply these
equations to the derivation of dispersion curves for the two extreme

cases under investigation.
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II. BASIC EQUATIONS

A. Ceapacitivity Tensor

A plasma may be represented by a tensor capacitivity whose substitu-
tion into Maxwell's equatione' yields the field defining equations. The
use of a tensor of relatively simple form involves the adoption of an
idealized plasma model. The plasma is assumed to consist of a cold

collisionlegs electron gas of density, n, imbedded in a stationary back-

ground of neutralizing ions in the presence of an axial magnetic field,
Bo. Then with linearization appropriate to small signals the motion of

the electrons is given simply as the response to a Lorentz force

mw = -e[E + v x B] (1)
vhere m 1is the electron mass
e 1is the magnitude of electron charge
v 1is the electron velocity.
By defining a polarization current density g = nei and assuming time
dependence as e”mt, the polarization P may be easily determined from (1).

Then, setting D = s E= ¢ .E + P defines the tensor capacitivity s .

o~
— — = — -
o | | 2% o ey
b a?«»ﬁ m(ma-wg)
:.; 3o, 4
: e
: Dy, [= ¢, [§ —5—5=  1- 0
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w
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§
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where '1‘1, '1.‘2 are subscripts denoting arbitrary orthogonal

coordinates transverse to the axis

1/2
a’p .(%) is the radian electron plasma frequency
B
=y is the radian electron cyclotron frequency.

=
wc

B. The Fields of a Magneto Plasma

Consider Maxwell's equations in general orthogonal cylindrical coor-
dinates with line element ds hl dql + h dqe + dz2 in a homogeneous
medium whose capacitivity has the form of (2) and whose permeability equals

the free spece value, Hoe The curl equations may be written
(V- 384,) x (Bp + BA,) = ~donyy (Ep + H,4,) (3)
(Vg - 384,) x (By + B2)) = Jo (g Ep+ €,E2,) (%)

vwhere T denotes the transverse part and axial variation
as e P% 15 asmumed. ‘
Equating the transverse parts in (3) and (4) yields the dependency
equations vhich express the transverse field components in terms of the
axial components

By = ~Jayy, {1 '67'1- x 2znz)- Jag'l Vo E, (5)
g,--‘—v x 4,8, +-Lx x By (6)
where A = [meuo & - 522 ] (7

-
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It remains to find vave type equations governing the axial field

components. We proceed as is usual by taking the curl of (3) and substi-
tuting from (4) vhich gives

VxW E = (Vg -6%) (B B,4) + (U -084,) (Vi -384,) - (B +2,E,)
™ (gp * Ep + &E,2,) (8)
Bquating the axial components of (8) gives
VB, + “’2“0‘3Ez = 36V * Ep (9)
In a similar manner by taking the curl of (L) one may show that
Ve E, - 6%, = <o (Vp x g * By) 4, | (20)

The expressions on the right of (9) and (10) must now be axpressed in

terms of the axial components. To get an expression for V- E, wve consider

Vop* (¢ * 51.) _since this 1is knov to equal Jﬂc,!z from V: D= 0. In
_thc notation of general curvilinear coordinates

Wl B+ B s (e ¢ matgR) ¢ g (e ¢ ek |
[hlhz 3111(%) 3 (hlsa)}} se [ a (hz‘z) d (hﬁ)]

1Vip* Bp + ouge H,
so that
[ [ 3
VTOBP-Jﬂ:i-Ez% ;‘:‘Hz (1.1)
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In a similar manner we may evaluate
2

Be..¢ ¢
(vTng-gr)-A,-—,f—’-n,'«aano(f-cl)n

Z

Then substituting (11) into (9) and (12) into (10) produces the

desired vave type equations

2 2 ¢ o €2
VpE + (m"'o'}':i'a ) Ez'dm"o'qnz

2 2
¢ "¢

¢ c:
Vg H + (ma"o - 52) B, = -Jfo fl E

1
In circular cylindrical coordinates with azimuthal variation as
e ihe dependency equations (5) and (6) become

— - —

“’2“0‘1' 32 Jm2“0‘2 E. -J8 33? n’:“o E
2 2 2 - [-]
Wty owe- B | B [T ey |8,
- - T -
- n
Hr 0 Tq% %r Er
B o 412
H¢ “’uo 0 J % 3 E‘
| L -
Ez
and the coupled wave equations in the axial components become
2 2
3E o ¢ ¢ n ¢
12 (% 5.5 ) 2
= (r | — - By ~ E = J H
rar(Sr—') (ca‘o ‘12 2) % ““‘o‘lz
2 2 .2 2
.} ® ¢ -¢ n ¢, ¢
12 Hy 12 2 2%1
;-a';<r'a?)+<-§ 'ﬂ-“é) Hy = -3 —=E,
c € ¢ r 05

