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CHAPTER I

IWDRODUCTION

As man endeavors to delve further and further into the

rcalm of the unknown, his problems become more rnd zore complex.

The invention of the electronic computer h.s .greatly aided

this qaest for knowledge in that it enables problems that

would have taken a lifetime using antiquated meti2odr to be

bolved in a short length of time. ComputinG spead has Gradually

been increased in order. to handle extremely complex problems Li

a reasonable length of time.

Of course there are mwxy problems whose answers would

be useless if not obtainable in a specified le, ,h of time.

This t~le of problem dictates the realization of oven faster

zoj)utinG soeeds than are now available. Here lies the.

problem. Existing lumped constant 3ystems are limited La

their ujper operating frequencies by the stray capacitance

niid inductaiice assrciated with them.

The logical question asked at this point then:

"Why not use standard microwave techniques to build a

computer?". The question is easily answered b7 two

considerations: Size and cost. A simple example will

serve to show? how bulky even the simplest waveguLde

computer would be. Suppose a computer havina a carrier

1
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frequency of 3 kmc is made of 1000 logical elements, the

logical elements being Magic ''s. A rough calculation shows

that the logical elements and their associated interconnections

exclusive of power supplies, signal generators etc. would

require a room of 1000 cubic feet (see Appendix I). Consider-

ina the logical element to be made up of one MaZic Tee and

a small amount of flexible waveguide or coaxiable cable as

required by the logical configuration, the cost of 1,000

elements would be roughly $160,000 plus the cost of connecting

sections. These simple examples serve to show the inadvisability

of attempting to build a computer out of wavegutde.

Once a computer built of waveguide components has been

ruled out, the reader will undoubtedly ask, "Why not build

it out of some configuration of coaxial and multiple wire

transmission line?

In the first place, the author has never heard of

logical elements made of coaxial or wire transmission lines.

However, even assuming that such logical elements could be

made, the bulk of the resulting computer would be prohibitive.

Admittedly its. cost would be ccnsiderably less than that of

a microwave computer.

How then a.-e we to build a computer operating at microwave

.frequencies? The answer lies in a new type of transmission

line called strip transmission line. Two basic types of strip



transmission line exist; the so called "Microstrip", which

consists of a strip conductor over a single grcumd plane,

and the type consisting of a strip placed symmetrically

between two ground planes. This latter type is variously

termed as "Strip.line", "Tri-Plate", balanced strip line,

shielded strip line, etc. In this paper it will be re-

ferred to as "Stripline".

While both "Microstrip" and "Stripline" possess azerit,

the latter type is in more popular demand due to its lower

loss and smaller stray coupling as compared to "Microstrip".

These considerations indicate a greater versatility of

application for "Stripline" and lead to the conclusion

that for our purposes only "Stripline" need be considered.

All analysis therefore, wil. be done in terms of the

"S ripline" configuration. "Microstrip" will not be

considered further. Figures 1-1 and 1-2 show the physical

configurations of "Kicrostrip" and "Stripline" respectively.

Fig 1-1 "Microstrip Cross Section"



Fig 1-2 "Stripline Cross SectioO"

The explanation for the continuing interest in "Stripline"

lies in its advantages over. coaxial and wavegu de construction,

notably savings in production cost, in weight a&d volitme and

in time and expense in the development of hew circuits.

However certain disadvantages exist also. The principal of

these are: (1) an apparent unsuitability-for long runs of

line; (2) a higher attenuation, lower resonant Q and lower

power capacity thin waveguide (although the parameters are

at least comparable to those of coaxial line); (3) a dependence

upon dielec-tric materials for dimensional stability and,

strength and (4) a partial loss of constructional advantages

in the cme of circuits that cannot be reduced to planar form.

For many circuit applications these disadvantages are un-

important and are far outweighed by the advantages. Also each

disadvantage can be minimized through careful deslg procedure.



The manufacture bf "Stripline" is well suited to printed

circait techniques such as photo-etching of copper foil.

lIAnated on a dielectric surface. As such it bears all of

the advantagZes of printed circuits, i.e. ease of repro-

ducability, low cost and small size.

A comparison of a 1000 logical element computer made of

wavefuide and of "Stripline" is in order. The cost of our

1000 element "Stripline" computer would be in the neighbor-

hood of ?.,700 plus connecting sections as opposed to ;'140,000

.9lus connecting sections for wave,-uid (see Appendix 1). If

the 1,000 loical elements in the wave,uide example were made

of "Stripline" the resulting volume would be only 1.95 cu. ft.

as conpared to 1,000 cu. ft. for waveuuide.

Logical elements arc realized by printing hybrid rin'ls

ai.. usin,3 then.i to perform the logical functions. To realize

a --iven logical configuration then, say' an adder, we. would

(2) draw the circuits; (2) make a drawin, and photo-raph it

to ret a negative; (3) reduce the negative to the required

size; (4) print two double clad boards on one side and (5)

a&Ltach ccnnectors and bolt the boards together with their

pri.nted sides facing each other.

The previous paragraphs have shown that "Stripline"

could indeed be used to construct a practical computer

operating at microwave frequencies. The following chapters

of this report will therefoee concern zhemselvee with the
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basic characteristics of "Stripline" such as charccteristic

impedance, attenuation, transient response, etc. in order

that we may exploit "Stripline" to build an operating device.

A second report will be written describing the logical

design of a toy c:omputer.



CHAPTER II

DETEINU2{ATION OF STRIPLIhE CHARACTRISTIC DIMEDANCE

A. Hs•

Close examination of the literature discloses that

severaj. articles concerning strip transmission lines have

been written. In the opi:7ion of the author the article

done by Oliner is by far the best. As a result the past,

history of Characteristic Impedance analysis as done in

this paper is essentially that o2 Oliner.

Host of the people engaged in theoretical work- on

bynmetric strip lines have in one way or another.been

concerned with the determination of suitable expressions

for its Characteristic Impedance. While it is almost

inpossible to include the contributions of everyone in-

volved, the discussion below is felt to be fairly inclusive

and typical of the different methods of approach that. have

jeen used. The earlier efforts on this topic dealt w.th

expresslons for zero-thickness center strips while the

later investigations were conce.-ed with strips of finite

thickness.

7
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Since the dominant mode in symmetrical strip line is a

TMI mode, the field distribution in the transverse plane is

a static one, ;nd the Characteristic Impedance follows directly

from the knowledge of the static capacity of the line. This

point was recognized by all investigators.

For zero-thickness center strips, pioneer work was

3,conducted by Barrett for the low impedance range, which

corresponds to lines for which the strip width is greater

than one-half the ground plane spacing. He considered Lhe

line cross-section to be made up of a parallel-plate region

in the center and fringing capacities at the sides, and on

this basis derived a simple and useful eXpression. At the

time he was unaware of a rigorous solution for zero-thickness

strips by Oberhettinger and .Agnusj which is based on a con-

formal mapping and is valid for any ratio of strip width to

ground plane spacing. HaW. has more recently considered the

effect of finite width ground planes. He obtained a rigorous

solution via conformal mapping procedures for ground planes

of finite width in which the center strip and the ground planes

are all of zero-thickness, and he concluded that for the line

dimensions employed in practice the assumption of infinite

width ground planes fntroduces negligible error.

A variety of approx.imate expressions has been obtained.

for lines with center strips of finite thickness. The first

6of these expressions, historically, was deced by Begovich,
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who followed the lead of Barrett 3 but employed the fringing

capacity appropriate to a strip of finite thickness. While

such a procedure would yield an expression suitable for the

low impedance range, his result is of questionable value be-

cause the fringing capacity employed was given in a very

slowly convergent form. The next contribution along these

lines was due to Cohn7and Oliner8,9 working independently

but arriving at identical reaults. These results apply

separately to the low impedance and the high impedance

rtaiges, and very satisfactorily overlap in the inter-

mediate regipn (strip width to ground plane spacing ratio

approximately equal to 0.35). The expression for the low

6
impedance range is that of Begovich, except for the use of

a fringing capacity which is exact and explicit. The

expression for the high impedance range was based upon a

far field equivalence between a rectangular and circular

cylinder. These points are elaborated upon somewhat below.

Approximate expression& for lines of finite thickness

center strips were also derived by PeaseI0 following a

suggestion of Wheeler. Their results yield rigorous upper

and lower bounds for Characteristic Impedance, and an

approximate expression which lies between these bounds. 'The

results are best applicable to the low impedance range.

Pease and MinginsII have also derived a "universal" expression

which is a composite of simpler ones applicable only to
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special ranges of line dimensions. Their composite expression

yields the Characteristic Impedance to a high. degree of

accuracy, and is valid for a center conductor of arbitrary,

but rectangular, aspect ratio. Skiles and Higgins12 have

also developed an approximate procedure for the case of

arbitrary but rectangular aspect ratio; their method is

capable of arbitrarily high accuracy if the procedure is

carried out far enough.

Several rigorous solutions have also been derived for

lines w'.th center conductors of finite thickness. An

e~xpression due to Greenhil113 has long been in the literature,

but it is in implicit form and is not amenable to calculation.

Begovich has derived a rigorous result which is expressible

as the sum of a parallel plate term, a fringing capacity

term, and correction terms. He proceeded by breaking up the

cross-section into elementary regions, solving Laplace's

equation in each region" separately, and then matching the

solutions across the respective boundaries. The infinite

set of equations obtained thereby was then solved and the

solution case into the above-mentioned form. A rigorous

solution, obtained via conformal mapping procedures, has

also been derived by Snow. Although his result is in implicit

form, numerical results may readily be obtained from it.

His result has not been published, however, but remains in

16his unpublished notes. A recent solution,. due to Bates,



has also been derived by conformal mapping methods. rt is

also in implicit form, and readily yields numerical results.

B. Recommended Approach.

In the opinion of the writer, the solutions of Cohn

serve as the most practical expivssions available for the

Characteristic impedance of lines with center conductors

of finite thickness, since the expressions are simple in form

and are rather accurate (about 2% at worst). In addition,

Cohn's published curves7 are in very usefull form. In order

that the reader may utlterstand Cohn's derivation, it is

included in this paper. Cohn's derivation is dlizided into

two parts, namely (1) the low impedance range ad (2) the

hi.ýh impedance range. Each case will be discussed in

-eneral terms in the text in order to satisfy -he cabual

reader. If ridor is desired, the complete mathematical

analysis will be found in the Appendices. An Appendix

containing an abbreviated discussion of Theory of A Complex

Variable is included for the reader who may need a. short

review of complex variable theory before attempting to

understand the Characteristic .Ipedance derivation.

C. Derivation of Characteristic 3mpedance in the Lcw RLange.

The treatment of the low impedance range parallels

3 6that of Barrett and Begovich6 and proceeds as shown in Fig2 -1.

The actual line cross-section of Fig 2-la is regarded as composed

of a central parallel plate region with fringing capacity at
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the sides. A knowledge of this fringing capacity permits

the construction of the equivalent structure of Fig 2-1b,

which ic a parallel plate line of width D. The expression

for D in terms of the parameters of the line of Fig 2-la is

given in Appendix IV.

_ _1 t 7t

1 11-

(a) (b)

Fig 2-1 Treatment of the low Zo Range

The general development procedure has been described

in the above paragraph. Let us now consider Jt in some detail.

Stripline, like coaxial and transmission line operates.

in the TEM mode. This mode is characterized by the property

that the electromagnetic waves contain neither electric nor

miaetic fields in the direction of propagation. -ince

electric and magaetic field lines both lie entirely in the

transverse plane, these may be called transverse electro-

magnetic waves (abbreviated TEM.).

The above explanation of the TEM mode of propagation

will probably satisfy the casual reader but if more rigor
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ia desired Appendix II may be consulted.. This Appendix

contains a mathematical derivation of the TEN mode be-

ginning with such basic relations as the circuital law

of magnetism and Faraday's law and concludes with Laplace's

equation. 3ince Laplace's equation has a static solution,

we may conclude that the TEM mode is exactly a static

distribution aud analyze it as such. The equations for

Characteristic Impedance, velocity of propagation etc.

are therefore the same as these for any standard

transmission line. The well known expression for

Characteristic Impedance in Transmission line theory is:

z 0(2-1)

Where:
L equals inductance/unit length

and

C equals capacitance per unit length

The velocity of propagation of the priacipal mode is given

by

V.

LC (2-2)

Solving (2-1) and (2-2) simultaneously

I
Z0 vc= (2-3)

but v " -- 
(



where: p a-magnetic permeability (Equals 1 for air and
most dielectrics).

c - permittivity of the medium.

v - velocity in the medium with properties
p and e

and
c - the velocity of light

= 3 x 108 meters/sec

therefore:
Zo 0 (2-5)

3 x i.1080... - -

To find Z we must now develop an expression for C.

YZnowing this quantity we can also find attenuttion and

power handllng capabilities as will be seen later.

In the finding of the correct value of capacitance

to use in formula (2-5), it will be necessary to perform

a Schwarz-Christoffel mapp-inw in the complex plane. Such

a wapping requires a knowledge of Theory of a Complex

Variable for an understanding of the procedure. A short

review of complex varieble theory and the theory of the

Schwartz-Christoffel transformation is included as

Appendix III. Such a review should be sufficient for

the reader already somewhat familiar with this theory.

The reader who is not .familiar with complex variablea is

referred to the many excellent texts on the subject, of^h 17 ihfos8 19 "esrnh

which Chur hill, Ahlfors or Guillemin19 .ae best in the

author's opinion.
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Consider the cross-section of Stripline as shown

in Fig 2-2.

.P op '•

b c t.

FiG 2-2 Cross Section of "Stripline" used for

Capacitance Calculations

As can be seen by inspection, the capacity cf the

Stripline configuration is essentially that of two parallel

plate capacitors connected in parallel plus a correction for

frin'ging capacitance Cf'. The parallel plate capacitance for

Stripline is derived in Appendix IV. The result may be

used to compute Charact6ristic Impedance up to 25 ohms and is:
C * ~ l~i 8.842v (2-6

pp - x b -t (2,6)

where
w - Center ccnductor strip width-cm

b a Ground plane spacing - cm

t n Plate Thickness - cm

f en Dielectric Constant

Cppm Parallel Plate Capacitance - f/cm
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Above 25 ohms we must add a term for fringing capacitance

to C pp. The total capacitance per unit length of line is then:

Ctp - Cp + Cf' (2-7)

where I t (Fringing field capacitance in f/cm)

f f (w, ( n

C tp Total capacitance per unit length of line

Equation (2-6) then becomes:

C. x i01 8 * 8.842 erw + Cf') (2-8)
tp b-t

Inserting the results of equation (2-8) into equation f2-3)

there is obtained:

Z "- l Cf' (2-9)
6-r �l-/+b O-W5 r

Equation (2-9) is precisely Cohn's result and is in a

convenient working form.

Before equation (2-9) is of atV use to us, we must

find an expression for the fringing capacitance Cf' This

required expression is obtained through the use of a

Schwarz-Christoffel mapping in the complex plane. The

essential procedure is described in the introduction to this

section i.e. finding an equivalent Stripline structure

which takes into account fringing capacitance and can therefore

be treated as an ideal parallel plate capacitor. The author

has pexTormed this mapping to check the results given in the

literature.
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The results check those given by Cohn and can be

conveniently expressed in working form as:

Cf 0 r.0885 ( 1Pt/b) in ( -t/b +

- -t - in (., 2. -l) nM/cm (2-10)(1 - t/b)2

D. Determination of Characteristic Impedance in the High Range.

In the high impedance range, the strip width is small

compared to the ground plane spacing, as shown in Fig 2-3a,

and the approximation employed asstunes that the ground planes

are far away from the center strip. As a result, one can

employ a far field equivalence between the actual rectan~gulir

center conductor and a circular or a zero-thickness strip

center conductor, as indicated in Fig 2-3b. The insertion

of this equivalence into the known expressions for the

Characteristic Impedance of a round .conductor between 7,round

planes, or a stripline with a zero-thickness center conductor,

yields expressions simple in form for the high impedance

range. While only the. equivalence to a round conductor is

employed in Cohn's curves, the equivalence to a zero-t].ichness
8strip yields a result of high accuracy for very thin center

22strips. It has also been recognized by Pease that the

Characteristic Impedance in the high range of the line

possessing a rectangular center' conductor lies between that



of the lines with a flat center strip placed horizontally

and that with a similar strip placed vertically. The

situation is illustrated by Fig 2-3c, Since the Characteristic

Ermpedances Z 0 ' and Z 0 of Pig 2-3c are known, this recognition

mankes available upper and lower bounds on the result of interest.

(b)(o)

z'> Zo > z

(C)

Fig 2-3 Treatment of the high• ' range

Examination of the literature shows Cohn's results to be

the most widely accepted. As a result, the derivation

givern here will be essentially that of Cohn.

The Characteristic Impedance of a transmission line

consisting of a circular conductor of diameter d centered

between two parallel ground planes is well known. It was

derived by Frankel 23 in 1943 and am it. has stood the test

of time, its derivation will not be included here; only

the result will be stated. It is:
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Z _60 in. -• ohms (2-)

where the parameters are as shown in Fig 2-La. Fig 2-4b

is the familiar cross section of "StrillLine" which is

repeated here for convenience. As shorn in Fig 2-3 and

discussed in the beginning of this section, if "do is

t

Fia 2-4• Center Conductors of SwaV. Cross Section Yielding

Equivalent Characteristic Impedance

small compared to "b", we can find an equivalence between

round and rectangular cross sections via the Schwarz-

Christoffel Transformation and then use equation ('-11).

This mapping between rectangular and circular cross section

241has been performed by Plammer and is included as Appendix V.

The results are given in graphical form and are shown as

Fie 2-5. When P'ig 2-5 is used in conjunction with equation
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(2-i1), the accuracy increases as do0 0. However comparison

witlh a more precise analysis by Wholey and Eldred25 shows

equation (2-11) to be accurate to within one per cent for d0

as large as b/2.

E. Comparison with on Exact Case.

The accuracy of equation (2-9) and (2-11) may be

tested by comparing them to an exact solution given by
S~4

(Toerhettinger and Magius whIch is valid for t 0 0. Their

result is

z- 32 iK(k)
o K(k'

where K(k) and K(O') are complete elliptic integrals of

the first kind and where

k a sech A

k's tanh

Fig 2-. shows a comparison of equations (2-9), (2-11) and

(2-12). Th.e maximum error occurs at w/b m 0.35 where (2-9)

and (2-11) intersect and is only 1.2 per cent. At w/b N 0.2

and 0.5, the error is reduced to 0.4 per cent while for

lesser and greater vto, the error rapidly approaches zero.

Similar plots of (:2-9) and (2-11) have been made for

strips having t/b up to 0.25, and in all cases, the curves

tend to merge together at least as well as in Fig 2-6.
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As one would expect from a consideration of fringing-field

interaction, the intersection of the curves remains very

near the same value of w/(b-t) - 0.35. A study of flux

plots for t - 0 and t > 0 leads one to believe that the

error at the intersection point will be no greater in

the latter case than in the former, and very likely will

be smaller. Hence the proper use of (2-9) and (2-11) in

their assigned parameter ranges ic believed to result in

an error of no more than 1.2 per cent near w/(b-t) - 0.35,

and considerably less at other values of w./(b-t).

F. Graphical Presentation of Zo.

In Fig 2-7, a family of Z curves are plotted versus w/b
0

with t/b as parameter. The curve for t/b - 0 is exact, the

points having been computed from (2-12). The other curves

are computed from (2-9) and (2-11). Equation (2-9) was used

for w/(b-t) > 0.35 and (2-i) for w/(b-t) < 0.35. It is

seen that the effect of thickness on the characteristic

impedance is substantial, even for thicknesses )nly a few

per cent of the plate spacing.

G.. Conclusions.

Two simple formule.s and auxiliary curves are presented

for the characteristic impedance of the shielded stripline.

By means of these formulas, accuracy sufficient for any

engineering purpose is cobtainable for all strip widths and

for thicknesses up to at least a quarter of the plate spacing.

Fig 2-7 displays the characteristic impedance in a form that

should be particularly useful to the design engineer.
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H. Characteristic Impedance Measurement.

1. T .

Much time has been spent in the theoretical

development of expressions for the Characteristic Impedance

of Stripline. This investigation resulted in two equations.

The first applies when the condition b-1 > 0.35 i1 met and is

z - 9'5 ohms (2-9)

w /b .Cz)
rI:-t/b 0.0885 cr

The second equation applies when - < 0. 35 and 'rAs given asb-t

z 0 r hb ohms (2-11)
r

Let us ex.mine equations (2-9) and (2-11) to .see how

Characteristic Impedance may be measured in order to de-

termine tVie validity of the theoretical development. We

see that if samples of Striplinewere built using two double

clad boards, the thickness of the center strip (t) and the

distance between ground planes (b) would be fixed, as would

She dielectric constant and the fringing capacitances

(assuming the ground plane is at least eight times wider

than the center strip). The only variable is then the

atrip width (w).
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2. Hardware.

In line with this reasoning, a number of Stripline

samples were built having various strip vidths. The boards

were double clad with two ounce copper having an average thick-

ness of 2.7 mile. Since two of these boards are placed back-

to-back, the thickness of the center strip was 5.4 mils.

The lielectric material goes under the trade name of "Dilectro"

br "GB 112 T" and was made by Continental Diamond. Fiber Co.

It has a dielectric constant of 2.73 and has an average thiKck-

ness of 57 mile. Consideration of the cros3 section of

Stripline then shows that the distance between ground planes

is 119 mils. The strip width (w) was determined by using

the average of five readings made through the Lee of #4

measuring device accurate to 0.1 miol. The Cf' term is a

function only of t and b and can be determined from the

results of Appendix IV (i.e. Fig A4-7). Thus al.l the para-

meters in equation (2-9) are known. In equation (2-11),

the quantity do must be determined. Knowing w and t and

using Fig 2-5, do is easily found. The resulting Character-

istic Impedances for the various strip widths as calc•ulated

from equation (2-9) and (2-11) are shown In the secona

colum of Table 2-1 and as the broken line on Fig 2-9.
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3. Measurement Technique.

We now know what that Characteristic Impedance of

the Stripline samples should be. The question now is,

"How do we meazure it?" Consider equation (2-5),which was

ZQ Jr(2-5)

83 x 10 C

'Equation (2-5) has two unknowns, 4%e and the capacitance, C.r

The dielectric constant is given in most handbooks and for

GB 112 " is 2.73. Since the initial uses of StririLine will

be at 3 ;: it would be desirable to make Characteristic

Impedance measurements at that frequency.. However, to the

authors' knowledge, the best RP bridges have a cut off

:frequency of 100 me. It was therefore desirable to make the

rneasurements at a relatively low frequency and extrapolate

the answer to 3 kmc. Discussions between the author and

the Bureau of Standards indicated that the dielectric

constant is unchanged at frequencies below 20 kmc and perhaps

:0 kmc. Two bridges were obtained; A Model B 801 Wayne Kerr

V.H.F. Admittance Bridge usable in the frequency rante 1 to

.00 megacycles and a Model B 601 R. F. Impedance Bridge

usable in tho frequer,,- range 15 kilocycles to 5 megacycles.

The Model B 801 Bridge had an accuracy of + 2 per oent + 0.5 p#f

while the Model B 601 .has an accuracy of +. 1 per cent.

erhere seems to be some disagreement on this point (see Wild et al
"Handbook of Triplate Microwave Components". Sanders Assbciates aic.,
1956, page 134).
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J.*easurements were made on various components in the overlapping

frequency range. Agreement was found to be good. Further

experiment with the Model B 801 showed it to be inaccurate

att frequencies above 50 megacycles. Since the Model B 801

has a finer vernier scale, it was deciced to use it at a fre-

, uencfY of 5 megacycles and check the retults with the Model

E, 601.

~.. Source of Error.

Several difficulties were encountered. For the

lengths of Stripline uscd, narrow strip widths resulted in

low values of capacitances as can be seen by reference to

column five of Table 2-1. Since the accuracy Of the Vcdel

B 8o01 is + 2 percent + 0.5 4pf and the null was not deter-

minable to more than + 1 ppf, it can be seen that the read-

ing could be 1.5 ppf off quite easily. For large values of

capacitance (wide strips), this error is small, but it be-

comes signmificant for narrow strip width and ih believed to

account for at least a part of the deviation between theoreti-

cal and measured values of Characteristic Impedance. Other

sources of error arise from the fact that averages were.

used for t, b, w and the dielectric constant cr

5. Step-by-Step Measurement Procedure.

This test set up is shown In Fig 2-8.
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SOURCE BRIMG LIN STILNJUNCTION LINE 'OIT)UNCTIONS;LN JLINE.

Ir

545
•SCOPE

DETECrIOR

Fig 2-8 Test Set Up for Measurement of Stripline .Capacity

The oscillator and oscilloscope were allowed to warm up. The

bridgc was then balanced with no load attached. The short

piece of coaxial .!ble and the coaxial cable to Stripline

junction having a short section of Stri.pline attached were

then attached to the bridge and a measurement made. Finally

the lenGth of Stripline to be measured was attached and a

measuremcnt nade. The difference between the two measure-

meats was the capacity of the section of S'4ripline. Knowing

the length of the measured section, the per unit capacitance

was obtained. The Characteristic Impedance was then cal-

culated through the use of equation (2-5). The results

are expressed in tabular form as Table 2-1 and in graphical

form as Fig 2-9.



TABLE 2-1

MEASUREMENT. OF STRIPLINE CHARACTERISTIC IMPEDANCE

CALCULATED CALCULATED MEASURED MEASURED

STRIP WIDTH CHARACTERISTIC CAPACITANCE per CAPACITANCE per CHARACTERISTIC
IMPEDANCE UNTLNT

(INCHES) IMPA UNIT LENGTH ýENGTH IMPEDANCE
(OHMS) i.L1 cm (ohms)

0.0121 98.5 0.553o 0.558 101.5
o. o0,:8 79.4 o.693 o.698 79.8

.00279 74.5 0.734 0.744 T:., 0

0.0293 73.5 0.749 0.743 74.4

0.0365 71.0 0.776 0.772 71.0
o. 0•b 56 62.1 0.885 O. 900 61.0
O. 00471 61.2 0.902 0. 03, 62.7

0.0516 58.6 o.938 0.!),2,2 60.0

0.12o4 36.2 1.50 ..51 3. 2

0.1441 3'.0 1.71 1.78 30.9
o.1462 31.7 1.74 1.88 29.2

0.2453 20.9 2.64 2.47 22.4

0.2947 18.4 2.94 2.74 20.1

0.3461 16.o 3.41 3.25 17.0
0.3974 14.5 3.76 3.69 14.9
0.4955 11.7 4.71 4.54 12.1

0.5976 9.9 5.54 5.39 10.2

0.7954 7.6 6.34 6.76 8.1
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APPENDIX

SIZ.E AND COST CAlCUlATIONS FOR A
1000 LOGICAL ELMNT COMPUTER

A. Wtavegulde Construction.

1. Size

Logical operations in waveguide may be performed

through the use of a Magic Tee.. The dimensions of a

co=Dercially available 3 kmc Magic Tee are shown in Fig Al-I.

Fig Al-I A 3 kmc Magic Tee

To allow for terminations and space occupied by

interconnecting cables, assume each Magic Tee occupies 1 cu. ft.

One Thousand Magic Tee's would therefore occupy 1000 cu. ft.

Al
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SIZE AND COST CALCULATIONS FOR A
1000 LOGICAL ELEENT COMPUTER

A. Waveluide Construction.

1. Size

Logical operations in vaveguide may be performed

through the use of a ýa.ic Tee. The dimenaions of a

commercially available 3 kmc Magic Tee are shown in Fig Al-I.

Fig Al-l A 3 kmc Magic Tee

To allow for terminations and space occupied by

interconnecting cables, •ssume each Magic Tee occupies 1 cu. ft.

One Thousand Magic Tee's would" therefore occupy 1000 cu. ft.

Al
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2. Cost

The ',-Ltalog retail price of a 3 kme Magic Tee

is $160. The cost of 1000 Magic Tee's would therefore be

:160, 000.

B. Stripline Construction.

1. Size

Logicial operations in Stripline may be performed

through the use of Hybrid Rings. The theory of the Hybrid

Ring dictates that its minimum circumference be 1.5 X, where Xg
9 9

is the wavelength in Stripline. The configuration of a

Hybrid Ring is shown as Fig A!-2.

_ - T

*1

5 6

Zo - - 4 ' I ....

3 •2

2Ze 4 Zo.

Fig Al-2 Configuration uf a Hybrid Ring

The free space wavelength at 3 kmc may be found from

the relation 3 x108

310c 1(09-i)3 x 10
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Stripline wavelength is related to free space wavelength

by: -- X(Al-2)

where e r is the relative permitivity of the dielectric.

Present day Stripline has a Glass Teflon dielectric whose

relative permitivity is .2.82. The wavelength in Stripline

is then:

Xt X 1_0 cm "5.95 cm

The circumference of the Hybrid Ring is then:

C -1.5 ). - 1.5 x 5.95 . 8.93 cm (A..-3)

This circuiference corresponds to a diameter of

D --•- -8.93 cm e2.8 cm 1.12 in (A.-4)

This stray coupling between rings must be conside:ed

next. it has been noted in literature that "separation by

approximately the ground plane spacing is sufficient to achieve

negligible coupling between adjacent lines.' Ppplication of

this statement to a ground plane spacing of 1/8 inch leads

to the conclusion that the adjacent Hybrid Ring should be at

least 1/4 inch apart. For our approximation let each Hybrid

Ring be centered on a square of Stripline 1 1/2 inchea in

a side. Now suppose the 1000 logical element computer is
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constructed of 100 sheets -f Stripline with 10 Hybrid

Rings per sheet. Each sheet will be 15 inches on a side

and 1/8 inch thick. A stack of 100 sheets would therefore

occupy about 2 cu. ft.

S. Cost.

The cost of producing a 1000 logical element

Stripline computer can be broken down as follows:

200 Double Clad Teflon Fiberglass .boards $4,000.00

Developer, Sensitizer, and Laquer .$ 100.00

Labor, Art Work and negative $ 500.00

Drilling and shearing $1,000.00

$l4,700.00

It must be remembered that Stripline consists of two

Double Clad boards sandwiched t:,gether. Therefore 200

double clad boards are required for 100 Stripline components.



APPENDIX II

A DISCUSSION OF THE TEM MODE

___ __ __ __ __ __20

A. 1hxwell's First Law.

The first set of equations is based on the circuital

law of magnetism which in equation form and in rationalized

units is: f H "dl- I (A2-1)

where H. is the maGnetic field intensity in amperes per meter

and .. is the displacement or distance along the closed path

which encircles the current. In thi4 derivation, the current

I is expressed it amperes and is equal to the sum of con-

duction and displacement currents, and the displacement 1

is expressed in meters. (It is understood that in general

H is a function of both time and space):

Y

jHy

,(EY)

dy

-g P1

Eu H1 _

dz^P

H
(E1)

a f

iig A2-1 Element .Of volume in the electromagetic field;
Cartesian Coordinates.

A5



* A6

If all space is assumed to be filled with electric

currents and the aesociated magnetic fields, it is a

relatively simple matter to establish the relationships

between the space variations in H arid the current l.ensities

which exist at any point in space. This set of relation-

3hips is sometimes referred t> as Maxwell's first law.

Let Fig A2-1 represent an elewental section of space filled

with electric and magnetic fields, and with the associated

currcnts. Also p , p and p represent the current densities

in the Y, , nd z directions respectively. The magnetic-

field intensities along the x, y and z axis respectively will
be represented by H-, H and H . The general principle

involved in the establishment of the first equation to be

considered can be scocn by tre2ating only one surface of the

element of volume. Assume that the area ocbao is selected.

Through this area the total current is

I - p dydz -p dA (A2-2)

Around the boundary of this surface there exist magnetic

intensity or H vectors, two of which are indicated in Fig

A2-1, namely H along the 0y path and H along the dz path.
y z

The magnetic putential drops around the ocbao loop

taken individually are:
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dUl(along oc) w lydy

dU2 (along cb) o XHdz + dy -H dz + - dydz

r. (H ydy) 1
dU3 (along b - i ÷ dz J -lyiY - _ z d,

dU(along o) " Hzdz

In arriving at these expressions it is of course recognized

that dz is not a function of y and neither i. dy a function

of z. The four magnetic potentiiL drops are to be taken in

the ccbao direction around the loop since + I establishesx

H vectors in this direction around the loop in accordance

with the rIght-hand rule.

From the circuital law of magnetism (equation A2-1),

it is plain that

f Hdl dU1 + dU2 + dU3  dU1

or •H .zo

In this equation p1 the current density existing over

the dydz face and directed along the x axis is made up of
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two parts. One is the conduction current density gE.' where

g is the specific conductance per unit volume and Ex is the

x component of the electric-field intensity in volts per

meter. The other is the displacement current density,

X where Dx is the electric flux density. Since D - • E,

where e is the permittivity of the medium; the total current

density may be written,

Px gE + a OX

Equation (A2-4) now becomes

6Yi 6z atx

In an exactly similar manner two other equations, for the

remaining two coordinate directions, may be derived. They are

_'x Z . gE * W-6)
az a x • t

and -' - - m 99 + 6 -~ (A2-7).

These three equations together make up the expression of one

of Mxwell's laws. They express three of the necessary relations

which must always exist between N and E in the electromagnetic

field.
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B. M•a.xell's Second Law.

Equations (A2-5), (A2-6) and (A2-7) are based on the

circuital law of magnetism. Another set of three equations

based on Faraday's law will now be derived. Again Fig A2-1

will be u.;d with the p's replaced by flux densities B and

with the H's giving place to corresponding electric

intensities (E's) expressed in volts per meter.

Consider the area ocbao and assume that the flux density

B is decreasing so that its derivative with respect to tinex
is negative. Also assume for the moment that the boundaries

of the area are fine wires, with practically infinite resistance

if we wish, in which emf's are induced by the time rate of

chanee of B . The decrease of flux through the area will in-x

duce a voltage e in the wire boundary which will be in the

sense ocba.o. The magnitude of this voltage is given by

Faraday'a law to be

e dl d# x 23(28
-~dydz

where E is the electric intensity vector

1 is the displacement directed along the periphery

of loop oabco

4x isthe magnetic ,flux crossing the dydz surface

B xis the flux density at the dydz surface
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The minus sign accounts for the fact that the voltage

iziduced in the ocbao loop is measured by the time rate of

decrease of magnetic flux through the loop.

The electric potential differences around the closed

path ocbao (taken in the right-hand screw direction around

+Bx) are individually

dVl(along oc) a Eydy

4~E dz) E
dv2(along cb) m EzdZ + dy Ezdz + --R dydz

3(alonecba) L z

dv 3(aonb•)m"EydY+ az J -Ey -4(1 Edz

so) z
dV4(alo~g ao) - - EdzZ

From equation (A2-8) it is seen that

e dv,. + dv2 +dv 3 ÷ v-.-- •)•"" m - -vt 3•ydz7 '

Recognizing that B -- iA HA
Ex

y a z at (A2-lo)

If the sawe procedure is applied to faces dxdz and to dxdy

respectively, we find that:
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Ex 8•z
- - - w-z (A2-11)a z TX b t

and

- -2 - (A2-12)x 8y •t

Equations (A2-5) through (A2-7) and (A2-1O) throuh (A2-12)

are generalized solutions to Maxwell's first two laws in

Cartesian coordinates. We are interested primarily in the

steady state sinusoidal solution. Since the H's and E's of

the above equations are functions of time and space, we may

therefore make the substitutions:

Ex E - •- 'Mt - rz) (A2-13)x

E y- f e(J Wt - rz) (A2-14)y y

E .- " (jzt-rz) (A2-15)z z

and

H. m - ,(o-t - rz) (A2-l6)
x x

H - (x H rf) (A2-16)y y

-1 60 (Wt -rz)(A-)

where the H's and M are functions of space only, r is the

propagation constant and z is the assumed directipn of

propagation.
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If equations (A2-13) - (A2-18) are substituted in

equations (A2-5) thru (A2-7) and (A2-10) thru (A2.12),

tVe following relations are obtained (ausuming - 0):

E y j ,A rx(A2-19)'

"T"-x (A2-20)

y -JX 1 (A2-21)•x 5y

-z + H - (ac E (A2-22)yy

_H -- j cwc TE (A2-23)

- - (awc E z (A2-24~)•x •y

Equations (A2-19) - (A2-24) may be solved aimultaneously for

the Me and Urs. The results are:
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x 2 + k1
2  a x

_ + zVyr2..kl2 ii _,• (A2-26)

2 )
r + k xy1

z

2 '

where kl= co 2 p

C. a•xwell's Third Law. 2 1

Consider a small rectangular prism with its edges parallel

to three coordinate axis X, y and Z, as in Fig A2-2. The

limiting case is to be considere. in which the prigp j@ so

small that its edges are dx, dy and dz in length. Fig A2-2

shows a side view of this prism, with the plane of the figure

parallel to the X-Y plane. We are looking upon a side vith

area dx dy. fEch end has are& dy-d' di and the top and bottom

dx dz.
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y
dz--

ddy

dz

(a) (b) (C)

Fig A2-2 Derivation of Divergence

This small prisme.tic voluwe is located in a vector

field which, for convenience, we will call D. Flux lines

of this field pass through the prism, entering through one

surface and leaving through another. We wish to find how

many lines, if any, originate within the volume.

Peferring to Fig A2-2; the number of flux lines enter-

inc the left-hand side of the prism is equal to the trea of

the left-hand surface times the normal component of field

strength, which is Dx dy az. The number leaving the right-

hand surface is different if Dx changes in the distance dx.

If D is changing at the rate' D x as one passes from left

to right, the amount of change in the distance dx is

SDx dx. Hence the number of flux lines'leaving the right-

ad r e (D + DX dx) dy dz. Subtracting, thehnsufc is(x+
xx

number of lines that leave the right-hand side in excess of

the number that enter the left-hand side is Dx dx dy dz.
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Similarly, the number of lines leaving the top of the prism

in excess of those entering the bottom is 6 dy dx dz;

and the number leaving the front surface is greater than the

number entering the back by z dz dx dy.

Combining these quantities, the total number of flu:;

lines leaving the volume that do not enter it is

-Z + _Z + z. )dx dy dz (A2-29)
6 X y 6z

But divergence is defined as the number of flux lines

originating per unit volume; so, if the volume of the prism

is dv,

' - D z dxdy dz( 3 0 )

dv •y 63 dv

Since the volume of the prism dv is equal to dx dy dz, it

follows that

6 D D •D

V D-- - + y + ( A2-31)X •y •z

Now consider that space is divided into an unlimited

number of small cells of volume dv, as in Fig A2-2. The

number of flux lines leaving one such cell, marked "a" in

the figure, is greater than the number entering that -ell by

7 * D dv. The number originating within the adjoining cell

"b" is likewise the divergence at that location times the



S~Al6

volume of that cell. The number of lines emanating frm

the two cells together, conside:ed as a unit, is the sum

of the two products of divergence and volume. Adding more

cells to the group thus begun, the number of lines of flux

issuing from any volume is greater than the number entering

that volume by the summation (or integral) of all the indi-

vidual products of divergence and volume. Hence,

Excess outward flux -f V " D dv - (A2-32)

The flux of the vector field D passing through an area a is

defined as

JD dt (AW-33)

and from this it follows that the net flux passing outward

through any closed surface (the excess of the outward flux

over the inward flux) is found by iategrating over the whole

closed surface:

D • da (A2-34i)

Now equation (A2-34) and equation (A2-32) are different

expressions for the same quantity of flux and hence may be

equated, giving
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fD damf . D dv-Q (A2-35)

In any region in which there is no electric charge, so

P f(V • D) dv O, and hence the V • D O (A2-36)

D. Ioaxwell's Fourth Law.

A basic experiment in the theory of magnetic fields

leads to the equation

J B ' da a 0 (A2-37)

Applying Gauss' theorem tc this experimental result, .t

appears that the magnetic field has no divergence under any

circumstances. i.e.

V B 0 (A2-38)-

The discussion of Maxwell's first and second laws is

20essentially that of Ware and Reed, while the discussion of

the third and fourth laius follow fkilling closely.

E. The Wave Equations Governing Electric and Magnetic

Phenomena in Charge-Free Dielectric.

We now wish to operate ou Maxwell's equations to obtain

the wave equations. Consider a dielectric containing no charges
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and with zero conductivity, so that there are no conduction

currents in the dielectric. Since these are the conditions

Uiplied in the previous development of Maxwell's laws, the

final equations can Just be reproduced for convenience.

They are:

SE (A2-5) tV.1u (A2-7)Vx H-. -

V x E (A2-3o) thz.u (Ak-1-2)

V -D 0 (A2-36)

. B 0 o(A2-38)

It 4111 be observed that the first two equations have been

written in their vector $orm rather than in the expanded

Carte.•i•n coordinate form used previously. This was done

siwply Por convenience in developing the wave equations. The

reader unfamiliar with vector operations will find an adequate

21
discussion in Skilling.

In order to realize the wave equations, let us first

take the curl of (A2-10) thru (A2-12)
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VxVXEM P x H (A-9

Now there is an identity in vector analysis which states:

VxVxA -7A +V( V 7A) (A2-40)

Substituting (A2-40) into (A2-39)

But by equation (A2-36)

7 • D w 7 E -0 (A2-36)

Inserting (A2-36) into (A2-41), there is obtained

. 2. E M (A-02)

A little reflection reveals that E and H are continuous

functions of time and space and that their partial

derivatives may be taken in any order. Utilizing this

result, equi~tion (A2-42) can be put In the form

7 E MJ V~ (x H (A2-43)
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But equation (A2-5) thru (A2-7) states

V x H ez-j W-5)thru(A2-7)

Inserting this result in (A2-44), we get

7 -2 Ce (A2,-44)

or

at2E

This is the general form of the wave equation. A wave

equation in terms of H can also be olitained simply by

starting with equations (A2-5) thru (A2-7) and proceeding

in precisely the same manner as in the electric field case.

