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CHAPTER I
LITRODUCTION

As mon endeavors to delve further and further into the
rcalm of the unknown, his problems become more und more complex.
The invention of the electronic computer haa,gréaﬁly nided.
ithis quest {or knowledge in that it enaﬁles problems that
would have takeu a lifetime using antiquated methodﬁ.to be
solved in a short length Qf time. Conputing spe2d Les gradually
been inercased in order to handle extremély complex proolems Lii
a reasorable length of time.

O{ course there are weny problems whose answers would
ve ugseless if not obtaincble in a specified length of time.

This type of problem dictates the realization of oven Taster
compuiing cwoeeds than erc now available., Here lies the.
problem. Existing lumped constant systems are limited 1a
£heir u;per operating frequencies bf the stray capﬁcitance
oand inductauce asqnciated with them.

Thellogical question asked at this point then:

"Wwhy not use étaadard nicrowveve techniques Lo build a
computer?”. The question is easily answerszd by two
considerations: Size and cost. A simple examﬁle'will
serve to show how bulky even the gimplest waveguide

cormuter would be. Suppose & computer having a carrier




frequency of 3 kmc is made of 1000 logical elements; tﬁe
logical element; being Mggic T's. A rough calculation shows
that the logical eiements and their essociated interconnections
exclusive of power supplies, signal generators etc. would
require a room of 1000 cubic feet (see Appendix 1). Consider-
ing the logical element to be made up of one Magic Tee and
a small amount of flexible waveguide or coaxiable cable as
required by the logicallconfiguratipn, the cost of 1,000
elements would be roughly $160,000 plus the cost of connecting
sections. These simple examples serve to spow the inadvisability
of attempting to build a computer out of waveguide.

Once a computer built of waveguide components has been
ruled out, the reader will undoubtedly ask, "Why not build
it out of some configuration of coaxiel and wultiple wire
transmission line?".

In the fifst place, the author has never heard of
logicel elements mﬁde of coaxial or wire transmissioﬂ lines.
However, even assuming thaf such logical elements could be |
made, -the bulk of the resulting computer would be prﬁhibitive.
Admittedly its_ cost would be ccnsiderdblyiless than that of
& microwave computer.

How then are we to build & cogputer oﬁefating at microwave
frequencies? The answer lies .in a new type of trﬁnsmission

line called strip transmission line. Tvo basic types of strip
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transmission line exist; the sc called "Microstrip", which
consists of a strip conductor cver & single grcund plane,
and the type consisting of a strip placed symmetrically
Abetween two ground planes. This latter type is vgriously
termed as "Stripline", "Tri-Plate", balanced strip line,
shielded strip line, etc. In this paper it will be re-’
ferred to as "Stripline".

While both "Microstrip” and "Stripline" possess werit,
the latter type is in more popular demand dué to its lower
loss and smaller stray coupling as éompared to "Microstrip".
These considerations indicate a greater versatility of
application for "Striplinef and lead to the conclusion
that for our purposes only "Stripline" need be considered.
All analy;is therefore, wil. be done in terms of the
"Stripline" configuration. "Microstrip" will not be
considered further. Figures 1-1 and l-é show éhe physical

configurations of "Microstrip" and "Stripline" respectively.

Fig 1-1 "Microstrip Cross Section"




Fig 1-2 "Stripline Cross Sectiog”

The exﬁlanation for the continuing interest in "Stripline"
lies in its advantages over coaxial and waveguide construction,
nota.bly savings in production cost, in weig,ht emd volume and
in ‘time and expense in the development of new circuits.

However certain disadvaptages exist also. The principal of
these are: (1) an ai)parent unsuitability for long vuns of '
line; (2) a higher attenuation, .lc_zwer resonant Q and lower
power cé.pa.city than waveguide (although the pareme.ters are

at least comparable to those of coaxial line); (3) a dépendence
upon dielectric materials for dimensi'ona.l stability and-
strengih and (4) a partial loss of constructional aciﬁntnges

in the case of circuits thst cannot be reduced to planar form.
For many circuit applicat_iions these disadvé.ntages are un-
1mporf.rmt a.nd are far outweighed by the advanteges. Also each.

disadvantage can be'm:.uiimizegi through careful desiga procedure.
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The manufactﬁre of "Stripline" is well suited.to printed
eircuit techniques such as plioto-etching of coprer foll
laniinated on a dielectric surface. As such it bears all of
the advantages of printed circuits, i1.e. ease of repro-
ducevility, low cost and smell sirze.

' A conparison of a 1006 logical element computer made of
waveguide and of "Stripline" is in order. The cost of our
1000 element "Stripline" corputer would be in the neighbor-
hoed of 5,700 plus connecting sections as opposed to 150,000
OYlus cennecting sections for waveguilde (see Appendix 1). If
the 1,000 losical elements in the waveguide exarple wvere méde
of "Stri&line" the resultinc.volume would be only 1.95 cu. ft.
as com?ared to 1,000 cu. ft. for waveguide.

lozical elements arc realized by printing hybrid riags
and using then to perform the logical functlons. To realize
o ziven logicnl configuration then, say' an adder, we would
(l) draw the circuits; (2) make a drawing and nhotograph it
to get a uegative; (3) reduce the negative to the required
size; () print two double clad boards on one side and (5)
attach ccnnectors and bolt the Loards together with tﬁeir
printed sides facing each other. |

The previous paragraphs have shown that "Striéline"
could indeed be used to consiruct a practical computér
operatiﬁg at microwave frequencies. The following chapters

of this report will therefore concern themselves with the




basic characteristics of "Stripline" such as charccteristic
impedance, attenuation, trénaiént resﬁonse, etc. in order
that Qe pay exploif ”Stripiine" to build an operating device;
A second report will be written describing the logical

design of a toy nomputer.




CHAPTER II

DETERMINATION OF STRIPLINE CHARACTERISTIC IMVEDANCE

A Histery.

Close examination of the literature discloses that
several articles concerning strip transmission lines have
been written. In the opinion of the author the article
done'by Olinerais by far the best.. As a result the past.
his%ory of Characterisiic Iﬁpedance analysis as done in’
this paper is essentially that of Oliner.

llost of the people épgaged in theoretical work on
syrmetric strip lines have in one way or another been
concerned with the determinﬁtion of suitable expressioﬁs
for its Characteristic Impedance. While it is alﬁost
impossible to ineclude the contributions of everyone in-
volved, the discussion below is feit to be fairly inclusive
and typlcal of the different methods of epproach that have
veen used. The earlier efforts on this topic dealt w:tﬁ
expresslons for zero-thicknesa center strips while the
later investigations were concerned with stripé of finite

thickness.
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Since the dominant moﬁe in symmetrical strip line 18 a
TEM mode, the field distribution in the transverse plane is
o static one, ::nd the Characteéristic Impedance follows directly 
from the knowledge of the atatic capacity of the line. This
voint was recognized by all investigators. |

For zero-thickness center strips, pioneer work was
conducted Ly Barrett3for the low lupedance range, which
corresponds to lines for which the strip width is gréater
then one-half the ground plen2 spa.cing.. He considered the
line cross-section to be made up of a parallél-plate region
in the center and fringing capgcities at the sides,land on
this basis derived a simple and useful expression. At the
time he was unaware of a rigorous solution for zero-thickness
strips by Overhettinger and Magnus? which 18 based on a con-
formal mapping and is valid for any ratic of strip width to
ground plape spacing. -Haytshaa more recently congidered the
effect of fiqite width ground planes. He obtained a rigdrdﬁs
soiution via conformal mapping procedures for ground planes
of finite width in which the center strip and the gfound planes
are all of zero-thickness, and he concluded that for the iine‘
dimensions employed in practice the assumption of infinite
width ground planes Introduces negligible error.

A varicty of approximate expreouiope has been obtoined .

for lines with center strips of finite thickness. The first

" of these expressions, histdricall&, was decaced by Besovich?
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who followed the lead of Barrett3but employed the fringing
capacity appropriate to a strip of finite thickness. While
such a procedure would yield ah expression suitable for the
low impedance range, his result is of questionable value be-
cause the fringing capacity employed was given in a very
slowly convergent form. The next contribution along thnrse

7and Oliner§’9

lines was due to Cohn working independently -
but arriving at identical results. These results apply
separately to the low impedance and the high impedance
ranges, and very satisfactorily overlap‘in the inter-
mediate region (strip width to grbund plane spacing ratio
approximately equal to 0.35). The expresaion for the low
impedence range is that of Begovich? except for the use of
a fringing capacity which is exect and explicit. The
expression for the high impedance range was based updn a
far fieid equivalence between a rectanéular and circular
cylinder. These points are elaborated upon somewhat below.
Approximate expressione for 1lines of finite thickness

center strips were also derived by Pease}o follovwing a
suggestion of Wheeler. Their results yield rigorous upper
and lower bounds for Characteristic Impedance, and an

approximate expression which lies between these bounds. The

" results are best applicable to the low impedance range.

1

Pease and Mingins™ have also derived a "universal” expressioa’

vhich is a composlte of simpler ones applicable.only to .
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special ranges of line dimensions. Their composite expression
yields the Characteristic Iﬁpedance fé a high degree of
accufacy, and is valld for a center conductor of arbitrary,
but rectangular, aspect ratio. Skiles and Higzins'® have
also developed an approximate procedure for the case of_
arbitrary but rectangular aspect ratio; their method is
capable of arbitrarily high accuracy if the proccdure is
carried out far enough.

Several rigorous solutions have &lso been derived for
lines with center conductors of finite thickness. An
expression due to Greenhilll3lhas long been in the literature,
tut it is in implicit form and is not amepdble to calculation.
Begovichlu Las derived a rigorous result which is expressible
as the sum of a parallel plhte term, a fringing capacity
term, and correction terms. He proceeded by bféaking up the
éross-section into elementary regions, sblviné Laplace's
equation in each'regioé'seﬁarately, and then m#tching the
solu@}ons across the respective boundaries. The infinite
set of equations obtained thereby was then solved and the
solution case into the above-mentioned form. A rigorous
solution, obtained via conformal mapping procedﬁres, has
also been derived by Snow.l5 Although his result is in implicit'
form, numerical results may rvadily be obtained from it.
His result has not been published, however, but remains in

his unpublished notes. A recent solution, due to Bates}s
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has also been derived by conformal mapping methods. It is
also in implicit form, end readily yields numerical results.

B. Recommended Approach.

In the opinion of the writér, the solutions of Cohp
serve as the bost practical expressions avaiiable Tor the
Characteristic lwpedance of lines with center conductors
of finite thickness, since the expressions are simple in form
and are rather accurate (about 2% at worst).  In addition,
Coan's published curves' are in very useful form. In oréer
that the reader may urflerstand Cohn's derivation, it is
included in this paper. Cohn's derivétion is divided into
two parts, namely (1) the low impedance range a (2) the
hish impedance range. Each case will be discussed in
generzl terms in the text in order to satisfy <he casual
reader. If rigor is desired, the complete mathematical
analysis will be fqund in the Appendiceé. An Appendix
containing an abbreviated diacussion of Theory of A Complex
Verigble is included for the reader who nay need a. short
review of éomplex variable theory before attempting to
understand the Characteristic Impedance derivation.

c. Derivation of Characteristic Impedance in the Low Renge.

The treatment of the low impedance range parallels
_that of,Barrett3 and Begovich? and proceeds as shown in Fig2 -1.
The actual line cross-section of Fig 2-la is regarded as écmpoaed

of a central parallel plate region with fringing capacity at
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the sides. A knovledge of this fringing cepacity permits
the construction of the equivalent structure of Fig 2-1b,

which ic a parallel plate line of width D. The expression
for D in terms of the parameters of the line of Fig 2-la is

given in Appendix IV.

\\ // . _ iit 1 / 14_§7
/:”% % AY REERIEEREE
X 1 1 LT {
v L o —
O ()

Fig 2-1 Treatment of the low 2, Range

The general development procedufe has been described
in the above paragraph. ILet us now consider it in some detail.

Stripline, 1like coaxial and transmissicn line operates.
in the TEM mode. This mode is characterized by the property
that the electrbmagnetic wvaves contain neithér electric nor
magnetic fields in the direction of propagation. “ince
electric and magaetic field lines both lie entirely in the
transverse plane, these may be called transverse eleciro-
magnetic waves (abbreviated TEM). .

The above explanation of the TEM mode of propagation

will probably satisfy the casual reader but if more rigor
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1y desired Appendix II may be consulted.. This Appendix
contains a mathematical derivation of the TEM mode bé-
ginning with such basic relations as ﬁhe circuital law

of magnetism and Faraday’e law and concludes with laplace’s
equation. Since Laplace’s equation has a static éo1ution;
we may conclude that the TFM mode 18 exactly a static
distridbution end analyze it as such. The eéuations for
Characteristic‘Impedance, velocity of propeogation etc.

are therefore the same a3 these for any standard
transmission line. The well known expression for

Characteristic Impedence in Transmission line theory is:

zZ, a\/ 1/c . (2-1)

Where: )
L equals inductance/unit length

and
C equals capacitance per unit length

The velocity of propagation of the priacipal mode is given .

T \/LC ' | - ’(2-2)

Solving (2-1) and (2-2) simultanecusly

by

1
Zo = e . (2-3)
c\[HeE, . _
but vse = B et : (2-4)




which Churchill,

where: B = magnetic permeability (Equals 1 for alr and
most dielectrics).

€ = permittivity of the medium.

velocity in the medium with properties
M and €

<
[}

and . .
. ¢ = the velocity of light

3 x 108 meters/sec
therefore: |
2" N Sr ' (2-5)
3x 107t

To find Zo wg must now develop an expression for C.
Knowing this quantity we can also find attenustion and
power handling capabilities as will be seen later.

In the finding of the correct value of capacitance
to use in formula'(z-S), it will be.necessary to perform
a Schwerz-Christoffel mapping in the complex plame. Such
a mapping requires a knowledge of Theory of a Complex
Varieble for an understandihg of the procedure. A short
review of complex varieble theory and the théory ol the
Schwartz-Christoffel transformation is included és
Appendix III. Such a r?view should be suf:icient for
the reader already soméwhat familiar wifh this thecry.
The reader who is not familiax with complex variables is
referred to the many excellent texts on thé subjecf, of
17 Ahlrors}e‘or Guillemin}g,axelbest in the

author’s opinion.

W
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Consider the cross-section of Stripline as shown

in Pig 2-2 .

Fig 2-2 Cross Section of "Stripline" used for
Capacitance Calculetions

As can be seen by 1napec£10n; the capacity cf the
Stripline conliguration is essentially ihat of two parallel
plate capacitors connected in pafallel plus a correction for
f;inging capacitance C;'. The parallel plate capacitance for
Stripl%ne i3 derived in Appendix iV. The result may be -

used to compute Characteristic Impedance up to 25 ohms and is:

8.8u2 ¢ _w
=14 r g
Cppm b x 207 (——) (2-6)
where .
w = Center ccnductor strip width-cm .

b = Ground p;gne spacing ~ cm
t »  Plate Thickness - cm
€.= Dielectric Constant

C. = Parallel Plate Capacitance - f/cm




. where
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Above 25 ohms we rust add a term for fringing capacitance

to C The total capacitance per unit length of line is then:

pp’
' : -
Cop ™ Cpp * C, (2-7)

Cf' -t (w, % (Fringing field capacitance in £/cm)

C,... = Total capacitance per unit length of line

tp
Equation (2-6) then becomes:

2R b ey) (2-8)
b-t.

cfp = L x 10

Inserting the results of equation (2-8) into equation {2-3)"

there 1s obtained:

VA - zy.l- 2=
[o] % cf' ( 9)
€r <1-t b * 070885 er> : .

Equation (2-9) is precisely Cohn's result and is in o
convenient working forﬁ.

Before equation (2-9) is of Auy use to us, we must
find an ?Xpression for the fringing capacitance Cf'« This
required expression is obtained through thé use of &
Schwarz-Christoffel mapping in’ the complex plane. The
essential procedure is describved in the introduction to this
séction i.e. finding an equivalent Striﬁline structure
whiéh takes jnto account fringing capacitance and can therefore
be treated as an ideal parallel plate éapacitor. The author
has performed this mapping to check the results given in the

literature.




17

The results check those given by Cohn and can be

- conveniently expressed in working form as:

cf' °. 0885 r (:(-—-—-73) In ( --—7-
H
(—f-_TtF 1) 1n ( 1 -1)) mt/cm  (2-10)

(2 - t/v)?

D. Determination of Characteristic Impedance in the High Rance.

In the high impedance range, the strip width is small
compared to the ground plane cpacin(, as shown in Fig 2-3s,
and the approximation employed assumes that the ground planes
are far away from the center étrip. As a result, onhe can
. employ a.fgr field equivalence between the actual rectangulnr
center conductor and a circular or a zero-thicknesé strip
center conductor, as indicated in Fig 2-3b. The insertion
of this equivalence into the known expressions for the.
Characteristic Impedance of a round.conduétor-between Zround
planes, or a stripline with a zero-thickness center coaductor,
yields expressions simple in fom fof ﬁhe high impedance
~renge. While only the equivalence to a round conductor is

z the equivalence to a zero-thickness

employed in Cohn's curves
strip8 yields a resul£ of high accurscy for very thin center
strips. It haa also been recognized by Pease22 that the
Characteriatic Impedance in the high range of the line

possessing a rectangular center’'conductor lies between that
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of the lines with a flat center atrip placed. horizontally

and that with a similar strip placed vertically. The

situation 1s illustrated by Fig 2-3c, Since the Characteristic
Impedances zo' and ZO" of Fig 2-3c are known, this recognition

mokes available upper and lowef bounde on the result of interest.

(b)
(0) .

Zo> 2, > 7§

(c)

Fig 2-3 'Treatment of the high-zo-range

Examination of the literature ahowa Cohn's results to be
the most widely accepted. As a result, the derivation
givern here will be essentially that of Cohn.

The Characteristic Impedance of a transmission line
consistinz of & circular conductor of diaﬁeter do centéred
between two ﬁarallel ground planesxis well knqwn. It was
derived by Franke123 in 1943 and as it has stood the tast
of time, its derivation will pot bc inc1uded heré; only -

the result will be stated. It is:
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60 s L
2,® —=— 1n = ohms (2-11)

where the parameters are as shown in Fig 2-la. Fig 2-4b
is the familiar cross section of "Stripline" which is
repeated here for convenience. As shovm in Fig 2-3 and .

discussed in the beginning of this section, if "dj 1s

b " 4 ¥ 1 b
| - ~ i

Fig 2-I Center Conductors of Small Cross Section Yielding

Equivalent Cﬁaracteriétic Impedance

small compared to ™", we can find an equivalence between
round and rectangular cross sections w.ria the Schwarz-- |
Christoffel Transformation and then usé equation (.2-3'.1).

This mapping between rectangular and circular cross section
has been 'performéd by F’iammerau and' is included as Appendix 'V.
Tbe resultg are given in graphical form and are shown as

Fig 2-5. When Fig 2-5 is used in conjunction with equation




(2-11), the accuvacy increases as do$ 0. However comperison

with e more precilse analysis by Whole& and Eldred25 shovs

'equation (2-11) to be accurate to within one per cent for do

os large as b/2.

E. Comparison with an Exact Case.

The accuracy of equation (2-9Y) and (2-11) may be
tested by comparing them to an exact solution given by
: 1
Cverhettinger and MagnusL vwhich is volid for t = O. Thelr

result is

7 = 29115151 (2_12)

°  Kk(x')

. where K(k) end K(k') are complete elliptic integrals of

the flrst kind and where

k = sech

2 92

k'=s tanh

Fig 2-6 shows a comparison of equaiions (2-9), {2-11) and
(2-12). The maximum error occ;rs at w/o = 0.35 where (2-9)
and (2-11) intersect and is only 1.2 per cent. At w/b = 0.2
and 0.5, the error is reduced to 0.4 per cent while for .
lesser and greater w/o, the error rapidly approaches zero.
Similar plots of (2-9) and (2-11) have becn made for
strips ﬁaving t/b up to 0.25, and in ali casee, the curves

tend to merge together at least as well as in Fig 2.6,
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As one would expect from & consideration of fringing-field
1nteractio£, the 1ntersec€i§n of the curves remains very
near the same value of w/(b-t) = 0.35. A study of flux
plots for t = 0 and t > 0 leads one tc believe that the
error at the intersectlion point will be no greater in

the latter case than in the former, and very likely will
be smaller. Hence the proper use of (2-9) and {2-11) in
their assigned parameter ranges ie believed vo result in
an error of no more than 1.2 per cent near w/(bft) = 0.35,
end considerably less &t other values of w./(b-t).

r. Graphical Presentation of ZO.

In Fig 2-7, a family of Z_ curves are plotted versus w/b
with t/b as parameter. The curve for t/b = O is exact, the
points having been computed from (2-12). The other curves
are computed from (2-9) and (2-11). Equation (2-9) was used
for w/(b-t) >0.35 and (2-11) for w/(b-t) < 0.35. It is°
seen that the effect of thickness on the characteristic
impedance 18 substantial, even for thickhesses nly a few
per cent of the plate spacing.

G. . Conclusions.

Two simple formules andAauxiliﬁny curves are presented
for the characteristic impedance of the shielded stripline.
ﬁy weans of these forrulas, accuracy sufficient for any
engineering purpose 1s chtainsble for all strip widths and -
for.thickneeses up to at ieaat a quarter of the plate spaéing.
Fig 2-7 displays the characteristic impedance in a form thut

should be particularly useful to the design engineer.
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H. Characteristic Impedance Measurement.

1. Theory.
Much time has been spent in the theoretical

development of expressions for the Characteristic Impedance
of Stripline. This investigetion resulted in two equations.

The first applies when the ¢ondition .;-Y—,,- >.O.35 i3 met and 1is

. , .
7 = 24:15 ohms  (2-9)

( w/b ’CI" >
\/er 1-t/» 0.0885 ‘f :

The sccond equation appiies when S't'-,? < 0.35 and wus given as

o Iy

Z = ~—— 1ln -— ohms (2-11)
° Je. T ™%

let us examine equations (2-9) and (2-11) to .see how
Characteristic Impedance mey be measured in order to de-
ternine the va.liéity of the theoretical .development. Ve

gee that if samples of Stripline were built usi.ng_two double
clad boards, the thickness of the center strip (t) and the
distaonce between ground planes (b) weuld be fixed, as would
<he dielectric constant end the ‘fringing capacitances
(essuming the gfound pla.ne is at least eight times wider
then the center strip). The only variable is then the

ptrip width (w).
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2. Hardware.

In line with this reasoning, a number of Stribline
samples were built having various strip widths. The boards
wefe double clad with two ournce copper having an ;verugé thick-
ness 6{ 2.7 mils. Since two of these boards are placed back-
to-back, the thickness of the center strip was 5.4 mils.

The ldielectric material goes under the trade name of "Dilectro"

or "GB 112 T" and was made by Continental Diamond Fiber Co.

It has a dielectric constant of 2.73 and has an average thick-

ness of 57 mils. COQsideration of the cross3 section of
Stripline taen shows that the distance between ground planes
is 119 mils. The strip width (w) was determined by using
the average of five readings pade th;ough thé age of ¢- '
measuring device accurate to 0.1 mil. The df' term is a
function only of * and b and can be determined from the

results of Appendix IV (i.e. Fig Al-T). Thus all the para-

‘meters in equation (2-9) are known. In equation (2-11),

the quantity d  must be determined. Knowing w and t and

using Fig 2-5, do is easily found. The resulting Character-
istic Impedances for the various strip widths as calzulated
from equation (2-9) and (2-11) are shown in the secon

colum of Table 2-1 and as the broken line on Fig 2-9.
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3+  Measurement Technique.

We now know what that Characteristic Impedance of
the Stripline samples should be. The question now is,

"How do we messure 11?7 Consider equation (2-5) which was

ZQ = J’er

3x 108 c

(2-5)

Equation (2-5) has two unknowns, JEr and the capacitance C.
‘fne dielectric constant 1s given in most handbooks and for

3B ilu © 18 2.73. Since the initial uses of Stririine will
be at 3 i: . 1t would be desirable to make Characteristic
Impedance measurements ét that fréqugncy. . However, to the
authors' knowledge, ihe best RP bridges have a cut off "
srequency of 100 mc. It was therefore desirsble to make the .
neasuremente at & relatively low fredueﬂcy end extrapolate
the answer to 3 kme. Discussions between thé author and

the Bureau of Standards indicated that the dlelectric
congtant is unchanged at frequenéies below 20 kmec and perhaps
%0 kmeT Two bridges were obtained; a Model B 801 Wayne Kerr
V.H.F,. Admitt#nce Bridge usable in the frequency range 1 to
100 megacycles and a Model B 601 R. F. Impedaﬁce Bridge -
usable in ;he frequencys range 15 kilocycles to 5 megacycles.
The Model B 801.Bridge had an accuracy of + 2 pgr.oent + 0.5 put

while the Fodel B 601 has an accuracy of + 1 per cent.

rHere seems to be some disagreement on this point (se» Wild et al

"Hendoook of Triplate Microwave Components ’ Sanders Associates Iic., .

1955, page 134).
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Feasurements were made on various components in the overlepping
Trequency range. Agreement was found to be good. FPFurther
experiment with the Model B 801 showed it to be inaccurate

at frequencies above 50 megacycles. 8ince the Model B 801

" has a finer veranier scale, it was Qeciced to use it at a fre-

cquency of 5 megacycles end check the reiults with the Model

E 601.

“.  Source of Error.

Several difficulties were encountercd. TFor the
lengths of Stripline uscd,nafrow strip widths resulted in
low values of cepacitonces as can be seen by reference to 1
colum five of Table 2-1. Since the accuracy of the lcdel
B €01 is + 2 percent + 0.5 uuf and the null was not deter-
mingble to more than + 1 uuf, it can be seen that ihe regd-
ing could be 1.5 puf off quite easily. For lafge velues of
capacitance (wide strips), this error is small, but it be-
comes significant for narrow strip width and i3 believed to
account for at léast a part of the deviation between theoreti-
cal and meaaurgd values of Characteristic Impgéance. Other
sources of error Ariae from the cht that averages were

used for t, b, w and the dielectric constant €. -

5. Step-by-Sten Measurement Procedure.

This test set up is shown in Fig 2-8.
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5 me - Bao. 100AXIAL | COAXIAL STRIP - STRIPLINE STRIP-
' = =1 STRIPLINE -1TO STRIPLINE B
SOURCE BRIDGE LINE JUNCTION LINE JUNCTION LINE
545
 SCOPE
DETECTOR

Fig 2-8 Test Set Up for Measurement of Stripline .Capucity

The oscillator and oscilloscope weve alloyed to warm up., The
bridyge was then baianced with no load attached. The short
piece of coaxial cable and the coaxial cgble to Stripline
Junction having a short section of Strlpline attached were
then attached to the bridge and a meesurement mede., Finally
the length of Striplihe to be measured was attached and a
measurement made. The difference-befween the two measure-
ments was the copacity of the section of Szripline. Knowing
the lengtn of the measured section, the per unit capacitance

was obtained. The Characteristic Impedance was then cal-

‘culated through the use of equation (2-5). The results

are expressed in tabular form as Table 2-1 and in graphical

form as Fig 2-9.




TABLE 2-I

MEASUREMENT. OF STRIPLINE CHARACTERISTIC IMPEDANCE

CALCULATED CALCULATED MEASURED MEASURED _
STRIP WIOTH CHARACTERISTIC CAPACITANCE per | CAPACITANCE per CHARACTERISTIC
(INCHES) IMPEDANCE UNIT LENGTH - UNIT LENGTH IMPEDANCE
. (OHMS) wuf/cm wwfem (ohms)
0.0121 98.5 0.553 0.558 101.5
0.02:8 79.4 0.693 | 0.698 79.8
0.0279 Th.5 0.734 0.Thh 75.0
0.0293 ° 3.5 T} 0.749 0,743 Thob
0.0365 71.0 - 0.776 0.772 7.0
0.0456 62.1 0.885 - 0.900 61.0
0.0471 61.2 0,902 0.2v8 62.7
0.0516 58.6 | 0.938 0.y | 60.0
0.1204 36.2 1.50 1.51 36.2
0.1441 3.0 | 11 1.78 309
0.1k452 31.7 1.74 1.88 29.2
- 0.2453 20.9 . 2.64 REE-RY 22,1
0.2947 18.4 2.94 2.7Th 20.1
0.3468 16.0 3.41 3.25 17.0
0.3974 14.5 3.76 3.69 14.9 -
0.4955 1.7 h,71 4,54 l2.1
- 0.5976 9.9 5.54 | 5439 110.2
0,795k 7.6 6.3 | 6.76 8.1
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APPENDIX I

SIZE AND COST CAICULATIONS FOR A °
1000 LOGICAL ELEMENT COMPUTER

A.  Wavegulde Congtruction.

1. Size
logical operations in waveguide may be performed'
through the use of a Magic Tee. The dimensions of &

compercially avaflable 3 kme Magié Tee are shown in Fig Al-1.

Fig Al-1 A 3 kmc Magic Tee

To allow for terminations end space océupied by
- interconnecting cabiee, 'auume each Magic Tee occupies 1 cu.; £t.

. One Thousand Magic Tee's would therefore occupy 1000 cu. ft.

Al




APPENDIX I

' SIZE AND COST CALCULATIONS FOR A
1000 LOGICAL ELEVENT COMPUTER

A. Wavegaide Construction.

l. Size
logical operations in waveguide may be performed
through the use of a Magic Tee. The dimensions of a

cormercially available 3 kmc Magic Tee are shown 1in Fig Al-l.

Fig Al-1 A 3 kmc Magic Tee

Tc allow for terminations and space occupied by
interconnecting cableé, assume each Magic Tee occupies 1 cu. ft.

One Thousand Magic Tee's would therefore occupy 1000 cu. ft.
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" 2. Cost
The -ntalog retail price of a 3 kme Megic Tee
is $160. The cost of 1000 Magic Tee's would therefore be

5160, 000,

" B. Stripline Construction.

1. Size .

| Logical operations in ' Stripline may be performed
th‘rough the use of Hybrid Rings. The theory of the Hybrid

Ring dictates that its miuimum circumference be 1.5 )\.jg where kg

is the wavelength in Stripline. The conf.igurati_on of a

Hybrid Ring is shown &s Fig Al-2.

Fig Al-2 Configuration of a Hybrid Ring

Tke free space wavelenéth at 3 kmc may be found from

the relation 8 ,
A= 3% 10 = 10 e ((Al.l)

3 x 109
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Stripline wavelength is related to free space wﬁvelength

by:
Y xt - __'_)_,__ . (A1-2)

where €. is the relative permitivity of the dielectric.
Present day Stripline has a Glass Teflon dielectric whose
relative permitivity is 2.32. The wavelength in Stripline
is then:
. Xt = A = 10 cw = 5.95 cm
~/ €. \, 2.82
The circumference of the Hybrid Ring is thén:

Cm1.5 A = 1.5x 5.95 = 8.93 cm (A1-3)

This circumference corresponds to a diameter of

D = ‘%-’ = 809! cnl s 20& cll = 1012 in (Al-lq'-)

This stray coupling between rings must be .onsidered
next. It has beeu noted in literature that "separation by
approximately the ground plane spacing is sufficilent to achieve

negligible coupling between adjacent 1ines™

Application of
this statement to a ground plane spacing of 1/8 inch leads

to the conclusion that the adjacent Hybrid Ring should be at
least l/h inch apart. For our approximation let each_Hybrid
Ring be centered on a square éf Stripline 1 1/2 inches in -

a sidé. Now suppose the 1000 logical element computer is
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constructed of 100 sheets -f Stripline with 10 ﬁybrid
Rings per sheet. Each sheet will be iS 1nc§es on a side
and 1/8 inch thick. A stack of 100 sheets would tberefore
occupy about 2 cu. ft. .
2. Cost.
The cost of producing ;a. 1000 logical element.
Stripline computer can be broken dow;a as roilows:

200 Double Clad Teflon Fiberglass boards (k,000.00

Developer, Sensitizer, and laquer 45 100.00
Labor, Art Work and negative ~$ 500.00
Drilling and shearing $1,000.00

$4,700.00

It must be remembered that Stripline consists of two
Double Clad beards sandwiched t:gether. Therefore 200
double clad toards are required fop 100‘ Stripline components.




APPENDIX II

A DISCUSSION OF THE TEM MODE

A, Moxwell's First Iaw=l

The first set of equations 1s based on the circuital

law.of magnetism which in equation foim and in rationalized

units is: j[ H »alel | (A2-1)
where H. is the magnetic firld intensity in amperes per metér
aﬁd i 1s‘the displacement of distance along the.closed path
which encircles the current. Ia this derivation, the current
I is expresscd iﬁ ampercs and is equal to the sum of coh-
duction and displacement currents, and the displacement 1
is expressed in meters. (1t ;s'understopd that in ggneral

H 1s a function of both time and space).

y
iHv
{Ey)
9 (%)
b s P
—p
{8,) * , gx Hy e
X /0 lt.r - - L]
P
a (a,)t ’
H
€,
(] f

Fig A2-1 Element .of volume in the electromagnetic field:
Certesian COOrdinaten.
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If all space is assumed to be filled with electric
| currenﬁs and the acsociated magnetic fields, it is &

relatively simple matter to establish the relationships

between the space variations in H and the current ilensitles

which exist at any point in spacé. This set of relation-
ships is sometimes referred i as M@xwell's fifst law.

let Fig A2-1 represent an elerental section of space filled
with electric and magnetic fields, and with the associated

currents. Also Per P and pz represent the current densities

Y
"in the x, , and z directions respectively. The magnetic-
field intensities along the x, y and 2 éxis respectively will
be represented by Hx"Hy and'H‘. The gener;l principle
involved in the establishment of the firﬁt equation to be
considered can be scun by treating only one Burfacé of the
element of volume. Assume that the area ocbao is selected.

Through this area the total current 1is

. Ix - pxdydz -‘pdi (A2-2)

Around the boundary of this surface there exist magnetic

intensity or H.vectora, two of which are indicated in Fig

A2-1, namely H& along the dy paép and H, along the dz path.
The magnetic putential drope around the ocbao loop

taken individually are:




AT
du1( along oc) Kydy

(K _az) : 3H,
2 dy = Hdz+ —= dydz
dy

2(a.lons eb) H dz + dy

4U3(a1ong va) =~

dUh(along ao) "

In arriving §t these expressions it is of course recognized
that dz is not a function of y end neither is dy na. function
of z. The four magnetic potentiul drops are to be taken in
the ocbao direction around the’ loop since + I  esteblishes '
H vectors in this direction around the loop in accordance
with the r,'.g;ht-hand rule.

From the circuital law of magnetism (equation A2-1),
it is plain that

fH dl-dUl+d02+dU30dFJh

O R oH
- <_1_-_z_ - .._1 dydz = p dydz . (A2-3)
oy oz
or 'o H _ ‘B_Ex .o | (a2-4)
dy oz x

In this equation p x the currenf. density existing over

the dydz face and directed along the x axis is made up of
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two parts. One is the conduction current density g,Ex, vhere
g is the specific conductance per unit volume and Ey is the
% component of the electric-field intensity in volts per

meter. The other is the displacement current dgnoity,

3D . ‘ |
—~z » vhere D_ 18 the clectric flux density. Since D = ¢ E,

where € 1¢ the permittivity of the médium, the total currént
density may be written,

OE
‘ px = gEx + € X

BEquation (A2-4) now becomes

oK oH OE
—2 - L e+ = (A2-5)
dy oz X ot '

In an exactly similar manner two other equations, for the .

repaining two coordinate directions, may be derived. They are

aux auz ' JE v ( ' .
£ . gk +e¢—L ' . A2-6
oz dx - ¥ ot _ : : )
a_nx OH_ OB, A ( )
md - emhe SR @ 4+ € —_— ‘\2"7 .
ox Sy z ot

These three equations together make up the expréssion of one
of Maxwell's laws. They express three of the necessary relations
which must always exist between H and E in the electromagnetic

field.
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B. Maxwell's Second Law.

Equations (A2-5), (A2-6) and (A2-7) are based on the
circuital law of magnetism. Another set of three equationus
based on Faraday's iaw will -now be derived. Again Fig A2-1
will be used with the p's replaced by flux densities B and
with the H's giving place to corresponding eléctric
intensities (E's) expressed in volts per meﬁer.

Consider the area ocbao and assume that the flux density
Bx is decgeasing so that its derivative with respect to time
is negative. Also assume for the moment that the boundaries
of the area are fine ﬁires,'with practicelly infinite resistance
if we wish, in which emf'? are induced by the time rate of
change of Bx. The decrease of flux through fhe arca will in-
duce a voltage e in the wire boundary which will be in the -
sense ocbao. The magnitude of this voltage is given by
Faraday's law to be . '

é-fﬁvdl--d‘x - (AQ-B)
' at

-mx
5 e
vhere E is the electric intensity vector

1 is the displacement directed along the periphery

of loop oabco
¢ is the magnetic flux crossing the dydz surface

Bxis the flux density at the dydz surface
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The minus sign accoqxits for the fact thet the voltege
induced in the ocbao loop is weasured by the time rate of
décrease of magnetic flux through the loop.
The electric potential differences around the closed

path ocbao (taken in the right-hand scréw direction eround

+Bx) are individually

dvl(o.long oc) - Eydy
a(Ezdz)' : aEz :
= E iz 4 ——— dy = E dz + — dydz
z 2y 2ty ¢
XE dy) dE
]- - Edy - —L ayaz

2

dvQ(along cb)

9V3(along ve) ™ " | Ty

dvh(along ao) " E dz

From equation (A2-8) it is seen that

(b E, .} —Fx o B, ‘
. ] — - M e cmm— 2.0
)+ dv, + dv3 + dvs 3, haﬂg 3 -dydz (A2-¢)

e = dv
. 2 dz t

L4

Recognizing that B, =k H . '

a-f—z- - ajx .- -4 a—fé .
dy d2 3t : - (A2-10)

If the same procedure is applied to faces dxdz and to dxd&

'reapectively, we find that:




Q/
! &
O

and

%
Jdx

All

(A2-11)

(A2-12)

Equations (A2-5) through (A2-7) and (A2-10) through (A2-12)

are generalized solutions to Maxwell's first two laws in

Cartesian coordinates. We are interested primarily in the

steady state sinusoidal solution. Since the H's and E's of

the above equations are functicns of time and space, we may

therefore make the substitutions:

and

(3ot
((d ot

(d ot

ot
(3 ot
(3t

- Tz)

-Tz)

- T2)

- Yz)'

rz)

rz)

(A2-13)

'(Az-lh)

(A2-15)

(A2-16)
(£2-17)
(A2-18)

vhere the H's and E's are functions of space only, v is the

propagetion constant and £ is the assumed direction of

propagation.
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_ If equations (A2-13) - (A2-18) are substituted in
equations (A2-5) thru (A2-T) and (A2-10) thru (A2-12),

tne following relations are cbtained (assuming g = 0):

d E, _ L .
S——--rEy--Jm'u H . ' - (A2-19)
Y
-rEx-.axu-pr y (A2-20)
O E QE.
ay .ax--JmHﬁ; . (A2-21)

< y .

o H, _ .

...._; .7 Hy = Joe E (A2-22)
R - H . _ . .

-y Hx - N = Jwe -Ey ‘ (A2-23)

X .
o O H
__.Ia - —-—a X = Jwe ETZ' (A2-210)
) x J _

Equations (A2-19) - (A2-24) may be solved simvltaneously for

the E's and H's. The results are:
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(A2-25)

&
]
N\
<.
€
L)
Q/
<18
[}
-‘
XNl
N

(A2-26)

|

+

=

&
N

ol
L
.
-‘
Nl
+ |~
=
=L
n
7N\
Cn
e
m
o
®
o
<

- 1 %, OE, .
E = —5 '2,(Y oy > (A2-27)
—. . < aﬁ'z' , aii_; ) ( 8)
et =2 +jon, —2 ) (A2-2
R .

2
=W U €

where kl

C. Maxwell's Third law.2l .-

Conside'r e small rectangular prism with its edges p@lel. .
to three coordinate axis x', Y end Z,.as in Fig Aé-?.. ~Tne
limiting ca;se ie to-be considered, in which the p.ri,gg; ig s0
small that its edges are dx, dy and dz in length. Fig A2-2
shows & side view oi; this prism, with the plane of the figure

‘parallel to the X-Y plane. We are looking ubon a side vith
area dx éy. Each end has aree dy dsz, and the top and bottom

éx dz.

¢
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¥ » Alb

(a)

(c)

ig A2-2 Derivation of Divergence

This small prismetic volume is locatéd in a vector
f£ield which, for convenience, we will call D. Flux lines
of this fleld pess through the prism, entering tirough one
surface and leaving through another. We wish to find how
many 1lines, if any, originate within the volume. |

Peferring to Fig A2-2;'the number of flux lines enter-
ing the léft-hand side of the prism is equallto the area‘of
the ;eft-hand surface times the norﬁal component of field
strength, which is Dx dy az. The number ieaving the right-
hand surface is &ifferent 1f Dx changes in the distance dx.
9D

X as one passes from left'
x
to right, the emount of change in the distance dx is

It Dx is changing at the fate‘

a‘Dx dx. Hence the number of flux lipes'leaving the right-

X : \ . .
hand surface is (Dx + 3 Dy dx) dy dz. Subtracting, the
x ' .

" number of lines that leave the right-hand side in excess of

9D, ax dy dz.

the number that enter the left-hand side is
A x
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Similarly, the number of lines leaving 4he top of the prism
in excess of those entering the bottom is B'_Z dy dx dz;
and the number lcaving the front surlace is greater than the
number entering the back by D
2

Comp;ning these quantities, the total number of flw:

z dz dx dy.

lines leaving the volume that do not enter it is

oD oD
X
9 x oy

. ) dx dy dz (A2-29)

But divergence is defined as the number of flux lines

originating per unit volume; 80, if the volume of the prism

is dv,
3p, 3D, 3D .
V'Dal| —X & L & z ) ax gy dz (A2-30)
o x oy v

~ Since the-volume of the prism dv is equal to dx dy dz, it
follows that
o D anl anz

V°'Dw= + + (A2-31)
dx dy dz - :

Now consider that space ia divided into an unlimited
number of small cells of volume dv, as in Fig A2-2. The
nunber of flux lines leaving one such cell, marked "a" in
the figure, is greater than the number entering tha; 2ell by
V *° D dv. The number originating withiﬁ the adjoining cell

"»" is likewise the divergence at that location times the
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volume of that cell. The numbér of lines ema.no.t'ingl fro
the two cells toget}lxer, considéré& as a unit, is the sum
of fixe two products of d;lver_gence a.n(i volume. Adding more
cells. to the group thus begun, tl';e nupber or'lines“of flux
issuing f‘fom any volune 1s greater than the‘n{;mber enteriﬁg
that volume by the summation (or integral) of all the indi-

vidual products of divergence and volume. Hence,
Excess outward flux -j V°Ddveq (A2-32)
v :

The flux of the vector field D passing through an area a is

d_efined as
Jora | o (a2-33)

and from this it follows that the net flux passing outward
“hrourh any closed surface (the excess of the outward flux
over the inward flux) is found by lategrating over the whole

closed surface:
j( D . da (A2-34)

Now equation (A2-34) and equation (A2-32) are different

expressicns for -the same quantity of flux and hence may be

- equated, giving




——

AT

fD'da-fV-de-Q | (A2-35)

»

In any region in which there is no electric charge, so

Q-‘o,f(v- D) dv-o; and hence the V + D = 0 (A2-36) -

D. Mecowell's Fourth Law.

A basic experiment in the theory of magnetic fields

leads to the équation
~{ B.daw0 (A2-37)

Applying Gauss' theorem tc this experimental result, it
appears thet the magnepic field has no divergence under any

circumstances. t.e.
V+:BuwO (A2'38)‘

The discussion of Maxwell's first and second laws is

esgentially thet of Ware and Reedfo vwhile the discﬁseion of

21

thé third and fourth lavs follow Skilling™ closely.

E. The Wave Equations Governing Electric and Magnetic

Phenomena in Chaggg-Free'Dielectric."
We now wish to operate on Maxwell's equations to obtain

the wave equations. Consider a dielectric containing no charges:
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and with zero conductiﬁity, 80 that there are no conduction
currents in the dielectric. Since these are the conditions
implied in the previous development of Maxwell's laws, the

final equations can Just be reproduced Tor convenience.

