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ON RELIABILITY INFERENCE

by

E. L. Pugh

1. INTRODUCTION

An important aspect of any system is its reliability, that is, its

probability of successful operation. However, such a probability, R, is never

known exactly in practice but may only be approximated by an estimate, •, based

on either a subjective probability analysis or on an analysis of actual failure

history of the system. The accuracy of the estimate R would therefore appear

to be at least as important a consideration as R itself, since it is R and not

R which is used in any systems analysis. This is especially true for a purchaser

of a system as reflected in current military contract specifications. If the

estimate R is based on failure history, its accuracy can be precisely quantified

in the form of "confidence"; this paper is concerned with such quantification

under various assumptions regarding the failure law (including the case of no

assumption). Moreover, for a given failure history, a "confidence relation"

may be established which gives the confidence of the statement: "The reliability

is at least R "0 for every R 0 < R° < 1. Thus, in addition to considering the

best estimate R and its confidence, the systems analyst may wish to compute a

value R' such that the true reliability is at least R' with a very high confidence.
0 0

The value R' could then be used as a lower bound on R for a maximum cost or
0

risk study. The terts "reliability,' "best estimate," and "confidence relation"

will now be made mathematically precise.
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Let F c(t) = 1 - F(t) be the complementary distribution function of a non-

negative random variable, T, known as the "time to failure" of a given system.

Let t be a positive number known as the "mission time" of the system.
m

Reliability, R, is defined as the probability that the system survives the

mission time:

R = P(T > tm = Fc(tm) (1)

By a best point estimate for R, we shall mean a minimum-variance, unbiased

estimate. By a confidence relation, depending on a statistic Z- we shall mean

a real valued function, C (r), 0 < r < 1, having the following property: for

any observed value ý of E, and any r, [rl] is a 100 C (r)% confidence interval

for R. Thus. based on the observed value ý of E, one says for any r, 0 < r < 1:

the confidence that R > r is C (r). The function Ct(r) is derived from a "pivotal

quantity," i. e., a statistic whose distribution is independent of R. However, it

is of interest to note that in the cases studied:

C (r) = G(Q;r) (2)

where G(Q;r) is the distribution function of E, depending on the value r of the

parameter R. Furthermore:

c(r) = - 7 G(Q;r) (3)

[21
is the "fiduical" density function of the parameter R according to Fisher

Hence, C t(r) may be regarded as a complementary fiducial distribution of R in

which the fiducial interval is equal to the confidence interval. --



March 15, 1963 3 TM-1042/202/00

It appears that (2) will be true for a general parameter e whenever the

solution, 0(Q), of G(Q;e) = i-cY, for fixed a, is a 1-1 function of t. (See
Lemn[3]

Lehmann , p. 80, Corollary 3.) However, rather than appeal to this lemma,

(2) will be demonstrated by direct evaluation for the particular cases studied.

That is, the confidence relation will be derived from a pivotal quantity and

then the distribution function G(Q;r) will be derived directly and shown equal

to C (r).

The two inferences, a best estimate and a confidence relation, will now be

evaluated under: (i) no assumption concerning Fc(t) and (ii) the assumption that

F (t) = exp(-t/e) k; e > 0, k > 0 (the Weibull distribution).

2. NO ASSUMPTION CONCERNING F c(t)

Let T1 ,...,Tn be n independent random variables corresponding to a random

sample of size n from the distribution Fc(t). Let S be the statistic defined

as: "the number of sample values which exceed tm." Then since R = F (tm) =

PiTi > tm), the well known binomial confidence relation for R may be derived

from the observed values s of S:

s-l

C_(r) > 'i ()rJ(l-r)niJ (4)

j=o

and it is noted that this confidence relation is the distribution function of

S, G(s;r), as per equation (2). The best estimate for R is simply the success

ratio:

S.= s/n (5)
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It is of interest, in connection with subsequent developments of this

paper, that the relation (4) can be derived by assuming F C(t) continuous and
C

th
considering Fc(Tv) where T here indicates the v- -order statistic. A con-

fidence relation for the parameter RV* = Fc(tv,), where tv,._ < tm < tv, is
[10].

given as the following incomplete beta function

1
C,(r ) I n1 xn-v*(l-x) v*-ldx
t V* r (v*-l) 1(n-v*) I

*v* 
(6)

= I - IB (n+l-v*,v*)

However, by choice of tv*, R > Rv, and hence a confidence relation for R is

given as:

C (r) > 1 - B (n+l-v*,v*)tv* - r

n_ (7)

= 1 - X ()r (1-r)nJ

j=n+l-v*

But n+l-v* = s and hence:

s-i
C (r) > -)rJ (1l-r) n-j (8)

Ctv, X,

j=o

which is the binomial relation (4).