The result is:

•2

V 2 H 2 c H (A2-46)

Again we assumed a sinusoidal steady state solution, so

that the E's and H's of equations (A2-45) and (A2-46) are

those of equations (A2-13) thru (A2-18). Merefore for

sinusoidal variations equation (A2-45) may be written as:

V 2 jC -W 2 A (A2-47)-

and (A2-46) as:.

where E and H are functions of time ard space.
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Now as was reed in equations (A2-25) thru (A2-28)

let k, W W2 JC. Making this substitutiQn, equation

(P.2-47) becomes:

72 Em k 1 (A.2-49)

and relation (A2-48) becomes:

1 k 1 -(W-50)

Now Let us look at the expanded form of equations (A2-49)

)2E ~ 2E 62
S+ x + -- a a -k1c 211(2-)

x2 2 2 1 k

2E 6 y a 2E
+ _ _z +* . k2 2 • 2 z 2

---- z z "kl 2E

- - + -. 1 + 1 -ka x •y 2 z2

Equation (A23-50) is similar- in form. It should be obvious

by inspection that (A2-49) can be split into two parts as

fcllowe:

i~E V~+ a2E . 4 2 E (A.2-52)

Assuming our sinusoidal variation I t(•"rz):

2 r2 (A2-33)
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Substituting (A2-53) into (A2-52), we obtai.n

2  E . (r 2 + k12 ) B (A2-54)

Equation (A2-50) is operated in a similar manner to obtain

7 2 H (-r2 + k 2 ) H (A2-55)

The mode of propagation-imder discussion is the TEA

mode. This mode is characterized by the property that the

E and H fields in the direction of propagation is zero i.e.

if Z is the direction of propagation, Ez and Hz are zero.

The general relations between wave components as expressed

by equationa (A2-25) thru (A2-2a) show that with Ez end Hz

zero, then all other components must of necessity also be

zero, unless TV + k12 is at the same time equal to zero.

.1 Thus, a transverse electromagnetic wave must satisfy the

condition

2 + k2= 0 (A2-56)

or

if equation (A2-56) is inserted in equations (A2-54) and

(A2-55), then is obtained
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V~xyE 0(A2-57)

and

V2 ~~u *Y.1.(A2-58)

But relations (A2-57) and (A2-58) are Laplace's equations

for E and H in the transverse plane. Since E , and H arez z

zero, the field is transverse. The solutions for Laplace's

equation are electric and magnetic fields under static conditions.

Therefore we may conclude that the TEM mode is exactly a static

distribution and analyze it as such. The equations for Zo,

velocity iai the medium, etc. are the same as those for any

standard transmission line.
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ELIMVS OF COMPLEX VARIABLE THEORY AID A

DISCUSSION OF THE SCHWARZ-CHRISTOFFE TRANSFORMJTION

A. Elements of Complex Variable Theory.

1. The Cauchy-Riemann equations.

We are aware that a complex plane exists that

has a real-and complex axis. We call this complex plane

the Z plane. Any point in this plane say 73e identified by

the coordinates:

z a x + jy (A3-1)

We may fuifther define the W plane,

W = f (Z) u + jv (A3-2)

vhere: u is the real part of f (Z)

and v is the imaginary part.

Fig A3-1 A and B illustrate the Z and W planes.

A24
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J Y jV

A B

Z plane W plane

Fig A3-1 Illustration of Z and W Planes

Ti determine what conditions f (Z) must satisfy to fulfill

the above relations, let us examine the derivitiveý

d-IA; "limit W (.A3-3)
6z-+o AZ

In order for the limit (A3-3) to be valid, Az must be able

to approach zero from any diroction. Let us write

. du + J dv (A3-4)
dz dx + Jdy

Remembering that

u a-eal part of f (Z)

we may write:



. •A26

du 6 dx+ dy (A3-5)

Also v - Imaginary part of f (Z), so

dv- 3- dx + d (A3-6)

Sub3tituting (A3-5) and (A3-6) into (A3-4), there is obtained:

o+j j T) ++ (A3-7)

T~in(~ 3 ~' d

Inspection of (A3-7) shows that the direction of dz is determined

by dy/dx. If (A3-7) is to ký independent of 4irection, certain

conditions must be satisfied. Dividing numerator and denominator

of (Aý-7) by

. Qu ,-46V)
J , (A3-8)

Now let:

1r TX-) (A3-9)
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Substituting (A3-9) into (A3-8):

dW

dz 1÷ + j (A3-10)

Equation (A3-1O) is obviously independent of direction and

therefore meets oux- criterion. The restriction on. u and v

may be Gotten from the equation (A3-9) which may be written as:

6u C•v 6v + u 6A31
+ j n- -W-(A3-11)

Now in order for (A3-11) to be true the Real parts must be

equal and the Imaginary parts must be equal; i e ,

au av

- (A3-12)

and

au - v (A3-13)

Equations (A3-12) and(A3-13) are known as the Cauchy-Riemann

equations. Only those functions w a U +j v which satisfy

thr, equations can be called functions of a complex variable.

Such functions are analytic functions i.e. they have a

derivative everywhere within a arbitrarily small region In

the vicinity of some point.
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2. Conformal Mtpping.

Conformal mapping applies only to analytic functions.

Since we now have a mathematical relationship between the Z and

planes, it is possible to map the points of z on the Z plane

and the corresponding (or imwae) points on the W - F (Z) plane.

If to each point there corresponds only one point w, the

function W - F (Z) is said to be single valued.

Now let us see what is meant by the word "conformal".

In Fig A3-2(a) let the element of distance pp' in the Z plane

represent dz. Then there will be an image distance dw repre-

sented by qq' in the W plane. Now dw may be written as:

dz q'

(A) Z Plane (B) W Plane

Fig A3-2 Conformal Mapping in the .Complex Domain.

dvw - Z) dz (A3-14)
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dWNow - is complex ani may be written as:

dw a z 40 (A3-i5)

where

and

0 a argument (a.)

Substituting (A3-15) into (A3-14), there is obtained:

dw = (aej*) dz (A3-16)

Wc thercfore find that an element dw can be obtained from

the corresponding elermnt dz by mult.iplying its lengzh by

"a"and rotating it through an angle $. It therefore

follows that any element of axea in the Z plane is represented

in the W plane by an element r J' area that has the same form

as the original element but whose linear dimensions are "a"

times as great and whose orientation is obtained by turning

the original element through an angle *0. Because angles are

preserved (lines at right angles to each other in the Z plane

remain at right angles in the W plane), the transformation

is called "conformal",
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B. The Schwarz-Christoffel Transformation.

An extremely useful mapping function, of considerable

generality in its abilib to meet various geometrical config-

urations, is given by the so-called Schwarz-Christoffel foriula,

which reads

w(z) - M J ('-z) ( ( 8-z) 2 " ( 8-z) Pn do +1N (A3-17)
.0

Here 6 is a running variable in the Z-plane, zI, z2 , . • . zn

are n finite points on the real axis, numberad in such an

order that

Z1  < z2  < ... < z. (A3-18)

and the quantities p' P2 .o. . . p appearing in the

exponents are any set of positive or negative real numbers.

The constants M and N may have complex values, with the

possibility that N be z -o, but M must, of course, have a

non-zero value. The lower limit z of the inteural is an

arbitrary point in the upper half plane. It may be chosen

equal .o zero, or equal to one of the points z, .... zn.

The independent variable for the mapping function w(z) is the

upper limit of " integral. For this reason the derivative

of the function is given by

This development follows that of Guillemin as given in

"Mathematics of Circuit Analysisl, pp 380-384.
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dw "91 "P2 .. .. "iA z n)
- M (Z-Z 1 ) • (z-z 2 ) (Z-Zn) (A3-19)

a s may be seen from the fact that if one has

w(z) - fz f(b) db (A3-20)

the usual definition for the derivative

dw [w(z+Az)-w(Z)
d a z -+0 LZ

yields

w(z + A Z) - W(z) + Az f(b) dO (A3-22)

Since A z is a small displacement (becoming zero in the limit),

one may say that for the integration in equation (A3-22) the

fuiction f(b) is essentially constant and equal to the value

f(z). It is awisamed, of course, that the function f(5) is

continuous in the vicinity of the point 8=z, which is a

recognized condition for the existence of the derivative in

the' first place. With f(b) equal to the constant value f(z),

it may be placed in front of the integral sign, and (A3-22)

yields

W(z+AZ) -v(z) f(Z) d8 f(z) A z (A3-23)

the approximation becoming exact in the limit Az-*O.

Completing the limit, one finds, therefore, that

dw
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The essential character of the function v(z) may now be.

recognized from a study of the behavior of the derivative

(A3-19) in the vicinity of the point z - zv. The first step

in this direction is to represent the factor (z - zv) in the

polar form as illustrated in Fig A3-3. This representation

reads

(Z - zv) u i z-zv Cj (Dv + 2g k) (A3-25)

in which k is an integer.

Then

"_11V 1 -jt J(gv - v + 23 k I v)(Z - Zv)P .I Z'Zv i'W, -26)

Since the quanti-y Av is not necessarily an inte.ger, the right-

hand side of equation (A3-26) may'have many different values

for different integer values of k.

z-plone

z

2V

Fig A3-3 Representation of (Z--v) in polar

form in the study of dv/dz.
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In order to remove this multivaluedness of the factor (Z-Z,

it is specified at the outset that k shell assume only the

value zero. This specification is equivalent: to stating that

the funct'ion dw/dz is to be studied on only onc of the many

leaves of its Riemann surface, namely, on that one which

co--responds to k - 0 '.n (A3-26), A typical factor in (A3-19)

then becomes

(z - Z- Zv - (A3-27)

an-d if the point z is allowed to lie only in the upper

half plane or on the real axis of the Z-plane, it is clear

from Fig A3-3 that

0 .< 0 (A3-28)

When the polar forms

M I MIe (A3-29)

and

d w el, [ ] ' Kll7" Ilnn

(A3-30)

are iLtroducedp it follows that
e Gm a - •1%' - •'22 . . . • (A3-31)

W-1
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It is now'assumed that the variable z in the function (A3-19)
is re stricted to real values only; that is, the variable

point z is thought.of as moving along the real axis from

- C, to w, the only deviation from this behavior occuring wherever

the variable point z encounters one of the critical points zv.

Z- plant

z z z z z z

Fig A3-4' The .path along which dw/dz is studied

in the Schwartz-Christoffel transformation

There it makes a slight detour around the critical point

instead of passing directly through it. These detouak, may

be visualized as having the form of vanishingly small semi-

circular arcs lying in the upper half plane, an shown in Fig A3.4.

As the point z traverses a small semicircular are in the vicinity

of the point zv, the angle V' changes from the value g to zero,
vV

whereas the angles of the remaining factors do not change at

all because of the assumed vanishingly small radius of the

semicircular detour. Hende for th1e range

3v.I < Z < Zv ' 1 (A3-32)
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one has

•i % ... " -i" ,,u.>oO

(A3-33)

v+1 v+2n

and& according to (A3-31)

a- (4 v+ 1v l. e ) v + * - (+l v. .. +1n ) (nKI-3).)

Throughout the range (A3-32), the angle 0 is, therefore, in-

creased by the amount

AO 0~ P (A.3-35)

the important feature being that this increment occurs only

as the point z traverses the small semicircular arc. In

other words, as the point z moves along the real axis, the

anrel e remains constant as z proceeds from one of the

critical points to the next, receiving a sudden increment

A 0 a Py x only as z passes directly over the critical point zVI

Acccrding to the discussion of conformal mapping, it

is recognized that the map of the function v(z) in the W-

plane, corresponding to the real axis ip the Z-plane, consists

of a succession of straight-line segments between the points

wl, w2 ,....corresponding respectively to zlz 2 0*..,#the angular

If 4v is negative, the inequalities are reversed.
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directions of two consecutive segments confluent in the

point wv differing by pv%. That is, the map in the W-

plane of the function (A3-17); cor.'responding to the real

axis in the Z-plane, traversed from -a to a, has the

general character shown in Fig A3-5. This result follows

from tho fact that the angle of dw/dz equals the diffcrence

between the angles of the increments dw and dz, and since the

angle of the latter remains zero as the point z moves along

the real axis, the angle of dw/dz must equal that of dw.

W-Pilne

W,~ 1

Fig A3-5 The map in the V-plane of -the real axis

in the Z-ple~ne shown in Fig A3-4

This angle, however, is shown to remain constpnt ex.ept when

z piasses over one of the c;ritical qwmUaat$es sv. -At the

corresponding points wv then, the direction of the increment

dw suddenly changes by the amount pV9.
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The plot in the W-plane corresponding to the real

axis in the Z-plane is thus seen to be a polygon with the

points wI .... w as its vertexes. If

+ 4 ....+ n 2 (A3-36)

the sumof the increments A 0 at the n vertexes Wl..wn

equals 2 i. W6 may relate the exterior angles to the

interio)r angles by the relation

Cv r " v (A3-37)

or

V . (A3-38)'

a\6

\

\a

a

Fig A3-6 Relation-of'ibterior to exterior anglesC
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Substituting this result into equation (A3-19), there is

obtained:

a -

-U M (2;-z 1 ) g (Z-z3) A - .. (Z-z.n) - (A3-39)

C. Tne Inverse Function.

Suppose ie are interested in going from the W to the

Z plane via the Schwarz-Christoffel Transformation. We must

examine the inverse function dz/dw to do this. It was

previously stated that

w - faz) - u (x,y) + jv (x,y) (A3-40)

We may invert

z - O(w) - x (u,v) + jy (uv) (A3-41)

where a I to 1 relationship exists between z and w.

Let us consider the following relations:

ax ax
dx - du 4 dv (A3-42)

dy du + dv (A3-43)

Equations (A3-42) and A3-43) are the inverse of equations

(A3-5) and (A3-6) which are repeated here for convenience.
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du- +-adx u d3. (A3-5)

6v 2ýv
dv- x + F dy (A3-6)

We have for the determinant of (A3-5) and (A3-6)

D. w FA-44)

But the Cauchy Riemanf equations state

FX (A3-12)

and

Y X=-r (A3-13)

SubstitutinG (A3-12) and (A3-13)-into (A3-44) we obtain:

D ( + * (A3-45)

Now it was previously stated that

f(z) = u + Jv (A3-2)

Hence

dw ( du + J dv (A3-46)
dz " dx + j dy

Let us reexamine equation (A3-7). This relation was
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dw (au/!x ÷+lJ.V/') + (641•Y + J ,-/k) dy/.x-
d-z " 1 + j dy/dx (A3-7)

We have shown in our earlier discussion that if a function

is analytic, the value of the derivative is independent of

the anGle of the increment dz - dx + dy. If this angle is

zero, dy is zero.

Lctting dy equal zero in (A3-7)

dw " + j ýv (A3-47)

Now apply the Caucy-Reimann conditions.

(Equationa (A3-12) and (A3-13) to equation (A3-47)). The

result Ls:

dw ý vaý ~ (A3-4~8)

Recalling equations (A3-45)

D =+ (A3-45)

Comparing equations (A3-45) and (A3-48) and remeobering the

definition of the aosolute value, *e see that:

Dm f, (z)l * w (A3-49)

We previously made the statement that: the following

relations were inverse.
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du T- ix+ dy (A3-5)

dv= T -x + zix+ dy (A3-6)

and

dx =du + dv

dy- du + dv(A-2

If these relations truly are inverse, then their matricies

must be inverse; that is

6- ax &i 2ýu -1

- (A3-50)

v~

We remember from the determinant theory of inverse matricies

that

a J k. (A3-kI)
D

Where:

ajk "is the element belorging to the jth row
and kth column

Ak is the minor of the kth row and Jth column

and

D is the value of determinant under consideration
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In order for (A3-51) to hold, the relations between the

matricies are:

8x 1 •v (A3-52)

3x ý u
(A3-53)

1ou (A3-55)

Now

dz dx + j dy
aw du j dv(A3-56)dw du4@J dV

Inserting dx and dy as given by (A3W42) and (A3-43)

dz (&c~udu4 + x/cv dy) +. j (ay/au duG ay/av dv) (A3-57).dw du + J dv

Divide top and bottom of (A3-57) by du

dz - (•xI/u + ýx!2v dvldu) + j.(W/u + B y/@v dSv/du) (A3,)

dw 1 +.j dv/du

Rearranging, (A3-58) becomes
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dz 1 4;. j y/v)d/d (3 9

Since dr./dw must be independent of the increvient of .

*dw ndu + j dv,

if the angle equals zero (i~e. j v. 0).

Then:

dz
__ i (ax/C)U + J. by/au) WA-66)

But from WA-52)

ax I ~ (A3-52)

and from (A3-54+)

(A3-54&)

Substituting~ (A3-52) and (A3-54) into (A3-60) we obta2.n

dw D*(A-)

Multiply top and bottom of (A3461) by

givitvr

(A3-62)

D O(v/ay + j wftx)
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But equation (A3-45) stated

D + -(A3-45)

Substituting (A3-45) into (A3-62)

dz1
dw v /a (A3-63)

One of the Cauchy conditions states:

v ýu (A3-12)

Substituting (A3-32) into (A3-63), there Is obtained

dz 1
dv -~ufx+J~f~c(A3_64)

Equation (A3-47) stated that

d-- a + R (A3-47)

Inserting (A3-47). into (A3-64), the desired result is

obtained.

dz 1
f rw _d_ v.- 7dz A-Y
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The inverse function therefore has a derivative that

is the Inverse of the given function. We may therefore map

a function from the W to the Z plane, or from the Z to the W

plane. The Schwarz-Christoffel transformation from the W to

the Z plane has already been written as equation (A3-39.).

The equation from the Z to tb,- W plane is the inverse and.

may be written:

aadz _ v- -l a.2)- -1..VN •-
1 )•" (A3-66)

where:

M is a complex constant

uI..un are the image points of the corresponding z's

in the W plane

aI..a are the interior angles of the polygon.
n

D. Succcssive Transformations;.

In solving two dimensional potential problems, it is

frequently convenient to use successive transformations.

Let W a F1 (zI) (A3-67)

and

zl. F2 (z) (A3-68)

By elimination of z, between (A3-67) and (A3-68) we obtain

W- F3(z) (A3-69)
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The relation (A3-68) expresses a transformation from the

Z plane into the -Z I plane, while (A3-67) expresses a further

transformation from the Z1 plane into the W plane.

Therefore the final transformation (A3-69) may be regarded

as the result of two successive transformations.



APPEN~DLX IV

DETERMI TION OF To CAPACITANCE OF STnIPLmn

A. Capacitance of Stripline per unit lergth neglecting fringilla.

Upon consideration of the cross section of stripline, it can

be seen that the capacitance of this configuration is essentially

that of two paraJ.lel plate condensers connected in parallel,
I. I

neglecting fringing capacityo Cp . An expression for CO will

be developed at &L later point in the Appendix.

:v fyCf I CT Cf I

Cf Cr rf""-
(a)(b

Fig A4-1 Cross Section of Stripline

Fig A4-2 shows the upper half of fig A4-1. From this

figure CT can be determined.

A4T



A48

Fig A4-2 Upper Half of Fig A4-1

The electric field between the plates of Fig A2-2

is given by the expression:

v V (A4-I)
d b-t

2

where E = electric field between the plates

.V - potential difference between the plates

d - distance between plates

b * ground plane spacing - cm

t * plate thickness - cm

The electric flux density is then:

D coer B (AZ-2)

"o r b-t
2
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where D - electric flux density

con Permitivity of free space

er- relative permzitivity

The electric flux originating at the positive plate

and terminating on the negative plate is:

D A Coe r YV (wx1) Q (Ax-1)
b-t

where Q - charge on one plate

A - area of one plate

w - strip width - cm

The capacitance of the parallel plate condenser is then:

2ee wQ or
C 2 cer v(A 1 -4)C (b-t)

Now remembering that we have two capacitors in parallel,

we obtain for the stripline capacitance neglecting fringing

effects.
C 4 C o Cr w

Cpp b-t

S4 x 10o-14 (8.842 ary) (A4-5)

b-t

where Cpp is in farad/cer.

B. Capacitance-of Stripline including fringing capacituice.

Equation (A1-5) can be used to compute: Characteristic

Impedance u; to 25 ohms. For Meracteristic Impedance calculations
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above 25 ohms, a term for fringing capacitance must be added

to equation (A4-5). Designating fringing capacitance by Cf

and referring to Fig A4-1, we see that equation (A4-5)

becomes:

CT? - 4 X 1 " (8842r w + b farad/cm. (A4-6)

C. Development of an expression for Frinaing Capacitance Of-*

We now wish to put the Schwarz-Christoffel Transformation

to work in order to find an expression for the fringing capacitance
I

Cf • Equation (A3-66) is repeated here for convenience with

w replaced by z1.

dz - M (z - u) A (z . U )-i : U " n (A3-66)
dz1  (A36n

where the notation is the same as that given in Appendix II1

except for zI which represents points in a plane Z, inter-

mediate to the A and W planes. In other words we will perform

a mapping from the Z to the Z, plane and then a second mapping

from the ZI to the W plane.

Consider Fig A4-3. This figure represents one half of

the cross section of Stripline. The polygon used to perform

the Schwarz-Christoffel Transformation is shown in broken lines.

tAo the points + a, proceed toward infinity, .the angles associated

with these points approach zero degrees, while the angles

associated vith the points ±+ b pproach the value 3 x/2.
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tjy

S-*.--.- .7,f00

Fig A4-3 Schwarz-Christoffel

Mappinug of Stripline: Z plane representation

In the limit,, the polygon becomes degenerate and assumes

the configuration of the Stripline. It is n•r necessary to

choose the points u1 ...... un for equation (A3-66). The points

un are those points in the Z, plane corresponding to the

points _+ a, and + 1ýin the Z plane. We choose the points

zI I to correspond to z - + bI and choose vi, _ a, to

correspond to z a _+a,. We also choose the image of 0 in the

W plane to be infinity in the Z1 plane. Consideration of Fig
aul -1

A3-4 shows that this drops out the factor (z-un)-d connected

with the point 0 in equation (A3-46). It Is shown in Churchill17

that only 3 of the un are aftbtrz7. We have picked _+ I and
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infinity as these 3 arbitrary points, leaving ± a, to be

determined. Inserting these constants into (A3-61),

'there is obtained:

(z0 - -1. 0-1,

S.m (z 1/2 ( )z + (z÷,_+a) ( az a_) (A.-7)

(z 1 
2  1/

(z12 - a1
2 )

or in integral, form

z.M zif , .. dz 1  (A-8)
(z2 2

The image of the polygon in the ? plane is shown in Fig A4.

/ N

// /it

/ \

I/ rl' /

-01+
I.- 0 g ..• *gi, ÷O 0

Fig A- schwarz-chrlstoffel

Mapping of Stripllne: Mapping of Polygon In Z plane
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kig A4- is easily understood if the discussion pertinent

to Fig A3-4 is remembered. The line segment 0 to (-a,) in

the Z plane corresponds to the segment 0 to (-a 1 ) in the Z1

plane; the segment -a, to.-bl in the Z plane to -a 1 to -1

in the Z plane; the segment -b1to b, in che Z plane to

-1 to + 1 in the Z1 plane; the segment b1 to a1 in the Z

plaae to + 1 to aI in the Z plane and the segment a1 to 0

in the Z plane to a1 to 0 in the Z1 plane. Finally, since

the Schwarz-Christoffel transformation maps the polygon onto

the upper half of the W plane, the points - infinity and +

infinity are joined by a semicircle having an infinite radius.

To evaluate (A4-8), let us first find the values of the

constants M and + a,. The potation used in this evaluation

will be that of Fig A4-4.

To find M, let

1Z - r1 . jel (A-9)

Then

Jr ejr deG J zi de1 (A4-1O)

Substituting (AI-10) into (A4-7), Ve get

JMF2

dz 2 -1d) ---I.a1
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Now let zi approach infinity i.e. let rI approach infinity.

Assuming zI much much greater than 1 and zI much much greater

than a, (A4-11) becomes.

dz a j M d e (A4-12)

Reference to Fig A4-3 and A4-4 show that as z goes from +J B

to - j B at the point 0, rI rotates through an angle of x radiansi.

Integrating both sides of (A4-12)

J+-iB r0
jB
+jB dz aj MJ1 d 0 (A~-13)

Integrating both sides of (A4-13) and solving for M, we find

-m (A-14)

To determine alp let

Z -- a1 + rI ej1  (A'-15)

then

dz1  3 r1', del' d91  * z 1  de ' (AIi-16)

Substituting (A4-15) and (A1 -16) into (Al-7) we obtain:

1/2 (A.4-17)

L - 2 (a 2  - 2a, r,' ajl + r 1' 2  *329i' . 1) (jell
(z .. 3s,2' 2 -ri2 (J3r' 6 d 0(•:'.2% 5'''•% + 5z,,2z z,
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We may simplify the numerator of (Ae-17) by observing that

as rI' approaches 0, both r 1 ' 2 and r10 go to zere very

quickly compared to -1. The denominator may be simplified

by observing that as r1 ' approaches zero., r' approaches

zero much faster than r 1'. Utilizing these observations

in (Al-17) and simplifying, we observe that

j B 2 dodz - (A -18)

x a1

From Fig's A4-3 and A4-4, we see that as z goes from -JB

to -JA in the Z plane, rl' rotates from x to 0 in the I plane.

Using these facts we may integrate (A4-18) and solve for ao.

The result is:

B (A4-19)

A (2B-A)

Yow that we have determined that constants a l and M., let

us proceed to integrate (Al-8) which is repeated here for

convenience.

M fzl2 " 1)1/2 dz,(

(1 a,

To facilitate the integration, let us divide (AZ-8) into

two parts (after insertins the constant M).
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The resu16 is:

- f d l ( 2 .1 )2 dz 2
2 (z2 h)•,2.

Consider the first term. We rearrange it to read:

-2B 1 1~ B 1 (A4-21)

26
Using formula 320.01 of Dwight's Integral Table• (A4-21) becomes

dz -1 . sin-I1 (A4-22)

l-z 2 1
J, - z12

The second term of (A4-20) is

-2B (a, -1) d!, (AZ-23)

(z~2 ,52) -z~7

We may use formula 387 from Dwight's Integral Tables2

provided the condition a1  is greater than 1 is met. Therefore,

let us examine a practical cross-section of stripline and see

whether this condition is met. Utilizing the dimension of

one sixteenth inch double clad boards plated with 2 ounce

copper, and referring to Fi A1-3, we find A approximatel

equals 2 mils and B approximately equals 60 ails. Inserting
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these results in (A4-19) we find:

i,2 153 >> 1 (A•-24)

2

The condition aI greater than 1 is then met and we proceed

to use Dwirht 387. The result is:

22 ( ,2 a,2 12 _ *

(A4-2r)
(a,2 _1) 1/2 ý2-- tan"1 1

The total integration of (A4-8) is therefore:

[ (a1~2 _1)1/2 -1 l al
z P J [.i.-1 Z,+(I ÷W- Z., tan-I (A4-26)

a,

Several simplifications may be made to equation (A4-26).

By substitution anw algebraic m-Apulation we get the identity:
(2.1)/2

(2- 1)-B - A (A4..27)

Ba ,, n



A.58

Furthermore a little trigonometric manipulaticn shows that

Zl "la'i2z -1.

tan-1 8aI -1 * sin 1 -_ (A-28)

Substituting (Al-27) arid (A4-28) into (A4-26) there Is obtained:

Z M [i1 I+ B-..A sin-l V1
[ 2B sin l 2l B- - ] ( -)

We have now trensformed the function from the Z or

primary plane to the 1, or intermediate plane. However,

this is not the form we wish for the result. The desired

result will be in the form of two parallel planes from

which a parallel plate capacity can be found, The required

transiformation from the u to the W plane is realized by the

relation:

"z a tanh k w/2 (A4-30)
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jv

Z1 plane W plane

B C"
ii

DC' I' A' B" I "s" C"U
-0 -I +1 4a,

(a) (b)

Fig Af-5 Transformation from the Z to the W Plane

The line segment A' B' in the Z3 plaue maps into the

segment A" B" in the V plane;the segment B'C' maps into B" C"

and C' D' maps into C" D".

We now wish to' substitute (Al-30) into (A4-29) and

simplify the result: Equation (AZ-29) is repeated here for

convenience. It is:

2

Z M J (AL-29)

Consid~r the 2nd term. Upon substitution of (A4-30) for z1

and the use of a trigonometric identity we find:
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1 ' - l B-A I-1 2T in-B" - inl ;a, B .' si _" B' l'inh X ,-1

•a2 - 2l

It was previously shown that a1 is large corresponding to

large U in the W plane, (where -V U + JV). For large ki

h xr w/2 .... (A4-32)

2

as is obvious by expanding sinh 3 w/2 in exponential form and

realizing that we are interested in the function on the

real axis.

For principal values and remembering that B is

muca rnuch greater than A, Dwight 507.20 simplifies to:

sin x a 3t/2 - j cosh -1 x (A4-33)

Substituting (A-433) and (A-1.2) into (A4-29),we find that

Sx/2 co[h-2 B B-A

(,•/2 J cosh B-A) CM/ 2 )] (A4-34)

Now we are only interested in the real part of (A4-34).

Taking the real part, we get
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21[Cosh-1 B B-A cohtu.A~ /2]2X 0oh- + B -r cosh -l B-A e

SA(2B-A)

Usin- DwiGht 701 and (A4-27), we obtain the relation:

cosh-l %. tanh-1 B-A (Ak-36)

Now rcmemberingc the definition of a, as given in (A4-19), we

may substitute (AI-36) into (A'-35) with the result:

xm=-• an" ÷cosh"tn+ -A coh- (A4,37)
2

ýA (2B-A)

Now we wish to solve (A4-37) for u.' This can be done by
transposing and taking the cosh of both sides. The result is:

(B-A)c€/2 ____ -Bc - B-A
2cosh 'anh[BA (A4-38)

urn -B-A ) J -

2ýAi2B-A):

SClearing and takinG the in. of bo'th, sides

iU •2 1. _A2 -A)BoA cosh "•EB-•A tanuh'l -. I(A4- 39)

Now by definition:

x X
cosh * 2 (A4-40)2
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In antual practice x » B-A (i.e. the width of the ground

planes is much greater than the distance between ground

planes). Therefore the e-x term in (A4-4o) is neglifible.

Making this assumption we may make the following statement:

cosh IM -B tanh' 1  B- (x >> B-A)cosh A) B B-AB

+ B~X tanh-l %A) (A-41k). 42-- + B-A

Using (A4-41) in (A4-39), we see that

urn 2/x in c(T) B-A Bj (A4-4.2)
B-A

We may simplify (Aq,.42) to read

X 23 -1 B-Au. 2/,l3c n tA)+ --. A) tanh B (A.4-43)
B!-A

We mrast now find out what x would be if there were no

fringing effect present. If the fringing effect is

neglected, the capacitance in the Z and W planes must be

the same. We may therefore equate the expression for

.parallel plate capacitance in the Z and W planeso
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0orAo w CoGr Az
d. dz

where the subscripts indicate the plane of applicability.

For unit length (Al-44) simplifies to

x - (B-A) u (A4-45)

Multiplying Bides of (A4-43) by (B-A) -we get

(B-A) U. 2/v (B.-A) lnýAa÷T

+ tanhr- B-A (A4-4 6)B

Solving (A4-46) tor x we obtain:

x (B-A) U -2/x (B-A) nA(a-A) -B ta-l B-A

B-A t - (AB.-47)

Since in the ideal case of no frinziN.n

xa (B-A) U (A1 -45)

the other terms in (A4-47) mtut be due to the fringing

effect i.e.

x + A x- (B-A) U (A-4-8)

Therefore

ax.a 2/3C (B..A) in -4 A+ B tanh B-A (-9
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We may put (A4-49) in a more useful form through the identity

tanh x i (A4-50)
Q1 -X

Utilizing (Ai-50) in (A4-49), we find that

/Kx. 2B2-A - A lnjA(2BA) I (A4-51)
B-A B-A

We may now find an expression for fringing capacity Cf" by

inserting (A4-51) into the expression for parallel plate

capacitance which is:

oa°rA (A4-52)
d

Upon malting the substitution of (A4-51) into (A4-52) and

remembering that we are considering capacitance per unit

length, we get

S8.842x 10.2 B2 2!-A -A !A (A4-)3m
d r B B-A B-A - A

In order to make (A4-53) agree with the notation of the

literature, it is necessary to redefine Ap B, and 4.

Coln defines his dimensions as shown in Fig A4-6.

Fig A4-.6 Cross Section of Stripline As Given by Cohn
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Observation of Fig A4-3, and A-6 indicates the following

equivalence:

d b-% (A-4~5i)

A - t/2 (A4-55)

B - b/2 (A4-56)"

If (A4-54) through (A4-56).are substituted in (Ai-5)

and a little algebraic maniplilation performed, Cohn's

result is obtained. It is:

S8.842 x i10 2 2i 2 1Cf • -- ... r i•tb I-t--b7+ 1)

(- .1-1) ln 2 -1) ](A4-57)
Equation (A4-57) has been put in graphical form

and is shown as Fig A4-27.
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APPENDIX V

POLYGONAL CROSS SECTIONS

Consider cross sections whose peripheral curve is a

closed polygon with n sides and external angles, pr' To

map the outside of the polygon in the z-plane on the outside

of the unit circle in the 5-plane, we shall first map the

regiozi outside the polygon on the uppcr half of the t-plane.

To do this, an extended version of the Schwarz-Christoffel

transformation will be used which is not quite the same

as the well-known Schwarz-Christoffel transformation which

maps the interior of a closed polygon onto an upper half-

plane. The reason for this is that the point in the t-

plane which corresponds to the points at inf.inity in the

z-plane must now be considered. It may be shown that the

mapping function for transforming the region outside a

closed polygon in the z-plane to the upper half of the t-

plane is given by

0. D. Kellogg, Foundations of Potential Theo-

Julius Springer, Berlin, 1929.

A67
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z- zo .C fr , dt (A5-1)

(t - ) (t -p)2

where the tlr are the points on the real axis of t corresponding

to the vertices of the polygon, C and z are constants, 0 iS

the point in the upper half of the t-plane corresponding

to z - w, and the asterisk denotes complex conjugate. Since

,the sum of the exterior angles of a polygon with n vertices

is (n + 2)x, the necessary condition on the angles is

S-1. 2 (A5--2)

ra 1

Now let B 1 i, and

,i +2t t ti + it' ( -) (A5-3)

so that t i corresponds to 8m. But t-Pa

corresponds to z - -, so that infinitely remote zegions in

the z-plane and 5-plane correspond. lirthermore,

ti~t +t ti +- +I 2t

IIl -I i7 2 2* 2t2
t!+r1
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so that, for t 2 " 0, BI 1. Thus, the t axis is transformed

into the unit circle in the b-plane. Moreover, for t 2 > 0,

I 5 I > 1, that is, the upper half-plane of t goes over into

the outside of the unit circle 11 - 1. Hence, the outside

of the polygon in the z-plane is transferred to the outside

of the unit circle in the 5-plane, such that infintely remote

points in the two planes correspond.

With the transformation equation. (A5-3), the r1apping

function equation (A5-1) becomes.
z-~ ~~~~P 1o ifH ( r-

Z -Z a, r d5 (A5-4)

in which the Br'S must satisfy the conditions I5B1 - rn--r 1 B

'since they lie on the unit circle. Expanding the intearand of

equation (A3-4) into inverse powers of 5 and using equation (A5-2),

we obtain

dz t-a + (L2 1) + -n _ n " Ja"• L, -a, 1 • it2 ÷X "" -

(A5-5)

and, therefore, upon integration, a logarithmic term will

arise unless the condition

g For an alternative derivation of this transformation, see P. Frank

and R. V. Mises, Differentialgluchungen der Physik, Vol Ii, p. 6 58 -66 2.

Friederich Vieweg and Sohm, Brmtwvick Germany, 1935, Mary S. Rosenberg,

New York, 1943.
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n

Z 1(~A'.) 0  .(A5-6

r-l

is satisfied. This condition must be fulfilled in order

that the mapping be conformal at e. Integration of. equation

(A5-5) yields a series development of the form

a.l a. ++...a

z a08+ao + + 62

which is valid for large B. Since the polygon is rapped

onto the unit circle, it follows that a, is the equivalent

radius of the polygon.

We shall restrict ourselves here to the calculation of

the equivalent radius of rectangular cross sections. In

this case, the angles have a common value p I v, so that

1 . The mapping is shown on Fig A5-1. From the

condition equation (A5-6), and symmetry considerations, it

may be inferred that the points 8 on the unit circle corres-r.

ponding to the vertices form an inscribed rectangle. Therefore,

we set

51 e~o 2 ex 3 e( 4 eioun i . , .

and obtain
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Zl)..o (A5-6
rm

is satisfied. This condition must be fulfilled in order

that the mapping be conformal at m. Integration of equation

(A5-5) yields a series development of the form

zWal8ao + & +2

0 82

which is valid for large 5. Since the polygon is mapped

onto the unit circle, it follows that a, is the equivalent

radius of the polygon.

We shall restrict ourselves here to the calculation of

the equivalent radius of rectangular cross sections. In

this case) the angles have a common value j - x., so that

1 . The mappin is shown on Fig A5-i . From the

condition equation (A5-6), and symmetry considerations, it

may be inferred that the points 5r on the unit circle corres-

ponding to the vertices form an inscribed rectangle. Therefore,

we set

an bi 2 3 4

and obtain
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/ t

/,

to tl-w t--1

tll t12, t13 t14 tl

Fig. A5.1 MAPPING OF. THE REGION OUTSIDE ARECTANGLE ON THlE
OUTSIDE OF A CIRCLE
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14

r (1 4-r2  + 1 - 28 2 Cos 2,

Let us integrate along the unit circle; we set bn e€ and the

transformation becomes

0l 2 coo 2 - 2 coo 2 €0 d €

Integrating from 1 to 0. 'we obtain'(see Fig A5-1)

00

q i -i 2ý 2 2 co's 2# - 2• coo 2 40 d#

where s itgthe width of the rectanir.ee and t the thickness.

With the tramsformation

"'i*+

th2$ becomes

• • • 0
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i 2os 2 o cos 2 go d

Making the substitution

0 ÷

ye obtain f.inally

a -it 42 2a *
s 2 o cos2 +÷sin2A dI (A5-7)

The integral in equation (A5-7) is an elliptic integral

and may be expressed in terms of complete elliptic intetrals

of the first and second kinds. The reduction to complete

elliptic integrals is carried out in the appendix. The

result is

- 4,•2 (1 + sin 2) K( )

22

(A5-8)
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where

K(k) - dt

0

4 (1-t 2) (1-k 2 t 2 )

E00 1 '- k,2 - dt

J(-t2 (1,k2t2)2

with k < 1, are complete elliptic integrals of the first and

Second kinds respectively, and ame tabulated in the literature!

From equation (A5-8)

(A5-9)

a a, 4iE(4- 1 + sin 2p) - 2(1 - sin 20) (K 1 + sin 2)1

2 2

t. a 4( 1 sin 2A) -21 + sin 20) K(j 1 ai"nL2P)
2 2

and thus,

E. Jahnke and F. Bode, Tables of Functions- Dover Publicationis,

New York 1945.



A75

t22
a- (A$-10)

Equation (A5-10) serves to determine 0 from the ratio of t to 8,

and equation (A5-9) gives the equivalent radius a1. in terms

of s or t.

Particular cases are:

1. square cross section, • - 0

so that

aeq a a, - 0.59025 s (A5-1)

that is

the equivalent radius * 0.59025 side of the square

2. thin strip, . ,

t. a 1 2E(O) 2K(O) 0

so that

that is,

the equivalent radius - 1/4 width of the strip. (A5-12)
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The ratio of the equivalent radius to the vidth of the

rectangular cross sectior. is plotted on Fig A5-2 for values

of the ratio of thickness to width from 0 to 1.
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APPE•DIX V A

Reduction of 2 r2 / cos 2 1 + sin 2 A d 1 to complete

elliptic integrals.

We have

0 0

22r"si2P2 sin 2 jI di (AA-l)

0 1 + sin. 21.

Let

sin -Z dod- dz

1 2

then equation (AA-1) becomes

1-2 2 2 4 1+ sin'24o 1z+ si 213
i ,| dz• (AA-2)'

Now set

Sx 2

1+ in 2

AM1
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then equation (AA-2) becomes

S 1 ÷~~ ein 2P -

2(1 u sin 41 x
0 dIx

J 1 +sin 20 2

2

22

rn?(l1 + sin

o (1"x2)(11'+sin 2•2"x 2 )'

2
4(l+ sin 2)J
4(l +sin 2,) (U -. x)

0

x( 2)(1- 1 + si 2A 2x)
"-- 2
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1 + sin 2P

- 2(1 +sin 2P)J dx

0

4(1 .2) (1- + .sin 2p x)
2

2S+ahin 2P (i- 1 + sin 20 x

0
2 "

1 ÷esin22 2

-2( sin 2) 1 s pdx

.00

0 ; 2)(1 1 +÷sin 20 2•

" ~2

2 2 ) ÷ i-3(

whr
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(k)dt

o( J.t 2)(1 k 2t2)

E (k) 1- k2 t 2  cit
0

4(1- t2 ) (1 - k2 t)

with k < 1, are 'complete elliptic integrals of the first

and second kinds respectively, associated with the modulus k;

K'(k) - K(k') -. at ... . .....
(0 -t2) (1 - k2t2) (-•4)

is the c-:'plete elliptic integral of the first kind associated

with the c.onplementary modulus k' defined by

kP_ + k' 2  1 1 (AA-5)

and it may be shown thati

f l/k
WI', dt

(1 t2) 1 k2t2 )

Whittaker and Watsonp WMo Analysis, Cambridge University Press, 1927.
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so that

rl/k
K + iW' -J, dt

0(3.t2) (1-k2t2)

E is defined by

0 w f / k 1 _ 2 t 2t

1 4 (1 t2)( 1 k22)

and may be reduced Io complete elliptic integrals of the

first and second kind as follows:

:LE1 • 1 i- kax2

iE1  1  /k 1-kdx

4(1- 2 )( 1 -k 2x2 )

/ dx k2 x2  dx

1 1 .. _____ )(_ .. _____.)