They are:
VxHae L | (A2-5) thm’(@:-?) -
VXEm :P—d%“—- | | ' (A2-20) thru- (a2-12)
V+*Duo | I - km-aéj
V+:Bao :  (A2-38)

It will e observed thel the first two equations have been
written in their vector form rather than in the expanded

Cartesian coordinate form used previously. This was done

- simply f'or convenience in developing the wave equations. The

reader unfamiliar with vector operations will fiud aan adequate
discussion in Skilling?l

In order to realize the wave equations, let us fifst

take the curl of (A2-10) thru (A2-12)




A9
va'xx__“},x'an ‘ (A2-39)
ot t
Now there 1s an identity in vector analysis which states:
vam--fAM?(v-A) . (A2-b0)
Substituting ( 2-40) into (A2- 39)
v(v- E)VzEu-qua-— (A2-l$l)
But by equation (A2-36)
V:DmwV-+-¢ E=sO (A2-36)
Tuserting (A2-35) into (A2-41), there is obtalned
L2 OH ’
iz
V EsuVxgzy » (A2-42)
A little reflection reveals that E and H are continuous
functions of time and space and that their partial
derivetives may te taken in any order. Utilizing this

result, equation (A2-42) can be put in the form

v2En pa-ai;(Vxn) ' | (A2-43)
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Put equation (A2-5) thru (A2-7) states
v dE o
xHe et . (A2-5) thru (A2-7)

Inserting this result in (A2-4k4), we get

vV %E = E% (e g% )' . | ‘(Aé-hh)
or _ .
V Eape azg . (A2-45)
. % :

This is the general form of the wave equation. A wave
equation in terms of H can also be oﬁtaiﬂed simply by
-' starting with equations (A2-5) thru (A2-7) a;nd proceeding
in precisely the same manner as in the electric field case.

The reault is:

832
v Bape 0 | (A2-16)
: ot . . o
Again we assumed a sinusoidal steady state sol;tion, 80
that the E's and H's of equations (A2-45) and (A2-46) are
" those of equations (A2-13) thru (A2-18). Taerefore for

sinusoidal varia;ions'equation. (A2-45) may be written as:

viEa-u?ucE (s
"and (A2-46) as: - _ . ,
| viHa-0pen . |  (A2-48) |

where E and H are functions of time and space.




Now as was vsed in equations (A2-25) thru (A2-28)
let k) = w® pe. Making thia‘subsfitutiqn, equation

(Az-u7) becomes:

v?—E..;las ._ | - (a2-b9)
and relation (A2-48) becopes:

Ve -kH (A2-50)

1

Now Let us look at the expanded form of equations (A2-49)

£ X X .
. . - kB (A2451)
) xa 9 ya o z2 17°x ,

¥ 3 3%
Y N

L & + s <k 2E
32 d3y2 34 1%y
3E % . k. .

Z 4 ; + ; - -klag
d x° QY dz° z

Equation (A2-50) is similar in form. It should be obvious

by inspection that (A2-i9) can be split into two parts as

fcllowe:
FEe 2E+ FE =i (42-52)
. 3g? -
Assuming our sinusoidal variation B ¢(Jnt-rz):

%Eg - rE : (A2-53)
2
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Substituting (A2-53) into (A2-52), we obtain

v 2 g S (A2-54)

Em-(rPei

xy

Equation (A2-50) 1s operated in a similar manner to obtain
2 2 2 . "
VA - (e o (A2-55)

The mode of propagation-under discussion is the TEM
mode. This mode ise characterized by the property that the
~ E and H fields in the direction of propegation is zero i.e.
if Z is the direction of propagation, Ez and Hz are zero.
Tae general relations between wave components aa expreaded
by equations (A2-25) thru (A2-28) show that with E, and H,
"zero, then all other components must of necéssity also be
' 1? is at the same time equal to zero.
Thus, a transverse electromagnétic wave wust satisfy the

. 2
zero, uniess ¥ -+ k

condition

l .

rqufgﬁluq

If equation (A2-56) is inserted in equations (A2-54) and

: r2 +k°m0 . ' . (A2-56)

or -

(A2-55), then is obtained
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Vaxyl‘- =0 o _ (A2-57)
and

A0 ] (A2-58)

But relations (A2-57) and (A2-58) are Laplace's equations

for E and H in the transverse plane. ASince Ez and Hz are

zero, the field is transverse. The solutions for Laplace's
equation are electric and magnetic fields under staﬂc conditions.
Therefore we may coz;xclude that the TEM mode is exactly a static
distribution and analyze it as such. The equations for Zo,‘
velocity ia the medium, etc. are the same as those for any

gstandard transmissicn line.




APPENDIX IIT -

ELEMENIS OF COMPLEX VARIABLE THEORY AND A

DISCUSSION OF THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

A. Elements of Cerplex Variablie Theory.

1. The Cauchy-Riemann equations.

We are aware that a complex plane exists that
has a real"and complex axis. We call this complex plane
'the 2 plane. Any point in this plane nia.y e identified by

tiue coordinates:

z= X+ Jy ' : ->'(A3~1)

We may fuirther dsfine the W plane,

Waf (2)=u '+ v _ . (A3-2).

vhere: u is the real vart of £ (2)

and v is the imaginery part.

Fig A3-1 A and B illustrate the Z and W planes.

- A2b
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A o B
Z plane W plane

Fig A3-1 Illustration of 2 end W Planes

T> determine what conditions £ (2) must satisfy to fulfill

the above relations, let us examine the derivitive:

dw

—
dz

= limit Aw  (a3-3)
OHz—+0 Az .

In order for the limit (A3-3) to bg valid, Az musf be able

to approach zero from any diresction. Let us write

dv _ du + jdv : ' .
. = - (A3-4)

Remembering that
u = Real part of £ (2)

ve may write:
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e B oaxe gu; ay ' (A3-5)
Also v = Imagipafy part of £ (2), eo
dv = g§ .dx + g; ay | | (A3-6)

Substituting (A3-5) and (A3-€) into (A3-4), there is cbtained:

Wo (@ vy P e (@ o +s U (43-7)
1+ %%‘

Inspection of (A3-7) shows that the direction of dz is detérmined
by dy/dx. If (A3-7) is to =~ independert of direction, certain

conditions must be satisfied. Dividing numerator and denqminator .

of (A3-7) by

(%5 «J %1)
Su v . .4
"y ( 5t 3§ * af
& “\& J‘TSF' /- :
x 7] - (43-8)
.( 1+ dx'> Co
\ g% + gg
Now let: ‘ , 3
(g% +J 3;)

e i (83-9)
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Substituting (A3-9) into (A3-8);

1, &
aw ( J : dX) '
T " 14,8 -l | - (A3-10)

" Equation (A3-10) is obviously independent of direction and

therefore meets our criterion. The restriction on u and v

may be gotten from the equation (A3-9) which may be writtea as:
du ov v ou .
SIS Hm I (A3-11)

Now in order for (A3-11) to be true the Real parts must be

equal and the Imeginary parts must be equal; 1 e.,

- g— - : B (A3-12)

114

end

.. 2 o (43-13)

Equations (A3-12) and(A3-13) are known as the Cauehy-Riemann
equations. Only those functions w = u ¢'J v which satiefy
thr  » equations ten be called funetions of a complex variable.
Such functions are analytic functions i.e. they have a
derivative ever&where within a arbitrarily small region in

the vicinity of some point.
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2.  Conformal Mupping.

Conformal mapping applies only to analytic functions.
Since we now have a mathematical relationship between the Z end ¥
planes, it is possible to map tﬁe points of z on the Z plane
and the corresponding (or ima&e) points on the W = I’ (Z) plane.
If to each point there corresponds only one point w, the
function W = F (Z) is said to be single valued.

Now let us see what is meant by the word "éonformal".
In Fig A3-2(a) let the element of distance pp' in thé 2 plane
represent dz. Then there will be an image distance dw repre-

sented by qq' in the W plane. Now dw may be written as:

p . - .

(A) Z Plane - - (B) w Plane

Fig A3-2 Conformal Mapping in th_e-Complex Domain .

ave (@ & (a3)
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Now %% is complex ani may be written as:

.y -

T | (A3-15)
whére

W owa “

&

and

¢ = argument (%%)
Substituting (A3-15) into (A3-14k), there is obtained:

av = (ae’®) az _ (A3-16)

We therefore find that an element dw cali be obtained from
the corresponding element dz by ﬁultiplying its length by
"a"and rotating it throﬁgh an angle ¢. It therefore
follows that any element of area in the Z plane is represented
in the W rlane by An element c.” area that has the same form
as the original element but whose linear dimensions are "g"
times as great and whose orientation is obtained by turning
the original element‘through an angle 0: Becauce angles are
preserved (lines at right angles to each other in the Z plane
remain at right angles in the W plane), the transformation

is called "conformal”.
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B. The Schwarz-Christoffel Transformation:

" An extremely uscful mapping funétion, of considerable
generality in its abili. to meet various geometrical config-

‘urations, is given by the so-called Schwarz-Christoffel formula,

which reads

B . p . “' . :
wa)an [ B (o) Rz, () tnab o (a3ar)
i “
o]

Here 8 is a running varieble in the Z-plane, 200 Zyy o 0o 0 2y
are n finite points on the real axis, numberzd in such an '

orcer that

2, <2, <""""<lel o . (A3-18)

ané the quantities Hys Hg o o v o By appearing in the
exponents are any set of positive or negativg real numbers..
The constants M and N mey have complex values, with the
possibility that N be z: 1o, but M must, of course, have a
non-zero value. The lower limit z  of the integral is an
arbitrary point in the upper half plane. It may be chosen
equal .o zero, or equal to one of the points 2y ¢ oo 0 2Zpe
The independent varisble for the mapping fﬁgction w(z) is the
upper limit of !{*» intepgral. For this reason the derivative

of the function is given dy

* This development follows thaf of Guillewmin es given in
" o, 10w ’
Mathematics of Circuit Analysis ™, pp 380-384.
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d"’ -pJ— -u2 L N ] ' -u -
o " M (z-2)  (z-25) (z-2)) *  (A3-29)
88 may be seen from the fact that 1f one has
w(z) = f‘ £(3) a8 ' (43-20)
Ze
the usual definition for the derivative
g.‘zi = limit ["(2 * 2 :)'"(?)J : . (A3-21)
Az -0 - )
'yields
z ‘
wiz+az)-wiz)m j taz £(8) db (A3-22)
z .

Since A z is a small displaceme;it (vecoming zero in the limit) s
one may say that for the integration in equation .(A3-22) the
function £(8) is essentlally constant and equal to the valué
f(z).A It is assumed, of course, that the function £(8) is
continuous in the vicinity of the point 8mz, which is &
recognized condition for the ‘exis‘;ence of the derivative in
the first place. With £(8) equal to the cons-ant value f(z),
it may be placed in front of the 1nte'grg.1 sign, and (A3-22)

yields
w(z +42) -v(z) = f(z)fz ras ad = £(2) A 2 (A3-23)
2 o

the approximation becdmihg exact in the limit Az~0.

Completing the 1imit, one finds, therefore; that

oLt o (A3-2%)
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The essential character of fhe function w(z) may now be .
recognized frpm & study of the behavior of the derivative‘
(A3-19) in the vicinity of the point z = z,. The first step
in this direction 1s to represent the factor (z - zv) in the
pélar form as illustrated in Fig A3-3;‘ This'representation

_reads

(2 -2,) 8 |2z, | O *+2¥ (A3-25)

in which k 18 an integer.

"Th.en ( ’ : )
' i “H =J(u, O, +2n kp :
v ¢ v'v , v (A3-26)

(2 -2, " = o, |

Since the quentivy Hy is not necessarily en integer, the right-
hand side of equation (A3-26) may have many difierent values |

for different integer values of k;

Fig A3-3 Representation of (z-z ) in polar '
form in the study of dvw/dz.,




dz

.In order to remove this miltivaluedness of the factor (z-zv)

dw _

A33

p'V
K

it is specified at the outset that k shell assume only the
value zero. This specification ie equivalent to stating taat
the funciion dw/dz is to be studied on only one of the many .
ledves of its Riemann surface, namely, on that one which
corresponds to k = 0 In (A3-26), A typical factor in (A3-19)

then becomes

-+ ' H, -J KO
(z-2) " = lz-z2] " ¢ V7 (a3-27) -

ard if the point z is allowed to lie only in the upper
half plane or on the real axis of the Z-plane, it is clear

from Fig A3-3 that

0s ¢ 5
v

x | ' (A3-28)

When the polar forms

we ] e® (h5-29)
and
' . " ‘ - - J[a -“lo e ok 0 ]
AR TP e =T P el " a0

are introduced, it follows that

e 2 - “l°l- ﬂ,‘.:oe - o000 “non . (A3-31)
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It is now 'aesumed that the varisble z in the function (A3-19)

is rezstrizted to real vélues only; thét is, the variable

point z 1s thought of as moving along the real axis from

- & to ®, the only dev;aﬁion from this behavior occuring wherever

the variasble point z encounters one of the critical points Z,

Fig A3-4 The path along which dw/dz is étudied
in the Schwartz-Christoffel transformation

There it makes a slight detour around fhe critical point
insteed of passing directly through it. These detouis may
be visualized as having the form of vanishingl&'small semi-
Eircular.arca lying in the upper half plane, as shown in Fig A3-h,
As the point i traverses a small semicircular arc in the vicinitq
of the point z, the angle ¢, changes from the value x to zero,
vhereas the angles of the remaining factors do not change at
all because of the assumed vanishingly smﬁll raﬁius of the -

senicircular detour. Hent¢e for the range

(A3-32)

%yl <'z <Zye1




one has
. > >
ol- 02- XX XL Ov-l-’o Xw . @ -.Q
: (A3-33)
Ove1™ Oypp = cvmOp=x

and® according to (A3-31)

<. < ' ' ,'
a- (uv . “v+i*"‘*“d) A=0=Q - (”vol* pv+2t...4un)ﬂ (h3-34)

Throughout the range (A3-32), the angle 6 i3, therefore, in-

creased by the amount
46 =p, x e (A3-35)

the important feature being thgt this increment occurs only

as the point z traverses the émall semicircglar arc. In

other Qords, as the point z moves along the real axis, the

angel 6 remains constent as z proceeds from one of .the

eritical points to the next, receiving a suddern increment
66=y, n onlyasz passes directly over the critical point 2,
. Acccrding to the discussion of conformel mepping, it

1s recognized that the map of the function w(z) in the W-
plane,'corresponding‘to the real axif in the Z-plane, consists
of a succeasion of straigﬁt-line sesﬁenta between the points

Wy w2,....correaponding respectively to.zl,za,...,the angular '

2.

®1e W, is negative, the 1né§galit1es are reversed.
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directions of two consecutive segments confluent in the
point v, differing by W% That is, the map ‘in the W-

plane of the function (A3-17) , corresponding to.the real
exis in the Z-plane, traversed from - to e, has the
general charecter shown in Fig A3-5. This result follows
from the fact that the angle of'dw/dz equals the difi‘erenée
between the angles of the increments dw and ;:lz, and since the
ansle of the latter remaina.zero as the poiﬁt Z moves a.long

the rcal axis, the angle of dw/dz must equal that of dw.

Fig A3~5 The map in the W-plane of the real axis
in the Z-plene shown in Fig A3-4

This angle, however, is shown to remain constant except when

z p'aaéea over one of the critical wtltiel g, At the

corresponding points Vo then, the direction of the increment

dw suddenly changes by the amount p x. '
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‘ The plot in the W-plane corresponding to the real
axis in the Z-plane is thus seen to be a polygon with the

points WyeesoW, 88 its vertexes. If

pl + pa * seee® Mn - 2 ) . (A3-36)
the sua-of the increments A € at the n vertexes wl...wn
equals 2 . Weé moy relate the exterior angles to the

interisor angles by the relation

av - M, - x ’ . ’ (A3-37)
or
Clv _
S -lewy . (A3j38)
\n
\
\
\
\
\
\ a
— -
\ =T
\ My
\
\
o\
\
\
v

Fig A3-6 Relation of ipterior to exterior angies
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Substituting this result into equation (A3-19), there is

obtained:
Q. a a a .
: 1 2 3 n
aw = -1 = . -1 -
TN (= zl) x (z-ze) T (z-z3) ™ ...‘z zn) T

c. The Inverse Functibn.

Suppose e are interested in going from the W to the
Z plane via the Schwarz-Christoffel Transformation. We must
examine the inverse function dz/dw to do this. It was

previously stated that

wa £(z) = u(x,y) ¢ Jv (x,¥) (A3-40)
We may invert

z = o(w) = x (u,v) ¢ Jy (u,v) (A3-41)
where a 1 to 1 relationship exists betweeh z and w.

Let us consider the following relations:

dx » gﬁ du + %’f av : (A3-42)
dy = gff du + g% av : (A3-43)

Equations (A3-42) and A3-43) are the inverse of equations

(A3-5) and (A3-6) which are repeated here for convenience.

(A3-39)




ma BaxePay '  (a3-5)
av = g% ax ¢ gv; dy _ (A3-é)

We have for the determinant of (A3-5) and (A3-6)
D = g—u; % - g; %V;‘_ . . (A3-M;)

But the Cauchy Riemann equations state

du

S %"; (A3-12)
and
2. (43-13)

Substituting (A3-12) and (A3-13) into (A3-i4) we cbtain:

@@ @ ww

Now it was previously stated that

£(z) = u e Jv . : (A3-2)
Hence

aw : du ¢+ j av ’

T ') g _ (A3-46)

let us reexamine equation (A3-7). This relation was
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@u/ax +30v/dx) + (du/dy + 4 Ov/dy) dy[dx (A3-7)
- 1+ ay/ax .

We have shown in our earlier discussion that if a function
is analytic, the value of the derivative is independent of
the angle of the increment dz = dx + ,; dy. If this angle is
zero, dy is zero.

letting dy equal zero in (A3-7)

dw du v -

% "5 YN (A3-47)
Now apply the Cauchy-Reimann conditions.
(Equation (A3-12) and (A3-13) to equation (A3-47)). The

reswlt is:

av  du ov . v e
Z % "%y

Recalling equations (A3-45)

-®® e

Comparing equations (A3-45) and (A3-48) and remembering the

(A3-48)

definition of the aonolute value, ve see tha;.

Da |1 (z)l2 - ld"F T (a3k)

We previously made the statement that' the following

relations wera inverse.
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du = g% ax ¢ g% dy | ' ' - (A3-5)
dv = g% ax + % dy (A3-6)

and

Q< = Eédu-o-a-adv
o (A3-b2)
dy = g«:fduf%%dv '

If these relations tiuly are inverse, then their matricies

must be inverse; that 18

o _Ox | du
o4 ov o oy :
= : {43-50)
_%l}:_ oy v v
v , ox oy
We remember from the determinant theory of inverse matricies
that .
ek =y (A3-51)
| - D . :
Where:
8 iy 'i1s the element belorging to the jth row
and kth column
Ay - 18 the minor of the kth rov and Jth column
and

| is the value of determinant under consideration
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In order for (A3-51) to hold, the relations between the

matricies are:

x _1 ov '

S "D & (a3-52)

ox 1 du '

a.v. s - ]—5 5; (A3'53)

35 - -% g"; (42-51»)

¥ .1 (83-55)
Now

L el (43-56)

dv  du + J dv

Inserting dx and dy ss given by (A3-42) and (A3-43)

dz _ (3x/du du & dx/dv av) ¢ 3 (3y/du du + Jy/dv a&v)
-dw
: , du ¢ J av .

Divide top and bottom of (A3-57) by du

dz (dx/u & bx/_bv dv/du) + §(3y/ + 3 y/dv av/au)
dw 1 ¢ 3 av/au .

Rearranging, (A3-58) becomes

(A3-57)

(A3-58)
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ox/du dy/du) + (dx/Ov ov) dv/a \
- O ) e ) e

Since dz/aw must be independent of the increment of .
dw » du ¢ § dv , B
if the angle equals zero (i.e. J v = 0).

Then:

F = (x/du e 3 dy/) c o (43-60)

But from (A3-52)

» 1w ’

" by ‘ N (3-52)
and from (A3-54)

1 dv '

§§ »-35 & . | (A3-54)
Substituting (A3-52) and (A3-54) into (A3-60) we obta’n

gz Ov/dy - j dv/dx | )

E - 5 _ o (A3-51)

Multiply top and bottom of (A3-61) by

givineg .
Gz, iy - ™/3x) (dvfdy « § dvfex)
v B (/3 + ) Ov/ix)

: : (A3-62)
(3/3y)? « (dv/x)
D (3vfdy + § vfax)
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But equation (A3-4%) stated
PR 2 . - |
D= g—",;) +<§;";> A . (A3-45)

Substituting (A3-h5) into (A3-62)

(A3-63)

dz _1
dv  ov/oy + J ov/ox
One of the Cauchy conditions_ states:
r.ox - O (a312)

¥ T X

Substituting (A3-12) into (A3-63), there is obtained

| dz 1 :
w " SEeIoR . (a3-8)

"Equation (A3-47) stated that

A R | (A3-47)

Inserting (A3-U7). into (A3-64), the desired result is
obtained. '

d 1 ‘ e v
$a el . (A3-65)
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The inverse function therefore has a derivative that
18 the inverse of the given function. We may therefore map
a function from fhe W to the 2 plane, or from the Z to the W
plane. The Schwarz-Christoffel transformation from the Q to
the 2 plane has already been written as equation (A3-39).

The equation from the Z toc th~ W plane is the inverse and.

may be written:

¢ a, o
e RN R ) o R N S (A3-66)
where:

M is a complex constant

uy.ou,  are the image points of the corresponding z's

in the W plane
. ..ah are the interior angles of the polygon.

D. Succcssive Transformations.

In solving two dimensional potential problems, it is
frequently ponvenient to use successive transformations.
Let WwP () | o (A3-67‘)"

2= Fy(z) g S . (A3-68) .

By elimination of z, between (A3-67) and (A3-68) we obtain

C W om Py(2) | | : (A3-69)
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The relation (A3-58) expresses a transformation from the

Z plane into the -Z., plane, while '(A3-67) expresses & further

1

transformation from the zl plane into the W plane.

Therefore the final transformation (A3-69) may be regarded

a8 the result of two _successive transformations.




ATPENDIX IV

DETERMINATION OF THE CA?ACITANCE OF STRIPLINE

A. Capacitance of Stripline per unit Vlergth neplecting fringinﬁg;.
' Upon cousideration of the cross section <.>f stripline, it can
be seen that the capacitancg of this configuration is essentially
that of two paral.lel pla@e condengerg connected in parallel,
negiecting fringing capacity, Cf'.' An expression for Cf' will

be developed at & later point in the Appendix.

Fig Al<l Cross Section of Stripline-

Fig At-2 shows the upper half of fig Al-1l. From this

figure cT can be determined.

AT




A8

H +‘4++-o'+
| 27777

Fig Abk-2 Upper Half of Fig Ak-l

The electric field between the plates of Fig A2-2

is given by the expression:

‘ *
Ew ¥ =—— (Ab-1)
bot ‘

- |

where E = electric field between the plates

.V = potential difference between the plates
4 = distance between plates |
b = ground plane spacing - cm
t = plate thickness - cm -

The electric flux density 1, then:
Dmey,E (Ak-2)
g g

]
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viere D = electric flux density
€.- permitivity of free space
€~ relative permitivity
The electric flux originating at the positive plate
and terminating on the negative plate is: |
pmDam Y (wx1)agq (Ak-3)

2
vhere Q = charge on one plate

A = area of one plate

w = gtrip width - cm

The capacitance of the parallel plate condenser is then:

2 w
‘ eoer

c = 3a w5 - (Ab-b)

Now remembering that we have two capacitors in parallel,
-we obtain for the stripline capacitance neglecting fringing

effects. |
c heoerw
PP b-t

- b x lo-lh (8.8&2 Gr\') (Al}-S)
b=t ‘

vhere C, 1s 1n farad/cm.

B. Capacitance of Stripline 1nc1uding,fringiné capacitmce.

" Equation (A4-5) can be used to compute: Characteristic
Impedance up to 25 ohms. FPor Characteristic Impedance calculations
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above 25 ohms, a term for fringing capaciténce must be added
t0 equation (ALk-5), Designating fringing capacitance by Cr

and referring to Fig Alk-l, we see that equation (AlL-5)

becomes:
]
1 .y (882 € wec,)
CTP s I X lq —_—x farad/cm. (A’#-f))

) )
C. Development of an expression for Fringing Capacitance C, .

We now wish to put the Schwarz-Christoffel Transformation

to work in order to find an expression for the fringing capacitance
]

r .
v replaced by zl'

»c Equation (A3-66) is repeated here for convenience with

o N ° | %
_——— —'-1
- & (zl - ul) - (z u2) % L ...(z1 - un) x (A3-66)

where the notation is the qame as that given in Appendix III
except for 2y which represents points in a plane z1 inte?-
mediate to the A and W planes. In otper vords we will perform
a mapping from the 2 to the 2, plane and then a second mapping
from the Z1 to the W plane. _ ‘
Congider Fié Al-3. This figure represents one half of
the cross section of 8tripline. The folygon used to perform
the Schwarz-Chriatoffel Transformation is shown in broken lines.
As the points + a, proceed toward infinity, the angles associated
with these points approach gero degrael,'while the angles
associated vith the points + b approsch the value 3 %/2.
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i *0, '
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Fig Ak-3 Schwarz-Christoffel

Mapping of Striplire: 2 plane representation

In the lihit, the polygon becomes degenerate and assumes
the configuration of the 8tripline. It is now necessary to
choose the points uj......u for equation (A3-66). The points
u, are those pointe in the Zi plane corresponding to the

pointa ¢ al end + ylin the Z plane. We choose the poihts :
zy = + 1 to correspond to z = + b, and choose ™ -.: a8, to
correspond to z = + al. We also choose the 1mqge of O in the
W plahe to be infinity in the 21 Plane. Consideration of Fig
‘ o%/n -1
A3-4 shows that this drops out the factor (z-un) . connected
with the point O in equation (A3-66). Tt 1s shown in Churchiial’

that only 3 of the u, are aribtrary. We have picked 41 and
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infinity as these 3 arbitrary poinﬁs ) leaving + &y to be
determined. - Inserting these constants into (A3-61),

there is obtained:

LY <X

X 0-1 . 041
g_iz_ =M (21 - 1)2“ (zl + 1)2‘ (zl + al) (zl - al) (A7)
: 2 1/2 ' . ,
y (2% - 1) :
(212 - 312>

or in integral form

2 1/2
‘ -1 ,
Z= Mf (-z}—-———l—- 4z, . (A4-8)

(212 - 312)

The image of the polygon in-the Z, plane is shown in Fig AL,

Fig Ab-4 Schwarz-Christoffel

Mapping of Btripliné: Mapping of Polygon in Zl planq
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Fig A4-4 1s easily understood if the discussion pertinent

to Fig A3-4 18 remembered. The line segment O to (-a.l) in
the Z plane corresponds to the segment O to (-a.l) in the Z,
piane,: the segment -él to "bl in the 2 plane to -8, to -1

in the Zl plane; the segment -bl
-1 to # 1 in the Zl plane; the sepment bl to al in the 2

10 ¢ bl in <he Z plane to

' plase to + 1 to al in the Z1 Plane and the secment al to O

in the Z plane to a, to O in the Z  plane. Finally, since
the Schwa.fz-Chrietoffel transformation maps the po,lygon'on‘co
the upper half of thé W plane, the points - infinity and +
infinity ere joined by a semicirclé having an infinite vadius.
To evaluate (Ah-8) , let us first find the values of the
constants M and + al. The notgtion used in this evaluation

will be that of Fig Ak-b,

To find M, let

2, = 1) /%1 ' : | o (Al&-Q)‘.

Then

dzge gry %l a0, w3 a0, (Ak-20)

Substituting (Ak-10) into (Ak-7), we get

= (2, a0 ) | (A4-21)
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Now let ) approach infinity i.e. let ry approach infinity.
Assuming z, much much greater than 1 and zy much mich greater

then & (Ab-11) becomes.

dzw JMdO (Ak-12)

Reference to F4z Al-3 and Ab-k show that as z goes from +) B
to - J B at the point O, ry rotates through an angle of x radians.

Integrating both sides of (A4-12)

-JB "
Jf dz = J M~/‘ do (Ak-13)
0

+ jB
Integrating both sides of ‘(A’-hl3) and solving for M, we find.
M= :§§ | o : fAh-lh)_
To determlne 8y, lgt‘

[ ]
£, = -8 ¢ "1' o . (Ak%-15)

1.
then

dzy= § 1) 391 80," = J 2, dgl' ' | (Ah-16)

Substituting (A4-15) and (Au-lé) into (A4-T) we obtain:

Au-17)
1/2

2_ e 1
) (a," - 28) 1,
* (alz -2, "¢

391 + —2 326' 2)(.12" ‘ 1 del‘)
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We mey simplify the numerator of (AL-17) by observing that
as rl' appréaches 0; both :rl'2 and rl' go to zerc very

qulckly compared to -1l. The denomixia;.tof may be simplified
balr observing that as rl' approaches zero, rl'2 approaches

zexro much rast_er than rl'. Utilizing these observations

in (A4-17) and simplifying, we observe that

JB 512-1 a6

dz = (A4-18)

xal

From Fig's Ak-3 and Ab-k, we see that as z goe's from -JB
to -JA in the Z plane, rl' rotates from x to O in the Z, plaxe.
Using these facts we may integrate (A4-18) and solve for ey

The result is:

B

J A (2B-a) B

Now that we have determined that constants ¢ & and M, lst

8y = (Ak-19)

us proceed to integrate (Ak-8) which is repeated here for

convenience.

2 _.1/2, , o
: .Mf(..z.% ) (ah-8)
(zl - ‘1 ) -

To facilitate the integration, let us divide (Ab-8) into

two parts (after inserting the constant M).
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The resuly is:

dz : . o . daz
T R e N | -
: 2y -1 1 & 2
zy -1
Consider the first term. We rearrange it to read: .
. dz dz :
G f 1 - .,?.: f —_—1  (ak-21)

. 2
Using formula 320.01 of Dwight's Integral 'I‘able,6 (Ah-21) becomes

dz ' : .
18 [ ==-12 w?y (s-22)
l- zl2

The second term of (Al-20) is

2 o
-8B (a -l) ‘ a
_— f i (Ab-23)

n

2 2 .
(2,7~ &,%) \/ 2 1
We may use formula 367 from Dwight's Integral Tebles

provided the condition 312 is greater than 1 is met. Therefore,
let us examine a practical cross-section of stripliﬁe and gee
whether this condition is met. Utilizing the dimension of
one sixteenth inch double clad boards plated with 2 ounce
copper, and referring to Fig Ak-3, ve find A approximately
equals 2 mils and B approximately equals 60 mils. Inserting

(A4-20
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these results in (Ah-19) we find:

;;-.12 = 153 >> 1 , (Ab-24)

2
The condition 8 greater than 1 is then met and we proceed

to use Dwight 387. The result is:

-8 (B; f dz
- a2 '
NN
/2 (A4=25)
(8, -1) % [2 :
P ‘1 -1 -
Lz W NG
8 [ 5
Vion
The total integration of (A4-8) 1s therefore:
. (a .1)1/2 ' 3
zm %‘E [sin'l 2, +- »! ~ tan™t "1 8 -l ]
al v
& 2
1l - 2

Several simplifications may be made to equation (A4-26).
By substitution and algebratc manipulation we get the identity:

2 _1)1/2

B-A o | ‘
. - 5 . (A4-27)

(Ah_-26)
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Furtaermore a little trigonometric manipulaticn shows that
1l 1/ 2
- -l -] . -
an l Jal = 8in 1 \/al 1 .

R \/*2 .2
J\-/l - zl2 _ K 1

t (A4-28)

Substituting (A4-27) ard (A4-28) into (Al-26) there ls obtained:

. i z]\./-—a ——
. -1
z = %{-B- [sin’l z, + B-A  g4p™t i1 ] (Ak-2¢1)

B
2.2
./,- s

We have now treusformed the function from the Z or
primary plane to the 2, or intermediate plane. _However,
this is not the form we wish for the result. The desired
result will be in the form of two parallel pla.z.zes from
which a parallel piate capacity can be found, The required
transformation from the Z, to the W plane 1s realized by the

relation:

z, =8 tanh k”wla _ (A4 ~30)




A59

v
- Bll R c.l
]l
0 R I A B Ao cy

(o) - (b)
Fig Ak-p9 Transformation from the Zl to the W Plane

The 11né segment A' B' in the Zl plare maps inio the
segment A" B" in the W plane;the segment B'C' maps im;é B" C"
and C' D' maps into C" D", |

. We ncw wish to substitute (A4-30) into (A4-29) a.nd..
simplify the result: Equation (Ak-29) 1s repeated héré for

convenience. It 1is:

N
L |
O
al‘a

[ stn”! z, + _B_;_I_‘_ e’ip'l %, | - : ] (AL.-29)
\/;12 i zlz _

Consider the 2nd term. ,Upén substitution of (Al-30) for z,

" and the use of a tﬁgonometric identity we find:




. " A6O .
| f oF | |
B-A -1
: B F ol ' 5 n \/a—la: sinh x -2‘! (Ab-31)

lw

It was previously shown that & is large c‘lorresponding to

large u in the W plane, (where W= 4 + J¥). For large u

" 2, , nuf2 -
-1 otmn x w2 - N 7€ - (Ab-32)

2

as 1s obvious by expanding sinh x w/2 in expénentia.l form end
}ealizing that we are interested in the function on the
real axis.
For pﬁncipal values and remembering that B is
muca nuch greater than A Dwight 507.20 simplifies to:

sint x = %/2 - § cosh 15 | (A4-33)

Substituting (Ab-33) and (Ab=32) tnto (Ak-29) we find that

z-?%g-[ﬂﬂ'-‘jcooh'l B +_§-£-1-\- .
| \}A(ZB-A)
(x/2 - 3 cosh™ 1(3 2245 &~/ 2)] ’ | (AL-34)

Now ve are only interested in the real part of (Ab=34),
'I'a.king the real part, we get
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.nu/a

1 S ¢ A oen i BrAe

J Mz-A) i \ 2\, A(2B-A)

Usinz Dwight 701 and (A4-27), we obtain the relation:

] (Ab=35)

ZB . -
X = - [cosh

cosh™t a = tanh ™ -I%& ' | (A4-36)

Now rcmerhering the definition of a, as given in (Ab-19), we

may substitute (Ah-3€) into (AL-35) with the result:

' m/2
-1 B-A, BA .-l B-Ac

B, N 2\/1\(234\)

Now we wigsh to solw}e (A4-37) for u. This can be done by

2B
A-’-"t" [t&nh

] '(Au,37)

transposing and taking the cosh of both sides. The result is:

i

na/2 T~ :
L_)_.——._—B'A € = cosh [ T—” BA .-B-%K 'canh'l Egij (Al-38)

2./A(25-A)

Clearing and taking the 1n of both sides

2 JA(2B-A) 7 : L
e [N e e ]
u..' = 1n [ Y ]cosh[aB_) §op temn 5 ] (Ah=-39)
Now by definition:

X, =X .
cosh = £ Z‘ _ ' _ (Ak-50)
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In actual practice x > B-A (i.e. the width of the ground
planes is much greater than the distance between ground
planes). Therefore the ¢ * term in (A4-4O) 1s neglipible. -

Making this assumption we may moke the following statement:

' ~ -B -1 B-A
cosh [m g ‘tamh 5 ] (x >> B-A)

<1rx B -1 B-A\. . | .
= &2(BA) * B temd -5") (Ah=b1)

Using (A%-41) in (A4-39), we see t&t o .
4= 2/x In [j A(2B-A) f(é‘(%'-x) + '1'3% tanh™ 1_3_5_4_)] (Ab-h2)
~ B-A : : :

We may simplify (Ali'-ha) to reed

F_— X B =1 B-A ' -
B=A ;

We must now £ind cut what x weuld be if there were no
fringing e:rect present. If the fringing effect is
neglected, the capacitance in the Z and W planes must be

the same. We may therefore equate the expression for

,para.llel'plate capacitance in the Z and W planes.
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¢ €A ec A
Lory L or z : (Al=bk)
dw <] .

vhere the subscripts indicate the plane of applicability.

For unit length (Ab-lh) gimplifies to

xm (B-A) u | o {AL-45)

Multiplying sides of (Ak-43) by (B-A) we get

(8-A) U = 2/x (B-A) 1n TALZEoA . x
+-%?t- tann™t g-nj-‘i - (AW-U46)

Solving (A4-46) for x we obtain:

JA(2B-A) =2 ., -1 B-A
BoA i tanh B

,i = (B-A) U -2/x (B-A)‘ln

Since in the ideal case of no fringing
x = (B-A) U . . ' (Ab-45)
the other terms in (A4-47) must be due to the fringing

effect 1.e.

. Xx+Axw= (B-A)U l | - (Alg-hB) ‘

Therefore - :
. bxae 2/',:[(3-.4) m{@  +B tamn™t BA ](Ah-h”

( M--lﬂ.) )
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We may put (Al-U49) in a more useful form through the identity

., /2 .
tanh™ x = 1n< 1e XB o {A4-50)
l «x : ' .

Utilizing (Ak-50) in (Ab-h9), we find that

;x- 2/x [Bln-@-'ﬁ -A MJA(ZB'A) ] (A4-51)

B-A BA

We may now find an expression for fringing capacity cr-' by
inserting (Ak-51) into the expression for parallel plate

capac itance which is:
,€ rA

) (Ah-52)

Cwm

UUpon moking the substitution of (Ak-51) into (Ak-52) and
remembering that we are considering capacitance per unit

length, we get

Yy -2 . nfp (2B- .
o' = 8.8'+2dx 10 ‘. [ %B in 22-: - A J (A A) ]% (Ab-53
4 B- |

In order %0 make (Ab-53) agree with the notation of the
literature, it is necessary to redefine A, B, and d.

Colin defines his dimensions as shown in Fig Ak-6.

T |- W
b P

15

4
-+

Fig Ak-6 Cross Section of Stripline As Given by Cohn

a




Observation of Fig Ak-3 and A6 indicates the following

A6S5

equivelence:
b-% '
im > (Ak-54)
A= t/2 (A4-55)
B = b/2 (Ab-56)

If (A4-5h) through (Ah-56) are substituted in (Al-5)

and a little algebraic manipplation performed, Cohn's
result is obtained. It is:

-2 .
! : -
Cf' s 8.842“)( 10 er [ .2 in ( l-t + l)

-t (e | B (w7

Equation (A4-57) has been put in graphical form
and is shown as Fig Ah-1.
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APPENDIX V

POLYGONAL CROSS SECTIONS

Consider cross sections whose peripheral curve is a
closed polygon with n sides apd externai qng}es, Moo To-
map the cutside ér'the polygen in the z-plaﬁe on the outside -
of.the unit circle in the b-plane, we‘shall first map the
region outside the bolygon on the upper half of the t-plane.
To do this, an extended version of the Schwérz-Christoffe]
traensformation will be used which 1s not quite the same
a8 the well-known Schwarz-Christoffel transformation which
maps the interior of a closed polygon onto an uﬁper half-
plane. The reason for this is that the point in the t-
plane which corresponds to the points at infinity in the
z-plane must now be considéred. »It way be shown’ that the
mepping function for transforming fhe region outside a
closed polygon in the z;plane to the ﬁpper half of the t«

plane is given by

"O. D. Kellogg, Foundations of Potential Theory,
Julius Springer, Berlin, 1929.

AST




B N ,
H (t -, )"
2.2 =C 1r
o at (A5-1)
2 .
(t - 8% (¢ - B |
vhere the t._are the points on the real axis of t corresponding

1ir
to the vertices of the polygon, C and Z, are constants, P 1s

the poin% in the upper half of the t-plane corresponding

to 2z = @, and the asterisk denotes complex conjugate. Since

“the sum of the exterior angles of a polygon with n vertices

1s (n + 2)x, the necessary condition on the angles is

Z ;‘-'-1.2 . (A5-2)

Now let B » 1, and

5 -1
5+1

i+t
i

5= tmt, +dt i (A5-3)

’
-
n

so that t = 1 corresponds to 8 mw, But t = = §
corresponds to 2z = , so that infinitely remote regions in

the z-plane ‘and S-plane correspond. Furthermore,

3
ls| = li+t \/ i to 12t
- 42, tao-l-at
1 ¥ % 2.
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80 that, for t, = 0, | 8|= 1, Thus, the ¢, axis is transformed
into the unit circle in tfze d-plane. Moreover, for ta >0,
| ] | > 1, that is, the upper half-plane of t goeﬁ over into
the outside of the unit circle | -] | = 1. . Hence, "the outside
of the polygon in the z-plane is transferred toc the outside .
of the unit circle in the d-plane, such that infintely remote
point.s in the two planes correspond.
With the trensformation equation.(A5-3), the mapping

function equation (A5-1) becomes®

S
| il (6 -8 )% L
z -2, = 8 ﬁ 3 -5; X dd (A5-4)

in which the br's must satisfy the conditions Ibll = |§‘,| — I bJ =1
" ‘since they lie on the unit circ}.e. Expanding the integrand of

equation (A5-4) into inverse powers of & and using equation (A5-2),

we obtain
(M), 2 ) [ -'
'g'ezT"l'_‘l [ = .18 ¢ =178, ¢l ) bn_"'.-...]
) | B
(A5-5)

and, therefore, upon integration, a logarithmic term will

arise unless the condition .

. * For an alternative derivation of this trensformstion, see P. Frank
and R. V. Mises, Differentialgluchungen der Physik, Vol II, p.658-662.
Friederich Vieweg and Sohn, Brunswick, Germany, 1935, Mary 8. Résenbers,
New York, 1943. E S '
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n
W
Z L (;—- «l)m0 (A5-6
r=]

1s satisfied. This condition must be fulfilled in order
that the mepping be conformal at =, Integration of equation

(A5-5) yields & series development of the form

-1 -2
z-a15+ao+-—6— -EE‘,’---

vhich is valid for large b. 8ince the polygon is rapped
onto the unit circle, it follows that al is the equivaient
radiﬁs of the polygon. '

. We shell restrict ourselves here to the calculation of
the>equ1valent radius of rectangular cross sections. In
this case, the angles have a common value .u - g n, so that
% -1l= % . The mapping is shown on ?ig A5-1. From the
condition equation (A5-6),’and symmetry considersetions, it
mey be inferred that the points br pn the unit circle corres-
pondiné to thé vertices form an inscribed rectengle. Therefore,
we set
10 °

’

+ 3 me

1 100" 62 - ei(‘ '.Q)’ 63 - Qi(‘v.l.;o), au ‘- e

and obtain
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n
My .
Z 5. (= - 1) =0 ‘ : ~ (A5-6
r= ] ' ‘

is satisfied. This condition must be fulfilled in order
that the mepping be conformal at . Integration of equation

(A5-5) yields a series develupment of the form

whicii is valid for large b. 8ince the polygon is mapped

onto the unit circle, it follows that 2, is the equivalent

radius of the polygon.

We shall restrict ourselves here to the calculation of.
the equivalent radius of rectangular cross sections. In
this caae, the angleavhave a common value U = g %X, 80 that
B_q .l
- l - 2 0
condition equation.(AS-G), and symmetry considerations, it

The mapping is shown on Fig A5-1. From the

may be inferred that the ﬁoints br on the unit circle corres-
ponding to the vertices form an inscribed rectangle, Therefore,
we get

* 3. me

-‘ - -
l 100’ 52 - el(x p)’ 63 - ei(‘ .o), bh . @ 100’

and obtain
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fi

N

3 .
nl (s - br) = ah ¢l - 262 cos 2¢
™ =

as

b\lbac'ﬁv"‘z-cors 2. .
z-zonalf °
’ .}

let us integrate along the unit circle; we set %= ¢=.»‘w and the

transformation becomes

- 1
2% " alfxlacosat-acos2ood0

Integrating ¢ from -2’5 to 0, we obtain (see Fig A5-1)

0

s-it-iaa.'f
oo

%/2 \/2c0320-2c0520° de

where 8 1s the width of the rectangie, and t the thickness.

With the transformation

w n b4

A

this becomes
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=/2

s-it-2~'/.2<ll \Fosaﬂ-cosallo ay

0

Making the substitution
!
¢° - E + B
we obtain finally

s-it-éJ-aal J;:/a

cos 2 +sin2p aj (A5-7)

The integral in equation (A%-7) is an elliptic integral -
and mey be expressed in terms qf complete clalliptic inteprals |
of the first and second kinds. The reduction to complete
slliptic integrals is carried out in the appendix. The

result is

R s )-eu-maﬁ)xfjmﬂ
. 2 . 2

- la, [ hEil 1_31; % ) -2 (1 + sin 28) K( 1_5? QE' ) ] .

(A5-8)




ATh

where

K(k) = fl dt

0
\/ (1-t2) (1-x%3)

1 S
E(x) = f -1 k52 it
0 ' '
\/ (1-t%) (1-k%2)

withk< 1, are cémplete elliptic integrals of the first and

gseccnd kinds respectively, and a.re tal?ulated in the lite'ruture?
From equation (A5-8)

o (45-9)
s =8 [ l&E(J 1 +;1n 28) - 2(1 - a1n 28) K ( ,\/ 1 +s:n 2p) ]

e ]

t=o, [ ltE(J 1 - ein 2B) - 2{1 ¢+ sin 26) K( ,\/ ‘_1_:_ain 2g)
] ' oo 2

end thus,

® 5. Jehnke and F. Emde, Tables of Functions ,‘ Dover Publications,
New York 1945.
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zé(\] 1 - ;m 2p) - (1 + sin 28) K(J 1 -‘sén 28)

- ' | (A5-10)

2E( [ 1 + 8in 2B) - (1 = sin 2B) K(V/ 1 + sin 28)
-2 - —a

ot

Equation (A5-10) serves to determine B from the ratio of t to s,
and equation (A5-9) gives the equivalent radius a, in terms

of s or t.