(12)

(13)

(k)

(15)

(16)

(17)

(18)

[,
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Equations equivalent to (15), (16), (17) and (18) have previously
appeared in the l:lt.era.ture"'.’5 They are in general applicable to any
medium with tensor capacitivity of the form shown in (2) and by a scalar
permeability. In particular, we will apply them to a plasma in two
limits of magnetic field where degenerate forms of the capacitivity
tensor hold and the wave equations become uncoupled.

These field equations are also of course appliceble to the very
degenerate case of free space, and we next proceed to use them in finding

the fields of the free space region surrounding the plasma column.

C. Solutions in the Free Space Region

In free space the use of equations (15), (16), (17) and (18) entails

setting € = 0 and €= 33= €5 The wave equations uncouple and reduce
2

to Bessel equations with eigennumber 9-2- - 32. The appropriate solutions

c
for bound modes are hyperbolic Bessel functions Kn(%) vhere

2
® = 6%° -

v2 (19)

Ol\)le

q 1is real indicating that g > %’- .

The axial field components are then given by

EZO =A Kn(g'br-) eJ(M'SZ-n¢) HZO =B Kn(%) eJ (wt-pz-ng) (20)

where A ard B are constants to be determined by conditions at the
interface r = b, and by the strength of excitation.
The transverse fieldsmay be found from (15) and (16), the azimuthal

components being

A B At e T L
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2@+ 2 5 ol (t-pa-0f) (21)
2 . :
q2 _g; xn(gb{) o (at-pz-ng) (22)

In the next section we obtain the plasma fields and the associated

dispersion relationship for a plasma column in zero magnetic field.

s i it T
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II1I. THE PLASMA COLUMN IN ZERO MAGNETIC FIELD

As mentioned in the introduction, the case of no azimuthal variation
(n = 0) has been treated previouslyl’a, and therefore this investigation is
confined to the higher order modes (n > 1).

A. The Characteristic Equation

(a) Derivation
With B = O the capacitivity tensor of equation (2) degenerates into

the scalar ¢ (l - = ), and the wave equations, (17) and (18), reduce to

o2

2
Bessel equations with eigennumbers == (1- 3— ) - B . The plasma region
2

solutions are accordingly

i = CIn(%) e‘j (wt'BZ"nﬁ) Hzi - DIn(¥') eJ ((ﬂt-bz-n‘) (25)
L \ .
| - A 355‘ - (21)

2
Note that the factor % is always positive so that the radial

eigennumber in the plasma region, p, 1s always greater than that in the

free space region, q. Equation (24) is a hyperbola on the p, q plane
b

which intercepts the q= O axis at p = &E— .

Transverse field components may be determined from equations (15)

and (16); the azimuthal components are

2
2 Jan, b .
By = 1-;;%— (8 -p a?‘; —;; 1,8 o (at-pz-nd) (25)
B2 2, p B | d(et-prong) (26)
Hﬁ.- %(p2 -1)$In('b)+n rp21n('b) e

T
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Imposing the condition that the tangential (J and z) field components
be matched at the boundary r = b gives a set of four homogeneous equations
in A, B, C and D. For nontrivial solutions the determinant of the
cogfficient matrix mist be set equal to zero, which results as usuel in
the characteristic equation. It proves convenient to formilate the

characteristic equation in terms of the following functions,

Kn+l(x) - Kn-l(x) + In+l(x) I3(X) = In-l(x)
n

K;(x)--ﬁ;(ﬂ, Kn(x)--ﬁ-nm; Inx)’—XI:(T)" X (27)

The characteristic equation is then
2

[T;(p) + K7 (a)] [(2- 222 ) T.(p) + K (a)] + (I (p)+K (a)]
2
(G- 2 ) 14p) + K@) 1 = 0 (28).

The higher order modes (n > 1) governed by this equation are hybriad
possessing axial components of both E and H. The existence of TE or ™
modes would imply n(p2 - q2) = 0 which contradicts (24).