4( - x2)(1- k 2x) 2 (1 - 2)(1 Ax)

The first integral is WI'(k). In the second integral, we let

1 w

and we obt"ain
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f1/k k__2_____2 dx. f1/k d

2 22fl2

4(1 - x)( - kx2) - l)(ky -

Iio,. we set

1 t k' 2tI k'2t r "(1 k' 2 t237

and we obtain after a few manipiulations

1/k

J 2  dy( iJ 1 : -2t2

-- ,.. .. dt

a 2(k')

Hence,

.•. '(k) - IE(k')

or

• " ucVt) - ±(k') (AA-6)

Substituting equation (AA-6) in equation (AA-3)and using

equations (AA-4) and (AA-5) we get finall
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21 Vin 20 o
0

4 E (1 + sin ) 2(1 sin.2p). K + sin,!, )
2

i[ 4B 1 sin•2P) -2(l + in 2P)K( 1  sin 2P 3
(AA.-7)



ABSTRACT

Impedance megasurements in Stripline at microwave frequencies

require the use of a slotted line. Since no slotted lines in

Stripline are comnmercially available, it is. either necessary tc

build a laboratory model in Stripline or to use a coaxial slotted

line and a transition to Stripline. Since commercial coaxial

Slotted Lines are readily available and a Stripline laboratory

model would be expensive and time consuming to prqduce, it was

decided that the coaxial slotted line with its attendant transi-

tion was the best approach. It is in this transition that the

problem arises. The Junction introduces a discontinuity which

must be taken into account. By making the rather good approxi-

mation that the Junction is lossless, a bilinear transformation

may be used to relate the two sides. of the junction. A theoret

ical derivation is made and an example vorked to illustrate the

practical aspects of the solution. It was found that, 'While

this method cannot be used to find the Characteristic Impedance

of Stripline, if the Characteristio Impedance is known, the

imzedance o0' any unknown Stripline load can be found.
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CHAPTER III

MASUREMEN OF UNKNOWN STRIPLINE LOADS THROUGH A JUNCTION

A. Impedance.

1. The Problem.

Measurement of Impedance at Microwave frequencies

is commonly performed through the use of a slotted line,

While there are commercially available coaxial and waveuiJde

slotted lines, none exists for the measurement of Stripline.

Seve.al laboratory models have appeared in the litereature

but the expense of manufacture is not justified in light of

an ey-ist1ig method of measurement utilizing a coaxial slotted

line.

When a coaxial slotted line Is used, the problem

becomes one of :easuring through a Junction. The Junction

in question of course is the transition between coaxial line

and the section of Stripline to be measured. The parameters

measured with the slotted line are those on the coaxial side

of the Junction. However, we are interested not in the coaxit.

side of the Junctionp but in the Stripline side of the Junction.

The question to be answered is then "Knoving the parameters

in the coaxial side of the Junction, how can we' find the same

paksmeters in the Stripline side of the junction?". The answer

to this question lies in a conformal transformation between the

35
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two sides of the Junction. In the sections to follow, this

transformation will be developed and the results used to

measure impedance of an unknown load in Stripline.

2. Transformation of the Smith Chart Through Lossless

Junctions 9

a. The Smith Chart: Derivation of Loci of Constant

Normlized Resistance and Reactance.

The Smith Chart is a coordinate system repre-

senting reflection coefficient as a complex variable.

For a reflection coefficient of constant

amplitude and varying phase, the plot is a circle centered

at the origin. The angle subtended by the radius vector to

a point on the circle and a reference axis through the origin

of the diagram represents the phase angle of the reflection

coefficient. One complete rotation about the origin repre-

sents a distance of one-half wavelength.

The circle representing unit-amplitude re-

flection contains the entire diagram. The general equation

of circles of constant-amplitude reflection coefficient is

written in the notation of complex variables as

pp , k2  (3-1)

where:

p n Complex reflection coefficient in Plane 1l

a- Complex conjugate of p

k * radius when vector p varies in such a manner

as to describe a cirrcle (< 1)
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A few words are necessary concerning "plansa"

1 and 2 which will be referred to in this paper. Since any

vicrowave circuit is. one having distributed parameters, it is

not possible to pick up two pair of leads and specify them as

input and output ports. We therefore establish our input and

output ports by means of planes and attempt to find an equiv-

alent circuit for the microwave configuration between these

planes. lie shall define plane 1 as the reference plane on the

Stripline side of the Junc, ion and plane 2 as the reference

plane in the coaxial side of the Junction. Figure 3-1 illus-

trates reZerence planes 1 and 2.

- SLOTTEO LINE JUNCTION LOA"

PLANE 2 PLANE I

Pig 3-1 Definition of Reference ?lanes 1 and 2

Voltage Standing Wave Ratio is related to p

by the expression
1 +

Y.S.W.R.. (3-2)
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The radial line representing reflection

coefficients of constant phase and varying amplitude uW be

written in the form

L 1 (1 represents length, not, (3-3)
- the number one)

ps

If p is to be written in the form

P, - PP (3-4)

then:

1. *j2* (3-5)

The normalized impedance z at any plane

in a transmission line is re.,ted to the reflection co-

efficient at the plane by

- + -(3-6)

Nov z may be written as

•zo r + j x (3-7)

where

z a normalized impedance at any plane

r w normalized resistance at any ?lane

x. w1ormalized reactance at any plane

If equation (3-6) has its numerator and denominator

nlatiplied by (14) and the result split into Its real and Imaginary
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parts, we can Identify the real and imaginary parts of

equation (3-6) with r and x respectively. The result is:

r a - - . (3..8)

+ p5 -P -P

jx a 'P"- (3-9)

+ 4 P -p -p

Equation (3-8) may be rearranged to read

.r _r 1. H o (3-10)PP 'r P" 1÷+ . o 4

The general equation of the :ircle described by the vector

p measured from the origin; having radius k with center

displaced from the origin by the vector a is

(p- a) ( n k 2 (3-11)

or
.pa-&~ak 2P• a p + a k-

If equation (3-10) Is compared to equation (3-11)

and r is assumed constant, we can mee that equation (3.10)

represents a circle for which

a r (3-12)

1 (3-13)=i•
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In a similar manner equation (3-9) may be rearranged to read

P P + (- /) -(,J/x) ý + I- 0 (3-14)

It x is assumed constant and equation (3-14)

is compared to equation (3-11)o we see that (3-14) represents

a circle for which

1a - 1 + J/x (3-15)

k 1 l/x (3416)

Fuation (3-10) and (3-14) thus represent the familiar

circles of constant r and constant x that are found on any

Smith Chart.

b. Transformation of Circles of Constant V.S.W.R.

It. is well known that the reflection coefficients

of any two planes in a transmission line are bilinear functionsp

related by an equation of the general form

ao +b or p - --- (3-l')

cp 1 c - a

whe•e

p a Complex reflection coefficient in Plane 1.

a = Complex reflection coefficient in Plane 2.

a,b,c a cozm)lex constants

Utilizing equation (3-17)s the relation (3-1) may be

written:



ca (3-18)

Fearranging equation (3-18) into the form of equation (3-11),

there results

2 2
It ac Itb-k ac\(m9

(1 k2)

From the discussion pertinent to equation (3-22), we see

that equation (3-19) is a circle displaced from the origin.

If A represents the vector by which the center of this circle

is displaced from the origin and K repreeents the radius, then

A- b-k ac (32 )

1 - k2 c;

and

bb kt aa
K(AA - 2  (3-2l)

The conditions fur which equation (3-20) and (3-21) ar-

solved are: (1) The transforming section is lossless

and is specified in terms of the reflection

coefficient at one plane under conditions

which give a P•atch at the other.

(2) The reference planes are "corresponding

planes", i.e. an open circuit at the one

gires an open circuit at the other.
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According to condition one the transforming

section is lossless. This implies that vith a purely re-

active termination of the line, the modulus of the reflection

coefficient is unity at all Plazesp i.e.

km 1

K- m'(3-22)

AO

Substituting the values (3-22) into equation (3-20) we find

that

b , ac (3-23)

therefore

S. * c (3-24)

Condition two states that the reference

planeg are chosen such that an open circuit at one plane

gives and open circuit at tle other, I.e.

p-1

when

a- i (3-25)

Using the values (3-25) in equation (3-17) we find that

a + b -c + 1 (3-26)

So

a+b +1
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(3) The transforming section is specified in

terms of the reflection at the one plane

under conditions which give a match at the-

other, i.e. the value of a corresponding

to p U 0 is known. The substitution of p m 0

into equation (3-17) gives a -b. Thus b and b

are known constants. The point whose affix

is b is called the iconocenter.

Let us now evaluate equation (3-20) in light

of the two specified conditions. Substitute (3-23) in equation

(3-20) obtaining

A - (3-27)

1 - k cc

Solving equation (3-23) for"ahand substituting the result

into equation (3-26), we get

b (1 +÷ ).=4 1 c (3-28)
ca

or

1-b
b .

then

b_.L." .. i

cc

Multiplying equation (3-28) and (3-29) together and simplifying,

there results:

(cc) 2 - (1 + b) c• •+ b=o

which can be factored to yield

(ca - I) (c - b.) 0 o (3-.o)
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Therefore

cc-i (3-31)

or

c;. bb (3-32)

If equation (3-31) is substituted into equation (3-27), the

result is A * b, which is the solution for a - 0. The general

solution for cc is equation (3-32). If equation (3-32) is

substituted into equation (3-27), we get the desired result

wbich is

A-b (1 -~ k2

1 - k bl•(3-33)

We now wish to evaluate equation (3-21) which

is repeated here for convenience. it in

(1 -(cc2

Examination of this equation shows us that aa is the only

unknown. Remembering that with a purely reactive termination

cc,. bb (3-32)

K i 1 (3-22)

A-O

we find upon substitution of these values into equation

(3-21) that

as. (7-34)
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Since all the parameters of equation (3-21) are now known

we may substitute and simply obtaining as a final result

K k (1(3-35)
1 - k2 bi

Circles representing constant V.S.W.R. may thus be transferred

from the p to the a planes by meanq of equation (3-33) and

(3-35).

c. Transformation of Lines of Constant Phase Angles.

Substitution of equation (3-17) into equation

(3-3) gives the equation of the loci in the a plane of the

radial lines in the p plane which represent reflection co-

efficient of constant phase and varying amplitude.

ca - a (3-36)

Equation (3-36) may be rearranged into the form of equation

(3-11), yielding the form

"(la - b9)" " i a

ic -c

+ (.ag-_o.) 0 (3-37)
"ic -

It may be shown that the coefficient for a and o are conjugate

terms, so that equation (3-37) represents a circle for which
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A 19- bi (3-38)

and

2-Al - (iT b >_ (3-39)

where K and A are the symbols identified with equation (3-20).

Let us proceed to put equation (3-38) and (3-39)

into a more usable form. Equation (3-23) stated:

aa b/; (3-23)

and relation (3-L,6) was

a +b a c + 1 (3-26)

Also equation (3-32) was given as

c; - bb (3-32)

If equations (3-23) and (3-32) are substituted into (3-26) and

the result solved for c, we get

(1-b) (3-40)

Hence

c. (3-41)(l-•;)

We recall that equation (3-38) was

A la -b (3-38)
ic -
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3 equation (3-23), (3-10) and (3-41) are substituted in

equation (3-38) for a, ; and c respectively we get our

desired result which is

A- l(l-b) -b2 (1-i)2 (3-42)li(1-b)2 -b (1-S)2

To put equ ion (3-39) into the desired form, substitute

values oi k, a, c, and e a.s given by equations (3-42),

(3-23), (3-41), and (3-40; respectively and realize that

11.1 (3-43)

The result is then

K .. (3-44)

3)-b. 1 (1-b)2

The ralial lines representLng constant phase angle in the

p plane may thus be transformed into correspording circular

tracks in the o plane by mians of equatioLs (3-43) and (3-44).

Since the radial lines in -;he p plane all pass through the

origin., it follows that th; family of circles represented by

equation (3-37) all pass ttrough the icoaocenter, as may be

shown by substitutiAg a. 1 in equation (3-37).

d. Transformation of Circles of Constant Resistance

and Reactance.

The form of equation (3-6) indicates that the

normalized impedance and reflection coefficient at any plane
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are bilinearly related, and since p and o are bilitear

functions, so are z1 and S.2 (where z1 and z2 are the normal-

ized impedance at planes 3. and 2 respectively). We may

therafore state

.2. 1 .,+
2 C(3-45)

T Zl+ 1

where

a, p, and r are, in general complex constants.

According to our previously stated conditioms

(following equation (3-21)), p - 1 when a w 1. Equation

(3-6) is repeated for convenience and is

z. +(3-6)
1-p

Thus when pa, zm". Since o- 1 when p - I. it follows

that when . - m, 22 f . This implies that r - 0 in equation

(3-45). Therefore z2 is a linear function of zl, i.e.

z a z I + 13 (3-46)

When z1 is purely imaginary, z2 is also purely imaginary

since we have assumed the Junction to be lossless (condition

1). This implies in equation (3-46) that C is real and

is imaginary*.
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Condition three stated that the junction

would be characterized by measuring the reflection co-

efficient at plane 2 when plane 1 is matches to its

Characteristic Impedance. We define.

z1 2  r 12 * J X'2 (3-47)

(where z12• r1 2 and x12 ire normalized to plane 2)

aa the impedance seen f±ro the .onxial side of the

junction (plane 2) when tde Stripline side of the Junction

(plane 1) is terminated ia its Characteristic Impedance

(zI 1). When z becomes equal to 1, equation (3-46) is

z2  z•2 r2 + J z ..2 + J A (3-48)

ThereCfore

a. r.2

aJ x 1 2

Equation (3-4i6) may then be written as

+2" r +I +• •+,(3-4.9)
Z2 .r 1 2 Z.+ X1

S,

Solving equation.(3-49) for s1' ve may write
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Z02

where:

z1 , impedance at plane I

z2 a impedance at plane 2

r12 a Real part of impedance seen at plauie: 2 with.

plane 1 terminated in Its Characteristic Impedance

x 12 - Imagiz=7: part of impedance seen at plane 2 with

plane 1 terminated in to Characteristic Impedance

1( - (3)0

ZOl " Characteriistic Impedance - plwie 1

Z62 - Characteriitc Impedance - plane 2

Equation (3-50) shows us that it we knew r,12
and x22 as well as the impedance of the unknown loa as seen

on the coaxial side of th p juncteon (plane 2) and the Cha.c-

teriatic Impedance of both sides of the junctiont we mey fdan

(pL 21 r.)th vle f h uknw * Im ilay ar of 1peanc see at plane 2nown ith

the "iconocenter" and my be found by t grathical procedure

to be described.
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B. Determination of Unk.own Impedance.

1. The Problem.

The original pu:pose of this paper was to descrtbe

a measurement technique for the Characteristic Impedance of

Stripline. It was thought, that at any given point in the

Stripline, the open circuit and short circuit impedance

zop2 and z. 2 could be meamuured on the coaxial side of the

Junction, transformed to the Stripline side of the Junction

through the use of equation (3-50) to yield zop1 and z1

and the relation

zoZP lZ 9  (3-51)

used to find the Characteristic Impedance of the Stripline.

However the author overlooked one important fact; namely

that the answer begs the question. Reference to equation

(3-50) shows that we must known Zol in addition to z2 (z2

or zop2 in our case) in order to determine ti ('zop or z1).

While this method is useless for determining Characteristic

Impedance, it is quite useful in measuring unknown loads in

general. It is anticipated that such unknown loads may have

to be determined when an Investigation is made of various

Stripline terminations.

in order to use this method of measurement we must

first determine the iconocenter (zi). The following section

therefore will concern itself with the graphical determination

of Zi•r
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2. Determination Cf the Iconocenter.

In determining the iconocenter through graphical

construction on the Smith Chart, it is necessary to introduce

the concept of the projective chart.

On the Smith Chart, a reflecti.on coefficient or

reflectance p is represented by a point W just as any complex

number is represented on the Argand diagram. The distance

OW to the origin is the magnitude r of the reflectance, and

all passive ioaGs are represented by points inside the unit

circle r. If the line as cutj r at points I and J (Fig 3-2)

the ratio

1.L l+r

" -r (3-52)

as shown in the pamphlet, is the voltage standing-vave ratio

corresponding to the reflectance p.

The modification that leads to the projective chart

is to represent the reflectance p by the point W With the

same phase angle as W but at a distance r from the origin

given by

2rr (3 -53)
l+r

.This makes the ratio Wi/W. equal to the square of the

voltage standing-wave ratio.
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- _J

II

Fig 3-2 Relation between the representation of a

reflection coefficient on the Smith Chart

(0) and on -he projective chart (v).

If a radial arm carrying a voltage-standing-wave-

ratio graduation in decibEls is used with the Smith Chart,

the point W will be in frcnt of the graduation 2x when W is

in front of the graduation.x. Plotting points on the pro-

jective chart or transforming back and forth to the Smith

Chart is therefore very si1ple,
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/

Fig 3-3 Transformation 0 and .- 1. Construction of

W from W or of W from W.

The transformation P from W to W can also be obtaned2 9"31

by projecting W on a sphere with eluator from one of its

poles and then projecting orthogonally from the sphere on

the plane of r . Appendix VI shows the derivation of Fig 3-3.

This justifies the construction shown in this figure. %M and

ON are perpendicular to the radius OW and MN goes through W.

This cwn also be used to perform the inverse transformation

-1 from to W.
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The circles usually drawn on the Smith Chart

corresponding to constant resistance or reactance and to

constant magnitude or phase of the impedance become on the

projective chart straight lines and ellipses as shown in

Fig 3-4. These could be Irawn in advance and used as on the

Smith and Carter charts t) plot impedanr.e measurements taken

for instance, with a bri43e.

IMPEDANCE

ZsRi;X

0 - 0

SMITH CHART PROJECTIVE CHA3T

IMPEDANCE

PHSE MAGNITUDE
Ii

CARTER CHART PROJECTIVE CHART

Fig 3-4 Loci on the projective chart and on the Smita

and Carter Charts of constant resistance R, re-

actance X, impedance magnitude I Z I and impedance

Phase £

Special notions of distance and angle that bave useful

interpretations can be introduced on the projective chart.
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Fig 3-5 Definition and evaluation of the

Hyperbolic Distance (AB)
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Given two points, AB and the intersections IJ

of AB with (Fig 3-4), the -luantity

10 logo I :AI (A3-54)

will be denoted by (AB) and called the hyperbolic distance

between A and B. It will usually be expressed in decibels

as in (3-54) but can be converted to nepers by substituting

1/2 Li, for 10 log10 .

The quantity (3-54) deserves the name of "distance"

because it satisfies the triangular inequality (which shows

that straight lines are geodesics for this particular

measurement system) and because it is additive; that is,

when three points, A,B,C are on a straight line in this order:

(AB) + (BC) (AC) (3-55).

The hyperbolic distance between the point W and

the center of the chart is

() a10 log -+ 2 log 1 + r (3-56)
l-r 1 -r

and can be interpreted as the voltage stuaing-wave ratio

expressed in decibels.

It has been shown in the discussion concerning

equation (3-17) that a lossless transforwer may be repre-

sented by the relation.



58

S-a ; b (3-17)P co -a.

We further saw from Section B that circles in the p

plaze go over to the a plane as circles uzider the trans-

formation (3-17). Equation (3-17) is also a conformal trans-

formation (angles are preserved). It follows that hyperbolic

distances are also preserved in the following sense. If AB

are transformed into AI,BI while F becomes F 1, the distance

(AB) defined above is equal to the distance (A'IB) measured

as If r' were the unit circle:

(A) (AB')B,, (3-57)

the subscript indicating with respect to what circle

the distance is measured.

The special transformation (3-17) that preserves the

unit circle (lossless transformations of reflectance for

instance) are represented on the projective chart by projective

transformations, They transform straight lines into straight

lines and as a consequence also leave the hyperbolic distances

and elliptic angles invariant.

Let us now put the fact that straight lines go to

straight lines (in the projective Chart) under the trans-

formation (3-17) to work for us. The iconocenter is defined

as the iqpedance seen on the coaxial side of the Junction
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(plane 2) when the Stripline side of the Junction is

terminated in its Characteristic Impedance. If the Smith

Chart representation is used, the impedance seen at refer-

ence plane 1 (Stripline side of the Junction) will be ZOI,

since the Stripline is terminated in its Characteristic

Impedance. On a normalized basis, Z01 corresponds to the

center of the Smith Chart (p - 0). If ABC and D are four

equivalent points on the p w 1 circle (corresponding to four

open circuit measurements one eighth electrical wavelength

apart), the diameter AC and BD will pass through the center

of the circle (p a 0) as shown in Fig 3-6.

A

0 ,0

Fig 3-6 Reflectance of four open circuits spaced one

eight wavelength apart on the Stripline side,

of the Junction.
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If A,B,C and D are transformed through the Junction

and measured on the coaxial side of the lossless Junction, we

have the points A',B',C',D'. If the projective representation

is used, the straight lines AC and BD go over the straight

lines A'C' and BIC' as shown in Fig 3-7. Since the Junction

is lossless, the unit circle is preserved and the points A',

B,C, and DO lie on it.

C

Fig 3-7 Reflectances of four open circuits spaced one
eight wavelength apart after being transformed

through a losaless Junction.

Point 0' in Fig 3-7 is therefore the point

corresponding to the point 0 in Fig 3-6. However Fig 3-7

is the projective represenkation of Fig 3-6 and not the Smith

Chart representation. We therefore perform the construction
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shown in Fig 3-3 where n - 0' and is known as the "crossover"

point. The result is shown as Fig 3-8. The point W is the

iconocenter i.e. the impedance in plane 2 corresporAing to

a matched load in plane 1.

/
I -- stA

I Chr r - I.

3. A n l Ilsrtn th Tehnqu,

/
- /

C' /

S- S

Fig 3-8 Transformation from the Projective to

Smith Chart representation.

3. An Example ~lustrating the Technique.

In order to clarify the actual measurement

procedure, let us work an exampzle. The test setup is shown

in Fig 3-9. The first step is to establish a reference plane

accordimg to condition 2 assumed in the solution of the .pre-

ceeding equations. It was decided that the reference plane
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STRIPLINE

S KMC i COAXIAL COAXIA LOSSLESS ; UNKNOWN1

SG•AL GEN. SLOTTED LINE LINE JUNCTION LOA'D

OPEN

CIRCUITS

-APART8

Fig 3-9 Test Setup for Measurement of an Unknown Load

on the Stripline side of the Junction would be established

directly to the right of the Junction. Accordingly the Junction

wis attached to the coaxial cable on the right of the dotted

line and the position of the first voltage maximum was recorded.

A section of Stripline with known Characteristic Impedance of

arbitrary length and open circuited on the load end was then

attached to the Junction. The VSWR and position of the first

imaxizum were noted. It was next desired to remove one-eight',

electrical wavelength from the Stripline.,.The wavelength in

Stripline is related to the wavelength in free space by

A3f5 (3-0)
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where

X a - Stripline wavelength

Xf - Free Space wavelength

er - Dielectric constant of Stripline

The free space wavelength at 3 kmc is 10 centimeter&.

Teflon-Fiberglass (GB-112T) was the dielectric used. This

material has a dielectric costant of 2.6. We therefore find

from equation (3-58) that Xs/8. 0.305 inch. This length was

then removed from the load end of the Stripline and another

measurement of VSWR and the position of the first voltage

maximum made. By repeating the procedure of removing Xs/8

three times and measuring the VSWR and the position of the

first voltage maximum, the four points A',B',C' and D' are

obtained (one point was obtained from the measurement made

before any Stripline was removed). The results are shown in

Table 3-1.

From Table 3-1, it is first necessary to determine

tie wavelength in the slotted line. This is done by sub-

tracting minima fromi their corresponding maxima and averagIng

the results of all readings. Knowing that the difference be-

tween any maximum and minimum is one fourth wavelength, we

can find the wavelength in the coaxial line. 'The position

of each maximum is then subtracted from the reference position.
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TABLE 3-1

Measurements Relevant to the Determination of an

Unknown Load as Measured Through a Junction

Reference Position on Slotted Line - 378.9

Maximum VSWR Minimum

350.6 39.2 325.9

Remove 0.305 inch of Stripline

387.2 60 363.8

Remove 0.305 inch of Stripline

378.5 61 353.9

Remove 0.305 inch of Stripline

366.8 47 344.3
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This difference is then expressed as a percentage of the

slotted line wavelength. If the position of a voltage

maximum is nunerically greater than that of the position

of the reference, the maximum has shifted toward the load;,

if it Is less the maximum has shifted toward the generator..

The results are shoiin as Table 3-2.

It has been assumed that the Junction is lo3sless.

This means that the VSWR on the coaxial side of the Junction

can be shown tc be infinite or that a - 1 since

vswR-l (3-59)
VSWR41

Table 3-1 shows that the measured standing wave ratios were

not infinite. Table 3-3 shows how good an approximation we

have to the ideal case (a 1 1).

Reference to the reflection coefficient scale of

Fig 3-10shows that the approximation is not bad. We will make

the asaimption that a 1 1 for all measurements to avoid the

more difficult problem of having to consider a lossy Junction.

The points of Table 3-2 are plotted on Fig 3-10 usin3

R u • as the reference point. Vte Use this reference because

our measuremeznL reference vrs a open circuit corresponding to'

a voltage maximum. Since a voltage m tinmum occurs at a cuirent

minimum, a resistiNv maximum is obtained. As dijcussed previouslv



66

TABLE 3-2

Location of Points A',B'OCIPD'

with Respect to the Reference Plane

Shift Direction

1. 0.286 toward generator

2. 0.084 toward load

3. 0.00405 X toward generator

4. 0.1224 x toward generator

TABLE 3-3

Comparison of Measured VSWR with the ideal value

VSWR s

39.2 0.948

60 0.97

61 0.97

4T 0.96
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the points A' and C' are Joined with a straight line

across B' and D'. This interse:tion yieldLi the point 0'.

The construction of Fig 3-3 is then used to obtain the

point W, which is the iconocenter. From Fig 3-10 we see

that

W= z1 1l.4 + J 0.2 (3-60)

Let us now attach the unknown load to the

Stripline and measure the VSWR and positioa of the voltage

mximum. The VSWR is observed to be 10 vhl.le the position

of the first voltage maximum is at 370.0 centimeters. From

equation (3-59), a n 0.82 while the voltaf;e maximum has

shifted 0.09 wavelengths or 64.8 degrees ":oward the genitrator.

A shift toward th- generator is negative according to staridard

transmission line theory. Hence normalized, to Z02

z2  o 0.82L- 64.8 (3-61)

-0.348 -J o.74

Equation ( 3 - 4 8) is now used to transfor Z2 back through

the junction. It is

z 2 -"x12W-

S;P Z_ 02 (

Zo2
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It is known that the Characteristic Impedance of the

Stripline is 50 ohms while that of the coaxial cable

is 51 ohms. rl and '12 are the real and imaginary parts

of the iconocenter and are given by equation (3-60). In-

serting those values in equition (3-50) we get

0.2o.3)Z - j o.7T4 0.2--
zI51 -a
50 1.4

51.

- 12.7 - J 34.2

It will of course be noted that it is not necessary to

know Z02 since i:. drops out of the equation. It was

put in merely to show that z12 and z2 are both normalized

to Z0 2 .

C. Ccnclucionj:

It has been shown that it is possible to measure

an arbitrary unknown impedance through a lossless junction

thereby allowing the use of an existing coaxial slotted

line to determine the value of Stripline Loads. We can not

ho'aever determine the Ch&racteristic Impedance of the Strip-

line by this method since our result will be a single equation

in two unknowns.
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APPEMDL VI

Belation Between the Iconocentsr

and the Crossover Point

The existence of the crossover point and its relation

to th" iconocenter may be proved by considering the sphere

S hcvIng I"' as its equator (Fig A6-1). By stereographic

projection from the pole LI any circle *r' passing through O

and orthogonal to r' is transformed into circle r on S, also

orthogone.2 tor'I and passing through the stereographic pro-

jection K of 0. By projection on the plane of the equator,

this circle becomes a straight line, which goes through the

projection 0 of K. The. construction of Fig A6-2 is a re-

production of ICO'KO on the plane of r, obtained for

instance by rotation through 90 degrees about COt.

S K

Fig A&- Transformation from the Crossover Point to

the Iconocenter.

A78
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C K -

Fig A6-2 Relation Between the Iconocenter and the

Crossover Point.



ABSTRACT

The history of work done on Stripline attenuation is discussed.

Cohn's37 analysis is accepted as the most desirable for engineering

use since his results are expressed in a convenient graphical form.

Following Cohn, the attenuation is expressed as the sum of dielectric

attenuation and conductor attenuation. Working expressions are

developed for dielectric and conductor attenuation, the "incremental

inductance" rule of Wheeler3 8 being used to determine conductor

attenuation. The results are shoin in easy-to-use graphical form.

Finally experimental verification of Stripline attenuation is

shown usirg a Stripline Spiral. Good correlation is obtained

between measured and theoretical values of attenuation up to

3.5 Kmc. It is believed that the discrepancy above 3.5 Kmc is

due to an increase in loss tangent and a decrease in dielectric

constant above this frequency.

ii
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CHAPTER IV

DETNEP4NATION OF STRILINE ATTENUATION

A. History of the Problem.?2

1. Current Distribution on the Conductors.

Before Stripline attenuation can be intelligently

discussed a few words must be said concerning the distribution

of current in Stripline.

Many of the people who have worked on the

Characteristic Impedance of this line have, in conjunction

with that work, carried out a conformal mapping of the strip-

line geometry into some simpler geometry. One by-product of

such calculations is the current distribution of the inner

and outer conductors. The rigorous conformal mapping carried

2out by Oliner, and illustrated in Fig 4-l, is therefore

meant to be typical of the work of a number of people.

The mapping outlined in Fig 4-1 procedes by first

mapping.the upper half region (b) of the Stripline shown in

(a) onto the upper half plane (c), by means of a tanh function.

The rectangle (d) is then also mapped onto the upper half plane

(c), employing a sn function, and the mappings are compared in

order to determine the overall mapping from (b) to (d). By

taking appropriate derivatives, one finds the following functional

71 ___
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dependence for the current distribution on the ground planes

in terms of the notation of Fig 4-1 (b):

I(x,b/2) 1 (4-1)

1 1 k' 2 sinh2(A x/b)

where

k - tanh (7 w/2 b), k' 2  1 - k (4-2)

The current on the center strip conductor is similarly

shown to be

I(xO) 0- (4-3)

4 -(k' 2/k 2 ) sin 2 (v x/b)

where k and k' are given by Fig 4-2.

It is seen from (4-1) that the current on the

outer conductors is a maximum at the midplane of the cross-

section, and decreased monotonically away from this point

on either side. From (4-3), on the other hand, one notes that

the current on the inner strip conductor is a minlimu at the
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b W

(a) (c)

AY t

K Ck')
? - - -W-w--. x

'-"2 K Wk

(b) (d)

Fig 4-1 - Rigorous Conformal Mapping of Stripline Geometry

midplane and becomes divergent at the strip edges (as one

would expect). The actual variations given by (4-1) and (4-3)

have a relatively simple form.

Experimental confirmation of the validity of relation

(1) in a practical situation is afforded by Fig 4-2 which

presents a comparison of the theoretical values predicted by

(4-1) with experimental data taken at the Hughes Aircraft

Company.?4 As seen, the theoretical values agree quite well

with the measurements. Fig 4-2 also serves to illustrate the

rapid decay encountered as one moves transversely away from

the center strip; at a distance away from the strip equal to

the strip width the square of the field intensity is 27 db

down from its maximum value.
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DITAC FRO CETE (RI v Io sIi dh

I THEORY -

EXPERIMENT o

-20 -1I0 0 10 20
DISTANCE FROM CENTER (Relative to strip width)

Fig 4-2 - Field or Current Distributions Across

Outer Conductor Surface

2. Attenuation Constant.

The evaluation of the attenuation constant is generally

a rather prosaic task, once the appropriate current distributions

are known. If one employs the current distribution (4-i), and

performs the necessary integrations, one finds for the attenuation

constant due to the loss in the outer conductors only.?5

2
a t b - 1n 1 +. k (4-4)

platesr 4 k b X K(k) K(k') 1 - k

where k and k' are defined in 4-2, K(k) is the complete elliptic

integral of the first kind of modulus k, X is the wavelength of

the line, b is the ground plane spacing, and B is the conductOr
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skin depth. When similar integrations are performed for the

inner conductor, using current distribution (4- 3 ), a divergent

result is obtained for the attenuation constant due to loss

in the inner conductor alone. This divergence is due to the

divergence in the current distribution at the sides of the

inner strip conductor for an inner conductor of finite thick-

ness (rectangular shape) the current distribution at the

edges possesses a divergence of lower order and thus permits

a finite result for the attenuation constant.

In the course of his work on Characteristic

10Impedance, Pease had determined the current distributions

on the inner and outer conductors in the low impedance

range when the inner conductor is of finite thickness.

Employing these current distributions in the computation

of attenuation constant, Pease36 obtained explicit expressions

valid for both inner and outer conductors. While the results

are approximate, they are estimated to be accurate to within

1% for Z0 < 75 ohms. The contributions due to the inner and

outer conductors are given separately; the result for the

outer conductors alone is nummerically in very close agree-

ment with (4-4) when the inner conductor thickness is small.

While these attenuation constant results are in explicit form,

they require the insertion of a quantity related to the

Charactere 3tic Impedance which must be determined via a

transcendental relation. The form is definitely computable
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but more involved than that of (4-4). It is suggested,

therefore, if accurate results are desired for lines in

the low impedance range with small thickness inner conductors,

to employ the formulation of Pease for the inner conductor

contributions and e:*pression (4-4) for the contributions of

the outer conductors.

More recently, Cohn 3 7 has evaluated expressions

for the attenuation constant which are valid over the whole

range of Characteristic Impedances, but which are not as

accurate as (4-4) or those of Pease. Cohn's approximate

results are based on a general formula for the computation of

attenuation constants published by Wheeler.?8 The procedure

involves the evaluation of the derivatives of the Characteristic

Impedance with respect to each of the line dimensions; in order

to obtain results in reasonably simple form Cohn employed simple,

approximate formulas for the Characteristic Impedance. He

obtains separate results for the high and low impedance ranges,

and the contributions from the inner and outer conductors are

not separately determined. Although the results from the high

and low impedance ranges differ by 8% in the overlap region,

they are recommended which approximate answers are sufficient.

B. Recommended Approach.

Cohn's results seem to be most widely accepted in the

literature and are expressed in graphical form for convenience.
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The following disseration will therefore follow Cohn although

it will be considerably more complete than that given by Cohn.

C. Derivation of an expression for Stripline Attenuation.

In general, two types of losses occur in a transmission

line. These are dissipation in the conductors and dissipation

in the dielectric medium filling the line. In the usual case

these losses are snmall enough to permit the total attenuation

to be expressed as the sum of each type of attenuation computed

individually.

That is:

a-c- +oad (4-5)

where

S= total attenuation per unit length

a = conductor attenuation per unit lengthc

ad-= dielectric attenuation per unit length

1. Dielectric Attenuation.

Let us first consider the dielectric attenuation,

ad. It was shown in Appendix II that

S=Jk _+ j W 477(A-56)

Furthermore if equations (A2-22) through (A2-24) of Appendix II

are written in vector notation (assuming conductivity ý 0),

there results
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T = (4-8)

Now

T = a + J (4-9)

In equation (4-9) C4 is the attenuation constant and P is the

phase constant. We wish to find the attenuation constant C1.

To do so, we must divide equation (4-8) into its Real and

Imaginary parts. We therefore proceed as follows.

2 2
v( a + P )

j22 [ (1+ a)] (4-10)

Expanding equation (4-10) and separating Real and

Imaginary Parts, we find the Real part to be

222
a- P= -W2 L (4-1)

In order to solve equation (4-11) for a,another equation is

needed. Equation (0.-8) may be rearranged to read

2
- g& C+ j (D a P± (4-12)

Now

_r 2 cT 2  2 + p2

4 22 2 2 2 1/2
- C) 6 +) (4-:13)
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Solving equations (4-12) and (4-13) simultaneously for

a there results

e 2 2a.wj c i+ ~~2--- -i (4-14)

The quantity o/Ea in equation (4-14) is defined as the loss

tangent (tan 8).

For the dielectric materials of interest V/ew < < 1.

Expanding the term

a1 ()2]l /2

in equation (4-14) in a binominal series, we get

1 + 1 + 1/2 -1/8( (4-15)

Since tan 8 < < 1, we may neglect all terms after the second

term in equation (4-15). Substituting equation (4-15) into

equation (4-14), we obtain the result

a= L± tanm2  nepers/unit length (4-16)

4

Equation (4-16) may be simplified by realizing that

w=2 fm2 3 c 2 x (4-17)

00
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where:

c = velocity light

S- free space wavelength

Vo = free space permeability

c = free space permittivity

Equation (4.. 1 7 ) can be used to simplify (4-16) to read

a - tan 8 nepers/unit length (4-18)
xo

A convenient working form of equation (4-16) is

27.3 %r tan 8
S-r db/unit length (4-19)

)o

where:

X0 = free space wavelength

G m relative dielectric constantr

tan 8 = loss tangent of the dielectric

2. Conductor Attenuation.

We begin our investigation of conductor losses by

rewriting equation (4-6) which was

V XH=(a + j oe) E (4-.6)



Equation (4-6) may be further simplified, since the

displacement current will never be appreciable in any

reasonably good conductor, even at the highest radio

frequencies. The terms to be compared in equation (4-6)

are a and we. The precise values of e for conductors are

not known, yet most indications show that range of di-

electric constants is much the same for conductors as

for dielectrics. For platinum, a relatively poor

conductor, the term we becomes equal to a at about

1.5 x lO1 5 cps, if the dielectric constant is taken as

ten times that of free space. This frequency is in the

range of ultraviolet light. Consequently, for all but

the poorest conductors (such as earth) the displacement

current term is completely negligible compared to the

conduction current at any frequency. Assuming a > > c c,

equation (4-6) simplifies to:

V x H = a E (4-20)

Taken the curl of both sides of (4-20)

VxVx H=Vx uE (4-21)

But, there is a vector identity which states

Sx V x H a V (V • H) - V2H (4-22)
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Utilizing equation (4-22) equation (4-21) becomes:

(7. H) -V2 H c7 xE (4-23)

how 11axwell's 2nd and 3rd Lai.s were derived in Appendix II

and were in vector form

"7 xE = - (A2-10 thru A2-12)

and

V B = V II- =0 (A2-38)

Using these two laws in equation (4-23), there results

V ' H (4-24)Ut

This equation for the variation of H in a conductor

is in the form of a standard differentale equation similar to

Laplaces equation, in the wave equation. The equation is

often called the skin effcct or distribution equation and may

also be derived in termis of E, yielding

2E (4-25)

Since i = a E, equation (4-25) may also be written in terms

of current density (i).

K i (4-26)
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If sinusoidal distribution is assumed, equations (4-24)

thru (4-26) become

V2H j w avH (4-27)

SE= J w a p E (4-28)

ju jW a i (4-29)

These equations give the relation between space

and time derivatives of magnetic field, electric field, or

current density at any point in a conductor.

Let us now consider the case of a plane conductor

with current flow in the z direction, x normal to the surface

and no variations in the y and z directions. Fig 4-3

illustrates this concept. If equation (4-29) is expanded in

Cartesian coordinates, there results:

If - u r n Fn

Fg 4- -Crrn FlwiaPaeCodco

wmftI /
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( b2 32 •2

+ + i- joapi (4-3o)

However, we have stated that there are no variations in the

y or z directions thus simplifying equation (4-30) to

67 iz a iz

Si (4-31)
z

where

2

or

S(l +J) 4 -f4 a

The solution to equation (4-31) is of the form

iz= C1 e''x + C2 e+x (4-32)

Current density would increase to the impossible value of

infinity at x = - unless C2 is zero. C1 may be written as

the current density at the surface if we let iz 1 0 when

x io. Then

w-e-
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Define

1 (4-34)

Then utilizing equation (4-34) in the definition of -r, there

results

1=+j
0

Using equation (4-35), equation (4-33) may be rewritten as:

i= i e(I+ J) X/S

z 0

= i° eX/B e- X/b (4-36)

From the form of equation (4-36) it is apparent that

magnitude of current decreases exponentially with penetration

into the conductor, and 5 has significance as the depth at

which current density to l/e (about 36.9 per cent) of its

value at the surface. The phase of current also changes with

increasing depth into the conductor according to the factor

e-i x/.

To find the total current (I) flowing in the plane

conductor, we must integrate the current density over a

width w and to an infinite depth.

I wJ iz dx (4-37)

Using equation (4-36) for i ,we get
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1 wJoCOe- (l + J) X/6 dx

i wd0 (4-38)l+j

The voltage E on the surface along the length of this

conductor is obtained from the current density (io) and

the volume resistivity (p).

E = i z P (4-39)

The "internal impedance" or "surface impedance" is

computed from the ratio of the voltage E given by equation

(4-39) and the current I as given by equation (4- 38)

z ( =(+ j) m (4-4o)

Recalling that

8 = 1 (4-34)

equation (4-40) becomes:

Z= (1+j) z/w 3tfPP (-41i)
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Dividing Z into its Real and Imaginary Parts results in

R = X = z/w 4J-1 T (4-45)

Let us now define the resistance of a surface of unit

length and width and of depth 5 by

Rs= p/8 (4-46)

Equation (4-46) may be simplified by using the definition

of 5 as given in equation (4-34). The resultant expression

is:

R= P A 9f (4-47)

Comparing equations (4-45) and (4-47), we see that

R = z/w Rs (4-48)

The internal inductance can be calculated from equations

(4-45) and (4-34). After rearrangement of terms, there

results

L - X/w - z/w (g 5/2) (4-49)



88

This is the inductance of a layer of conductive material

having a thickness of 6/2, one half of the depth of

penetration. This merely means that the mean depth of

the current is one half the thickness of the conducting

layer.

Some inductance formulas carry the assumption that

the current travels in a thin sheet on the surface of the

conductor, as if the resistivity were zero. Such assumptions

are usual for transmission lines, wave guides, cavity resonators,

and piston attenuations. Such formulas can be corrected for

the depth of penetration by assuming that the current sheet

is at depth 5/2 from the surface. This is the same as assuming

that the surface of the conductor recedes by the amount

5 .. (4-50)
2 g

The second factor has an effect only if the conductive material

has a permeability p differing from that of space 0o. The same

correction is applicable to shielding partitions, regarding

their effect on the inductance of near-by circuits.