Particular cases are:

1. square cross section, P = 0

vevey [P -2 G0

8o that
8q " % " 0.55025 s ‘ (A5-11)
that 18
the equivalent radius = 0.59025 side of the square
2. thinstrip, Bw T '
te=a [az(o) - zc(o)J )
s = halE(l) - hal
8o thsat
. - 1 o
‘ 55
that is,

the equivalent radius = 1/ width of the strip., (A5-12)
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The .;ra.tio of the equivalerit‘ radius to the width of the
rectangular cross section is plotted on Fig A5-2 for values

of the ratio of thickness to width from O to 1.
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APPENDIX V A

x/2 : :
Reduction of 2 V2 f - Necos 2§ +sin 2B A Y to complete

elliptic integrals.’

We have
/ at/?.

2~/-2 Jcos Y +8in 28 af = al2 f J1+ otz 28 - -sinﬁ . ap

0 0

'/,___;__ x/2
- 242 l+sin2ﬁf \/1' 2 ol y o (e
1l +s8in28 :
I.et_
sin f =2 af = .

era

then equation ' (AA-1) becouwes

1\j1- 2
z

2V 2 Jl+sin25[ l+sin 2 p — a2 (M-Z)'

Now set

A%

1+.nin25




then equation (AA-2) becomes

—_—
1l +ein 28

2(1¢31n2azf \/1"‘
0 : ax
1 +s8in 28
\/l- 2
2
—_—
‘ 1+sin$
. 2
-2(1""811125)]‘ _\l-x) dx
(o}

oA EEE

2

| TR

| 1l 2 :
w« 4(1 #8in2B){ (l'-'g'x)dx
o] .

\j(l . x2)(1 L le ;in 2p xz)




- m——

. d—

~

[
Jl-o-sinaE

AA3

: -2(l+sin2f3)f dx
0,

2

2

2 L. ) .
\,l+sin2ﬁ (1 - Lesin2b 2y ..

J(l '7*2) (1 - sz)

0 -
\/(1 -_x2) (1 - .1._‘;_;1’3_2?._ x2)
—2—-_-
. ) 1l + 8in 2B
- 2(1 - 8in 2_B)f ax
0

\l(l -0 s —

-l [B(J—T'lumgé-) + 1 Ey( \/—?—m)

- 2(1 - atn 28) [ x| EHER) .y Q(JE—";—’"“—EE)'

where

1 + 8in 28 2'

]

]~A

(ah-3)




AAL

K(k),-fl at

A )
\j(l - t3) (2 - x%%)

) .
E(k) -f{ 1 - %32 ‘ at
0

\/(1 - 3) (1 - x3f)

with X <1, are complete elliptic integrals of the first

and second kinds respectively, associated with the modulus X;

1
K'(k) = K(k') = f 4t

\ |
J (1-13) (1-x3%P) (AA-b)

is the complete ell}ptic integral of the first kind associated -
with the complementary modulus k' defined by

2+x'2a , (AA-5)
end 1t may be shown that® ‘ |

& - f”“ "

1
J(1 -t3) (1-5%%)

* Whittaker and Watson, Mo’ern Analysis, Cambridge University Press, 1927.
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A5
80 that
~1/x
K + iK' -‘/”-- dt
.0
\j(l - %) (1 - ¥%%)
1 is defined by
1/k : 2,2
iB _j‘ 1 - x5 _
1 ‘ ~ dt
1

\/(1 - %) (1 -x3%?)

end may be reduced to complete elliptic integrals of the

first and second kind as follows:

1/x
2.2 .
iEl -‘/; 1l - k™ .

J 1 -x2) (1 -x%°)

1/x 1/x " o
- ax ; k'x
J, — ) -
\/(1 - ) (1- ¥P) ~J(1 - A - 5P

The first integral is iK'(k). In the second integral, we let

Y=g .dx--sl,-‘-ady

and we ocbtain




———— s vt a2 Bhesk e o

1/x ' 1/k
f k2x2 - f / - dy
1 R ya
. 2 2 J 2 22
.«/(1-::)(1-:&) (v* - 165 - 1)
Tiow wve set
Y= 1 ' gt - x'%
5]
1-x%t° (1 - k'%t2)3/°

and we obtaln after a few manipuwlations

f 1/x N

1
2
AR -1 632 - J1.
= 18(x')
Hence, » .
iE, = iK'(x) - iB(x') |
or -

1E, = 1K(}') - 1E(x')

j’l' \/ 1 - 5'32
s i ) .a
0

.

(AA-6)

Substituting equation (AA-6) in equation (AA-3) and using

equations (AA-4) and (AA-5) we get finally

t




“x/2 "
afef cos 2f + sin 2P
0 .

AAT

= LE (/.1._’_;_12_2_‘3. ) =2 (1 - sin 2B) X (A/_l + gin_.'§'i—)

-1 [ uE (\lgl—“;i_"—g.E ) - 201+ o1n 2p) K(,[ 2Bl 20 ) ]

(Ar-7)




ABSTRACT

Irpedance measurements in Sti'ipline at microwave frequencies
require' the use of a slotted line. Since no slotted lihes in
Stripline are commercially available, 1t is. either necessary tc
build a lsboratory model in Stripline or to use a coaxiel slotted
line and a transition to Stripline. Since commercial coaxiel

S8lotted Lines are readily available and a Stripline laboratory

~model would be expensive and time consuming to produce ,' it vas

decided that the coaxial slotted line with its attendant transi-
tion was the best approach. It is in this transition that tﬁe
problem arises. The Jjunction introducea a discontinuity which
must be teken into account. By making the rather good appfoxi-
mation that the ;junction is lossless, a bilinear transformation
mey be used to relate the two sides orA the .junctipn. A theoret -
ical derivation is macie and an example worked to illustrate the
practical aspects of th.e solution. _It was found that, wvaile
this method cannot be used to find the Characteristic Impedance
of Stripliﬂe s if the mmracteﬁstic Impedance i1s known, the
impedance of eny unknown Stripline load can be found.
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CHAPTER III

MEASUREMENT OF UNKNOWN STRIPLINE LOADS THROUGE A JUNCTION

Ao @edanc .

1. The Problem.

Measurement of Impedance at Microwave frequencies
is comonly performed through the use of a slotted line,’
While there are commeércially available coaxial and waveguide .
slotted lines, none exists for the measurement of Stripline.
Sevesal laboratory models have appeared in the litereature
but the expense of manufacture is not Jjustified in light of
an existirg method of measurement utilizing a coaxial slotted
line.

When a coaxial slotted line is used, the problew
becomes one of peasuring through a junction. The Jjunction
in question of course is the transition between coaxiasl line
and the section of Stripline to be measured. The parameters

‘measured with the slottéd line are those on the coaxial side

of the junction. Ho{rever, we are interested not in the coaxiel

side of the Junction, but in the-Stripline side of the junction.
'The question to be answered is then "Knowing the parameters

in the coaxial side of the Junction, how can we f£ind the same
parameters in the Stripline side of the Junction??! %he answer
to this question lies in & conforma), transformation between the’

35
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two sides of the junction. In the sections to follow, this
transformation will be developed and the results used to
measure impedarce of an unknown load in Stripline. |

2. Transformation of the Smith Chart Through Lossless

Junctions®'

8. Tne Smith Chart: Derivation of lLoci of Constant

Normalized Resistance and Reactance.

The Smith Chart i1s a coordinate system repre-
senting reflection coefficient as a complex variable.

For a reflection coefficient of constant
amplitude and varying phase, the plot is a circle centered
at tﬁe origin. The angle subtended by the radius vector to
a point on the circle and a reference axis through the origin =
of the diagram represents the ibhase angle of the reflection
coefficient. One complete rotation about the origin repre-
sents a distance of one-half wavelength.

The circle representing unit-amplitude re-
flection contains the entire diagram. The general equation
of circles of constant-amplitude reflection coefficient is

written in the notation of couplex' variables as

op = k° | (3-1)
where:

p = Complex reflection coefficient in Plane 1.

p = Complex conjugate of p

X = radius vhen vector p varies in such & zanner
" as to describe & circle (< 1)
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" A few words are necessery concerning "planss”
1 and 2 which will be referred to in this paper. 8ince a.mr
microwave circuit is one having distributed parameters, it is
not possivle to pick up two pair of leads and specify them as
:I.nput- and output ports. We therefore establish our input and
output ports by means of planes and attempt to find an equiv-
alent circuit for the microwave configuration between these
planes. We shall define plane 1 as the reference plane on- ﬁhe
Stripline side of the Juncilon and plane 2 as the reference
plane in the coaxial side of the junction. -ngre 3-1 1llus-

trates relerence planes 1 and 2.

LOAD -

JUNCTION

=== SLOTTED LINE

NN R

PLANE 2 o PLANE |

Mg 3-1 Definition of Reference Planes 1 and 2

Voltage Standing Wave Ratio 1s related to p

by the expression

1+ Jop | | o
v.s.w.n.-rjj%_. | (3-2)




B

The radial line representing reflection
coefficients of constant phase and varying emplitude may be

written in the form

~fem 1 (1 represents length, not (3-3)
o the number one)

If p 18 t0 be written in the fofn

X d (3-4)
then: o ' -
| 1. 2 | (3-5)

The normalized impedance g at any plane
in a transmission line is rei.ted tc the reflection co-
efficient at the plane by

2 .}._.'.".2.. - (3-6)
- p .
Nov 2 may be written as .
zmredx | (3-7)

vhere '
z = normalized impedance at any plane
r = normalized msisﬁee at any plane
Xm normalized reactance at any plane

If equation (3-6) has its mmerator and denominator

miltiplied by (1-p) and the result split into its real and imaginary .
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parts, we can identify the real a.ndlimaginary parts of
equation (3-6) with r and x respectively. The result is:

rm 2200 o (39)
l+pp-p-p ’

Jxmw —£P . (3-9)
L+pp -p =p '

Equation (3-8) may be rearranged to read

- r r - l-r
- Tar P TP " e " © (3-10)
The general equation of the circle descridbed by the vector
p measured from the origin, having radius k with center

displaced from the origin by the vector a is

(p-8)(p-a)mi? G
or ' '

95.55-;p+a;-k2

If equation (3-10) 1s compared to equaticn (3-11)
and r is assumed constant, ve can see that equation (3-10)
represents a _circie for which

. (3-22)
re =i - (3-13)
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In a similar manier equation (3-9) may be réarranged to read

pop=(X=y/x)p-(Ley/x)pelao (3-14)

It x is assumed constant and equation (3-14)
is compared to equation (3-11), we see that (3-14) represents
a circle for which

awle)/x (3-15)

km l/x (3"16)
Fquation (3-10) and (3-14) thue represent the familiar
circles of constent r and constant x that are found on any

Smith Chart.

b. Transformation of Circles of Concstant V.S.W.R.

It 18 well known that the reflection coefficients
of any two planes in a transmission line are bilinear functions,

related by an equation of the generel form

ap ¢V -3 +b XY
a-cp+1 or p-cal-a (3-17)
wheie

p = Complex reflection coefficient in ?lane 1.
o = Complex reflection coefficient in Plane 2.

a,b,c = complex constants

Utilizing equation (3-17), the relstion (3-1) may be

written:




(Eg . 2) <c: * a) (3-18)

Rearranging equation (3-18) into the form of eguation (3-11),

there results
. <S-k2£c> . (b-k2a5>
00-0\1 . es/)° \1-x cé o (3192

- 2 -
+(b————b-g a?_‘ =0
l-k cc

From the discussion pertinent to equation (3-11) ) we see
that equation (3-19) is a circle displaced from the origin.
If A represents the vector Ly which the center of this circle

is displaced from the origin and K repreeents the radius, then

2 oz
Aw 2zl 2 | (3-20)
l-k cc
and
- 2 .
S N (I - (3-21)
l-k cc

The conditions fur which equation (3-20) and (3-21) ar:

8olved are: (1) The transforming section is lossless 4
' and 1s specified in terms of the reflection
coefficient at one plane undeir conditions
which give a ratch at the other.

(2) The reference planes are "corresponding
planes”, i.e. an open circuit at the ovne
gives an open circuit at the other.




k2

According to condition one the transforming
- section 18 lossless. - This implies that with a purely re-
active termination of the line, the modulus of the reflection

coefficient is unity at all planes, i.e.
Kel (3-22)

Substituting the values (3-22) into equation (3-20) we find

that

b = ac (3-23)

(14
&
g
(o]
3

5 - Ec (3‘2h)

Condition two states that the reference
Planeg are chosen such that an open circuit at one plane
gives and open circuit at 'r.ﬁe other, 1.e.
p=1
vhen
| o=l - (3-25)

Using the values (3-25) in equation (3-17) we f£ind that ‘

a+bmcel ' : (3-26)

[- X
+
o
"
(¢ ] ]
+
[
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(3) The trensforming section is specified in
terms of the ref;ection at the one plane
under conditions which give a match at the'

. other, 1l.e, the value of o corresponding

to p » O 18 known. The substitution of p = O

into equation (3-17) gives 6 = b. Thus b and b

are known constants. The point whose affix

i b 18 called the iconocenter.

Let us now evaluate equation (3-20) in light

of the two specified conditions. Substitute (3-23) in equation
(3-20) obtaining
b (1 - x°

— (3-27)
l -k cec

Solving equation (3-23) for"a'and substi‘uting the result

into equation (3-26), we get
b(lLe==)mgel = : (3-28)
ce
or

em
L2
cé
then
fa 222 | o (3e9)

b

=

cc
Multiplying equation (3-28) and (3-29) together and simplifying,
fhere regults:
(cE)‘2 «(1L+bb)cc +b= 0
vhich can be factored to yield
(c3 - 1) (o3 -v5) = 0 ~ (3-30)
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Therafore

cc = 1 o (3-31)
qr

¢t = bb (3-32)

If equation (3-31) is substituted into equation (3-27), the
result is A = b, which is the solution for o = O. The general
solution for cc is .equation (3-32). If equation (3-32) is
substituted into equation (3-27), we get the desired result

wbich 1is

) ,
A= L(l—éil (3-33)

1-k“vb

We now wish to evaluate equation (3-21) which

is repeated here for convenience. It is

. 2 -
KZ_ A - ‘&:.,’é‘__a_“ (3-21)

Examination of this equation shows us that 35. is the only
unknown. Remembering that with a purely reactive termination

cc = b : (3-32)
Kal o L (3-22)
AmO |
k=1

we find ﬁpon subgtitution of these velues into equation
(3-21) that
0d = 1 - | (734)
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Since all the parameters of equation (3-21) are now known

we may substitute and simply obtaining as a final result

K » 52 50) (3-35)

l-k bb

Circles representing coastant V.S.W.R. may thus be transferred
from the p to the o planes by means of equation (3-33) and
(3-35).

¢. Transformation of Lines of Constant Phase Angles.

Substitution of eguation (3-17) int¢ equation
(3-3) gives the equation of the loci in the ¢ plane of the
radial lines in the p plane which represent reflection co-

efficient of constant phase and varying emplitude.

-0 +b ¢d - & ' -
<°°°a>(-5+i>.l (3-36)
Equation (3-35) may be rearranged into the form of equation

(3-11), yielding the form

- la - be) = 1bc - a
i (s . (Eni),

le = ¢

+ (M =0 _ (3_37)
le - ¢ .

It may be shown that the cnefficient for ¢ and 0 are conjugate

terms, so that eqdation (3-37) represents & circle for which
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N _ B
le - ¢ .
and :
o KZ- AR - lab - ab ] -
<———-—-lc = ) | (3-39)

where K and A are the symbols identified with equation (3-20).
L2t us proceed to put equation (3-38) and (3-39)

into a more usable form. Equation (3-23) stated:

a=b/c ' (3-23)
and relation (3-26) was i

a+bmc+l (3-26)
Also equation (3-32) was given as

cc = bb ' (3-32)
If equations (3-23) and (3-32) are substituted into (3-'26). and

the result solved for ¢, we get

el O (3-w0)

cw 2D T ()

(1-b)

(PR}

Hence

We recall that equation (3-38) vas

n .b - .
Awieobe S (3-38)
le = ¢ )
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7" equation (3-23), (3-40) end (3-41) are substituted in
equation {3-38) for a, c and ¢ respectively we get our

desired result which i1s

. 2 2, =2 ‘
pnifld) - Qb)Y (3-42)

. 15(10)° b (1-8)

To put equ. don (3-39) into the desired form, substitute

* values o1 4, &, ¢, and ¢ &8 given by equations (3-42),

(3-23), (3-41), end (3-40) respectively and realize that

e (3-43)

The resuwlt is then -

(1-vb)
K= . (3-44)
\/'2 wh - 152 (222)° 2 1 (B2
1-5 16

The raiial lines representing constant phase angle in‘ the |

p plan= may thus be transforwéd into correspording circular
tracks in the o plene by means of equatiors (3-43) and (3-44).
Since the radial lines in he p plane all pass through the
origin, it follows that the family of circles represented by
equation (3-37) all pass through the icouocenter, as mey be
ghown by substituting o = 1 in equation (3-37).

d. Trecsformation of Oircles of Constant Resistance

and Reactance.

The form of equatics (3-6) indicates that the
normalized impedance and ﬁﬂection coefficient &t any plane
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are bilinearly related, and since p and ¢ are bilinear
functions, so are 2, and fi (where z, and z, are the normale-
ized impedance at planes ). and 2 respectively). We may

therafore si.ate

2 _azlo-B

2 (3-u45)

T zl+1

wherz
~
@, B, and ¥ are, in general complex constants.

According to our previously stated conditions
(following equation (3-21)), p = 1 when ¢ = 1. Equation
(3-6) is repeated for convenience and is

zaltp (3-6)
l1-p .

Thus vhen p = 1, z = », 8ince 0 = 1 when p = 1, it follows
that vhen z, = @, z, » . This implies that ¥ = O in equation

1
(3-45). Therefore z, is & linear function of z,, i.e.

ZeQz P . (3-46)

1

When 2 is purely imaginary, z, is also purely imaginary
since we have assumed the Jjunction to be lossless (condition

1). This implies in equation (3-46) that @ 1s real and P
is imaginary.
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Condition three stated that the Junction
would.be characterized by measuring the reflection co-
efficient at plane 2 when plane 1 is matches to its

Charanteristic Impedance. We define-

g™ Ty * 9 Xy - (3-47)

(vhere z;,; 1), ond X,, are normalized to plane 2)

oo the lmpedance seen fron the sonxial side of the
Junction (plane 2) when the Stripline side of the Junctidn
(plane 1) is terminated ia its Characteristic Impedance
(zl w- 1), When z, becomes equal to 1, equation (3-46) 18

7'2'“12"12 #Jxlznac-dﬂ (3-48)

Therefore

= rH

=X,
Equation (3-16) may then be Qrittcn as
% T %+ X, | (3-b9)

Solving equation. (3-49) for g,, ve may write
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e il e

ey -

Zo1,

where:
2
Za
12
%2
201
Zo2

50

Iy

%12
oz
2 02

ON

: (3-50)
12 -
202

- impedance at plane 1
- impedance &t plane 2

- Real part of impedance seen at plane 2 with,
plene 1 terminated in its Characteristic Impedance

(pm0) |

- Imaginary part of impedance seen at plane 2 with
plane 1 terminated in to Characteristic Impedance
(p = 0)

=  Characteristic Impedance - plane 1

] Cha.raqterintic Impedance - plane 2

Equation (3-50) shows us that if we kncw Tip

and X5 as well as the impedance of the unknown loed as seen

on tte coexial side of the Junction (plane 2) and the Charac-

teristic Impedance of both sides of the junction, we may find

the value of the unknown B Ty ® P12 *J x]2 18 known as

the "{conocenter” and may be found by & graphical procedure

to be described.
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B. Determination of Unkaown Impedance.
1. The Problem.

The original purpose of this paper was to Jdescribe
a meagsurement technique for the Characteristic Impedance of
Stripline. It was thought that at any given point in the
Stripline, the open circult and short circuit impe'da.nce
Zop2 end z , could be measured on the coaxial side of the
Junetion, transformed to ‘the Stripline side of thé Junction
through the use of equation (3-50) to yield Zopl and 2z,

and the relation

2oy ™ / Zopl Zal (3-51)

used to find the Characte:ristic Impedance of the Stripline.
However the author overlooked one important fact; namely
that the answer begs the (uestion. Reference to equation
(3-50) shows that we mmust known Z,, in addition to 3, ( Z 5
or 2, in our case) in oider to determine 2 ('z,:,pl or zsl)°
While this wethod 1s useless for determining Characteristic
Impedance, i‘t‘is quite useful in measuring unknown loads in
general. It is anticipated that such unknown loads may have
to be determined when an investigation is made of various
Stripline terminations. '

In order to use this method of measurement we ;nust
first determine the iconocenter ( zla). Theé following se:tion
therefore will concern itself with the graphical determination

of 212'
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2. Determination ¢f the Iccnocenter.

In determining the iconocenter through graphical
construction on the Smith Chert, it is necessary to introduce
the concept of the projective chart?e

On the Smith Chart, a reflectlon coefficient or
reflectance p 18 represented by a point W just as any complex
muber is represented on ‘the Argand diegram. The distance
OW to the origin is 'hﬁe magnitude » of the reflectance, and
all passive loacs are mpre;cnted by points inside the unit

circle ['. If the line OV cuts [ at points I and J (Fig 3-2)

the ratio
Wi l+r . '
AR w . (3-52)

as shown in the panphlet, 18 the voltagé standing-vave ratio
corresponding to the mflc'ctance P »

.'I‘he modification that léada to the projective chart
is to represent the reflectance p by the point W with the
gsame phase aagle as W but at & distance r from the origin -
glven by '

Pom =B - (3-53)
l+r o

‘This makes the ratio WI/W equal to the square of the

voltage standaing-wave ratio.’
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Fig 3-2 Relation vetween the representation of a
reflection noefficient on the Smith Chart
(¥) and on the projective chart (W).

If a radial arm carrying a voltage-standing-wave-
ratio graduation in decibels is used with the Smith Chart,
the point W will be in frent of the sraduation 2x vwhen W is
in front of the graduation. x. Plotting points on the pro-
Jective chart or transforming back and forth to the Smith

Chart is therefore very simple.
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Fig 3-3 Transformation B and p™L. Construction of
W from W or of ¥ from W.

The transformation B from W to W can also be obtained>? -+
by projecting W on a sphere with equator from one of its |
poles and then projecting orthogbné.lly from the sphere on .
the plane of r. Appendix VI shows thg derivatio:} of Fig 3-3.
This justifies the construction showvn in this figure. WM and
ON are perpendicular to the radius OW and MN goes through W.
This can also be used to perform the inverse transformation

8L from T to W.
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The circles usually drawn on the Sﬁith Chart
corfesponding to constant resistance or reactance and to
constant magnitude or phase of the impedance become on the
projective chart straight lines and ellipses aa‘shown in
Fig 3-4. These could be irawn in advance and used as on the

Smith and Carter charts t> plot impedance meaauremeﬁts taken

-for instance, with a dbridze.

- IMPEDANCE i
ZsRejX
X
]
] L] ] | o
SMiTH CHART PROJECTIVE CHART
IMPEDANCE

PHASE & MAGNITUDE ™~
T AN
2
0 o9 [-] o

j7 .,/ |

~— |~ ‘

CARTER CHART PROJECTIVE CHART

Fig 3-4 loci on the projective chart and on the Smith
and Carter Charts of constant resistance R, re-
actance X, impedance magnitude | Z | and impedance

phase 8.

Special notions of distance and angle that have useful

interpretations can be introduced on the projective chart.




Fig 3-5 Definition and evaluation of the
' Hyperbolic Distance (AB)
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Given tvo points, A,B and the intersections I,J

of AB with (Fig 3-4), the quantity

10 loglo (BJ Y . (A3-5L)

will be denoted by (AB) and called the }mbe.rbolic distance
between A and B. It will usually be expressed in decibels
as in (3-54) but can be converted to nepers by substituting
1/2 1, for 10 108, '
The quantity (3-54) deserves the name of "distance"
because it satisfies the triangular inequality (which shovs
that stré.ight lines are geodeaics for thivs }\a.rticqlar
measurement system) and because it is additive; that is,

when three points, A,B,C are on a straight line in this order:
(AB) + (BC) = (AC) , (3-55).

The hyperbolic distance between the point W end

the cenfer of the chart is

(W) = 10 10314»:? -20103-1—-"—5 - (3-56)
. ' l-r l-r

and can be interpreted as the voltage standing-wave ratio
expressé& in decibels.

o Tt has been shown in the discussion concérning
equation (3-17) that a lossless transformer may be repre-

sented iwy the relation.
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pmZtd (347

We further saw from Section B that circles in the p

plane go over to the 0 plane as circles under the trans-
formation (3-17). Equation (3-17) is also a conformal trans-
formation (angles are preserved). It follows that hyperbolic
distances are also preserved in the following sense. If A,B
are transformed into A',B' while I’ becomes I'', the distance
(AB) defined sbove is equal to the distance (A'B') measured

as if ['' were the unit circle:

(AB)P - (A'B')P,, | | (3-57)

the subseript indicating with respect to what ciccle
the distance is measured. -

.The special tra.nsrozimation (3-17) that preserves the
unit circle’ (lossless transformations of reflectance for
instance) are represented on the projective ci:a.rb by poneétive
transformations, 'They transform straight lines into straight
lines and as a consequence alsgo leave the hyperbolic distances
and elliptic angles invariant. |

let us nov put the fact ‘that straight lines go to
straight lines (in the projective chart) under the trans-
formation (3-17) to work for us. The iconncenter is cefined

a3 the impedance seenon the coaxial side of the junction
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(plane 2) when the Stripline side of the Jﬁnction 1s.
terminated in its Characteristic Impedance. If the Smith
Chart representation is used, the impedance eeeﬁ at fefer-'
ence plane 1 (Stripline side of the Jjunction) will e 241,
since the Stripline is terminated in its Characteristic
Impedance. On a normalized basis, 201 corresponds to the
center of the Smith Chﬁrt (p m 0). If A,B,C and D are four
equivelent points on the p = 1 circle (corresponding to four °
open circuit measurements one eighth electrical wavelength
epart), the diameter AC and BD will pass through the center

of the circle (p = 0) as shown in Fig 3-6.

A

\.;
. C}_
Fig 3-6 Reflectance of four open circuits spaced one

eight wavelength apart on the Stripline side’

of the Junction.
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If A,B,C and D are transformed through the Junction
and measured on the coaxial side of the lossless Junction, we
have the points A',B',C',D'. If thé projective representation
is uscd, the utrnight lines AC and BD gc over the etruighﬁ
lines A'C' and B'C' as shown in Fig 3-7. Since the Jjunction
is lossless, the unit circle is preserved and the points A',

B)C! and D' lie on it.

Fig 3-7 Reflectances of four open circuits spaced oue
eight wavelength apart after being transformed

through a losaless Junction.

Point 0' in Fig 3-7 1is therefore the boint
corresponding to the point O in Fig 3-6. However Fig 3-7
is the projective representaticn of Fig 3-5 and not the Smith

Chart representation. We therefore perforn,the construction
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shown in Fig 3-3 where W = O' and is known as the "erossover”
point. The result is shown as Fig 3-8. ' The point W is the
iconocenter i.e. the impedance in plane 2 correspording to

a matched load in plane 1.

0 ‘
£
/
’ S
I, \\\
I’ >
]
]
[
'
]
\
\
\ I'd
\ ’
\ »
\ .7
A ’
}/
C o
§~
- o o

Fig 3-8 Transformation from the Projective to
Smith Chart representation.

3. An Example Illustrating the Teéhniqué.

In order to clarify the actual méaurement
procedure, let us work'an'example. The test setup is shown
in Fig 3-9. The first etép is to establish a reference plane
according to condition 2 assumed in the lolut'ion of the .pre-
ceeding equations. It was decided that the reference plane
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STRIPLINE
3 KM COAXIAL | COAXIAL | LOSSLESS |, . , . | UNKNOWN
SIGNAL GEN. SLOTTED LINE | LINE JUNCTION LOAD
OPEN
CIRCUITS -
A apart
8

Fig 3-9 Test Setup for Measurement of an Unknown Load

on the Stripline side of the Jjunction would be established
directly to the right of the junction. Accordingly the junction
was attached to the coaxial cable on the right of the dotted
line and the position of the first voltege maximum was recorded.
A section of Stripline with known Characteristic Impedance oi."
ervitrary length ‘a.nd open circuited on the load end ‘was ‘thea
attached to the junction. The VSWR and position of the first
maxirum were noted. It was next desired to remove one-eighti
electrical wavelength {rom the Stripline.- .'I'h‘e‘ wvavelength in
Stripline 1is related to the wavelength in free space by

g -JT | | | . (3-58)
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A s ® Stripline wavelength
Lf - ¥ree Space wavelength
€. = Dielectric constant of Stripline

The free space wavelength at 3 kmc is 10 centimeters.
Teflon-Fiverglass (GB-112T) was the dielectric used. This |
material has a dielectric coustant of 2.6. We therefcre find
from equation (3-58) that A /8 = 0,305 inch. This length wes
then removed from the load end 6.*.’ the Stripline and another
measurement of VSWR and the position of the firat voltage
paxioum made. By repeatirng the procedure of removing ).8/8
three times and measuring the VSWR and the position of the
first voltege maximum, the four points A',B',C' and D' are
obtained (one point was obtained from the measurement made
before any Stripline was removed). The results are shown in
Table 3-1.

From Teble 3-1, it is first unecessary to determine
tue wavelength in the slotted line. This is done by sub-
tracting minima from their corresponding maxima g.nd avera.gjng.
tﬁe results of all readings. Knowing that the difference be-
tween any maximum and minimum is one fourth wavelengti, we
can £ind the wavelength in the coaxial line. 'fhe position

of each maximum is then subtracted from the reference position.
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TABLE 3-1

Measurements Relevant to the Determinat.loh of an
Unknown Load as Measured Through a Junction

Reference Position on Slotted Line - 378.9

Maximum VSWR .. Minimum
350.6 | 39.2 325.9
Remdve.0.305 inch of Stripline -
#7.2 ' 60 363.8
' Remove 0.305 inch of Stripline
318.5 | 61 - : 353.9

Remove 0.305 inch of 8tripline
366.8 47 344.3
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This difference is then expressed as a percentage of the
slotted line wavelength. If the position,qf & voltage
meximm is numerically greater then that of the position
of the reference, the maximum has shifted toward the load;
if 1t is less the maximum has shifted toward the generator..
The results are shoin as Table 3-2.

| It has been assumed that the Junction is lossless.
This means that the VSWR on the coaxiual side of the Jjunction

can be shown tc be infinite or that 0 = 1 since

YSWR-1 | {3-59)

O® VSWRWL

Table 3-1 shows that the measured standing wave rﬁtios vere
rnot infinite. Table 3-3 shows how good an approximation we
have to the ideal case (0 = 1). |
Reference to the-rerlection coefficignt scale of

Fig 3-10ghows that the approximation is not bvad. We will mak;
the asmuption that o = 1 for all measurements to avoid the
wore difficult problem of having to consider o lossy Junction.

_ The points of Tatle 3-2 are plotted on Fig 3-10 usin;
R = » as the reference point. e ugse this reference because
our peasuremen. reference wis a open circuit corresponding to -
a voltage maximum. Eince a voltage mr:imgm occurs at a cuirent
zinimum, & resistive maximum is obtained. A3 di3cussed previouslv -




1.
2,
3.
L.

€6

TABLE 3-2

Location of Points A',B',C',D'
with Respect to the Reference Plane

Shifi ' Direction
0.286 Ao tovard generator
0.084 A , tovard load
| 0.00405 'l. toward generator
0.1224% by toward generator

TABLE 3-3

Comparison of Meaaureil VSWR with the ideal value

VSWR ‘ | ‘g
39.2 | - 0.548
60 : : 0.97
61 | | 097

47 : : 0.96
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the points A' and C' are joined with a straight line
across B' and D'. This intersestion ylelds the point O'.
The construction of Fig 3-3 is then used to obtain the

point W, which is the iconocenter. From Fig 3-10 we see

that

Let us now attach the unknown lond to the
Stripline and measure the VSWR and position of the voltage
paximum. The VSWR is ots2rved to be 10 while the position
of the first voltage maxioum is at 370.0 centimeters. From
equation (3-59), o = 0.82 while the voltage maximum has
shifted 0.09 wavelengths or 64.8 degrees oward the generator.
A shift toward th: geperator is negétive according to'staxdard

transmission line theory. Hence normalized, to 202

= 0.82 / - 64.8
= 0,388 -J0.7h

] |
2 (3-61)

Equation (3-48) is now used to transform Z, back through

the Junction. It is

.2_2.-,1.112.

Zon Tz .
o e - (3450
201 T2

Zo2




It is known that the Characteristic Impedance of the

Stripline is 50 ohms while that of the coaxial cable

15'51 ohms . rio and X1 are the real and 1maginary perts

of the iconocenter and are given by equation (3-60). In-

serting those values in equation (3-50) we get

g

O .

n

0.348 - J 0.74 -3
51 5

P}

=

1.
51 .

= 12,7 - § 3.2

It will of course bve noted that it 1s not necessary to

know Z,, since 1% drops out of the equation. It was

put in merely to show that Z95 and 2, are both normalized

to Zoe.

c.

Cencluesiona:

It has bern shown that it is possible to measure

an arbitrary unknown impedance through a lossless Junctién

thereby allowing the use of an existing coaxial slotted

line to determine the value of Stripline Loads. We can not

hovever determine the Characteristic Impedance of the Strip- .

line by this method since our result will be a single equation

in two unknowns.
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APPENDIX VI

Relation Between the Iconocenter
and the Crossover Point
The existence of the crossover point and its relation

to the iconocenter may be proved by considering the sphere
8 heving ! as its equator (Fig A6-1). By stereographic
projection from the pole L, any circle v' passing through O'
and orthogonal to['! is transformed into circle t on 8, also
crthogonal tol' ' and passing through the sterecographic pro-
Jection K of O0'. By projection on the pl@e of the equator,
this circle becomes a siraight line, which goes through the
projection 0 of K. The construction of Fig AG-2 is a re-
production of ICO'KG on the plane of I'* obtained for

instance by rotation through 90 degrees ebout CO'.

Fig AG-1 Transformation from the Crossover Point %o
the Iconocenter. '

| AT8




Fig A6-2 Relation Between the Iconocenter and tbe
Crossover Point.

AT9




ABSTRACT

The history of work done on Stripline attenuation is discussed.
Cohn's37 snalysis 1s accepted as the most desireble for engineering
use since his results are expressed in a convenient grephicel form.
Followinz Cohn, the sttenuation is expressed as‘éhe sum of dielectric
attenuation and conductor attenuation. Working expressions are
developed for dielectric and conductor attenuation, the "incremental
inductance" rule of Wheeler38 being used to determine conductor
attenuation. The results are shown in easy-to-use graphical form.
Finally experimentel verification of Stripline attenuation is
shown using o Stripline Spiral. Good correlation is obtained
between measured and theoretical values of attenuation up to
3.5 Kmec. It is believed that the discrepancy above 3.5 Kmc 1s

due to an increase in loss tangent end a decrease in dielectric

constant above this frequency.
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CHAPTER IV

DETERMINATION OF STRIPLINE ATTENUATION

)
A. History of the Prdblem?‘

1. Current Distribution on the Conductors.

Before Stripline attenuation can be intelligently
discussed a few words must be said concerning the distribution
of current in Stripline.

Many of the people who have worked on the
Characteristic Impedance of this line have, in conjunction
with that work, carried out a conformal mepping of the strip-
line geometry into some simpler geometry. One by-product of

'such calculations is the current distribution of the inner
and outer conductors. The rigorous conformal mapping carried
out by Oliner? and illustrated in Fig 4-1, is therefore
meant to be typical of the work of & number of people.

The mapping outlined in Fig 4-l procedes by first
mepping the upper half region (b) of the Stripline shown in
(a) onto the upper half plane (c), by means of a tanh function.
The rectangle (d) is then also mapped onto the upper balf plene
(c), employing a sn function, and the mappings are compared in.
order to determine the overall mepping from (b) to (d). By

taking appropriate derivatives, one finds the following functional
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dependence for the current distribution on the ground planes

in terms of the notation of Fig 4-1 (b):

I(x,b/2) L (b-1)

\/ 1+ k"2 stmn?(x %/v)

vhere
'2 2
k = tanh (x w/2 b), k' =1 - k“. (L-2)

The current on the center strip conductor is similarly

shown to be

I(x,0) = -1 (k-3)

\/ 1 - (k'2/k2) sinh® (x x/b)

where k and k' are given by Fig L-2.

It is seen from (4-1) that the current on the
outer conductors is a maximum at the midplane of the cross-
section, and decreased monotonically away from this point
on either side. From (4-3), on the other hand, one notes that

the current on the inner strip conductor is a minimum st the
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(a)

‘*Y : e
gz,

—W— - 2K({k) —

(b) (d)

Fig 4-1 - Rigorous Conformel Mapping of Stripline Geometry

midplane and becomes divergent at the strip edges (as one
would expect). The actual variations given by (4-1) and (4-3)
have a relatively simple form.

Experimental confirmation of the validity of relation
(1) in & practical situation is afforded by Fig 4-2 which
presents a comparison of the theoretical values predicted by
(4-1) with experimental data taken at the Hughes Aircraft

Company?h

As seen, the theoretical values agree quite well
with the measurements. Fig L4~2 also serves to illustrate the
repid decay encountered as one moves transversely away from
the center strip; at a distance away from the strip equal to
the strip width the square of the field intensity is 27 db

down from its maximum value.

I




] X
Tl—w -0
T
1
] i
[ ° } !
s {
-E -
[ !
[ S i
= {
[ 2 1
L O
d T
L-E / ‘ A
711 THEORY
EXPERIMENT o [t
T [
4
.20 -10 0 10 20

DISTANCE FROM CENTER (Relative to strip width)
Fig -2 - Field or Current Distributions Across

Outer Conductor Surface

2. Attenuation Constant.

The evaluation of the attenuation constant is generally
a rather prosaic task, once the appropriate current distributions
are known. If one employs the current distribution (4-1), and
performs the necessary integrations, one finds for the attenuwation

constant due to the loss in the outer conductors only.;5

2
x 8 1 1n Ltk (4-h)

(04 =
outer . e ' -
plates L kb X K(k) K(k*') 1-%

where k and k' are defined in 4-2, K(k) is the complete elliptic
integral of the first kind of modulus k, A is the wavelength of

the line, b 1s the ground plane spacing, and & 1s the conductor
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gskin depth. When similar integrations are performed for the
inner conductor, using current distribution (4-3), a divergent
result is obtained for the atienuation constant due to loss

in the inner conductor alone. This divergence is due to the
divergence in the current distribution at the sides of the
inner strip conductor for an inner conductor of finite thick-
ness (rectangular shape) the current distribution at the

edges possesses a divergence of lower order and thus permits
a finite result for the attenuation constant.

In the course of his work on Characteristic
Impedance}o Pease had determined the current distributions
on the inner and outer conductors in the low impedance .
range when the inner conductor is of finite thickness.
Employing these current distributions in the computation

36

of attenuation constant, Pease~  obtained explicit expressions
valid for both inner and outer conductors. While the results
are approximate, they are estimated to be accurate to within
1% for Z, < 75 ohms. The contributions due to the inner and
outer conductors are given separately; the result for the
outer conductors alone is nummerically in very close agree-
ment with (4-4) when the inner conductor thickness is small.
While these attenuation constant results are in explicit form,
they require the insertion of a quantity related to the
Characteri3tic Impedance which must be determined via a

transcendental relation. The form is definitely computable
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but more involved than that of (I-4). It is suggested,
therefore, if accurate results are desired for lines in

the low impedance renge with sinall thickness inaer conductors,
to employ the formulation of Pease for the inner conductor
contributions and e:pression (k<4) for the contributions of
the outer conductors.

More recently, Cohn37

has evaluated expressions

for the attenuation constant which are valid over the whole
range of Characteristic Impedances, but which are not as
eccurate as (4-4) or those of Pease. Cohn's approximate

results are based on a general formule for the computation of
attenuation constants published by \-!heeler:.)’8 The procedure
involves the evaluation of the derivatives of the Characteristic
Impedance with respect to each of the line dimensions; in order
to obtain results in reasonably simple form Cohn employed simple,
approximate forrmlas for the Characteristic Impedance. He
obtains separate results for the high and low impedance ranges,
and the contributions from the inner and outer conductors are
not separately determined. Although the results from the high
and low impedance renges differ by 8% in the overlap regionm,

they are recommended which approximate answers are sufficient.

B. Recommended Approach.

Cohn's results seem to be most widely accepted in the

literature and are expressed in graphical form for convenience.

~ 't
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The following disseration will therefore follow Cohn although
it will be considerably more complete than that given by Cohn.

C. Derivation of an expression for Stripline Attenuation.

In zeneral, two types of losses occur in a transmission
line. Thaese are dissipation in the conductors and dissipetion
in the dielectric medium filling the line. In the usual case
these losses are snall enough to permit the total attenuation
to be expressed as the sum of each type of attenuation computed
individually.

That is:

a=oa +0 (4-5)
where

Q = +total attenuation per unit length

¢ = conductor attenuation per unit length

ad= dielectric attenuation per unit length

1. Dielectric Attenuation.

let us first consider the dielectric attenuation,

ad. It was shown in Appendix II that

Furthermore if equations (A2-22) through (A2-24) of Appendix II
are written in vector notation (assuming conductivity ¢ 0),

there results
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r:gw\/ixe<1+3-@ (4-8)

r=Qa+J8B (4-9)

Now

In equation (4-9) @ is the attenuation constant and B is the

phase constant. We wish to find the attenuation constant Q.
|

To do so, we must divide equation (4-8) into its Real and

Imeginary parts. We therefore proceed as follows.

r2=(°‘+df5)2

i b))

Expanding equation (4-10) and separating Real and

Imaginary Parts, we find the Real part to be
(12-[32=-w2u€ (4-11)

In order to solve equation (4-11) for C, another equation is

needed. Equation (!4-8) may be rearranged to read

T=J—&2p€+Jw0u (4-12)
Now

lTla"YfBC(Z*ﬁz

= (wh p2 ? ¢ 0 o N )1/2 (4-13)

Prosmee s
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Solving equations (4-12) and (4-13) simultaneously for

O there results

aamfue<1+ gde )1/2 -1 (4-14)

€W

The quantity o/ew in equation (L4-14) is defined as the loss
tangent (tan &).

For the dielectric materiels of interest o/ew << 1.

[ (=) ]

in equation (4-1%) in a binominal series, we get

O AT O BVIE S

Since tan ® < <1, we may neglect all terms after the second

Expanding the term

term in equation (4-15). Substituting equetion (4-15) into

equation (4-14), we obtain the result

o= w&’ ue tan® & nepers/unit length (4-16)
L

Equation (4-16) may be simplified by realizing thet

m=2nf=2:c= 2 x (h'17)
o}
A J;z €




where:

[¢]
]

velocity light

tad
[}

free space wavelength

free space permeability

R
n

free space permittivity

m
)

Equation (4-17) can be used to simplify (4-16) to read
0w ————— tan § nepers/unit length (4-18)

A convenient working form of equation (4-16) is

27.3 J er tan &

o= db/unit length (4-19)
Ao
vhere:
xo = free space wavelength
€.= relative dielectric constant
= loss tangent of the dielectric

tan &

2. Conductor Attenuation.

We begin our investigation of conductor losses by

rewriting equation (4-6) which was

V xH=(oc¢ Jwe)E (4-6)
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Equation (4-£) may be further simplified, since the
displacement current will never be gppreciable in any
reasonably good conductor, even at the highest radio
frequencies. The terms to be compared in equation (4-6)
are 0 and we. The precise values of € for conductors are
not known, yet most indications show that range of di-
electric constants is much the same for conductors as
Tor dielectrics. For platinum, a relatively poor
conductor, the term we becomes equal to o at about

1.5 x 1ol5éps, if the dielectric constant is taken as
ten times that of free space. This frequency is in the
renge of ultraviolet light. Consequently, for all but
the poorest conductors (such as earth) the displacement

current term is completely negligible compared to the

conduction current at any frequency. Assuming o >>w ¢,

equation (4-6) simplifies to:
VxH=0E (4-20)
Taken the curl of both sides of (4-20)
VXxVxH=VX0E (4-21)
But, there is a vector identity which states

VxVxH-v(v-H)-fn (4-22)




Utilizing equation (4-22) equation (L4-21) becomes:
(7 H) -V H=0VxE (4-23)

Ilow lMaxwell's 2nd and 3rd Laws were derived in Appendix IIX

and vere in vector form

3
7% E = - ‘o—% (A2-10 thru A2-12)
and
Y+ B=V:pli=0 (A2-38)

Using these two laws in equation (4-23), there results

FH=ou g—— (hr-2k)

=}

ct

This equation for the variation of H in a conductor
is in the form of o standard differential equation similar to
Laplaces equation, in the wave equation. The equation is
often called the skin effcct or distribution equation ond may

also be derived in terms of E, yieclding

Y/

% E=0pu E)—E (%-25)

ct

Since i = ¢ E, equation (4-25) mey also be written in terms

of current density (i).