The hyperbolic Bessel functions of first and second kind vhich
appear 'in equation (28) are monotonic, indicating the existence of a

single mode for each value of n.

(b) Non-Existence of Solutions for >%

m
It may be shown that no solutions exist for (28) when o > -'g .

This implies that for the existence of gulded waves there is a maximum
frequency limit or equivalently the constraint that the capacitivity -
must be negative and greater in magnitude than ‘O'

The characteristic equation (28) may be written in the form



-ll-

%? _ L 2K K@) ¢ K(e) T + K(a) (o) (29)
o

2 1(p) I;(p) +K;(a) I;(p) + K (a) I;(p)

Demonstration of the fact that o <% is thus equivalent to showing that

x;({;) K;(q) > I;(p) I;(p) vhich may be expended as

2 B K@ L,0) T,

(30)
@ 2 2(p)
‘Note the following integral expreusj;om6 for the products of
hyperbolic Bessel functions.
o 0]
xu(q) K(q) = 2 f xu"(aq cosh t) cosh (pu-») t dt (31)
0
x/2
1) I0p) = 2 [1 (2 cos 0) cos (u-s) 0 40 (32)
(o}
From (31):
» Lo o]
K,,(0) K_;(a) = 2 [K,(2q cosh t) cosh 2t at (33)
0
0
awa ) = 2 [ Ky (2q cosh t) at (34)
o

Now cosh 2t > 1, and q is real so that the integrands in (33) and (34) are

alvays positive. Thus we see

K _,(2) K _,(a) > K(a) (35)

Pt R b Sk Sy
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In a similer manner using (32), it may be shown that
2 > 1,0 1, (p) (36)

Then (35) and (36) together with the fact that p > q establish the
required inequality (30).

(p) Cutoff and Resonance

_The characteristic equation (28) is represented by the solid lines
in Mg. 2forn =1 and in Fig. 3 for n = 2 for various values of the
parameter g . The features of the curves for n = 2 may be taken as
representative for modes of larger n.

Note that the curves for n = 1 begin at the origin of the p, q
plene whereas for n = 2 the curves intersect the q = O axis at some non-
zero value of lp. Also, both sets of curves intersect the line p = q for
small values of g . These features are of physical éimiﬂcqnce and it
is of value to trace their occurence mathematically.

The q = O axis represents a cutoff for bound modes; from (19) it
may be seen that at q=0, B= % vhich is the transition point
between slow and fast waves. The line q = p 1is a resonance since from
(24) 1t implies B = oo. _

At cutoff (q = 0), note the following limits of the functions of ¢
appearing in (28)

us K(q) = :‘—,‘;, n>1 1)
lim K (q) = -lnq, n=1 (38)
q-0

ql-{mo K(q) = 'g(%:f)' yn>1 (39)

A, 12008 8ot v L 1 B
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Figure 2 Characteristic Bguation for the Plasma Column
in Zero Magnetic Fleld, n= 1
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---------- equat:l.on
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FMgure 3  Characteristic Equation for the Plasma Column
in Zero Magnetic Fleld, n =2

equation 228
--------- - eqmtion 2"’
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Because of the distinct cases in (38) and (39) the n = 1 mode must be
treated separately from n > 1.

For the mode of one angular variation, the characteristic equation
in the cutoff limit becomes

a((,.%
qlimo :1-2. (2 ) a)a) I;(P') “2lna =0 (1)

vhere the finite nature of I;(p) has been considered. Equation (40)
can be satisfied for nonzero o only when I;(p) - o which implies
P = 0. This result will be seen to lead to a zero cutoff frequency for the
n = 1 mode.

For the modes with n > 1, the characteristic equation at cutoff for
nonzero « becomes

2
1in % (2 - ?%) I°(p) + ;f—l- - 0 (41)
q-0) q o

This can be satisfied only when

I(p) = —5—— (42)
(zg - 2)(n-1)

The value of p defined by (42) is the intercept on the q = O axis
vhich starts at p = 0 for the marginal case g—- 2 and rises to higher

values of p with decreasing . The nonzero value of the intercept will

be seen to imply a nonzero cutoff frequency for modes with n > 1,
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Next consider the resonance limit q = p. The characteristic
equation (28) becomes

(Iu+l Kn + Kn+l In) (- w2 ] In-l Kn + Kn-l In)

+ (In-l K +K 4 In) ([1- u‘-‘% ] Tk +tKa In) = 0 (43)

where the argument of both the I and K functions is p.
The identity

I (P) K, (2) + Ko (p) T(0) = 3 (k)

may be used to reduce (43) to the form

» i
2 :’? = p I _,(p) + 1 _,(p)] K (p) (45)

This relationspip is sketched in figure L.