There is sometimes a question which surface of a conductor

will carry the current. The rule is, that the current follows

the path of least impedance. Since the impedance is mainly

inductive reactance, in the common cases, the current tends

to follow the path of least inductance. In a ring, for example,
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the current density is greater on the inner surface. In

a coaxial line, the current flows one way on the outer

surface of the inner conductor and returns on the inner

surface of the outer conductor.

In determining whether the thickness is much greater

than the depth of penetration, the effective thickness

corresponds to the depth of a hypothetical line. In a

symmetrical conductor with penetration from both sides, as

in a strip or a wire, the effective thickness is the depth

to the center of the conductor. In a shielding partition

with penetration into the surface on one side and with open

space on the other side, the effective thickness is the

actual thickness. If the effective thickness exceeds twice

the depth of a penetration, the accuracy of the above

impedance formulas is sufficient for most purposes, within

two per cent of a plane surface.

The "incremental-inductance rule" is a formula which

gives the effective resistance caused by the skin effect,

but is based entirely on inductance computations. Its

great value lies in its general validity for all metal objects

in which the current and magnetic intensity are governed by

the skin effect. In other words, the thickness and the radius

of curvature of exposed metal surfaces must be much greater

than the depth of penetration, say at least twice as great.

It is equally applicable to current conductors,shields, and

iron cores.
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This rule is generalization of (4-48) which states

that the surface resistance R is equal to the internal

reactance X as governed by the skin effect. The internal

reactance is the reactance of the internal inductance L

in (4-4 9 ). This inductance is the increment of the total

inductance which is caused by the penetration of magnetic

flux under the conductive surface. This change of inductance

is the same as would be caused by the surface receding to

the depth given in (4-50). Starting with a knowledge of

this depth, the reverse process of computation gives the

increment of inductance caused by the penetration, and from

that the effective resistance as governed by the skin effect.

The incremental-inductance rule is stated, that the

effective resistance in a circuit is equal to the change

of reactance caused by the penetration of magnetic flux

into metal objects. It is valid for all exposed metal

surfaces which have thickness and radius of curvature much

greater than the depth of penetration, say at least twice

as great.

The application of the incremental-inductance rule

involves the following steps:

(a) Select the circuit in which the effective

resistance is to be evaluated, and identify the

exposed metal surfaces in which the skin effect

is prevalent.
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(b) Compute the rate of change of inductance of

this circuit with recession of each of the

metal surfaces, UL0 /ax, assuming zero depth

of penetration.

(c) Note that the increment of inductance caused

by penetration into each surface is

L
L = -P- • 5 0 (4-51)

(d) Compute the effective resistance contributed

by each surface.

R = WL = 1 0 R ohms (4-52)-•o "ax s

For a surface carrying the current of the circuit, this is

identical with (4-48). For the effect of near-by metal

objects, such as shields, this formula is easily applied in

many practical cases. It is most useful in cases of non-

uniform current distribution, which otherwise would require

integrations.

SA second-order approximation is secured if uL/ax

is computed assuming that the surface is below the

actual surface by the amount given in (4-50).



92

We must now develop an expression for conductor

attenuation in terms of R and the Characteristic

Impedance Zo. In the initial discussion of the-theory

of Stripline, we saw that since a TEM mode is generated,

the expressions for transmission lines hold. One of the

most basic parameters is the propagation constant.

ym .% = 4 (R + j c L) (G + j a C) (4-53)

In the construction of well designed transmission lines,

it is found that R < <w L and G < < wC. Using these

approximations, we can therefore write our propagation

constant as a Taylor's Series and consider only the first

several terms.

z = (j L+ ) = w L +JR) w L l+J 2R(L )

and

4'(JC+ )1/2 .- FRG
4y~~ ~ ~ =ja)C+Gj curC '1 + i

Then

Since

y % J P (4-56)
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the attenuation constant a may be found by taking the RealC

part of equation (4-55) resulting in

ac = R/2 I-J/L + G/2 47LC neper/m (4-57)

From transmission line theory, we know that

z° = %- c (4-58)

Substituting equation (4-58) into equation (4-57) we get

a R GZ nepers/m (4-59)•c 2 Z 0 2

Let us examine equation (4-59) more closely. G is the shunt

conductance between conductors. With the common dielectrics

in use, it is small enough to be neglected. Using this

approximation, equation (4-59) becomes:

a R nepers/m (4-60)
0

Equation (4-60) is not in a convenient working form

and must therefore be modified further. In Chapter II of

this report were given the relations

zo= 4IE (2-1)

and

zo =- (2-3)
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EquttinL equations (2-1) and (2-3) and solving for L, we get

zo (4-61)
L =--f

An e for velocity of propagation (v) as cornpared

to the veloCity of' light (c) wns aso given in Chapter II.

It vTas It •T•S(2-4)
c

4~C
r

The substitution of equation (2-4) into equation (2-61)

leads to

0 r ýJ(4-62)

L= e

If equation (4(62) is used in equation (4-52), there results

Rs C) 
0-63

SZO

But
40 C = 4 x10-7 x 3 x 10 8 -376.7



95

so that

Rs R 04 r 6 Z°0

376.7- Xx

If equation (4-64) is now used in equation (4-60) we get

a more desirable form for the attenuation constant.

a a__ r 0 nepers/cm (4-65)c 753.2 Z 0
0

where x has been changed to n to conform to Cohn's notation

of distance perpendicular to the conductor surface.

We must now evaluate the term Zo in equation (4-65).

Consider the cross section of Stripline as shown in Fig 4-4.

b

Fig 14-4 -Cross Section of Stripline
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5 n is perpendicular to the current carrying conductors.

We must therefore consider the inner surfaces of the two

ground planes and the four surfaces of the center strip. A

charge 6 n inwardly normal to the ground planes requires a

change 6 b - 2 b n in ground plane spacing. Similarily, in

the strip, the necessary changes in dimensions are v = - 2 B n

and t = - 2 5 n. The total change (total differential) for a

uniform change in 6 n is therefore:

6 z 6 z C)z
° z 5 b + 8 0 w+ 0 6 t (4-66)

d n5n

Substituting the values for 8 b, 5 w and 8 t as given above

in equation (4-66), there results

•z 28z 28~z 28z
o 2 o Z 

(4-67)•-n -' -- b% " w - Y t

When equation (4-67) is incorporated into equation (4-65),

the desired expression for the attenuation constant ac

results and is

a. R 0 • - ) neperem (4-68)37.6 0 ab -v -t neer/
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a. Wide Strip case.

Equation (4-68) will first be evaluated for

the wide strip case (w/b - t > 0.35) using equation (2-9)

which is

z0 - 94.15
/ 94-1) ohms (2-9)

+0.0885 C

If the partial derivatives of equation (4-68) are evaluated

using equation (2-9), the following results are obtained:

o Zo W _ w/b 8t/b b (4-69)

S= .15 b \L-tlb (1-t/b) r b

Zo -Nir Zo2  /
r b C (4-70)Sw -97 9- .15 b 1 - t/b + r.085 €r w

Zo -dr Zo2  b
zw/b _ + b Clf (4-71)7t -97.15 b (rt/) m0.0885 e-r -

(1- t/)r

If equations (4-69) through (4-71) are substituted into

equation (4-68), there results
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a U s r o 1 + 2w/b
(376.6)2 b L 1 - t/b (1 _ t/b)2

(4-72)

4b 6C. f + --Crf)1 ÷ Cf nepers/m
0.o885 Er ob 6w Vt

The partial derivatives of Cf' may be evaluted through the

use of equation (2-10) which was

0.0885Er[ r (1 i

In -1 = i ] f/cm (2-10)-1---t~b(i-t/b)2

Make the substitution

1 t/b (4-73)

in equation (2-10). The result is

Cf 0 e 2 x in (x + 1) - (x- 1 )in (x2 _ ) (2-74)

Taking the partial derivative of equation (4-74) with respect

to x, we find that

6 Cf' 0.0885 er 6 x + 1

f r
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Now

since x is not a function of w.

Also

6 x = t/b
2

b ( i - t/b )

and

= b ( - t/b ) (48)

Therefore

SCf' 
6 Cf x

T- T7 b -

0.0885 r (lin x. ) * b -t/b (4-79)
Sx(1 

- t/b

SCf' 
C f ' xw-W- T -X- • --•

0.0885 er ( ~ ) 0 (i-o
dn • + 1 0 0

and
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SC f ' f x

0.0885 r 1 + 1. (it x b (1 t/)b

If equations (4-79) through (4-81) are substituted into

equation (4-72), we see that

( 376.6)' b 1 _ t/b (I _ t/b)2

1

1 (1 t/b) In( i- t/b NI 1 nepers/unit length (4-82)
(1 - t/b)2  1 -1

For copper R. = 8.25 x 10 3 Iqfuare
IM Oh1S/s quare

We also wish our result in decibels per unit length rather

than in nepers per unit length. Remembering that one neper

equals 8.686 decibels and using R for copper in equation (4-82)

we obtain the final result, which is
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2.02 x 10"6 4% Zier

c b

2w,

1• + b ) + 1 (1i + t/b)) in i"t/b ÷)I
( - t/b (1 t/b) 1 -t7b -1

Equation (4-83) is valid in the same range as w/b -t > 0.35.

The term (47 zo) is determined as a function of the cross

sectional dimensions. The term ac is expressed in db/unitC

length where the unit length is that used to measure b. For
example if b is in inches, a is db/inch. If the conducting

C

surface is other than copper, the result should be scaled by

the ratio of the surface resistivity of this metal to that

of copper.

b. Narrow Strip case.

Let us now evaluate equation (4-68) for narrow

Strip widths. It was showm in Chapter II that for w/b -t < 0.35

the Characteristic Impedance could be expressed by equation (2-11)

which is

4b
z 60 2 m ohms (2-11)

0 d
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To evaluate equation (4-68) which is

5 r 0 0 nepers/m (4-68)

C 376.6 F- (468)`7

az az azo o 0
U-, a and t must be evaluated.

Utilizing equation (2-11), we see that

SZ0 60 (4-84)
4Tb

r

az az d ad
o o o 6o o

o V - -w --

ro

and

oZ0  aZ 0 d0  60 (4-)

- - " - d

o 1dr o

Incorporating equation (4-84) thru equation (4-86) into

equation (4-68), there results

a z- [ 1 - -= ]- nepes/unit length (-87)
c 2it ýOb0 -
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Makin- the substitutions Rs = 8.25 x. 4- and

one neper = 8.686 db, equation (4-88) results and is

M1o8402 4-T rf 6 ad d0 N
a •.r fknc 1 + b 0 do0 d )db/unit length

S(,r,7Zo b 0
r o (4-88)

Equation (4-88) is valid for b-- < 0.35 and t/b < 0.25.

Although the equation relating d0 , w and t is

knowm, it is an implicit function of the variables and to

complex to permit derivation of exact formulas for the partial

derivatives. However, a set of five place values of do/d,

versus d"/d' were available, and permitted a precise numerical

evaluation of these derivatives. A plot of (6 do/a w + ý do/6 t)

as a function of the strip cross section ratio if given in Fig 4-5.

Values from this curve may be used in equation (4-88) to obtain

the attenuation per unit length of narrow strip lines.

For d"/d' small, where "d"" is the smaller

and "d"' the larger of the two dimensions "w" and "t", an

approximate formula for d exists. 9
0

These were computed in 1950 by C. Flammer of Stanford

Research Institute.
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d'v = 1/2 1 + 7 •- 1 + ln .- (4-89)

Equation (4-89) is accurate for d"/d' < 0.06. It was

found by Cohn37 that an improvement occurs in equation

(4-89) if it is modified to read

d 0 " (1r 4 d')1/2i/ 1 1 + n T 1 + in--

+ 0 510 d" (4-90)

With this modification, equation (4-90) is extremely accurate

for d"/d' up to at least 0.11.

Differentiation of equation (4-90) yields

a d 0 d o a d 0a d
Yw + _t = _d.o + 0 0 = 1/2 + 0.669 d"/d'

2- 0.255 (d"/d') + 1/2 n in 4. d/" (4-91)

Inserting the results of equation (4-91)

into equation (4-88) gives the final result which is:
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0.011402 r 4e c fb.6
a r- I1 +b 1/2 + 0.669

S(4r Zo) b

- 0.255 (d)/ + 1/2 7c in 4 1( d'/d" (4-92)

Equation (4-92) is applicable for w/b -t < 0.35, t/b < 0.25

and either t/b < 0.11 or w/t < 0.11.

3. Attenuation Graphs.

It is of considerable interest to compare the

formulas for the wide and narrow strip cases in the vicinity

of the transition point w/(b-t) - 0.35. Fig 4-6 shows curves

computed from equations (4-83) and (4-92) for the typical case

of t/b = 0.01. It is seen that the curves show an approximate

agreement near w/(b-t) = 0.35, but differ by about eight per

cent. This discrepany is reasonable since the two attenuation

formulas utilize the derivatives of two approximate Characteristic

Impedance formulas, and, although the latter agree very closely,

their errors will necessarily show up most strongly in their

derivatives. A reasonable transition between the two

attenuation curves is shown in Fig 4-6. It is reasonable to

believe that the resulting composite curve is within a few per

cent of the true one.

The above process has been carried out for t/b

ratios from 0.001 to 0.1. Equations (4-83) and (4-88) and

(4-92) were used in their respective ranges of validity. In
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all cases the curves for narrow and wide strips agree at

w/(b-t) = 0.35 within 1OS. The family of composite curves

is given in Fig 4-7, as a function of Z 0and various values

of t/b. It is seem that minimum attenuation is approached

at Zo, which corresponds to the case of an infinite parallel-

plane transmission line of spacing (b-t)/2. If field fringing

did riot occur, with consequent non-uniformity of current dis-

tribution, the attenuation would be independent of strip width

and Characteristic Impedance. The effect of this current non-

uniformity is therefore quite large in the useful range of

Characteristic Impedance.

Fig 4-7 applies to copper conductors. For other conductors

the attenuation should be scaled proportional to Rs. The ordin-

ate parameter is a b/ 4 7 in db(kmc)-/2. Note that thisc uc r

gives a c directly in db per inch at a frequency of 1 kmc, when

e r = 1 and b = 1 in. The total attenuation when a dielectric

material fills the line is given by

27.3 1 tan 6
c= ac + r db/unit length (4-93)

C

0

4. Measurement of Attenuation.

In order to check the correlation between theoretical and

measured values of attenuation several stripline spirals were

built and evaluated. A spiral was used since it was felt that

this was the only practical way to get a representative length

of Stripline in a reasonable amount of space. All spirals had

a Characteristic Impedance of 50 ohms. Lines A and B were built
40

and tested by Wigington, while line C was constructed and eval

by the author.
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The method of measurement is shown in Fig 4-8. From

frequencies of 30 to 2400 megacycles simultaneous measure-

ments were made using both a Rhodes and Schwarz Diagraph

and a Hewlett Packard power meter with its accompanying

thermistor mount. Good correlation was found between the

values of attenuation determined from the Diagraph and from

the power meter. The power meter reading was used since it

could be more accurately read.

The Diagraph is essentially an automatic Smith Chart

which will read attenuation and phase shift directly through

the use of a moving spot of light. The power meter was bal-

anced with the Stripline Spiral out of the circuit. The line

was then broken and the Spiral inserted. The attenuation due

to the Spiral is then read directly from the meter.

Above 2400 megacycles only the power meter was used.

When total Spiral attenuation exceeded 10 decibels, the power

meter could not be used directly and a slight modification

was necessary. Individual General Radio pads were measured at

a given frequency. Enough of these pads were inserted in the

line so that the difference between the total value of the paWs

and the expected attenuation of the Stripline was less than 10

decibels. The power meter was then balanced with the pads in

the line. Finally, the pads were removed and the Spiral in-

serted. The total attenuation was then the sum of the pad

attenuation and thb reading on the power meter.
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METHOD! [

SZO 0t3 R•'S DIAGRAPH
OSCILLATOR ,..,.,,.,< •ATTEN. • • • . ITEST

T " "l., LINE

S........ 20 DB ZDu- 30.300 a©. • - --

ZDD-300-2400Mc.
SUNKNC nNN

REFERENCE LINE LINE

I. SET POWER LEVEL AND DIAGRAPH TO READ 0 DB.
2. BREAK UNKNOWN LINE AT X AND INSERT TEST LINE.

3. READ ATTENUATION DIRECTLY FROM DIAGRAPH.

METHOD 2 TEST I POWERI
METER

"Q
OSCILLATOR , X

6 DB,,, [HP477 B1 HP 430C

AT TE N, X TERMINATEDi I O 0

THERMISTER MOUNT

I. ESTABLISH REFERENCE POWER.
2 BREAK LINE AT X AND INSERT TEST LINE.

5. READ ATTENUATED POWER.

4. CALCULATE ATTENUATION.

COAXIAL COMPONENTS
GR 50 Ohm CABLE, ADAPTERSTEES• ATTENUATORS• ELLS.

OSCILLATORS

R • S SMLM OSC., 30-300Mc.
GR 1021 SIG. GEN.; PLUG-IN P2,250-g20 Me.

P 4,900- 2000 Mc,

GR 1218- A UNIT OSC., 900- 2000 Mc.

HP MOD. 616A SIG. GEN., 1800-4000 Mc.
HP MOD. 685A 5200-8300 Mc.

R•S.-RHODE AND SCHWARTZ

GR •- GENERAL RADIO CO.

HP -- HEWLETT-PACKARD CO.

ATTENUATION
Fig. 4-8. MEASUREMENTs• METHOD
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It should be noted that no neasurements were made on

Spirals A and B above L400O niegacycles. Above this frequency

values were calculated from equation (5-25). This equation

appears in the chapter on Stripline Transient Behavior.

In the neasurcnent of Spiral C, it was observed that

the attenuation began to rise sharply above 3500 megacycles.

No informtion was available as to the increase of loss tan-

gent and the decrease of dielectric constant with frequency

was available locally. Correspondence with the manufacturer

(Minnesota Manufacturing and 1Mining Company) provided only

one additional value of loss tangent and dielectric constant.

Since theoretical attenuation depends on these two constants

direc:tly, its accuracy is only as good as that of these

paroaeters. Wigington'0s results are shown as Fig 4-9a and

the author's as Fig 4-Tb. Table 4-1 is also included to show

the information of Fig 4:-5b in numierical form. Finally a

picture of Stripline Spirals A and C is shown. Spiral A is

opened up to show its interior, while Spiral C is in its

assembled form.
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TABLE 4-1

Theoretical vs. Measured Attenuation of Spiral C.

Frequency Calculated Measured
(mc) Attenuation Attenuation

(db) (db)

30 0.5674 o.41
4o0 o.6522 0.52
50 0.7400 0.60
60 0.8244 0.63
70 0.8943 0.68
80 o.9622 0.72
90 1.033 0.82
100 1.098 0.9
125 1.251 1.04
150 1.395 1.15
175 1.518 1.36
200 1.657 1.50
250 1.899 1.70
300 2.126 1.82
350 2.244 2.10
400 2.452 2.40
450 2.722 2.60
500 2.947 2.90
6o0 3.321 3.20
700 3.680 3.41
800 4.o26 3.63
900 4.262 4.2

1000 4.689 4.3
1250 5.389 5.2
1500 6.313 6.2
1750 7.064 7.0
0oo0 7.674 7.2

2400 8.780 9.0
3500 11.667 ii.60
5200 15.89o 19.90
6000 17.81o 23.50
7000 20.240 27.70
8000 22.470 28.80
8200 22.960 28.90
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ABSTRACT

A transfer function for Stripline is found using standard

transmission line formulation. This transfer function is

broken into two parts, dielectric response and skin effect

response. A set of curves is given for dielectric response.

Skin effect response is found from the curves in an article

by Wigington and Nahman46 which is included as an Appendix.

Finally, a practical example is worked demonstrating the

use of the analysis. Comparison of the results of this

example with those determined experimentally shows good

correlation.
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CHAPTER V

A TRAITSIEIT ANALYSIS OF STRIVPIITE

A. Introduction.

Since the use of Stripline to perform logical operations

in a computer is a basic aim of this investigation, it will

be necessary to consider its transient properties. Any

digital logic operation depending on signal amplitude will

necessarily involve square pulses to represent the "1" and "0"

states. The maximum possible rate of performing logical

operations will then be limited in part by the maximum

achievable rise time of Stripline. The means of predicting

this maxcimum rise time as well as the variables determining

it will be found from a transient analysis. This analysis

will follow an analysis done by Wigington. 0 Wigington's

paper is the only transient analysis that has been done to

the author's knowledge.

B. Theoretical Model.

To begin the transient analysis of Stripline it is

necessary to find its voltage transfer function. It was

shown earlier in this report that Stripline operates in the

TEM mode. Since this is the case, the formulas for general

transmission lines hold. The steady state solution for a

voltage wave on a general transmission line is

1u8
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V Ae + B e (5-i)

where

a + j 3 = ( (R + JWL) (G + JWC)

1 - distance from the sending end of the transmission line

R,L,G,C = resistance, inductance, conductance and capacitance

per unit length of line

A and B = Complex constants

The function of interest is that of a voltage transfer in

a matched line. The first term of equation (5-1) represents

the incident wave while the second term represents the reflected

wave. Since a matched line has no reflected wave, the second

term of equation (5-1) will be absent. Equation (5-1) then becomes:

V - V(O) el"I (5-2)

where

V (0) is the sending end voltage

From equation (5-2) the voltage transfer function becomes:

F(w) - -42l - erl e M

- e (coo 1 j sin 01) (5-3)

In equation (5-1) the propagation constant T was defined as

[- [ +jw L) (G+WjwC) (5-4)
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Let us now examine the parameters R, L, G and C for the

case of Stripline. In Chapter IV of this report, it was

shown that

z = (4-41)0o 2 7t r O0

where
Z = Impedance of a round wire for very high frequencies

f = frequency of interest

g = permeability of the medium

a = conductivity of the medium

r = radius of wire
0

It is shown in Ramo and Whinnery41 that equation (4-41) is

valid for r 0 /6 > 5.5 if a 10%5 error can be tolerated (where

8 is the depth of current penetration into the conductor).

In Stripline r0 o - since the conductors are actually plane

rather than circular. Also for copper at 3 K mc, 8 -- 1.22 x 10 -meters.

The assumption that ro/8 > 5.5 is therefore quite valid.

Equation (4-41) may be rearranged to read

S(l + j)z = 8 , ro (5a
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Let us define

2 2
Kl2 Mr2 4 i (5-6)

Nit r a)

Inserting equation (5-6) into (5-5) there results

= = (K + j) (5-7)

In the discussion following equation (4-14) it was shown that

tan E = -L (5-8)
ew

where

tan 5 = loss tangent

a - conductivity

e - permittivity of the medium

w = angular frequency in radians

The equation for a parallel plate capacitor is

c. a (5-9)

where:

e - permittivity of the medium

A - Area of one plate

d = distance between plates
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Equation (5-8) may be rearranced to read
crA

tan 6 d (5-10)

Utilizing equation (5-9) and the basic definition of

conductance, there results

tan 6 = G (5-11)

Now let us examine equation (5-4) which was

Y=[(R + J w L) (G. + jwC) J/2 (5-4)

Consider the term (R + J w L). It must be remembered

that there are two types of inductance to be considered,

that due to skin effect and that calculated assuming no

current penetration into the conductor (L.). The resistor

term R is essentially due to skin effect. The term

(R + j w L) may therefore be expressed with the help of

equation (5-7) as

(R + j W L) ( (Z + j w L o)

j j L) (5-12)
"r2 er2

Now equation (5-11) is
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tan G (5-11)
WnC

Define

C tan b = K2  (5-13)

Then equation (5-12) becomes

G = K2 w

Through the use of equations (5-12) and (5-14), equation

(5-h) becomes

[ K1,Jr. K4~lw +jw L co ) (K 2 W+j(0C) 12 (5-15)

Equation (5-15) can be rearranged to read

c U+ l•J) 1/2 1/2

T jwLjo CU ] [+ 2%21+ (5-16)

Equation (5-16) is rather unwieldy and may be simplified

by expanding each one of its bracketed terms in a binominal

series. The general binominal series expansions is
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2

(I+ x)n 1 + n x + (n -1) . < 1 (5-17)
2!

We must first examine the bracketed terms of (5-16) to see

if the condition ( 2< i) is met. The "x" term in the first

bracketed term is

K/j ( (1÷ +K
-- 2 ( 5 -1 8 )Kjw L

Evaluation of (5-18) depends on evaluation of KI. K1 in turn

depends on the assumption that

K1
K1 <<1

This assumption will therefore be made and its validity

checked after K has been evaluated. In the second term of

equation (5-16), the validity of

K2  < < (5-19)JC

must be checked. Now

2 C 2 (5-20)
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But from equation (5-13)

K2
tan 2 - (5-1)

At 3 knc tan 5 < 0.01 for GB 112 T Dielectric. The

assumption of (5-19) is therefore justified.

Using the first two terms of the binominal expansion

in each term of equation (5-16), there is obtained

2%f2 2 2o

K .-J • - )(J)]•-

Now it was shown that ( ) < < 1 and it will be subsequently shown

that

K .(i+j)
<<1.

2 f2 .I7O L

It is therefore valid to drop the last term of equation

(5-22). Under this assumption equation (5-22) becomes
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[ JK 1 (1+J) K2
r j C- 1 2 T24L L-- (5-23)

or

K (i + j)f( K2 Ro 0CU
jwT+ 2 R°0 2 2

where

and

Lw

The first term is a simple delay and is not of interest

in this analysis. We may therefore conclude from equation

( 5 -24) that

1 KI -w K2 2RO (5-25)

2 r IR 2

and

P M (5-26)
2 T2 R0

The development has now proceeded far enough to evaluate

the constant K1 . The work of Chapter IV resulted in Fig 4-7

which expresses Stripline attenuation as a function of its

parameters. The ordinate of Fig 4-7 is
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adb b (Kixnc 5I/2
-- (5-27)

The attenuation constant U in equation (5-27) is in decibels,

whereas the attenuation constant of equation (5-25) is in

nepers. Using the conversion factor from decibels to nepers,

we see that

I a flnejb (cc)1/2
y, = c_• nepers (cycle)-

r

C43. x 1o- y (5-28)

Equation (5-25) is made up of two terms, the first due

to copper losses (ac) and the second due to dielectric

losses (ad). If equation (5-28) is solved for a nep and thec

result equated to the first term in equation (5-25) the

desired solution for K1 results. It is:

2'~ y'' H~
K 2 y r o (5-29)

The expression we wish to examine to determine the

validity of equation (5-22) is



128

K< < 1 (5-30)

4w L-

Let us examine equation (5-30) for a "worst" case.

Take:

Y = 1.7 x 10-3 (maximu= ordinate on Fig 4-7)

no= 98.5

b = 0.125 inch

r= 2.6r

C = 0.553 jpNfd/in.

These values were obtained from the Table of Characteristic

Impedance Measurements given in Chapter I. If these values are

-8
used in equation (5-28) and (5-29) we find that K1 8.91 x 10

The value of L- can be found by realizing that

Ro= EC(5-31)

or
2

Ijo=R 02C (5-32)

Inserting the given values of Characteristic Impedance

and Capacitance per unit length, we find that Iso 5.37 X 109 henries.

If a frequency of 3 Kmc is assumed

K1  -4~~i
<1.22 x 1 < < 1 (5-33)

4-T Lw
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Then the assumptions required for the binominal

expansion are justified and we may proceed with the

development.

C. Stripline Transfer Functions.

The transfer function to be investigated can now

be written from equation (5-3), (5-25) and (5-26). It is

-K2RolW - Ki 1 1 J Kll
-%2 - VK 1 ,[2o 1•R _____ J

F()) = 2 e 2 e 2-2R (5-34)

In our investigation of equation (5-36), it would be

desirable to be able to apply the physical realizability

conditions given for transfer functions of lumped constant

systems to transmission line transfer functions. Bode 4 2

shows that provided the delay of propagation term in the

expression for the propagation constant (equation 5-24) is

subtracted out, the analogy is valid. Since the first term

of equation (5-24) has already been removed in the derivation

of equation (5-34), F(w) must satisfy the realizability

conditions for lumped constant transfer functions. These

conditions are given by Bode43 and Balbanian44 and are:
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(i) Zeroes and Poles are either real or occur in

complex conjugate pairs.

(2) The real and imaginary components are respectively

even and odd functions on the real frequency axis.

(3) None of the poles can be found in the right hand

plane.

(4) Poles on the real frequency axis must be simple with

imaginary residues.

(5) No Poles of the voltage transfer function F(w) can

lie at 0 or -.

(6) The Zeroes of F(a) may be multiple mnd can lie any-

where in the s plane.

(7) From physical reasoning, it is obvious that F(o) -0

as w --i- ± andI F(w) I_< l for allow.

For those who may be unfamiliar with the pole zero concept

the following definitions are given:

(1) A Zero is that value of frequency which causes F(w)

to go to zero.

(2) A Pole is that value of frequency which causes F(W)

to go to •.

If condition (7) is met, the other conditions will be met.

Examination of equation (5-34) shows that for co > 0, condition

(7) is met but for w < 0 this condition is not satisfied.



131

Lot F(a)) be broken into two parts such that:

F(W) = 1(c) + F2 (c) (5-35)

whe re

FlM() = term due to dielectric loss

F2 ((w) term due to skin effect

Consider first the dielectric term

- K2 R° 1i

3(M) e 2 ( _> O) (5-36)

Since the attenuating case is wanted for both positive and

negative frequencies, it seems obvious that for all wu, Fl(w)

should be

- KRl 1 Ic20

Fl(o) = e (for all w)(5-37)

Now let us consider the shin effect terms

- Kl~ 1 -IU -j K 1 T(l

242 Ro 21  R°

Fo )= e 2iplicie 0 [e0i

For simplicity,, define
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K -- (5-39)
2 -,[2 R

0

With equation (5-39) inserted, equation (5-38) becomes:

F,(w) e -Klw e J (5-40)2

-KTOn (1 + j

Equation (5-40) must hold for negative as well as

positive frequencies. Bode 45 states: "In any real physical

circuit, the real component of the impedance is an even

function of frequency and the imaginary component is an odd

function. In other words, the real component of the impedance

at a negative frequency is equal to its value at the corresponding

positive frequency, while the imaginary component at a negative

frequency is the negative of the imaginary component at the

corresponding positive frequency". Let us then postulate

-K4, ( (l -,j)'

eK4 • (l -j) (5-41.)

and examine the validity of equations (5-40) and (5-41) under

Bode's conditions. From equation (5-40)
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R e [F2((0) ] e [e -KJ 4 . .+ j]

= e - cos J (5-4.2)

and from equation (5-41)

e - K JCD cos K 47T (5-43)

Therefore

R e [F12(w) R R e [F2 (-o) (5 -44)

and Bode's first condition is fulfilled. Also from

equation (5-40)

I m [F(o -I m [e - K -f (1 + j)

= -e sin K -C (5-45)

and from equation (5-41)
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I m F2(.W) I m e

- e sin K 4••T (5-46)

As a result of equation (5-45) and equation (5-46)

I M [ F2( <u)] = -Im [F 2 (M)3 (5-47)

and Bodets second condition is fulfilled. Our postulation

is therefore valid. In summary then

F2 (W) - e Y, 4wC (1 + J) CU>0

=- e " Kq-TW (1 -J) (D < o (5-48)

It is desirable to express F2 (P) as a function of J3.

We therefore make the following transformations:
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F2 (a)) e -K .e42j)

= e - K i (5-49)

and

-K477- (1-j) -K v4TJV(l-j) 'J
F2 ( -) = e - e - T ( J)

-e K4- 2 j IwI (5-50)

Comparison of equations (5-49) and (5-50) shows that for w < 0

F 2(w) = r.2(-) (5-51)

Now if we let s = jw and use analytic continuation, we obtain

the final result which is

- K1 1-T

F 0(s) = e- K e 0 (5-52)

D. Skin Effect Transient.
46

Equation (5-52) has been solved by Wigington and Nabman.

This paper is included as Appendix VII. From this analysis,

the impulse response is found to be
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f 2(t) = a t -3/2 e-03/t t > 0

= 0 t < o (5-53)

where

K 1

0

and

[K1]

In a similar manner, the step response was found to be

g _(t) = erfc 4TT7/ t >0

= 0 t < 0 (5-54)

and the ramp response is

h2 (t) =1/a Jw terfc .' dr>

= 0 T < 0 (5-55)

where:

w - t - a for t > a

w - 0 for t < a

a = 0-100% rise time of a unit ramp.
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Equation (5-53) is shown Graphically in normalized form as

Pig 2 of Appendix VII whereas equation (5-55) is showm

graphically in normalized form as Fig 3, 4 and 5 of that

Appendix having normalized ramp rise time as a running

parameter. The curve for a = 0 corresponds to the step

response (equation 5-54). Use of these curves will be

discussed later.

E. Transient Due to Dielectric loss.

The transfer function for the diclectric was given as:

- F2 Ro 1 Il1

F1 (c) e 2

0e (5-37)

where:

K2 R 1

K 0 2

The transform of equation (5-37) is given by Cambell and

4+7Foster as

K0

fl(t) 02 ) (5-56)
it ( + Ko0
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Equation (5-56) is the dielectric impulse response and

is shown in normalized graphical form as Fig 5-1.

The dielectric step response can be obtained from the

impulse response (equation 5-56) by the following manipulation:

Gl(s) = 1/s F1(s)

t K

-C I( 2 + Ko 72

=1/2 + 1/v tan-1 (t/Ko) (5-57)

Let us now examine equation (5-37), (5-56) and (5-57).

The following observations may be made;

(1) For the analysis performed the mathematics holds

for all time, both positive and negative, according

to the transform Tables.

(2) Equation (5-37) is supposedly a network transfer

function, yet it is not analytic.

(3) The time response is from a transfer function

which has no phase time and no delay, yet it seems

to satisfy the requirements as a network function,

except for analyticity.
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(4) Physical reasoning would require that there be no

response prior to an e::citation, i.e., the response

should be zero for t < 0 and for t -+o, g(t) -+1.

Equation (5-57) fulfills the condition gW(t) - l as

t ->, but for t < 0 gC(t) - 0 only as t -+-c i.e.

gl (t) j 0 for t < 0.

(5) If equation (5-55) is assumed to be true for t > 0

only (with f(t) - 0 for t < 0), then the constant

1/2, in equation (5-57) is not obtained in the step

response and gl(t) - 1/2 as t -+- rather than a

value of unity as it should.

(6) The dielectric step response was obtained from the

impulse response by integrating in the time domain.

Let us find the step response in the frequency

domain, then transform it to the time domain. The

dielectric impulse response was

-Ko 1w! -Ko Isi
F1 (wn) = e = e (5-57)

The step response in the following domain would then be

-Ko I sl
G1 (t) = e (5-58)5
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From Table 1 of Cambell and FosterJ

-K IsiOIS K0 (-9

Pair 633: e 1/s-i/n tan"I ( - (5-59)

Pair 107:1 ÷l- t > 0 (5-6o)
S

Pair 201: F1 + F2 -G1 ±+ G2 (5-61)

Equations (5-58) through (5-61) may be manipulated to yield

the transform mate of equation (5-58) as follows:

Ko I- S/

SK

SGi + G2 = Ul(t) r > 0 (5-62)

Equation (5-62) may be further manipulated to yield the

same result as that given by equation (5-57)
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gl (t) = 1 -1l/ tan" (K o/t)

= 1/1 [1/2 + it/2 tan-1 ( Ko/t)]

= 1/It [Iv/ + tan-1 (t/K.) ]
M 1/2 + 1/g tan"1 (t/K0) t > 0 (5-63)

Note that equation (5-63) is valid only for t > 0 whereas

equation (5-57) is valid for both positive and negative time.

Physical reasoning tells us that for t < 0, g2 (t) should be

zero while for t-+- g2 (t)--l. Equation (5-63) therefore is the

result required. Let the mathematics be true in detail for

t > 0. In order to overcome the objection resulting from (5),

observe that the DC value of a step excitation over all time

(from - c to + co) is 1/2. Since there is no delay and the

transfer function at zero frequency is unity, this appears

as a step of value 1/2 at the output. The response due to

frequency components greater than zero is described by the

arctangent function and is added to the step due to the DC

term. In addition, to preserve the integral relationship

between the impulse and step response the requirement that

the area under impulse response for afl time is unity, an

impulse of value 1/2 at t = 0 must be postulated. Figure 5-2

shows equation (5-56) in graphical form.
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We now have the impulse and step response for the dielectric.

Finally, the response to an arbitrary ramp will be considered.

It is shown in Gardner and Barnes49 that if the impulse response

is known, the response to any arbitrary driving function may be

found by convolving the driving function and the impulse re-

sponse in the time domain. This principle has already been

used in finding the ramp response to skin effect in Appendix VII.

Let us postulate the following normalized unit ramp:

0 x < 0 x = t/K°

r(x) =

x/a o0<x < a a a/K0

1 1>a

where:

a = 0-100% rise time of a finite ramp.

Equation (5-56) modified as described above consists of

two parts; the initial impulse and the part due to the rest

of the impulse. Each part will be dealt with separately and

the results added. In normalized form equation (5-53) is:

K0 f 1 (t/Ko) 0 1/2 + 1 t > 0

A[, + (t/Ko)
2 ]

=0 t < 0 (5-65)
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The response to a unit ramp r(x) will be of the form:

hi(Y) I 1/2 r(x) + J f(x) r(y-x) dx (5-66)

hla (Y) + hlb (Y)

Considering the second term of equation (5-66) in conjunction

with equation (5-65) and letting x = t/K there results

hlb(Y)= f l 1 2) r (y-x) dx (5-67)0 7(il + x)

Observe that when the scale change x = t/KO is made in

equation (5-65), fl(t/Ko) = fl(x), preserving the area under

to impulse response to be unity. Equation (5-67) must be

considered in three parts corresponding to the three parts

of r(x) (equation 5-64)

Case I: y < 0 h b= 0 (5-68)

Case 11: 0 <y<a

"h" - dx .

lb(Y) - f ( a + X2)

a 1 Lytan1y -12 hl I+ Y 2 (5-69)



Case III: y > a

4 ~foyC ry /\
h lb(y) = V/i/ +2 /i a+ x 2

b (1 + x2 ) fy

= h/7 tan"I (y-U) + i/ax x

1 1QanI t (- )1/2 (n ,+y 2 (5-70)
1 + (y-a)

If the appropriate raoii responses are included in h la(y)

the required equations are obtained:

h1 (y) = 0 y < 0

h1 (y)=y/2a + I/C-n [y tan"1 y - 1/2 in (I + y2)] 0 <y <a

hl (y)=i/2 +/i ltan1 (y-G) +1/Cn [y (tan- ' - tan1'(yYa))

- 1/2 in + y ) I y > a (5-71)+ (y•a)ý

The behavior of equations (5-73) is correct in that

hl(O) = 0; hl(a) in Case III reduces to that of Case II;

For large y, h1 (y)-+gl(y)-+l; and for a-+O, hl(y)-+gl(y).

For ease in working practical problems, equations (5-71) have

been put in graphical form and are shown as Fig. 5-3. The

practical use of Fig. 5-3 in conjunction with the curves of

Appendix VII will now be shown in a practical example.
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F. Experimental Verification:

1. Measurement Procedure:

A theoretical analysis is only as valid as its

agreement with actual results. Let us proceed then to an

experimental verification of Stripline transient behavior.

At the time that the transient analysis was begun, it

was thought to be desirable to be able to record the input

and output waveforms from a Stripline configuration on graph

paper. Consequently, a study was undertaken resulting in a

report included as Appendix VIII. This report compares

oscilloscope and graphical results and imposes limitations

on the speed of the recording sweep. The procedure employs

a Lumatron sampling attachment and a Ballantine peak read-

ing voltmeter. As can be seen from Fig. 2 of Appendix VIII,

the observed pulses were those of an SKL pulse generator.

To observe the transient response of a Stripline configuration

then, it is only necessary to; (a) record the output pulse of

the SKL generator, (b) break the signal line between the gen-

erator and the Lumatron delay unit and insert the device and

(c) record the resulting output pulse of the device. Since

the system is assumed linear, any degradation of the SKL

pulse must be due to the Stripline device (the degradation

due to the rest of the system is included in the measurement

of the SKL pulse).
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2. Transient Response Exsple:

In order to use the theory described in the

preceding sections, it is first necessary to approximate

the input pulse to the Stripline device by a series of ramps.

Rather than use a graphical recording of the input pulse, it

was decided to use the equivalent oscilloscope photograph.

Consequently, Fig. 3b of Appendix VIII was decided on and

blown up to 8 X 10 inch size. It was overlayed with graph

paper and approximated by a series of ramps. The result is

shown as Fig. 5-4. The reader may wonder why the essentially

straight line from (0, 0) to (1.0, 0.834) was broken into the

three sections, (0, O) to (0.35, 0.283), (0.35, 0.283) to

(0.715, 0.583) and (0.715, 0.583) to (1.0, 0.834). This was

done in order that the individual ramps would fall in the

range of the tabulated curves of Fig. 5-3 and Appendix VII.