Vg i=o0oyp %—i (4-26)
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If sinusoidal distribution is assumed, equations (4-24)

thru (4-26) become

N a He JwopH (b-27)
vaE=onuE (4-28)
v?1=3mou1 (4-29)

These equations give the relation between space
and time derivatives ot magnetic field, electric field, or
current density at any point in a conductor.

Let us now consider the case of a plane conductor
with current flow in the z direction, x normal to the surface
and no variations in the y and z directions. Fig 4-3
1llustrates this concept. If equation (4-29) is expanded in

Cartesian coordinates, there results:

M
IR
~
~
~
J
-
A
»
I
~
.
e

Fig 4-3 - Current Flow in a Plane Conductor
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32 aa 52
+
" 8y2 3z°

> i=joopi (4-30)

However, we have stated that there are no variations in the

y or z directions thus simplifying equation (4-30) to

a2
S;E 12 = jJwopo iz
=T (h-31)
where
12- Jopo
or

t=(1¢3) Natpo

The solution to equation (4-31) 1s of the form

1=C, e ™4eg, et* (4-32)
z 1

Current density would increase to the impossible velue of

infinity at x = » unless c2 is zero. Cl may be written as

the current density at the surface if we let iz = io when

X = 0. Then

TX

(4-33)

12- 10 e
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5 = 1 (4-34)
NIE o

Then utilizing equation (4-3%) in the definition of T, there

results

=it

=
Using cquation (4-35), equation (4-33) may be rewritten as:

-(1 + 3) %/

iz= iO e
=i e x/8 e-"j x/® (4-36)

From the form of equation (4-36) it is apparent that
magnitude of current decreases exponentially with penetration
into the conductor, and & has significance as the depth at
which current density to 1/e (about 36.9 per cent) of its
value at the surface. The phase of current also changes with
increasing depth into the conductor according to the factor
e~d /3,

To find the total current (I) flowing in the plane
conductor, we must integrate the current density over a

width w and to an infinite depth.

Iaw j“ 1 ax | (4-37)

(o]

Using equation (4-36) for i,,ve get
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Ie= 10 w~/ e-(l + ) x/de
o]

i wad
o)
1+

(4-38)

The voltage E on the surface along the length of this
conductor is obtained from the current density (10) and

the volume resistivity (p).

E=1 zp (%-39)

The "internal impedance" or "surface impedance" is
computed from the ratio of the voltage E given by equation

(4-39) and the current I as given by equation (4-38)

E
Ze-7 = (1 +3) %% (4-40)

Recalling that

8= (4-34)
N nfuo

equation (4-40) becomes:

Ze=(1+&))z/v Srxtpp (4-41)
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Dividing Z into its Real and Imaginary Parts results in
R=X'=Z/WN/1( fup (ll--ll-5)

Let us now define the resistance of a surface of unit

length and width and of depth & by
Rs= o/ (4-46)

Equation (4-46) may be simplified by using the definition
of 8 as given in equation (4-34). The resultant expression
is:

RB=J prpf (4-47)
Comparing equations (4-45) and (4-47), we see that

R = z/w R, (4-48)

The internal inductance can be calculated from equations
(4-45) end (4-34). After rearrangement of terms, there

results

L=X/wazfvw(pdf2) (4-49)




This is the inductance of a layer of conductive material
having & thickness of 8/2, one half of the depth of
penetration. This merely means that the mean depth of
the current is one half the thickness of the conducting
leyer.

Some inductance formulas carry the assumption that
the current travels in a thin sheet on the surface of the
conductor, as if the resistivity were zero. Such assumptions
are usual for transmission lines, wave guides, cavity resonators,
and piston attenuations. Such formulaes can be corrected for
the depth of penetration by assuming that the current sheet
is at depth /2 from the surface. This is the same as assuming
that the surface of the conductor recedes by the amount

5.t (4-50)

o
The second factor has an effect only if the conductive material
has a permeability p differing from that of space p . The same
correction is applicable to shielding partitions, regarding
their effect on the inductance of near-by circuits.

There is sometimes a question which surface of a conductor
will carry the current. The rule is, that the current follows
the path of least impedance. 8Since the impedance is mainly
inductive reactance, in the common cases, the current tends

to follow the path of least inductance. In a ring, for example,

.—
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the current density is greater on the inner surface. In
a coaxial line, the current flows one way on the outer
surface of the inner conductor and returns on the inner
surface of the outer conductor.

In determining whether the thickness is much greater
than the depth of penetration, the effective thickness
corresponds to the depth of a hypotheticel line. In a
symmetrical conductor with penetration from both sides, as
in a strip or a wire, the effective thickness is the depth
to the center of the conductor. In a shielding peartition
with penetration into the surface on one side and with open
space on the other side, the effective thickness is the
actual thickness. If the effective thickness exceecds twice
the depth of & penetration, the accuracy of the abowve
inpedance formulas is sufficient for most purposes, within
two per cent of a plane surface.

The "incremental-inductance rule" is a formule which
glves the effective resistance ceaused by the skin effect,
but is based entirely on inductance computations. Its
great value lies in 1ts general validity for all metal dbjeéts
in which the current and magnetic intensity are governed by
the skin effect. In other words, the thickness and the radius
of curvature of exposed metal surfaces must be much greater
than the depth of penetration, say at least twice as great.

It is equally applicable to current conductors,shields, and

hat

iron cores.
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This rule is generalization of (4-48) which states
that the surface resistence R 1s equal to the internal
reactance X as governed by the skin effect. The internal
reactance is the reactance of the interhal inductance L
in (4-49). This inductance is the increment of the total
inductance which is caused by the penetration of magnetic
flux under the conductive surface. This change of inductance
is the seme as would be caused by the surface receding to
the depth given in (h-SO). Starting with a knowledge of
this depth, the reverse process of computation gives the
inerement of inductance caused by the penetration, and from
that the effective resistance as governed by the skin effect.

The incremental-inductance rule is stated, that the
effective resistance in a circuit is equal to the change
of reactance caused by the penetration of magnetic flux
into metal objects. It is valid for all exposed metal
surfaces vhich have thickness and radius of curvature much
grgater than the depth of penetration, say at least twice
as great.

The application of the incremental-inductance rule
involves the following steps:

(a) Select the circuit in which the effective

resistence is to be evaluated, and identify the
exposed metal surfaces in which the skin effect

is prevalent.
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(b) Compute the rate of change of inductance of
this circult with recession of each of the
pmetel surfaces, BLO/Bx, assuming zero depth
of penetrationf

(c) Note that the increment of inductence caused

by penetration into each surface is

L
£ 5 0 -
L= e > e (4-51)
(d) Compute the effective resistance contributed

by each surface.

1 0 Lo
R= ol = -+ = R ohms (4-52)

Ho
For a surface carrying the current of the circuit, this 1is
identical with (4-48). For the effect of near-by metal
objects, such as shilelds, this formula 1is easily applied in
many practical cases. It is most useful in cases of non-
uniform current distribution, which otherwise would require

integrations.

% A second-order approximation is secured if BLO/Bx
i1s computed assuming that the surface is below the
actual surface by the amount given in (4-50).
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We must now dgvelop an expression for conductor
attenuation in terms of R and the Characteristic
Impedance Zo. In the initiel discussion of the-theory
of Stripline, we sew that since a TEM mﬁde is generated,
the expressions for transmission lines hold. One of the

most basic parameters is the propagation constant.

raNzy =J(R+jol) (GeJwcC) (4-53)

In the construction of well designed itransmission lines,
it is found that R<<wland ¢ <<w C. Using these
approximations, we can therefore write our propagation
constant as a Taylor's Series and consider only the first

several terms.

J;=(jd)L+R)l/2 =’JJ(DL 1+J_—2£a)_f ..'> (h-sh.)

and

a2 RG
»J;f(chu}) = me [1+;k-n-é-—r

o (&% - &)

Then
J= Nzy =R/2 JE/L +6/2 NI/C +30 VIC [1 - MgG ] (4-55)
Since

T= a +J8B (4-56)
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the attenuation constant ac may be found by taking the Real

part of equation (4-55) resulting in

a, =82 Nc/L +6/2 NI/C  neper/m (4-57)

From transmission line theory, we know that
z, =~ 1/C (4-58)

Substituting equation (4-58) into equation (4-57) we get

GZ

+ —59 nepers/m (4~59)

Let us examine equation (4-59) more closely. G is the shunt
conductance between conductors. With the common dielectrics
in use, it is small enough to be neglected. Using this
epproximation, equation (4-59) becomes:

a

R _
e 27

nepers/m (4-60)

Equation (4~60) 1s not in a convenient working form
and must therefore be modified further. In Chapter II of

this report were given the relations

z = Wi/C (2-1)
and
R (2-3)
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Equeting equations (2-1) end (2-3) and golving for L, we get

Z'O
L= —= (4-61)

N2

An expression f£or veloclty of propagation (v) as compared
to the velocity of 11ght {c) wes also given in Chapter II.

A
L vas

v = J‘C" \ (2-1&)

The substitutlion of egquation (2-4) into equation (2-61)

1eads to
L= L (4-62)

If equation (h-G2) 1is uscd in equation (h-52), there results

I W

0O

ZO er
( o Cx (4-63)

But
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so that

R, N €. 0 Z

R=

If equation (4-64) 1s now used in equation (4-60) we get

a more desirsble form for the attenuation constant.

R V¢ o2
Qa -2 r $  nepers/cm (4-65)

¢ 753.2 z,, dn

vhere x has been changed to n to conform to Cohn's notation
of distance perpendicular to the conductor surface.
We must now evaluate the term 0 Zo 1n equation (L4-65).

n
Consider the cross section of Stripline as shown in Fig U-k.

Fig L-b - Cross Section of Stripline
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8 n is perpendicular to the current carrying conductors.
We must therefore consider the inner surfaces of the two
ground planes and the four surfaces of the center strip. A
change o n inwardly normal to the ground planes requires a
change © b = 2 & n in ground plane spacing. Similarily, in
the strip, the necessary changes in dimensions are w= - 28 n
and t = - 2 & n. The total change (total differential) for a

uniform change in 5 n is therefore:

a% a% a%
aZo _ W&b‘*wa'ﬁg—t—at (ll--66)
n
®n

Substituting the values for & b, 8 w and & t as given above

in equation (4-66), there results

02 2902 202 202
0 - [¢] - ° _ 2] (h-67)
dn db oW ot

When equation (4-67) is incorporated into equation (4-65),
the desired expression for the attenuation constant aé

results and is

O = e——
[ 376.6 ZO

R Je_ dz dz dz
LI <B b° -3 w° -3 t°> nepers/m (4-68)
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8. Wide Strip case.

Equation (4-68) will first be evaluated for
the wide strip case (w/b - t > 0.35) using equation (2-9)

which is

VA 9h.15

o}

o ohms (2-9)

v/b
J_ <J.-t7b + o c1;885 e)

If the partial derivatives of equation (4-68) are evaluated

using equation (2-9), the following results are obtained:

3¢,
b « t/b b £
1'{:71) + ‘('jl_t/b)é " 505 e, 30 > (4-69)

r
— =

ob k.15 b

d 2 J?ZQ<
o] [o]

3z -V, z° 3¢,
o _"Vr % < 1, b £ > (1-70)
g% T hI5p \I-tb T 0.0885e, Ow
2
0% - I 2, < u/b IS S ) > (4-71)
It 9%.15 b 1 - t/b)2 0.0885¢ Tt

If equations (4-69) through (4-71) are substituted into

equation (4-68), there results




1 . —2wb

-1 - t/b (1 - mm)z

Q=

LR € 2 [
8 ry O
¢ (316.6)° b

(k-72)

oc,! oc,.! ac,!
—H <- L . I 4 > ] nepers/m
0.0885 €. db o w dt

The partial derivatives of C f' mey be evaluted through the

use of equation (2-10) which was

c'-?_f__ssi.f_r.[ 2 ln< 1 4‘1\
£ - I-t/o I-t/o y,

<—_-t—'7— -1) < -t/b) -1) ] mmf/cm (2-10)

Make the substitution

X =

1
1 - t/b (’""73)
in equation (2-10). The result is

0.0885 ¢

cf'a ———;‘-——r— [2x1n(x+1)-(x-l)ln(x2-1)] (2-74)

Taking the partial derivative of equation (4-T4) with respect

to x, we find that

o cf' 0.0885 €. . (

dx %

2+l ) (4-75)




Now

9 x

99

5—-;=

(s ) = (4-76)

since x is not a function of w.

Also
d x +/o (
= "77)
) b(l_t/b)e
and
d X 1
= (4-78)
5t b(l-t/b)2
Therefore
acf'_acf' x
b ~ OJx b
%(m ?.‘__‘"__3:.> .ot (4-79)
n x -1 b(l_t/b)z
30 dct 5,
ow 9 x o w
0.0885 ¢
T X4+l
s (gt ) om0 s
and




100

g%(h}iﬂ.)u————l—_—
x x -1 b(l_t/b)a

If equations (4-79) through (4-81) are substituted into

equation (4-72), we see that

ltRBJ:: ZOJ::_ [ 1 2 wiv

a = 3 +
1-th (1-1th)

¢ (376.6)° b

1
+l
+ -:1]'(; .(ﬁ_tmé. ln< m__> ] nepers/unit length
(1 - t/v) __2;1;7 -1
l1-¢%/b

For copper R = 8.25 x 10"3»11“1{mc ohns/square

We also wish our result in decibels per unit length rather

than in nepers per unit length. Remembering that one neper

(+-81)

(4-82)

equals 8.686 decibels and using R, for copper in equation (+-82)

we obtain the final result, which 1is
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2,02 x 107° vt Je ZOJE:

[ 2 (e ) w (D)

—=p * t/b) t/b)°

Equation (4-83) is valid in the same range as w/b -t > 0.35.
The term (QJE: Zo) is determined as a function of the cross
sectional dimensions. The term @' 1is expressed in db/unit
length where the unit length is that used to measure b. For
exenple if b is in inches, @, is db/inch. If the conducting
surface is other than copper, the result should be scaled by
the ratio of the surface resistivity of this metal to that
of copper.

b. RNearrow Strip case.

let us now evaluate equation (4-68) for narrow
Strip widths. It was shown in Chapter II that for w/b -t < 0.35

the Characteristic Impedance could be expressed by equation (2-11)

which is
1
z, = O 1n 2 oms (2-11)
Jer °
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To evaluate equation (4-68) which is

R JZ; ( vz, 3z 3z
c®  376.6 z, \0Dd 3w - Ix )nepers/m (4~68)

3z, 31z, 3 Z,
TSQ' 3T and ST st be evaluated.

Utilizing equation {2-11), we see that

o2
ab° - 50 (4-84)
Je b
by
azo azo ado 60 aao
S W = 3d "Jw = ° * I w (4-85)
° J?rdo
and
02 oz od dd
o _ o 0 60 (s
5T =TT vt - 3% (4-86)
° Ve, 4,

Incorporating equation (4-84) thru equation (4-86) into

equation (4-68), there results

Rs ‘ b (ado ado
ac"e'i"z'gﬁ [14- T\ 3% + 31;) ]nepe:_'s/unit length

¢

(4-87)




Making the substitutions R = 8.25 x 1073 JE__ and
one neper = 8.686 db, equation (4-88) results and is

0.018402Ve_ £
I “kme

.= [l*.

¢ ('Jer Zo) b

b 94 o4,
3 <aw°+ 3% >:|db/unit length

(4-88)

o]

Equation (4-88) is valid for < 0.35 and t/b < 0.25.

L
b-t
Although the equation relating do’ wand t is
known, it is an implicit function of the variables and to
complex to permit derivation of exact formulas for the partial
derivatives. However, a set of five place values of do/d,
versus d"/d' vere available,! and permitted a precise numerical
evaluation of these derivatives. A plot of (O do/d w + O do/d t)
as a function of the strip cross section ratio if given in Fig 4-5.
Values from this curve may be used in equation (4-88) to obtain
the attenuation per unit length of narrow strip lines.
For d"/d' small, where "d"" is the smaller
and "d'" the larger of the two dimensions "w" and "t", an

approximate formula for do exists.39

* These were computed in 1950 by C. Flammer of Stanford
Research Institute.
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d n
—+=1/2 [1+;9-é-r 1+1.n5%‘“d—' ] (4-89)

Equation (4-89) 1s accurate for 4"/d' < 0.06. It was
37

found by Cohn~ that an improvement occurs in equation

(+-89) if it is modified to read

d " '
¥ = 1/2 ['1+ “—da-.— 14 1n'*"d>

+ 0.510 ( %: )2 ] (4-90)

With this modification, equation (4-90) is extremely accurate

for a"/a' up to at least 0.11.

Differentiation of equation (4-90) ylelds

ad ad ad ad
3__ 5_=g—r+w=1/2+0669d"/d'

- 0.255 (a"/a*')° +1/2x 1n baw a'/a"  (4-91)

Inserting the results of equation (4-91)

into equation (4-88) gives the final result which is:
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o0.011402Ve_ T "
o = xr kme [14--9- (1/24-0.669 g
¢ J—— do d
( €, Zo) b
d" 2
- 0.255 \zr) + 1/2x 1In 4 x d'/d")] (4-92)

Equation (4-92) is appliceble for w/b -t < 0.35, t/b < 0.25
and either t/b < 0.11 or w/t < 0.11.

3 Attenuation Graphs.

it is of considersble interest to compare the
forrmulas for the wide and narrow strip cases in the vicinity
of the transition point w/(b-t) = 0.35. Fig 4-6 shows curves
computed from equations (4-83) and (4-92) for the typicel case
of t/b = 0.01. It is seen that the curves show an approximate
agreement near w/(b-t) = 0.35, but differ by sbout eight per
cent. This discrepany is reasoneble since the two attenuation
formulas utilize the derivatives of two approximate Characteristic
Impedance forrmlaes, and, although the latter agree very closely,
their errors will necessarily show up most strongly in their
derivatives. A reasonsble transition between the two
attenuation curves is shown in Fig 4-6. It is reasonsble to
believe that the resulting composite curve is within a few per
cent of the true one.

The above process has been carried out for t/v
ratios from 0.001 to 0.1. Equetions (4-83) and (4-83) and

(h-92) were used in their respective ranges of validity. In




107

(01:]}

YISHL NI SVINWHO04 NOILVANIGLLY JI¥L1S-MOYHVYN PUD -30IM JHL 4O NOSIHVAWOD 9 Did

"NOI934 NOILISNVYHL

°z
091 ov! oz! ool 08 09 ov oz
vV INWYO \
di¥1S-3aM | —
CE0-= ~lullau\\
\\
JAEND

NOILISNVYHL

VINNYO4
didiS ~ MOYUYN

0000

90000

180000

01000

21000

1000

91000

439N,
(PWX) -qp » 4 p



105

all cases the curves for narrow and wide strips agree at
w/(b-t) = 0.35 within 1055 The family of composite curves

is given in Fig 4-7, as a function of Zo and various values

of t/b. It is seem that minimunm attenuation is approached

at 2, which corresponds to the case of an infinite parallel-
plane transmission line of spacing (b-t)/2. If field fringing
did not occur, with consequent non-uniformity of current dis-
tribution, the attenuation would be independent of strip width
and Characteristic Impedance. The effect of this current non-
uniformity 1s therefore quite lafgc in the useful range of
Characteristic Immpedance.

Fig 4-7 applies to copper conductors. For other conductors
the attenuation should be scaled proportional to Rs' The ordin-
ate parameter is O b/ J__;:;:j; in db(knmc) l/“. Note that this
glves ac directly in db per inch at a frequency of 1 kme, when
€. = 1 and b = 1 in. The total attenuation when a dielectric

material fills the line is given by

27.34 €. tan ©
a=a + db/unit length (4-93)

A
o

4. Measurement of Attenuation.

In order to check the correlation between theoretical and
measured values of attenuation several stripline spirals were
built and evalugted. A spiral was used since it was felt that
this was the only practical way to get a representative length
of Stripline in a reasonable amount of space. All spirals had
e Characteristic Impedance of 50 ohms. Lines A and B were built
and tested by w1gington30while line C was constructed and eval

by the author.
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The method of measurement is shown in Fig 4-8. From
frequencies of 30 to 2400 megacycles simultaneous measure-
ments were made using both a Rhodes and Schwarz Diagraph
and a Hewlett Packard power meter with its accompanying
thermistor mount. Good correlation was found between the
values of attenuation determined from the Diagraph and from
the povwer meter. The power meter reading was used since it
could be more accurately read.

The Diagraph is essentially an automatic Smith Chart
which will read attenuation and phase shift directly through
the use of a moving spot of light. The power meter was bal-
anced with the Stripline Spiral out of the circuit. The line
was then broken and the Spiral inserted. The attenuation due
to the Spiral is then read directly from the meter.

Above 2400 megacycles only the power meter was used.

When total Spiral attenuation exceeded 10 decibels, the power
meter could not be used directly and a slight modification

was necessary. Individual General Radio pads were measured at
a given frequency. Enough of these pads were inserted in the
line so that the difference between the total value of the pads
and the expected attenuation of the Stripline was less than 10
decibels. The power meter was then balanced with the pads in
the line. Finally, the pads were removed and the Spiral in-
serted. The total attenuation was then the sum of the pad

attenuation and the reading on the pover meter.

oA
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METHOD |
gzo 08 R¢S DIAGRAPH
OSCILLATOR >ATTEN, O +  [TEsT
608 Y e o ~<|. LINE
@ ATTEN, X + 0
2008 ZDU-30- 300 Mc. L ---to
ZDD-300-2400Mc. ‘
UNKNOWN
REFERENCE_LINE LINE
| SET POWER LEVEL AND DIAGRAPH TO READ O DB.
2. BREAK UNKNOWN LINE AT X AND INSERT TEST LINE.
3, READ ATTENUATION DIRECTLY FROM DIAGRAPH.
METHOD 2 '{’Eﬁgg POWER
O METER
OSCILLATOR / Q <\
6DB ! g
n ANA— L — [Hp4778 }———“’;4308
ATTEN. TERMINATED

THERMISTER MOUNT

I. ESTABLISH REFERENCE POWER.
2. BREAK LINE AT X AND INSERT TEST LINE.

3. READ ATTENUATED POWER.
4. CALCULATE ATTENUATION.

COAXIAL COMPONENTS
GR 50 Ohm CABLE, ADAPTERS, TEES, ATTENUATORS, ELLS.

OSCILLATORS

R ¢S SMLM 0SC, 30-300 Mc.

GR 102! SIG. GEN., PLUG-IN P2,250-920 Mc.
P 4,900 - 2000 Mc.

GR 12I8- A UNIT OSC., 900 -2000 Mc.
HP MOD. 616A SIG. GEN., 1800-4000 Mc.
HP MOD. 685A 5200-8300 Mc.

R¢S - RHODE AND SCHWARTZ

GR : GENERAL RADIO CO.

HP - HEWLETT-PACKARD CO.

Fig.4-8. ATTENUATION MEASUREMENTS, METHOD AND
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It should be noted that no measurements were made on
Spirels A and B above 4000 megacycles. Above this frequency
values vere calculated from equation (5-25). This equation
sppears in the chapter on Stripline Transient Behavior.

In the neasurcment of Spiral C, it was observed that
the attenuation began to rise sharply above 3500 megacycles.
Ho information was available as to the increase of loss tan-
gent and the decrease of dielectric constant with frequency
was available locally. Correspondence with the manufacturer
(liinnesota Manufacturing and lMining Company) provided only
one additional velue of loss tangent and dielectric constant.
Since theoretical attenuation depends on these two constants
directly, its accuracy is only as good as that of these
parameters. Wigington'sho results are shown as Fig 4-Oa and
the author's as Fig 4-0b. Table -1 is also included to show
the information of Fig l-Gb in numerical form. Finally a
picture of Stripline Spirals A and C is shown. Spirel A is
opened up to show its interior, vhile Spiral C is in its

assenbled form.
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TABLE 4-1

Theoretical vs. Measured Attenuation of Spiral C.

Frequency Calculated Measured
(me) Attenuation Attenuation
(dv) (ab)
30 0.5674 0.kl
Lo 0.6522 0.52
50 0.T7400 0.60
60 0.8244 0.63
70 0.8943 0.68
80 0.9622 0.72
90 1.033 0.82
100 : 1.098 0.9
125 1.251 1.04
150 1.395 1.15
175 1.518 1.36
200 1.657 1.50
250 _ 1.899 1.70
300 2.126 1.82
350 2,244 2.10
Loo 2.452 2.40
450 2.722 2.60
500 2.947 2.90
600 3.321 3.20
700 3.680 3.41
800 4.026 3.63
900 4,262 L2
1000 L.689 4.3
1250 5.389 5.2
1500 6.313 6.2
1750 T.064 7.0
2000 7.67h 7.2
2400 8.780 9.0
3500 11.667 11.60
5200 15.890 19.90
6000 17.810 23.50
T000 20.240 27.70
8000 22.470 28.80
8200 22,960 28.90
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ABSTRACT

A transfer function for Stripline is found using standard
transmission line formulation. This transfer function is
broken into two parts, dielectric response and skin effect
response. A set of curves is given for dielectric response.
Skin effect response is found from the curves in an article
by Wigington and Nahmanu6 which is included as an Appendix.
Finally, a practical example is worked demonstrating the
use of the analysis. Comparison of the results of this
example with those determined experimentally shows good

correlation.

i1
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CHAPTER V
A TRAISIENT ANALYSIS OF STRIPLINE

A. Introduction.

Since the use of Stripline to perform logical operations
in a computer is a basic aim of this investigation, it will
be necessary to consider its transient properties. Any
digitgl logle operation depending on signal amplitude will
necessarily involve square pulses to represent the "1" and "O"
states. The maximum possible rate of performing logical
operations will then be limited in part by the maximum
echievable rise time of Stripline. The means of predicting
this mostinum rise time as well as the variables determining
it will be found from a transient analysis. This analysis
will follow an analysis done by Wigington.uo Wigington's
peper is ihe only transient analysis that has been done to
the author's knowledge.

B. Theoretical Model.

To begin the transient analysis of Stripline it is
necessary to find its voltage transfer function. It was
shown earlier in this report that Stripline operates in the
TEM mode. Since this is the case, the formulas for general
transmission lines hold. The steady state solution for a

voltage wave on a general transmission line is

18
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-1l 1l

VeAe +Be (5-1)

vhere

v= ¢+ 3B=v (R+JuL) (G + JuC)

1l = distance from the sending end of the transmission line
R,L,G,C = resistance, lnductance, conductance and capacitance

per unit length of line

A and B = Complex constants

The function of interest is that of a voltage transfer in
& matched line. The first term of equation (5-1) represents
the incident wave while the second term represents the reflected
wave. 8Since a matched line has no reflected wave, the second

term of equation (5-1) will be absent. Equation (5-1) then becomes:

V = v(0) et (5-2)
where

V (0) is the sending end voltage

From equation (5-2) the voltage transfer function becomes:
Flo) = z(é; -eVl_ L -1

= e'al(cos Bl - J sin B1) (5-3)

In equation (5-1) the propagation constent y was defined as

1/2
T = [(R+Jm L)(G+ch)] (5-14)
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Let us now examine the parameters R, L, G and C for the

case of Stripline. In Chapter IV of this report, it was

f nfp (1+)
—_T (4-41)

shown that

zeo = 2% T,
where
Zb = Impedance of a round wire for very high frequencies
f = frequency of interest
i = permeability of the medium
0 = conductivity of the medium
r,= radius of wire

It 1s shown in Remo and Whinnery'l that equation (4-41) is

valid for r /6 > 5.5 if a 10% error can be tolerated (where

8§ 18 the depth of current penetration into the conductor).

In Stripline T, + o since the conductors are actually plane

rather than circular. Also for copper at 3 Kme, 8§ =-1.22 x 10-6meters.
The assumption that ro/s > 5.5 is therefore quite valid.

Equation (4-41) may be rearranged to read

z, = \/ —w_é&T_ 1+ (5-5)

8 o
LI
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Let us define

2 . u” (5-6)
K 2 12 o)

L A o)

Inserting equation (5-6) into (5-5) there results

K Jb

2= 1+ ) (5-7)

In the discussion following equation (4-14) it was shown that

tan & = — (5-8)

where

tan ©

loss tangent

Q
i

conductivity

m
L]

permittivity of the medium

o = angular frequency in radians

The equation for a parallel plate capacitor is

€A
CegF (5-9)

where:

m
]

permittivity of the medium
A = Area of one plate

d = distance between plates




L
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Equation (5-8) may be rearranged to read

oA
d

(5-10)
uK%%)

tan § =

Utilizing equation (5-9) and the basic definition of

conductance, there results
v Ty = ..G_. -
tan & T (5-11)

Now let us examine equation (5-4) which was

Y = [ (Re*Jwl) (G+jwcC) Jl/2 (5-14)

Consider the term (R + J w L). It must be remembered
that there are two types of inductance to be considered,
that due to skin effect and that calculated assuming no
current penetration into the conductor (L ). The resistor
term R 1s essentially due to skin effect. The term
(R # J wl) may therefore be expressed with the help of

equation (5-7) as

(R+Jwl)=(2c0+ )WL)

KNw Jo
= —%—J—_a- + J %2- +JU’L°°> (5'12)

Now equation (5-11) is
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G
. S : -11
tan © ®oC (5 )
Define
C ten & = K2 (5-13)

Then equation (5-12) becomes
G =K, (5-14)

Throuch the use of equations (5-12) and (5-14), equation

(5-1) vecomes
Y= — +J —— +Jj0low ><K w+JwC>] 5-15
V2 Je ¢

Equation (5~15) can be rearranged to read

K Yo
R [ . P (1¢3) ] 1/2 [1 . K_g_] 1/2 (5.16)

Jwlew Jc

Equation (5-16) is rather unwieldy and mey be simplified
by expanding each one of its bracketed terms in a binominal

series. The general binominel series expansions 1s
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.,2 Io)
(1+x)n=1+nx+9—(£———£2——"— c e .. X<1 (5-17)

2!

We must first examine the bracketed terms of (5-16) to see
"n_n

2
i1f the condition (x < 1) is met. The "x" term in the first

bracketed term is

.
52 1y .

2 - L (5-18)
Jwle 'waw

Eveluetion of (5-18) depends on evaluation of K- Kl in turn

depends on the assumption that

5

s[(nLoo

<<1

This assumption will therefore be made and its validity

checked after Kl has been evaluated. In the second term of

equation (5-16), the validity of

l—;?————\ <<1 (5-19)

must be checked. Now

‘ 2 (5-20)

JC

g™
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But from equation (5-13)
tan & = ——— (5-21)
At 3 kme tan & < 0.01 for GB 112 T Dielectric. The
assumption of (5-19) 1s therefore justified.

Using the first two terms of the binominal expansion

in each term of equation (5-16), there is obtained

3K (1+3) K,
M Y [1-——————2; J;:m] [1-95 ]
K (1+3) (143)

=JollwcC [1-32J2 e - ;25- m)(g%—) ](5-22)

K/
Now it was shown that ( -5) < <1 and it will be subsequently shown
that |
K, (14))
<<1.
22w L »

It is therefore valid to drop the last term of equation

(5-22). Under this assumption equation (5-22) becomes
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or

K (1 +3) Vo KR o
1 0
r=joTa4+ + - (5-24)
2 Ro Jé e
where
T= NLC
and
1l w
Roa' T

The first term is a simple delay and is not of interest

in this analysis. Ve may therefore conclude from equation

(5-24) that
K Jb K. R
e ——— v 22 o (5-25)
2J2 R
(o]
and
Jo
B = E‘-_____ (5-26)
242 R,

The development has now proceeded far enough to evaluate

the constant Kl' The work of Chapter IV resulted in Fig 4-7
vhich expresses 8tripline attenuation as a function of its

parameters. The ordinate of Fig 4-7 is
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chb b (ch51/2
y = (5-27)

fi(mc €r

The attenuation constant & in equation (5-27) 18 in decibels,
whereas the attenuation constant of equation (5-25) is in
nepers. Using the conversion factor from decibels to nepers,

we sece that

nep

a b
C -1/2
y' = nepers (cycle)
N Gr
= 3.00 x lO_b y (5-28)

Equation (5-25) is made up of two terms, the first due
to copper losses (ac) and the second due to dielectric
losses (ad). If equation (5-28) is solved for acnep and the
result equated to the first temm in equation (5-25) the

desired solution for K, results. It 1is:

1
2y'Je. R
Ky = ———— (5-29)

J% b

The expression we wish to examine to determine the

validity of equation (5-22) is
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1 <<1 (5-30)

Let us examine equation (5-30) for a "worst" case.
Teke:

y = 1.7 x 1073 (meximum ordinate on Fig 4-T)

R= 98.5

b = 0.125 inch

er= 2.6

C = 0.553 ppfd/in.

These values vere obtained from the Table of Characteristic

Impedance Measurements given in Chapter I. If these values are

used in equation (5-28) and (5-29) we find that K, = 8.91 x 10'"8
The value of I~ can be found by realizing that
= -L—-?-o- r"l
R S (5-31)
or
2 .
Lo= R C (5-32)

Inserting the given values of Characteristic Impedance

and Capacitance per unit length, we find that les= 5.37 x.10-9henries.

If a frequency of 3 Kmc is assumed

Ky

Jo L

e1.22x 10 < <1 (5-33)
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Then the assumptions required for the binominal
expansion are justified and we mey proceed with the
development.

C. Stripline Transfer Functions.

The transfer function to be ilnvestigated can now

be written from equation (5—3), (5-25) and (5-26). It is

-KR1lw - K1 - J Kl
__:EB_ e 2—1@-—%% e WELR: Yo (5-34)
In our investigation of equation (5-36), it would be
desirable to be able to apply the physical realizability
conditions given for transfer functions of lumped constant
systems to transmission line transfer functions. Bodeua
shows that provided the delay of propagation term in the
expression for the propagation constent (equation 5-24) 1is
subtracted out, the analogy is valid. Since the first term
of equation (5-24) has already been removed in the derivation
of equation (5-34), F(w) must satisfy the realizability
conditions for lumped constant transfer functions. These

b3

conditions are given by Bode “ and Balbanianuh and are:




(1)

(3)

(4)

(5)

(6)

(7)
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Zeroes and Poles are either real or occur in
complex conjugate pairs.

The real and imoginary components are respectively
even and odd functions on the real frequency axis.
None of the poles can be found in the right hand
plane.

Poles on the real frequency axis must be simple with
imaginary residues.

No Poles of the voltage transfer function F(w) can
lie at O or «=.

The Zeroes of F(w) may be multiple and cen lie any-
where in the s plane.

From physical reasoning, it is obvious that F(w) =0

88 W ~ 4 © and | F(w) | <1 for all w.

For those who may be unfamiliar with the pole zero concept

the following definitions are given:

(1)

A Zero is that value of frequency which causes F(w)

to go to zero.

(2) A Pole is that value of frequency which causes F(w)

to go to =,

If condition (7) is met, the other conditions will be met.

Exemination of equation (5-3%) shows that for w >0, condition

(7) is met but for w < O this condition is not satisfied.

bt ¥
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Lot F(w) be broken into two parts such that:

Flw) = T, (0) + Fy(0) (5-35)
vhere

Fl(u)) = term due to dielectric loss
Fg(w) = term due to skin effect

Consider first the dielectric term

- K:2 Ro lw

2]
4

Fl(m) =e (w > 0) (5-36)

Since the attenuating case is wanted for both positive and

negative frequencies, it seems obvious that for all w, Fl(a))

should be
- KR 1 | w|
2
Fl(u)) = e (for all w)(5-37)

Now let us consider the skin effect terms

- KlJco 1 -Jxl-fwl

242 R, 2v2 R
Fy(w) = e e ° (5-38)

For simplicity, define
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K, 1
Ke —=— (5-39)
242 R,

With equation (5-39) inserted, equation (5-38) becomes:

P o) = e -k Jo e - K vo (5-40)

e X Jo (1 +39)

Equation (5-40) must hold for negative as well as
positive frequencies. Bcdellr5 states: "In any real physical
circuit, the real component of the impedance is an even
Tunction of frequency and the imaginary component is an odd
function. In other words, the rcal component of the impedance
at a negative frequency is equal to 1ts value at the corresponding
positive frequency, vhile the Imaginary component at a negative
frequency is the negative ol the imazinary component at the
corresponding positive frequency". Let us then postulate

- Tol T (1 43)

F(w) =e

KN o] (1 -3) (5-41)

= €

and examine the validity of equations (5-40) and (5-41) under

Bode's conditions. From equation (5-40)
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ne[rz(w) ]-Re [e K N (1+J)]

=e - Ko cos K Jw (5-42)

and from equation (5-h41)

Re [Fg('w)]= Re [e 'KJ—ITDT' (1-23) ]

R L C I BT (5-43)

Therefore

Re [Fp_(w) :l= Re [Fg(-w) ] (5-44)

and Bode's first condition is fulfilled. Also from

equation (5-40)

Im[Fz(w)]-aIm[e'K‘[‘” (14-.1)]

=-e sin Ko (5-45)

and from equation (5-41)
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Im [F2(-w) :l = Im [e-KfT(;r(l'J). ]

= e K lw‘ sin Kﬂc-u—r (5-46)

As a result of equation (5-45) and equation (5-46)

tn [0 ] - a0 [ ] (5-47)

and Bode's second condition is fulfilled. Our postulation

is therefore valid. In summary then

e-K J-w(l+,j)w>

Fa(m) = >0

- e-x ol (1 - 3) » <0 (5-48)

It is desirsble to express Fe(w) as a function of Jw.

We therefore make the following transformations:
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-K Jw(1+j)=e-x~fw(1+3) ‘fg

F2 (U)) = e J )
=e Kve jo (549
and
B () = e - XY Tol0-0) - kel (2-9) rer]

me TKN-2 a0l (5 50)

Comparison of equations (5-49) and (5-50) shows that for w <O

F,(w) = F,(-w) (5-51)

Now if we let 8 = jw and use analytic continuation, we obtain

the final result which is

- Kl 14s
——
Fé(s) =e kJ2's = e %o (5-52)

D. Skin Effect Transient.

Equation (5-52) has been solved by Wigington and N’ahmanlf6

This paper is included as Appendix VII. From this analysis,

the impulse response is found to be
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(5-53)

n

o
c+
A
o

In a similar manner, the stecp response was found to be

(;p(t) = erfc v B/t t >0

= 0 t <0 (5'5"")

and the remp response is

t
he(‘b) = l/aj erfc B/t dt >0
w

—

=0 1<0 (5-55)

where:
wast-afort>a
wm 0O fort<a

a = 0-100% rise time of a unit ramp.
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Equation (5-53) is showm graphically in normalized form as
Fig 2 of Appendix VII vhereas equation (5-55) is showm
graphically in normalized form as Fig 3, 4 and 5 of that
Appendix having normalized ramp rise time as a running
perameter. The curve for a = 0 corresponds to the step
response (equation 5-5%). Use of these curves will be
discussed later.

E. Transient Due to Dielectric loss.

The transfer function for the diclectric was given as:

- ¥, Ry 1 ol
2
P (@) = e
- K, o
=e (5-37)
vhere:

] K, R 1

K = ——2

0 2

The transform of equation (5-37) is given by Cambell and

Fbsterh7 as

%
fl(t) = 5 (5-56)

2
P (to + K )
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Equation (5-56) is the dielectric impulse response and
is shovn in normalized grephical form as Fig 5-1.
The dielectric step response can be obtained from the

impulse response (equation 5-56) by the following manipulation:
Gl(s) = 1/s Fl(s)
t
gl(t) =f_m £ (z) ax
=J\t -—T—EEL—————-dT
o n(rd + Koe)
=1/2 + 1/x tan* (t/x,) (5-57)

Let us now examine equation (5-37), (5-56) and (5-57).
The following observations may be made:

(1) For the analysis performed the mathematics holds
for all time, both positive and negative, according
to the transform Tables.

(2) Equation (5-37) is supposedly a network transfer
function, yet it is not analytic.

(3) The time response is from a transfer function
which has no phase time and no delay, yet it seems
to satisfy the requirements as a network function,

except for analyticity.
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(4) Physical reasoning would require that there be no
response prior to an excitation, i.e., the response
should be zero for t < 0 and for t —w, g(t) —1.
Equation (5-57) fulfills the condition gl(t) —+1 as
t -, but for t < 0 gl(t) —+0 only 88 t -+ 1.e.
gl(t) £ 0 for t <O.

(5) If equation (5-55) is assumed to be true for t >0
only (with £(t) = O for t < 0), then the constant
1/2, in equation (5-57) is not obtained in the step
respcnse and gl(t) —+1/2 as t —» rather than a
value of unity as it should.

(6) The dielectric step response was obtained from the
impulse response by integrating in the time domein.
let us find the step response in the frequency
domain, then transform it to the time domain. The
dielectric impulse response was

- K, | | - K, | s
F, (@) =e =e (5-57)

The step response in the following domain would then be

*, |l
Gy (@) = Fe— (5-58)




14
48
From Table 1 of Caribell and Foster
. - Ko |s| N X
Pair 633: —_— - 1/s ==m=e- —+ - 1/xn tan ( —;’-) (5-59)
Pair 107: % ————1 t >0 (5-60)
Palr 201: T, # Fp -=----- ~G, * G, (5-61)

Equations (5-58) through (5-61) may be manipulated to yield

the transform mate of equation (5-58) as follows:

<e- KO ISI 1
F +F, = S -;>+l/s -
(K
1 - 1/ ten -
t
=Gy + Gy = g, (t) T>0 (5-62)

Equation (5-62) may be further manipulated to yield the

seme result as that given by equation (5-57)

-y




1k

1 -1/x ten™t (Fo/t)

g, (%)

1/n [n/2 + nf2 - tan™t (Ko/t)]

1/x [,:/z + tan™ (t/K_) ]

1/2 + 1/x ten™ (t/K ) t>0  (5-63)

Note thet equation (5-63) is valid only for t > O whereas
equatién (5-57) is valid for both positive and negative time.
Physical reasoning tells us that for t <O, gz(t) should be
zero while for t—w g, (t)-1. _Equation (5-63) therefore is the
result required. Let the mathematics be true in detail for

t > 0. In order to overcome the objection resulting from (5),
observe that the DC value of a step excitation over all time
(from - o to + ») is 1/2. Since there is no delay and the
transfer function at zero frequency is unity, this appears

as a step of value 1/2 at the output. The response due to
frequency components greater than zero is described by the
arctangent function and is added to the step due to the DC
term. In addition, to preserve the integral relationship
between the impulse and step response the requirement that
the area under impulse response for all time is unity, an
impulse of value 1/2 at t = O must be postulated. Figure 5-2

shows equation (5-56) in graphical form.
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We now have the impulse and step response for the dielectric.
Finally, the response to an arbitrary ramp will be considered.
It is shown in Gardner and Barnesu9 that if the impulse response
is known, the response to any arbitrary driving function may be
found by convolving the driving function and the impulse re-
sponse in the time domain. This principle has already been
used in finding the ramp response to skin effect in Appendix VII.

Let us postulate the following normalized unit ramp:

0 x<0 X = t/Ko
r(x) =
x/a 0<x <a o= a/K
1 X >a
where:

a = 0-100% rise time of a finite ramp.

Equation (5-56) modified es described above consists of
two parts; the initial impulse and the part due to the rest
of the impulse. Each part will be dealt with separetely end

the results added. In normelized form equation (5-53) is:

1

:t[l + (t/Ko)2 ]

K £y (t/K ) = 1/2 +

= 0 t<0 (5-65)
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The response to a unit ramp r{x) will be of the form:

mW) =12 ) + [7 £(x) xlyx) ax (5-66)

(o]

hla(Y) + hlb(y)

Considering the second term of equation (5-66) in conjunction

with equation (5-65) and letting x = t/Ko there results

@) = [T = () & (5-67)
o n(l + x7)

Observe that when the scale change x = t/K_ is made in

equation (5-65), fl(t/Ko) = fl(x), preserving the area under

to impulse response to be unity. Equation (5-67) must be

considered in three parts corresponding to the three parts

of r(x) (equation 5-64)

Case I: y <O hlb= 0 (5-68)
Case II: 0<y<a
hl(y)=1/nfy <¥_-5> ax.
b 0 ¢ (1 +x°)

= a!'-; [y tan™* y-1/21n (1« ya)] (5-69)
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Case ITI: y >C

_ y-o dx y 2 dx
hlb(y)—l/ﬂj; m +1/"fy_a <ld" 'J'_':E
= 1/x tan™t (y=<¢) # 1/ax  x
2
[ Yy <ta.n'l y - tan-l(y-a)> —1/2 ln< ;L' : Z' _a)2 ) ] (5'70)
y

If the appropriate ramp responses are included in hla(y)

the required equations are obtained:
h(y) =0 y<o0

1

hl(y)=y/20 + 1/om [y tan " y - 1/2 1n (1 + yz):' o<y<a

hl(y)=1/2 + 1/n tan'l(yxx) +1 /0 [y (tan'l y - tan'l(y-a)>

- 1/2 1n <i-+—ﬁ7 ] y>a (5-72)

1+ (y)

The behavior of eqﬁations (5-73) 1is correct in that
h,(0) = 0; h) (@) in Case IIT reduces to that of Case II;
For large ¥, hy(¥)-g (¥)+1; and for a0, b (y)~g (y)-
For ease in working practical problems, equations (5-T1) have
been put in graphical form and are shown as Fig. 5-3. The
practical use of Fig. 5-3 in conjunction with the curves of

Appendix VII will now be shown in a practical example.
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F. Experimental Verification:

1. Measurement Procedure:

A theoretical analysis is only as valid as its
agreement with actual results. Let us proceed then to an
experimental verification of Stripline transient behavior.