As an example of the use of this relation suppose that the following failure

times, in hours, are recorded for a particular system:

20.2, 1.6, 3.5, 15. 7, 62. 1, 19.9
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Further suppose that the mission time of this system is 2 hours. We have:

n=6, s=5 and hence the best estimate of R is R = 5/6 = .833. The confidence

relation is:

C (r) 1 1 - I (s,n+l-s)
s r

(9)
1 1 - IB(5,2)

In particular, the confidence that R > .833 is I - IB833(5,2) = I - .736 = .264.

This is quite low and thus one would probably want to assert instead: R > .600

with confidence 1 - IB600(5,2) = 1 - .233 = .767. Note that one is virtually

certain that R> .400 since the confidence in this statement is I - IB400(5,2).

.960. Thus, .400 could be used as a minimum reliability point for a maximum

cost or maximum risk study.

In the above example, the best estimate and the confidence statements seem

overly conservative. This is because a great deal of information contained in

the sample, i.e., the magnitudes of the failure times, is not utilized. To

utilize such information, some assumption must be made regarding the distribution

of time to failure. This is done in the sections to follow where it is assumed

that this distribution is Weibull.

3. THE WEIBULL ASSUMPTION

In the remainder of the paper it will be assumed that F c(t) is Weibull:

F c (t) = exp(-t/0) k; O,k > 0 (10)
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This distribution is well suited for reliability applications. The parameter k

indicates the wear-out characteristics of the system involved. For k-i (exponential)

there is no wear-out; for k > 1, wear-out occurs; and for k < 1 there is negative

wear-out, i.e., the longer a system remains in operation, the better its chances

of surviving a subsequent time interval. These statements are made precise by

considering the value of the conditional density function, f(tIT > T), at t - T.

This is known as the hazard, h(T), and in the Weibull case is:

h(T) = (k/ek ) - (11)

Thus the hazard is increasing, constant, or decreasing as k is respectively

greater, equal, or less than one.

In what is to follow, it will be assumed that the value of k is known.

Thus these results, to be useful, depend on empirical or theoretical evaluations

of k for certain classes of systems. This has been done, for example, by

Drenickl] who has shown that k=l is a good assumption for highly complex

systems.

4. AN ORDER STATISTIC CONFIDENCE RELATION

Consider the pivotal quantity: A = (TV/e)k where TV is the v-h order

statistic (v arbitrary) from a random sample of size n taken from the Weibull

distribution of equation (10).' The distribution of A may be found to be:

H(X) = P(A < X)

Sn x-V(lx)V-dx (12)

ep ( (v-l) I (n-v) (X) (
exp(-X)

fiI-IB (n+l-v.,v)
S exp(-X)
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Hence:

HO.) - P(T /e)k < k)

- P(e > TV•/).l/k (13)

= P(exp(-t m/e)k > exp[-k(t m/TV) k]]

- P(R > r)

where:

r - exp[-I(tm/TV)k] (14)

or:

X - (-lnr)(Tv/tm)k (15)

and therefore:

P(R > r) - H(X) - H[(-Inr)(Tv/tm)k] (16)

As a probability statement, this is interpreted in the following manner. For

fixed a, the random variable ' defined as the solution of:

1-a - H[(-lnr)(Tv/tm)kk (17)

is such that: PR(R > - 1-a, all R. Thus, to obtain the confidence relation

k k
C (r), an observed value t of the statistic Tk is substituted in (16):t15 V V
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Ctk(r) - H[(-lnr)(tv/tm) k]

V (18)

1 - Ir (tv/tm)k (n+l-v,v)

Note that for k=o and vfv*, this confidence relation reduces to the binomial one

of equation (7). Also, to verify equation (2) in this context, note that the

Weibull distribution written in terms of the value r of the parameter R - exp(-tm/e) k

is:

Fc(t) exp(-t/e) k = r(t/tm) k (19)