The Stripline device under investigation was the Spiral

used for attenuation measurements in Chapter IV. We must

therefore first find the values of Ko and which respectively

describe the dielectric and skin effect responses of the

Spiral. These constants can be found from equation (5-25)

which was

KI__--_ K2 Row

a (w)- 2K 47 + 2 nepers/unit length (5-25)

K2 Ro 1
Define KO - 2
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and
=[K1J 2

then

a (w) K w 0 4 MP w nepers (5-72)

Now

1 neper - 8.68 db.

so

a (w) - 8.68 (K w + 42-0.) db. (5-73)

From Table 4-1 in the chapter on Stripline attenuation,

we see that

frequency a theoretical Ct measured

4 00 mc 2.45 db 2.4 db

3500 mc 11.67 db 13.6 db

Using these values of frequency and theoretical attenuation

(determined from the graph of Fig. 4-7), we can obtain from

equation (5-73)

o.282 - 25.2 Ko X 108  + 7.1 X 104-

and

1.35=-220Ko X 08  + 21X10 4 4-

Solving equation (5-74) and (5-75) simultaneously, we find

that

( X 7.3x10 1

and

Ko - 3.57 X 10"1
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a. Dielectric Response:

Now that the constants Ko and P have been

obtained, we can use Fig. 5-3 to obtain the dielectric

response of the Stripline Spiral. The four ramps obtained

from Fig. 5-4 will be considered individually. The total

dielectric response is then obtained by adding the individual

responses (superposition).

al. First Ramp:

Amplitude - 0.283

Rise Time - a - 0.35 X 10-9 sec.

c a , 3.5 x 10"10 .9.82
K0  0.357 X 10"10

t__ = t -28 t (t in 109 sec.)
xK 3.57 X 10

From Fig. 5-3

t (l0"9 sec.) x - 28 t Response 0.283 Response

0.05 1.40 0.09 0.025

0.10 2.8 0.22 o.o62

0.15 4.2 0.36 0.102

0.20 5.6 o.48 0.136

0.25 7.0 0.62 o.176

0.30 8.4 0.75 0.212

0.35 9.8 0.88 0.249

0.40 11.2 0.93 0.263

0.45 12.6 0.96 0.272
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t (10-9 see.) X - 28 t Response 0.283 Response

0.50 14.o 0.97 0.275

0.55 15.4 0.98 0.276

0.60 16.8 1.0 0.283

0.65 18.2 1.0 0.283

0.70 19.6 1.0 0.283

0.75 21.0 1.0 0.283

0.80 22.4 1.0 0.283

0.85 23.8 1.0 0.283

0.90 25.2 1.0 0.283

0.95 26.6 1.0 0.283

1.0 28.0 1.0 0.283

1.05 29.4 1.0 0.283

1.10 30.8 1.0 0.283

1.15 32.2 1.0 0.283

1.20 33.6 1.0 0.283

1.25 35.0 1.0 0.283

The last column may be soewhat confusing. The response

of Fig. 5-3 is based on a ramp of amplitude unity. Since the

first ramp has only an amplitude of 0.283, the response of

Fig. 5-3 must be adjusted accordingly.

a2. Second Ramp:

Amplitude - o.583 - 0.283 - 3.00

Rise Time - (0.715 - 0.350) X 10-9 - 0.365 X 10-9

2-g5 X 10o9 = 10.2

3.57 X 10"11
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t (1-9 sec.) x - 28 t Response 0.30 Response

0.05 - 0.35 0 0 0

0.10o- 0.35 0 0 0

0.15 - 0.35 0 0 0

0.20 - 0.35 0 0 0

0.25 - 0.35 0 0 0

0.30 - 0.35 0 0 0

0.35 - 0.35 0 0 0

0.40 - 0.35 - 0.05 1.4 0.09 0.027

0.45 - 0.35 - 0.10 2.8 0.21 0.063

0.50 - 0.35 - 0.15 4.2 0.34 0.102

0.55 - 0.35 - 0.20 5.6 o.46 0.138

0.60 - 0.35 - 0.25 7.0 0.58 0.178

0.65 - 0.35 - 0.30 8.4 0.73 0.214

0.70 - 0.35 - 0.35 9.8 0.87 o.261

0.75 - 0.35 - 0.40 11.2 0.93 0.279

0.80 - 0.35 - 0.45 12.6 0.95 0.285

0.85 - 0.35 - 0.50 14.o 0.96 0.288

0.90 - 0.35 - 0.55 15.4 0.97 0.291

0.95 - 0.35 - 0.60 16.8 1.0 0.30

1.00 - 0.35 - 0.65 18.2 1.0 0.30

1.05 - 0.35 - 0.70 19.6 1.0 0.30

1.10 - 0.35 - 0.75 21.0 1.0 0.30

11.5 - 0.35 - 0.8o 22.4 1.0 0.30

1.20 - 0.35 - o.85 28.8 1.0 0.30

1.25 - 0.35 - 0.90 25.2 1.0 0.30
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The value of 0.35 X 10-9 seconds subtracted from the

time in column one may cause some confusion. It must be

remembered that we are interested in the superposition of

the contribution of a number of ramps. If ramp one starts

at time t - O, then ramp two does not start until time

t - 0.35 X 10-9 seconds. In a similar manner ramp three

begins at time t - 0.715 X 10 seconds and ramp four begins

at time t = 1.0 seconds.

a3. Third Ramp:

Amplitude - 0.834 - 0.583 - 0.251

Rise Time = (1.000 - 0.715) X 10-9

- 0.285 X 10-9 sec.

a 0=°.285 x lO-9 = 8.0
3.57 x 10n

t (10-9 sec.) x = 28 t Response 0.251 Response

0.05 - 0.715 0 0 0

0.10 - 0.715 0 0 0

0.15 - 0.715 0 0 0

0.20 - 0.715 0 0 0

0.25 - 0.715 0 0 0

0.30 - 0.715 0 0 0

0.35 - 0.715 0 0 0

0.40 - 0.715 0 0 0

0.45 - 0.715 0 0 0

0.50 - 0.715 0 0 0
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t (10-9 sec.) x = 28 t Response 0.251 Response

0.55 - 0.715 0 0 0

o.6o - 0.715 0 0 0

o.65 - 0.715 0 0 0

0.70 - 0.715 0 0 0

0.75 - 0.715 = 0.035 o.98 0.076 0.019

0.80 - 0.715 - 0.085 2.38 0.215 0.054

0.85 - 0.715 = 0.135 3.78 0.38 0.095

0.90 - 0.715 = o.185 5.18 0.538 0.138

0.95 - 0.715 - 0.235 6.58 0.71 0.178

1.00 - 0.715 = 0.285 7.98 0.862 0.216

1.05 - 0.715 - 0.335 9.38 0.925 0.232

1.10 - 0.715 - 0.385 10.78 0.950 0.238

1.15 - 0.715 - 0.435 12.18 0.96 0.240

1.20 - 0.715 = o.485 13.58 0.97 0.243

1.25 - 0.715 = 0.535 14.98 0.97 0.243

a4. Fourth Ramp:

Amplitude = 1.00 - 0.834 = 0.166

Rise Time - (1.15 - 1.00) X 10-9

- 0.15 X 10"9 sec.

a.° 0-15Xl°"9 4.2
3.57 X 10 -11

t (10-9 sec.) x - 28 t Response 0.166 Response

0.05 - 1.0 0 0 0

0.10 - 1.0 0 0 0
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t (10"9 see.) x = 28 t Response 0.166 Response

0.15 - 1.0 0 0 0

0.20 - 1.0 0 0 0

0.25 - 1.0 0 0 0

0.30 - 1.0 0 0 0

0.35 - 1.0 0 0 0

0.40 - i.o 0 0 0

o.45 - 1.o 0 0 0

0.50 - 1.0 0 0 0

0.55 - 1.0 0 0 0

0.60 - i.o 0 0 0

0.65 - 1-o0 0 0

0.70 - 1.0 0 0 0

0.75 - 1.0 0 0 0

0.80 - 1.0 0 0 0

0.85 - 0.0 0 0 0

0.90 - 1.0 0 0 0

0.95 - 1.0 0 0 0

1.0 - 1.0 0 0 0

1.05 - 1.0 I 0.05 1.4 0.24 0.039

1.10 - 1.0 o 0.10 2.8 0.534 o.o89

1.15 - 1.0 a 0.15 4.2 0.830 0.138

1.20 - 1.0 - 0.20 5.6 0.905 0.150

1.25 - 1.0 - 0.25 7.0 0.930 0.154
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a5. Total Dielectric Response:

The total dielectric response is found

by adding the response of the individual ramps at a given

time. For instance, the total response at time t - 1.25 X 10-9

seconds is

(0.283 + 0.30 + 0.243 + 0.154) -o.98

t (10-9 sec. ) Total Dielectric Response

0.05 0.026

0.10 0.062

0.15 0.102

0.20 0.136

0.25 o.176

0.30 0.212

0.35 0.249

0.40 0.290

0.45 0.335

0. 50 0. 377

0.55 o.414

0.6 0.461

o.65 o.497

O. 70 0. 544

0.75 0.581
S0.80 o.622

0.85 o.666

0.90 0.712
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t (10- sec.) Total Dielectric Response

0.95 0.761

1.0 0.799

1.05 o.854

1.10 0.907

1.15 0.962

1.20 0.967

1.25 0.980

Total dielectric response is shown in graphical form

as Fig. 5-5. For compai'ison, the input pulse approximation

has also been included. As can be seen, the dielectric

causes the rise time of the input pulse to deteriorate somewhat.

b. Skin Effect Response:

Now that the degradation of the input pulse

rise time due to the dielectric has been taken into account,

we wish to examine the degradation of rise time due to skin

effect. This is done by approximating the dielectric response

shown in Fig. 5-5 by a series of ramps and applying these

ramps to the graphs of Appendix VII. As in the dielectric

response analysis, the ramps were chosen so that they fell

in the range of the graphs.

bl. First Ramp:

Amplitude = 0.25

Rise Time = a a 0.35 X 10-9 sec.
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p t/ - 7t X 10-12 - 137 t (t in 10-9 see.)

(13 = 7.3 X 10"12 was determined in section F 2)

S. 
a/ 0.3o.5 X 1o.9 .4

a -/P -7.3 X 10o' 48

For this value of a, use Fig. 4 of Appendix VII.

t (10- se.)P = 137 t Response 0.25 Response

0.05 6.85 m.4 0.01

0.10 13.7 0.13 0.03

0.15 20.6 0.25 0.06

0.20 27.4 0.35 0.09

0. 25 34.3 0. 44 0.1ii

0. 30 41.1 0. 56 0. 14

0.35 48 0.70 0.18

o.4o 54.8 0.76 0.19

o.45 61.7 0.80 0.20

0.50 68.5 o.81 0.20

0.55 75.4 o.84 0.21.

0.6 82.2 0.85 0.21

o.65 89.1 0.86 0.22

0.70 96.o o.87 0.22

0.75 102.8 o.88 0.22

0.80 109.5 0.89 0.22

o.85 3-16.5 0.89 0.22
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t (10-9 sec.) P - 137 t Response 0.25 Response

0.90 123.3 0.89 0.22

0.95 130.1 0.89 0.22

1.0 137.0 0.90 0.23

1.05 143.9 0.90 0.23

1.10 151.0 0.90 0.23

1.15 157.5 0.90 0.23

1.20 164.5 0.90 0.23

1.25 171.2 0.90 0.235

As was the case in the dielectric response analysis,

the graphs assume a ramp of unit amplitude. Column four

of the above table adjusts the amplitude of the graph to

the ramp under discussion.

b2. Second Ramp:

Amplitude = 0.62 - 0.25 = 0.37

Rise Time - (0.80 - 0.35) X 10"9

- 0.45 X 10-9 sec*

o.45x 10192U . " 61.7
7.3 X 10

Using Fig. 4 of Appendix VII, we obtain the following table.

t (109 sec.) p - 137 t Response 0.37 Response

0.05 - 0.35 0. 0 0

0.10 - 0.35 0 0 0

0.15 - 0.35 0 0 0

0.20 - 0.35 0 0 0
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t (i0O9 sec.) P - 137 t Response 0.37 Response

0.25 - 0.35 0 0 0

0.30 - 0.35 0 0 0

0.35 - 0.35 0 0 0

0.40 - 0.35 - 0.05 6.85 0.04 0.02

0.45 - 0.35 - 0.10 13.7 0.08 0.03

0.50 - 0.35 , 0.15 20.6 0.23 0.09

0.55 - 0.35 - 0.20 27.4 0.32 0.12

0.6o - 0.35 , 0.25 34.3 0.36 0.13

0.65 - 0.35 - 0.30 41.1 0.47 0.17

0.70 - 0.35 - 0.35 48.0 0.58 0.22

0.75 - 0.35 , 0.40 54.8 0.64 0.24

0.80 - 0.35 - 0.45 61.7 0.73 0.27

0.85 - 0.35 , 0.50 68.5 0.77 0.29

0.90 - 0.35 = 0.55 75.4 0.80 0.29

0.95 - 0.35 - 0.60 82.2 0.83 0.31

0.0 - 0.35 m 0.65 89.1 0.85 0.32

1.05 - 0.35 - 0.70 91.0 0.86 0.32

1.10 - 0.35 = 0.75 102.8 0.86 0.32

1.15 - 0.35 - 0.80 109.5 0.87 0.32

1.20 - 0.35 - 0.85 116.5 0.87 0.32

1.25 - 0.35 a 0.90 123.3 0.88 0.33

It will be noted that 0.35 X 10-9 seconds is subtracted

"from. all values of time in column one. The reasoning is the

same as that used in the dielectric response, i.e., the
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second ramp does not begin until ramp one has been on for

0.35 X 10-9 seconds.

b3. Third Ramp:

Amplitude - 0.96 - 0.62 - 0.34

Rise Time a (1.15 - 0.80) X 10-9

w 0.35 X 10-9 sec.

g. 0.5X 10- 9 48

7.3 X 10

Using Appendix VII, Fig. I

t (10-9 sec.) p --137 t Response 0.34 Response

0.05 - 0.80 0 0 0

O.O -0.80 0 0 0

0.15 - 0.80 0 0 0

0.20 - 0.80 0 0 0

0.25 - 0.80 0 0 0

0.30 - 0.80 0 0 0

0.35 - 0.80 0 0 0

o.4o - o.8o 0 0 0

0.45 - 0.80 0 0 0

0.50 - 0.80 0 0 0

0.55 - 0.80 0 0 0

0.60-0.80 0 0 0

So.65 - 0.80 0 0 0

0.70 - 0.80 0 0 0

0.75 - 0.80 0 0 0

0.80 - 0.80 0 0 0
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t (lO"9 sec.) P - 137 t Response 0.34 Response

0.85 - 0.80 - 0.05 6.85 0.04 0.01

0.90 - 0.80 - 0.10 13.7 o.14 0.05

0.95 - 0.80 - 0.15 2o.6 0.25 0.09

1.0 - 0.80 = 0.20 27.4 0.35 0.12

1.05 - 0.80 - 0.25 34.2 0.44 0.15

1.1o - 0.80 - 0.30 41.1 0.58 0.20

1.15 - 0.80 - 0.35 48.0 0.70 0.24

1.20 - 0.80 = 0.40 54.8 0.73 0.25

1.25 - 0.80 - 0.45 61.7 0.80 0.27

b4. Fourth Ramp:

Amplitude - 1.0 - 0.96 n 0.04

Rise Time a (1.31 - 1.15) X 10-9

= 0.16 X 10-9 sec.

0.16 X 10-9a- 12= 21.9

7.3 X 10

For an a of 21.9, Fig. 3 of Appendix VII was used to determine

the table for the fourth ramp.

t (10-9 sec.) P - 137 t Response 0.04 Response

0.05 - 1.15 0 0 0

0.10 - 1.15 0 0 0.

0.15 - 1.15 0 0 0

0.20 - 1.15 0 0 0

0.25 - 1.15 0 0 0

0.30 - 1.15 0 0 0
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t (10-9 sec.) P 137 t Response 0.04 Response

0.35 - 1.15 0 0 0

0.40 - 1.15 0 0 0

0.45 - 1.15 0 0 0

0.50 - 1.15 0 0 0

0.55 - 1.15 0 0 0

0.6o - 1.15 0 0 0

0.65 - 1.15 0 0 0

0.70 - 1.15 0 0 0

0.75 - 1.15 0 0 0

0.80 - 1.15 0 0 0

0.85 - 1.15 0 0 0

0.90 - 1.15 0 0 0

0.95 - 1.15 0 0 0

1.0 - 1.15 0 0 0

1.05 - 1.15 0 0 0

1.10 - 1.15 0 0 0

1.15 - 1.15 0 0 0

1.20 - 1.15 6.85 0.12 0.005

1.25 - 1.15 13.7 0.33 0.013

b5. Total Skin Effect Response:

Total skin effect response is found by

adding up the contributions of the individual ramps at a

( given time. Thus, for t = 1.25 X 10 seconds the total

response is (0.235 + 0.33 + 0.27 + 0.013) - 0.84
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t (10- 9 sec.) Total Response

0.05 0.01

0.10 0.03

0.15 0.06

0.20 0.09

0.25 0.11

0.30 0.14

0.35 0.18

o.4o 0.21

0.45 0.23

0.50 0.29

0.55 0.33

0.60 0.35

0.65 0.39

0.70 0.43

0.75 0.46

0.80 0.49

o.85 0.52

0.90 0.57

0.95 0.62

1.0 0.65

1.05 0.70

1.10 0.74

1.15 0.78

1.20 0.80

1.25 0.84
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Now the total skin effect response is really the

transient response of the Spiral, since we started by

approximating the dielectric response. Figure 5-6 presents

the results in graphic form.

A photograph of the transient response of the Stripline

Spiral was made utilizing the method described in section F 1.

The signal line between the pulse generator and the Lumatron

delay unit was broken and the Spiral inserted. The resulting

waveform was photographed and blown up to 8" X 10" size.

This picture is included for comparison and follows Fig. 5-6.

Correlation between the theoretical transient response given

by Fig. 5-6 and measured transient response given by the

picture following Fig. 5-6 is quite good. Both have rise

times of about 1.25 X 10-9 seconds.

Wigington40 also did an example of his paper although

his calculations were not included. His input pulse is

shown as Fig. 5-7. The theoretical vs. measured response

of his Spirals are shown as Fig. 5-8. A sun== of the

characteristics of these Spirals are included as Appendix IX.
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G. Sumary

We have seen that knowing copper and dielectric thickness,

dielectric constant, loss tangent and desired characteristic

impedance, we can find the transient response of a Stripline

device. The analysis proceeds in the following steps: (1)

approximate the input pulse by a series of ramps, (2) apply

these ramps to the graph of Fig. 5-3 and add the contribution

of the individual ramps to obtain the dielectric response,

(3) approximate the dielectric response by a series 'of ramps,

and (4) apply these ramps to the graphs of Appendix VII and

add the individual contributions to obtain the skin effect

response. This response is the transient response since we

have taken dielectric degradation into account by considering

dielectric response as the input pulse to the skin effect

analysis.
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i66 PROCEEDINGS OF THE IRE February

Transient Analysis of Coaxial Cables
Considering Skin Effect*

R. L. WIGINGTONt AND N. S. NAHMANt, ASSOCIATE: MEMBER, IRE

Summary-A transient analysis of coaxial cables Is made by The origination of this problem was in the design of
considering the skin effect of the center conductor as the distorting an oscilloscope system for observing very fast rise times,
element. Generalized curves are presented by which the response of
any length of coaxial cable can be predicted if one point on the at- 1 m~s or less. In triggered oscilloscope systems a signal
tenuation vs frequency curve is known. An experimental check on delay path (usually a simula'ted line or a coaxial cable)
the analysis is made by comparing measurements and prediction of is necessary to allow time for the trigger circuits to
the responses of several dliferent coaxial cables. detect the pulse to be observed and to start the sweep.

The delay of this path is 50 mnAs or longer in present
systems. As shown in this paper, the distortion in this

N A STUDY of oscilloscope systems for use in ob- amount of coaxial cable is very serious for millimicro-
serving voltage waveforms of the duration of a few second transients. Therefore, along with the other
millimicrosecouds (1 inls= 10-' sec), the problem limitations of oscilloscope systems (such as rise time of

of the distortion of waveforms by the high frequency the signal amplifiers, writing speed, and vertical sensi-
loss of coaxial cable was encountered. Elementary con- hility), the distortion due to the signal delay cable must
sideration of the problem indicated a degradation of be considered. Perhaps a knowledge of tile form of this
fast rise times (1 mps or less) duc to greater attenuation distort ion will enable the extension of the range of oscil.
of the high-frequency components of the signal. loscope systems which are limited by the signal delay

In polyethylene dielectric coaxial cables, the conduc- distortion.
tance loss is extremely small. Polyethylene has a dissi- If preserving the rise times in fast pulse circuits is in
pation factor of 0.0031 at 3000 mcl and less at lower any' way critical to the proper operation of the circuitry,
frequencies. Likewise, in air dielectric cables the con- one must begin to consider the skin effect distortion in

ductance loss is even less. Therefore, the major portion 10-inc prf circuits for long cable runs, and in 100-mc prf
of high-frequency loss could not be blamed onil leakage circuits, the distortion would be troublesome even in
conductance. The other source of loss in coaxial cable is short cable lengths. The practice of using special small
the series resistance of the center conductor. For analy- size coaxial cable to conserve space results in greater
sis the skin effect of the outer conductor was considered attenuation per unit length than for larger cable of the
to be lumped with the skin effect of the center conductor same characteristic impedance, and thus, also makes
increasing it slightly. Using empirical data to evaluate the skin effect distortion greater.
the skin effect constant achieves this directly. Ordinary Another example of a problem in which the analysis
analysis of transmission lines ignore this resistance as may be very useful is in the analysis of regenerative
being negligible. However, at frequencies at which the pulse generators, a circuit which is essentially a loop
skin effect of conductors becomes significant, the analy- consisting of anl amplifier and a delay circuit.' For prac-
sis must include its effects, both as series resistance and tical, high rep-rate pulse generation, the delay circuit is
inductance, usually a coaxial cable. The pulse shape obtained is a

In this analysis, a transmission line is treated as a composite of the characteristics of the cable and of the
four-pole network. With the aid of an approximation amplifier.
which is good at high frequencies, an analysis including In short, for any electronic circuit application using
skin effect and neglecting dielectric effects can be made. coaxial cables as transmission media to provide either
All calculations are in mks units, time delay or transmission of millimicrosecond pulses,

POSSIBLE APPLICATIONS the effects of skin effect distortion must be considered.

Before proceeding with the analytical details of the ANALYSIS
problem, a few words about the engineering applications For a transmission line of length, 1I terminated in its
would be indicative of the role which skin effect distor- characteristic impedance, Zo, and with propagation con-
tion in coaxial cables may play in contemplated and stant, Y, the following relation exists between input

future systems using fast transients. (E) and the output (Es) voltages as functions of com-

"*Original manuscript received by the IRE, August 20, 1956; plex frequency:'
revised manuscript received, October 18, 1956.

t Natl. Security Agency, Washington, r). C. 'C. C. Cutler, 'The regenerative pulse generator," Paoc. IRE,
SUniv. of Kansas, Lawrence, Kan. Formerly with Nati. Se- vol. 43, pp. 140-148; February, 1955.

curity Agency, Washington, D. C. I The complex variable is the Laplace Transform variable ,.
A "Reference Data for Radio Engineers," Federal Telephone and Eqs. (1) and (2) comprise the Laplace Transform equations of t4e

Radio Corp., 3rd ed., p. St. system difftreniial equations.
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E -"(1) K,
where in general pOterm ,Li'L K

-j = %/(R + pL)(G + pC) (2a) A P"- term = KP'"2 C -

z0 = PL (2b) te L L

For high frequencies (skin depth small with respect to 4Lvý2urf

conductor radius), the skin effect impedance of a round Using the first two terms of (6) in (5) and letting
wire is:4  Ro= .I/7, T-= %IL-C, results in

Z. = KN/p (3a) E(
-- = e-t.L(,+(KI2so)pt 1 •). (8)

and E,

K (3b) The exp (-lItp) is simply a delay term so that the in-
21rr -/ verse transform of (8) is the inverse transform of

exp (-lkp11/2Ro) delayed an amount IT. The latter
where r is conductor radius, u is the permeability and ar exponential is a common transform and is listed in
is the conductivity of the wire. ordinary Laplace Transform tables.' Its inverse giving

At high frequencies the series resistance of a wire is the impulse response is:
expressed by the skin effect equation. Since an increase
in inductance is also caused by skin effect, it is treated g(l) = ax-3/le-0" x ;_ 0
as an impedance rather than as a resistance. Therefore, = 0 x < 0
replacing R in (2) by Z. and neglecting dielectric leakage where
(G=0), (2) becomes

IK /1KV"y =v'(KVp + pL)pC (4a) a P= -= ,and x= TI.

= 41KI/ + pL (4b) Of greater utility in studying the distortion of fast

PC rise times by skin effect are the step response and the

The transfer function of a length of line is then: response to a linear rise. The step response can be ob-
tained by finding the inverse transform of 1/p times the

E= e-1 =_e,`,w+,cx-,;. (5) transfer function. As before, the transform I/p exp
E, (-lkpi"/2Ro) is listed in tables.$ Therefore in terms of

x and fi as defined above, the step response is:'
The inverse Laplace Transform of the transfer func-

tion (5) is the impulse response of the section of line. For x
simplification, the following approximation was made. ý) - (10)
Expanding the square root in the exponent of (5) by the = 0 x < 0.
binomial expansion, one obtains cerf (y) is the "complementary error function of y."

y(p) - (p'LC + pl"CK)"'I The linear rise referred to previously is defined spe-
- KpIll/C + cifically as the following, and it will be referred to as a

2-V L- + 1 ,- ramp input.2F( ffi - 0 1 < 0
(1.3... 2/-- p`11 (6) ( -3 Kla 0 15 1 0 a

2A-1,! L.-, r L
-1 I >a.

The first term of (6) is the delay term and the remain-
ing terms describe the waveform distortion. The series The response to F(t), called f(l), is given by the con-
is an alternating convergent series (for p"LC>p11`CK). volution of F(1) with the impulse response of the line,
Approximating it by the second term of (6), the p1/2 g(t)
term, results in an error less than the next term, the pO
term. The ratio of these two terms will be used as a f(l) -J F(I - r)g(r)dr.
measure of validity of applying this approximation to
specific examples. This integral reduces to the following special cases:

'S. Ramo and J. R. Whinnery, "Fields and Waves in Modern ' S. Goldman, "Transformation Calculus and Electrical Tran-
Radio," John Wiley and Sons, Inc., New York, N. Y.; 1944. sienta," Prentice-Hall, Inc., New York, N. Y., p. 423; 1949.
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Case I: 0 < t 5 Ti f(t) = 0 since g(r) = 0 for 7 < Ti The real part of 'y(jw) is the attenuation constant of the
Case II: Tlt;5T1 +a transmission line, for the purposes of the analysis,

X - 7) called CU').

Al) J a )TC(f) 
= KV'Ir( nepers/meter. (14)

Case III: t > Tl+a 2Ro

, .6 Any coaxial cable whose attenuation constant obeys

fA) = 7tI "-e-$1ir the above law will have a straight line relation of slope
J0 one-half between the logarithm of the attenuation con-

I3 stant and the logarithm of the frequency. The majority
+ --a r-e-01rdr, x = t - TI. of types of coaxial cable have very nearly this character-

istic (see Fig. 1). The ratio of C(J) to %/I from (14) is
Note that Case II is contained in Case Ill providing therefore a constant for each type of cable and can be
that the integrandsare limited topositivevaluesofronly calculated from the attenuation characteristic 'of the
for Case II. cable.

Considering Case III only and evaluating with the
aid of the identity derived in Appendix 1, one obtains

A(t) =cerf a/ (cerf V/ - cerf i a) (11) t -- -

Integrating the last term of (11) by parts one obtains -

-~ fX -I aid

= cerf cerf

1if cerfV'dr.(1) °,
1 (12)

-a E'. 420 40 t0o 200 400 1000 2000 4000

FRS500Y M NACY IO.(

Observing that the first two terms of (12) cancel the I) Styroflex II inches 6) General Radio-"74A2
corresponding terms of (11), the function f(t) is simply, 2) Styroflex j inch 7) RG-58 A/u

3) Styrfe I inch 8) RG-38, 39, 40/u
4) RG-19, 20/u 9) RG-8/u

fAt) 1  ce f/ d7 X 0 5) RG- u
a) -cerf> (13) References:

xf=-- TI 1), 2), 3)-Brochure of Phelps-Dodge Copper Products Corp.
4), 5), 7), 8), 9)--Reference Data for Radio Engineers,"

with the understanding that for x <a the lower limit is Federal Telephone and Radio Corp., 3rd ed.
zero. 6)-Catalog N, General Radio Co.

As verification, one may note that the limit of the Fig. I-Attenuation vs frequency characteristics for common coaxial
ramp response as "a" approaches zero is simply the step cables.

response. Also, as x gets large, the function approaches In this way, the value of K, and subsequently of
unity; physical interpretation of the function required
t hat this be true. can be evaluated for each case as follows:

1K I 2RCJW \ /ICUfO)\
EVALUATION OF CONSTANTS Q = - -l 1 (15)

Using the first two terms of (6), the propagation con- = GR ...s

stant is approximately where!'. is the frequency chosen to evaluate f. For con-
venience in calculation let I - T1 /T where T, is the time

Ky(p) pT + pl 12 length of the cable and T= %/L'- is the delay per unit
2Ro length.

K W tK) (T o) (2R 2 (,2 7,)-f
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RESISTIVE TERMINATION As the first step, the transformation x =pp is used in

The analysis assumes that the transmission line is (9). The resulting function of p iss

terminiated in its characteristic impedance which is p-1t 1 -- 0(9
given in (4b). However, in the ordinary circuit, a purely go(p) - p 0 (19)
resistive termination of value Re V/i7? would be
used. To see at what frequencies R0 would be a good or
approximation for Z0, the following comparison of p-_0te-.(0

actual Z0 with R0 is made. go(p) = - . (20)

From (4b) 
Vi

To apply the normalized impulse response (20) as
o /PL+K -P + + K _ 1/2 plotted in Fig. 2 to a specific-case,, the 8 is calculated

PC +C-/P from (15) or (16) using physical data. The horizontal

K K2  scale is then multiplied by 0 and the vertical scale di-
= R + 2R--•- + (17) vided by# to obtain the impulse response g(x+Tl) vs x.

2R0CVlp 8RoAC'p______

The fractional deviation of Zo from R0 as a function of p o..
is less than the second term of (17) divided by R,. The o..
smallness of the magnitude of this fraction indicates the 0.20
-closeness of approximation.

Z(p) < (18) 0K K
R, 4ROV-V'p~ 41R0 'Výw (18)

Since RoC=L then (18) is the same as (7). Thus, A, the
validity constant calculated previously is also an expres-
sion of the departure of Z0 from R0. oc.0 ___

GENERALIZATION OF THEORY U0

In order to present curves with which any transient 0 0s 1/3 10 I' s .0 2. 3.0 3.5 4.0

problem involving skin effect distortion of rise times
could be solved, the theory is generalized. First, the Fig. 2-Normalized impulse response,

assumption is rriade that any rising function can be ap- P___ - P_-__2

proximated sufficiently closely for engineering analysis = /;
by a series of a few straight line segments. The response
to any function can then be obtained from the sum of Performing the same transformation in (10), a nor-
the responses to the ramp functions used for approxima- malized step response is obtained.
tion. A generalized ramp response is then the function
to be plotted. he(p) = cerf p ? 0. (21)

Recalling from the analysis the three basic functions,
Impulse response -g(t) To obtain k(x + Tl) vs x the horizontal scale is multiplied

by the proper f.

X7212e/.s. (9) Likewise, performing the same operation on (13), the
g(x + TI) =- normalized ramp response is obtained.

Step response =- f(t) = f(x + TI) = cerf (10) ff(p) = -!;_ ced 4 / I- dp p 9_ 0 (22)• ~a Dop•

Ramp response so k(t) where a'= a/jf.

1 - This represents a family of curves (Figs. 3, 4, and 5)
= h(x + TO J cerf dr (13) with a' as the parameter. Practical utilization of them

again requires only a time scale multiplication of mag-
x k 0, all cases, nitude 8. Thus, the response of a particular piece of

coaxial cable is obtained for a series of ramp inputs withthe problem is to generalize them so that ft, the constant 0 1 0 p r c n i e t m s of a# o ' O t e s e e
which is determined by the specific case, does not appear
in the functions, but only in the scales to which the 6 This transformation is simple; however much confusion can arise

if one does not state-and visualize the problem. This is particularly
responses are plotted, true with respect to obtaining (22). See Appendix 11 for details.
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'10

Fig. 3--Normalized ramp responses,oz

1 0(p) - If -' cerl /I4,

O 400 800 1200 6O0

Fig. .Fig. 5-Normnalzed ramp responses0

fo -(.) -- J cerfy -,.

aa

-°• " and the response was calculated and compared with the

EXPERIMENTAL SYSTEM

i : i [5 Fig. 6 shows the cable comparison test circuit em-
< •L--• .- 'V-----• Y-•-, ..... •,-•.-''i ... ploying the NRL TW~-10 traveling-wave cathode-ray

•:! tubes as the indicating instrument. The"TW-10 has a
Fig. 4-Normalized ramp responses, bandwidth well in excess of 2000 mc, which should be

sufficient for displaying rise times of the order of 0.1
0(p) = o--f 1crf$dp.

a p

aa

spone (21) is obtained. The ramps corresponding to a'f.larger than the largest one plotted are relatively wtndis-

torted.

EXPERIMENTAL VERIFICATION

The experimental verification of the analysis which Fig. 6-Cable comparison test circuit.

has been presented required the use of an extremely
wide-band oscilloscope. Facilities which were available The test pulse was generated by a mercury contact
at the Naval Research Laboratory trere used to obtain relay pulser giving a 60-volt pulse, 45 mcs wide and
the transient response of eight pieces of coaxial cable. having a rise time of 0.25 ms. Some signal delay

Two time lengths of each of four types of cablc, namely, (179 m~as of j-inch Styroflex) was required to allow time
RG-8/U, RG-58/AU, General Radio-874su2, and g-ih- for ofieration of the sweep and intensifier circuits of the
diameter Styroflex, were tested. Thr signal applind to 'crt. The puls observed at the end of the 179-mm s delay

was clled thee standard pulse. Cable test sections of
hSe Acknowledgment. either 150 or 250 mes were added, and the response
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of the added sections to the standard pulse, as well as segment, were calculated from the general curves in
the standard pulse itself, were recorded photographi- Figs. 3, 4, and 5.
cally. Time reference was added to each photograph by The general curves consider ramp responses for ramps
applying a 1000-mc sine wave to the crt and taking of amplitude unity; therefore, it was necessary to cor-
double exposures. rect the amplitudes as listed in Table I. Points (in time)

for calculation were preselected so that when the ramp
responses were shifted according to the correct to (listed

Data was taken from the photographs using the sine in Table I) addition of ordinates would give the re-
Wave as the time reference and the maximum amplitude sponse to the standard pulse. The calculated responses
?f the standard pulse as the amplitude reference. as compared to the observed responses are given in

The rise of the standard pulse (Fig. 7) was approx- Figs. 8-11 (next page).
In all cases no attempt was made-to keep track of the

- .zero time position of the transients. No information as
to the time at which the transient first departed from

S ,- - .zero amplitude after passing through a test section with
-- - - respect to the time at which the traisient "entered" the

test section could be obtained. This difficulty is the
° o.*same as is alvays met in relating physical transient data

_____ oInRV°oPOINS to mathematical prediction. The mathematician can0 Omdefine exactly a time before which the system is quies-

. -- .-..... ..... cent. However, the engineer must define the beginning

o .of a transient as the time at which the waveform reaches
,.0 ,o, scsame measurable value.

For comparison of calculation and observation,
therefore, the curves were shifted in time relative to

10 ___ each other so thIe leading edges most nearly coincided at
the region of steepest slope.

EXPERIMENTAL RESULTS AND DEPARTURES

, FROM THEORY

"0. °tFrom the comparisons of Figs. 8-11, one may conclude
00 that in the coaxial cables considered the major cause of

distortion of fact rise time transients is the skin 'effect.
0 1 4 Each type of cable seems to have its own characteristic

0' C •' departure from the predicted response. During this

Fig. 7-Standard pulse and linear approximation, study the causes of some of the departure ha's become
apparent.

imated by five straight line-segments as specified in the First, the analysis involves an approximation in tak-
following Table 1. ing the inverse transform of the transfer function as

TABLE I
ANALYSIS OF STANDARD PULSE

End Points of Segments 0-100 Per Cent RiseLine Segment (10-0 second, Amplitude) Amplitude Time

1 (0.34, 0); (0.68, 0.33) 0.330 0.34X 10 second 0
2 (0.68, 0.33); (0.91, 0.805) 0.535 0.23 0.34X10-1 second
3 (0.91, 0.805); (1.12, 1.03) 0.165 0.21 0.57
4 (1.12, 1.03); (1.34, 0.92) -0.110 0.22 0.78
5 (1.34, 0.92); (5.00, 1.00) 0.080 3.66 1.00

The approximation to the standard pulse is then a expressed in the validity constant A (7). The A for each
succession of ramp functions having rise times and case is indicated onl the graphs (Figs. 8-11). As yet no
amplitudes as specified above and each starting at the quantitative measure has been developed to determine
appropriate to. limits of error due to a particular value of A. However,

The # and appropriate values for a' for each case were the values of A in the examples considered are believed
calculated from (16) and a' =a/p [see (22) 1. Considering to be sufficiently small as to cause negligible error in the
now each example (i.e., 150.m;s delay of J-inch Styro- time range- plotted. One may note that in the propaga-
flex), five ramp responses, one for each approximation tion constant y'(p) (6) the first term ignored is a con-
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stant (p* term) which adds nothing to the distortion F,(p) which represents the waveform observed on the
and only insignificantly affects the amplitude. CRT when the test section is included is given by

The analysis assumes a J0.1 law for the variation of F,(p) - F,(p)Gi(p)G,(p)
attenuation with frequency [see (3) and (4)]. This is
very nearly true for Styroflex cable. However, other = Fi(p)G,(p)G,(p) = F1'(p)G(p)
cables have a somewhat greater exponent, GR-874 being since transfer functions of passive networks are com-
as high as 0.6. A more elaborate analysis using f*, mutative.
0•m_90.5, has been made; however its usefulness is In words, what this means is that the distorting ele-
questionable since it cannot be directly related to the ment, Gi(p) having been present both in observation of
real physical problem. A realistic approach is to search the input and output of the test section allows isolation
for a second distorting factor such as dielectric loss of the characteristics of the test sectijon alone. This is the
which in this study was assumed to be negligible, basis for all comparison type measurement techniques.
Dielectric loss should be greater for GR-874 and other For accuracy, the distortion due to Gi(p) must be of the
polyethylene dielectric cables than for Styroflex, al- same order of magnitude or preferably less than that
though still it should not be the major distorting mecha- due to G2(p). It is less in all cases.
nism. Work on this phase of the problem is continuing.

Useful engineering results may be obtained even CONCLUSION
though the fP' law is not followed exactly by the cable. The analysis as described is a first order theory for
The choice of the frequency at which 0 is evaluated (16) the transient response of coaxial cables. As presented,
.then becomes important. The frequency chosen in this it is useful in engineering problems involving milli-
study wasf, = 1000 mc because the components of most microsecond transients, however, later refinements in
importance were in the region of 1000 mc (considering the theory may permit greater accuracy for cables in
a logarithmic frequency scale). which dielectric loss is an appreciable factor.

The bandwidth of the TW-10 was considered to be
sufficient not to distort appreciably the response. The APPENDIX I

10-90 per cent rise time of the standard pulse is 0.5 mAs. The following identity was useful in the analysis.
Approximately 700-900 mc of bandwidth (to the 3-db L, *,-/-

points) is needed to pass such a rise. The designers of I(x) - /- le-f/rdr = cerf •
the TXV-10 oscilloscope system have established that Tx

the 3-db point of the deflection structure is well in It may be verified by using Laplace Transformation
excess of 2000 mc although no detailed data of deflection operational theorems.' Letting L indicate the operation
as a function of frequency is available. The ringing of taking the Laplace Transform and L-1 the inverse,
which is evident' in some of the responses, is probably dueto the slight impedance discontinuities in the system. I ./-B]1

Another possible source of error is in the nonlinearity = L x"-32e-01. = p e-2"/Op

of the crt deflection as a function of input amplitude. .I 1
Checking this possibility showed that the crt deflection I(x) = L-IL[I(x)] = L-' -1 e-"' = cerf
was within approximately 2 per cent of being linear. A LI p
slight curvature of the field of view (sometimes called This inverse has been listed.'
"pin-cushion effect") made transcription of amplitude Since a function which is expressed as a definite in-
data difficult for time values of 3 to 5 mps after the be- tegral with a variable in the limits is a function only of
ginning of each response. Errors of up to 4 per cent the limits, then
(positive) may arise from this cause.

The RG-8 flexible connection between the TW-10 l(x - a) 3;-/lte-0/dr = cerf
and the waveform to be observed (not explicitly shown J-' -V a
in Fig. 6) does introduce appreciable distortion in the
crt display; however, it does not invalidate the tech- APPRENDIX II
nique used to check the analysis. The normalization of (9), (10), and (13) to obtain

Referring to Fig. 6, let the waveform entering the test (19), (21), and (22) is performed as follows. Consider
section be represented by F,(p).' Let the transfer func- first (9) and (10).
tion of the 15-m;4s RG-8 connecting cable be Gi(p). Also
let Fl'(p) represent the waveform observed on the CRT g(x + Tl) = Al- xt6-5 x a0 (9)
(the standard pulse) when the test section is not in- Ti'
cluded. Then, Fi'(p) = F1(p)Gi(p). Now let Gl(p) be the
transfer function of the test section of cable. Then, h(x + TI) = cerf /- x 0. (10)

These expressions are given in complex variable form as Laplace ' C. R. Wylie, 'Advanced Engineering Mathematics,* McGraw-
transforms of the time functions. Hill Book Co., Inc., New York, N. Y.; 1951.
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Let x=fp by the substitution I-pp. A corresponding change of
- 8/2 scale must be made in the limits by dividing by f

g (o p + T I) = -/'- ( ) "/ + i V " - e

A fX + TOi cerf cdp.
/1 ~a

h(Op + TI) = cerf The functi'on is now set up for normalization by

As written above, the functions g and h are still plotted letting x=Op and plotting the resulting function

on the x time scale although x does not appear in the ex- fo(p) inf(Pp+ TI) vs ppressions. Changing the time scale to the dimensionless iT•/n (

p (P has the dimensions of time) new functions go(p) and a(P) = f(fp + TI) i a cerfs,- . dp
ho(p) are obtained.