At the time that the transient analysis was begun, it
wag thought to be desirable to be able to record the input
and output waveforms from a Stripline configuration on graph
paper. Consequently, a study was undertaken resulting in &
report included as Appendix VIII. This report compares
oscilloscope and graphical results and imposes limitations
on the speed of the recording sweep. The procedure employs
& Lumatron sampling attachment and a Ballantine peak read-
ing voltmeter. As can be seen from Fig. 2 of Appendix VIII,
the observed pulses were those of an SKL pulse generator.

To observe the transient response of a Stripline configuration
then, it is only necessary to; (a) record the output pulse of
the SKL generator, (b) break the signal line between the gen-
erator and the Lumatron delay unit and insert the device and
(c) record the resulting output pulse of the device. Since
the system is assumed linear, any degradation of the SKL

pulse must be due to the Stripline device (the degradation

due to the rest of the system is included in the measurement
of the SKL pulse).
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2. Transient Response Example:

In order to use the theory described in the

preceding sections, it is first necessary to approximate
the input pulse to the Stripline device by a series of ramps.
Rather than use & graphical recording of the input pulse, it
was decided to use the equivalent oscilloscope photograph.
Consequently, Fig. 3b of Appendix VIII was decided on and
blown up to 8 X 10 inch size. It was overlayed with graph
paper and approximated by a series of ramps. The result is
shown as Fig. 5-4. The reader may wonder vhy the essentially
straight line from (0, O) to (1.0, 0.834) was broken into the
three sections, (0, 0) to (0.35, 0.283), (0.35, 0.283) to
(0.715, 0.583) and (0.715, 0.583) to (1.0, 0.834). This was
done in order that the individual ramps would fall in the
range of the tabulated curves of Fig. 5-3 and Appendix VII.

The Stripline device under investigation was the Spiral
used for attenuation measurements in Chapter IV. We must
therefore first find the values of Ko and P which respectively
describe the dielectric and skin effect responses of the

Spiral. These constants can be found from equation (5-25)

which was
Kl J(n K2 RO w
o (u) __2___2_3_ + —3— nepers/unit length (5-25)
(=]
K, R, 1

Define Ko - —
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and
K. 17°
P [ TR ]
o
then
o (w) = K, w +J2 B w nepers (5-72)
Now

1 neper = 8.68 dv.

80

a (w) = 8.68 (Ko w +2 B w) db. (5-13)

From Table 4-1 in the chapter on Stripline attenuation,

we see that

frequency Q@ theoretical a measured
LOO me 2.5 av 2.4 b
3500 mc 11.67 db 11.6 db

Using these values of frequency and theoretical attenuation
(determined from the graph of Fig. 4-7), we can obtain from
equation (5-73)

+ 70X 10°VE
and
1.35 = 220 K_ X 10° + 2 x10°VF
Solving equation (5-74) and (5-75) simultaneously, we find
that
B =T7.3% 1012

K, = 3.57 X 207
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a. Dielectric Response:

Now that the constants Ko and P have been
obtained, we can use Fig. 5-3 to obtain the dielectric
response of the Stripline Spiral. The four ramps obtained
from Fig. 5-4 will be considered individually. The total
dielectric response is then obtained by adding the individual

responses (superposition).

al. First Rggg:
Amplitude = 0,283
Rise Time = & = 0.35 X 107 gec.
-10
Qm B w322 X120 = 9.82

o 0.357 x 1071

t t

S w28t (tin 10-9 sec.)
Ko 3.57% 20

From Fig. 5-3

t (10'9 sec. ) X=28 ¢ Response 0.283 Response
0.05 1.ho 0.09 0.025
0.10 2.8 0.22 0.062
0.15 k.2 0.36 0.102
0.20 5.6 0.48 0.136
0.25 7.0 0.62 0.176
0.30 8.4 0.75 0.212
0.35 9.8 0.88 0.249
0.40 1.2 0.93 0.263

0.45 12.6 0.96 0.272
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t (10'9 sec.) X=281¢ Response 0.283 Response
0.50 14.0 0.97 0.275
0.55 15.4 0.98 0.276
0.60 16.8 1.0 0.283
0.65 18.2 1.0 0.283
0.70 19.6 1.0 0.283
0.75 21.0 1.0 0.283
0.80 2.4 1.0 = 0.283
0.85 23.8 1.0 0.283
0.90 25.2 1.0 0.283
0.95 26.6 1.0 0.283
1.0 28.0 1.0 0.283
1.05 29.4 1.0 0.283
1.10 30.8 1.0 0.2683
1.15 32.2 1.0 0.283
1.20 33.6 1.0 0.283
1.25 35.0 1.0 0.283

The last column may be scmewhat confusing. The response
of Fig. 5-3 is based on a ramp of amplitude unity. Bince the
first ramp has only an amplitude of 0.283, the response of
Fig. 5-3 must be adjusted accordingly.
a2. Second Ramp:
Amplitude = 0,583 - 0.283 = 3.00
Rise Time = (0.715 - 0.350) X 10”7 = 0.365 X 10~

0.365 X 10~2
3.57T X 10°

(o 2F = 10,2




o, -~y

¢ (1077
0.05 - 0.35
0.10 - 0.35
0.15 - 0.35
0.20 - 0.35
0.25 = 0.35
0.30 = 0.35
0.35 - 0.35
0.40 - 0.35 =
0.45 = 0.35 =
0.50 - 0.35 =
0.55 = 0.35 =
0.60 - 0.35 =
0.65 = 0.35 =
0.70 = 0.35 =
0.75 = 0.35 =
0.80 - 0.35 =
0.85 - 0.35 =
0.90 - 0.35 =
0.95 = 0.35 =
1.00 = 0.35 =
1.05 = 0.35 =
1.0 = 0435 =
1.15 = 0.35 =
1.20 - 035 =
1.25 - 0.35 =

secC.

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

x=28¢

o

o O o

1.4
2.8

L.2

7.0

8.4

9.8
1.2
12.6
14.0
15.4
16.8
18.2
19.6
21.0
22.4
28.8
25.2
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Response 0.30 Response

0 0

0 0

0 0

0 o

o o

0o o

0 0
0.09 0.027
o.21 0.063
0.34 0.102
0.46 0.138
0.58 0.178
0.73 0.214
0.87 0.261
0.93 0.279
0.95 0.285
0.96 0.288
0.97 0.291
1.0 0.30
1.0 0.30
1.0 0.30
1.0 0.30
1.0 0.30
1.0 0.30
1.0 0.30
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The value of 0.35 X 10" seconds subtracted from the
time in column one may cause some confusion. It must be
remembered that we are interested in the superposition of
the contribution of a number of ramps. If ramp one starts
at time ¢+ = O, then ramp two does not start until time
t+ = 0.35X 10-9 seconds. In a similar manner ramp three

9

beéins at time t = 0.715 X 10”7 seconds and ramp four begins

at time t = 1.0 seconds.
a3. Third Remp:
" Applitude = 0.83% - 0.583 = 0.251
Rise Time = (1.000 = 0.715) X 10~

= 0.285 X 107 sec.

-9
oo 0:285 X107 o

357 x 070
t (10'9 sec. ) x =28 ¢ Response 0.251 Response
0.05 - 0.715 0 0 0
0.10 - 0.715 0 0 0
0.15 - 0.715 0 0 0
0.20 - 0.715 0 0 0
0.25 - 0.715 0 0 0
0.30 - 0.715 0 0 0
0.35 = 0.715 0 Y 0
0.40 - 0.715 0 0 0
0.45 - 0.715 0 0 o
0.50 - 0.715 0 0 0
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t (10'9 sec.) x=281 Response 0.251 Response
0.55 - 0.715 0 0 0
0.60 - 0.715 0 0 0
0.65 - 0.715 0 0 0
0.70 - 0.715 0 o 0
0.75 = 0.715 = 0.035 0.98 0.076 0.019
0.80 - 0.715 = 0.085 2.38 0.215 0,054
0.85 - 0.715 = 0.135 3.78 0.38 0.095
0.90 - 0.715 = 0.185 5.18 0.538 0.138
0.95 = 0.715 = 0.235 6.58 0.71 | 0.178
1.00 = 0.715 = 0.285 7.98 0.862 0.216
1.05 - 0.715 = 0.335 9.38 0.925 0.232
1.10 - 0.715 = 0.385 10.78 0.950 0.238
1.15 - 0.715 = 0.435 12.18 0.96 0.2L0
1,20 - 0.715 = 0.485 13.58 0.97 0.2u43
1.25 - 0.715 = 0.535 14,98 0.97 0.2u43

ali. Fourth Ramp:

-9
0w 0:15 X 10

t (1077 sec. )

0. 05
0.10

- l-o
- 1.0.

Amplitude = 1.00 - 0.834 = 0.166
Rise Time = (1.15 - 1.00) X 1079

= 0.15 X 10~ sec.

3.57 x 1071 +2
x=281¢ Response 0.166 Response
o 0 0
o o 0




t (10'9 sec.)

0.15
0.20
0.25
0.30
0.35
0.ko
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.0

1.05
1.10
1.15
1.20

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 = 0.05
1.0 = 0.10
1.0 = 0,15
1.0 = 0.20

1025 ~1lO0= 0025

x=28¢%

o O O O O O O O o o

o O O o

o O O

1.4
2.8
k.2
5.6
7.0
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Response 0.166 Response
0 0
0 0
0] 0
0] 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 (o
0 0
0 0
0 0
0 0
0] 0
0 0
0.24 0.039
0.534 0.089
0.830 0.138
0,905 0.150
0.930 0.154
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a5. Total Dielectric Response:

The total dielectric response is found

by adding the response of the individual ramps at a given

time. For instance, the total response at time t = 1.25 X 10°

seconds 1is

4 (107 sec.)

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

0090

Total Dielectric Response

0.026
0.062
0.102
0.136
0.176
0.212
0.249
0.290
0.335
0.377
0.l41k
0.461
0.497
0.5u4k
0.581
0.622
0.666

0.712

9
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t (10'9 sec. ) Total Dielectric Response
£ 0.95 0.761
1.0 0.799
1.05 0.854
1.10 0,907
1.15 0.962
1.20 0.967
1.25 | 0.980

Total dielectric response is shown in graphical form
as Fig. 5-5. For compaiison, the input pulse approximation
bas also been included. As can be seen, the dielectric
causes the rise time of the input pulse to deteriorate somevwhat.

b. Skin Effect Response:

Now that the degradation of the input pulse
rise time due to the dielectric has been taken into account,
ve wish to examine the degradation of rise time due to skin
effect. This is done by approximating the dielectric response
shown in Fig. 5-5 by a series of ramps and applying these
ramps to the graphs of Appendix VII. As in the dielectric
response analysis, the remps were chosen so that they fell
in the range of the grephs.

bl. First Ramp:

Amplitude = 0.25
Rise Time = & = 0.35 X 10~ sec.




—
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£ X 1079
7.3 X 10712

9

p=t/B= = 137 t (t in 10 sec.)

(B=7.3X 10712 yas determined in section F 2)

-9
a=aff= 9;32_5_29i§ = 48
7.3 X 10°

For this value of &, use Fig. 4 of Appendix VII.

t (207 sec.) p =137 % Response 0.25 Response
0.05 6.85 0.0L 0.01
0.10 13.7 0.13 0.03
0.15 20.6 0.25 0.06
0.20 27.4 0.35 0.09
0.25 34.3 0.44 0.11
0.30 41.1 0.56 0.1k
0.35 L8 0.70 0.18
0.ko 54.8 0.76 0.19
0.45 61.7 0.80 0.20
0.50 68.5 0.8 0.20
0.55 75.4 0.84 . 0.21
0.60 82.2 0.85 0.21
0.65 89.1 0.86 0.22
0.70 96.0 0.87 0.22
0.75 102.8 . 0.88 0.22
0.80 109.5 0.89 0.22

0.85 116.5 0.89 0.22
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t §10'9 sec. ) p =137t Response 0.25 Response
0.90 123.3 0.89 0.22
0.95 130.1 0.89 0.22
1.0 137.0 0.90 0.23
1.65 143.9 0.90 0.23
1.10 151.0 0.90 0.23
1.15 157.5 0.90 0.23
1.20 164.5 0.90 0.23
1.25 171.2 0.90 0.235

As was the case in the dielectric response analysis,
the graphs assume & ramp of unit amplitude. Column four
of the above table adjusts the amplitude of the graph to
the ramp under discussion.

b2. Second Ramp:

Amplitude = 0.62 - 0.25 = 0.37

Rise Time = (0.80 - 0.35) X 107

= 0.45 X 107 sec.

-9
Q= O.hi X 10 - 61.7

7.3 X 10"
Using Fig. 4 of Appendix VII, we obtain the following table.

t 410'9 sec.) p=137 ¢ Response 0.37 Response
0.05 - 0.35 0 0 o
0.10 - 0.35 (o] 0 o
0.15 - 0.35 0 0 0
0.20 - 0.35 0 0 0




*
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% (10'9 sec. ) p =137 ¢ Response  0.37 Response
0.25 - 0.35 ) 0 0
0.30 - 0.35 0 0 0
0.35 - 0.35 0 0 0
0.40 - 0.35 = 0.05 6.85 0.0k 0.02
0.45 - 0.35 = 0.10 13.7 0.08 0.03
0.50 - 0.35 = 0.15 20.6 0.23 0.09
0.55 - 0.35 = 0.20 27.b 0.32 0.12
0.60 - 0.35 = 0.25 34.3 0.36 0.13
0.65 - 0.35 = 0.30 41.1 0.47 0.17
0.70 - 0.35 = 0.35 48.0 0.58 0.22
0.75 - 0.35 = 0.40 54.8 0.64 0.2k
0.80 - 0.35 = 0.45 61.7 0.73 0.27
0.85 - 0.35 = 0.50 68.5 0.77 0.29
0.90 - 0.35 = 0.55 T5.4 0.80 0.29
0.95 - 0.35 = 0.60 82.2 0.83 0.31
0.0 - 0.35 = 0.65 89.1 0.85 0.32
1.05 - 0.35 = 0,70 91.0 0.86 0.32
1.10 - 0.35 = 0.75 102.8 0.86 0.32
1.15 - 0.35 = 0.80  109.5 0.87 0.32
1.20 - 0.35 = 0.85  116.5 0.87 0.32
1.25 - 0.35 = 0.90  123.3 0.88 0.33

-9

It will be noted that 0.35 X 10

from all values of time in column one.

seconds is subtracted

The reasoning is the

same as that used in the dielectric response, i.e., the
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second ramp does not begin until ramp one has been on for

0.35 X 10~

9

seconds.
b3. Third Remp:
Amplitude = 0.96 = 0.62 = 0.3k
Rise Time = (1.15 - 0.80) X 10~2
= 0.35 X 1077 sec.
g 0:35%20° 8

7.3 X 10~

Using Appendix VII, Fig. &4

0.34 Response

t (10'9 sec. ) p=137 t Response
0.05 - 0.80 0 0
0.10 - 0.80 o 0
0.15 - 0.80 0 o
0.20 - 0.80 0 0
0.25 - 0.80 0 0
0.30 - 0.80 0 0
0.35 - 0.80 0 0
0.4 - 0.80 0 0
0.45 - 0.80 0 0
0.50 - 0.80 0 0
0.55 - 0.80 0 o)
0.60 - 0.80 0 0
_0.65 - 0.80 0 0
0.70 - 0.80 0 0o
0.75 - 0.80 0 0
0.80 - 0.80 0 o)

0

o © O O O O O O O O o o o©o o o
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t (10"9 sec.) pm137 % Response 0.34 Response
0.85 - 0.80 = 0.05 6.85 0.04 0.01
0.90 - 0.80 = 0,10  13.7 0.14 0.05
0.95 - 0.80 = 0.15  20.6 - 0.25 0.09
1.0 - 0.80 = 0.20  27.4 0.35 0.12
1.05 - 0.80 = 0.25  3k4.2 0.4 0.15
1.10 - 0.80 = 0.30 4.1  0.58 0.20
1.15 - 0.80 = 0.35  48.0 0.70 0.24
1.20 - 0.80 = 0.b0  54.8 0.73 0.25
1.25 - 0.80 = 0.45  61.7 0.80 0.27

bl4. Fourth Ramp:
Amplitude = 1.0 - 0.96 = 0.04

Rise Time = (1.31 - 1.15) X 10'9

= 0.16 X 10'9 sec.

_ 0.16 % 107

x
7.3 X 10712

= 2109

For an @ of 21.9, Fig. 3 of Appendix VII was used to determine

the table for the fourth ramp.

t (10"9 sec. ) p =137 ¢ Response 0.04 Response
0.05 - 1.15 0 0 0
0.10 - 1.15 o o 0
0.15 - 1.15 o 0 0]
0.20 - 1.15 0 o o)
0.25 - 1.15 0 0 0
0.30 - 1.15 o 0 0




» oy

t (10"9 gec. )

p =137+
0.35 - 1.15 0
0.40 - 1.15 0
0.45 ~ 1.15 0
0.50 - 1.15 0
0.55 ~ 1.15 0
0.60 - 1.15 0
0.65 - 1.15 0
0.70 - 1.15 0
0.75 - 1.15 0
0.80 - 1.15 0
0.85 - 1.15 0
0.90 - 1.15 0
0.95 - 1.15 0
1.0 - 1.15 0
1.05 - 1.15 0
1.10 - 1.15 0
1.15 - 1.15 0
1.20 - 1.15 6.85
1.25 - 1.15 13.7
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Response 0.04 Response
0 0
0 0
0 0
0 0
0 o
o 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 o
0 0
0 0
0 0
0.12 0.005
0.33 0.013

b5. Total 8kin Effect Response:

Total skin effect response is found by

adding up the contributions of the individual ramps at &

given time. Thus, for t = 1.25 X 10™° seconds the total

response is (0.235 + 0.33 + 0.27 + 0.013) = 0.84




t (10-9 sec. )

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.ko
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.0

1.05
1.10
1.15
1.20

1.25

Total Response

0.01
0.03
0.06
0.09
0.11
0.1k
0.18
0.21
0.23
0.29
0.33
0.35
0.39
0.43
0.46
0.49
0.52
0.57
0.62
0.65
0.70
0.74
0.78
0.80
0.8k
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Now the total skin effect response is really the
transient response of the Spiral, since we started by
approximeting the dielectric response. Figure 5-6 presents
the results in graphic form.

A photograph of the transient response of the Stripline
Spiral was made utilizing the method described in section F 1.
The signal line between the pulse generator and the Lumatrbn
delay unit was broken and the Spiral inserted. The resulting
waveform was photographed and blown up to 8" X 10" size.

This picture is included for comparison and follows Fig. 5-6.
Correlation between the theoretical transient response given
by Fig. 5-6 and measured transient response given by the
picture following Fig. 5-6 is quite good. Both have rise

9

times of about 1.25 X 10 ° seconds.

Wigingtonuo also did an example of his paper although
his calculations were not included. His input pulse i1s
shown as Fig. 5-7. The theoretical vs. measured response

of his Spirals are shown as Fig. 5-8. A summary of the

characteristics of these Spirals are included as Appendix IX.
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G. Sumeary

We have seen that knowing copper and dielectric thickness,
dielectric constant, loss tangent and desired characteristic
impedance, we can £ind the transient response of a Stripl;np
device. The analysis proceeds in the following steps: (1)
approximate the input pulse by & series of ramps, (2) apply.
these ramps to the graph of Fig. 5-3 and add the contribution
of the individual ramps to obtain the dielectric response,
(3) approximate the dielectric response by a series 'of ramps,
and (4) apply these ramps to the graphs of Appendix VII and
add the individual contributions to obtain the skin effect
response. This response is the transient response since we
have taken dielectric degradation into account by considering
dielectric response as the input pulse to the skin effect

analysis.
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Transient Analysis of Coaxial Cables
Considering Skin Effect”

R. L. WIGINGTONt AnNp N. S. NAHMAN{, ASSOCIATE MEMBER, IRE

Summary—A transient anslysis of coaxial cables is made by
considering the skin effect of the center conductor as the distorting
element. Generalized curves are presented by which the response of
any length of coaxial cable can be predicted if one point on the at-
tenuation vs frequency curve is known. An experimental check on
the analysis is made by comparing measurements and prediction of
the responses of several different coaxial cables.

INTRODUCTION

N A STUDY of oscilloscope systems for use in ob-
1[ serving voltage waveforms of the duration of a few

millimicroseconds (1 mus=10-* sec), the problem
of the distortion of waveforms by the high f{requency
loss of coaxial cable was encountered. Elementary con-
sideration of the problem indicated a degradation of
fast rise times (1 mus or less) due to greater attenuation
of the high-frequency componernts of the signal.

In polvethylene dielectric coaxial cables, the conduc-
tance loss is extremely small. Polyethylene has a dissi-
pation {actor of 0.0031 at 3000 mc! and less at lower
frequencies. Likewise, in air dielectric cables the con-
ductance loss is even less. Therefore, the major portion
of high-frequency loss could not he blamed on leakage
conductance. The other source of loss in coaxial cable is
the series resistance of the center conductor. For analy-
sis the skin effect of the outer conductor was considered
to be lumped with the skin effect of the center conductor
increasing it slightly. Using empirical data to evaluate
the skin effect constant achieves this directly. Ordinary
analysis of transmission lines ignore this resistance as
being negligible. However, at frequencies at which the
skin effect of conductors becomes significant, the analy-
sis must include its effects, both as series resistance and
inductance.

In this analvsis, a transmission line is treated as a
four-pole network. With the aid of an approximation
which is good at high frequencies, an analysis including
skin effect and neglecting dielectric effects can be made.
All calculations are in mks units.

PossiBLE APPLICATIONS

Before proceeding with the analytical details of the
problem, a few words about the engineering applications
would be indicative of the role which skin effect distor-
tion in coaxial cables may play in contemplated and
future systems using fast transients.

* Original manuscript reccived by the IRE, August 20, 1956;
revised manuscript reccived, October 18, 1956,

t Natl. Security Agency, Washington, ). C. . .

t Univ. of Kansas, Lawrence, Kan. Formerly with Natl. Sec-
curity Agency, Washington, D. C.

! “Reference Data for Radio Enginecrs,” Federal Telephone and
Radio Corp., 3rd ed., p. S1.

The origination of this problem was in the design of
an oscilloscope system for observing very fast rise times,
1 mus or less. In triggered oscilloscope systems a signal
delay path (usually a simulated line or a coaxial cable)
is necessary to allow time for the trigger circuits to
detect the pulse to be observed and to start the sweep.
The delay of this path is 50 mus or longer in present
systems. As shown in this paper, the distortion in this
amount of coaxial cable is very serious for millimicro-
sccond transients. Therefore, along with the other
limitations of oscilloscope systems (such as rise time of
the signal amplifiers, writing speed, and vertical sensi-
hility), the distortion due to the signal delay cable must
be considered. Ferhaps a knowledge of the form of this
distortion will enable the extension of the range of oscil-
loscope systems which are limited by the signal delay
distortion.

If preserving the rise times in fast pulse circuits is in
any way critical to the proper operation of the circuitry,
one must begin to consider the skin effect distortion in
10-mc prf circuits for long cable runs, and in 100-mc prf
circuits, the distortion would be troublesome cven in
short cable lengths. The practice of using special small
size coaxial cable to conserve space results in greater
attenuation per unit length than for larger cable of the
same characteristic impedance, and thus, also makes
the skin effect distortion greater.

Another example of a problem in which the analysis
may be very useful is in the analysis of regenerative
pulse generators, a circuit which is essentially a loop
consisting of an amplifier and a delay circuit.? For prac-
tical, high rep-rate pulse generation, the delay circuit is
usually a coaxial cable, The pulse shape obtained is a
composite of the characteristics of the cable and of the
amplifier.

In short, for any electronic circuit application using
coaxial cables as transmission media to provide either
time delay or transmission of millimicrosecond pulses,
the effects of skin effect distortion must be considered.

ANALYSIS

For a transmission line of length, /, terminated in its
characteristic impedance, Z,, and with propagation con-
stant, v, the following relation exists between input
(Ey) and the output (E,) voltages as functions of com-
plex frequency:?

3 C. C. Cutler, “The regencrative pulse generator,” Proc. IRE,
vol. 43, pp. 140~148; February, 1955,

#The complex variable is the Laplace Transform variable {e
Eqs. (1) and (2) comprise the Laplace Transform equations of t
system diffurential equations,
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Esy = G—Y'El (l)

where in general

v = V(R + pL)(G + £C) (2a)
_ JRE oL
Zy = /‘/G F sC. (2b)

For high frequencies (skin depth small with respect to
conductor radius), the skin effect impedance of a round
wire is:4

Z, = Kv/3

K= 1/“

2xr a

where r is conductor radius, p is the permeability and ¢
is the conductivity of the wire.

At high frequencies the series resistance of a wire is
expressed by the skin effect equation. Since an increase
in inductance is also caused by skin effect, it is treated
as an impedance rather than as a resistance. Therefore,
replacing Rin (2) by Z, and neglecting dielectric leakage
(G=0), (2) becomes

(3a)

and

(3b)

v = VKV + pL)#C (42)
Kb+ pL
Zy = ,‘/M . (4b)
#C
The transfer function of a length of line is then:
E: —_
= ¢ = VLo RV, (5)

1

The inverse Laplace Transform of the transfer func-

tion (5) is the impulse response of the section of line. For
simplification, the following approximation was made.
Expanding the square root in the exponent of (5) by the
binomial expansion, one obtains

v(p) = (p’LC + P"’CK)”’

P”’

= tVIC+ ~—— —+ 2(—1)-—1

1.3+ (20— 3) c —n
( 271yl )1"“/‘/ P

The first term of (6) is the delay term and the remain-
ing terms describe the waveform distortion. The series
is an alternating convergent series (for p2LC> p¥/*CK).
Approximating it by the second term of (6), the p¥/?
term, results in an error less than the next term, the p°
term. The ratio of these two terms will be used as a
measure of validity of applying this approximation to
specific examples, :

(6)

'S. Ramo and J. R. Whinnery, “Fields and \Vaves m \Iodcrn
Radio,” John Wiley and Sons, Inc., New York, N. Y.;
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K 1/6
8L L

Kpn /T

2 4/_1:

Using the first two terms of (6) in (5) and letting
Ro=+/L/C, T=+/LC, results in
5 = e~ l(pT+(K/2R) P! (8
1

_ | #°term

"~ 1p2 term

K
" 4Ly

M

The exp (~Itp) is simply a delay term so that the in-
verse transform of (8) is the inverse transform of
exp (—Ilkp1?/2R,) delayed an amount IT. The latter
exponential is a common transform and is listed in
ordinary Laplace Transform tables.® Its inverse giving
the impulse response is:

g(t) = ax-MiPis
=0

z20

<0 ®

where

IK _(IK b

= == —),andx=l-—Tl.
4RV x 4R,

Of greater utility in studying the distortion of fast
rise times by skin effect are the step response and the
response to a linear rise. The step response can be ob-
tained by finding the inverse transform of 1/p times the
transfer function. As before, the transform 1/p exp
(—1kp'*/2Ry) is listed in tables.* Therefore in terms of
x and B as defined above, the step response is:

h(t) = cerf 1/ —2—
=0

cerf (y) is the “complementary error function of y.”

The linear rise referred to previously is defined spe-
cifically as the following, and it will be referred to as a
ramp input.

220

x<0. (10)

F() =0 1<0
= {/a 0s!sSe
= 1 t>e.

The response to F(t), called f(¢), is given by the con-
volution of F(t) with the impulse response of the line,

g(0).
() = j; F(t = 7)g(r)dr.

This integral reduces to the following special cases:

8 S. Goldman, “Transformation Calculus and Electrical Tran-
sienta,” Prentice-Hall, Inc., New York, N. Y., p. 423; 1949.
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Case I: 0<t STl f(t) =0 since g(r)=0 for r<T!
Case II: TIStSTl4a

M=Lt:7

Case III: t>Tl+a

)r"”’e"/’dr, x=1—~TIl

fw=f”ﬂwww
[

z x —
“J
z--a g

Note that Case Il is contained in Case Il providing
that the integrandsare limited to positive valuesof ronly
for Case I1.

Considering Case III only and evaluating with the
aid of the identity derived in Appendix I, one obtains

1(t) =cerf —+——(cerf ,‘/—-—cerf V ) 09))
x—a
1 z
——f rar—$2e~Pir ]y,
a z—a

Integrating the last term of (11) by parts one obtains

1 z
—f rar—3/2¢Pirdy
a r—a
B x—a
=icerf ,‘/P—— ccrf,‘/ A
a X e x—a
1 = 8
—'——f cerf 1/—‘-5— dr.
a V., T

Observing that the first two terms of (12) cancel the
corresponding terms of (11), the function f(¢) is simply,

j(t)=—f ceer—dr x20

x=1t—TIl

’) e tindr, g =t — Tl

(12)

(13)

with the understanding that for x <a the lower limit is
zero.

As verification, one may note that the limit of the
ramp response as “a” approaches zero is simply the step
response. Also, as x gets large, the function approaches
unity; physical interpretation of the function required
that this be true.

EVALUATION OF CONSTANTS

Using the first two terms of (6), the propagation con-
stant is approximately

K
v(p) = T + o '

oD

(jo) = K
Y= 3R,

PROCEEDINGS OF THE IRE

February
The real part of y¥(jw) is the attenuation constant of the

transmission line, for the purposes of the analysis,

called C(f).

ey =

nepers/meter. (14)

Any coaxial cable whose attenuation constant obeys
the above law will have a straight line relation of slope
one-half between the logarithm of the attenuation con-
stant and the logarithm of the frequency. The majority
of types of coaxial cable have very nearly this character-
istic (see Fig. 1). The ratio of C(f) to v/f from (14) is
therefore a constant for each type of cable and can be

calculated from the attenuation charactenstlc ‘of the
cable.
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2) Styroflex i inch 7) RG—58 A/u

000 2000 4000

3) Styroflex 4 inch 8) RG—38, 39, 40/u
4) RG—19, 20/u 9) RG—8/u
5) RG—63/u

References:

1), 2), 3)—Brochure of Phelps-Dodge Copper Products Corp.
4), 5), 7), 8), 9)—*Reference Data for Radio Engineers,”
Federal Telephone and Radio Corp., 3rd ed.
6)—Catalog N, General Radio Co.

Fig. ll;l-Attenuatlon vs frequency characteristics for common coaxial
cables.

In this way, the value of K, and subsequently of 8,
can be evaluated for each case as follows:

Y (L By ey,

where f is the frequency chosen to evaluate 8. For con-
venience in calculation let }=T,/T where T} is the time
length of the cable and T'=+/LC is the delay per unit

length.
( 271"3{:.,/)0 )

g =

(16)
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RESISTIVE TERMINATION

The analysis assumes thai the transmission line is
terminated in its characteristic impedance which is
given in (4b). However, in the ordinary circuit, a purely
resistive termination of value Ry=+/L/C would be
used. To see at what frequencies Ry would be a good
approximation for Z,, the following comparison of
actual Zy with R, is made.

From (4b)
ﬁ+K\/; ( K )m
Zo = 4/——-—-= R+ —=
] 5C o + Cvp
- Rt — E_. an
T T ROV BRSICY '

The fractional deviation of Z, from R, as a function of p
is less than the second term of (17) divided by R,. The
smallness of the magnitude of this fraction indicates the
.closeness of approximation. :

Zo(p) — R
R,

-

‘ K
4R02C\/—ﬁ

= —=, (18

4RyC /2] (18)
Since Ry*C =L then (18) is the same as (7). Thus, A4, the
validity constant calculated previously is also an expres-
sion of the departure of Zy from R,.

GENERALIZATION OF THEORY

In order to present curves with which any transient
problem involving skin effect distortion of rise times
could be solved, the theory is generalized. First, the
assumption is made that any rising function can be ap-
proximated sufficiently closely for engineering analysis
by a series of a few straight line segments. The response
to any function can then be obtained from the sum of
the responses to the ramp functions used for approxima-
tion. A generalized ramp response is then the function
to be plotted.

Recalling from the analysis the three basic functions,

Impulse response = g({)

= e+ T = g/ S e (o)
x

Step response = f(!) = f(x + T1) = cerf 1/—:— (10)

Ramp response = h(()

= x4+ T =-la—f' cerf Vﬂdr (13)
e T

z 2 0, all cases,

the problem is to generalize them so that 8, the constant
which is determined by the speciﬁc case, does not appear
in the functions, but only in the -calea to which the
responses are plotted.

As the first step, the transformation x =fp is used in
(9). The resulting function of p is*

~3{3,—1/p
golp) = T—— B:;' P20 (19)
or
—3/2,—1/p
Beo(o) = "—\/’;— 020, (20)

To apply the normalized impulse response (20) as
plotted in Fig. 2 to a specific-case, the 8 is calculated
from (15) or (16) using physical data. The horizontal
scale is then multiplied by 8 and the vertical scale di-
vided by g to obtain the impulse response g(x+T1) vs x.

VRN,

N

s
don ~. o

0.08 [ 4;

° -] o3 ;/) (1] £ } 20 28 p X LX) 4.0

e
Fig. 2—Normalized impulse response,
—1ip,=32
Bg(o) = —— -

Vr

Performing the same transformation in (10), a nor-
malized step response is obtained.

ho(p) = cerf ,‘/ —l- p2 0. (21)
P

To obtain k(x4 T)) vs x the horizontal scale is multiplied
by the proper 8.

Likewise, performing the same operation on (13), the
normalized ramp response is obtained.

1 pr T
Jolp) = = cerf 1/—- dp »p20 (22)
G V- [

where a’ =a/8.

This represents a family of curves (Figs. 3, 4, and 5)
with @’ as the parameter. Practical utilization of them
again requires only a time scale multiplication of mag-
nitude 8. Thus, the response of a particular piece of
coaxial cable is obtained for a series of ramp inputs with
0-100 per cent rise times of a’8. For a’ =0 the step re-

¢ This transformation is slmTle however much confusion can arise

if one does not state-and visualize the p m. This is particularly
true with respect to obtaining (22). See Appendm 11 for details.




Fig. 3—Normalized ramp responses,

. 1
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Fig. 4—Normalized ramp responses,

folp) = —3;];_., ccrf‘/g dp.
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3
[}
sponse (21) is obtained. The ramps corresponding to @’

larger than the largest one plotted are relatively undis-
torted.

EXPERIMENTAL VERIFICATION

The experimental verification of the analysis which
has been prescnted required the usc of an extremely
wide-band oscilloscope. Facilities which were available
at the Naval Rescarch Laboratory were used to obtain
the transient response of eight pieces of coaxial cable.”
Two time lengths of each of four types of cable, namely,
RG-8/U, RG-58/AU, General Radio-874A2, and {-inch-
diameter Styroflex, were tested. The signal applicd to

7 See Acknowledgment.
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the cables was approximated by five ramp functions,
and the response was calculated and compared with the
obscrved response for each case.

EXPERIMENTAL SYSTEM

Fig. 6 shows the cable comparison test circuit em-
ploying the NRL TW-10 traveling-wave cathode-ray
tubes as the indicating instrument. The TW-10 has a
bandwidth well in excess of 2000 mc, which should be
sufficient for displaying rise times of the order of 0.1
mus.

STYROFLEX COAX

e s e i,

TSt sechon
230 R BOmus

™™ veaT

Fig. 6—Cable comparison test circuit.

The test pulse was generated by a mercury contact
relay pulser giving a 60-volt pulse, 45 mus wide and
having a rise time of 0.25 mpus. Some signal delay
(179 mus of §-inch Styroflex) was required to allow time
for operation of the sweep and intensifier circuits of the
‘crt. The pulse observed at the end of the 179-mus delay
was called the standard pulse. Cable test sections of
cither 150 or 250 mus were added, and the response
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of the added sections to the standard pulse, as well as
the standard pulse itself, were recorded photographi-
cally. Time reference was added to each photograph by
applying a 1000-mc sine wave to the crt and taking
double exposures.

ANALYsIS OF DATA

Data was taken from the photographs using the sine
wave as the time reference and the maximum amplitude
nf the standard pulse as the amplitude reference.

The rise of the standard pulse (Fig. 7) was approx-

7S SSS—— f“k.
s, e t—p———F
| {1
o8 —————i
W
go.i , - [ S
goc L__,_ L X_ OBBERVED POINTS
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0.2 - st -} [N R
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081, 0.
o 108i, 0.908} —
w 06
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£ oe .
=
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o /o.u.g)
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Two0? s

Fig. 7—Standard pulsc and linear approximation.

imated by five straight line-segments as specified in the
following Table I.
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segment, were calculated from the general curves in
Figs. 3, 4, and §.

The general curves consider ramp responses for ramps
of amplitude unity; therefore, it was necessary to cor-
rect the amplitudes as listed in Table 1. Points (in time)
for calculation were preselected so that when the ramp
responses were shifted according to the correct £, (listed
in Table I) addition of ordinates would give the re-
sponse to the standard pulse. The calculated responses
as compared to the observed responses are given in
Figs. 8-11 (next page).

In all cases no attempt was made-to keep track of the
zero time position of the transients. No information as
to the time at which the transient first departed from
zero amplitude after passing through a test section with
respect to the time at which the transient “entered” the
test section could be obtained. This difficulty is the
same as is always met in relating physical transient data
to mathematical prediction. The mathematician can
define exactly a time before which the system is quies-
cent. However, the engineer must define the beginning
of a transient as the time at which the waveform reaches
same measurable value.

For comparison of calculation and observation,
therefore, the curves were shifted in time relative to
each other so the leading edges most nearly coincided at
the region of steepest slope.

EXPERIMENTAL RESULTS AND DEPARTURES
FROM THEORY

From the comparisons of Figs. 8—11, one may conclude
that in the coaxial cables considered the major cause of
distortion of fact rise time transients is the skin effect.
Each type of cable secems to have its own characteristic
departure from the predicted respouse. During this
study the causes of some of the departure has become
apparent.

First, the analysis involves an approximation in tak-
ing the inverse transform of the transfer function as

TABLE |
ANALYSIS OF STANDARD PULSE
. End Points of Segments . 0-100 Per Cent Rise
Line Segment (10-* sccond, Amplitude) Amplitude Time b

1 (0.34, 0); (0.68, 0.33) 0.330 0.34 X 10~ second 0

2 (0.68, 0.33); (0.91, 0.805) 0.535 0.23 0.34 X107* second
3 (0.91, 0.805); (1.12, 1.03) 0.165 0.21 0.57

4 (1.12, 1.03); (1.34, 0.92) -0.110 0.22 0.78

5 (1.34, 0.92); (5.00, 1.00) 0.080 3.66 1.00

The approximation to the standard pulse is then a
succession of ramp f{unctions having rise times and
amplitudes as specified above and each starting at the
appropriate 4.

The 8 and appropriate values for a’ for each case were
calculated from (16) and a’ =a/8 [see (22)]. Considering
now each example (i.e., 150-mus delay of §-inch Styro-
flex), five ramp responses, one for each approximation

expressed in the validity constant A (7). The 4 for each
case is indicated on the graphs (Figs. 8-11). As yet no
quantitative measure has been developed to determine
limits of error due to a particular value of 4. However,
the values of 4 in the examples considered are believed
to be sufficiently small as to cause negligible error in the
time range- plotted. One may note that in the propaga-
tion constant y(p) (6) the first term ignored is a con-




172 PROCEEDINGS OF THE IRE February
1) C oy . r=r- T ]— —“—]' *1”""1
as ! o8 1 SSEREE S
o1 oe | SR i
as . o v_'.%"" oy /,//

| / |1 o8 Ve
as - —re I ’ i
04 [ et © 08 ——.’
i p 0 CALCULATED ] O CALCULATED
[1} 3 0.6 [—
L 4 * ODSERVED | X _oeszAveo
P N 03 | / %
i ; : !
ol !,__‘_ oL pb—
0 f.,ai/ o4 ""."‘1 t
° 1 L 3 . ) o £ L
(a) o t H 3 4 L]
(a)
o D T 0.9
T EEN
or : JE | ( . '_..'),L""‘
os 0 CALCULATED C :‘: s |
or e e L prd '
0e 4 RS ent / |
03 ! 1 ’y‘/ o : 0 CALCULATED
N ; ) X OBSERVED
02 1 $ -t +
o b s
) ,_»—e’f'/v:"-i“l_. i L !
° I 2 H . ) H 4 [
(b) ®)

Fig. 8—Response of RG—58 A/u; A(100 mc) =00.56. Fig. 10—Response of RG—8/u. A (100 mc) =0.0024.
(a) 150 mus of cable—p8=4.50 % 10-% second. (a) 150 mus of cable—g8=8.14 X 10" second.
(b) 250 mps of cable—g=1.25X 10~ second. (b) 250 mpus of cable—p =2.26 X 10~° second.

1 [l'__i._J-
o - ‘ - X _:{"#—[I‘L’MM
oo[ ' : 1 L X ——/ '
; | !
o1 o7 “"I' —t" i '
“" o8 Fv--—- —1— i——
. ! (-
o8 /. * ‘ — * ° «i o caLcuLaTED
8 0 CALCWATED ‘ e L
04 — - _/ ey + oeatwveo _l__L_‘ 1 °': _l X OSSERVED
H L . 0.3
03 — — — + 1 /
02 —--} — ! ot -
o -—-‘[{—L — ; % ! i H o |/
° ;’, - i l i i ] ° !
0 ] 2 3 4 » 0 '  § 3 4 8
(a) (a)
. L1 [ LIl
R j"l] o8 = e
R SRR RIE R & T..,_.i._»‘ 0.8 tj'i wtiils 4
; . " i '
or B R I '/! .\ g 1 l‘ 0.7 +f
08 — - aem e 4/2:’-*_+._? 4' 0.6 ?‘_J .
04 e ek o I
o " o caLcuared A 0 CALCULATED
03 b /| e : —t— 0.3
/ Cx omstavio ; %,' X 08sERVED
0.8 e i - T : *1 ot |-/
0 o f i . : L] ./J i
° : — e — ° ‘. ' l
[} 1 2 3 L] [ ] ° ] H 3 L] [ ]
(b) ®)

Fig. 9—Response of GR—874A2. 4 (100 mc)=0.0027, Fig. 11—Response of § inch Styroflex. A4 (100 mc) =0.00057,
(a) 150 mus of cable—g8 = 1,02 X10-'* second. (a) 150 mus of cable—8=4.57 X 10-1* second.
(b) 250 mus of cable—g =2.83 X 10~ second. (b) 250 mus of cable—g=1.27 % 10! second.




1957 Wigington and Nahmen: Transient Analysis of Coaxial Cables Considering Skin Effect 173

stant (p° term) which adds nothing to the distortion
and only insignificantly affects the amplitude.

The analysis assumes a f°* law for the variation of
attenuation with frequency [see (3) and (4)). This is
very nearly true for Styroflex cable. However, other
cables have a somewhat greater exponent, GR-874 being
as high as 0.6. A morc elaborate analysis using f™,
0£m=<0.5, has been madc; however its usefulness is
questionable since it cannot be directly related to the
real physical problem. A realistic approach is to search
for a second distorting factor such as dielectric loss
which in this study was assumed to be negligible.
Diclectric loss should be greater for GR-874 and other
polyethylene diclectric cables than for Styroflex, al-
though still it should not be the major distorting mecha-
nism. Wark on this phase of the problem is continuing.

Useful engineering results may be obtained even
though the f°% law is not followed exactly by the cable.
The choice of the frequency at which 8 is evaluated (16)
_then becomes important. The frequency chosen in this
study was f, = 1000 mc becanse the components of most
importance were in the region of 1000 mc (considering
a logarithmic frequency scale).

The bandwidth of the TW-10 was considered to be
sufficient not to distort appreciably the response. The
10-90 per cent rise time of the standard pulse is 0.5 muys.
Approximately 700-9G0 mc of bandwidth (to the 3-db
points) is needed to pass such a rise. The designers of
the TW-10 oscilloscope system have established that
the 3-db point of the deflection structure is well in
excess of 2000 mc although no detailed data of deflection
as a function of frequency is available. The ringing
which is evident'in some of the responses is probably due
to the slight impedance discontinuities in the system.