It will be noted that for small 7‘% equation (45) does not have a
solution. However, for values of ® approaching f% there are two
values of p which satisfy (45) for a given % + It will subsequently

be shown that these solutions indicate the presence of backward waves.

B. The Dispersion Curves

Substituting for- p and q from (24) end (19) into the character-
istic equation (28) results in a dispersion relationship between % and
\ ]
gb with o a8 as a parameter.

Cc
[1;(1:) + K;(q)] El'(%vf (%)-2} I(p) + K;(q)]
. [x;(;») + K;(q)] El(%bf (_«;3-;)2} I (p) + x;(q)]‘ - 0 (46)

0= [(@R @2 o [P @A @) /2
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Points satisfying this equation may be obtained by finding the

intersection of a hyperbola

2
- d° = %— (24)

with p ots of the characteristic equation for various values of (ﬁ‘%)2 .

b
A point of intersection gives q, b, % , and 9‘:— which yields

2
2 . (‘i‘gﬁxm"’%) and b = <q2+“’—fz->l/2.

From the hyperbolas for 2?1 = .25 and 9-22 s .75 plotted as dashed
lines in figure 2, it may be seen that the dispersion curves for the mode
of one angular variation (n = 1) passes through the origin, £b = 9—:; = 0,
and asymptotically approaches 92- = \75.223 as B - . For small values

of 22— the dispersion curves will be triple valued in B for a single

" value of w as indicated by the triple intersection of the hyperbola for

f‘_cib_ = .25 with the characteristic equation curve for‘?; = 2.3; this
implies the existence of a region of negative slope or backward wave
propagation.

Hyperbolas for 2?-’- = .5 and 2;& = 1.5 are represented by dashed
lines in Fig. 3. The nature of their intersection with the plots of the
characteristic equation for n = 2 show that for n > 1 the dispersion
curves will begin on the line -“ci = fb at some point other than the origin.

is determined from (U42) as

(ve1) T (B | V2

This cutoff frequency, W, . ee

Ceutorr = Uy (47)

2(n-1) 1;(5?) +1

b
The dispersion curves asymptotically approach -cwp- = T&_ . For small
values of 99— , the dispersion curves will be double valued in B again

implying the existence of backward wave propagation.

PP
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Dispersion curves for n = 0 are reproduced from previously
published datal in Fig. 5 for purposes of comparison. Dispersion curves

for n=1 are plotted in Fig. 6 and for n = 2 in Fig. 7 for revealing

b
values of the parameter 2%— « As indicated sbove, an important difference

between the curves for the n = 0 mode and the modes of higher order is

the appearance of backward waves in the azimuthally varying modes. The

portions of the curves exhibiting this behaviour are enlarged in the lower

right corners of Fig. 6 and 7. The phenomena of backward waves must be
associated with either the properties of the plasma as a negative
dispersive permittivity or with the hybrid nature of the higher order
modes or l:\o*t:h.7

The disappearance of the backward wave characteristics for large
values of -‘223 should be noted. Increasing this parameter increases p
relative to q [see (24)] and this has the effect of decreasing field
penetration iﬁto the body of the plasma and of concentrating power flow
in the free space region as may be seen from consideration of the nature
of the hyperbolic Bessel functions.

A1l three sets of dispersion curves, Fig. 5, 6 and 7, show resonance
at o = :—}% , 1i.e., P increases without limit as this frequency is
approached. Increasing f implies increasing p and q and consequently
increasing confinement of field energy to the region of the interface.
Furthermore, group velocity aw/3p rapidly approacies zero at the
resonance so that energy does not propagate.

As B 1increases, the phase velocity, w/B, of course decreases, and
when its value approaches the electron thermal velocity, the assumption

of negligible thermal pressure made in section II becomes untenable. An

[P S

e skt
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Figure 5 Dispersion Curves for Plasma Column
with Zero Magnetic Field, n= 0
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analysis that includes the effect of thermal pressure would indicate
that as phase velocity approaches electron thermal velocity, damping

set 1n8’9, the field energy being converted to electron kinetic energy.

