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Abstract of "A Duality Theorem for a Class of

Continuous Linear Programming Problems"
by

William F. Tyndall

Consider the dual pair of continuous linear programming

problems defined in the following manner. Let z be a mapping

of the closed interval [0, T] of the real line into real

euclidean space EN such that each component function is

bounded, measureable, and non-negative. Let w be a similar

map into EM. If B and C are real M x N matrices and

a and c are continuous maps of [0, T] into EN and EM

respectively, let Z be the set of such functions z satisfy-

ing Bz(t) • c(t) + f Cz(s)ds, 0 < t < T; and let W be

the set of w satisfying w(t)B > a(t) + f' w(s)Cds, 0 • t < T.

Let the primal continuous linear programming problem be: Find

F e Z maximizing fT z(t) • a(t)dt, for z e Z; and let£T

its dual problem be: Find E E W minimizing fT w(t) • c(t)dt,

for w e W. The following duality theorem is proved.

THEOREM. Hypothesis: I. (x e EN : Bx < 0 and

x > 0) = to), II. B, C, and c(t) have non-negative

components, 0 < t < T. Conclusion: There exist optimal

solutions 7 E Z, 7 e W. Furthermore, two functions z e Z,

w c W are optimal if and only if fT z(t) • a(t)dt =

f w(t) • c(t)dt.

Examples demonstrate that neither hypothesis alone is

sufficient.

The economic motivation of these problems is discussed,

and the theorem is applied to a dynamic Leontief model of

production.

This paper was submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy at Brown
University, June 1963. The author wishes to express his
gratitude to Professor David Gale for his helpful guidance
in the preparation of this paper.
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i.* PREFACE

The main result of this dissertation is a duality theo-

rem for a class of economically meaningful continuous linear

programming problems, a class which is a natural extension of

(finite) linear programming problems. Thie class of problems

is defined and the theorem stated in Section 2.

In keeping with the economic motivation of these problems

an attempt is made to illustrate by several examples some

simple problems of economic significance. In fact, Sections 3,

4~, and 6 are devoted. primarily to an exposition of this

economic background together with a detailed solution of one

example which serves to illustrate the usefulness of the con-

cept of duality as a technique for arriving at solutions and

proving the results obtained are indeed optimal. The connec-

tion between these continuous linear programming problems and

finite linear programming problems should become apparent.

The final section applies the duality theorem to a dynamic

Leontief production model.

The mathematical results are contained in Sections 5 and

7-12. Section 5 contains some results relating the primal and

dual problems, while Section 7 demonstrates that a duality

theorem for this class of continuous linear programming prob-

lems requires hypotheses which are more restrictive than those

required in the finite case.

Section 8 contains the proof of the main lemma, which
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itself is a duality theorem with some rather restrictive hy-

potheses. Sections 9 and 10 demonstrate that the hypotheses

of the duality theorem ensure that the main lemma is appli-

cable. The proof of the duality theorem is completed in

Section 11, while Section 12 contains some related results.

2. STATEMENT OF THE DUALITY THEOREM

Let z be a function mapping the closed interval [0, T]

of the real line into EN, real euclidean space of dimension

N. For t c [0, T] let z(t) = (%1(t), ... , ýN(t)). We

shall assume that j is a bounded, measureable (with respect

to Lebesgue measure of the real line) function for

j = 1, ... , N, and call such a function z bounded and

measureable.

Let a and c be continuous functions mapping [0, TI

into EN and EM, respectively, and let B and C be real

M x N matrices. We use the following notation: For

d = (51, ... , 8N) E EN, e = (El, . M) e EM, and for A

any real M x N matrix, let eA and Ad denote the suitable

vector-matrix products. (Note that we do not use the familiar

notation AdT) The inner product of d, d' c EN is given

by d d d =N a . Finally, we say d < d' if and onlyJ=1 J J,

if 6 8 for j=I, ... ,N.

Define Z to be the set of all bounded, measureable

functions z : [0, TI -> EN such that z(t) > 0 and
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Bz(t) • c(t) + f Cz(s)ds for 0 < t < T. Similarly, define

W to be the set of all bounded, measureable functions

w : [0, T -> EM such that w(t) Ž 0 and w(t)B >
rT

a(t) + ftw(s)C ds for 0 < t < T. A function z c Z or

w c W will be called feasible. We shall assume that neither

B nor C is a zero matrix.

The continuous linear programming problem to be discussed

can now be stated.

PRIMAL PROBLEMv. Find some E £ Z such that
T T
f (t) a(t)dt = max {f z(t)- a(t)dt : z c Z }

0 0

This problem is called the primal problem to distinguish

it from the related dual problem.

DUAL PROBLEM. Find some w e W such that

T T

f _(t) c(t)dt = min f w(t) . c(t)dt : w e W

0 0

Observe that if C were a zero matrix, contrary to our

assumption, and if a and c were constant, then we are left

with a standard maximum problem and its dual, well-known ob-

jects in the theory of linear programming. (See [i], for ex-

ample.) It is reasonable, therefore, to consider this class

of continuous linear programming problems as an extension of

a class of (finite) linear programming problems and to attempt



4

to extend the basic theorems of linear programming to this

larger class.

Indeed, the main result of this thesis is an analogue of

the duality theorem valid for a class of economically meaning-

ful continuous linear programming problems.