Another possible source of error is in the nonlinearity
of the crt deflection as a function of input amplitude.
Checking this possibility showed that the crt deflection
was within approximately 2 per cent of being linear. A
slight curvature of the field of view (sometimes called
“pin-cushion effect”) made transcription of amplitude
data difficult for time values of 3 to 5 mus after the be-
ginning of each response. Errors of up to 4 per cent
(positive) may arise from this cause.

The RG-8 flexible connection between the TW-10
and the waveform to be observed (not explicitly shown
in Fig. 6) does introduce appreciable distortion in the
crt display; however, it does not invalidate the tech-
nique used to check the analysis.

Referring to Fig. 6, let the waveform entering the test
section be represented by Fi(p).? Let the transfer func-
tion of the 15-mus RG-8 connecting cable be G,(p). Also
let F\'(p) represent the waveform observed on the CRT
(the standard pulse) when the test section is not in-
cluded. Then, FY(p) = Fi(p)G:i(p). Now let Ga(p) be the
transfer function of the test section of cable. Then,

$ Thesc expressions are given in complex variable form as Laplace
transforms of the time functions.

Fs(p) which represents the waveform observed on the
CRT when the test section is included is given by
Fy(p) = Fi(p)Gs($)G:(9p)

= Fi(p)G\(9)Gs(p) = F\'(p)G(p)

since transfer functions of passive networks are com-
mutative.

In words, what this means is that the distorting ele-
ment, G,(p) having been present both in observation of
the input and output of the test section allows isolation
of the characteristics of the test section alone. This is the
basis for all comparison type measurement techniques.
For accuracy, the distortion due to G,(p) must be of the
same order of magnitude or preferably less than that
due to Gy(p). It is less in all cases.

CoNcLusION

The analysis as described is a first order theory for
the transient response of coaxial cables. As presented,
it is useful in engineering problems involving milli-
microsecond transients, however, later refinements in
the theory may permit greater accuracy for cables in
which dielectric loss is an appreciable factor.

APPENDIX |

The following identity was useful in the analysis.

I(z) = f ’Vﬁ 1=3%fIrdr = cerf ,‘/—ﬂ— :
0 Ll *

It may be verified by using Laplace Transformation
operational theorems.?® Letting L indicate the operation
of taking the Laplace Transform and L—! the inverse,

1 B : 1 .
LI(x)) = — L[,‘/— ok —’”] = — ¢t
(1(=)} " — w7 ;

I(x) = LL[I(x)] = L B e—wﬁ] = cerf 1/ %—

This inverse has been listed.®

Since a function which is expressed as a definite in-
tegral with a variable in the limits is a function only of
the limits, then

I(x — o) = f ’ 1/ B mrngtivdr = cert 1/ .
0 L 3 x—a

ApPENDIX ]I

The normalization of (9), (10), and (13) to obtain
(19), (21), and (22) is performed as follows. Consider
first (9) and (10).

g4+ Th = 1/—3— x3itg—bls 220 )
r

I(x+ TI) = cerf 1/£
x

? C. R. Wylie, *Advanced Engineering Mathematics,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1951,

20, (10)
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Let x=08p

~3/24—1/p

o8+ 0 = g/ 2 @pr-neiin = T2
g B

v

T
k(Bp + TI) = cerf V—-
p

As written above, the functions g and h are still plotted
on the x time scale although x does not appear in the ex-
pressions. Changing the time scale to the dimensionless
p (B has the dimensions of time) new functions go(p) and
ho(p) are obtained.

o331/
= =— 20 19
8o(p) W [ (19)
T
ho(p) = cerf ,‘/— p2 0. 21
P
For plotting, (19) is changed to
p—V/2e 1l
Bgolp) = ——=— p20. (20)
VT

Note that in the transformation the shape of the
functions were preserved, and in order to plot the func-
tions g(x+ T}) and k(x+ T!) for any particular physical
case the horizontal scale is altered by the factor 8 for
that case. In (20) the vertical scale must also be altered
by the factor 8.

Considering (13), more care must be used in the
change of time scales.

flx+ Tl) = —i—f’:.cerf 1/%47 220, (13)

In the above, change the scale on the dummy variable

PROCEEDINGS OF THE IRE
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by the substitution f=8p. A corresponding change of
scale must be made in the limits by dividing by 8

1 poe T
2+ THh =— cerf 4/— Bdp.
a vV (2-a)/8 P

The function is now set up for normalization by
letting x=8p and plotting the resulting function
Solp)=f(Bp+TI) vs p

B re 1
o) = S8 + T = & cert 4/~ .
8 J (Bp—a) /8 p
Finally, letting a’ =a/B,

1 1T
fo(p) = —,f cerf 1/— g p20. (22)
a p—a’ P
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USE OF AN X-Y RECORDER WITH A SAMPLING OSCIILLOSCOPE

Abgtract:

A method has been described for using an X~Y recorder
to record waveforms having both low and high repetition rates.
Pictorial and graphical recordings were made and limiting
sweep rates established for accurate graphical recording of
waveforms having repetition rates in the order of 100 cps
(assuming the use of the specified equipment). It was also
shown experimentally that the inertia of the X-Y recorder was
sufficient to integrate waveforms having a repetition rate of
over 10 megacycles per second. Finally a 300 megacycle sine
weve 18 recorded and a statement is made about observetion of
waveforms having higher repetition rates.
I.. Introduction:

During a recent investigation into the transient properties
of strip transmission line, it became desirable to use an X-Y
recorder to record graphically a fast rise time pulse before and
after passing through & length of strip transmission line.
Considerable difficulty was encountered in actually implementing
the recording of these pulses. Since interest has been shown in
the solution of this problem it was felt that the problem and its

solution should be reported.




II Statement of the Problem:

Any X-Y recorder has two independent inputs, one for the X
axis, the other for the Y axis. If it is deéired to plot voltage
vs. time, a linear sawtooth is placed on the X axis and the voltage
of interest i1s placed on the Y axis. These voltages must of course
be of sufficient amplitude to drive the vertical and horizontal
amplifiers of the recorder and must vary slowly enough so that the
recorder can follow them. The recorder used was a Mosely Autograph
X-Y Recorder, which has a basic sensitivity of 5 millivolts for full
scale deflection both on the X and Y axis. Through the use of. step
attenuators, this sensitivity can be reduced to 100 volts for full
scale deflection. Both X and Y axes require a minimum of one second
for full scale travel. These figures are felt to be representative of
most commercially avallable X-Y recorders.

Now that the signal requirements have been specified, let us see
how these requirements were met. The linear sawtooth required for
the X axis deflection was easily obtained rrom the Tektronix 545
Oscilloscope by setting the sweep on 100 milliseconds per centimeter
or slover and taking the output from the "Sawtooth - Main Sweep" terminals.
This voltage has a peak value of 150 volts whereas the maximum voltage
the recorder will teke is 100 volts. This problem was easily solved
through the use of a one megohm potentiometer as a voltage divider.
The axls zero is set through the use of & zeroing control on the
recorder and the meximum deflection was set by varying the setting of

the one megohm potentiometer.




The voltage requirements for the Y axis were not so easily met
as those of the X axis. The principle waveform of interest was a
pulse having a rise time of 0.5 nanosecond and & pulse length of
50 nanoseconds. Clearly & recorder requiring a full second for
full scale deflection cannot respond to a rise time of 0.5 nano-
gsecond! How then are we to meet the requirements of the recorder
for the Y axis deflection? The answer to this problem lies in the
use of an oscilloscope sampling attachment, whose operation will be
described below.

The output of the sampling attachment is a series of negative
pulses which are amplitude modulated to correspond to the shape of the
waveform under observation. The sweeping rate is set by the attach-
ment and not by the sawtooth from the oscllloscope. Sweep speed is
a function of the slope of the sawtooth but not of the repetition
rate. To provide a slowly varying voltage for the recorder input, the
peaks of the negative pulses must be integrated. If the number of
pulses per unit time is great enough, the inertia of the recorder
will provide the desired intergration. Since there is one pulse for
each cycle of the input waveform, a high pulse rate depends on & high
repetition rate. For low repetltion rates, an integrating network is
required. Fast rise time pulses such as the output from the SKL Pulse
Generator have low repetition rates of the order of 100 cycles per
second. For such pulses an integrating network will be required. It
will be shown below that since the slowest sweep rate of ;he sampling
unit used (Lumatron Model 222) was 100 nanoseconds for full scale
deflection (essuming that it is desirable to see at least one cycle

of the waveform), a minimum repetition rate of 10 megacycles is of




interest. For this frequency the inertia of the recorder wiil
integrate the negative pulses quite satisfactorily.

IIT Operation of the Sampling Oscilloscope:

The sampling attachment used was the Lumatron Model 222.
The principles of operation described below as well as Fig. 1
are taken from the specification sheet for this unit. "The
sampling unit produces e very narrow strobe pulse which samples
the signal wave form under investigation. The sum of the
sampling pulse and the instantaneous level of the signal at the
moment of sampling is applied to the sampling diode. The output
of the sampling diode is & narrow pulse, which varies in a.mplituae
in proportion to the signal at the instant of sampling. This voltage
is amplified in & linear amplifier of only moderate band width,
stretched and applied to the vertical plates of the oscilloscope.
Therefore, vertical deflection at any instant is proportional the
amplitude of signal at the instant of the strobing. In order to take
successive samples of the signal, the moment of sampling i1s advanced.
progressively, relative to the start of the signal. This is done
by & fast ramp which is started by a trigger signal. When the ramp.
reaches a preset voltage, it fires an avalanche transistor. The
instant of firing is delayed by a slowly increasing voltege on which
the fast ramp rides. The slow ramp provides reset of the sweep to
zero, so that the sampling process may be repeated. The slow ramp is

derived from the oscilloscope sweep sawtooth output.
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It should be noted that the apparent sweep speed of the sampling

oscilloscope is only a function of the slope of the ramp, and not of

the actual sweep speed of the oscillosccpe. -

The Model 225T sync trigger circuit locks to very high rep

rate signal pulses to provide a 50 ke output to trigper the sampling

unit".




IV  Recording of Waveforms having low repetition rates:

As mentioned above, fast rise time pulses normally have low
repetition rates. The repetition rate of the Model 305 SKL Pulse
Generator for instance is continuously variable up to about 150 cps.
Since one negative amplitude modulated spike 1s produced for each
cycle of the input waveform, it can be seen that even at slow sweep
speeds, the nunber of splkes per sweep will be reilatively small.

Since & slowly varying voltage 1s required to drive the Y exis of
the X-Y recorder, it is necessary to integrate these negative spikes.

Of course an integrating network could be built to do the job,
but it would certainly be more attractive to be able to use a
commercially availeble instrument. Such an instrument is a peak
reading voltmeter. A peak reading volt meter incorporates circuitry
that responds quite rapidly to fast rising positive or negative pulses
but whose response decays slowly in order to hold the peak value of
the waveform between pulses. This rise and fall time of the circuitry
will vary with the meter used. For purposes of this work a Ballantine
Model 305 peak reading voltmeter was used and the minimm rise and
fall times were determined experimentally. The test setup is shown
as Figure 2.

Using the experimental setup shown in Figure 2, the rise and
fall times of an output pulse from the SKL Pulse generator were observed.
The results were recorded both photographically and graphically for

comperison purposes and are shown as Figures 3-6. Several comments
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a. Vertical: 1v/cm b. Vertical: 1v/em

Horizontal:

9

0.5 x 1077 sec/cm Horizontal: 0.5 x 10 7 sec/cm
FIGURE 3

Photographic record of Pulse Rise Times
for varying time scales




c. Vertical: 1v/cm d. Vertical: 2v/cm
Horizontal: 2 x 1072 sec/cm Horizontal: 5 x 1077 sec/cm

FIGURE 3

Photographic record of Pulse Rise Times
for varying time scales
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a. Vertical: 1v/cm b. Vertical: 1v/cm

- e
Horizontal: 0.5 x 10 9 sec/cm Horizontal: 1 x 10 7 sec/cm

FIGURE 5

Photographic record of Pulse Fall Times
for varying time scales
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c. Vertical: 1v/cm d. Vertical: 1v/cm
Horizontal: 2 x 1077 sec/cm Horizontal: 5 x 1072 sec/cm

FIGURE 5

Photographic record of Pulse Fall Times
for varying time scales
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regarding the pictures and graphs should be made. First, the waveform
as observed on the oscilloscope is usually thought of as a series of
dots. The continuous trace shown in the pictures was produced by the
100 millisecond/cm sweep and taking a time exposure with the camera.
For the graphic recording, a sweep of twelve seconds per centimeter
was used to allow for the time constants of the peak reading voltmeter.
Sweep calibration showed the sweep to actually take 170 seconds rather
than the 120 seconds expected. ‘ '

It was stated above that the pesk reading voltmeter will follow
quite well a voltage swinging from ground to a plus or minus value but
it will not follow as well as voltage swinging from a plus or minu- talue
to ground. The voltage swinging from ground to a negative value
corresponds to the fall time of the SKL Pulse. Comparison of the fall
times shown by the photographs and the graphs shows good correlation
for all sweep rates. We may therefore conclude by & simple calculation
that 1if 14 seconds are allowed for full scale vertical deflection,
pulse fall time as shown by the recorder can be expec¢ted to agree with -
the value shown by the oscilloscope. If the pulse rise time is compared
in a similar manner, it is found that disagreement between picture and
graph rise times begins with Figures 5c and 6¢c. For this swéeping‘rate,
the time constants of the peak reading voltmeter do not allow the re-
corder to follow the pulse rise time correctly. If the sweeping rate
shown by Figure 5b and 6b is taken as the maximum allowable a simple
calculation shows that 50 seconds should be allowed for full scale
vertical deflection of the recorder in order to cbtain agreement bhetween

oscllloscope and recorder.




V. Recording of Waveforms having Bigh repetition rates:

As previously stated, for higher repetition rates, the inertia
of the recorde; serves to integrate the pulse without the use of
the peak reading voltmeter. If it is desired to see at least one
cycle of the waveform, then the lowest frequency of interest will
be 10 megacycles since the slowest sweep rate, as determined by
the sampling attachment, is 10 nanoseconds per centimeter. If the
connections marked "X" in Figure 2 are broken and the dotted wiring
inserted, the equipment will be set up for high frequency waveforms.
Essentially all that is done is to by-pass the pesk reading vo;tmeter.
Figure 7 shows pictorial recordings of 10 and 300 megacycle sine waves
while Figure 8 shows graphical recordings of the same two waves.
Examination of these figures shows good correlation. Three hundred
megacycles is the upper frequency limit of the Lumatron Sampling
Attachment; It is felt that if some type of count down unit could be

uséd, much higher frequencies could be recorded.

51"




a. 10 megacycle sine wave b. 300 megacycle sine wave
Vertical: 2v/cm Vertical: 2v/in
Horizontal: 10 x J_O.9 sec/cm Horizontal: 1 x 10_9 sec/cm

FIGURE 7

Photographic Record
of 10 mc and 300 mc sine waves
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APPENDIX IX
PROPERTIES OF MATERTALS, MEASUREMENT RESULTS,

CAICULATION OF LINE PARAMETERS

Nominal values for the Stripline delay lines are as follows:

Item Line A Line B
Dielectric Material Glass-Teflon Glass-Epoxy Resin
Dielectric Constant (meas.) 2.73 5.27
Dielectric Loss Tangent (adv.) 0.003 0.03
Dielectric Loss Tangent (calc.) 0.00256 0.0133
Ground Plane Spacing, b (meas.) 0.113 in. 0.116 in.
Copper Thickness, t (meas.) 0.003 in. 0.003 in.
Characteristic Impedance, Ro 50 ohms 50 ohms
Strip Width, w (calc.) 0.070 in. 0.035 in.

Length (calc. from spiral design)  7.40 m.,24.3 f£t. 3.68 m.,12.1 ft.

Total Delay (calc.) h.15x10'9 sec. 28.2x1077 sec.
Delay/unit length, T (calc.) 5.59x10'9 sec. 7.65x10-9 sec..
Inductance/unit length, L, (calc.) 279x10-9 b/m 382x10'9 h/m

-12

Capacitance/unit length, C (calc.) 112x10° f/m 153x10712 £/m

Yalue of the convergence factor,
K,N2 i, L, at 10 Mc (For accuracy 2.18x10"2 5.14x10"2
this should be << 1.)

@, at 1 Kme (cale. from meas. ) 0.0716 dv/ft. 0.232 db/ft.
@ &t 1 Kme (calc. from curves) 0.113 db/ft. 0.185 db/ft.
B (calc. from meas.) 3.21x10-12 sec. 8.29x10-12 sec.
X, (calc. from meas.) 5.?5x10'11 sec.  1.88x1071° gec.
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ABSTRACT

A general review of matrix network analysis is considered
first, Simplifications are made for the case where the networks
involved are real, lossless and symmetrical. Theoretical
equivalent circults are derived using an approximate model of
Stripline, a stored power small aperature procedure and a
Babinet Equivalence or duality procedure. Through the use of
these procedures, the discontinuities can be identified with
waveguide discontinuity expressive which are well established
in the literature. Experimental verification was performed by
building physical discontinuities and measuring them via the
tangent relation method. In some cases measurements could be
made directly; in others, it was necessary to measure a cascade
of discontinuities and abstract data for a single discontinuity
through matrix inversion procedures. Finally comparisons of
theoretical and experimental data is made. In general,

correlation is good within the specified ranée of validity.
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CHAPTER VIII
Stripline Discontinuities

A. Introduction:

The lumped circuit parameters of Resistance, Capacitance and
Inductance are quite familiar. While lumped parameters are quite
valid at low frequencies, at the higher frequencies lumped con-
cepts become invalid and it is necessary to consider distributed
parameters. In this chapter, the problem of realizing the equiva-
lent circuits of a number of Stripline discontinuities will be
considered. Since the operating frequencies of interest are in the
microwave range, these discontinuities will have equivalent circuits
consisting of a number of elements rather than a single lumped
element. By knowing the equivalent circuits of the various dis-
continuities, one 1is able to synthesize a lumped constant circuit
in the standard fashion, then through the use of discontinuity
equivalent circuits, realize the proper combination of holes, slots
and bends to achieve the desired results in Stripline.

B. General Discussion of Stripline Discontinuities:

A number of points common to all Stripline discontinuities
should be discussed at this point.

1. Discontinuities in balanced Stripline will possess
purely reactive equivalent circuits if (a) the discontinuity
is balanced, (b) the ground plane spacing is less than a half
wavelength in Stripline and, obviously, (c) the discontinuity
structure contains no dissipative elements. If the discon-

tinuity structure is unbalanced (unsymmetrical with respect to




the ground planes) the discontinuity will excite the dominant
mode in radial transmission line (the pillbox mode). Since the
pillbox mode radiates, radiation resistance then has to be
included in the equivalent circuit. While any practical dis-
continuity structure may be slightly asymmetrical due to con-
structional difficulties, propagation of higher order modes may
be discouraged by making sure the ground plane spacing is less
than & half wavelength in Stripline.

2. Most of the transverse discontinuity structures (those
occupying a section of the ciross sectional plane) in coaxial
line or wavegulde have no Stripline counterpart due to construc-
tion problems. As a result it is difficult to obtain & shunt
capacitive discontinuity in Stripline; a shunt inductence can
be obtained through the use of a vertical post. Series induct-
ances and capacitances are quite easily obtained.

3. Since the dominant mode in Stripline is the TEM mode,
field distribution can be obtained by conformel mapping as has
already been geen in previous chapters. Conformal mapping is not
velid for higher order modes however. Their solution requires
the Green's function for the region. Since Stripline does not
have a separable geometry the rigorous determination of this
function becomes a major job in itself. It therefore becomes
advantageous to seek solutions for discontinuity structures by

approximate meens.




C. Microwave Network Theory:

1. Microwave Network Representations:

A symmetric Stripline structure in which only the
dominate TEM transmission line mode-is assumed propageting may
be represented by an equivalent microwave network. Transmission
lines may be used to characterize the dominant mode propagating
along continuous uniform sections, while lumped constant networks
characterize the fields due to the nonpropagating higher order
modes which are generated in the vicinity of the discontinuity.
A variety of combinations of lines and lumped circuits may
be chosen to represent a particular discontinuity structure at

specified reference planes.. If a nuwber of discontinuities are

considered along the line, their overall effect 1s completely ‘
determined when the network parameters characterizing each of
the regions is specified. An expression relating an output
"quantity" to an input "quentity," then follows on a basis similar
to that used in lumped parameter network analysis.

Such quantities as voltages and currents (related to the E
and H fields in the region) may be spoken of at points along the
‘1ine with the result that techniques using low frequency impedance |
parameters, admittance parameters and matrix theory may be used. ‘
It is with this fundemental premise that discontinuity structures
in Stripline may be directly characterized by different network
or corresponding matrix representations, which allow us to analyze,
and eventually perform measurements on, complex overall Stripline

structures.



2. Transfer Matrix Formulation:

a&. Definition of the Matrix:

A linear two-port network mey be used to represent

& particular transmission line structure at certain specified
reference planes. The voltages and currents defined at the two
reference planes may be linearly related by four complex coef~-
ficients which completely express the network behavior. The
voltages and currents may be grouped arbitrarily at each refer-
ence plane, so that several different combinations—éé tﬁé coef-
ficlents are possible. A variety of network representaticns
corresponding to each choice of the coefficients then follows.
Thus, it is possible to represent the structure either by these
coefficients or by the corresponding network representations.
If the coefficlents are chosen as the representation, they are
conveniently written as the elements of a square (2 X 2) matrix.
One fundamental set of coefficients called the "transfer coef-
ficients" A, B, C, D serve to relate the voltage v, end current

Il at the terminal 2z = Tl to the voltage V, and current 12, at

2
the terminal plane z = T2 by the relations

V1=AV2-312
and
Il = C V2 -D 12
where vl I ‘
A= = =
V2 Ia = 0 V2 12 a 0
-V -I
1 ll
B = — Ds =—
I2 V2 =0 12 V2 =0

(8-1)

(8-2)




In matrix notation, equations 8-1 and 8-2 may be expressed

as
A =
Vl B / V2 t V2
= (8-3)
Il cC D -I2 -12
where
t= /A B
cC D

The voltages and currents referred to in equations 8-3 are

shown in Fig. 8-1.

I =7 T~ I
i A 8 Va2
o—J—— C D __L_o

Fig. 8-1: Transfer Coefficient Matrix Repre-
sentation of a Two-port Network.

b. Restrictions Imposed on the Transfer Matrix:

Several restrictions may be placed on the
"transfer coefficients" when transmission line structures with
specific physical properties are considered. These restric~
tions limit the arbitrariness of the functional form of each
mgtrix coefficient, so that, once the structural nature is

specified (regardless of the choice of physical network) the




matrix follows directly. For & single frequency situation, the
coefficients are constants.

Several restrictions are of interest in the present analysis.
The first of these is that the network be reciprocal.

Reciprocity imposes the condition

A = ‘AB = AD -BC = 1 (8-4)

C D
We further require that the network be lossless and symmetric.
These conditions require A and D to be real quantities. It fur-
ther restricts B and C to be pure imaginary quantities. For a
reciprocal, lossless, symmetrical (hereafter abbreviated r.l.s.) matrix,
the matrix t becomes
t = /&a jb
Jje d
where; a, b, ¢, d are real numbers.
Then
A=ad +bc=l (8-6)
If the transfer matrix is non-singular (A # 0), it may
be inverted so that the voltage end current at terminals T2
nov depend on the voltages and currents at terminsls Tl'
The inverse of t is t 1 where

tt 7l etTtaIm /1 0 (8-7)

o 1/




v ety

t-l can be obtained from t by using the relation

£ = 5 /a4 - (8-8)

-jc a/ A40
But from equation 8-6, for the r.l.s. network A = 1.

Equation 8-8 then becomes

t™ = /4 -jb (8-9)

The inversive of equation 8-3 is then

-1
V2 =t Vl

(8-10)
I I
Finally, the symmetry condition requires that a = d.
The above restrictions and their consequences will appear

later in the development. -

c. Consequences of Restrictions:

The restrictions imposed on the matrix elements
by the structural nature reduces the number of independent
complex quantities necessary for a complete network description.
These reductions occur when (a) physical symmetries exist; (b)
the structure is lossless and (c) when the structure is recip-
rocal. The most genersl two-port descriptive structure is
deséribed by four independent complex matrix elements, a total
of eight real numbers. If it is reciprocal, three elements are
independent and six real numbers result. When; in addition,

physical symmetry exists, the diagonal elements are equal (a = d),




and only two independent elements, consisting of four real
numbers, remain. If, furthermore, the structure is lossless,
these two independent elements are real and they serve %o
completely describe the structure.

All of the structures considered in thils chepter are
r.l.s. so that only two real elements are sufficient for a
complete network description.

d. Cascaded Sections:

When & number of dissimilar two-ports are
connected in tandem, the resulting structure may be represented

by an overall transfer matrix T, or by one of several equivalent

networks. For "n" cascaded two-ports, the overall matrix is the

matrix product (taken in the order of connection) of the individ-

ual matrices. Thus, in general,
n
T = t t . e 't t = n
n 2

t
1 n-1ln k=1 k

(8-11)

If the cascaded r.l.s. two-ports are similar, the overall matrix

18 the n® fteration of "unit cell” transfer matrices, t. For

this case
t at_ =1 =-.uo='tn ’ (8"12)

so that

n
tn = tl tl tl « o e tl =t

Obviously, the overall matrix may also consist of a

combinetion of "n" matrices, connected in arbitrary order,
some of which are similar, while those remaining are all

different.
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If the individual unit cells are r.l.s., the resultant
matrix Tn will be r.l.s. Tor an even number of cascaded unit
structures, it can be seen that the resulting overall matrix
is even. For "n" even, the physical symmetry plane will be
located halfway between the physical reference planes of the
overall structure and at the junction between two unit cell

structures. Fig. 8-2 illustrates this idea. In the remaining

discussions only ithe cascading of an even number of unit

(o jb) (o ]b) !
jc a 1 jc o )

Reference Reference
Plane Plane

1T

Fig. 8-2: Center Line of Symmetry
for Two Cascaded Sectlons.

structures will be considered. ZEach structure will be
represented by its corresponding r.l.s. unit cell matrix t.

Once the elements of the unit cell t are known, those
of the overall matrix are cbtalned either by "n" repeated
matrix multiplications (dissimilar structures) or by raising
t to the nth power. An example will illustrate the procedure.

(1) Repeated Multiplication of Cascaded Unit

For n = 2, and t the r.l.s8. unit cell, the
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overall matrix T, becomes

2
T, =/a jb a jb A, B
2
- 2 2 (8-13}
Je a Je & Jc, A2
vhere
2 2
A,=2a" -bc=2a" -1 (using eq. 8-4)
B2 = 2 &b
C2 = 2 gcC
It can be observed, on continuing this process, that
A end B are polymomials in & and b of degree "n." A 1is
vurely a function of a; Bn is linearly relsted to b, but is
a function of & and b.
(2) Raising t to the P power:
To raise a matrix t to the nth pover,
1t must be reduced to the diegonal form
t=P /8 0 pt (8-14)
0 8

2
where:
P 18 a matrix used to reduce t to diagonal form.

1 o Inverse matrix to P.

P
Sl’ 82 = Eigenvalues of the characteristic determinant.
Upon being raised to the nB power, equation 8-14 takes the

form

(8-15)

10




The characteristic determinant from which the eigenvalues

Sl and 82 are determined is

(a-8) Jb

=s°-2as8+ 1 =0 (using eq. 8-4) (8-16)
Je (a-8)|

The r.l.s8. unit cell t can be expressed in parametric
t
form for convenience in its n b power representation. The

result is expressed es

n sinh n x
= b —~————
t cosh n x 3P Sn (8-17)
-j/b sinh n x sinh x cosh n x
= An J Bn
=Tn
IC Ay

where:

A = coshnx = cosh (n cosh ™t a)

b sinhnx _ b sinh (n cosh™* a)

B =
n sinh x sinh (cosh-l a)

¢, =-1/b sinh n x sinh x = -1/b sinh (n cosh™ a)
X sinh (cosh-l a)
Obviously % = (cosh"l &) in eq. 8-17. The hyperbolic

trigonometric functions of this equation are for the case
| a| >1l. For I al < 1, the circular trigonometric functions
are used. Using the trigoncmetric identity

cosh2 x - sinh® x =1 (8-18)
it can be seen from eq. 8-17 that

2
AS +B C =1 (8-19)

7
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An 1s directly related to the Tschebyscheff polynominal of the

first kind T (a), i.e.,

Hil

T, (a) = cosh (n cosh™ a) = A | a| > 1
Bn 18 related to the rationalized Tschebyscheff polynomial of

the second kind U, (a);

() = S0 (n cosh™ a)

a2 -1

Un

045w

The denominator of eq. 8-21 can be identified with Bn
of eq. 8-17 by using the ldentity of eq. 8-18 and realizing
that in the parametric representation of the r.l.s. unit cell,

the element a was replaced with cosh x. For any value of

"a" we now have A, and B in easily manipulable closed forms.

Table 8-1 gilves the specific polynomial expansions of T (a)

and U_ (a) for "n" = 2, 4, 6 along with the general recurrence
n

formula to be used when higher values of "n" are desired.

e. Inversion of Cascaded Matrix:

In the previous section an overall two-port
structure, represented by a transfer matrix Tn’ is stated as
consisting of "n" cascaded "simpler" structures, each with the
associated matrix t. It is assumed that the elements of t are
known,whereupon the elements of the overall matrix are shown
to be polynomials of degree equal to the number "n" of cascaded
sections. However, here it 1s assumed that the elements of t

are unknown but may be cbtained by solving the nth degree poly-

nomial equations contained in the known elements An, Bn’ Cn and

12

(8-20)

(8-21)
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TABLE 8-1 -

Tschebyscheff Polynomial Expansions. For Transfer Matrix Elements

T, (8) =4, (a)

Cosh (n cosh™* a)

U (a) = B () Sinh (n cosh ™t a)
n Ty 5
a -1
Xn+l(a)=2axn(a)-Xn_l(a)
Tl(a)=a Ul(a)=l
2
T2(3)=23 -1 Ua(a)=2a
Th(a)=8ah-832+l Uu(a)=8a3—ha
Tg (a) = 32 a6 -48 e.l+ +18 8% 1 Ug (a) = 32 8’ -32 ad + 6 a

13




Dn of the specified overall matrix, Tn. The number of cascaded
t sections, where unknown elements can be solved for by lnvert-
ing the elements of Tn,depends upon the assumed nature of each
t section. Furthermore, 1f Tn is r.l.8., 1t is not possible
to solve for the elements of more then one (n = 1) cascaded t
gection unless these sections are sll assumed to be similar
structures (unit cells).
Here the inversion problem is one of finding solutions
of an algebraic, or transcendental form nth degree polynomial.
If the r.l.8. structure is assumed to consist of four cascaded
similar unit cells, then:
Ty= (A 33
J Cy Ah
In polynomial form

b 8 8%+ 1

Au-ga
Buﬂb(sag—ua)
Solving eq. 8-23 for a, we cbtain

1/2
aes (3 ey )

and from eq. 8-24 there results

By

b= -
ba(2a -1)

The solution of the polynomials of eqs. 8-23 and 8-24 leads to

four different values as can be seen from the muitiplicity of

1k

(8-22)

(8-23)

(8-24)

(8-25)

(8-26)




A A

signs in eqs. 8-25 and 8-26. The situation is further camplicated
by the fact that Ah and Bh may be negative. This multiplicity
increases the number of possible solutions, for each element of

t, to eight.

In transcendental form:

Ay =T, (a) = cosh (4 cosh™t &) (8-27)
b sinh (b cosh™t a)
B, =b U, (a) = ~ (8-28)
sinh (cosh — &)
from eq. 8-27
& = + cosh (1/b cosh ™t Ah)
and, from eq. 8-28
(8-29)
B, sinh (cotsh-l a)

b=+ : —
sinh (4 cosh™™ a)

This form of solution similarly displays the multiplicity of
values, but is more useful than the previous cne, in that the
transcendental functions involved are well tabulated.

f. Representations for the Unit Cell, t:

In this section we shall establish relationships
between several useful network representatives of the unit cell
and their corresponding elements of the transfer matrix t. In
each case the dependence of these elements on the measured
parameters Do’ So and - y will be emphasized. Dy» So and - vy

will be defined at a later point in the chapter.

15




The general unit cell may always be considered to consist
of cascaded basic circuit matrices to be written as tco These
are the transfer matrices corresponding to

(1) A length of lossless transmission line.
(2) A pure shunt susceptance.
(3) A pure series reactance.
(4) An ideal transformer.
In & lossless line the voltages and curreats at any point

may be related as:

V, =V, cos B (22 - zl) +32 I,sinp (22 - zl)
and
I, =3V, Y sinp (z, - zl) + I, cos B (22 - zl)
where
p o= 1
g

xs = transmission line wavelength

In metrix notation egs. 8-30 and 8-31 are represented as

v cos B (z_ - zl) Jz, sin B (ze-zl 'V2

1 2

Il‘ 3 sin B (zz-zl cos B (z2 - zl‘) I

2
Therefore the transfer matrix for a lossless line (Fig. 8-3)
is

tt = /cos @ J Zo sin 0

J Yo sin © cos ©
vhere
8=pLl=p(z,-2)
Y = 1/zo

16
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o—-t—v“——L — ]Zr-

Yy 2 fB Ve

Fig. 8-3: Model of a Lossless Transmission Line.
The trensfer matrix for & pure shunt susceptance may
be obtained by writing the circuit equation for the model

of Fig. 8-4. The result in matrix form is

Vl 1 0 V2
= ) (8'3,"‘)
Il jp 1 I2
'tb I | 1z ?
v i b Va2
| [ |
Z:=T Z =T2

Fig. 8-4: Model of & Pure Shunt Susceptance.
By inspection of eq. 8-34, the transfer matrix of the shunt

susceptance can be seen to be

(8-35)

17
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The pure series reactance can be represented by the model
of Fig. 8-5. Inspection of this model shows the circuit

equations in matrix form to be

——0
=
—~y
n
—d

Vi V2

-]
Z=T| Z: Tz

Fig. 8-5: Model of a Pure Series Reactance.

[V [ 1 Jx v

1 2

= (8-36)

Il o 1 I2

The transfer matrix eq. the pure series reactance is

then

(8-37)

Finally we consider the lossless transformer. Fig. 8-6

depicts its theoretical mcdel. Straightforward circuit

sz

Fig. 8-6: Model of & Lossless Transformer.

18




analysis yields the matrices
Vl ‘ n O V2
= | (8-38)
b i I, o 1/n/ \1I,

We then have for the transfer matrix of the lossless

transformer
tt = n O
(8-39)
0 1/n
g. Unit Cell, t:
(1) Transformer Network Representation:
Meking use of the basic circuit matrices
for two lengths of transmission llne connected by & transformer
Fig. 8-7 we have
T = tl tt tl
= /cos 8, 3z sin 91 n O cos 62 sz sin 92
) (8-40)
JYO sin 8, cos 61 O n JYO sin 62 cos 92
B z, B z,
T =1 - ni =t T2
Fig. 8-7: Arbitrary Lossless Transformer Network.
If standard matrix multiplication is applied to the
< matrices of eq. 8-40, it can be seen that
4
T= /A B
(8-41)
c D

19
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where:

-1
A = n cos 91 cos 92 n = gin el B8in 92

-1
B=j2 (n cos 6, 8in 8, + n"" sin 8, cos 92)

-1
C=J3Y, (n sin 8, cos 8, + 1" sin 8, cos 91)

Daun = cos 91 cos 92 - n sin el sin 62

If the assumed symmetry conditions (A = D) are applied

t0 the above matrix, the following equality results:

-1
n

n cos el cos 92 - sin 91 sin 62 =

n - cos 91 cos 92 - n 8in 6. sin 92

1
Equating the coefficlents of n, we see that
cos 91 cos 62 = - sin 91 sin 92
or

- tan 61 = cot 92

Relation 8-44 implies

0, =0 * (2n+1)n/2

2
n=0,l,2,...
and

sin 8, = * cos 91

cos 92 s + gin Ol

Using eqs. 8-46 end 8-47, the general matrix expression for t

can be solved for the symmetry condition & = d. The resulting

matrix is

20
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(8-43)

(8-Lk)

(8-45)

(8-46)

(8-47)

(8-48)
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where

+ (n + n-l) cos 9, sin @

>
)
+

1 1
. 2 - -l 2
B_Jzo(j-_ncos 6, + " sin 91)
‘ - 2 -1 2
C=J Y ( + n sin 8, £ n = cos 91)

+|

D=+ (n+ n'l) cos 6 sin 6,

Let the following quantities be defined:

1, =-D

1 o]
12=--So
e1=-‘3Do
92=-BSO
noo=/%

Under the transformations of eqs. 8-49 - 8-53, Fig. 8-7
becomes Fig. 8-8. In the literature this representation
of a microwave network is known as the Tangent Relation

equivalent network. The generalized matrix t can be put

=00 4 Vi f=-se

Bz, B 2o

T2
Fig. 8-8: Tangent Relation Network
into the Tangent Relation form through the substitution of

eqs. 8-49 - 8-53 resulting in

21
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(8-50)
(8-51)
(8-52)

(8-53)




&

A = (/N cos B D, cos P S, -,/‘-'7-1 sin B D, sin B So)

o]
i

-32, (/N cos BD_sin BS_+ /" gin p D, cos B 8_)

Q
n

-1
-3Y, (/=¥ sin B D, cos B S, + VY sin B 8, cos B Do)
D = (-/<¥ sin BDO sin BSO+,/':V'1 cos BDo cos BSO)
In & similar menner, eqs. 8-49 through 8-53 transform
the symmetric metrix of eq. 8-48 to

T = /E F

G H

E=:<%%asmeﬁno

2, — 1 .2
Jzo<t,/'=7 cos BDO+/___Ysin BDO)

5]
n

w [T 2 1 2
G=JYO<+/'7sin BDotﬁcos BDo)

=— -x
H +@m sinQBDo

(2) symmetric Tee (Pi):

The unit cell may be represented,
alternatively, by & Symmetric Impedance (Admittance) Tee
(P1) network. The physically symmetric structure is char-
acterized as having two equel reactance (susceptance) series

(shunt) arms.

(8-54)

(8-55)




For the Symmetric Tee network representation, the unit

o———— | X ] X, p——o0
a a .
T AP
) Xy
o )

Fig. 8-9: Symmetric Tee Network
cell matrices of eq. 8-35 and 8-37 can be put together in the

following form:

TT = tr ts tr =/1 JXa 1 o) 1l an
1
0 —_
1 be 1 0 1l

oJ + -2
%, TR

Figure 8-9 illustrates the form of the Symmetric Tee network.
In a similar manner, the unit matrices can be

o0— iBy —0

jao jaa

Fig. 8-10: Symmetric Pi Network

5 ol
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manipulated to give the transfer matrix for the Symmetric Pi

network of Fig. 8-10. The result takes the form:

T o=t bt t.=/1 0\ /1 3-%; 1 0
B, 1 0 I JB, 1
12 Y
Bb b
(8-517)
Ba Ba
B, (2+ B—b) 1+ 5
(3) Transmission Line Parameters in Terms of
Tee Parameters:
It was previously shown in eq. 8-33 that
a8 length of lossless transmission line could be represented by
the matrix
tl = cos 6 JZO sin ©
(8-33)

on sin © cos O

vhere 8 = Pl and Y = 1/zo. If the elements of this matrix
are equated to the corresponding elements of the Symmetric Tee
matrix, relations for Z0 and 6 can be obtained in terms of the

Symmetric Tee network reactances. The required equivalences are
(8-58)

cos § = 1+

2 sin 0=y 2 (x, +2X) (8-59)

Ealaals

2k




b —y

and

JY sin 8 = - J/Xb

Now

4 ' ’l_:_EEE_E
ten 6/2 = 1+ cos @

Substituting eq. 8-58 into eq. 8-61 we get

tan §/2 =

In a like manner, the substitution of eq. (8-59) in

X =4

eq. (8-60) give the relation

are connected in tandem and each 1s represented by & trens-
mission line of length 6 = Bl and Characteristic Impedance Zo,
they form an overall structure "T" which has the same Charac-
teristic Impedance, but & new length Bn =n60=n pBl. Now

the matrix representative for the unit cell was shown in eq.

8-33 to be

t

1

= - X (xa + 2 xb)

(4) Length of Transmission Line Connected in

a
Ky (Xg + 2 xb)

Tandem:

If "n"

coe 6

J Yo sin @

jidenticel r.l.s. structures "t"

J Zo sin @

25

cos @

8

Je

Jb

(8-60)

(8-61)

(8-62)

(8-63)

(8-33)
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For 'n" unit cells in tandem, eq. 8-33 then becomes

T = /cosn®8 jZo sinn 6
on sin n 8 cos n @
= An Bn
(8-64)
Cn An

Matching elements in matrix 8-64 we have

-1
A =cos n8=cos(ncos a)= T, (&)

where
& = cos 6 (from eq. 8-33)
T, (8) = Tschebyscheff Polynomial of the first kind.
and
-1
B, = Z,8inn o = Z0 sin (n cos ~ a)
b 8in (n cos ™t a)
= . b U (2)
\/l -a.2
¢
where
b b
Zo ® 8in @ >
1l -a

a, b = elements from matrix 8-33

U, (&) = Tschebyscheff Polynomial of the Second Kind.

These last relationships, derived on a network basis, are
similar to the equations resulting from raising the unit cell
matrix to the nth power. Hence, the cascading Of'in" identical

r.l.8., structures follow immediately from the trensmission line
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representation once the characteristics of the basic unit are
known.

h. Representation of the Unit Cell at Shifted

Reference Planes:

(1) Symmetric Shift at Both Reference Planes:

In first formulating the "I" matrix for the
transformer network at reference planes Tl’ T2 & turns ratio
n:1 and two arbitrary lengths of line 11, 12 were chosen.

It follows that the representation for this network at
shifted reference planes is brought about merely by adding the
lengths of each shift to the original lengths of transmission
line, and evaluating the new matrix elements. Thus, if we wish
to evaluate the new matrix, as a result of & symmetric shift of

reference planes, we have at Tl, T2
T = /A JB

Je A

vhere A, B, C are the elements of the matrix of eq. 8-55 and

at 7,7, T,
T = tthl
= scos O JZO sin 6\/A B\ /cos @ JZo sin
(JYO sin © cos B/ \jC A JYO sin © cos
= /A’ B’
jc' A’

(8-55)

é

0

(8-65)
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vhere
"BY +C2Z\
A’ = Acos 26 - ( ———512;———5%) sin 2 9

o

4 i-A
= Acos 26 -1/2 K? Y0 + 5y
o

A
) sin 2 0

1

2
B’ = B 0052 9 + Zo Asin 29 - Z02 ( - A > sin2 ]

b

¢’ = AYosin29+Cc0829-BYoesinge

8 = Bd
d = 1length of shift.
Alternatively, using & Symmetric Tee representation, it
may be shown that if X, and X, of Fig. 8-9 are known at Ty
TQ’ then after a symmetric shift of length 4, the new network

parameters at Tl', T. '/ are

2

D Xa + 1

X' = ==
a D - Xa

, D xc + 1
2% = 73-x, %
c
where
D = cot Bd=cot o
Xc = Xa + 2 xb
(2) Shift of One Reference Plane by a Half
Wavelength:
If a half wavelength of line is added at

one reference plane of a symmetric impedance Tee network, the

28
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network at the new reference planes may be expressed in terms

of the original parasmeters. In matrix form we have

I
T, = [cos T JZ_ sin ™\ /1 + xa/xb 3, (2 + xa/xb)
8-67)
3 sin m cos m - j/Xb 1+ Xa/xb
= /- (1+x /%) - 3Ky (2 + X /X )
3%, - (1 x /X))
Equating like elements of the equivalent matrices the
following equivalences can be cbtained:
R
_ (8-68)
Also
X = X -2X
a a xb (8-69)

Xb

We note that although only one of the two structures is

o

physically symmetric, the representation for both is symmetric.
If we assume that a measured structure with physicel

reference planes corresponding to Tl and T2 1s represented

by the Reactance Tee network, the input impedance at T, 1is

1l
related to the output impedance at T2 by:

l "121‘2
2y, = Xpq - (8-70)

xll * out

where
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xll’ X12 = elements of an impedance matrix .

at the.reference planes Tl’ T2.