P-11/1e-i0 Finally, letting a' =a/fl,

go(p) = p 0 (19) 1f V?.
fo(p) - f -

fo() =-- cerf dp p • 0. (22)

ho(p) = cerf p _ 0. (21) ACKNOWLEDGMENT

For plotting, (19) is changed to The cooperation of the Naval Research Laboratory,
specifically, the group under G. F. Wall, was vital in

) _/ P> 0(20)securing the experimental data. The experiment was set
tgo~p, = 2 0. (20) up and the photographs were taken by them. Also, the

same analytical conclusions concerning the role of skin
Note that in the transformation the shape of the effect in coaxial cables have been reached independently

functions were preserved, and in order to jilot the func- by R. V. Talbot, F. E. Huggin, and C. B. Dobbie of
tions g(x+ T) and h(i+ TI) for any particular physical NRL.
case the horizontal scale is altered by the factor P for Others who have contributed significant amounts are
that case. In (20) the vertical scale must also be altered G. W. Kimball of the Department of Defense, who
by the factor 0. supplied the rigorous mathematical steps to verify (22)

Considering (13), more care must be used in the which had originally been deduced by physical reason-
change of time scales. ing and E. D. Reilly of the Department of Defense who

I p //-'j did the computer programming for the calculation of
f(x + TI)O= a cerf dr x > 0. (13) the curves in Fig. 3, 4, and 5. Drafting for the figures

was done by Paul Peters and Cletus Isbell of the Uni-
In the above, change the scale on the dummy variable versity of Kansas.
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USE OF AN X-Y RECORDER WITH A SAMPLING OSCILLOSCOPE

Abstract:

A method has been described for using an X-Y recorder

to record waveforms having both low and high repetition rates.

Pictorial and graphical recordings were made and limiting

sweep rates established for accurate graphical recording of

waveforms having repetition rates in the order of 100 cps

(assuming the use of the specified equipment). It was also

shown experimentally that the inertia of the X-Y recorder was

sufficient to integrate waveforms having a repetition rate of

over 10 megacycles per second. Finally a 300 megacycle sine

wave is recorded and a statement is made about observation of

waveforms having higher repetition rates.

I. Introduction:

During a recent investigation into the transient properties

of strip transmission line, it became desirable to use an X-Y

recorder to record graphically a fast rise time pulse before and

after passing through a length of strip transmission line.

Considerable difficulty was encountered in actually implementing

the recording of these pulses. Since interest has been shown in

the solution of this problem it was felt that the problem and its

solution should be reported.



II Statement of the Problem:

Any X-Y recorder has two independent inputs, one for the X

axis, the other for the Y axis. If it is desired to plot voltage

vs. time, a linear sawtooth is placed on the X axis and the voltage

of interest is placed on the Y axis. These voltages must of course

be of sufficient amplitude to drive the vertical and horizontal

amplifiers of the recorder and must vary slowly enough so that the

recorder can follow them. The recorder used was a Mosely Autograph

X-Y Recorder, which has a basic sensitivity of 5 millivolts for full

scale deflection both on the X and Y axis. Through the use of step

attenuators, this sensitivity can be reduced to 100 volts for full

scale deflection. Both X and Y axes require a minimum of one second

for full scale travel. These figures are felt to be representative of

most commercially available X-Y recorders.

Now that the signal requirements have been specified, let us see

how these requirements were met. The linear sawtooth required for

the X axis deflection was easily obtained from the Tektronix 545

Oscilloscope by setting the sweep on 100 milliseconds per centimeter

or slower and taking the output from the "Sawtooth - Main Sweep" terminals.

This voltage has a peak value of 150 volts whereas the maximum voltage

the recorder will take is 100 volts. This problem was easily solved

through the use of a one megohm potentiometer as a voltage divider.

The axis zero is set through the use of a zeroing control on the

recorder and the maximum deflection was set by varying the setting of

the one megohm potentiometer.
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The voltage requirements for the Y axis were not so easily met

as those of the X axis. The principle waveform of interest was a

pulse having a rise time of 0.5 nanosecond and a pulse length of

50 nanoseconds. Clearly a recorder requiring a full second for

full scale deflection cannot respond to a rise time of 0.5 nano-

second! How then are we to meet the requirements of the recorder

for the Y axis deflection? The answer to this problem lies in the

use of an oscilloscope sampling attachment, whose operation will be

described below.

The output of the sampling attachment is a series of negative

pulses which are amplitude modulated to correspond to the shape of the

waveform under observation. The sweeping rate is set by the attach-

ment and not by the sawtooth from the oscilloscope. Sweep speed is

a function of the slope of the sawtooth but not of the repetition

rate. To provide a slowly varying voltage for the recorder input, the

peaks of the negative pulses must be integrated. If the number of

pulses per unit time is great enough, the inertia of the recorder

will provide the desired intergration. Since there is one pulse for

each cycle of the input waveform, a high pulse rate depends on a high

repetition rate. For low repetition rates, an integrating network is

required. Fast rise time pulses such as the output from the SKL Pulse

Generator have low repetition rates of the order of 100 cycles per

second. For such pulses an integrating network will be required. It

will be shown below that since the slowest sweep rate of the sampling

unit used (Lumatron Model 222) was 100 nanoseconds for full scale

deflection (assuming that it is desirable to see at least one cycle

of the waveform), a minimum repetition rate of 10 megacycles is of

3



interest. For this frequency the inertia of the recorder will

integrate the negative pulses quite satisfactorily.

III Operation of the Sampling Oscilloscope:

The sampling attachment used was the Lumatron Model 222.

The principles of operation described below as well as Fig. 1

are taken from the specification sheet for this unit. "The

sampling unit produces a very narrow strobe pulse which samples

the signal wave form under investigation. The sum of the

sampling pulse and the instantaneous level of the signal at the

moment of sampling is applied to the sampling diode. The output

of the sampling diode is a narrow pulse, which varies in amplitude

in proportion to the signal at the instant of sampling. This voltage

is amplified in a linear amplifier of only moderate band width,

stretched and applied to the vertical plates of the oscilloscope.

Therefore, vertical deflection at any instant is proportional the

amplitude of signal at the instant of the strobing. In order to take

successive samples of the signal, the moment of sampling is advanced.

progressively, relative to the start of the signal. This is done

by a fast ramp which is started by a trigger signal. When the ramp.

reaches a preset voltage, it fires an avalanche transistor. The

instant of firing is delayed by a slowly increasing voltage on which

the fast ramp rides. The slow ramp provides reset of the sweep to

zero, so that the sampling process may be repeated. The slow ramp is

derived from the oscilloscope sweep sawtooth output.
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SIGNAL
I NPUT SIGNAL SAMPLE SIGNALS -O-T

SAMPLIFIER- I RID Jil[ 1,5 V
(50 Ohm) STRETCHER

(To scope vertical
amplifier)

TRIGGER INPUT

FAST RAMP GENERATOR

I RESET

(From scope SELECTOR

Unblonkling out$weep cathode (to scope Z-axis)
follower)

Fig. I. BLOCK DIAGRAM MODEL 222 SAMPLING UNIT

It should be noted that the apparent sweep speed of the sampling

oscilloscope is only a function of the slope of the ramp, and not of

the actual sweep speed of the oscilloscope.

The Model 22ST sync trigger circuit locks to very high rep

rate signal pulses to provide a 50 kc output to trigger the sampling

unit".
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IV Recording of Waveforms having low repetition rates:

As mentioned above, fast rise time pulses normally have low

repetition rates. The repetition rate of the Model 305 SKL Pulse

Generator for instance is continuously variable up to about 150 cps.

Since one negative amplitude modulated spike is produced for each

cycle of the input waveform, it can be seen that even at slow sweep

speeds, the number of spikes per sweep will be relatively small.

Since a slowly varying voltage is required to drive the Y axis of

the X-Y recorder, it is necessary to integrate these negative spikes.

Of course an integrating network could be built to do the Job,

but it would certainly be more attractive to be able to use a

commercially available instrument. Such an instrument is a peak

reading voltmeter. A peak reading volt meter incorporates circuitry

that responds quite rapidly to fast rising positive or negative pulses

but whose response decays slowly in order to hold the peak value of

the waveform between pulses. This rise and fall time of the circuitry

will vary with the meter used. For purposes of this work a Ballantine

Model 305 peak reading voltmeter was used and the minimum rise and

fall times were determined experimentally. The test setup is shown

as Figure 2.

Using the experimental setup shown in Figure 2, the rise and

fall times of an output pulse from the SKL Pulse generator were observed.

The results were recorded both photographically and graphically for

comparison purposes and are shown as Figures 3-6. Several comments
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SKL LUMATRONSKL SINAL -o MODEL 1201

MODEL 305 DELAY UNIT

PULSE SIGNAL

GENERATOR. IN

10 Db •

LUMATRON
MODEL 222

SIGNAL SAMPLING CONVERTER
OUT

1I0 db

TRIGGER SAW-

SIGNAL OUT TOOTH
S(Across meter). UNBLANKING

l 1T° Cathode of c"'

OSANTOOTH
BALLANTINE MAIN SWEEP

MODEL 305 0 to

PEAK READING 12 sec/•
VOLTMETER TEKTRONIC

MODEL 545
0 SIGNAL OSCILLOSCOPE

INPUT

G ND.

I Megohm

Potentiometer

S et for full scale
S IX axis\,_I Ideflection

MOSELY AUTOGRAF

XY RECORDER

X axis Y axis Ions_ for

o-- n High Frequency
0 i Waveforms

Fig. 2. BLOCK DIAGRAM OF TEST SETUP FOR GRAPHICALLY RECORDING

LOW REPETITION RATE SIGNALS

7



a. Vertical: lv/cm b. Vertical: lv/cm

Horizontal: 0.5 x 10-9 sec/cm Horizontal: 0.5 x 1O-9 sec/cm

FIGURE 3

Photographic record of Pulse Rise Times
for varying time scales
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c. Vertical: lv/cm d. Vertical; 2v/cm

Horizontal: 2 x 10-9 sec/cm Horizontal: 5 x 10-9 sec/cm

FIGURE 3

Photographic record of Pulse Rise Times
for varying time scales
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a. Vertical: lv/cm b. Vertical: lv/cm
Horizontal: 0.5 x 10 sec/cm Horizontal: 1 x 10"9 sec/cm

FIGURE 5

Photographic record of Pulse Fall Times
for varying time scales
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c. Vertical: iv/cm d. Vertical: lv/cm

Horizontal: 2 x 10-9 sec/cm Horizontal: 5 x 10-9 sec/cm

FIGURE 5

Photographic record of Pulse Fall Times
for varying time scales
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regarding the pictures and graphs should be made. First, the waveform

as observed on the oscilloscope is usually thought of as a series of

dots. The continuous trace shown in the pictures was produced by the

100 millisecond/cm sweep and taking a time exposure with the camera.

For the graphic recording, a sweep of twelve seconds per centimeter

was used to allow for the time constants of the peak reading voltmeter.

Sweep calibration showed the sweep to actually take 170 seconds rather

than the 120 seconds expected.

It was stated above that the peak reading voltmeter will follow

quite well a voltage swinging from ground to a plus or minus value but

it will not follow as well as voltage swinging from a plus or minu- value

to ground. The voltage swinging from ground to a negative value

corresponds to the fall time of the SKL Pulse. Comparison of the fall

times shown by the photographs and the graphs shows good corTelation

for all sweep rates. We may therefore conclude by a simple calculation

that if 14 seconds are allowed for full scale vertical deflection,

pulse fall time as shown by the recorder can be expedted to agree with

the value shown by the oscilloscope. If the pulse rise time is compared

in a similar manner, it is found that disagreement between picture and

graph rise times begins with Figures 5c and 6c. For this sweeping rate,

the time constants of the peak reading voltmeter do not allow the re-

corder to follow the pulse rise time correctly. If the sweeping rate

shown by Figure 5b and 6b is taken as the maximum allowable a simple

calculation shows that 50 seconds should be allowed for full scale

vertical deflection of the recorder in order to obtain agreement between

oscilloscope and recorder.
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V. Recording of Waveforms having High repetition rates:

As previously stated, for higher repetition rates, the inertia

of the recorder serves to integrate the pulse without the use of

the peak reading voltmeter. If it is desired to see at least one

cycle of the waveform, then the lowest frequency of interest will

be 10 megacycles since the slowest sweep rate, as determined by

the sampling attachment, is 10 nanoseconds per centimeter. If the

connections marked "X" in Figure 2 are broken and the dotted wiring

inserted, the equipment will be set up for high frequency waveforms.

Essentially all that is done is to by-pass the peak reading voltmeter.

Figure 7 shows pictorial recordings of 10 and 300 megacycle sine waves

while Figure 8 shows graphical recordings of the same two waves.

Examination of these figures shows good correlation. Three hundred

megacycles is the upper frequency limit of the Lumatron Sampling

Attachment. It is felt that if some type of count down unit could be

used, much higher frequencies could be recorded.
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a. 10 megacycle sine wave b. 300 megacycle sine wave

Vertical: 2v/cm Vertical: 2v/in

Horizontal: 10 x 109 sec/cm Horizontal: 1 x 109 sec/cm

FIGURE 7

Photographic Record
of 10 mc and 300 mc sine waves
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APPEIDIX IX

PROPERTIES OF MATERIALS, MEASURNVENT RESUMS,

CALCULATION OF LINE PARAMNLERS

Nominal values for the Stripline delay lines are as follows:

Item Line A Line B

Dielectric Material Glass-Teflon Glass-Epoxy Resin

Dielectric Constant (meas.) 2.73 5.27

Dielectric Loss Tangent (adv.) 0.003 0.03

Dielectric Loss Tangent (caic.) 0.00256 0.0133

Ground Plane Spacing, b (meas.) 0.113 in. 0.116 in.

Copper Thickness, t (meas.) 0.003 in. 0.003 in.

Characteristic Impedance, R0  50 ohms 50 ohms

Strip Width, w (calc.) 0.070 in. 0.035 in.

Length (calc. from spiral design) 7.40 m.,2-.3 ft. 3.68 m..,12.1 ft.

Total Delay (calc.) 4.15xi0-9 sec. 28.2xi0"9 sec.

Delay/unit length, T (calc.) 5.59x10" 9 sec. 7.65xi0"9 sec..

Inductance/unit length, L. (calc.) 279xi0"9 h/m 382xi0"9 h/m

Capacitance/unit length, C (calc.) 112xlO" 1 2 f/m 153xi0"1 2 f/m

Value of the convergence factor,

KI 2--Fc: L. at 10 Mc (For accuracy 2.18x10"2 5.14xiO-2

this should be << 1.)

"ac at 1 Kmc (calc. from meas.) 0.0716 db/ft. 0.232 db/ft.

"c at 1 Kmc (calc. from curves) 0.113 db/ft. 0.185 db/ft.c

P (calc. from meas.) 3.21x10"12 sec. 8.29xi0"12 sec.

K° (calc. from meas.) 5.25xil0" sec. 1.88x10" 1 0 sec.
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ABSTRACT

A general review of matrix network analysis is considered

first. Simplifications are made for the case where the networks

involved are real, lossless and symmetrical. Theoretical

equivalent circuits are derived using an approximate model of

Stripline, a stored power small aperature procedure and a

Babinet Equivalence or duality procedure. Through the use of

these procedures, the discontinuities can be identified with

waveguide discontinuity expressive which are well established

in the literature. Experimental verification was performed by

building physical discontinuities and measuring them via the

tangent relation method. In some cases measurements could be

made directly; in others, it was necessary to measure a cascade

of discontinuities and abstract data for a single discontinuity

through matrix inversion procedures. Finally comparisons of

theoretical and experimental data is made. In general,

correlation is good within the specified range of validity.

It
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CHAPTER VIII

Stripline Discontinuities

f A. Introduction:

The lumped circuit parameters of Resistance, Capacitance and

Inductance are quite familiar. While lumped parameters are quite

valid at low frequencies, at the higher frequencies lumped con-

cepts become invalid and it is necessary to consider distributed

parameters. In this chapter, the problem of realizing the equiva-

lent circuits of a number of Stripline discontinuities will be

considered. Since the operating frequencies of interest are in the

microwave range, these discontinuities will have equivalent circuits

consisting of a number of elements rather than a single lumped

element. By knowing the equivalent circuits of the various dis-

continuities, one is able to synthesize a lumped constant circuit

in the standard fashion, then through the use of discontinuity

equivalent circuits, realize the proper combination of holes, slots

and bends to achieve the desired results in Stripline.

B. General Discussion of Stripline Discontinuities:

A number of points common to all Stripline discontinuities

should be discussed at this point.

1. Discontinuities in balanced Stripline will possess

purely reactive equivalent circuits if (a) the discontinuity

is balanced, (b) the ground plane spacing is less than a half

4'wavelength in Stripline and, obviously, (c) the discontinuity

structure contains no dissipative elements. If the discon-

tinuity structure is unbalanced (unsymietrical with respect to



the ground planes ) the discontinuity will excite the dominant

mode in radial transmission line (the pillbox mode). Since the

4 pillbox mode radiates, radiation resistance then has to be

included in the equivalent circuit. While any practical dis-

continuity structure may be slightly asynmmetrical due to con-

structional difficulties) propagation of higher order modes may

be discouraged by making sure the ground plane spacing is less

than a half wavelength in Stripline.

2. Most of the transverse discontinuity structures (those

occupying a section of the cross sectional plane) in coaxial

line or waveguide have no Stripline counterpart due to construc-

tion problems. As a result it is difficult to obtain a shunt

capacitive discontinuity in Stripline; a shunt inductance can

be obtained through the use of a vertical post. Series induct-

ances and capacitances are quite easily obtained.

3. Since the dominant mode in Stripline is the TEM4 mode)

field distribution can be obtained by conformal mapping as has

already been seen in previous chapters. Conformal mapping is not

valid for higher order modes however. Their solution requires

the Green's function for the region. Since Stripline does not

have a separable geometry the rigorous determination of this

function becomes a major job in itself. It therefore becomes

advantageous to seek solutions for discontinuity structures by

V approximate means.
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C. Microwave Network Theory:

1. Microwave Network Representations:

A symmetric Stripline structure in which only the

dominate TEM transmission line mode is assumed propagating may

be represented by an equivalent microwave network. Transmission

lines may be used to characterize the dominant mode propagating

along continuous uniform sections, while lumped constant networks

characterize the fields due to the nonpropagating higher order

modes which are generated in the vicinity of the discontinuity.

A variety of combinations of lines and lumped circuits may

be chosen to represent a particular discontinuity structure at

specified reference planes. If a number of discontinuities are

considered along the line, their overall effect is completely

determined when the network parameters characterizing each of

the regions is specified. An expression relating an output

"quantity" to an input "quantity," then follows on a basis similar

to that used in lumped parameter network analysis.

Such quantities as voltages and currents (related to the E

and H fields in the region) may be spoken of at points along the

line with the result that techniques using low frequency impedance

parameters, admittance parameters and matrix theory may be used.

It is with this fundamental premise that discontinuity structures

in Stripline may be directly characterized by different network

"or corresponding matrix representations, which allow us to analyze,

and eventually perform measurements on, complex overall Stripline

structures.
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2. Transfer Matrix Formulation:

a. Definition of the Matrix:

A linear two-port network may be used to represent

a particular transmission line structure at certain specified

reference planes. The voltages and currents defined at the two

reference planes may be linearly related by four complex coef-

ficients which completely express the network behavior. The

voltages and currents may be grouped arbitrarily at each refer-

ence plane, so that several different combinations of the coef-

ficients are possible. A variety of network representations

corresponding to each choice of the coefficients then follows.

Thus, it is possible to represent the structure either by these

coefficients or by the corresponding network representations.

If the coefficients are chosen as the representation, they are

conveniently written as the elements of a square (2 X 2) matrix.

One fundamental set of coefficients called the "transfer coef-

ficients" A, B, C, D serve to relate the voltage V1 and current

I1 at the terminal z = T1 to the voltage V2 and current I2, at

the terminal plane z = T2 by the relations

V1 =A V - B 12 (8-1)

and

I1 = C V2 -D 12 (8-2)

where l
A a G "

12 1 % 0 V _2 12 =0

B _V IlI
= 1V 0 D = IVo0

2 2 2 2
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In matrix notation, equations 8-1 and 8-2 may be expressed

as

V:1 A 2 ) QV2 = t V I2 
(8-3)

where

The voltages and currents referred to in equations 8-3 are

shown in Fig. 8-1.

II - (A ) 12

Fig. 8-1: Transfer Coefficient Matrix Repre-

sentation of a Two-port Network.

b. Restrictions Imposed on the Transfer Matrix:

Several restriction-s may be placed on the

"transfer coefficients" when transmission line structures with

specific physical properties are considered. These restric-

tions limit the arbitrariness of the functional form of each

matrix coefficient, so that, once the structural nature is

specified (regardless of the choice of physical network) the

5



matrix follows directly. For a single frequency situation, the

coefficients are constants.

Several restrictions are of interest in the present analysis.

The first of these is that the network be reciprocal.

Reciprocity imposes the condition

A A BI = AD- BC = 1 (8-4)

C D

We..further require that the network be lossless and symmetric.

These conditions require A and D to be real quantities. It fur-

ther restricts B and C to be pure imaginary quantities. For a

reciprocal, lossless, symmetrical (hereafter abbreviated r.l.s.) matrix,

the matrix t becomes

t = (a jb) (8-5)

jc d

where; a, b, c, d are real numbers.

Then

A - ad + bc - 1 (8-6)

If the transfer matrix is non-singular (A ý 0), it may

be inverted so that the voltage and current at terminals T2

now depend on the voltages and currents at terminals T1 .

The inverse of t is t-1 where

tt1 -i t1t -i I 10
St o) (8-7)
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t"I can be obtained from t by using the relation

1 -t d -jb (8-8)

\-jc a Aý 0

But from equation 8-6, for the r.l.s. network A = 1.

Equation 8-8 then becomes

t- dj=b (8-9)

The inversive of equation 8-3 is then

(V2)t (..;:)(8-10)

Finally, the symmetry condition requires that a = d.

The above restrictions and their consequences will appear

later in the development.

c. Consequences of Restrictions:

The restrictions imposed on the matrix elements

by the structural nature reduces the number of independent

complex quantities necessary for a complete network description.

These reductions occur when (a) physical symmetries exist; (b)

the structure is lossless and (c) when the structure is recip-

rocal. The most general two-port descriptive structure is

described by four independent complex matrix elements, a total

of eight real numbers. If it is reciprocal, three elements are

independent and six real numbers result. When; in addition,

physical symmetry exists, the diagonal elements are equal (a - d),

7



and only two independent elements, consisting of four real

numbers, remain. If, furthermore, the structure is lossless,

these two independent elements are real and they serve to

completely describe the structure.

All of the structures considered in this chapter are

r.l.s. so that only two real elements are sufficient for a

complete network description.

d. Cascaded Sections:

When a number of dissimilar two-ports are

connected in tandem, the resulting structure may be represented

by an overall transfer matrix T, or by one of several equivalent

networks. For "n" cascaded two-ports, the overall matrix is the

matrix prcouct (taken in the order of connection) of the individ-

ual matrices. Thus, in general,
n

Tn = tI t2 . . .tn -1 tn k= 1 k (8-11)

If the cascaded r.i.s. two-ports are similar, the overall matrix

is the nth iteration of "unit cell" transfer matrices, t. For

this case

t 2 = t 2 = t 3 .n (8-12)

so that

tn 0 tI tI . . tI = tn

Obviously, the overall matrix may also consist of a

combination of "n" matrices, connected in arbitrary order,

some of which are similar, while those remaining are all

different.

8



If the individual unit cells are r.l.s., the resultant

matrix T will be r.l.s. For an even number of cascaded unit
n

structures, it can be seen that the resulting overall matrix

is even. For "n" even, the physical symnmetry plane will be

located halfway between the physical reference planes of the

overall structure and at the junction between two unit cell

structures. Fig. 8-2 illustrates this idea. In the remaining

discussions only the cascading of an even number of unit

Reference Reference
Plane Plane

Fig. 8-2: Center Line of Symmetry

for Two Cascaded Sections.

structures will be considered. Each structure will be

represented by its corresponding r.l.s. unit cell matrix t.

Once the elements of the unit cell t are known, those

of the overall matrix are obtained either by "n" repeated

matrix multiplications (di.Lsimilar structures) or by raising
th

t to the n power. An example will illustrate the procedure.

(1) Repeated Multiplication of Cascaded Unit

Cells, t:

For n = 2, and t the r.l.s. unit cell, the

9



overall matrix T2 becomes

T 2 -(a .ib> (a ib> :(A 2  JB 2

jc a Jc a jC2 Aj 2

where

A2 = a2 - bc = 2 a - 1 (using eq. 8-4)

B2 = 2 ab

C2 = 2 ac

It can be observed, on continuing this process, that

An and Bn are polynomials in a and b of degree "n." An is

purely a function of a; B is linearly related to b, but isn

a function of a and b.
th

(2) Raising t to the n power:
th

To raise a matrix t to the n power,

it must be reduced to the diagonal form

t = P(S10 0) pS (8-14)

where:

P is a matrix used to reduce t to diagonal form.

P- 1 - Inverse matrix to P.

81, S2 = Eigenvalues of the characteristic determinant.

th
Upon being raised to the n power, equation 8-14 takes the

form

Stn = P / 1n 0 •P-1 (8-150
•0 s 2n
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The characteristic determinant from which the eigenvalues

S1 and S2 are determined is

I l(a-s) jb
- 2 a s + 1 = 0 (using eq. 8-4) (8-36)

jc (a-s)

The r.l.s. unit cell t can be expressed in parametric
th

form for convenience in its n power representation. The

result is expressed as

t =(cosh n x j b s nh x(8-7)

K-J/b sinh n x sinh x cosh n x

J Cn A n)

where:

A = cosh n x = cosh (n cosh-1 a)
n

b sinh nx bsinh (ncosh-I a)Bn = lhxsinh (cosh"I a)

C =-1/b sinh n x sinh x = -1/b sinh (n coshl a)

x sinh (cosh- 1 a)

Obviously x = (cosh l a) in eq. 8-17. The hyperbolic

trigonometric functions of this equation are for the case

a Is 1. For I a j< 1, the circular trigonometric functions

are used. Using the trigonometric identity

cosh2 x - sinh2 x = 1 (8-18)

14. it can be seen from eq. 8-17 that

An2 + Bn Cn = 1 (8-19)

n nii
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An is directly related to the Tschebyscheff polynominal of the

first kind T (a), i.e.,

Tn (a) = cosh (n cosh-l a) = An al> 1 (8-20)

Bn is related to the rationalized Tschebyscheff polynomial of

the second kind U (a);n

Un (a) sinh (n cosh-l a) Bn
Un(a - P 71 _b (-1

The denominator of eq. 8-al can be identified with Bn

of eq. 8-17 by using the identity of eq. 8-18 and realizing

that in the parametric representation of the r.l.s. unit cell,

the element a was replaced with cosh x. For any value of

"n" we now have A and B in easily manipulable closed forms.

Table 8-1 gives the specific polynomial expansions of T (a)

and U (a) for "n" = 2, 4, 6 along with the general recurrencen

formula to be used when higher values of "n" are desired.

e. Inversion of Cascaded Matrix:

In the previous section an overall two-port

structure, represented by a transfer matrix Tn, is stated as

consisting of "n" cascaded "simpler" structures, each with the

associated matrix t. It is assumed that the elements of t are

known,whereupon the elements of the overall matrix are shown

to be polynomials of degree equal to the number "n" of cascaded

sections. However, here it is assumed that the elements of t

are unknown but may be obtained by solving the nth degree poly-

nomial equations contained in the known elements An, Bn, Cn and

12



TABLE 8-1a

Tschebyscheff Polynomial Expansions. For Transfer Matrix Elements

Tn (a) = A (a) = Cosh (n cosh-1 a)

U (a) n _ Sinh (n cosh-1 a)nb a2_

Xn + 1 (a) = 2 a Xn (a) - n 1 (a)

T1 (a)= a U1 (a) 1

T2 (a) 2 a -1 U2 (a) 2 a

T 4(a) =8a4 -8a +1 u4 (a)= 8 a3 -4a

T (a) =32 a6 _48 a4 +18 a -2_ U_ (a)= 32 a 5 -32 3 + 6 a
6

A1,

13



Dn of the specified overall niatrix, T The number of cascaded

t sections. where unknown elements can be solved for by invert-

ing the elements of Tn, depends upon the assumed nature of each

t section. Furthermore, if T is r.l.s., it is not possiblen

to solve for the elements of more than one (n - 1) cascaded t

section unless these sections are all assumed to be similar

structures (unit cells).

Here the inversion problem is one of finding solutions
th

of an algebraic, or transcendental form n degree polynomial.

If the r.l.s. structure is assumed to consist of four cascaded

similar unit cells, then:

T 4 = (A 4  j B4  (8-22)

In polynomial form

A4 = 8 a 4 _ 8 a2 + 1 (8-23)

B4  b(8a 3 - 4a) (8-24)

Solving eq. 8-23 for a, we obtain
1/2

a = + ( t A4) (8-25)

and from eq. 8-24 there results

b= 4  (8-26)

4 a (2 a - )

) The solution of the polynomials of eqs. 8-23 and 8-24 leads to

four different values as can be seen from the multiplicity of

14



signs in eqs. 8-25 and 8-26. The situation is further complicated

by the fact that A4 and B4 may be negative. This multiplicity

increases the number of possible solutions, for each element of

t, to eight.

In transcendental form:

A4 = T4 (a) = cosh (4 cosh-I a) (8-27)

B =bU (a)= b sinh(4cosh- a) (8-28)sinh (cosh- 1 a)

from eq. 8-27

a = + cosh (1/4 cosh-I A4 )

and, from eq. 8-28 (8-2)

S(8--l
Bsinh (cosh-l a)B4

b =+
- sirth (4 cash 1I a)

This form of solution similarly displays the multiplicity of

values, but is more useful than the previous one, in that the

transcendental functions involved are well tabulated.

f. Representations for the Unit Cell, t:

In this section we shall establish relationships

between several useful network representatives of the unit cell

and their corresponding elements of the transfer matrix t. In

each case the dependence of these elements on the measured

parameters Do, So and - y will be emphasized. Do, So and - y

will be defined at a later point in the chapter.

15



The general unit cell may always be considered to consist

of cascaded basic circuit matrices to be written as t • These
C

4 are the transfer matrices corresponding to

(1) A length of lossless transmission line.

(2) A pure shunt susceptance.

(3) A pure series reactance.

(4) An ideal transformer.

In a lossless line the voltages and currents at any point

may be related as:

V -1 V2 cos P (z 2 - z ) + j z° 12 sin P (z2 - z1 ) (8-30)

and

11 =J V2 Y0 sin (z 2 - z1 )+T 2 cos P(z 2 -z 1 ) (8-31)

where
-___r

gg
Xg -transmission line wavelength

In matrix notation eqs. 8-30 and 8-31 are represented as

(V ) ( Cos P (z2 -zl) jz 0 sin P (z 2-Z1))(V2) (8-32)
11fj \jy sin P (z2-Z 1 ) cos P (z " z2 -12/

Therefore the transfer matrix for a lossless line (Fig. 8-3)

is

=t (cose9 iZ sine9)(-3
kJ Yo sin e cosB

where

-=P (12(z2 - z1)

o= l/Zo
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VI Z p V2

ZI :TI Z2 = T2

Fig. 8-3: Model of a Lossless Transmission Line.

The transfer matrix for a pure shunt susceptance may

be obtained by writing the circuit equation for the model

of Fig. 8-4. The result in matrix form is

(:1)= b 1) (V2) 
(8-34)

Vl j b V2

I b I

Z :TI Z :T2

Fig. 8-4: Model of a Pure Shunt Susceptance.

By inspection of eq. 8-34, the transfer matrix of the shunt

susceptance can be seen to be

)(8-35)

17



The pure series reactance can be represented by the model

of Fig. 8-5. Inspection of this model shows the circuit

equations in matrix form to be

f 1 12

Vt V2

1 1-
Z:T1  Z=T2

Fig. 8-5: Model of a Pure Series Reactance.

Ii (1v2 /(8-36)

The transfer matrix eq. the pure series reactance is

then

t )l (8-37)

Finally we consider the lossless transformer. Fig. 8-6

depicts its theoretical model. Straightforward circuit

n,.

0 0I

VI V2

I I

Fig. 8-6: Model of a Lossless Transformer.
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analysis yields the matrices

(lD C 
(8-38)

We then have for the transfer matrix of the lossless

transformer

tt (n 0 i(8-39)

g. Unit Cell, t:

(1) Transformer Network Representation:

Making use of the basic circuit matrices

for two lengths of transmission line connected by a transformer

Fig. 8-7 we have

T =t 1  t t t I

(cos 91 JZo sin l 1 ) es q0Z2 JZ6 sin 92)(8-40)

\JY 0 sin G 1  cos e1 /\O n JYo sin e2 cos e2

0 z

T1 Zo 20

T I 1 4 -- L I - " n : 1 * - L I T ?

Fig. 8-7: Arbitrary Lossless Transformer Network.

If standard matrix multiplication is applied to the

matrices of eq. 8-40, it can be seen that

(8-41)

19



where:

A = n cos eI cos e2 - n"I sin 9 1 sin 9 2

B =j Z° (n cos eI sin G2 + n-n sin eI cos e2)

C = j Y 0 (n sin e1 cos e2 + n-l sin 92 Cos e1)

-1
D - n cos 9 1 cos 82 - n sin 1 sin O 2

If the assumed symmetry conditions (A - D) are applied

to the above matrix, the following equality results:

1cos 8 Cos a2 - n sin e 1 sin o2 -

n cos eI cos 92 - n sin 9l sin e (8-42)

Equating the coefficients of n, we see that

Cos 0I cos =0 - sin e1 sin e2  (8-43)

or

- tan I = cot 92 (8-44)

Relation 8-44 implies

S2 = 91 + (2 n + 1) Tr/2 (8-45)

n - 0, 1, 2,

and

sin 92 - +_ cos e (8-46)

cos e2 = + sin I (8-47)

Using eqs. 8-46 and 8-47, the general matrix expression for t

can be solved for the symmetry condition a - d. The resulting

matrix is

T (A ) (8-48)

2D0
20



where

A = W (n + n- ) cos 0 sin 01

B = j Z( + n cos2 01 + n"I sin el)

c =j Y( +n sin 2 0 + n"I Cos 2 01)

D = + (n + n-1) cos 01 sin 01

Let the following quantities be defined:

11 = - D (8-49)

12 = - s0 (8-50)

eI = - P Do 0(8-51)

02 = - Pso (8-52)

n = V (8-53)

Under the transformations of eqs. 8-49 - 8-53, Fig. 8-7

becomes Fig. 8-8. In the literature this representation

of a microwave network is known as the Tangent Relation

equivalent network. The generalized matrix t can be put

H- - o Du -- so -S.

10 Z o Zo

Fig. 8-8: Tangent Relation Network

4, into the Tangent Relation form through the substitution of

eqs. 8-49 - 8-53 resulting in
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Te =~ B) (8-54)

SD

A -CosPD Cos P S - - sin P D sin

B 0jZ(/YcosPD sin P S +/-Y sin P D coso 8

"C jY (ry sinPD cosPS o+V sin P S cos DO)

D =(./Tsin P DO sin P S +0 /" cos P D cos P So)

In a similar manner, eqs. 8-49 through 8-53 transform

the symmetric matrix of eq. 8-48 to

To =(E F) (8-55)

F = JZ0  cos 2 P D + A-- sin2 P D

G -jY0  sin2 P Do+ Cos P D)

H =+ L-- ssin 2 1D

(2) Symmetric Tee (Pi):

The unit cell may be represented,

alternatively, by a Symmetric Impedance (Admittance) Tee

(Pi) network. The physically symmetric structure is char-

acterized as having two equal reactance (susceptance) series

(shunt) arms.
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For the Symmetric Tee network representation, the unit

Fig. 8-9: Symmetric Tee Network

cell matrices of eq. 8-35 and 8-37 can be put together in the

following form:
TT-t r t s t r =(lI~ J I• k/•01( JXa)I

1+X jxa (2+ (8-56)

Xb 1 X-

Xb Xb

Figure 8-9 illustrates the form of the Symmetric Tee network.

In a similar manner, the unit matrices can be

T1 T2

V, Fig. 8-10: Symmetric Pi Network
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manipulated to give the transfer matrix for the Symmetric Pi

network of Fig. 8-10. The result takes the form:

T ts tr ts =

(JBa 1 0 Ba

B b b

=+ ) l b(8-57)B) Ba
JB a (2 + Bb a) + Bba

b b

(3) Transmission Line Parameters in Terms of

Tee Parameters:

It was previously shown in eq. 8-33 that

a length of lossless transmission line could be represented by

the matrix

t, = (cos 0 JZ° sin 0) (8-33)

\JYo sin G cos j

where 0 = 01 and Yo = 1/zo. If the elements of this matrix

are equated to the corresponding elements of the Symmetric Tee

matrix, relations for Z and 9 can be obtained in terms of the

Symmetric Tee network reactances. The required equivalences are
X

cos 8 l+ - (8-58)Xa

jz° sinO j X (Xa + 2 Xb) (8-59)

24



and

J Yo sin = - J/Xb (8-60)

Now

tan0/2 = 1-COBS (8-61)
1.1cosO

Substituting eq. 8-58 into eq. 8-61 we get

tan e/2 = Xa (8-62)
a (Xa + 2

In a like manner, the substitution of eq. (8-59) in

eq. (8-60) give the relation

Z - Xa (Xa + 2 Xb) (8-63)

(4) Length of Transmission Line Connected in

Tandem:

If "n" identical r.l.s. structures "t"

are connected in tandem and each is represented by a trans-

mission line of length 8 = P1 and Characteristic Impedance Zo,

they form an overall structure "T" which has the same Charac-

teristic Impedance, but a new length 9n = n 0 = n Pl. Now

the matrix representative for the unit cell was shown in eq.

8-33 to be

t M Cos 0  j Z0 sin 0) ( ) (8-33)
SY0 sin e cos / Jc
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For "n" unit cells in tandem, eq. 8-33 then becomes

T = cos n 0 JZ° sin n e

(::sin n cos n !

(An A (8-64)

Matching elements in matrix 8-64 we have

A= cos n e = cos (n cos-1 a)T(a)

where

a = cos G (from eq. 8-33)

Tn (a) = Tschebyscheff Polynomial of the first kind.

and

Bn = Zo sin n 0 = Z sin (n cos-l a)

= b sin (n cos a) = bU(a)

where

b b
o sin e

a, b = elements from matrix 8-33

Un (a) = Tschebyscheff Polynomial of the Second kind.

These last relationships, derived on a network basis, are

similar to the equations resulting from raising the unit cell

A. matrix to the nth power. Hence, the cascading of 5n" identical

r.l.s. structures follow immediately from the transmission line
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representation once the characteristics of the basic unit are

known.

h. Representation of the Unit Cell at Shifted

Reference Planes:

(1) Symmetric Shift at Both Reference Planes:

In first formulating the '"Y matrix for the

transformer network at reference planes T1 , T. a turns ratio

n:l and two arbitrary lengths of line 11, 12 were chosen.

It follows that the representation for this network at

shifted reference planes is brought about merely by adding the

lengths of each shift to the original lengths of transmission

line, and evaluating the new matrix elements. Thus, if we wish

to evaluate the new matrix, as a result of a symmetric shift of

reference planes, we have at T1 , T2

T=(AiJB) (8-55)

where A, B, C are the elements of the matrix of eq. 8-55 and

at T1 ", T2'

T = t T t1

= cos e JZ sin e B(cos JZ0 sin

JYo sin e cos ej) c A)JYo sin 0 cos

(= A JB (8-65)

jC A'/
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where
(B Y +C Zo

A' = A cos 2 e - oz 0  2 0 si n (
2  e

22 2

=Acos 2 e - 1/2 ýBY.o B -YA- s-''n

B I = B cos 2 0 + Zo A sin 2 9 - Zo 02 (1-in2) 2

C" = A i Ccs2d-B i

d = length of shift.

Alternatively, using a Symmetric Tee representation, it

may be shown that if Xa and Xb of Fig. 8-9 are known at T1,

T2 , then after a symmetric shift of length d, the new network

parameters at T1
1 , T2 / are

DX +1X - a (8-66)D D-X
a

DX +1
2 c _x

- D -X a
c

where

D = cot d = cot 9

Xc M Xa + 2 Xb

(2) Shift 'of One Reference Plane by a Half

Wavelength:

If a half wavelength of line is added at

one reference plane of a symmetric impedance Tee network, the
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network at the new reference planes may be expressed in terms

of the original parameters. In matrix form we have

T 1 ( c o s TT J Z O s i n T i) 1 + X a / X b i X a ( 2 + X h X -7

s0 n CO r(-/Xb lXx~ -7

: (-1< + Xa/Xb) - Xa (2 + X a /b)

J/Xb - (1 + Xal/x))

Equating like elements of the equivalent matrices the

following equivalences can be obtained:

Xa = Xa + 2 Xb (8-68)

Also

X =X 2X.D(8-69)

We note that although only one of the two structures is

physically symmetric, the representation for both is symmetric.

If we assume that a measured structure with physical

reference planes corresponding to TI and T2 is represented

by the Reactance Tee network, the input impedance at T is

related to the output impedance at T2 by:

Zn Xl -k + Zo1 (8-7o)
~l~ out

where
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Xa uX 11 X1 2

Xb = X12

XI, X12 = elements of an impedance matrix

at the reference planes T T

We can obtain only I X12 12 from a measurement. The sign

of 12 is therefore left in doubt. If Xb is chosen as + I Xl2 1,

the representation must be taken at T1 , T2 . However, if

X6 = " - X12 1 the representation must be taken at T1 , T2 '.

Only one of these representations is theoretically correct,

whereas both give the correct input-output relationship. As

will be seen under the discussion of the measurement procedure,

the ambiguity of the sign of the mutual element is due to the

inability of the probing arrangement to distinguish between two

voltages whose phases are 1800 apart.

i. Inversion of "N" Identical Unit Cells:

If "N" structures "t" are connected in tandem,

the resulting overall structure "t" may be represented directly

by a transmission line having parameters P 1, Z ; such a line0

consisting of "N" unit cell transmission lines. When 't" is

measured it can be represented by 0 1, Z or by P-1, Zo. These

two lengths occur due to the half wavelength probing ambiguity.'