C. Comparison with Quasi-Static Analysis

It is of interest to compare the modal properties presented ebove
with the predictions of approximate analysis using the quasi-static
assumption as carried out by 'I‘r:l.vel.piece2 for the n =1 mode.

The basic quasi-static assumption is E = -VVv, V being a scalar

potential. For the unmagnetized plasms column this assumption implies

2
not only that 52 >> w_2_ as with non-dispersive media but also that
Cc
2
>> .
g o2
The quasi-static assumption leads to the following dispersion

equation 2 _( ) +( »)
o K (gb) + K (8!

<£-1 = = = (48)
o I-(8b) + I,(pb)

Equation (48) for the n = 1 mode is represented by the dashed lines in
Fig. 6.‘ They have intercepts with the B = 0 axis at a% and
corresponding nonzero intercepts with the line £ = % . The region of
these intercepts (B < %-) is not with the province of quasi-static
analysis and their existence was correctly viewed with suspicion by
Trivelpiece. His curves also indicate backward waves for small pgb, a
feature which is retained in the exact analysis only for small values of

b
the parameter ﬂ;— .
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In the next section we consider the plasma column in large axial
magnetic field. Modal properties in that case will be seen to differ
significantly from those presented above for the opposite extreme of

the urmagnetized column.
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IV. THE PLASMA COLUMN IN LARGE AXTAL MAGNETIC FIELD

Large axial magnetic field is meanf to imply an electron cyclotron
frequency greatly in excess of either the electron plasma frequency or
the signal frequency. This condition is not unrealistic for laboratory
plasmas.. Often a laboratory plasma has an axial magnetic field variable
up to 20 kilogauss, which corresponds to a cyclotron frequency,

= 56 gc./sec., while a typical value of electron density might be
10" cm.'3 which corresponds to a plasma frequency, fp = 2.84 gc./sec.;
it will be shown that for guided propagation the signal frequency is
smaller than fp. The large axial magnetic field will not Iinteract with
electron motion parallel to it but will effectively inhibit any transverse
motion.

A. The Dispersion Curves

In the limit of large B., the capacitivity tensor of equation (2)

becomes uniaxial

1 0 0
€ - eo 0 1 0 -
0o o0 1- % (49)
o .

The wave equation (17) and (18) uncouple, and the equation in E, trans-
forms to Bessel's equation with eigennumber (1122) 0—— - ) while the
equation in H, becomes Bessel's equation with ﬁagennumber (c g )
Consequently, Hz is unaffected by the plasma and no guided TE modes

are possible.

PNy

s

s A RS



- 26 -

The axial component of E will have the form

E, = FJ (51';_2'.) eJ(wt-Bz-n¢)
n

zi (50)
2 2 2
2 @p 2b2 w® .2 2
p,o= (5-1) (8% -Fbv%) = (%5-1)q
n = 5 % %-1) (51)
For bound modes P is real :I.mposing' the constraint o < wp.
The modes are TM having field components Ez, Er’ H¢ for the
n =0 case and all field components except Hz for n > 1. The charac~
teristic equation may be found as outlined in the previous section and is
] ]
J (2,) X ()

LIRACH IR X ) 2)

This equation has previously appeared in the literature.lo

The left side of (52) is oscillatory and there will consequently be
an infinity of solutions for a given n. The modes are then doubly
infinite in number and a given mode will be designated by a double sub--
script as mnm.

The dispersion relationship is gotten by substituting in the

characteristic equation for P and q in terms of %b- » Bb, and

%E as determined by equstions (19) and (51). The dispersion relation
is plotted for several modes in Fig. 8 with fpﬁ = 10.

The curves have similar shapes for differ:nt modes; they all begin
at the origin and asymptotically approach the line w = "’p for large B.
As in the zero field case the asymptotic approach is accompanied by
resonant excitation of electron oscillations. Along the asymptote, q

increases without bound, but the plasma eigennumber Py remains

st wen e Antaen
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easentially constant, and the fields are concentrated in the body of the
plasma rather than at the interface.

Fg. 8 also demonstrates that the Qaves become slower (i.e., phase
and group velocity decrease) as the order of the mode increases., The
initial slope of the dispersion curve may be shown to equal
E. + (:,%t-)-)-2 Zpel,m 1/2 for the ™  mode, where Znd,m is the mth
zero of Jn-l exclusive of the zero at the origin except for n = O.