° .
We can obtain only | X12 | from a measurement. The sign

of}glp 1s therefore left in doubt. If Xb is chosen as + ! X

the representation must be taken at Tl, TQ' However, if

12 l’

X, = - l X5 | the representation must be taken at T, T2'.
Only one of these representations is theoretically correct,
whereas both give the correct input-output relationship. As
w1ll be seen under the discussion of the measurement procedure,
the ambizuity of the sign of the mutual element is due to the
inability of the probing arrangement to distinguish between two
voltages whose phases are 180° apart.

i. Inversion of "N" Identical Unit Cells:

If "N" structures "t" are connected in tandem,
the resulting overall structure "T" may be represented directly
by & transmission line having paremeters B 1, Zo5 such & line
consisting of "N" unit cell transmission lines. When "T" is
measured it can be represented by B 1, Z_ or by B 1, Z. These

two lengths occur due to the half wavelength probing ambiguity.

These lengths are related as

Bl = Bl+m
so that "T" can be represented (including the half wavelength

ambiguity) by Z,, B1+em From this one can determine the

30
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representation for "t" which, in view of the n'® order

multiplicity is given by:

1+ + 2
Zo,m E;) Tn n=o,1ooaN'l (8-72)

€=O,l

or

g ,(BLlinm) m=0,1...2N-1  (8-73)

o N
There are 2 N solutions; given any of these, the others
may be found. By solving eq. (8-58), (8-62) and (8-63) for
the general case, the equations for the corresponding impedance

network can be found. These equations are

Xopm = 2, tan (Bl+mm) m=0,1. . .2N -1 (8-74)

N

and

(Bl+mm m=0,1. . .2N-1 (8-75)

o = 050

Although 2 N pairs of parameters are found by using
this procedure, only one set rigorously represents the unit
cell. This pair cannot be experimentally distinguished from
the other pairs; 1t can be identified only after a comparison
with the theoretically derived parameters.

D. Theoretical Determination of Equivalent Circuits for

Stripline Discontinulties:

1. The Approximate Model:

In Chapter II of this report a rigorous conformal

mapping of Stripline was performed. It was the purpose of
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this mapping to obtain the capacitance and thus the Character-

istic Impedance of Stripline. Through the use of a conformal

1T
}

i
—

|

NEIZ
/DN

le- w

-
-—

R

!
|

(o) (b}
Fig. 8-11: Determination of Stripline
Cheracteristic Impedance.
mapping an equivalent strip width D was found (Fig. 8-11) to
take into account fringing capacitance from the actual strip
of width w. For the case of a zero thickness center strip a
rigorous expression for D has been derived by Oberhettinger

4
and Magnus and is

Doy KO

K (k')
Where
K (k) is & complete elliptic integral of the
first kind.
k = tanh (7 w/2 D)

2
k' =\jl -k

When w/b > 0.5, corresponding roughly to Characteristic

Impedances less than 100 ohms, D is given to an excellent
approximation by

b = W + gﬁp‘ ln 2. (8'77)
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The structure of Fig. 8-11 may be viewed as two identical
portions of parallel plate transmission placed back to back
and any incident wave will divide equally into both portions.
Since any geometrically balanced discontimuity in the line
will reflect the same propoftion of the incident wave in
both top and bottom portions, and since this proportion is
also that for the total wave, it is not necessary when deal-
ing with normalized quantities to retain both halves in the
line. Thus, in the analysis of balanced discontinuities which
are described in terms of normalized quantitigm one need only
consider one half of the structure and may thus employ the

approximate model of Fig. 8-12.

'L

312 MAGNETIC WALLS

je—— D —
Fig. 8-12: Approximate Model of Stripline.

a. Gap Discontinuity in the Center Strip:

Once the approximate model has been cbtained,
the equivalent circuit for a slot in the center conductor of

2 Fig. 8-13 illustrates the

Stripline can easily be found.
gap discontinuity. Since the gap extends completely across
the width of the immer conductor, the discontinuity can be
approximated by a gap extending completely across the bottom

of the approximate model.
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Fig. 8-13: Gap in Inner Conductor of Stripline.

But this configuration is the same as & gap of infinite
width in & parallel plate waveguide of infinite width. The
solution for the latter configuration is obtainsble from the
already available solution for the E plane slot coupling of
rectangular waveguldes given on pp. 373-375 of the Waveguide
Handbook. > (It should be noted that parameter B, of the
equivalent circuit of Fig. 7.1-1 on.p. 374 should be a capaci-
tance rather than an inductance as given there.) Fig. 8-1k
shows the Stripline gap with its centerliine reference plane in
part & and the Pi equivalent circuit for the enterline repre-
sentation in part b. The values of Ba and Bb mey be found

from the relations given on page 374 of the Waveguide Handbook.

Bp
1Yo
! o- s —0
| T -
w i Yo Y;. ,
[ o S o]
- 7 7
{o) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-1lk: Centerline Representations for a Gap

in the Center Conductor of Stripline.
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Equation 1-b of that page becomes with the appropriete Stripline

" notation
RN RPN & <<
Yo = X n cos‘ >3 Y (8-78)
Equation 2-b of p. 374 is
B B
_b_ ..9-' =—-——2b ms b
Yo Yo X 1n csch2b T<<l (8-79)

If eq. (8-78) is used in eq. 8-79 and the hyperbolic

trigonometric ldentities are used, we obtain

Bb ms
—Y: = Tln coth—.—b- (8-80)
where
1 D
Yo =z % 3700

A = Stripline wavelength

b = Distance between ground planes

p = "B Eocos (8-76)

2 b W
= W+ -;r—' ln 2 T>0.5 (8"77)

b. Slot Discontinuity in the Center Strip:

Using the approximate model Suzuki60 has

" obtained expressions for a slot in the center conductor of

Stripline. The slot is considered to be cut in one face
of the approximate model. By duality considerations, the

geometry is then related to a flat metal rectangle located
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parallel to the electric field in a parallél plate waveguide
of width equal to the height of the originel Stripline. The
equivalent circuit for the metal rectangle in parallel plate
guide is then obtained approximately from an accurately
derived result for a tuned éost in rectangular guide.

The formulas for the slot are given below. In the limit
as the slot runs completely across the center conductor, these
complicated formulas reduce to eqs. 8-78 and 8-80 for the gap.
Fig. 8-15 illustrates the slot discontinuity in part e and

the centerline equivalent circuit in part b.

sr .

T M T | i :

w l d 1 Ba 1

) M s ' 3
T P -

T T T
(o) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-15: Slot in Center Conductor (a) Physical Structure
(b) Equivalent Circuit at Centerline Reference Plane.

The parameters Ba' and Bb' are given by

, - gXE 1n cosh EBI
B' = TFT (841)
. and B
Bb’n-;’—lnsinhv-’—b-l--—g—-% (1"'3‘.—:‘1!12)Q (8-82)
vhere
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DN x °

N D < l-B 24 . n

Q“'«LT[lnB 1nBj lf(&n-r)T
ns=

N is the integer nearest the quantity

(0.7/7 - 1) .
5 o 2
2\ X
1l -8B o
s 1/ == c _n_ =
P 1/;( ln>2§ 6(2n1) =5 +r°Q
n=1 n
and vhere

[\
)
\Y;
=

The quantity Xn is given by’

2 2 u
X, = 1, X;=-1+3B, A3 =1-8B +10B
, )
X, = -1+158% - 45" 4 358°
. ]
x5=1-2uB£+126B*-22636+126 o

The functions f (x) and g (x) are plotted in Fig. 8-16

’

and 8-17. The formulas for B, and Bb‘ are applicable only
vhen T > 0.15 and 4/w > 0.25.

2. Small Aperture Procedure:

One very useful procedure for obtaining reessonably
accurate approximate values for the circuit parameters of a
discontinuity structure employs well-known "small aperture"
or stored power considerations together with a variational
expression. In general terms & variational expression for

series elements can be written as
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Fig.8-17. FUNCTIONS EMPLOYED IN SLOT FORMULAS
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B . Stored Power
Y

o Y, (voltage)2 (6-83)

where & trial aperture electric field E must be inserted into
both nurerator and denominator. The voltege term is then of

the form

Voltage = u/k/ nxE* Hads

aperture
vhere
n = unit vector normal to aperture
E = electric field vector
H = magnetic field vector

H is an appropriate mode function which depends on the
nature of the excitation of the discontinuity and on the type
of waveguide. The determination of the stored power 1s always
the formidable portion of any such integration, since it involves
integrations over all the higher modes of the waveguide.

The use of the "small apertures” or "stored power"
considerations avolds the necessity for & separate evaluation
of the numerator of eq. (8-83). Instead one seeks the already
available solution for a similar problem in a different wave-
guide cross section. If the guide walls, which are different
in the two problems, do not substantially influence the stored
power (i.e., speeking loosely the distortion of the field
lines) in the neighborhood of the discontinuity, the stored

povers for the two problems may be taken to be equal. For

ko




"small apertures," the agsumption that the guide walls do not
substantially influence the stored power is & valid one. The
stored power expresslon is extracted from this similar problem
by setting it up in the variational form of eq. 8-83. This
similar problem must, of course, involve a discontinuity of .
the same shape and with the same manner of excitation as in
the original problem. The desired susceptance value is then
equal to the already known susceptance value multiplied by the
ratio of the pertinent dominators.

a. Round Hole in the Center Conductor:

Fig. 8-18 illustrates a round hole in the center

conductor of Stﬁ;pline along with its equivalent circudit. The
Bb

e
S

(a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-18: Centerline Representation of & Round

Hole in the Center Conductor of Stripline.
equivalent circuit for this discontinuity can be found from
p. 376 of the Waveguide Hand‘book.39 Through the use of the
"small aperture" procedure, the susceptance expressions for
small aperture coupling of rectangular waveguides excited in
the TM mode cen be related to the equivalent circult suscept-
ance for & round hole in the center conductor of Stripline.

Equation (3b) of p. 370 becomes with the correct Stripline

. m
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equivalences inserted

B. .
_.1:;= NP "ng a << (8-85)
where
A, b, D = seme as those of eq. 8-80
d = diameter of round hole

In a similar manner, eq. (2b) of p. 376 reduces to

B
a 1 i
Y——o = ﬂ——T—Bb 7 d/a < <1 (8-86)

The above development has been for the round hole. The

case of the elliptic hole can be solved through the use of the

ceneral relations on p. 375 - 376 of the Waveguide Handbook.39

The general ellipse is gpecified by its major and minor axes

dl and dg' The round hole is, of course, just the special

case where dl = d2 = d.

b. Vertical Post in Stripline:

Through the use of the small aperture procedure,
equivalent circuits can be obtainéﬁ for & vertical post in
Stripline. The post may be of conducting or dielectric material,
may be centered or off centered and mey be of round, elliptical
or rectangular cross section. The case for the round centered
conducting post will be considered here. Other cases mentionéd
above follow using the formulas of p. 257 - 267 of the Waveguide
Handbook.39

Fig. 8-19 1llustrates the round centered conducting post

as well as its equivdlent circuit.
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Fig. 8-19: Centerline Representation for a Round Cen-
tered Conducting Vertical Post in Stripline.
The parameters Xa and Xb are found by inserting the
appropriate Stripline parameters in eq. 3-4 a and b p. 258 of

the Wavepuide Handbook.39 They are

%;E—=—Dx[ ) 8( > 2\2x>< 23)](8'87)

eqs. 8-87 and 8-88 are valid

( ) £ (2p > 2 > 2p/3)
Zﬁﬁg or / (8-88)
o (na da/D < 0.20
31 ) /
where
o0
4 D Z 1 -
So=ln-ﬁ—d_.-2+2 [—-'————2 ln]
n=3,5 -2 g%
A

3
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3+ Babinet Equivalence Procedure:

The Bebinet principle is simply an extension of the
principle of duality found in standard network theory. It
slates that if the E field is replaced by an H field and the H
field by a - E fleld, then the equivalent circuit resulting
from the transformed discontinuity structure is simply the aual
of the equivalent circuit of the original discontinuity struc-
ture. The numerical values of the corresponding dual elements
are identical. The dual model of Stripline turns out to be
very useful.

Fig. 8-208 shows & cross sectional view of the Stripline
approximate model. Part b of Fig. 8-20 shows the Babinet

equivalent of the approximate model.

B
1L
R .

(a) APPROXIMATE MODEL {b) BABINET EQUIVALENT

Fig. 8-20: The Stripline Approximate Model
and Its Babinet Equivalent.

a. Right Angle Bend:

The plan view of a right angle bend in
Stripline is shown in part & of Fig. 8-21. The approximate

model equivalent is shown in part b of Fig. 8-21. With

Ly
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Fig. 8-21: Approximate Model of a Right
Anpgle Bend in Stripline.

electric and magnetic walls interchanged as well as lines

of E with H and H with - E, the Babinet equivalent model of
Fig. 8-22a results. However a close look at this equivalent
model shows it to be simply an E - plane corner in rectangular

T2
L \ T
] t 2
[}
I 15 D
LI
—
E
il
(a) BABINET EQUIVALENT (b) EQUIVALENT CIRCUIT

Fig. 8-22: Babinet Equivalent of & Right Angle
Bend and its Equivalent Circuit.
waveguide. Turning to page 313 of the Waveguide Handbook,39
we find the equivalent circuit of Fig. 8-22b as well as for-
mulas for the parameter Ba and Bb' With the correct Stripling

parameters inserted these equations (3b and Ub) become,

YO

B , - 2 ,
8 2D 2D 2D
= 5 {0.878 + O.)-I-98 \ 5 > ] T <<l (8-89)
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and

B

. 2
b _ ) 2D 2D
Y; =55 [1 - 0.11k ( —X—') J 5 <<1 (8-90)

Now let us remember that the equivalent circult we
have obtained 1s the dual of the circuit we are seeking.
We obtain the desired circuit by a simple duality trans-
formation. The equivalent circuit of Fig. 8-22b has the
dual shown in Fig. 8-23b. The parameter X, and Xb may be
obtained from eq. 8-89 and 8-90 by replacing Ba/Y0 and

Bb/y° by their duals xa/zo and xb/zo. We then have

X r 2
a 2D 2D 2D
= = l = - -
Z =3 Lo.878 + 0.498 < 5 > ] T <<1 (8-91)
and
X, A “2pY\
7= ST D 1 - 0.114 ( Y ) |
o]
}
w
r— w
{a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-23: A Right Angle Bend in Stripline
and its Equivalent Circuit.

Equations 8-91 and 8-92 are simplified asymptotic
expressions that agree with the exact solutions within

eight per cent for 2 D/A < 0.6.
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b. Sharp Bend of Any Angle:

The detailed procedure for the sharp bend
of any angle is Jjust a repetition of that uscd for the 90O
bend. The equivalent approximele model is found {rom the
physical situation. The Babinet equivalent 1s then found
and identified with eqs. 1 and 2 of p. 316 in the Waveguide

9

Handbook.3 Using duality, the desired results are obtained.

Fig. 8-24a shows the physical configuration while part b of

iXq iXa
o— UL ——+— 200 ——2
T J_ T2
I -
o- - —0
(o) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-24: Equivalent Circuit for a Sharp
Bend of Any Angle in Stripline.
that figure shows the equivalent circuit for & sharp bend of

any angle. The parameter Xa and Xb are given by

;E =-3 ﬁ ) cot 9/2
[o]
and
Ya _ 2D [y (x) + 1.9635 - l/x]
zO A *

where, with @ in degrees,
x = 1/2 (1 + 8/180) 1/2<x <1

The function ¥ (x) is tebulated.®t

b7

(8-93)

(8-94)
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¢es Uniform Circular Bend:

In e menner similar to that used in part a
and b of this section, the equivalent circuit of a uniform
circular bend can be determined. The physical configuration

is shown in part a of Fig. 8<25. The equivalent circuit at

—_ o— >
YO Yol

]

| e

. 'y

1/

! T o= —0 T

. kw4 A g

(0) CENTER CONDUCTOR {b) EQUMALENT CIRCUIT
Fig. 8-25: Equivalent Circuit for

a Uniform Circular Bend.

the reference plane T is shown as part b. The parameter B

is given by
N (-]
B _ .13(};11l{)<}2f)2 EE 1 (3.D 2
¥, nl N A R ol Y1+ —*i>

n=1 3..
The equivalent circuit is applicable in the wavelength
range 2 D/A < 1. The circuit parameters have been evaluatéd
to order (D/R)a, but no estimate of the range of accuracy is

available.

d. Junction of a Straight and a Tapered Centered

Conductor:

The equivalent circuilt for the function of a
straight and a tapered center conductor may also be determined
through the use of a Babinet equivalence. The center conduc-

tor configuration is shown as part & of Figure 8-26. Its

L8
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(a) CENTER CONDUCTOR

Fig. 8-26:

° —200—0

Yi == -1X, Yir2)
o —0

T T2

(b) EQUIPMENT CIRCUIT

Equivalent Circuit for the Junction of &

Straight and a Tapered Center Conductor.

equivalent circuit is the dual of that given for the E plane

junction of a rectangular and a radial waveguide on page 322

of the Wavepuide Handbook.39 The parameters of this dual

equivalent circuit are found by talking the duals of the rela-

tions for the .junction of the rectangular and redial guides.

Inserting the correct Stripline parameters we get

[0.577 +¥ (—?,—) ]

sin 0

z (r2) - sin 0
Zl )
§§ _ 2nD
Zl -]
. _ 2p
Zl by
§=J\_
Zl D

where

: 61
v (x) is the logarithmic derivative

in radians.

T-sinzg

29

of x! and 68 is measured

Formulas (8-96) - (8-98)“8180 apply for the case

vhere © is nepative, i.e., the taper is downward.
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The equivalent circuit is applicable in the wavelength
range 2 D/x < 1l. The circuilt parameters have been cbtained by
& simple equivalent static wethod and are valid only in the range
2 D/A << 1. The error is estimated to 1lie within a few per cent
for 2 D/x < 0.1.

e. 120o Junction:

The case of three center conductors coming
together at angles of 120° can also be treated using the approxi-
mate model and the dual of its Babinet equivalent circuit. A
plan view of the physical configuration is shown in Fig. 8-27a.

The equivalent circuit shown is the dual to that given under

J, Xq

T_iXb =~'ij‘ #z']xo
TT T T TT

(a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-27: Equivalent Circuit for a 120° Y
Junction in the Center Conductor.
the discussion of the 1200 E plane Y waveguide junction in the

39

Waveguide Handbook™™ on page 352. The parameters Xa and Xb

are given by

X
& _ 2D ) -
7. " 0.6455 (8-99)
and
X A2
ol e (8-100)

50




i

The equivalent circuit 1s applicable in the wavelength
range 2 D/A < 1. Equation 8-99 and 8-100 are static approxi-
mations and have been cbtained by conformal mapping methods.
They are estimated to be accurate to within a few per cent in
the range D/\ < 0.1.

f., Sudden Change in Width:

A sudden change in width of the center conductor
can be dealt with using the above principles. This example is
not quite as obvious as those previously given. The obvious
thing to do for the case under consideration is to look up the
E plane change in rectangular height in the Waveguide Handbook.39
This expression is found on p. 307 of the above reference and 1s
extremely nasty; too nasty in fact to be easily useful.

A simple result for the change in Stripline center
conductor width is given by Oliner.59 A number of previously
derived equivalent circuits for center sirip discontinuities
are also given in this.paper. Private communication with
Dr. Oliner revealed that the following rule of thumb was uged
to derive the expression for sudden change in center strip
width: "The dual expression for the parameter of the equiva-
lent circuit of a sudden change in center strip width is given
by 1/2 the dominant term in the expréssion for the E plane slit
in waveguide." The expression for the E plane slit is given on
page 218 of the Waveguide Handbook.39 Fig. 8-28 illustrates the
physical configuration and its equivalent circuit. As'u;ual,
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(a) CENTER CONDUCTOR (b) EQUIVALENT CIRCUIT

Fig. 8-28: Equivalent Circuit for a Sudden
Change in Center Strip Width.
D refers to the equivalent center strip width of the approximate
model. The parameter X of the equivalent circuit is given by

X 2D mnDh’

= = 1n ¢sc —=
Zo A 2
vhere
I
D =_Ze_
D Z
0

Equation 8-101 is derived by taking one half of the dual
of eq. 2a p. 218 for the E plane slit. Equation 8-102 is
gotten by taking the dual of eq. 1 p. 307 for the change in
height of rectangular guide.

g. Symmetric Tee Junction:

The final discontinuity whose equivalent circuit
ig based on the Babinet equivalent circuit is that of the
Symmetric Tee and is due to Oliner.62 The physical structure
of the Tee and its equivalent circuit are shown as Fig. 8-29.

The symmetric arms of the Tee are represented at the center
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(a) Physical Structure (v) Equivalent Circuit

Fig. 8-29: Symmetric Tee Junction

line and the reactances Xa‘ and Xb' are normalized to ZOl'
In Fig. 8-29, "1" represents the length of transmission line
connecting reference planes T3 and T3'. The approximate
theory employed in the deriveation predicts, however, that
1 has a zero value. In consequence, the measured value of
1 expresses any error in choosing T3 as the plane at which
the representation includes only the parameters Xa', Xb'
and n.

The values of the parameters Xa', Xb' and n are found
via the Babinet equivalence procedure using known results’
of the E-plane rectangular waveguide Tee as & basis. They

are
sin (nm D3/X)

n = W (8-103)
n gn'\j‘b (8-104)
Dy
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D
X' e - -% (0.785 n)? (8-105)

1 =0 (8-106)
o 2 i ()
. b o (8-107)
oo gt e (3]

Eq. (8-107) is valid for ﬁi < 0.5
1

where

B <2D [ <11D
t 1 3 >
= —_— 1n csc —
2 YO X 2 Dl

\ . (8-108)
e (2 et (720)]
oo e (B e

D
Eq. (8-109) is valld for 51 > 0.5
1

More recently Franco and Oliner66 have modified the
equivalent circuit for the Symmetric Tee Junction. The new
equivalent circuit is shown as Fig.3-29mand is derived as a
result of work done at IBM, Stanford and Brooklyn Polytechnic

Institute.
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Fig. 8-29a: Recommended Equivalent Circuit
for Stripline Tee Junction.
The equivalent circuit parameters are given by the
following equations:
2 2 <2 bl A
! 24 ’
n'" cos \ —— rd ]
2 A~ wgh )
n“ = 2<2 —— (8-1034)
cos — d
)
2 . 2 ten <§—1 Do L2 e (-2-1 ] (8-10bA)
Yo1 A ) Yo1 Vo "“5">
X
tan (20N 2 o7 (8-1054)
A %01

4. Parameter d'wgh Reference Plane Shift in Stub Arm:

Measurements taken at Stanford Research Institute

and IBM indicate that the best results for d'wgh are gotten

by using Fig. 6.1-9 of the Waveguide Handbook39
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Fig.s-20¢Comparison between available experimental data and theory
for parameter d, the reference plane shift in the main arms.

58




0.0
0.09 ——— MODIFIED MRI THEORY #20,/220
IBM EXPERIMENTAL DATA :20,/\ /|

X 0.37 e
o 074 /
0.08 MRI EXPERIMENTAL DATA: 5
A 0.5 )4 0.
T
007 /x’
R
, 7,
0.06 X
\ /(
7/ &~ *
rd
4
7
":r ,,O\\\ \ <
7 7 |
0.03 / 'f Y N
o, ;’ \ 0.8
/' ] Y
0.02 A1/ / %L N
[ i/
/ VAN
/, ! ,1” '
0.0! ,
/ )
l Al"
0
0 02 04 06 o8 .0 12 1.4 1.6 1.8
Zo,/2p,

Fig.s-20¢Comparison between available experimental data and theory
or parameter d, the reference plane shift in the main arms,
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changes of notation. The use of E plane wavepuide junction
curves 1is justified through duality end Babinet equivalence.
Fig.é&é&ﬂ is Fig. 6.1-9 with appropriate changes of notation.
For values of 2 Dl/x for which curves do not exist, one can
cither interpolate between curves or use (a) on page 333 of

'o
the Waveguide Hangbook.j’

5. Parameter n--Transformer Turns Ratio:

Depending on the accuracy desired, several recom=-
mendations are possible, (a) Fig. 6.1-10 of the Waveguide Hand-
book39 may be modified for Stripline use. This modified vérsion
is shown as Fig.8+x9%. For values of 2 Dl/x not given on Fig. 8-29c¢
and for 201/202 < 1.0, one can interpolate between the curves or
use eq. 8-103A. In that equation, n’ is given by eq. 8-103,
d’wgh has been discussed above, d is given by eq. 8-105A and ‘
Xa/ZOl is given by eq. 8-105. For values of Zo]_/z02 > 1 Franco

66 )
and Oliner = recommend use of Fig. 8-29c.

6. Parameter d--Reference Plane Shift in Mein Arm:

Comparison of measurements made by IBM, Stanford and
the Microwave Research Institute shows that for ZOl/Z02 < 1.0,
the IBM data should be used, while for Z01/Z02 > 1.0, the MRI
date is recommended. ‘Fig.3-20d displays. these data in graphical

form. The value of d is given by equation 8-105A and Xa/ZOl is

59




A

given by equation 8-106A:

" X
o d
tan < ; > = - = (8-1064)

While a fair prediction of the parameter d may be obtained
by the above described procedure except possibly in the particu-
lar region where 2 Dl/x > 0.7 and ZOl/ZOQ > 1.0. In this region

only & helpful upper bound is available.

Parameter B--Shunt Susceptance:

The parameter B should be determined from Fig. 8-29e.
These curves are semi-empirical, having been determined from
a combination of the MRI theory and the IBM meesurements for

d below 2 < 1.0. The MRI theory requireg the computa-

01/202

“tion of B via equation 8-104A. The curves are to be taken as

fairly reliasble except for 2 Dl/x > 0.7 and zOl/z02 > 1.0, where

the experimental drop-off in d would indicate a lower value
for B.

T. The Abruptly Ended Center Conductor:

An equivalent circuit for an sbruptly ended center
conductor has been developed by Altschuler and Ol:l.ner.62 The
physical circult and its equivalent network are shown as Fig.

8-29f. Since, to & crude approximation, an open circuit can be
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A

|

+— END OF ! !
CENTER : :--ELECTR|CAL
CONDUCTOR ! : OPEN CIRCUIT
: :
|
T T
(o) PHYSICAL STRUCTURE (b) EQUIVALENT CIRCUIT

Fig. 8-26f: Abruptly Ended Center Conductor
expected to occur at the plane T, the length of the trans-
mission line d 1s quite small for practical transmission

14

lines.

There 1is only one rigorous theoretical result that is
applicable to this discontinuity; that of the static fringing
capacitance of a conductor of infinite width. For this case
d = c vhere

¢ = 0B l: 2 (8-110)

As usual b is the distance between ground planes. For the
case in vhich the center conductor is not infinite, Oliner62
has developed a theoretical expression based on corner and edge
fringing. The edge contribution is based on equation (8-110),

while the corner expression was developed ewmpirically from

measured data. The resulting equation is

-

sl flhe + 2w '
1/k cot [ 5y oot (kc)-" (8-111)

2
[}

where

2n
A
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¢ defined by eq. (8-110)
w = width of the center strip
) = wavelength in Stripline
For most practical dimensions (kc small), eq. (8-111) cen be

approximated by eq. 8-112 which 1is

d = ¢ <,+——~——-2:g> (8-112)

Inspection of eq. 8-112 shows it to be independent of both
frequency and dielectric constant of the transmission line.
For kc < 0.3, eq. 8-112 approximates eq. 8-111 to 3%.
Equations 8-111 and 8-112 hold implicit the value of the
empirically obtained corner fringing capacitance ccf' COhn63
has independently derived an expression for d/b vhich includes
the corner fringing capacitance as 8 parameter. thn'% expres-
sion 1s for the case of two parallel coupled stripa, oﬁe of
which is open ended. In the limit as the strips become com-
pletely uncoupled, Cohn's expression reduces exactly to eq. 8-112.
The symbol Cf" employed by these authors63 is defined as ope half
of C_g; their empirical value for 2 Cf" in micromicrofarads for a
zero-thickness center strip is 0.019 €. b where b is in inches
and €, is the relative dielectric constant. The corresponding

value of C_, implicit in eq. 8-112 is 0.011 €. b.

E. Experimental Verification of Discontinuity Equivalent Circults:

1. Experimental Setup:

a. Auxiliary Equipment:

.Experimental verification of a number of the

above derived formulas for various Stripline discontinuities
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was done by Stillman.@1L A block diagram of Stillman's
measurement apparatus is shown as Fig. 8-30. Microwave pover

is obtained from a P.R.D. type 707 Klystron Oscillator which

is powered and square-wave modulated by a P.R.D. 801-A power
supply. Tor frequency monitoring, a small amount of output
pover is abstracted through a coaxial tee and fed into & high

Q cavity. After detection and amplification, the signal drives
a meter which gives a maximum indication at the resonant fre-
quency of the cavity. A low pass filter is used to prevent

any of the spurious modes generated by the oscillator from
reaching the test apparatus. In the test apparatus, field ampli-
tude in the presence of the discontinuity of interes£ is measured
as a function of position. Measurements were made at 1500 mc
with 1000 cycle square wave modulation.

b. The Measurement Apparatus:

The measuring apparatus is essentially a
standard impedence measuring setup consisting of a standing
wave indicator followed by the discontinuity, which in turn
is terminated in & variable short circuit. Fig. 8-31 is a
blown-up view of the apparatus under consideration. The upper
ground plane is shown in an exploded view. The carefully
machined'ground planes are supported by cylindrical spacers.
The center conductor is supported at the input end by e clamp
which is made as small as possible to keep the associated dis-

continuity reasonably low. A number of interchangeeble center

6l




. P R.D. P.R.D.
LOW PASS - ST& 707 80I-A
TUNER R.F.
FILTER POWER
OSCILLATOR
1500 me. SUPPLY
o
1000 ™~ SQUARE WAVE
1 MODULATED
[isoLa-
TOR
1T H.P
— [isoLa- STUB WAVE 415 A
TOR ITUNER METER @ AMPLIF
6-20 cm. IER
COAXIAL TEE
ISOLA-
TOR
H.P.
415 A
AMPLIFIER '
Y
_]11 \, SHORT
STUB] —» N N NCiReur
TUNE
TNER STRIP LINE MEASUREMENT SET-UP

Fig.8-30 BLOCK DIAGRAM OF MEASUREMENT EQUIPMENT -
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strips were made, each one containing a different discontinuity.
Two mode suppressor plates are placed near the input in order to
discriminate strongly against the radiating (parallel plate) TEM
mode. A side probing afrangement is used in order to distrub the
field pattern as little as possible. This probe is driven by a

set of gears having a revolution counter with an accuracy of

+ 0.0001 inch readability. The probe itself is a standard arrange -
ment modified by adding a sleeve to prevent droop. Vertical as
well as horirontal movement of the probe is possible, the distanée
from the bottom ground plane being indicated by a dial. An adjust-
ment is also provided to bring the probe travel into parallelism
with the center strip. A movable choke-type short circuit is
employed. Movement is guided by a groove in the bottom ground
plane and its magnitude is measured by a counter arrangement simi-
lar to that used on the probe carriage. A "sandwich" type of con-
struction is used in the short circuit in order that the center
conductor can be easily changed. A clamp holds the end of the
center strip behind the variable short circuit. This end clamp
also transmits the force of a variable tension spring to the center
strip.

Construction of the center strip proved to be a considerable
prcblem. A flat thin strip supported by end clamps and surrounded
by air was used since it came nearest to meeting the assumptions
of the theoretical derivation of Characteristic Impedance. A Char-

\
acteristic Impedance of 50 ohms was chosen resulting in a center

strip of 1.5 inches in width and & ground plene spacing of 1.051
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inches. These large dimensions helped reduce mechanical
problems and increesc accuracy. Tension in the center strip
tended to cause undesirable deformations in the neighborhood
of the center strip discontinuities. A satisfactory con-
struction was finally arrived at by using a 0.001 inch "Mylar"
polyester film sandwiched between two 0.001 inch copper strips.
The discontinuity was cut in both copper strips but not in the

"Mylar." After assembly with teflon cement, a thickness of
0.0035 inch resulted. Deformation was further minimized by
making cuts in the copper strips perpendicular to the direc-

tion of tension and placing the strips in tension for several

hours for stress relief.

2., Heasurement Procedure Based on the Tangent Network
Relations:
In section C-2-g of this chapter relations are
developed for the tangent network equivalent circuit.
In review, the tangent relation network consists of
three real parameters, depicted in Fig. 8-32 as two lengths’
of transmission line of length —Doand —Socoupled by a trans-

former having a turns-ratio of

n = /¥ :1
The three parameters of this lossless network relste, at Tl
(= DR) and T, (= sR), the input quantities D (similar to Z,,,
Y, etc.) to the output quantities S (corresponding to Z ..,

Y ., etc.).

out
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Fig. 8-32: Tangent Relation Network

The tangent relation network is based on the nodal shift
method. ILet us consider the circuit of Fig. 8-33. Suppose,
as illus£rated in Fig. 8;33, that the transmission line in
region II 1s terminated in its own Characteristic Impedance.
As a rule, standing waves will occur in region I. The posi-
tion of the voltage maximum in region I defines the position
of the terminals 1 - 1. The resultant VSWR in region I is
defined by the symbol y. If Zl is the Characteristic Imped-

ance of region I, then

in =YY%
o Or Sp
R v Y
. S wme ® ®
\\J,T\v‘/ N | i
; !
o o —_—
' %?ammnw COUPLING
] °?.“z'7’b'3§x z, " : NETWORK o SHoAT
—T2 e T B o
0] (@ 0 (b) &
REGION T REGION II REGION I REGION 1T

Fig. 8-33: Procedure for choosing rcference planes in
the two regions, (&) the network is perfectly
terminated, (b) region II is shorted.
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Now, suppose region II is shorted. As shown in Fig. 8-33b,
the voltage mode will appear somevherce in region I, its position
being centrolled by the position of the chort in region II. If
the short in region Il is woved until o voltége mode appears at
the terminals 1 - 1 (Zin = 0), then the position of the short is
defined as the terminals 2 - 2.

In general four-terminal network theory, there is a theorem
which states that input and output iwpedances, Zin and Zout
respectively of a linear passive network can be related through
the expression

A Z + B
- out
in C 2 + D
out

4

Using eq. 8-113 and defining Z2 as the Characteristic
Impedance 1in region II, eq. 8-114% becomes
AZ, +3B

Y2y = 6‘22‘:75
To evaluate the constants A, B, C, and D consider the shorted
condition. Tor this case Zout = 0 and Zin = O; hence B/D = 0.
Consequently, B = O. The four-terminal network under considera-
tion is assumed to be lossless. A lossless network implies that
the constants A and D of eq. 8-114 be real and the constents B
and C of that equation be iwaginary. Since rzl and 22 are real,
eq. 8-115 requires that C = O. Thus, with the terminals 1 - 1
and 2 - 2 chosen as discussed above, A/D =y Zl/Zg, transforming

eq. 8-114 to read

790

(8-114)

(8-115)
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n Ze out ( ‘116)

To determine the parameters of the coupling network, place
a short circuit a distance 8, (=1]s - SR!) to the right of the

terminal 2 - 2 as illustrated in Fig., 8-34. The impedance Zo %
u

will be

Zout = J Ze tan 65 SE (8-117)

where

BS = propagation constant in region II

4 RELATIVE
[ vmmmm‘\*
1 ®
I LOSSLESS :
{ ! COUPLING | [ SHORTING PLUNGER
|{° NETWORK 1
—t—— T
&

({50-4

Fig. 8-34: Distribution of electric field on the
two sides of the coupling network due
to the shorting plunger in region II.
As indicated in Fig. 8-34, this short circuit creates e voltage

node to the right of the terminal 1 - 1. The impedance Z, 1s

in
then

2y = Z, tan Bd D, (8-118)
where

By = propagetion constant in region I
If now eq. 8-116 is substituted in eq. 8-118 and the result is
cubstituted in eq. 8-117, there is obtained

ten By D) = v ten Bs S, (8-119)
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If arbitrary lengths of transmission line (-D0 and —SO) are
added at the 1 - 1 and & - 2 terminals respectively, as indicated
by Fig. 8-32, the terminals 1 - 1 and 2 - 2 are shifted to

D' = D, + (-DO) and 8’ = B8 * (—So). Eg. 8-119 then becomes

1

tan fg | D -D' | =ytanp |5 -38"] (8-120)

If a short circuit in region II is allowed to assume
various positions 8, the sum of S and the corresponding voltage
ﬁode positions D in region I may be plotted vs. S to yield the
tangent parameters. [Mig. 5-35 illustrates a typical plot.
This plot represents a graphical averaging of the data points.

Two lines are then drown throush the peaks of the curve bounding

Fig. 8-35: D + S vs. S Curve
it from above and below. These boundary lines are not always
parallel to the absicca (or to each other) and correction of
the slope is necessary. Correction is achleved by taking the
average slope of the boundary lines and using it in the rela-

tion

Deorrected - ‘measured (1 + slope) (8-121)

to obtain new values of D. These values of D are then used to

plot a new D + S curve. The process is repeated until no slope

T2




is observable. A line is then constructed prependiculer to
the two boundary lines and bisected. A new line is drawn
throush the bisecting line parallel to the boundary lines.
Intersection of this "bisecting" line with the D + 8 curve
at a point of negative slope gives SO directly. The con-
struction is illustrated in Firs. 8-35. Stillmanéu states
that ir Am is defined as the maximum distance between the
"visecting line" and the D + § curve, -y may be calculated
from the relation

-y =1+ 2 tan § (tan & + sec §)

where
21
6—r Am
1+ 5 "

tan § = >/%
In expression 8-123, xg is guide wavelength., For § <<1,
the approximation may be made |

-y=1+2%

The sbove procedure results in semi-precision values for
the parameters. However, these first approximations for Do’
so and - y may be used as a starting point for a precision
analysis where accuracies are limited to the random errors
of measurement. To obtain more precise values for Do’ So and
- v, the tabulated values of S (obtained by moving the short

in region II) are used in the equation

.y
S 4 tan) 2m ]
Dcomp Do + 5= tan [y tan Ag (s So)
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(8-123)

(8-124)

(8-125)

(8-126)




together with the semi-precision values of Do’ So and vy to
obtain new values of D. If there were no errors, the valueg
of D computed would be equal to the actual values of D meas-

ured, I an error curve is plotted with A D = D -D
comp measured

as ordinate and S as abeins:, o fipgure like that of Fig. 8-36
results. ‘
JANR

+
T S

N e >

] \/J-

-

Ag
<

Fig., 8-36: First Error Curve

If the error curve exhibits some regularity (say periodicity
in xg/z etc.) due to some systematic error in one of the first
order parameters, further analysis may be performed by compar-
ing the A D curve with a A Dcomp curve (total differential of
eq. 8-126. This process is repeated until the error curve no
longer displays regularity but results in A D's which are
scattered in random fashion as shown in Fig. 8-37. The'average

)

D
A EXTENT OF FINAL SCATTER

oL

B BTt

Fig. 8-37: Final Error Curve

S

T




deviation of the final error curve leads to the tolerances
that may be placed on the corrected parameters. These errors
represent 'electrical" errors. In addition the "mechanical”
errors due to physically located Do and So must be taken into
account.

The quality of Stillman's measurements can be seen by
looking at several values of ¥y as reported in his thesis.
They were | y | = 1.167 + 0.006, | y | = 1.422 + 0.008, and
Iy | =148 + 1.5, If a comperison is made with measurements
made in precision wavepuide having & - y of 1.5, it is seen
that typical tolerances range from 0.002 to 0.007 while Stillman's
Stripline measurements tolerances for the same - y were 0.006 to
0.010.

An application of D + S vs. 3 curve to obtain the parameters
DO, SO and - vy for a step discontinuity in Stripline is shown as
Fig. 8-38. The sinusoidal curve represents the D + S vs. S plot,
while the error curve is shown in the bottom of the figure.

3+ Theoretical Relations for Determining Discontinuity

Equivalent Circuits from DOL_§cﬁand -y
In order that a comparison may bg made between
equivalent circuits determined experimentally and those deter-
mined through measurement, it is necessary to develop a set of
relations that will determine & four terminal equivalent net-
work from the tangent relation parameters. Such a set of

39

relations can be found in the Waveguide Handbook™ on page 121.
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Through appropriate manipulation, these equations can be modified

to fit the case under discussion.

o- eb’ -0
Bg' B,

o ] l Aggt

Og R

Fig., 8-30: Generalized Equivalent Pi Network.

Fig. 8-30 illustrates the generalized Pi equivalent network. Its

parameters Ba', b,’ B’ are given by the following development.

Given
Do’ So’ - Y DR) KG
Find
B ’ B / B ! B ’ B / B 12
112 Pee o Pig 0 P11 Pes 12
Define
¢ = - cot = (p_ - D) (8-127)
Gl
2
B=-cot s~ (S -8p) (8-128)
g2
AN
ao (S B+Y -
an - (322 (8-229)
a-Py .
b = <ﬁ_ay> A(8130)
. l1+aBfy 8-131
c= Fay (8-131)
ZA 2
g o Y(1+0F) (2 +p%) (8-132)
(B - ay)”
then

[




’ ro_ . ? ’ re _
By, =2 B,," =c¢;B;' D, By, = - b;
8-133)
2 i 1/2 (
Bla’ = - d: By N (d)/
and
;o ‘. ? - r 1, ? = L ’ -
B, =By,5 By =By, -B), B, =B, -B, (8-134)

4. Gap and Slot in the Center Conductor:

A theoretical derivation for the slot is given in
section D-1-a of this chapter along with its range of validity.
Similarly the theoretical derivation for the slot is given in
section D-1 b. Stillman obtained experimental values of the
tangent relation parameters Do’ -y and So' Through the use
of equations 8-127 throuzh 8-13% he cbtained values of By, By
and Bc. Since the assumed discontinuity structure is symmetrical,
Ba and BC are averared. Tahle 8 1 surmarizes the data. The
parameters d and s are those referred to Fig. 8-14 and Fig. 8-15.

For conciseness define

’ Ba
B, 7 : (8-135)

[e]

. Bo
B, ' = ?‘; (8-136)

as determined from the theoretical formulas. Figs. 8-40 and
8-41 graphicelly illustrate the correlation between the
theoretically and experimentally determined parameters Ba'

/
and Bb .
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TABIE 8-1

Gap and Slot in Center Conductor

b = 1.051" % = 7.874"

’ ‘
B, Bb

a S =Y Theo. Exp.  Theo. Exp.
1.030 0.130 1.1665 -0.0032 -0.004k4 -7.5575 -6.8805

1.050 0.286 1.2738 -0.0154 -0.0103 -4.4188 -4.4832
1.430 0.155 1.5815 -0.0066 -0.0085 -2.1266 -2.2451
1.460 0.155 1.7053 =0.0068 -0.-104% -1.717 =~1.9256
1,490 0.155 41.000 -0.0072 -0.014k7 ©0.1991 0.159k

1.513 0.330 148.00 -0.0318 -0.0598 0.0918 0.0825

The range of validity of the gap formulas is b/2 ) << 1,
while those for the slot are valid for the range v > 0.15 and
d/w > 0.25. In the measurement b/2\ = 0.067, while Toin. =
0.136 < 0.15,d/wmin = 0.87. It can be seen that for S = 0,130,
t falls scmevwhat below the stated range of vaelidity of the
theoretical formulas. Reference to Fin. 8-41 shows that 1t
is only for S = 0.13 that a considerable discrepancy exists
between measured and theoretically determined parameters.

Of special interest is the value of d for which the curve

(S = 0.155) of Bb’ passes through zero. It is at this value

of @ (1.49") that the slot is series resonant. The slot is.
seen to be very sensitive to its dimenslions meking it impractical
as a resonant structure. The value of Ba', shown in Fig. 8-39

is much‘smaller than Bb’. A consistent error seems to exist

between measured and theoretical boints.
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5. Round Hole in the Center Conductor:

A theoretically determined equivalent circuit for
a round hole In the center conductor is given in section D-2-a
of this chapter. Couponent values are given by equations (8-85)
and (8-8G). Measurements were made on this discontinuity by the

65

Airborne Instruments Laboratory. Their results are shown as
Fig. 8-%42 and TFig. 8-43. 1In both cases a consistent error seems
to result.

6. Abruptly Ended Center Conductor:

The equivalent circuit for the abruptly ended center
conductor is discussed in section D-4. Altshuler and Oliner62
did some experimental work with this discontinuity resulting in
Fig. 8-4h, Measurements were made at six different wavelengths
ranging from A = 5.4" to A = 11.8". The "bars" crossing the
theoretical curves result from both scatter and the smell varia-
tlion of d/b with frequency. The theoretical curve is based on
eq. 8-112.

T. Relationship Between Series Reactance Network and-

Tangent Network:

Before e comparison can be made between measured and
theoretically determined equivalent circuits for a step in the
center conductor, a set of relations between the tangent equiva-
lent network and the series reactance equivalent network must
be derived. The results are stated in the literature in the form
of a serles reactance network or can be seen by referring to

Fig. 8-28, On the other hand, the measurements give the

82
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Fig.8-44.LOCATION OF EQUIVALENT OPEN CIRCUIT FOR ABRUPTLY-ENDED
CENTER CONDUCTOR
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paraneters Do’ So aﬁd -~ Y. The tangent relation equivalent
networlk is developed Lhrough the bransformations of section E-3.
The series reactoance networl is theu derived fron the relations
to be developed in this section.