These lengths are related as

S 1+ T

so that "T" can be represented (including the half wavelength

ambiguity) by Zo, 1 1 + : TT. From this one can determine the
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representation for "t" which, in view of the nth order

multiplicity is given by:

Zo r. 1 T+ T ) + 2_ T n
( n20, 1 . . . N -N (8-72)

I e=0,2I

or
Zo(P 1 + m T

0 1 = 0, 0 1 .. 2 N - 1 (8-73)

There are 2 N solutions; given any of these, the others

may be found. By solving eq. (8-58), (8-62) and (8-63) for

the general case, the equations for the corresponding impedance

network can be found. These equations are

X = Z taemV)m=o,) 1. .... 2 N- 1 (8-74)
am 0 N

and

X c= N in = 0, 1. . .2 N - 1 (8-75)

Although 2 N pairs of parameters are found by using

this procedure, only one set rigorously represents the unit

cell. This pair cannot be experimentally distinguished from

the other pairs; it can be identified only after a comparison

with the theoretically derived parameters.

D. Theoretical Determination of Equivalent Circuits for

Stripline Discontinuities:

1. The Approximate Model:

In Chapter II of this report a rigorous conformal

mapping of Stripline was performed. It was the purpose of

43
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this mapping to obtain the capacitance and thus the Character-

istic Impedance of Stripline. Through the use of a conformal

t " t
U2zzz7xZZ b b

(a) (b)

Fig. 8-11: Determination of Stripline

Characteristic Impedance.

mapping an equivalent strip width D was found (Fig. 8-11) to

take into account fringing capacitance from the actual strip

of width w. For the case of a zero thickness center strip a

rigorous expression for D has been derived by Oberhettinger

4
and Magnus and is

D = b K (k)
K (k')

where

K (k) is a complete elliptic integral of the

first kind.

k = tanh ( w/2 b)

k/ =4i - k2

When w/b > 0.5, corresponding roughly to Characteristic

Impedances less than 100 ohms, D is given to an excellent

approximation by

S= w + Tb in 2. (8-77)
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The structure of Fig. 8-11 may be viewed as two identical

portions of parallel plate transmission placed back to back

"and any incident wave will divide equally into both portions.

Since any geometrically balanced discontinuity in the line

will reflect the same proportion of the incident wave in

both top and bottom portions, and since this proportion is

also that for the total wave, it is not necessary when deal-

ing with normalized quantities to retain both halves in the

line. Thus, in the analysis of balanced discontinuities which

are described in terms of normalized quantities, one need only

consider one half of the structure and may thus employ the

approximate model of Fig. 8-12.

2 _MAGNETIC WALLS

Fig. 8-12: Approximate Model of Stripline.

a. Gap Discontinuity in the Center Strip:

Once the approximate model has been obtained1

the equivalent circuit for a slot in the center conductor of

Stripline can easily be found. 5 9 Fig. 8-13 illustrates the

gap discontinuity. Since the gap extends completely across

the width of the inner conductor, the discontinuity can be

approximated by a gap extending completely across the bottom

of the approximate model.
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Fig. 8-13: Gap in Inner Conductor of Stripline.

But this configuration is the same as a gap of infinite

width in a parallel plate waveguide of infinite width. The

solution for the latter configuration is obtainable from the

already available solution for the E plane slot coupling of

rectangular waveguides given on pp. 373-375 of the Waveguide

Handbook. 3 9  (It should be noted that parameter Bb of the

equivalent circuit of Fig. 7.1-1 on.p. 374 should be a capaci-

tance rather than an inductance as given there.) Fig. 8-14

shows the Stripline gap with its centerline reference plane in

part a and the Pi equivalent circuit for the enterline repre-

sentation in part b. The values of Ba and Bb may be found

from the relations given on page 374 of the Waveguide Handbook.

Bb

0 . 0-

YO T

(a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-14, Centerline Representations for a Gap

in the Center Conductor of Stripline.

34



Equation 1-b of that page becomes with the appropriate Stripline

notation

B a 2b•r i
Sco sh - < < (8-78)

Y -2b
0

Equation 2-b of p. 374 is

b Ba 2 b rrs b•- - -= -l-n csch T--<<
X nc bchT (8-79)

If eq. (8-78) is used in eq. 8-79 and the hyperbolic

trigonometric identities are used, we obtain

Bb b I t s
- - n- -coth - (8-80)
0

where

= 1 D
o Z 3OTT b

X = Stripline wavelength

b = Distance between ground planes

=b --w< 0.5 (8-76)

+ 2 b Th2 w > 0 5  (8-77)
Tr b

b. Slot Discontinuity in the Center Strip:

Using the approximate model Suzuki 6 o has

obtained expressions for a slot in the center conductor of

Stripline. The slot is considered to be cut in one face

of the approximate model. By duality considerations, the

geometry is then related to a flat metal rectangle located
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parallel to the electric field in a parallel plate waveguide

of width equal to the height of the original Stripline. The

equivalent circuit for the metal rectangle in parallel plate

guide is then obtained approximately from an accurately

derived result for a tuned post in rectangular guide.

The formulas for the slot are given below. In the limit

as the slot runs completely across the center conductor, these

complicated formulas reduce to eqs. 8-78 and 8-80 for the gap.

Fig. 8-15 illustrates the slot discontinuity in part a and

the centerline equivalent circuit in part b.

Si

T T T

(a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-15: Slot in Center Conductor (a) Physical Structure

(b) Equivalent Circuit at Centerline Reference Plane.

The parameters Da' and B b are given by

2b wr- 2 X ib n coshWbT-a - lnoh b (8-81)

and
ln sin ~ B'2b

Bb, b l W T a b X +2b(1 +--ln 2) Q (8-82)
b - - b a 2

w

where
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Ni f n T X .,
Q 4I- T -l B lnB ) f(2n¶) n

n=1

N is the integer nearest the quantity

(07/T- 1)

P ex 1/4 1g (2 n r) n2 + T2Q

n-- n

and where

TTs Trd
T -B = cos -2w 2w

The quantity Xn is given by'

X1 = 1, X2 = -1 + 3 B2 X3 = 1 - 8 Bl2 + 10 B4

44X4= - 1 + 15 B- - 45 B+ 35 B

X5 = 1 - 24 B2 + 126 B4 - 226B6 + 126 B8

The functions f (x) and g (x) are plotted in Fig. 8-16

and 8-17. The formulas for B a' and Bb J are applicable only

when T > 0.15 and d/w > 0.25.

2. Small Aperture Procedure:

One very useful procedure for obtaining reasonably

accurate approximate values for the circuit parameters of a

discontinuity structure employs well-known "small aperture"

or stored power considerations together with a variational

"expression. In general terms a variational expression for

series elements can be written as
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2.0 
g(x) vs x

1.8

1.6 -

1.4 9(x)

1.2

1.0

0 I 2 3 4

Fig.8-17 FUNCTIONS EMPLOYED IN SLOT FORMULAS
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B Stored Power
Y 0 Yo (voltage)2 (883)

where a trial aperture electric field E must be inserted into

both numerator and denominator. The voltage term is then of

the form

Voltage JJ n x E * H ds

aperture

where

n = unit vector normal to aperture

E = electric field vector

H = magnetic field vector

H is an appropriate mode function which depends on the

nature of the excitation of the discontinuity and on the type

of waveguide. The determination of the stored power is always

the formidable portion of any such integration, since it involves

integrations over all the higher modes of the waveguide.

The use of the "small apertures" or "stored power"

considerations avoids the necessity for a separate evaluation

of the numerator of eq. (8-83). Instead one seeks the already

available solution for a similar problem in a different wave-

guide cross section. If the guide walls, which are different

in the two problems, do not substantially influence the stored

power (i.e., speaking loosely the distortion of the field

lines) in the neighborhood of the discontinuity, the stored

powers for the two problems may be taken to be equal. For
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"small apertures," the assumption that the guide walls do not

substantially influence the stored power is a valid one. The

stored power expression is extracted from this similar problem

by setting it up in the variational form of eq. 8-83. This

similar problem must, of course, involve a discontinuity of

the same shape and with the same manner of excitation as in

the original problem. The desired susceptance value is then

equal to the already known susceptance value multiplied by the

ratio of the pertinent dominators.

a. Round Hole in the Center Conductor:

Fig. 8-18 illustrates a round hole in the center

conductor of Stripline along with its equivalent circuit. The
T Bb

Ba Ba

T T

(a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-18: Centerline Representation of a Round

Hole in the Center Conductor of Stripline.

equivalent circuit for this discontinuity can be found from

p. 376 of the Waveguide Handbook.39 Through the use of the

"small aperture" procedure, the susceptance expressions for

small aperture coupling of rectangular waveguides excited in

the Tl4o mode can be related to the equivalent circuit suscept-

ance for a round hole in the center conductor of Stripline.

Equation (3b) of p. .376 becomes with the correct Stripline
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equivalences inserLed

b 3 XbDd < < (8-85)
Y 4 TT 3
o d

where

X, b, D = same as those of eq. 8-80

d = diameter of round hole

In a similar manner, eq. (2b) of p. 376 reduces to

B
a 1Y 0  d/< <<1 (8-86)Yo-0- = IF (BbiY

The above development has been for the round hole. The

case of the elliptic hole can be solved through the use of the

general relations on p. 375 - 376 of the Waveguide Handbook. 3 9

The general ellipse is specified by its major and minor axes

d and d . The round hole is, of course, just the special

1 2case where d1  d2 = d.

b. Vertical Post in Stripline:

Through the use of the small aperture procedure,

equivalent circuits can be obtained for a vertical post in

Stripline. The post may be of conducting or dielectric material,

may be centered or off centered and may be of round, elliptical

or rectangular cross section. The case for the round centered

conducting post will be considered here. Other cases mentioned

above follow using the formulas of p. 257 - 267 of the Waveguide

Handbook.
3 9

Fig. 8-19 illustrates the round centered conducting post

as well as its equivalent circuit.
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-IXb -Ixb

w T J XT

T (b)
(0)

Fig. 8-19: Centerline Representation for a Round Cen-

tered Conducting Vertical Post in Stripline.

The parameters Xa and Xb are found by inserting the

appropriate Stripline parameters in eq. 3-4 a and b p. 258 of

the Waveguide Handbook.39 They are

Z 2Z 2 5 d _ ( 4 2

[a X So - d 225(d -2 ý2 X K(2 o0) (8-87)
0 0

eqs. 8-87 and 8-88 are valid

X, D (!)D for ( > X > /3 (8-88)
o+ 2_7 (L,) d/D < o.20

where

SO =ln D- - 2 + 2 1/n

0 TT(d )2

n = 3, 5, 2 (
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3. Babinet Equivalence Procedure:

The Babinet principle is simply an extension of the

principle of duality found in standard network theory. It

sLates that if the E field is replaced by an H field and the H

field by a - E field, then the equivalent circuit resulting

from the transformed discontinuity structure is simply the dual

of the equivalent circuit of the original discontinuity struc-

ture. The numerical values of the corresponding dual elements

are identical. The dual model of Stripline turns out to be

very useful.

Fig. 8-20a shows a cross sectional view of the Stripline

approximate model. Part b of Fig. 8-20 shows the Babinet

equivalent of the approximate model.

7 
- r-__

SI E H i b E IH19- -- -2----

D- D

(a) APPROXIMATE MODEL (b) BABINET EQUIVALENT

Fig. 8-20: The Stripline Approximate Model

and Its Babinet Equivalent.

a. Right Angle Bend:

The plan view of a right angle bend in

Stripline is shown in part a of Fig. 8-21. The approximate

model equivalent is shown in part b of Fig. 8-21. With
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T2

w T1  I
'H

T I

W - -Ab

(a) CENTER CONDUCTOR (b) APPROXIMATE MODEL

Fig. 8-21: Approximate Model of a Right

Angle Bend in Stripline.
electric and magnetic walls interchanged as well as lines

of E with H and H with - E, the Babinet equivalent model of

Fig. 8 -22a results. However a close look at this equivalent

model shows it to be simply an E - plane corner in rectangular
T2

IT 2

tED 1b jBo
T -. . . B

TTIH-
E

(a) BABINET EQUIVALENT (b) EQUIVALENT CIRCUIT

Fig. 8-22: Babinet Equivalent of a Right Angle

Bend and its Equivalent Circuit.

waveguide. Turning to page 313 of the Waveguide Handbook, 3 9

we find the equivalent circuit of Fig. 8-22b as well as for-

mulas for the parameter Ba and Bb. With the correct Stripline

parameters inserted these equations (3b and 4b) become,

rB a 2D2 D22 D
S-X o.878 + o.498 -<< (8-89)
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and

Bb 1 0.i14j D \2 - 2 D
Y 2- D[ - <<1 (8-90)

Now let us remember that the equivalent circuit we

have obtained is the dual of the circuit we are seeking.

We obtain the desired circuit by a simple duality trans-

formation. The equivalent circuit of Fig. 8-22b has the

dual shown in Fig. 8-23b. The parameter Xa and Xb may be

obtained from eq. 8-89 and 8-90 by replacing Ba/Y0 and

B b/Y by their duals Xa/Z and 1 /Zo. We then have

Xa 2 D F( 2 DS= -.87 8 +0 4 98 f) < < 1 (8-91)
0

and

Z TT 1 O.114 2(._)]2D < < 1 (8-92)

SX,

Ixa

W

(a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-23: A Right Angle Bend in Stripline

and its Equivalent Circuit.

Equations 8-91 and 8-92 are simplified asymptotic

expressions that agree with the exact solutions within

eight per cent for 2 D/% < 0.6.
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b. Sharp Bend of Any Angle:

The detailed procedure for the sharp bend

of any angle is just a repetition of that usod for the 900

bcnd. The equivalent approxhiiaLe model is found f'rom the

physical situation. The Babinet equivalent is then found

and identified with eqs. 1 and 2 of p. 316 in the Waveguide

Handbook.39 Using duality, the desired results are obtained.

Fig. 8-24a shows the physical configuration while part b of

TI T jX0  jX0

2 0 2
,t Ti T

"T 
-JXb

(a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-24: Equivalent Circuit for a Sharp

Bend of Any Angle in Stripline.

that figure shows the equivalent circuit for a sharp bend of

any angle. The parameter Xa and 2% are given by

---- • cot 0/2 (8-93)
Z 2nD

0

and

Xa 2 D F 1  6  -/)(8-94)
r = T- I xW + 1.96 35 - J/x-0

where, with e in degrees,

x = 1/2 (l + e/1 8 0) 1/2 < x < 1

The function T (x) is tabulated.
6 1
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c. Uniform Circular Bend:

In a manner similar to that used in part a

and b of this section, the equivalent circuit of a uniform

circular bend can be determined. The physical configuration

is shown in part a of Fig. 8-25. The equivalent circuit at

0 0

(a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT
Fig. 8-25: Equivalent Circuit for

a Uniform Circular Bend.

the reference plane T is shown as part b. The parameter B

is given by

B . 32 (71 *_(2__ (8-95)
0Yo n =1,3.. n

The equivalent circuit is applicable in the wavelength

range 2 D/X < 1. The circuit parameters have been evaluated

to order (D/R) 2, but no estimate of the range of accuracy is

available.

d. Junction of a Straight and a Tapered Centered

Conductor:

The equivalent circuit for the function of a

straight and a tapered center conductor may also be determined

through the use of a Babinet equivalence. The center conduc-

tor configuration is shown as part a of Figure 8-26. Its
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B ,X0 jxc

Yb Y(r2)
• ' " TI \ 'T2 Tb

(a) CENTER CONDUCTOR (b) EQUIPMENT CIRCUIT

Fig. 3-26: Equivalent Circuit for the Junction of a

Straight and a Tapered Center Conductor.

equivalent circuit is the dual of that given for the E plane

junction of a rectangular and a radial waveguide on page 322

of the Waveguide Handbook. 39  The parameters of this dual

equivalent circuit are found by taking the duals of the rela-

tions for the junction of the rectangular and radial guides.

Inserting the correct Stripline parameters we get

Z (r2) sin e (8-96)
Z 1 9

a 2nD ln s (8-97)
zI xe sin e

xc 2 [o0 577 + Y T

Xb_ = sin e sin e (8-98)

Z n D e 1-sin 2 (
29

where

' (x) is the logarithmic derivative of x. and. G is measured

in radians. Formulas (8-96) - (8-98) also apply for the case

where e is negative, i.e., the taper is downward.
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The equivalent circuit is applicable in the wavelength

range 2 D/X < 1. The circuit parameters have been obtained by

1 a simple equivalent static method and are valid only in the range

2 D/X < < 1. The error is estimated to lie within a few per cent

for 2 D/x < 0.1.

e. 1200 Junction:

The case of three center conductors coming

together at angles of 120 can also be treated using the approxi-

mate model and the dual of its Babinet equivalent circuit. A

plan view of the physical configuration is shown in Fig. 8-27a.

The equivalent circuit shown is the dual to that given under

Fig. 8-27: Equivalent Circuit for a 120 Y

Junction in the Center Conductor.

the discussion of the 1200 E plane Y waveguide junction in the

Waveguide Handbook3 on page 352. The parameters Xa and X

are given by

Xa _2 D 0.6)i.55 (8-99)
_. = b a

D00

Z D (v-rf a)
0
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The equivalent circuit is applicable in the wavelength

range 2 D/X < 1. Equation 8-99 and 8-100 are static approxi-

mations and have been obtained by conformal mapping methods.

They are estimated to be accurate to within a few per cent in

the range D/X <0.1.

f. Sudden Change in Width:

A sudden change in width of the center conductor

can be dealt with using the above principles. This example is

not quite as obvious as those previously given. The obvious

thing to do for the case under consideration is to look up the

E plane change in rectangular height in the Waveguide Handbook.39

This expression is found on p. 307 of the above reference and is

extremely nasty; too nasty in fact to be easily useful.

A simple result for the change in Stripline center

conductor width is given by Oliner.59 A number of previously

derived equivalent circuits for center strip discontinuities

are also, given in this-paper. Private communication with

Dr. Oliner revealed that the following rule of thumb was used

to derive the expression for sudden change in center strip

width: "The dual expression for the parameter of the equiva-

lent circuit of a sudden change in center strip width is given

by 1/2 the dominant term in the expression for the E plane slit

in waveguide." The expression for the E plane slit is given on

page 218 of the Waveguide Handbook. 3 9  Fig. 8-28 illustrates the

"physical configuration and its equivalent circuit. As usual,
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x

D DZo z 0
Dz IZo

t T T

(a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-28: Equivalent Circuit for a Sudden

Change in Center Strip Width.

D refers to the equivalent center strip width of the approximate

model. The parameter X of the equivalent circuit is given by

X in csc D•- = --7 l s 2--D (8-ioi)
0

where

D o
0 0 (8-102)

Equation 8-101 is derived by taking one half of the dual

of eq. 2a p. 218 for the E plane slit. Equation 8-102 is

gotten by taking the dual of eq. 1. p. 307 for the change in

height of rectangular guide.

g. Symmetric Tee Junction:

The final discontinuity whose equivalent circuit

is based on the Babinet equivalent circuit is that of the
62

Synmetric Tee and is due to Oliner. The physical structure

of the Tee and its equivalent circuit are shown as Fig. 8-29.

"The symmetric arms of the Tee are represented at the center
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I Da

WI 11  Z01o Z01 Xb I

03 -A , n:l

031

03

(a) Physical Structure (b) Equivalent Circuit

Fig. 8-29: Symmetric Tee Junction

line and the reactances Xa ' and Xb ' are normalized to ZOI"

In Fig. 8-29, "'" represents the length of transmission line

connecting reference planes T3 and T 3'. The approximate

theory employed in the derivation predicts, however, that

1 has a zero value. In consequence, the measured value of

1 expresses any error in choosing T3 as the plane at which

the representation includes only the parameters Xa' Xb'

and n.

The values of the parameters Xa', X.' and n are found

via the Babinet equivalence procedure using known results,

of the E-plane rectangular waveguide Tee as a basis. They

are
sin (r D3/X)A

n5 (8-103)

D1
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D X (0.785 n)2 (8-105)

i1 o (8-io6)

X a +Bt. + 2 D1Xb = Fn-,) o x x

2 ((8-107)

[iP. 2+ _+' 3/2(~J 817
ýD1

D
Eq. (8-107) is valid for - < 0.5D1

where

Bt 2 D) in csc D)

(8-io8)

+ 1/2 D-) [ _2 Cos4 ( D1T

""bT 2_+•(n')2)2k n L 'D 3  +/ 2 (8-109)

Eq. (8-109.) is valid for !, > 0.5

More recently Franco and Oliner66 have modified the

equivalent circuit for the Symmetric Tee Junction. The new

equivalent circuit is shown as Fig. 8-29a and is derived as a

result of work done at IBM, Stanford and Brooklyn Polytechnic

Institute.
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ZO, 1o, , ZoZ Y01

JJI i. T

9,• i+•' -, I iB

cYoI

H- - -I

3T T

Z02

Fig. 8 -29a: Recommended Equivalent Circuit

for Stripline Tee Junction.

The equivalent circuit parameters are given by the

following equations:

2 n 12 Cos 2 (2 7__ rr[dwa

2 n ' 2  2 d'wh (8-103A)

CosB2(2 d)

B _/2 TT 2 Y02 t12~
.-= 2 tan- d)- n yo- tan T Fd'_ (8-1O0lA)

tan = - 0.7 Xa (8-1O5A)
z01

4. Parameter a' Reference Plane Shift in Stub Arn:
wjgh

Measurements taken at Stanford Research Institute

¶ and TBM inidicate that the best results for d' are gotten
Wgh

by using Fig. 6.1-9 of the Waveguide Handbook39 with appropriate
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0.1

0.09 MODIFIED MRI THEORY 2DI/X=O
IBM EXPERIMENTAL DATA 2Di/X

X 0.37 -

0 0.74 --
0.08 MRI EXPERIMENTAL DATA: 0.40.5

0.07

0,06

N0"

0.04- -

0.0 2---

0,04 0.A. . . . . . . .

50.

0.02;

0.01 j..

-0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 ILa

Zol/Zoz

Fig,8-29d-Com1parison between available experimental data and theory
for parampeter d, the reference plane shift in the main arms.

58
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IBM EXPERIMENTAL DATA:2,/XD
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0.08-- MRI EXPERIMENTAL DATA: 0
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Fig.8-29d.Comparison between available experimental data and theory
for parameter d, the reference plane shift in the main arms.
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changes of notation. The use of E plane wave-uide junction

curves is justified through duality and Babinet equivalence.

Fig. 8-29d is Fig. (S.1-9 with appropriate changes of notation.

For values of 2 D1/i for which curves do not exist, one can

cither interpolate between curves or use (a) on page 338 of

the Waveguide Hangbook.

5. Parameter n--Transformer Turns Ratio:

Depending on the accuracy desired, several recom-

mendations are possible, (a) Fig. 6.1-1( of the Waveguide Hand-

39book may be modified for Stripline use. This modified version

is shown as Fig. 8 4g. For values of 2 D /x not given on Fig. 8-29c

and for Zo1/Z02 < 1.0, one can interpolate between the curves or

use eq. 8-103A. In that equation, n' is given by eq. 8-103,

d' I has been discussed above, d is given by eq. 8-105A and
wgh

Xa/Z01 is given by eq. 8-105. For values of Z0 1 /Z 0 2 > 1 Franco
66

and Oliner recommend use of Fig. 8 -29c.

6. Parameter d--Reference Plane Shift in Main Arm:

Comparison of measurements made by IBM, Stanford and

the Microwave Research Institute shows that for Z01/Z02 < 1.0,

the IB1 data should be used, while for Z01/Z02 > 1.0, the MRI

data is recommended. -Fig.3-29d displays, these data in graphical

form. The value of d is given by equation 8-105A and Xa/Z 0 1 is
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given by equation 8-l06A:

X

tan % = a=-_Zol (8-106A)

While a fair prediction of the parameter d may be obtained

by the above described procedure except possibly in the particu-

lar region where 2 DIA > 0.7 and Zo1/Z02 > 1.0. In this region

only a helpful upper bound is available.

Parameter B--Shunt Susceptance:

The parameter B should be determined from Fig. 8-29e.

These curves are semi-empirical, having been determined from

a combination of the MRI theory and the IBM measurements for

d below Zo1/Z02 < 1.0. The MRI theory requires the computa-

tion of B via equation 8-104A. The curves are to be taken as

fairly reliable except for 2 D1 /X > 0.7 and Zo1/Z02 > 1.0, where

the experimental drop-off in d would indicate a lower value

for B.

7. The Abruptly Ended Center Conductor:

An equivalent circuit for an abruptly ended center

conductor has been developed by Altschuler and Oliner.62 The

physical circuit and its equivalent network are shown as Fig.

A_ 8-29f. Since, to a crude approximation, an open circuit can be
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dI
END OF -ELECTRICAL

CENTER
CONDUCTOR OPEN CIRCUIT

ýT !T

(o) PHYSICAL STRUCTURE (b) EQUIVALENT CIRCUIT

Fig. 8-29f: Abruptly Ended Center Conductor

expected to occur at the plane T, the length of the trans-

mission line d is quite small for practical transmission

lines.

There is only one rigorous theoretical result that is

applicable to this discontinuity; that of the static fringing

capacitance of a conductor of infinite width. For this case

d = c where

c = bln2 (8-no)
TT

As usual b is the distance between ground planes. For the

case in which the center conductor is not infinite, Oliner 6 2

has developed a theoretical expression based on corner and edge

fringing. The edge contribution is based on equation (8-110),

while the corner expression was developed empirically from

measured data. The resulting equation is

d = 1/k cot 1 P + 21 cot (kc)J (8-111)

where

k -
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c defined by eq. (8-110)

w = width of the center strip

S= wavelength in Stripline

For most practical dimensions (kc small), eq. (8-111) can be

approximated by eq. 8-112 which is

d = c (c + ýýd= c ( + 2)( 8-112 )

Inspection of eq. 8-112 shows it to be independent of both

frequency and dielectric constant of the transmission line.

For kc < 0.3, eq. 8-112 approximates eq. 8-111 to 3%.

Equations 8-111 and 8-112 hold implicit the value of the

empirically obtained corner fringing capacitance Ccf Coh 63

has independently derived an expression for d/b which includes

the corner fringing capacitance as a parameter. Cohn's expres-

sion is for the case of two parallel coupled strips, one of

which is open ended. In the limit as the strips become com-

pletely uncoupled, Cohn's expression reduces exactly to eq. 8-112.

The symbol Cf" employed by these authors63 is defined as one half

of Ccf; their empirical value for 2 Cf" in micromicrofarads for a

zero-thickness center strip is 0.019 er b where b is in inches

and er is the relative dielectric constant. The corresponding

value of Ccf implicit in eq. 8-112 is 0.011 e b.

E. Experimental Verification of Discontinuity Equivalent Circuits:

1. Experimental Setup:

a. Auxiliary Equipment:

Experimental verification of a number of the

above derived formulas for various Stripline discontinuities
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64

was done by Stillman. A block diagram of Stillman's

measurement apparatus is shown as Fig. 8-30. Microwave power

is obtained from a P.R.D. type 707 Klystron Oscillator which

is powered and square-wave modulated by a P.R.D. 801-A power

supply. For frequency monitoring, a small amount of output

power is abstracted through a coaxial tee and fed into a high

Q cavity. After detection and amplification, the signal drives

a meter which gives a maximum indication at the resonant fre-

quency of the cavity. A low pass filter is used to prevent

any of the spurious modes generated by the oscillator from

reaching the test apparatus. In the test apparatus, field ampli-

tude in the presence of the discontinuity of interest is measured

as a function of position. Measurements were made at 1500 mc

with 1000 cycle square wave modulation.

b. The Measurement Apparatus:

The measuring apparatus is essentially a

standard impedance measuring setup consisting of a standing

wave indicator followed by the discontinuity, which in turn

is terminated in a variable short circuit. Fig. 8-31 is a

blown-up view of the apparatus under consideration. The upper

ground plane is shown in an exploded view. The carefully

machined ground planes are supported by cylindrical spacers.

The center conductor is supported at the input end by a clamp

which is made as small as possible to keep the associated dis-

continuity reasonably low. A number of interchangeable center
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P. R.D. P.R.D.

LON PASS ~- ST 707 801-A

FILTER R.F.PER
OSCILLATOR

1500 mSUPPLY

1000 • SQUARE WAVE
MODULATED

rISOLA-1
TOR

I O AST BWAVE 415 A

T RRMETER AMPLIFIER
6-20 cm.

!COAXIAL TEE

H.P.

415 A

AMPLIFIER'

.• . F• JSHORT

SU ._N•/ • • CIRCUIT

STRIP LINE MEASUREMENT SET-UP

Fig. 8-30 BLOCK DIAGRAM OF MEASUREMENT EQUIPMENT
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strips were made, each one containing a different discontinuity.

Two mode suppressor plates are placed near the input in order to

discriminate strongly against the radiating (parallel plate) T2v

mode. A side probing arrangement is used in order to distrub the

field pattern as little as possible. This probe is driven by a

set of gears having a revolution counter with an accuracy of

+ 0.0001 inch readability. The probe itself is a standard arrange-

ment modified by adding a sleeve to prevent droop. Vertical as

well as horizontal movement of the probe is possible, the distance

from the bottom ground plane being indicated by a dial. An adjust-

ment is also provided to bring the probe travel into parallelism

with the center strip. A movable choke-type short circuit is

employed. Movement is guided by a groove in the bottom ground

plane and its magnitude is measured by a counter arrangement simi-

lar to that used on the probe carriage. A "sandwich" type of con-

struction is used in the short circuit in order that the center

conductor can be easily changed. A clamp holds the end of the

center strip behind the variable short circuit. This end clamp

also transmits the force of a variable tension spring to the center

strip.

Construction of the center strip proved to be a considerable

problem. A flat thin strip supported by end clamps and surrounded

1'by air was used since it came nearest to meeting the assumptions

of the theoretical derivation of Characteristic Impedance. A Char-

acteristic Impedance of 50 ohms was chosen resulting in a center

strip of 1.5 inches in width and a ground plane spacing of 1.051
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inches. These large dimensions helped reduce mechanical

problems and increase accuracy. Tension in the center strip

tended to cause undesirable deformations in the neighborhood

of the center strip discontinuities. A satisfactory con-

struction was finally arrived at by using a 0.001 inch "Mylar"

polyester film sandwiched between two 0.001 inch copper strips.

The discontinuity was cut in both copper strips but not in the

"Miylar." After assembly with teflon cement, a thickness of

0.0035 inch resulted. Deformation was further minimized by

making cuts in the copper strips perpendicular to the direc-

tion of tension and placing the strips in tension for several

hours for stress relief.

2. Measurement Procedure Based on the Tangent Network

Relations:

In section C-2-g of this chapter relations are

developed for the tangent network equivalent circuit.

In review, the tangent relation network consists of

three real parameters, depicted in Fig. 8-32 as two lengths

of transmission line of length -D and -S coupled by a trans-

former having a turns-ratio of

n = / :1

The three parameters of this lossless network relate, at T,

, (= D ) and T2 (= SR), the input quantities D (similar to Zin,

Yin' etc.) to the output quantities S(corresponding to Zout,

Yout' etc.).
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-Do -so-

D S R

Fig. 8-32: Tangent Relation Network

The tangvent relation network is based on the nodal shift

method. Let us consider the circuit of Fig. 8-33.. Suppose,

as illustrated in Fig. 8-33, that the transmission line in

region II is terminated in its own Characteristic Impedance.

As a rule, standing waves will occur in region I. The posi-

tion of the voltage maximum in region I defines the position

of the terminals 1 - i. The resultant VSWR in region I is

defined by the symbol y. If ZI is the Characteristic Imped-

ance of region I, then

Zin = Z 1

v RELATIVE V V

I COUPLING . TEMINATION COUPLING "HORr

I NETWORK z NETWORK

So (b)

R IREGION I REGION n REGIONI REGION2

Fig. 8-33: Procedure for choosing reference planes in
the two regions, (a) the network is perfectly
terminated, (b) region II is shorted.
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Now, suppose region II is shortled. As shown in Fig. 8-33b,

the voltage mode will appear some]where in region I, its position

bcing controlled by the position of thi short in region II. If

the short in region II is ]loved. until a voltage mode appears at

the terminals 1 - 1 (Zin = 0), then the position of the short is

defined as the terminals 2 - 2.

In general four-terminal network theory, there is a theorem

which states that input and output inpedances, Zin and Zout

respectively of a linear passive network can be related through

the ex-pression

A Zout + B
z. - (8-114)

in C Zout + D

Using eq. 8-113 and defining Z2 as the Characteristic

Impedance in region II, eq. 8-1114 becomes

AZ2 +B (8-115)

1 C Z2 +D

To evaluate the constants A, B, C, and D consider the shorted

condition. For this case Zout = 0 and Zin = 0; hence B/D = 0.

Consequently, B = 0. The four-terminal network under considera-

tion is assumed to be lossless. A lossless network implies that

the constants A and D of eq. 8-114 be real and the constants B

and C of that equation be imaginary. Since rZ1 and Z2 are real,

eq. 8-115 requires that C = 0. Thus, with the terminals 1. - 1

and 2 - 2 chosen as discussed above, A/D = y Zl/Z2 , transforming

eq. 8-114 to read
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z y z(8-il6)Zin = ..) Zout(816

To determine the parameters of the coupling network, place

a short circuit a distance S2 ( = I S - S.1) to the right of the

terminal 2 - 2 as illustrated in Fig. 8-34. The impedance Zout

will be

Zout = Z2 tan P $2 (8-117)

where

Ps- propagation constant in region II

SRELATIVE V

tZIII~~L1IIIIN. VOLTAGES .

I |LOSSLESS

I COIINO SHORTING PUNGER

I NETWORK I

Fig. 8-34: Distribution of electric field on the
two sides of the coupling network due
to the shorting plunger in region II.

As indicated in Fig. 8-34, this short circuit creates a voltage

node to the right of the terminal 1 - 1. The impedance Zin is

then

Zin = J Z1 tan 1d D1  (8-118)

where

Pd = propagation constant in region I

If now eq. 8-116 is substituted in eq. 8-118 and the result is

substituted in eq. 8-117, there is obtained

tan Od D1 = y tan Ps;2 (8-119)
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If arbitrary lengths of transmission line (-D and -S ) are

added at the 1 - 1 and 2 - 2_ terminals respectively, as indicated

by Fig. 8-32, the terminals 1 - 1 and 2 - 2 are shifted to

D' =DR + (-DO) and S' = SR + (-So). Eq. 8-119 then becomes

tan P• I D - D' I = y tan P F S - S' I (8-120)

If a short circuit in region II is allowed to assume

various positions S, the sum of S and the corresponding voltage

mode positions D in region I may be plotted vs. S to yield the

tangent parameters. Fig. 8-35 illustrates a typical plot.

This plot represents a graphical averaging of the data points.

Two lines are then drawn through the peaks of the curve bounding

D +S

D0 0S

so S

Fig. 8-35: D + S vs. S Curve

it from above and below. These boundary lines are not always

parallel to the absicca (or to each other) and correction of

the slope is necessary. Correction is achieved by taking the

average slope of the boundary lines and using it in the rela-

tion

Dcorrected ' Dmeasured (l + slope) (8-121)

to obtain new values of D. These values of D are then used to

plot a new D + S curve. The process is repeated until no slope
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is observable. A line is then constructed prependicular to

the two boundary lines and bisected. A new line is drawn

throurh the bisecting line parallel to the boundary lines.

Intersection of this "bisecting" line with the D + S curve

at a point of negative slope gives S directly. The con-
0

struction is illustrated in Fig. 8-35. Stillman64 states

that if A is defined as the maximum distance between them

"•isecting line" and the D + S curve, -y may be calculated

from the relation

-Y = 1 + 2 tan 8 (tan 6 + sec 8) (8-122)

where

T (8-123)
m

tan 6 + (8-124)

In expression 8-123, X g is guide wavelength. For 6 < < 1,

the approximation may be made

-1 + 2 8 (8-125)

The above procedure results in semi-precision values for

the parameters. However, these first approximations for Do,

S and - y may be used as a starting point for a precision

analysis where accuracies are limuited to the random errors

of measurement. To obtain more precise values for Do, S and

- y, the tabulated values of S (obtained by moving the short

in region II) are used in the equation

D =D +-•-- tan-'[y tan 2 T (S- SO)] (8-126)
comp o 2 TT7
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together with the semi-precision values of Do, S and y to

obtain new values of D. If there were no errors, the values

of D computed would be equal to the actual values of D meas-

ured. If an error curve is plotted with A D = D - Dcomp measured

as ordinate and S as abcir;:;, .- l'igure like that of Fig. 8-36

results.
AD

+S

Fig. 8-36: First Error Curve

If the error curve exhibits some regularity (say periodicity

in X /2 etc.) due to some systematic error in one of the first

order parameters, further analysis may be performed by compar-

ing the A D curve with a 6 D curve (total differential ofcomp

eq. 8-126. Mhis process is repeated until the error curve no

longer displays regularity but results in A D's which are

scattered in random fashion as shown in Fig. 8-37. The average

EXTENT OF FINAL SCATTER

-- S

Fig. 8-37: Final Error Curve
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deviation of the final error curve leads to the tolerances

that may be placed on the corrected parameters. These errors

represent "electrical" errors. In addition the "mechanical"

errors due to physically located D and S must be taken into
0 0

account.

The quality of Stillman's measurements can be seen by

looking at several values of y as reported in his thesis.

They were I y 1.167 + 0.006, y I = 1.422 + 0.008, and

I y = 148 + 1.5. If a comparison is made with measurements

made in precision waveguide having a - Y of 1.5, it is seen

that typical tolerances range from 0.002 to 0.007 while Stillman's

Stripline measurements tolerances for the same - y were 0.006 to

0.010.

An application of D + S vs. S curve to obtain the parameters

Do, S and - y for a step discontinuity in Stripline is shown as

Fig. 8-38. The sinusoidal curve represents the D + S vs. S plot,

while the error curve is shoi-m in the bottom of the figure.

3. Theoretical Relations for Determining Discontinuity

Equivalent Circuits from D, S_ and - Y:

In order that a comparison may be made between

equivalent circuits determvined experimentally and those deter-

mined through measurement, it is necessary to develop a set of

relations that will determine a four terminal equivalent net-

work from the tangent relation parameters. Such a set of

39relations can be found in the Waveguide Handbook on page 121.
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Througrh appropriate manipulation, thcse equations can be modified

to fit the case under discussion.

BB

p 
B c

n 0 !

Figt. 8 ?: Generali .zed Equivalent Pi Network.

Fig. 8-391 illustrates the generalized Pi equivalent network. Its

parameters Pa Pb p' c/ are given by the following development.

Given

DS, -, DR, X
0 0

Find

B IB I I

B 221  2 c 1 2 121

Define

C - cot 2 (D - DR) (8-127)x Gi 0 Rkgi

= -cot 2TT (S - (8-128)x2 (So sR)
g2 0

a (= + ____\ (8-129)

aC .

C i + -CY a (8-131)

d = X(( + I+ P2 (8-132)

(•- • )•

then
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B Ia;B... =a; B 'B B b;
11 13. 12 12,9 ,I (8-133)

B I2' - d: B ' + j (d)'/2( 
1

and

B b B B a B 1 B B12 B ; B BII B ' - B 1 (8-134)

4. Gap and Slot in the Center Conductor:

A theoretical derivation for the slot is given in

section D-l-a of this chapter along with its range of validity.

Similarly the theoretical derivation for the slot is given in

section D-1 b. Stillman obtained experimental values of the

tangent relation parameters Do, - y and So. Through the use0 0

of equations 8-1-27 through• 8-134 he obtained values of Ba, Bb

and Bc. Since the assuried discontinuity structure is symmetrical,

B and B are averarged. Table 8 1 summarizes the data. Thea c

parameters d and s are those referred to Fig. 8-14 and Fig. 8-15.

For conciseness define

B
Ba a (8-135)

0

Bb' = (8-136)
0

as determined from the theoretical formulas. Figs. 8-40 and

8-41 graphically illustrate the correlation between the

theoretically and experimentally determined parameters Ba

and Bb
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.5 -- -

0--
r0

-. 5

-1.5

-. 2.o-0

-2.5 -

-3,0
Bb -

-'b 3.5I

b! 1.051I"
-4.0-- - w=I.50"

-I - X7.847"-4.5 S=,286"

-5.0 ,

-. -THEORETICAL CURVES

-5,5 - - - x THEORETICAL POINTS

-6.0 - SLOT EXPERIMENTAL POINTS

-6.5 
GAP O

-7.0 10
-75--- S= .130""° "JII.III IIIi 11111

- 8,0 I

1.0 1,1 1.2 1.3 1.4 1.5

d in inches

Fig.8-41.CIRCUIT PARAMETERS OF SLOTS AND GAPS

80



TABLE 8-1

Ga and Slot in Center Conductor

b = 1.051" X = 7.874"

Ba Bb

d S -y Theo. Exp. Theo. Exp.

1.030 0.130 1.1665 -0.0032 -0.0044 -7.5575 -6.8805

1.050 0.286 1.2738 -0.0154 -0.0103 -4.4188 -4.4832

1.430 0.155 1.5815 -o.oo66 -o.0o85 -2.1266 -2.2451

1.46o 0.155 1.7053 -0.0068 -0.-104 -1.717 -1.9256

1.490 0.155 41.000 -0.0072 -0.0147  0.1991 0.1594

1.513 0.330 148.00 -0.0318 -0.0598 0.0918 0.0825

The range of validity of the gap formulas is b/2 X < < 1,

while those for the slot are valid for the range T > 0.15 and

d/w > 0.25. In the measurement b/2X' 0.067, while Tmin. -

0.136 < 0.15, d/Wmin ' 0.87. It can be seen that for S = 0.130,

T falls somewhat below the stated range of validity of the

theoretical formulas. Reference to Fig. 8-41 shows that it

is only for S = 0.13 that a considerable discrepancy exists

between measured and theoretically determined parameters.