Therefore the distribution of T k may be found as:
tk k

k V nI(l/t M) (~n~(X/tm) (nl- r/tv)d (20)1
G(t•;r) =f (v-1)1 (n-v) ('lnr)r (1-rX/v))'dx (20)

0

/ k
which, if one lets y rx/tM, becomes:

1
k ;r ni -v) yn-V(ly)V-ldy

r (tv/tm) (21)

S1 - I B(tv/tm)k (n+l-vv)

Therefore, in accordance with equation (2), we have:

G(tk;r) - Ctk(r) (22)
V
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As an example of the use of the relation (18), consider again the data of

Section 2. Suppose that k - 1.2 and we desire an inference based on the third
order statistic: t3 - 15.7. We have (t3/tm)1k (15.7/2) 1.2 = (7.85) 1.2 , 11.85

and therefore:

C2 7 .4(r) - 1 - 1BI.85( 4 p3 ) (23)
r

As a comparison with the earlier example, the confidence that R > .833 is
I B .B

3 I B(.485(p3) - 1 - 115(4,3) - 1 - .0022 - .9978. For the exponential

case, i k-l, this confidence is 1- =(4,3) - 1 - I =(. 833)78 B" .•239

1 - .0320 - .9680, and for the case k-.8 we obtain: 1 - 1 B3 8 7 ( 4 , 3 ).

1 - .1617 - .8383. Note that these three confidence values are significantly

higher than the value of .264 obtained in Section 2. This indicates the pro-

found effect that a distributional assumption can have on the calculations.

5. A SUFFICIENT CONFIDENCE RELATION

The Weibull density function (minus the derivative of (19)) may be written

to indicate its membership in the exponential family[3]

f(t) - (-lnrk/t m)(t/t M) k-1r(t/tm) k

- (-lnr k/tn) (t/t mn) k-l expf[(lnr) (t/tiM) k]1(4

Therefore the statistic:

(25)1i-l
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is sufficient for R. Consider the pivotal quantity: A u,,/0 Its distribution

may be found to be the following incomplete gamma functi.5]:

nx
r 1 n-le-XdxJ~k (n-l) Ix

(26)

. (rX.nn -nl)

Hence:

H(X) ff {/k <

P(i/e k< k]

- P(e > (!/X)l/k)
(27)

P(exp(-t /1e)k> exp(_tkX/j)]
M >

= P(R > r)

where:

r- exp(-tkmX/1) (28)

or:

-, (-lnr) (1/tk) (29)

and therefore:

P(R> r) - H[(-lnr)(/t k)] = H(X) (30)

where this probability statement is interpreted as in equation (16). Thus, to
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obtain the confidence relation C (r), an observed value 4 of • is substituted in

(30):

- Hr(-lnr) (*/tk)]

(31)

- T'i(-lnr)(*/tk) [non-l]

Finally, to verify equation (2), the distribution of • may be found as:

( (n/tm-) (-n~ n- nxn k•t
G(*;r) f (n-l)l dx (32)

o

Which, if one lets y - n(-lnr)(x/t )k becomes:

n(-lnr) (/tk

r l" i n-l-y
G(4;r) -In- yedy

(33)

- I[(-lnr)(*/tk) 4-n,n-1l

Therefore, again in accordance with (2):

G(*;r) - C4*(r) (34)

As an example of the use of the relation (31), consider again the data of

Section 2 and the value k - 1.2. We have 4'- (20.21.2 + 1.61.2 + 3.51.2 +

1.2 1.2 1.2
15.7 + 62.1 .+ 19.9 )/6 - 41.45 and therefore:
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C4 1 4 5 (r) - I1 [(-lnr)(41.45/2 1 . 2) 46,5]

(35)

- Ir[(-lnr)(44.10),5]

The confidence that R > .833 is I"[(-in .833)(44.10),5] =F[8.05,5] - .9999.

For the exponential case, 4 is the sample mean, 20.5, and the confidence is

II[(-ln .833)(20.5/2) %F6,5] - I['(4.59,5] = .9674 and for the case k = .8 we

obtain IF[(-ln .833)(10.47/2.8) %6,5] = Ir([ 2 . 70 , 5 ] - .6472. Comparing these

values: .9999,.9674, and .6472 with the values obtained in the previous

section: .9978, .9680, and .8383, it appears that C (r) is more sensitive to

the distributional assumption (the value of k) than is Ctk(r). This is because

(r), being sufficient, utilizes all the information in the sample concerning

R, whereas Ctk(r) does not. Therefore C ,(r) should be used for the data con-
V

sidered. There do arise, however, situations in which C tk(r) is superior to
VC * (r) and these are discussed in the next section.