In order to spare the casual reader the trouble of wading
throush the derivation, only the rccults are stated here. The
pore careful reader will Tind the conplete derivation in
Appendix XI. Fig. 8-45 illustrates the two equivalent circuits

referred to in the transformntion.

£ T T2 L2 ;
.y I.B : | 202, By -
o W oy T
' LA ’ !
: ) P E
T-'; " 1" IT+
-Dg T (b) 2 “So
Fig. 8-45:° Tangent and Series Reactance Networks.
Given
DO’ o’ Y
Flna
X', 1, 1,
Zo,' o o 1/2
1B ) - (2% ) (8-131)
where
4 .
By, = o end X' = -
= “01 01
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201 and ZO“ arc the Characteristic Impedance of the

input and output transmission lineo respectively,

‘ -1 +
l;;, = 1/B LCOt (g - /E‘,__S N -l“)_' . So (8-138)
where
14+ %° -7 "
02
£ = <" > -,I_ZI'—"—"
= AN 0(3
1 , 1
ll = 1/B cot Lx/ + ZOE cot B (12 + SO)J - Do (8-139)

The plus sign in eq. (8-138) is used if Z > 1. The minus

I
02
’

02
8. Step Change in Width of the Center Conductor:

sign is used when 2 < 1.

Fig. 8-45 shows the physical configuration for a
. sudden change in wildth in the center conductor. 1In section

D-3-f of this chapter a theoretically determined series

Fig., 8-46: Sudden Change in Width of the Center Strip.
reactance equivalent circult is given for a sudden change of
width. The parameter of this equivalent circuit is given by
eq. 8-101.

leasurenents of this discontinuilty were made by Stillman.
Theoretical and experimental values for some circuit parameters
are glven in the table below. The values given assume various

wavelengths very close to 7.8 inches strip widths LY nearly equal
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to 1.5 inches and a ground plane spacing maintained at b > 1.05
inches. Theoreticel values of y are found by solving eq. 8-137

for ¥, resulting in

Y=a+/gs (8-149)
where
X2 4 ZO?I +1
a = ——— (8"114-1)
2 502 }

Teble 8-2: Sudden Change in Width of Center Conductor.

v, Theoretical Exp'l.

inches ZOQ’ ¥ x! y

.152 3.375 3.429 408 3.348

1+

035
%310 2.577 2.61% .287 2.614 + .025
.600 1.842 1.857 .1k2 1.825 + .013
.902 1.436 1.440 .059 1.428 + 007

1.205 1.17% 1.175 .01k 1.204% + .018

It should be noted, in Teble 8-2, that the theoretical

values for ZO ‘ and y and the experimental values of vy, all

2
fall very close to one another, differences between correspond-
ing values being roughly of the order of one per cent. It is
immediately possible to conclude that changes in ZOQI dominate
by far over changes in X’ in eq. 8-140. Since exﬁerimental
values of X’ are obtained from eq. 8-137, it follows that X'

is extremely sensitive to even the smallest errors in both

/

02
the experirrntally determined value of X’ were completely

Z and y. This 1s indeed the case, in fact so wuch so that
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unreliable and are not included. Theoretical values, however,
have been tabulated. Whille the experiments performed have not
verified these theoretical values, they do indicate that the
magnitudes of X’ are correct.

Consideration of Table 8-2 then leads to the conclusion that
the step in width of the center conductor is well approximated
et the step by only the transformer (/th : 1)(Fig. 8-45b with
-y = ZOE/)' Also the series reactance X’ is negligible for
most practical purposes.

The data in Table 8-2 are used to plot the graph of
Fig. 8-47. It can be seen from this figure that a straight line
dravn through the nominal values of | y | measured differs from
the theoretical value of | v |, by an amount almost accountable
for by the neglected series reactance. This difference is
emphasized especially where the tolerances, which bound the

nominal l Y | measured, almost include the theoretical values.

9. Sharp Anzle Bends in the Center Conductor:

Because of an inability to mount discontinuities'not
beginning and ending on the same longitudinal axis in the meas-
uring apparatus, it was necessary to construct a composite dis-
continuity consisting of & nunber of bends in succession. Each
composite discontinuity was made symmetrical about a center line
normal to the strip axis and at the geometric center of the dis-
continuity. This, to measure & single right angle bend, &
discontinuity structure of four identical bends had to be measured.

The data for & single bend was then abstracted through matrix
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analysis. A azimilar procedure produced parameters ifor the GO
and 100 degree bends. Alternative schemes vere used to measure
bends of 15, 30, 45 and 120 degrees. Here, each gtructurc con-
sisted of three cascaded bends, some of which were known from
previous measurements. For neasurement of acute angles, the
bends were unknown-knovm-unlknoym, whore for obtuse angles the
bends were known-unknown-Lknovwn.

a. Right Anrle Bends:

In section D-3a the theoretically determined
equivalent circuit for the Risht Angle Bend is discussed. It
should be noted the the equivalent network is miven at refer-
ence planes Tl’ TE’ each at a distance of b/n ln 2 away from
the physical junction of the two strips.

As discussed in the previous section, 1t was not possible
to measure the Right Angle Bend as a single discontinuity, so
a cascade-of four identical bends was used. Measurements were

made with respect to reference planes Tl" and T2"

shovn 1in
Fig. 8-48. The sequence of operations necessary to the deter-

mination of the parameters Xal and Kbl are discussed in the

}e L
T — |
v H
} m
| o
-t — - I
“+-—1 . —+-—-}
L
» - e
2 I‘..—-—-Ta “-'—-'l': I l :
| -qn-b_"lz T w
[ " i
T|" TI' 'T|" T'ZM 'TZ ]’Tzv *

Tig. 8-48: Right Anrle Bend in Center Conductor
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following paragraph.

Given:
D> - ¥> Dps )‘g (vavelength in Stripline)
Find:
/ - /
£y 4
We first wish to shift the reference plane from Tl" to Tl':
/ . -
p,' =D, - D, - (L/2 - w) (8-142)
21 Do'

g
The parameters of the reactance tee are then calculated using

results of previous sections of the chapter.

Tow
- /1 - .
E=7 -2-7.:_% sin 2 (8-55)
F= IZO<FVCOSQ 9 :f-—]:'ﬁsinz 9>
and

&=+ <1/2 * /_1.;._!3_ )1/2 | (8-25)

b=+ ;F;
ba (22" - 1)
In normalized form then,
' b
X "z (1+a

and




Finally, we shift the reference planes to those used in the

theoretical derivations, namely T1 and T,.
(=

93

Since,
d=L-2v-22172
n
D = cot 0 (8-66)
/ 7 ?
xc =X "+ 2 Xb
then
DX ' +1
) G =—~i—-—7—
al D - Xa
, Xc' +1 ,
X' = 1/2 []')r“f"" "X, ]
c
Experimental results on the right angle bend are compiled
in Teble 8-3. w and L are defined in Fig. 8-48, Xgp 8nd X
by eq. 8-66 and - y and B D, ere the parameters of the tangent
netvork.
Table 8-3: Right Angle Bend in the Center Conductor.
b = 1.051" A = 7.874"
WLy X1 -y B D,
Theo. Exp. Theo. ExXp. Theo. Exp.
0.5 4 0.2217 0.2393 =-1.2933 =1.3535 1.4%19 1.3519 2.0472 2.0463
0.5 5 0.2217 0.2596 -1.2933 -1.3307 1.4%19 1.3257 2.0472 2.1219
1.0 5 0.3539 0.3936 -0.8381 -0.8636 1.8673 1.7218 1.8623 1.8L469
1.5 5 0.5032 0.5481 -0.6160 0.6197 2.6838 2.6234 1.6526 1.6208




.t Y

Figure 8-y and 8-50 offer a graphical comparison of
theoretical and experimental results. Solid lines represent
theoretical data and polnts 1Indicate measured data. While
the measured data is for a single right angle bend, it must
be remembered that it was extracted from a measurement made
on four cascaded bends. As can be seen from observation of
Fig. 8-lg and 8-50, correlation between measured and theoreti-
cal paremeters 1s good. A special test was made at w = 0,5"
to determine whether there was higher mode propagetion and
interaction between the four cascaded bends. The results are
conflicting in that for w = 0.5; L = 4", the shunt reactance
labeled ® on the graph is closer to the theoretical value;
while for w = O.S", L= 5", the series reactance lable 4 (3
on Figs. 8-49 and 8-50 is in better agreement. It can only
be concluded from the above measurements that there is e
small but detectable difference in the magnitudes of the
parameters for different spacings between discontinuity Junctions.

b. Sharp Bend of any Angle (8 # 90°):

The theoretical formulas for the sharp bend of
any angle are discussed in section D-3b. The theoretical dis-
continuity structure is represented as a Reactance Tee with
reference planes b/n 1n 2 away from the physicel discontinuity.

Three measurement schemes were used to abstract the parame-
ters for sharp angle bends. In the first scheme, four cascaded

discontinuities are constructed as in the case of the Right

ok
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Fig. 8-49b. REACTANCE TEE NETWORK PARAMETERS FOR RIGHT ANGLE BENDS
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Fig. 8-50b TANGENT NETWORK PARAMETERS FOR RIGHT ANGLE BENDS.
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Angle Bend. TFig. 8-5la il%ustrates the resultant discontinuity.
The distance between bends, d, as well as the nominal angles were

herd to waintain so that averape values were taken. Fig. 8-51p

e £ -
-
nla

Y_ .1

-
- -

Fig. 8-5la: Four-Corneved Sharp Angle Bend
in the Center Conductor.

illustrates the quantities referred to in eq. 8-144, which
is an average value for d.

d=1/6[E; +E, + E, + E + F+H -D tan 0/2 (8-144)

3
Fig. 8-51c defines Dy for the Four-Cornered Bend. In order to
obtain the parameters of interest, it is only necessary to
replace equation 8-66 with eq. 8-14k4k and equation 8-142 with
equation 8-145 in the developwent for the Right Angle Bend.
(Sec. E-9a)

D -w
2

The second method is concerned with the measurement of

p, =D, - [Dg -2.02" -n] -a/2+ tan /2 (8-145)

4]

acute angle bends (8 < 900). A three-angle bend is constructed,
cascading & known bend of angle ek between two unknown bends

of angles qk/a. Fig. 8~52a 1llustrates the discontinuity in
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Fig. 51 b, DISTANCES TO BE MEASURED FOR FOUR CORNERED BEND MEASUREMENT (e 90°)

E | Ep, Ex, E4, F,H; Various values of d for avarage value of d.
Various values of (TT + 8) for average value of © .

2,02 "

note

S

ANOOIZED

SHORT  ™'5CATOR BLOCK
CIRCUIT

Fig. 5ic. DEFINITION OF Dp FOR FOUR CORNERED BEND MEASUREMENT (0Ot 90°)
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Fig. 8-52a: Three Cornered Bend in the
Center Conductor (8 < 90°).

question. Figs. 8-52 and ¢ define several of the parameters

ANODIZED
T CIRCUIT 2D-w ton 8
SHOR q - <m2
ha—

I
-
\

T, (b (c)
oozt 1

Figs. 8-52 and c: Definitions of Dg; & for Three
Cornered Bend Measurements (8 < 90°),

appearing in the development of the Reactance Tee from the

Tangent measurements.

Measurement:
DR at Tl
’ 11]
= - . +
1)R DR (2.02 h) + g
Dl -W
g = 5 tan 6/2
Given:
D> ¥» Dgy Xg’ Z, A, B W, G (corner to corner) &,

b, (the a b c d elément of bend 0, 8t Ty, Ty )
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Find:
X&I, xb/
o=2mn (D, - DR)/)\G (8-146)

From equation 8-55

E=7 (g—/-é) sin 2 ¢ (8-55)

- 2 —- 1 2
F=+Zo(,/""-{cos ¢+ 755 sin ®)
From Fig. 8-52a

D -w

l=G - >

[ten 6/2 + tan 0,/2] (8-147)

Stillmanéu states that if the elemégfs ak and bk are from a

previous Three-Cornered Measurement, eq. 8-147 is to be used.

If a_and b, are from a previous Four-Cornered Measurement, use

k K
1=0 - C—k . > - [D >— tan 9/2] (for &= 90°) (8-148)
and
a
leg -2 5 ¥ (tan 8/2 + tan ek/e) - —g-(for ekﬁ 90°) (8-149)

In equation 8-148, G and the second bracketed term are from
the Three-Cornered Structure, while the first bracketed term
is from the Four-Cornered Structure. On the other hand, in
eq. (8-149), G, 9—%—E and tan 6/2 are from the Three-Cornered
Structure vhile tan ek/2 is from the Four Cornered Structure.
Knowing "1", we then rearrange equation 8-65 slightly to
obtain equation (8-150) and (8-151)'which represent matrix

elements at the shif'ted reference planes.
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& iy

’

2 ¢ .
8’ =a (cos” g1 - sin° Bl) - sin Bl cos Bl

z2 (1-a°7)
X E}E + -_C’--b-—l_] (8-150)

k
(8-151)
+ 2 8y Z sin Pl cos Bl
o
Now that the elements a’ and b’ at the shifted reference
Plenes are known, we may proceed to solve for the unknown bends
represented by 8 symmetrical matrix with elements "a" and "b".
In Appendix XII, it is shown that
A+ a’
& = —= (A+a’) (8-152)
\/?a' B +b’ A)2 - (B - b')2
Bb"
and
-bv!
b (B -1') (8-153)

(a’ B + b’ A)2 - (B - b’)2
Bb’

The parameters of the final equivalent network are then realized

by solving the elements of the matrix 8-56 for X,’ and xb'.

Xal = z;-rg—;jgy (8-154)
X
X, = s (8-155)

The third method 1s concerned with obtuse angle bends

(8 > 90°). The overall discontinuity structure now comsists
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of an unknown bend of angle 8 cascaded between the known bends
of angle 6 - 2 qk' The measurement reference plene is taken

half way between adjacent bends as shown in Fig. 8-51.

Fig. 8-53: Sharp Angle Bgnd in Center Conductor (Obtuse
Angle, 8 > 90" ) Series Reactance Network at
Specified Reference Planes from Do’ g, =¥

o
Measurement:
’, - ' _ d_l&_,
Dp 8t Ty, '; Dp = Dp (2.02+h)+gk+ 55
dk is the 4@ from the previous Four-Cornered
Bend measurement.
Given:
DO’ Y, DR) G, ZO’ 9) ek} D; w, ak’ bk
(a, b, c, d elements), dy at reference
’ 14
planes le and Tak obtained from a and
b of previous Four-Cornered Bend Measurement.
'Find:
7 4
xa ’ xb
2m(D_. - Dy)
L o = °c R (8-146)
‘g
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From eq. 8-55

E

¥ <§l7:—_.%> sin 2 ¢ (8-55)

- ; - 2
F==+Zo(\/-’Vcosecp+——l—-Sin ?)

]

4

E and F are the normalized elements at T of the overall

?
1k * Tox

structure. For the case of the obtuse angle, we have an unknown
bend sandwiched between two known hends. It is shown in Appendix
XIIT that if we solve for the matrix elements of the unknown bend
in terms of those for the known bends, we get

c) +c (a, B -Db A) (8-156)

a=ak(akA+b K K

k k

b=-bk(akA+bkC)+ak(akB-bkA) (8-157)

Figure 8-52 illustrates several of the parameters of the ocbtuse

Fig. 8-54: Definition of Dy

Cornered Bend Measurement.

” dk, & for Three

Three Cornered Bend. From this Figure we see that

1a0-¢-8 -5 (8-158)

Also from the previous development

g = 22 tan o/2 | (8-159)
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We now have enough information to find the elements of the

unknown metrix, a and b.

a=a (cos2 Bl - gin® Bl) - sin Bl cos Bl

?)

Z (1 -a
X [;E + _EL__S;._E__] (8-150)

1l -

b = bk 0082 Bl - (—-—si.—ks Z02 sin2 al
k

+2a 2 sin Bl cos Bl (8-151)

Knovwing a and b, we find the parameters of the equivalent

circuit through use of egs. 8-154 and 8-155.

xa' =z g + & (8-154)
A .
Xa

X' = o= (8-155)

The above four equations were discussed under @he subject
of the acute angle bend.

Experimental results on the sharp angle bend are compiled
in Table 8-4. The parameters recorded include the angle of the
bend 9, the insertion V.S.W.R., the final Reactance Tee parame-

ters, the Reactance Tee parameters at 180° shifted reference

.planes, the reflection coefficient and the input line length.

The data in Table 8-4 1s plotted in Figures 8-53 and 8-54. The
solid curves represent the theoretical results which were based

on the theoretical expressions for the parameters of E-plane
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TABIE 8-1

SHARP BEND OF ANY ANGIE IN CENTER CONDUCTOR

W = 1.000" b = 1.051" Ag = 7.874"
‘ / = 7 o

e° mwmo.aﬁ_ Exp. mUmo.xm EXD. mwmo.xd Exp. q&ho.xw Exp. avmo.xd EXp.
120 0.6137 0.6932 0.4003 0.6013 -0.4926 | -0.k3h49 -0.5849] -0.2680 0.4926 0.k349
100 }0.3959 0.2250 0.3530 | 0O.h712 -0.7159 | -0.8703 -1.0788] -1.269k4 0.7159 | 0.8703
90 0.3050 0.2652 0.3275 0.3936 -0.6532 .o.@mwm. -1.3789| -1.3336 0.8532 0.8536
60 0.1155 0.1039 0.2408 0.2618 14778 | -1.b586 -2.71:8] -2.6554 1.4778 1.4585
L35 0.0505 0.0651 0.1506 0.1733 -2.0598 | -2.1198 -3.9290| -4.0613 2.0596 2.1198
30 €.025% 0.0264 0.1346 0.1448 4w.warm -2.9912 -6.2333] -6.8376 3.1842 2.9912
22.5 |0.0122 -—— 0.1041 —— M:.mmww ..... .w.rqrm am——— L .2893 —
15 0.000 0.0145 0.0717 0.005 6.4807 |-50.3334 |-12.8897|-100.6818 6.4807 | 50.3384

s el
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TABLE 8- (Continued)

® ‘Y B Dy MEASURED AS
Theo. IXp. ‘heo. Exp.
120 4.1768 5.5190C 1.5450 1.4309 3-Cornered Bend
100 2.3163 1.5805 1.8128 1.802k4 4 -Cornered Bend
90 1.8818 1.7218 1.88435 | 1.8469 I -Cornered Bend
60 1.2637 1.2318 2.0019 2.0479 4 -Cornered Bend
45 1.1295 1.1393 2.1373 2.1482 3~Cornered Bend
from 90° Bend
30 1.0523 1.0543 2.2131 2.2077 3-Cornered Bend
from 60° Bend
22.5 [1.0243 ———— 2.200 -
15 1.000 1.0301 1.5708 -——— 3-Cornered Bend

from 30° Bend
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bends in rectangular waveguide. The dashed curve for Xa (for
6 > 60°), is on the other hand, based upon experimentally
obtained values for the parameter of E-plane bends in rectangu-
lar waveguide. Part of the discrepancy between theory and meas-
urement is consequently due to errors already existing in the
theoretical result (Xa only) for the rectangular waveguide bend.
The discrepancy between Stripline measurements and the dashed
curve is somewhat larger. This discrepancy is believed to be
due to an luperfection in the Babinet equivalent model for the
bend. In contrast to the Babinet model which has impenetrable
walls. the actual Stripline possesses a fringing field which
center conductor on one side of the bend and that on the . other.
This effect, not taken into account in the Babinet model, becomes
more marked as the band angle A becomes larger.

Altshuler and Oliner62 have shown that, once Xa' and xb’
are lmown, the expressions required for the abstraction of the

paraneters of the tangent network (v, Do’ So) can be derived.

-y=C+/Z T (8-156)
where
. 2 (x,' +x")Prx 7 (x, +2 x. ')
2% '2
k D = tan 1a (8-157)
where
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A’ - ! ’ oy !
X (X +2x’)
Ko * % T (LF V)

a =

k 8, =k D+ /2 (8-158)
For 0 small (C a 1)
-yl - (2K +1/x ) (8-159)

Q 1/xb’ -1 ﬁ(8-16o)

For smell angle bends (9 < 300), the expressions for abstract-

/

ing v and D from X ’ and xb’ become very sensitive leading to
large computational errors. The small angle approximations

are, however, quite.good and are in fact more substantially
reliable than the "exact" expressions in this range. The
theoretical values of vy and D0 obtained through their use are
shown in the form of dot-dash waves. The - y vs. 6 curve points
up the fact that it is better to employ two or three smaller
bends in place of one large bend. As an example, consider the
experimental points at 8 = 30°, 45° and 90°.. The 90° bend has
en insertion V.S.W.R. of 1.75. On the other hand, two 45° bends
in tandem (and "far" from each other so as not to interact) cen
have & maximw V.S.W.R. of 1.25 and three 30° bends can have &
maximm V.S.W.R. of 1.15.
F. Conclusions: ,
Equivalent circuits have been geveloped for a greet number

of Stripline discontinuities. In many cases experimental evi-

dence was also obtained and a comparison made between theory
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and neasurcement. In general correlation is good, but the reader -

should check the corrclation and its range of validity belore
attempting to use the design formulas. Discontinuities may
arise in two different ways: (1) Unavoidably--In any configura-
tion there will be bends, tees, etc. which need toc be described
and, (2) Transfer or Driving Point Function Synthesis-~If a
desired transfer or driving function can be mathematically des-
cribed and meets the realizability criteria for two ports (or n
ports for that matter) it can first be synthesized in a standard
fashion using Passive Synthesis, then reduced to holes, slots,
gaps, etc. in Stripline. Since at high frequencies the lumped
constant network would probebly not be realizable anyway, due
to the small values involved plus fringing problems, design
utilizing Stripline discontinuities should prove to be a useful

tool.
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APTEMIL XT

Relatioushin Betucen Scrics Beactosce lotvork and Tangent HNetworls:

(g

|
B { ! ZgpB | Zd2>|
ey B D ey B
T- Tl' W' T’é —SO :T,‘

Fig. All-1: Tangent and 5cories Reactance Networks.

Given

X', 1, 1,

The Tangent Hetwork peraieters Do’ So’ - ¥ are obtained

at T+' and T_’, wiile the Series Reactance paraneters are
obtained at reference planes Tl' and Tz'. In the Tangent
Hetwork the fact tl:at tlc two Characteristic . Lupedances are
different is already implicity conﬁained in - y. Ia the React-
ance Iletwork all impedances are norwalized to the Character-
istic Iwpedance of the input transuission line; i.e., X = X/ZOl
and Z,'’ = 202/201.

0
According to Kin{;,5 page 76, the reflection ccefficient

I of a transmission line uay be expressed by

Z -2 z /7 -1

r«-2 ¢ = 2. ¢ __

Z, *Z, ZO/Zc + 1
117
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where ZO = output impedence

Zc = characteristic iwpedance

If T+’ is terminated in a mateh (ZOQ’ for the Reactance
Network and one for the Tangent Network) then at Ti’ for the
Reactance Network Zin’ = Zoe’ + j X‘; for the Tangent Network
V.S.W.R. = - y. Under these conditions, the reflection coef-

ficient for the Reactance Network (eq. All-1) becomes

2, ' -1
= ‘Eflr____
Zin + 1
4 K 4 -
B 4% oL
- [4 .
202 + J X2 +1

Since primery interest is in | T |, we can take the

absolute value of eq. (All-2) to obtain

2 2
)"+ xl

) 2 .2
(ZOB + 1) + Xy

(z ., -1
R P

Since the input V.S.W.R. of the Tangent and Reactance
Networks must be the same, we can equate the reflection coef-
ficient of the Reactance network with that of the Tangent

network in the formula

1+
PE-Y=IT -1

or solving for | I |

e -1
I T p+1
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(A112-3)

(A11-Y4)

(A11-5)




Squaring both sides
2

2 T - 2p+1
R e (A11-6)
p+2p+1

Substituting the value of | I' | from eq. (All-3)

2

(2., +x'%+1) -22

[z, + x%+1)+22

2
02 P~ -20+ 1
=5 g (A11-7)
p +2p+ 1

!
02 ]
Solving eq. (A11-7) for X’ and letting p = - y we obtain

z ' 1/2
’ 02 2 - 12 :

At the reference planes Tl' and T2", the network can be

redrawvn as Flg. All-2.

A ; £2+ S, |
?———‘ X

Zin i ZOé B i
o~ >
| |
. "L' ‘00 ,\/__ 'l ]
] ) Y S
i |
i ', B % % LB
v —9
T T2"

Flg. All-2: Equivalent Tangent and Reactance
Network Representation.

For lossless open circuited transmission lines

Zin = - J Z0 cot Bs (A11-9)

where Zo = Characteristic Impedance
8 = distance from open
Since both networks are to be equivalent, one may equate

their input impedances with the output open circuited. For
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the reé.ctance network

Zyn = I X' -4 205" cot B (1, +8,) (A11-10)

For the tangent network

) ' (A11-11)

Zin2 = - Jcot B (-:Ll - D,

Equating egs. (A11-10) and (All-11), we get

’ / )
X' - 25, cot B (12 + so) = - cot B (- 1 - Do) (A11-12)
But
cot (- x) = - cot x (A11-13)
So
x' - zog’ cot B (1, + SO) = cot B (1l + Do) (A11-14)
For a lossless short circuited line
Zin = J Zo tan B s (A12-15)

where

Zo = Characteristic Impedance

8 = distance from open
For the reactence network, with the output short circuited

14
zinl =3 X'+ Zy,' tan B (12 + so) , (A11-16)

and for the tangent network (shorted output)

zinz = J tan B (-1, - D) : (A11-17)

but
ten (- x) = - tan x (A11-18)
o0 |
Z1n2 = - J tan (1, + DO) (A11-19)
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Equating egs. (Al1-16) and (A11-19), there results

X'+ 2 't&nﬁ(12+S‘o)=-tan(3(l

02 1+ D) (A11-20)

From eq. (All-ll&)

- 1
- tan B (1l+ DO) = COtB (11+D07

(a11-21)
1

AN L4
- X"+ Z02 cot B(12+ So)

Equating eq. (A11-20) and (Al11-21)

[-x’ + Zoo' cot B (1, + so)] X'+ z

0o’ ten B (1, +8)] =1 (An1-22)

Regrouping eq. (A11-22) and using & trigonometric identity, we

find that

2 1 2 /
cot B(12+S°) 1 1+X Zoo

= ——t (A11-23)
cot B (12 + So) X" 2o,
Let cot B (1, + so) a (AL1-24)
Making this substitution, eq. All-23 simllifies to
2 ¢
2 1+Xx'° -2
T 1. 22 (A11-25)
n X" Z0p
or
n - T >'n-1o (A11-26)
02
1+x% - Zoa'
Let ¢ =< Y > (A11-27)
02
Equation A11-26 then becomes
2 |
T -9M-1=0 (A11-28)
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Using the quadratic formula

—
M = /2 :‘.J“’-—E—ﬁ

= ¢/2 t»\/(cp/e)2 +1

or substituting eq. All-24 and A11-27

1+X'2-22p '

02
cot B (1, +8,) = T

02
2 " 2
1 +X -ZO2
N\ +1
02

Define

Then

) <1+x'd-2.02'
E=q/2= 7 l>
2X 2y,

2
= 4
cot.3(12+So) Et«/\ +1

We may now solve eq. (All-32) for 1, in'a straightforvard

manner. The result is

In a

in

1,=1/8 [cot'l (g t.,/ga +1 >] - 8,

similar menner eq. All-1l4 may be solved for 1,

-1
1, = 1/B cot [k’ + Zoo' cot B (1, + So)] - D,
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(A11-31)

(A11-32)

(A11-33)

(A11-34)
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Derivation of the Transfer Matrix Elements for an Unknown Sharp

Angle Bend (Acute Angle, 9 < 90°)--Three-Cornered Bend:

unknown known unknown

o b ol jb! o jb
jic a je! a' jc o

(a) PHYSICAL DISCONTINUITY (b) MATRIX REPRESENTATION

Fig. Al2 - 1: Discontinulty Structure for
Study of Acute Angle Bends.

The Three-Cornered Bend used in the evaluation of acute
angle bends is shown as part & of Figure Al2-1l. It is repre-
sented in matrix form by pert b of the same figure. The matrix
fepresentation is that of three cascaded bends, one of which is
known while the other two are iden@ical. To‘find the elements

of the resultant matrix, we proceed by straightforward matrix

multiplication.
A JB a Jo a’ jv’ a jb
= (A12-1)
\ J C A Jc a jc! a Je a
where

A=(2®-1)a’'-abc’ -ech’

B=(2ab)a'-b2c'+a2b'
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F

The final expression for A uses the restriction for
'r. 1. 5. networks (eq. 8-6 with a = d)

a2+bec=1 (8-6)

Now, it may be shown that

a(B-b")=Db(A+a') (A12-2)
or
A=Kb (A12-3)
where
, .
k=542 ap (Al2-k)

If K = a/b is inserted in the equation B and the result is

solved for b, we obtain

b = t«/ ey (A12-5)
2Kka’' -¢' +K° v’
Now using the fact that -
4
K = 5ot | (A12-6)
and
2
c’ﬂ lt;a (A12-7)
(from eq. 8-6), we find that
’
b=t B D) (A12-8)
(Ab'+a’B )2 -(B - b')2
3
and using eq. Al2-3, that
¢ .
8=+ — (A +a’) (Al2'9)
\/(Ab'-t-a'B)&-(B-b')a ‘
Bb"
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APPENDIX XIII

OVERALL_MATRIX: A,B, oy, by, are known for measurement . ‘
a,b are unknown

6:26y
known unknow!
ok jby o b
lex gy jc a

(a) PHYSICAL DISCONTINUITY
Fig. Al13-1: Discontinuity Structure for the
Study of Obtuse Angle Bends.

In this appendix we wish to solve for the elements a
and b of the unknown matrix in terms of the known parameters

&y, bk’ Cx and A, B and C. We begin by defining several

symbols.
Set:
t = /a Jb
Jc a
By 8 J By
dey B
and
T= /A JB
Jc A

1%

(b) MATRIX REPRESENTATION

known

ay ibkt
o oy L

(A13-1)

(A13-2

(A13-3)




Therefore, by definition

T (t,) (4) (t,)

Premultiply both sides of eq. (Al3-4) by the inverse of tk’

namely tkf

(t )™ T = (57 (1) (2) (%)

Now

(t,) (Jok)'l =1

S0

-1
(t,) 7 T = (%) (t)
Post Multiply both sides of eq. Al3-7 by (tk

(87T ()70 = (8) (1) (87

We must proceed by finding the matrix elements of (tk)'l.

From eq. Al3-2

The inverse elements ere given by

15 T TE%

vhere: 1, J are integers
| a I 18 the determinant of the original matrix.

the matrix under discussion (eq. Al3-2)

|tk|=ak2+bkck=l

= t (by eq. Al3-6)

(A13-4)

(A13-5)
(A13-6)

(A13-7)

(A13-8)

(A13-2)

(A23-9)

(A13-10)




Therefore

(tk)'l =/e,

=d ey %

Inserting the definitions of (tk)'l and T into eq. A13-8, we

get
t = 8y -J bk A JB ak -J bk
ey J e A e &
= fa Jo
\J ¢ a

Performing the indicated multiplication and equating to

the elements of the (t) matrix, we obtain the final result,
which is

a=a (ak A+ by c) + e\ (ak B - b, A)

b=-bk(akA+bkc)+ak(ng-bkA)
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ABSTRACT

The entire analysis of Stripline 1es based on the assumption
that operation is in the TEM mode. 8ince mode jumping is possible,
it 1s necessary to know what limitations must be placed om Btrip-
line dimensions in order to assure propagation in the TEM mode. To
determine there limitations, a transverse resonance procedure 1s
used. When tied into an existing relation for the E-plane bifur-
ocation in waveguide and upon application of 8tripline boundary
conditions, the desired result is obtained. Cutoff wavelength
for the first higher mode is given and a condition for propaga-
tion of discrete higher order modes is established. Finally,
experimental verification is given through measurements made by

the Airborne Instruments Laboratory on "trough waveguide."
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Chapter IX
HIGHER MODE PROPAGATION IN STRIPLINE

A. Introduction:

All the previous chapters on the properties of Stripline
have assumed that operation was taking place in the Transverse
Electromagnetic (TEM) mode. Because of this assumption, it
is possible to use standard transmission line techniques for
evaluation of éha.racteristic Impedance, Attenuation, Transient_
Response, etc. The TEM mode is particularly easy to evaluate
since it satisfies Laplace's Equation (V2 V=0). As such, a
static solution can be assumed (although the field is certainly
not static), Assumption of a static field greatly simplifies
calculations.'

In orde;' to Justify the assumption that a TEM mode is
being supported, it is necessary to know what limitations must
be placed on Stripline dimensions. Should these limitations
not be met, Stripline can easily jump into an infinite number
of Transversc Electric or Transverse Magnetic modes depending
on the boundary conditions satisfied.

Basic work on this problem has been done by Ja.sikl and
Oliner.? The author cbtained the original derivation done
by Dr. Jasik through a private communication with that authox.
. Dr. Oliner derived a similar relation independently which was
similar in form to that of Dr. Jasik but was samevhat easier
to evaluate. In this chapter the best features of both derivations

will be presented.




B. Cutoff Wavelength of the First Higher Mode:

The cuboff wavelength of the first ﬁigher order mode 1in
8tripline will be computed throﬁgh the usze of & trensverse
resonance procedure. The.approximate field distribution of

this mode is shown in part (&) of Fig. 9-1.

- W = “« W/ =
: . *0 * y /
! N\
4 /' ' A
]
Short Clrcuit
8. Electric Field b. Network for Transverse
Distribution Resonance

Fig. 9-1: First Higher Mode in Stripline

In contrast to the dominant mode, which possesses a
magnetic wall or open circuit at its mid-plane, the first
higher mode has an electric wall or short circuit there. It
is in fact the lowest mode with this symmetry property. 8ince
the first higher order mode is symmetric about this short cir-
cuit, it is sufficient to consider one half of the configura-
tion of Fig. 9-la. The fringing capacity may be considered as
a lumped element. These simplifications lead to the equivalent
circuit of Fig. 9-1b.

The value of the lumped capacitive element is given by the
E-plane bifurcation in the Wevegiide Handbook”” on page 353.

Formule 2a on that page is




2b 1 2
vay (200) 5 (T 00y 9 (35 0, 0)

[ o d b 1
! |
1 |
L
{

Flg., 9-2: Side View of an E-Plane
Bifurcation in Weveguide.

Equation 9-1 can be somewhat simplified for the case of

Stripline where by =b, = 1/2 b. Applying this simplification

1

to equation 9-1, there results:

2nd 20D 2b ( b )
———— oy —— + Pl - =
3 X ln2 + S T o, O‘> 2 S] 3’ 0, O

The parameter d must be determined by considering the
transverse resonance condition. As an elternate to figure
9-1b, the fringing capacity from center strip to ground can
be considered to be compensated for by an additiohal width

of the center strip of 4 on each side as shown in Fig. 9-3.

(9-1)

(9-2)




*‘.‘1.*:,;;4_“_!‘ "

Fig. 9-3: Cross Section of S8tripline Taking
Fringing Capacity into Account.

Field distribution is symmetrical ebout the center strip
8o it is sufficient to consider one half of the configuration
of Fig. 9-3, say the lower half. The condition of resonance

is readily obtained from the boundary condition and 1s

w+2d=n—)\- (9"3)

2
Since our interest is in the lowest order mode, n = 1. If
eq. 9-3 solved for d end the result inserted in eq. 9-2,

the desired expression results. It can be seen to be;

A A
c v, 2 c 2)b
-é-ﬁa s-l'" 1n 2 +n—.B- Sl (T:’ 0,0)

21
c b
-5 5 (ﬁ °’ °> (9-4)

vhere
&“ -l
8, (x, 0, 0) = Z (sin™ x/n - x/n)
n=1
b = ground plane spacing
w = center strip width
xc- cutoff wavelength of the first higher mode.
A




+ Wy

Equation (9-4) 1s arranged as shown because the arcsine
sum contributions are not major, although significant. In
employing eq. (9-4) for calculations, one ghould solve w/b
for values of b/xc. The variation of xc/b with w/b is pre-
sented as the solid line of Fig. 9-k.

When the arcsine sums are neglected, the dashed line of
Fig. 9-4 is obtained. The latter is useful as an epproximate
formula, particularly for w/b large, i.e., for thellow imped-
dnce range. The error in the use of the approximate formula
is shown as Fig. 9-5 as the fractional error encountered as ﬁ
function of w/b. It is seen that for w/b > 1, the error is
less than 3%. The neglect of the arcsine sums, whose value
is a function of the cutoff wavelength is equivalent to employ-
ing for the fringing capacity in the network of Fig. 9-16 the
static value used for the approximate determination of the
Characteristic Impedance of the dominant (TEM) mode. ‘

The solid curve of Fig. 9-4, corresponding to the accurate
solution, can be extended as far as desired in the w/b direc-
tion, but does not exist below w/b = 0.2075, i.e., xc/b = 20

(the reason for the latter stetement will be discussed in the

next section). However because of inaccuracies introduced by
higher mode interaction (due to the edges of the strip being
too close together) the curve cannot be trusted quantitatively

below about w/b = 0.5.



apow 13aydty 1saty ayl jo yifua[aaem jjo-1nd 3yj Joy ydean p-g Iy

EQUISIES NN PE N SR P
R G (RGN (D S PR

R S S a .- -
PRSI S T .- -

]
Yoot
Ve d
Cees

oy
RN

MH.H.UH,J.NM i |




e[nuwioy 0»@5«&0&&&« 9yl JO 9Isn Y3 UT JOJII [BUOTIIIBIY ‘g6 31y

q/m
g2 02 1 O01 § 0

el d L 1 IBES AN 1T 11
e 'an 1 T
IS " T ref
T T 1 84
+ -
4 44+—+4 T — |
1 It
H s T
w . : + L
N [+ 4 }
e ot HE T ®
p.m. H H e -
B T T
ﬁm uanlaw
M TLT TIX
IBARE SRS 't H QEASE SR BN T
mlnwff Th i .mr i 3
Sueseaks andi : s SN
T 04 H M T
3 LH 1 + 1 ~
50 88! 44+ ! ¥ ®
++ e nbohsabH §1 L : 1 o N
T : -y bt L8 B8 J M
un s apenss Sugdy dussy sanhe ek iwngs
14 Wnﬁxfu.l i Y35 SRaw T.Yd IR Bt
tad4+4b 44 iy H~1 i
= T T - pae
§ BRGS0 SReih SNuSn euRan AR + Bay gusulSisR
_JL*,.. T N0 §84EN 85 1T S88E
11 T : ] 18 N1 .
i 3 11
—t 1 o oL ) 184 p < 444
] uﬁ:rﬁ.ﬁ _vr 1 : .
1 *Hui...iffx,. e
SHEmEE o€
+ + +
- it H+ b ¥
= T : |8 SO NN
) e 1y — 1
s rue Bt b
BT aavbs saavl Shase sus: T
ISO0Y FNOEE SGSEE RSESE 8 b 1IT . T
3 " i 1 18 SE B¢ T 1 -
t1 19U SETHE FPEEY SRRSH 81 Sz 1 113 X o1

INIT dI4LS JDIHLANWNAS



3 oy

Oliner2 points out that an approximate rule can be
developed for the cutoff wavelength. When b/2 is small com-
pared to the wavelength in Stripline, the cutoff wavelength
is equal to the circumference measured around the Stripline
center conductor as shown in Fig. 9-6. As b/2 increases, the

dietance from the conductor at which the circumference is to

P P SR e

Fig. 9-6: Approximate Rule for Determining 10 in Stripline.
be measured will increase such that at b = 0.k he? T 0.17 v,
wd atb BO.S lc, r~0a25 b.

C. Discussion of the Higher Mode Spectrum: .

It was remarked sbove that the solid curve of Fig. 9-4
does not exist below the value ) /b = 2.0. Oliner” has shown
that below this value the mode is no longer & discrete, proper
mode but becomes a portion of the continuous spectrum. The
folloving discussion is essentislly that of Oliner's.

The electric field lines in the case of one class of discrete

modes is shown in Fig. 9-Ta.

ML VY

IS EYATAN

{a) (b)

Fig. 9-T: Electric Field Lines for (a) a class of discrete
modes, (b) & contribution to the comtinuous spectrum.

8




In the region external to the strip in the x direction,
the field acts like a mode below cutoff. The wévenuﬁber kxe
is satisfied by kxe2 < 0. The field configuration of Fig. 9-Tb
18 characteristic of a propagating mode in the x direction,
imposing the condition that kxea > 0. Such a mode cannot be
essoclated with a discrete mode in the z direction, but rather
with the continuous spectrum.

Consider the Stripline cross section shown as Fig. 9-8.
let this cross section be divided into two regions: region
one in the central portion end region two in the exterior por=-

tions including the fringing regions in the neighborhood of

the strip edges. In region one, away from the strip edges,

Fig. 9-8: Stripline Geometry.
the wavenumbers in the respective directions. are related by
2 2 2
kz =k =~ kc
where
k =2n/
]&z = 2‘"/18

K, =2 ﬂ/xc




and vwhere 1}, ,‘g and )‘c are respectively, the free space
wavelength, the higher mode Stripline wavelength and the
higher mode cutoff wavelength. For the first higher mode,
A is given by eq. 9-4. In regions two of Fig. 9-8, the

wavenumbers are related by

2 .2 2 2
. =K -k - Ky (9-6)

k

kye and k xe 8T€ numbers characteristic of the field
variation in the x and y directions in the exterior region.
For the first higher mode, boundary conditions impose the
condition that kye = n/b. .

Since for any given mode the values of k_z in regions one

and two must be the same, one finds on equating eq. (9-5) and (9-6)

kK 2ak .-k 2

xe c ye |
-(52) (%) e

2

Now for a discrete mode, kxe < 0. Inspection of eq. 9-7
shows that k 2 < O when
xe
nh c
b < — (n an interger) (9-8)

Any practical Stripline configuration imposes the condition

A

b < (9-9)

wle

Even though the dominant (TEM) mode (for which Ao = ®)
will propagate as & discrete mode for any value of b, any dis-
continuity in the line will set up radial line modes similar

10
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to TE, (or TMl) modes in parallel plate line, which will
propagate if eq. (9-9) is not satisfied.

We may summarlze the above discussion by considering the
class of modes characterized by the fleld plots of Fig. 9-T.
let it be assumed that a higher mode is propagating, so that
A < lc for this mode. Since n = 1 for this mode, it can be
seen that 1if eq. 9-9 is satisfied eq. ‘9—.8 will be also. If
the mode is propagating, therefore, and b’ < A/2 the mode will
alwvays be a discrete mode. If b > A/2, the mode may still be
a discrete mode, or it may radiate real power away from the
center strip, according to whether or not eq. 9-8 1is satisfied.

Bhould the higher mode be below cutoff, additional
restriction-s arise. Since now )\ > Ao satisfaction of eq. 9-9
does not influence eq. 9-8. If eq. 9-8 is satisfied, a dis-
crete mode exists; 1f it is not satisfied, the mode is improper
and a member of the continuous spectrum. The question of whether
or not the continuous spectrum radiates real power or not must be
considered. If real power is radiated, every discontinuity struc-
ture of Stripline must contain resistive elements in its equiva- )
lent circuit. Since the mode is improper a.nd'part of the con-
tinuous spectrum which exists only as & complex, it is conceivable
that certain components of this spectrum contain components vhich
would interfere destructively thus preventing radiation of real
power. In this case higher mode power would be completely stored
and the equivalent circuits of discontinuity structuz"es‘ would be

purely reactive.
11




Considerations quite independent of the above line of
reasoning (e.g., the spectrum of & line éource between parallel
- plates supporting an exponentially decaying current distribu-
tion, the possibility of the existence of leaky waves of the
type encountered in traveling wave antennas, etc.) indicate thet
the mode complex is bound and that discontinuities are lossless.
Thus, the continuous spectrum, for b > A/2, occurs only when the

higher modes are below cutoff, and is non-radiating.

D. Experimental Verification:

Airborne Instruments Laboratory3has made an experimental
verification of eq. 9-4. The structure used for the evaluation
18 termed "trough line" and was originated by AIL. Fig. 9-9
11lustrates the geometry of "trough waveguide." Note that
its cross section corresponds to one half of the geometry of
Fig. 9-1a with an electric short circuit or magnetic wall at
its midpoint. Trough waveguide does not support the TEM mode,

but, as may be seen from‘its-symmetry properties does support

7

Fig. 9-9: The Trough Waveguide (A.I.L.)

» -y

the first higher order mode of Stripline as its dominant mode.

Measurement of the transmission characteristics of trough

12




wvaveguide as a function of frequency are shown in Fig. 9-10.“

The value of cutoff frequency, computed from eq. 9-4 and shown
on Fig. 9-10 as a dashed line, can be seen to correspond to

the measured value of cutoff quite well.

13
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