Of special interest is the value of d for which the curve

(S = 0.155) of Bb' passes through zero. It is at this value

of d (1.49") that the slot is series resonant. The slot is

seen to be very sensitive to its dimensions making it impractical

as a resonant structure. The value of Ba', shown in Fig. 8-39

is much smaller than Bb'. A consistent error seems to exist

between measured and theoretical points.

81



5. Round Hole in the Center Conductor:

A theoretically determined equivalent circuit for

a round hole in the center conductor is given in section D-2-a

of this chapter. Component values are given by equations (8-85)

and (8-86). Measurements were made on this discontinuity by the

Airborne Instruments Laboratory.65 Their results are shown as

Fig. 8-42 and Fig. 8-43. In both cases a consistent error seems

to result.

6. Abruptly Ended Center Conductor:

The equivalent circuit for the abruptly ended center

conductor is discussed in section D-4. Altshuler and Oliner 6 2

did some experimental work with this discontinuity resulting in

Fig. 8-44. Measurements were made at six different wavelengths

ranging from X = 5.44" to x = 11.8". The "bars" crossing the

theoretical curves result from both scatter and the small varia-

tion of d/b with frequency. The theoretical curve is based on

eq. 8-112.

7. Relationship Between Series Reactance Network and"

Tangent Network:

Before a comparison can be made between measured and

theoretically determined equivalent circuits for a step in the

center conductor, a set of relations between the tangent equiva-

lent network and the series reactance equivalent network must

be derived. The results are stated in the literature in the form

of a series reactance network or can be seen by referring to

Fig. 8-28. On the other hand, the measurements give the
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.202 ,

.18-----.-.-.-- --

.16--- -

.14-

d
b

.12

.10- - THEORETICAL CURVE

EXPERIMENTAL POINT

AT X= 7.9"

0-RANGE OF EXPERIMENTAL

S- -VALUES OVER THE BAND

FROM X=11.8" TO X=5,4
.06 - -

.04 -

0 .30 .60 .90 .120 .150 .180 .210
W
b

Fig.8-44.LOCATION OF EQUIVALENT OPEN CIRCUIT FOR ABRUPTLY-ENDED

CENTER CONDUCTOR
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parameters D , S° and - y. The tanecnb relation equivalent

network is dcveloped tir,•uoJ tie Lransfio.,-ations of section E-3.

The series reactance ne, Iworh is then derived fro." the relations

to be developed in this section.

In order to spare the casual reader the trouble of wading

througjh the derivation, only the rceults are stated here. The

Ljore careful reader will find the curmi]lete derivation in

Apgpendix XI. Fig. 8-45 illustrates the two equivalent circuits

referred to in the transfo-,ration.

I 
!

D, S, -Y d,•,] _.

T Z62 Pi• OTi

T- X, 1, OT+
[-Do TI" (b) -PS 1 1 )

Fig. 8-45:' Tangent and Series Reactance Networks.

Given

Do, So y

F'-.nd

X', ii, 1 2

[ZO , (Y2 1 ) -(Zo + l) (8-137)

where

z02 0-
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ZO0 and ZO.] are the Characteristic Impedance of the

input and output transmission lines res ..,ectively,

, =/ o (./ +- q)I - S (8-138)

where

ý = C 2 Z{ 0102)

1/= cot + Z0 2 cot P (1 + S) - D (8-139)

The plus sign in eq. (8-138) is used if Z02 > 1. The minus

sign is used when Z 2' < 1.

8. Step Change in WJidth of the Center Conductor:

Fig. 8-46 shows the physical configuration for a

sudden change in width in the center conductor. In section

D-3-f of this chapter a theoretically determined series

SI t
W1 W2

Fig. 8-46: Sudden Change in Width of the Center Strip.

reactance equivalent circuit is given for a sudden change of

width. The parameter of this equivalent circuit is given by

eq. 8-101.

I ieasurements of this discontinuity were made by Stillman.
6 4

Theoretical and experimcntal values for some circuit parameters

are given in the table below. The values given assute various

waveleng;ths very close to 7.8 incbes strip widths w1 nearly equal
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to 1.5 inches and a ground plane spacing maintained at b > 1.05

inches. Theoretical values of y are found by solving eq. 8-137

for y, resulting in

Sa + a (8-i 4 )

where
X , + Z 02 + 1( 

8 1 )
a ,, 2Z2°(8-i4i)

2 02'

Table 8-2: Sudden Change in Width of Center Conductor.

w2 Theoretical Exptl.

inches Zto' y X1 y

.152 3.375 3.4.29 .408 3.3),Z + .035

'.310 2.577 :2.614 .287 2.614 + .025

.600 1.842 1.857 .142 1.825 + .013

.902 1.436 1.440 .059 1.428 + .007

1.205 1.174 1.175 .014 1.204 + .ol8

It should be noted, in Table 8-2, that the theoretical

values for Z02' and y and the experimental values of y, all

fall very close to one another, differences between correspond-

ing vali'es beinT roughly of the order of one per cent. It is

immediately possible to conclude that changes in Z02 dominate

by far over changes in X' in eq. 8-140. Since experimental

values of X' are obtained from eq. 8-137, it follows that X'

is extremely sensitive to even the smallest errors in both(
Z02t and y. This is indeed the case, in fact so much so that

the experi-nontally determined value oa X/ were comvletely
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unreliable and are not included. Theoretical values, however,

have been tabulated. While the experiments performed have not

verified these theoretical values, they do indicate that the

magnitudes of X' are correct.

Consideration of Table 8-2 then leads to the conclusion that

the step in width of the center conductor is well approximated

at the step by only the transformer (/ZTO : l)(Fig. 8-45b with
i02

- y = Z0 2 
1 . Also the series reactance X' is negligible for

most practical purposes.

The data in Table 8-2 are used to plot the graph of

Fig. 8-47. It can be seen from this figure that a straight line

drawn through the nominal values of y I measured differs from

the theoretical value of I y 1, by an amount almost accountable

for by the neglected series reactance. This difference is

emphasized especially where the tolerances, which bound the

nominal I Y I measured, almost include the theoretical values.

9. Sharp Angle Bends in the Center Conductor:

Because of an inability to mount discontinuities not

beginning and ending on the same longitudinal axis in the meas-

uring apparatus, it was necessary to construct a composite dis-

continuity consisting of a number of bends in succession. Each

composite discontinuity was made symmetrical about a center line

normal to the strip axis and at the geometric center of the dis-

continuity. This, to measure a single right angle bend, a

discontinuity structure of four identical bends had to be measured.

The data for a single bend was then abstracted through matrix
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analysis. A similar pro,(r(Aure pro(!i(.ed paraineters Zor the 60

and 100 degree bends. Alternative schewes were used to measure

bends of 15, 30, 45 and 120 degrees. Here, each structure con-

sisted of three cascaded bends, some of which were known from

previous measurements. For neasuremnent of acute angles, the

bends were unknown-hnoini-unh:novn, wh-vrc for obt.use angles the

bends were known -unknown -hnown.

a. Right Angie Bends:

In section D-3a the theoretically determined

equivalent circuit for the Right Angle Bend is discussed. It

should be noted the the equivalent network is given at refer-

ence planes TI, T2 , each at a distance of b/TT in 2 away from

the physical junction of the two strips.

As discussed in the previous section, it was not possible

to measure the Right Angle Bend as a single discontinuity, so

a cascade of four identical bends was used. Measurements were

made with respect to reference planes T1 '" and T2 shown in

Fig. 8-48. The sequence of operations necessary to the deter-

mination of the parameters Xal and 'bi are discussed in the

F i. 8-48i.: Right An!,le Bend in Center Conductor
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following paragraph.

Given:

Do 0- Di, Xg (wavelength in Stripline)

Find:

x aXa ,'

We first wish to shift the reference plane from T to Tl1

Do' =D D - (L/2 - w) (8-142)

0 0 0

0= 0 (8-1433)

The parameters of the reactance tee are then calculated using

results of previous sections of the chapter.

Now

E=+ (27:) sin 20 (8-55)

F =+ Zo /W7cos2 0 W sin2 e

and

a =+ (1/2 + 1JrTEl./2 (8-25)

F

4a (2a•2 - )

In normalized form then,

bXa Z 0 (1l+ a)

and~X

lb a
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Finally, we shift the reference planes to those used in the

theoretical derivations, namely T1 and T .

Since,

d = L - 2w - 2--Tb in 2

D = cot 0 (8-66)
I I

X C= X a+ 2 X

then
DX '+1= a

X alt = D - X a'

a - X aS1/2 fj--c~-

Experimental results on the right angle bend are compiled

in Table 8-3. w and L are defined in Fig. 8-48, X.l and Xbl

by eq. 8-66 and - y and P D are the parameters of the tangent

network.

Table 8-3: Right Angle Bend in the Center Conductor.

b = 1.051" Xg = 7.874"

W" L" Xal Xbl D 0DO

Theo. Exp. Theo. Exp. Theo. Exp.

0.5 4 0.2217 0.2393 -1.2933 -1.3535 1.4419 1.3519 2.0472 2.0463

0.5 5 0.2217 0.2596 -1.2933 -1.3307 1.4419 1.3257 2.0472 2.1219

1.0 5 0.3539 0.3936 -0.8381 -0.8636 1.8673 1.7218 1.8623 1.8469

1.5 5 0.5032 0.5481 -o.616o 0.6197 2.6838 2.6234 1.6526 1.62o8
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Figure 8-49 and 8-50 offer a graphical comparison of

theoretical and experimental results. Solid lines represent

theoretical data and points indicate measured data. While

the measured data is for a single right angle bend, it must

be remembered that it was extracted from a measurement made

on four cascaded bends. As can be seen from observation of

Fig. 8-49 and 8-50, correlation between measured and theoreti-

cal parameters is good. A special test was made at w = 0.5"

to determine whether there was higher mode propagation and

interaction between the four cascaded bends. The results are

conflicting in that for w = 0.5; L = 4", the shunt reactance

labeled 0 on the graph is closer to the theoretical value,

while for w = 0.5", L = 5", the series reactance lable d ED

on Figs. 8-49 and 8-50 is in better agreement. It can only

be concluded from the above measurements that there is a

small but detectable difference in the magnitudes of the

parameters for different spacings between discontinuity junctions.

b. Sharp Bend of any Angle (e • 90°):

The theoretical formulas for the sharp bend of

any angle are discussed in section D-3b. The theoretical dis-

continuity structure is represented as a Reactance Tee with

reference planes b/n in 2 away from the physical discontinuity.

Three measurement schemes were used to abstract the parame-

ters for sharp angle bends. In the first scheme, four cascaded

discontinuities are constructed as in the case of the Right
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Fig. 8-49b. REACTANCE TEE NETWORK PARAMETERS FOR RIGHT ANGLE BENDS
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3.5 0 b = 1.051"

SX = 7,847" '

3.00 THEORETICAL CURVES .- / -3.o - I(b) ------ (SEE TEXT)

0 X EXPERIMENTAL POINTS /
-(SEE T )---------------

2.50 •" I ' ,"

2.00

1,00o • -

0 .25 .50 .75 1.0 1.25 1.50 1.75

Fig. 8-50b TANGENT NETWORK PARAMETERS FOR RIGHT ANGLE BENDS.
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Angle Bend. Fig. 8 51a il]_ustrates the resultant discontinuity.

The distance between bends, d, as well as the nominal angles were

hard to maintain so that average values were taken. Fig. 8-51b

II
D-W ton 9

,o " 2 _

:4:W ton 8 ' -

T 2

Fig. 8-51a: Four-Cornered Sharp Angle Bend

in the Center Conductor.

illustrates the quantities referred to in eq. 8-1 4 4, which

is an average value for d.

d = 1/6 CE1 + E2 + E3 + E4 + F + H] - D tane/2 (8-11)

Fig. 8-51c defines DR for the Four-Cornered Bend. In order to

obtainthe parameters of interest, it is only necessary to

replace equation 8-66 with eq. 8-144 and equation 8-142 with

equation 8-145 in the developmnent for the Right Angle Bend.

(Sec. E-9a)

D - w
Do Do - [DR - 2.02" - h] - d/2 + /2 tan /2 (8-145)

The second method is concerned with the measurement of

Sacute angle bends (f) < 90 ). A three-angle bend is constructed,

cascading a known bend of angle 0 k between two unknown bends

of angles rk/2. Fig. 8-52a illustrates the discontinuity in

99



w,

Fig. 51 b. DISTANCES TO BE MEASURED FOR FOUR CORNERED BEND MEASUREMENT ( 8 900)

E 1 , E2 , E3 , E4, F, H; Various values of d for average value of d.
Various values of (Tr ± 9) for average value of e

.02.02 "'

D:O -"]

note

ANODIZED •

SHIRCT LOCATOR BLOCKCIRCUIT

Fig, 51c. DEFINITION OF DR FOR FOUR CORNERED BEND MEASUREMENT (Ol. 900)
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T~k • /•k• TIk

SITI T72

Fig. 8-52a: Three Cornered Bend in the
Center Conductor (9 < 900).

question. Figs. 8-52b and c define several of the parameters

ANODIZED -
SHORT CARCUIT a:g : w ton"hii

D W

Figs. 8-52b and c: Definitions of DR; g for Three

Cornered Bend Measurements (8 < 900).

appearing in the development of the Reactance Tee from the

Tangent measurements.

Measurement:

DR at T1

D D ' - (2.02" + h) + g
R R

D -w
9 2 tan 0/2

Given: Dy 2 tn/

v:DO , Y.-DR, Wgy Zo, 'P w, G (corner to corner) ak,

bk (the a b c d element of bend 9k at Tlk, Ta).
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Find:

Xaj, Xb

--2 r (Do - D (8-146)

From equation 8-55

E = 7 sin 2 ýp (8-55)

F Zo (/T cos 1 sin 2)

From Fig. 8-52a

1 = G - D w [tan 0/2 + tan Ok/2] (8-147)

64Stillmnan states that if the elemets ak and bk are from a

previous Three-Cornered Measurement, eq. 8-147 is to be used.

If ak and bk are from a previous Four-Cornered Measurement, use

1 = G - ~-~.+'tan q/2] (for A = 9Q0)(81)

and dk

1 - G - D 2' (tan 0/2 + tan 0k/2) - dk (for 8kG 900) (8-149)

In equation 8-148, G and the second bracketed term are from

the Three-Cornered Structure, while the first bracketed term

is from the Four-Cornered Structure. On the other hand, in

D -weq. (8-149), G, and tan 0/2 are from the Three-Cornered

Structure while tan 9k/2 is from the Four Cornered Structure.

Knowing u1 , we then rearrange equation 8-65 slightly to

"obtain equation (8-150) and (8-151) which represent matrix

elements at the shifted reference planes.
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a' - a k (Cos - sin2 P1) - sin Pl cos Pi

k o+ Zo 1 "a k2k )

X Z (i- b 2) (8-150)

0 k2 i1- ak~ °
b' b bk Cos Pl "b k Z"0 sin 2 P

(8-151)
+ 2 a Z sin Pl cos Pl

Now that the elements a and b' at the shifted reference

planes are known, we may proceed to solve for the unknown bends

represented by a symmetrical matrix with elements "a" and "b".

In Appendix XII, it is shown that

a (A + at) (8-152)

(a' B + b' A)-2 (B -b') 2

Bb"

and

b (B - b') (8-153)
•(a' B + b' A)2 (B b )2

Bb"

The parameters of the final equivalent network are then realized

by solving the elements of the matrix 8-56 for Xa' and Xb '.

b (8-1541)Xa =z° (1 + ay 81•
a 0

Xa
(8-155)Kb a-i1

The third method is concerned with obtuse angle bends

(a > 90'). The overall discontinuity structure now consists
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of an unknown bend of angle 0 cascaded between the known bends

of angle 0 - 2 qk. The measurement reference plane is taken

half way between adjacent bends as shown in Fig. 8-51.

TI

/b

W D k :: 9k~

T - 2 kg --TT2k

Fig. 8-53: Sharp Angle Band in Center Conductor (Obtuse
Angle, 0 > 90 ) Series Reactance Network at
Specified Reference Planes from D0. 0 ), -

Measurement: 
d

-. IYd k-.

D Rat T l ; D R = -R (2.02 + h) + gp + -p

R 1) k H • ," I~

d is the d from the previous Four-Cornered

II

k d
Fig. Ben me3:S asr emngeBnt. nCnerCnuto Ots

DS0eiy, eD Reference0) Plane s ro D o Ia , b o -k

planes Tlk; and T 2k -obtained fromh a and

b of previous Four-Cornered Bend Measurement.

Find:

Xa',Xb'

V0 2 nr (Do - DR) (8-146)
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From eq. 8-55

E = ( T-(7- y) s in 2 cp (8-55)

- 1 sin- e)F= zo (P=-V os2 •p+ •'

E and F are the normalized elements at Tlk', T2k' of the overall

structure. For the case of the obtuse angle, we have an unknown

bend sandwiched between two known bends. It is shown in Appendix

XIII that if we solve for the matrix elements of the unknown bend

in terms of those for the known bends, we get

a = ak (ak A + bk C) + Ok (ak B - bk A) (8-156)

b = - bk (ak A + bk C) + ak (a. B - bk A) (8-157)

Figure 8-52 illustrates several of the parameters of the obtuse

Fig. 8-54: Definition of DR,, dk, gk for Three

Cornered Bend Measurement.

Three Cornered Bend. From this Figure we see that

lG 1 dk= (8-158)

Also from the previous development

D -w tan 0/2 (8-159)



We now have enough information to find the elements of the

unknown matrix, a and b.

a =ak (cos2 1- sin2 Pl) - sin 01 cos P1

X k + 0 b k (8-150)

b = bk cos2 Pi1 (LZ° 2)2s2 P

+ 2 ak ZO sin Jl cos 1i3 (8-151)

Knowing a and b, we find the parameters of the equivalent

circuit through use of eqs. 8-154 and 8-155.

= b (8-154)Xa =z 0(1 + a)

x
xb a 

(8-155)

The above four equations were discussed under the subject

of the acute angle bend.

Experimental results on the sharp angle bend are compiled

in Table 8-4. The parameters recorded include the angle of the

bend 0, the insertion V.S.W.R., the final Reactance Tee parame-

ters, the Reactance Tee parameters at 1800 shifted reference

planes, the reflection coefficient and the input line length.

The data in Table 8-4 is plotted in Figures 8-53 and 8-54. The

solid curves represent the theoretical results which were based

on the theoretical expressions for the parameters of E-plane
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TABLE 8-4 (Continued)

° -0 D MEASURED AS
Theo. Exp. 'Lheo. Exp.

120 4.1768 5.5190 1.6450 1.4309 3-Cornered Bend

100 2.3163 1.5805 1.8128 1.8024 4-Cornered Bend

90 i. 88V1, 1.7218 1. 8143 1. 8469 4 -Cornered Bend

60 1.2637 1.2318 2.0619 2.0479 4 -Cornered Bend

45 1.1295 1.1393 2.1373 2.1482 3-Cornered Bend
from 900 Bend

30 1.0523 1.0543 2.2131 2.2077 3-Cornered Bend
from 60° Bend

22.5 1.0243 ---- 2.200 f 60B

15 1.000 1.0301 1.5708 ---- 3-Cornered Bend
from 301 Bend
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bends in rectangular waveguide. The dashed curve for Xa (for

0 > 600), is on the other hand, based upon experimentally

obtained values for the parameter of E-plane bends in rectangu-

lar waveguide. Part of the discrepancy between theory and meas-

urement is consequently due to errors already existing in the

theoretical result (Xa only) for the rectangular waveguide bend.

The discrepancy between Stripline measurements and the dashed

curve is somewhat larger. This discrepancy is believed to be

due to an Lixnerfection in the Babinet equivalent model for the

bend. In contrast to the Babinet model which has impenetrable

walls. the actual Stripline possesses a fringing field which

permits an additional small interaction to occur between the

center conductor on one side of the bend and that on the other.

This effect, not taken into account in the Babinet model, becomes

more marked as the band angle 0 becomes larger.
One62 iadX

Altshuler and Oliner have shown that, once Xa

are imown, the expressions required for the abstraction of the

parameters of the tangent network (y, D0 , S ) can be derived.

- C + 1 r- (8-156)

where

1 + 2 (Xa I + xb I)2 + x Ka (Xa ' + 2 'b )2

2•

k D = -tan (8-157)
0

where

113



a , - Xa (Pa- + 2X
(X a r + • ( 1+ •'

k so k DO +/2 (8-158)

For 0 small (C " l)

- y 1 - (2 X a I+ l/X) (8-159)

a 1/Xb' - 1 (8-16o)

For small angle bends (0 < 300), the expressions for abstract-

ing y and D from Xa and Xb' become very sensitive leading to

large computational errors. The small angle approximations

are, however, quite good and are in fact more substantially

reliable than the "exact" expressions in this range. The

theoretical values of y and D obtained through their use are

shown in the form of dot-dash waves. The - y vs. 0 curve points

up the fact that it is better to employ two or three smaller

bends in place of one large bend. As an example, consider the

experimental points at 13 = 30°, 14 5 and 90o. The 90 bend has

an insertion V.S.W.R. of 1.75. On the other hand, two 450 bends

in tandem (and "far" from each other so as not to interact) can

have a maximum V.S.W.R. of 1.25 and three 30 bends can have a

maximum V.S.W.R. of 1.15.

F. Conclusions:

Equivalent circuits have been developed for a great number

of Stripline discontinuities. In many cases experimental evi-

dence was also obtained and a comparison made between theory
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and measuremeint. In Genieral correlation is good, but the reader

should check the correlation and its range of validity before

attenmpting to use the design formulas. Discontinuities may

arise in two different ways: (1) Unavoidably--In any configura-

tion there will be bends, tees, etc. which need to be described

and, (2) Transfer or Driving Point Function Synthesis--If a

desired transfer or driving function can be mathematically des-

cribed and meets the realizability criteria for two ports (or n

ports for that matter) it can first be synthesized in a standard

fashion using Passive Synthesis, then reduced to holes, slots,

gaps, etc. in Stripline. Since at high frequencies the lumped

constant network would probably not be realizable anyway, due

to the small values involved plus fringing problems, design

utilizing Stripline discontinuities should prove to be a useful

tool.
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APPEUMIK XI

Relatioi:shio Be:L rweou S er.ic,s z ctr cýce Ncc ori.-k ano Tan ent Tet ork:

T1 -DO 1I -s

Do SOJ Y,

0 0Th a- et'Tewr prcTers DST-yar btie

at T +g and T_ eile the Series Reactance Narameters are

obtained at reference pflaues T and T. In the Tangent

Nletwork the fact th at tac two ChIaract'Ueristbic. Iiaedances are

different is already inylic ity contained in - *y. In the React-

ance hetwork all ietwdances are trsonalized to the Character-

istic IanpedaTce of ethe input transiission line; i.e., Xre

and 00= z0 2 /Z 0 1

Accordin to King,50 page 76, the reflction coefficient

r of a transeission line in.ay be expressed by

SZ - z Zo/Zc - l
o -~T(All-l)

o+ 1
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where Z a output impedance0

Z = characteristic impedance
c

If T+ is terminated in a match (Z02 for the Reactance

Network and one for the Tangent Network) then at Tj' for the

Reactance Network Z in' = Z02' + j X'; for the Tangent Network

V.S.W.R. = - y. Under these conditions, the reflection coef-

ficient for the Reactance Network (eq. All-i) becomes

Zin - Ir - (A•-2).Z in' + 1

Z0 2 + j x' -i

Z 02 ' + j x 2 +1

Since primary interest is in I r I, we can take the

absolute value of eq. (All-2) to obtain

r Z02 1)+x1 (All-3)
1z.. + 1) 2+ x,2

Z02' -1)2 + X

Since the input V.S.W.R. of the Tangent and Reactance

Networks must be the same, we can equate the reflection coef-

ficient of the Reactance network with that of the Tangent

network in the formula

P I r + I (All-4)

or solving for r
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Squaring both sides 2

1 = p - 2 p + 12 +2+" (AII-6)
p + 2 p+l

Substituting the value of I I' from eq. (All-3)

1( 02 + x 12 + 1) - 2 Z 02' 2_2 +1+ ,'2 +1 2z~~p 2 - p l (An.-7)

[(Z02 I + X12 +)+ 2 Z0 2' + 2 p +l

Solving eq. (All-7) for X1 and letting p = - y we obtain

= + I +z) -1(Zo 2  + 1) _ 1/2 (All-8)T YT

At the reference planes T 'and T2 the network can be

redrawn as Fig. All-2.
I r-• _ ,•2 So

Zin I zo2

Do -V 1
S- (,, I -Do m V'C-- :I

T T2"

Fig. All-2: Equivalent Tangent and Reactance
Network Representation.

For lossless open circuited transmission lines

zin = - jZ 0 cot s (All-9)

where Z = Characteristic Impedance0

s = distance from open

Since both networks are to be equivalent, one may equate

their input impedances with the output open circuited. For
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the reactance network

in j X' - J02 cot P (12 + So) (All-lO)

For the tangent network

zin2 - j cot 3 (-iI - D0 ) (AII-II)

Equating eqs. (All-IO) and (All-n1), we get

x' Z02 cot P (12 + S - cot P (- 1 - Do0) (Anl-12)

But

cot (- x) = - cot x (All-13)

So

X - 02 cot 0 (12 + So) = cot P ( 1 + Do) (All-14)

For a lossless short circuited line

Zin = J Z° tan 0 s (All-15)

where

Z = Characteristic Impedance

s = distance from open

For the reactance network, with the output short circuited

Z j x, +jz 0 ' tan( (1 2 +8 0  (A.-16)in jx+ 02 (2 0o

and for the tangent network (shorted output)

Z - j tan P (-1 1 - Do) (All-17)

but

tan (- x) - - tan x (A31-18)

so

z in-- j tan (12 + DO) (A31-19)
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Equating eqs. (All-16) and (All-19), there results

x tan P (12 + So) tan P (11 + D)(A -2)

From eq. (All-14)

-tan 3 (1+D)= +
1 0 cot P (I 1 D

(Alu-2)
1

=q
X' + z 02' cot P (1 2 + So)

Equating eq. (All-20) and (All-21)

[-x' + zo2 cot P (12 + S0)][xI+ z 02 tan 0 (12 + s 0 1 (A11-22)

Regrouping eq. (AII-22) and using a trigonometric identit'y, we

find that

cot2 P (12 + S ) 1 1 + X'2 zo - = 0 z2 (A11-23)
cot P (12 + So) X" z02'

Let cot P (12 + S0 ) = I (A31-24)

making this substitution, eq. A31-23 similifies to

i + Zo02 (A1-25)
Xz 0 2 '

or

2 (1 + V'2 - Zo02'
il2  0xzo2  ) , 1 0  (All-26

1+X12 _ z 02, 0

Let cp = - X, , 02 (A11-27)

Equation A1l-26 then becomes

•2 - C . 1. o1 (A21-28)
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Using the quadratic formula

11= p/2 +

=m,/2 +4(cp/2)2 + 1 (All-29)

or substituting eq. All-24 and All-27

i + X'2 _ 2 Z022
cot 1 (12 + S0 ) 02

(1 + 2-Z 2 X- 2o

02Z 0

Define

(p/2 = _ x 0 (Al-3l)

A ' 02'

Then

cot ! (1 2 + So) = + -+ 2 + 1 (All-32)

We may now solve eq. (All--32) for 12 in'a straightforward

manner. The result is

1 2 = / cot-'l0' +.Fe+ s) o (Ali-33)

In a similar manner eq. All-14 may be solved for 11 resulting

in

11 = 1/p cot 1' X' + Z02, cot P (12 + Son - D0  (A11-34)
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APPENDIX XII

Derivation of the Transfer Matrix Elements for an Unknown Sharp

Angle Bend (Acute Angle, 0 < 900)--Three-Cornered Bend:

2el unknown known unknown

T/ o;Ta jb a jbI a jb

A JB

e, eo _ C A
Tll 0@' IT2

(o) PHYSICAL DISCONTINUITY (b) MATRIX REPRESENTATION

Fig. A12 - 1: Discontinuity Structure for

Study of Acute Angle Bends.

The Three-Cornered Bend used in the evaluation of acute

angle bends is shown as part a of Figure A12-1. It is repre-

sented in matrix form by part b of the same figure. The matrix

representation is that of three cascaded bends, one of which is

known while the other two are identical. To find the elements

of the resultant matrix, we proceed by straightforward matrix

multiplication.

m=b 
(A12-1)

QLC A 0 ( c K ( c' a a c a

where

A= (2a 2 - i) a' - a b c' - a c b'

B =(2 a b) a' - b2 c' + a2 b'
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The final expression for A uses the restriction for

r. 1. s. networks (eq. 8-6 with a - d)

2a +b c=l (8-6)

Now, it may be shown that

a (B - b') = b (A + a') (A12-2)

or

A = K b (A12-3)

where

A + a'
K =B = a/b (A12-4)

If K = a/b is inserted in the equation B and the result is

solved for b, we obtain

b = B 2 (A12-5)

2K a -C' + K b

Now using the fact that

K A + a, (A12-6)

and

C = ba (A12-7)

(from eq. 8-6), we find that

b =+ (B - b') (A12-8)

�~Bb -

and using eq. A12-3, that

a(A + a+ (A12-9)a (A b + a' B) 2 (B - b 2

B b
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APPENDIX XIII

OVERALL MATRIX: A,8, Oki bk, are known for measurement.
a,b are unknown

known unknown known
T2k' TIkc Ok jbk a ib O k jbk

Jck Ok / jc a lojj j

A
e , i C A/

CF A
TI 2 k (b) MATRIX REPRESENTATION

(a) PHYSICAL DISCONTINUITY
Fig. A13-1: Discontinuity Structure for the

Study of Obtuse Angle Bends.

In this appendix we wish to solve for the elements a

and b of the unknown matrix in terms of the known parameters

ak, bk, ck and A, B and C. We begin by defining several

symbols.

Set:

(A.13-1)

tk ( C k J~ k)(A13-2\j c k a k

and

T- BTA=(A3

4,

jC
12



Therefore, by definition

T = (tk) (t) (tk) (A13-4)

Premultiply both sides of eq. (A13-1) by the inverse of tk'

namely tk

( T = (tk)01 (tk) (t) (tk) (A13-5)

Now

(tk) (tk)'l= 1 (A13-6)

so

(tk )l T = (t) (tk) (A13-7)

Post Multiply both sides of eq. A13-7 by (tk)'l

(tk)'l T (tk)-i = (t) (tk) (tk)'l (A13-8)

= t (by eq. A13-6)

We must proceed by finding the matrix elements of (tk) -l

From eq. A13-2

k ak j bk

=(ak a(A13-2)
J o k a k )

The inverse elements are given by

al = (A13-9)

where: i, j are integers

a I is the determinant of the original matrix. For

the matrix under discussion (eq. A13-2)
4k

I tk i =k2+ bk ck (A13-10)
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Therefore

(tk)'l-/s.k -j bk

-j ck a)

Inserting the definitions of (tk)l and T into eq. A13-8, we

get

k k (L k)'

\j c a

Performing the indicated multiplication and equating to

the elements of the (t) matrix., we obtain the final result,

which is

a = ak (ak A + bk C) + ck (ak B - bk A) (A13-12)

b=-bk(ak A + bk C) + ak (ak B bk A) (A13-13)
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ABSTRACT

The entire analysis of Stripline is based on the assumption

that operation is in the TEN mode. Since mode jumping is possible,

it is necessary to know what limitations must be placed on Strip-

line dimensions in order to assure propagation in the TEI mode. To

determine there limitations. a transverse resonance procedure is

used. When tied into an existing relation for the 3-plane bifur-

cation in waveguide and upon application of Stripline boundary

conditions, the desired result is obtained. Cutoff wavelength

for the first higher mode is given and a condition for propaga-

tion of discrete higher order modes is established. Finally,

experimental verification is given through measurements made by

the Airborne Instruments Laboratory on "trough waveguide."

(
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Chapter IX

HIGHER MODE PROPAGATION IN STRIPLINE

A. Introduction:

All the previous chapters on the properties of Stripline

have assumed that operation was taking place in the Transverse

Electromagnetic (TEM) mode. Because of this assumption, it

is possible to use standard transmission line techniques for

evaluation of Characteristic Impedance, Attenuation, Transient

Response, etc. The TEM mode is particularly easy to evaluate

since it satisfies Laplace's Equation (2 V - 0). As such, a

static solution can be assumed (although the field is certainly

not static). Assumption of a static field greatly simplifies

calculations.

In order to justify the assumption that a TEK mode is

being supported, it is necessary to know what limitations must

be placed on Stripline dimensions. Should these limitations

not be met, Stripline can easily jump into an infinite number

of Transverse Electric or Transverse Magnetic modes depending

on the boundary conditions satisfied.

Basic work on this problem has been done by Jasik and"

Oliner. 2  The author obtained the original derivation done

by Dr. Jasik through a private communication with that aiutho-.

Dr. Oliner derived a similar relation independently which was

( similar in form to that of Dr. Jasik but was somewhat easier

to evaluate. In this chapter the best features of both derivations

will be presented.
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B. Cutoff Wavelength of the First HiGher Mode:

The cutoff wavelength of the first higher order mode in

Stripline will be computed through the use of a transverse

resonance procedure. The approximate field distribution of

this mode is shown in part (a) of Fig. 9-1.

SW -• •- W/2. -

b 
Y,

Short Circult

a. Electric Field b. Network for Transverse
Distribution Resonance

Fig. 9-1: First Higher Mode in Stripline

In contrast to the dominant mode, which possesses a

magnetic wall or open circuit at its mid-plane, the first

higher mode has an electric wall or short circuit there. It

is in fact the lowest mode with this symmetry property. Since

the first higher order mode is symmetric about this short cir-

cuit, it is sufficient to consider one half of the configure-

tion of Fig. 9-1a. The fringing capacity may be considered as

a lumped element. These simplifications lead to the equivalent

circuit of Fig. 9-1b.

The value of the lumped capacitive element is given by the

E-plane bifurcation in the Waveguide Handbook5 on page 353.

Formula 2a on that page is

2



2i d 2 b( 1' in b + n b\
+ bS 1

•-, , 0 " l•--, , 0/ •$•-[, O 0)(9-1)

where

Si (x, 0.0) =0 Qin
1 s n X '

n=-

Fig. 9-2 illustrates the various parameters of eq. 9-1.

T- b I

b -4
S b2

Fig. 9-2: Side View of an E-Plane

Bifurcation in Weveguide.

Equation 9-1 can be somewhat simplified for the case of

Stripline where bI = b = 1/2 b. Applying this simplification

to equation 9-1, there results:

l 0I 0 2 0,0 (9-2)

The parameter d must be determined by considering the

transverse resonance condition. As an alternate to figure

9-1b, the fringing capacity from center strip to ground can

be considered to be compensated for by an additional width

( of the center strip of d on each side as shown in Fig. 9-3.
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-d w .dk

Fig. 9-3: Cross Section of Stripline Taking

Fringing Capacity into Account.

Field distribution is symmetrical about the center strip

so it is sufficient to consider one half of the configuration

of Fig. 9-3, say the lower half. The condition of resonance

is readily obtained from the boundary condition and is

w + 2 d =_. (9-3)2

Since our interest is in the lowest order mode, n = 1. If

eq. 9-3 solved for d and the result inserted in eq. 9-2,

the desired expression results. It can be seen to be;

Xc w 2 c (2 b, O, )
+ - In 2 + - I -

C S 0, o, (9-4)

where

S(x, 0, 0) (sin' 1 x/n - x/n)

n=l

b = ground plane spacing

w = center strip width

Xc= cutoff wavelength of the first higher mode.
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Equation (9-4) is arranged as shown because the arcsine

sum contributions are not major, although significant. In

employing eq. (9-4) for calculations, one should solve w/b

for values of b/c.6 The variation of Ic/b with w/b is pre-

sented as the solid line of Fig. 9-4.

When the arcsine sums are neglected, the dashed line of

Fig. 9-4 is obtained. The latter is useful as an approximate

formula, particularly for w/b large, i.e., for the low imped-

dnce range. The error in the use of the approximate formula

is shown as Fig. 9-5 as the fractional error encountered as a

function of w/b. It is seen that for w/b > l, the error is

less than 3%. The neglect of the arcsine sums, whose value

is a function of the cutoff wavelength is equivalent to employ-

ing for the fringing capacity in the network of Fig. 9-16 the

static value used for the approximate determination of the

Characteristic Impedance of the dominant (TEN) mode.

The solid curve of Fig. 9-4, corresponding to the accurate

solution, can be extended as far as desired in the w/b direc-

tion, but does not exist below w/b = 0.2075, i.e., Xc/b = 20

(the reason for the latter statement will be discussed in the

next section). However because of inaccuracies introduced by

higher mode interaction (due to the edges of the strip being

too close together) the curve cannot be trusted quantitatively

(" below about w/b - 0o.5
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Oliner 2 points out that an approximate rule can be

developed for the cutoff wavelength. When b/2 is small com-

pared to the wavelength in Stripline, the cutoff wavelength

is equal to the circumference measured around the Stripline

center conductor as shown in Fig. 9-6. As b/2 increases, the

distance from the conductor at which the circumference is to

II

(. rO.I14 b b
W- l

Fig. 9-6: Approximate Rule for Determining Xc in Stripline.

be measured will increase such that at b a 0.4 X c r - 0.17 b,

and at b = 0.5 Xc, r - 0.25 b.

C. Discussion of the Higher Mode Spectrum:

It was remarked above that the solid curve of Fig. 9-4

does not exist below the value Xc/b - 2.0. Oliner 2 has shown

that below this value the mode is no longer a discrete, proper

mode but becomes a portion of the continuous spectrum. The

following discussion is essentially that of Olinerts.

The electric field lines in the case of one class of discrete

modes is shown in Fig. 9-7a.

I ~ 41.jX __ __ _

(a) (b)

Fig. 9-7: Electric Field Lines for (a) a class of discrete

modes, (b) a contribution to the continuous spectrum.
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In the region external to the strip in the x direction,

the field acts like a mode below cutoff. The wavenumber kxe
2

is satisfied by kxe . The field configuration of Fig. 9-T7

is characteristic of a propagating mode in the x direction,

imposing the condition that kx 2 > 0. Such a mode cannot be

associated with a discrete mode in the z direction, but rather

with the continuous spectrum.

Consider the Stripline cross section shown as Fig. 9-8.

Let this cross section be divided into two regions: region

one in the central portion and region two in the exterior por-

tions including the fringing regions in the neighborhood of

the strip edges. In region one, away from the strip edges,,

//

Fig. 9-8: Stripline 3eametry.

the wavenumbers in the respective directions are related by

2 2 2
k = kIc0

where

k m2 /T

k 2 i 2 TA a

9



and where X, Xg and Xc are respectively, the free space

wavelength, the higher mode Stripline wavelength and the

higher mode cutoff wavelength. For the first higher mode,

Xc is given by eq. 9-4. In regions two of Fig& 9-8, the

wavenumbers are related by

2 k2  k 2 _k 2 (9-6)
kz xe ye

kye and kxe are numbers characteristic of the field

variation in the x and y directions in the exterior region.

For the first higher mode, boundary conditions impose the

condition that it = -/b.ye

Since for any given mode the values of kz in regions one

and two must be the same, one finds on equating eq. (9-5)'and (9-6)

k 2 =k 2 .k' 2

xe c ye

( 7T)2 ( T )-7

1cb

Now for a discrete mode, kxe <0. Inspection of e 9-7

shows that kxe 2< 0 when

b < n (n an interger) (9-8)

Any practical Stripline configuration imposes the condition

b < -- (9-9)2

( Even though the dominant (TM4) mode (for which Xc-

will propagate as a discrete mode for any value of b, any dis-

continuity in the line will set up radial line modes similar

10



to TE1 (or TM1 ) modes in parallel plate line, which will

propagate if eq. (9-9) is not satisfied.

We may summarize the above discussion by considering the

class of modes characterized by the field plots of Fig. 9-7.

Let it be assumed that a higher mode is propagating, so that

< Xc for this mode. Since n - I for this, mode, it can be

seen that if eq. 9-9 is satisfied eq. 9-8 will be also. If

the mode is propagating, therefore, and b < X/2 the mode will

always be a discrete mode. If b > X/2, the mode may still be

a discrete mode, or it may radiate real power away from the

center strip, according to whether or not eq. 9-8 is satisfied.

Should the higher mode be below cutoff, additional

restrictions arise. Since now X > Xc satisfaction of eq. 9-9

does not influence eq. 9-8. If eq. 9-8 is satisfied, a dis-

crete mode exists; if it is not satisfied, the mode is improper

and a member of the continuous spectrum. The question of whether

or not the continuous spectrum radiates real power or not must be

considered. If- real power is radiated, every discontinuity struc-

ture of Stripline must contain resistive elements in its equiva-

lent circuit. Since the mode is improper and part of the con-

tinuous spectrum which exists only as a complex, it is conceivable

that certain components of this spectrum contain components which

would interfere destructively thus preventing radiation of real

t power. In this case higher mode power would be completely stored

and the equivalent circuits of discontinuity structures would be

purely reactive.
11



Considerations quite independent of the above line of

reasoning (e.g., the spectrum of a line source between parallel

plates supporting an exponentially decaying current distribu-

tion, the possibility of the existence of leaky waves of the

type encountered in traveling wave antennas, etc.) indicate that

the mode complex is bound and that discontinuities are lossless.

Thus, the continuous spectrum, for b > X/2, occurs only when the

higher modes are below cutoff, and is non-radiating.

D. Experimental Verification:

Airborne Instruments Laboratorhas made an experimental

verification of eq. 9-4. The structure used for the evaluation

is termed "trough line" and was originated by AIL. Fig. 9-9

illustrates the geometry of "trough waveguide." Note that

its cross section corresponds to one half of the geometry of

Fig. 9-la with an electric short circuit or magnetic wall at

its midpoint. Trough waveguide does not support the TEN mode,

but, as may be seen from its symmetry properties does support

Fig. 9-9: The Trough Waveguide (A.I.L.)

( the first higher order mode of Stripline as its dominant mode.

Measurement of the transmission characteristics of trough

12



waveguide as a function of frequency are shown in Fig. 9-1O.

The value of cutoff frequency, computed from eq. 9-4 and shown

on Fig. 9-10 as a dashed line, can be seen to correspond to

the measured value of cutoff quite well.
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