The initial slope of the ’1M01 mode is unity. Trivelpiece and Gcculd.:L
found curves similar to Fig. 8 for a plasma £illing a circular conducting
pipe. In that case the initial slopes of the curves were found to be
EL + ((-l%-l-)-).2 zn;] 1/2 so that the waves are seen to be faster for the open

colwum.

B. A Unique Waveguiding Feature

There is a rather unique feature of the equations for this 'case of
large magnetic field which has interesting physical implications.
Equation (51) expresses R, in terms of q 1ndependentl& of column
rad:lus,. b, and the characteristic equation (52) also defines a relation-
ship between the radial eigenmmbers which is independent of b. Thus
either q or p, may be determined as a function of the ratio -2 for
arbitrary column radius. Curves of q vs. a—“; are plotted in Fig. 9
for several modes. That radial eigenvalues ere independent of the trans-
verge dimensions of the column may be associated with the fact that the
portion of the capacitivity tensor pertaining to the coordinates transverse

to the magnetic field is a scalar equal to €

nliiions
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The effect on waveguiding properties of the column may be seen by

considering equation (19) which we rewrite as

2 2 )
2 w q
5 e
B <2 v2 | (53)

For' a fixed Wy and o (and therefore a fixed q) as the column radius is
increased phase velocity approaches the speed of light in vacuo (i.e.,

B ;-% ). PFig. 10 depicts the dependence of the dispersion curve for the
m01 mode on column radius b,

The tendency of the waves to become faster with increasing radius is
opposite to the behaviour of an open dielectric rod waveguide. In the latter
case, if the radius of the dielectric rod greatly exceed the wavelength in
the dielectric, phase velocity is slowed to the speed of light in the
dielectric, \7:—1‘ « On the other hand, if the radius of the plasma column
is much largexj than the wavelength, we approach the situation of having all
the field energy stored in field components transverse to the direction of
propagation (except at resonance) so that the effective capacitivity is

¢ and phase velocity approaches c.

(0]
To calculate stored energy one uses the expression for average energy

density appropriate to dispersive media

— 1 a(w:)
T = uReal(ﬁ*-png*- = ) (54)

Then by substituting into (54) the appropriate field expressions for the
mode under consideration which may be obtained from equations (50), (20),
(15), and (16), and by integrating U over the cross-section one may arrive
at expressions for stored energy. Specifically, the ratio of energy in

the transverse fields to that in the axial field for the 'No]_ mode is

. TS S Ctn, .,
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& v o <‘3§-1>'<§<J§-J0J2>-J§0€-Koxa>
5;'32‘2%*'{‘,3 (55)

where the argument of the J's 1is Py
and the argument of the K's 1is gq
Equation (55) makes clear the increasing storage of energy in the transverse
fields with increasing b.
As the signal frequency approaches the plasma frequency the augmented
axial oscillations of the electrons near resonance is accompenied by

increasing storage of energy in the axial field and the wave is slowed.
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V. CONCLUSIONS

The properties of guided electromagnetic propagation along an unen-
closed circular cylinder of plasma have been shown to contrast ‘markedly
for the two extremes of axial magnetic field.

For the case of zero magnetic field a single bound mode was found
for each value of the integer n where the azimithal variation of the
mndes is as e"'jn¢ « The azimuthally varying modes (n > 1) are hybrid.
The mode of one angular variation has no cutoff and its modal properties
predicted by quasi-static analysis are significantly modified by the
results of a more rigorous treatment. Modes of n > 1 can exist only
over a narrow range of frequency having a nonzero value of cutoff
frequency. All modes experience a resonance at o = % and are nonexist-
ent at higher frequencies. The plasma fields vary radially as hyperbolic
Bessel functions of the first kind, In' Perhaps the most significant
feature is the appearance of backward waves for the azimuthally varying
modes for small values of the parameter (-Lg- .

With large axial magnetic field there is an infinity of TM modes
for each value of n. All modes begin at zero frequency and experience
a resonance at o = o being nonexistent for w > Wy The fields in
the plasma region vary radially as Bessel functions of real argument,

J n' The radial eigen.numbers are independent of column thickness, and
phase velocity approaches the speed of light in vacuo if the column radius

is large compared to the wavelength.
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