6. THE USE OF THE CONFIDENCE RELATIONS

As pointed out above, C*(r) is based on the sufficient statistic j whereas

C k(r) is based on Tk, which is non-sufficient. Also, it follows from a corollary
t
V

of Lehmann ([3], p. 80, Corollary 3) that the confidence bound, r, derived from

C (r) is "uniformly most accurate." Therefore C *(r) is mathematically superior

to Ctk(r). However, in reliability estimation the statictic T k has a great
V

practical advantage over the statistic ], which in some cases makes Ctk(r) the
V

superior confidence relation. This advantage is the fact that to obtain Tk
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only v systems need be destroyed but to obtain j, all systems must be destroyed,

i.e., all failure times must be known. Thus, for example, in a life test in

thwhich n systems are placed on test simultaneously, the v--observed failure time

is the v- order statistic. The test may therefore be discontinued after, say,

one failure, and the relation Ctk(r) used. To use C*(r), however, the test must
1

be continued until all systems have failed.

This advantage may also be exploited in the analysis of field data such as

the data used in the preceding examples. Suppose, for example, that in addition

to the recorded failure times: 20.2, 1.6, 3.5, 15.7, 62.1, 19.9, it is known

that 5 systems are still in operation and each has lasted longer than the longest

recorded failure time, namely, 62.1 hours. The above failure times, when

arranged in order, then represent the first six order statistics from a sample

of size 11. It therefore appears that Ctk(r), I < v < 6, based on n - 11 will
V

be more accurate than C*(r) based on n - 6. To illustrate the difference in

values obtained, we have from Section 5 that for k = .8 the confidence that

R > .833, based on n = 6 and * - 10.47 is .6472. However, for k - .8 the

confidence that R > .833, based on n - 11 and t3 f 15.7 is 1 - IB3 8 7 (9 , 3 ).

1 - .0045 - .9955.

7. A BEST ESTIMATE FOR R

If T is a random variable having a Weibull distribution with parameters e

and k, then T is a random variable having an exponential distribution with

kmean 0 . This fact has been used throughout this paper and it yields the

solution of the problem of a best estimate for R as an immediate extension of
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(6]an earlier result derived by the author . The best unbiased estimate for R is

the conditional expectation, EKill) where i is the success ratio of equation (5)

and I is the sufficient (and complete) statistic of equation (25). This estimate

is:

R* = E(Rij) - (1 - t-/fDn'l (36)

where R* = 0 if < tmk/n. It is interesting to compare this estimate with the

maximum likelihood estimate, R:

R= exp(-tk/) (37)

It is noted that R* o- R as n becomes large.

Finally, it is of interest in connection with fiducial theory to compare

(36) and (37) with two additional estimates of R. Recall that Ctk(r) and C*(r)
V

are equivalent to complementary fiducial distributions for R. We should there-

fore expect the means of these distributions (which are random variables) to be

good point estimates for R. These are:

v-1
1 11 (n-i)

iwoR 1JCTk(r)dr = v- k (38)
0 V i I o[n-i+(t/v

1
R [ n In
R2 C, = n()(tm/) (39)

Note that R2 is sufficient (since it is a function of ) and since ' * it
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possesses the desirable asymptotic properties of R. Also, it can be shown that

R2 has less bias than k. Thus it appears that R2 is superior to R, though

inferior to R*, the best estimate. The estimate Rl, on the other hand, is

very poor since it is non-sufficient and non-consistent in addition to being

biased.

The values of these four estimates, for k 1 1 and the data of Section 2,

are given for comparison below.

R* - (l - 2/(6)(20.5) ]5

(40)5

- (.9837) = .921

R = exp(-2/20.5)

(41)
= exp(-.0975) = .907

R1 = (6) (5) (4)/(6+2/15. 7) (5+2/15. 7) (4+2/15. 7)

(42)

= 120/129.8 = .925

R= 2 (2/20. 5)]

(43)6
- (.9845) - .910
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