THEOREM 1.

Hypothesis:

I. (x e EEN. Bx < 0 and x > O) = (0)

II. B, C, and c(t) have non-negative

components for 0 < t < T.

Conclusion: There exist optimal solutions z e Z

and 7 c W. Furthermore, two feasible

functions z and w are optimal if and

only if fTz(t) • a(t)dt = fTw(t) - c(t)dt.

Theorems 5 and 6, p. 16, demonstrate that neither hy-

pothesis alone is sufficient.

It should be noted that the condition that both primal

and dual problems be feasible, a sufficient condition for the

duality theorem of (finite) linear programming, is no longer

sufficient to yield a duality theorem for these continuous

linear programming problems. This is demonstrated by Theorem

4, p. 16.

3. ECONOMIC MOTIVATION: AN EXAMPLE

The continuous linear programming problem which has been

defined is called a "bottleneck problem" by Richard Bellman.
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In [2] he examines several economically meaningful examples

and discusses the dual problem, using properties of the dual

to obtain solutions to his examples. Furthermore, Dorfman,

Samuelson, and Solow in [31 discuss a discrete version of this

problem in their examination of a dynamic Leontief system.

In order both to illustrate the economic background and to

give an illustration of the practical usefulness of the prop-

erties of duality, we shall look at a simple example, a modifi-

cation of one due to Philip Wolfe [4].

EXAMPLE 1. Let us imagine a steel manufacturer who is

faced with the choice of allocating part of his steel output

at a rate to build a larger steel factory, thereby en-

abling steel to be produced more rapidly, and, on the other

hand, allocating the remainder at a rate t2 to his stock-

pile of steel, the ultimate goal of his production effort.

Assume that there are 71 units of steel capacity initially,

and the units are chosen so that one unit of steel capacity

enables steel to be produced at the rate of one unit of steel

per unit time.

The rate of production of steel, I + t is assumed to

depend linearly on the capacity of the factory. Moreover, it

is assumed that the value of the steel stockpile depends

linearly on the quantity of steel available, so that the manu-

facturer seeks to maximize his stockpile of steel by the end

of T units of time.



At each time t, 0 < t < T, the manufacturer must de-

termine the rates of allocation, ý1 (t) and •2 (t), both of

which are to be non-negative (i.e., no "scrapping" is allowed).

Now the amount of steel capacity at time t is just

+ ft (s)ds. The constraint that limited factory capacity

imposes upon the rate of production I (t) + ý2(t is

t
(3.1) W,(t) + ý2 (t) W 71 +f +(s)ds, 0 • t < T

We impose the reasonable technological constraint

(3.2) W ( 7, 0 < t < T

which just says that the factory cannot be enlarged arbitrarily

in a limited amount of time.

Given a technology constrained by (3.1) and (3.2), the

manufacturer is faced with the problem: Find non-negative

functions ' ý 2 maximizing foT 2 (t)dt subject to (3.1)

and (3.2).

If we let B = (0), C = (10), a(t) (0, 1),10 00

c(t) (71 Y2 ), and z(t) =(I 1 (t), ý2 (t)), the problem can

be stated: Find a (bounded, measureable) function

_ E2z : [0, T] -> E with z(t) > 0 and Bz(t) • c(t) +
t T

fo Cz(s)ds, for 0 _ t < T, maximizing fo z(t) - a(t)dt.

In order to examine in detail just one of the several

possible cases which arise, we shall assume that
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(3.3) 0 < < 7 and T > 1 + In 2

It will be seen later and might be argued now from a

commonsense point of view that an optimal allocation policy

will consist of building steel capacity initially (at the ex-

pense of not increasing the steel stockpile) and toward the

end of the production interval using this enlarged capacity to

produce steel exclusively for the stockpile at the larger rate

then permissible. Anticipating this, we set t2 0 in (3.1)

and solve (t) = 7 + ft (s)ds to get W1(t) = 71 et.S0
This policy is feasible so long as 7 et 72 . When

t = tI E In 72/1,, a "bottleneck" develops; one cannot con-

tinue to build steel capacity at the rate y1 et for t > t

since (3.2) would be violated. As a result of this factory

building bottleneck a new policy must be adopted for t > ti.

We postpone the solution of this example until after we

have proved some useful results extending some theorems of

linear programming relating the primal and dual problems.

Then we will solve concurrently both the primal and dual

problems for this example, thereby illustrating the useful-

ness of the dual problem, both in arriving at a solution to

the primal problem and in proving that the result so obtained

is indeed the optimal one.

4. A DISCRETE VERSION OF THE PROBLEM

In order to motivate the definition of the dual problem
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we shall examine a discrete version of the continuous problem.

This concept, expounded in [2], will be used later in proving

the duality theorem.

Suppose that the interval [0, TI is divided into n

equal parts of length Atn = T/n. If t= kT/n,

k = 0, ... , n, let us reformulate the example of Section 3.

We shall now regard 1(tk), for example, as the (constant)

rate at which steel is used to enlarge the factory during the

time interval [t ,nI tn ). During this interval, therefore,

the steel capacity is enlarged by •1(tn)Atn" The constraint
1k

(3.1) now becomes

1(t) + , 2 (tn) _ 1 , and

(4.1) k-1

(tk) + 2 (tk) _7 + Atn ,1(tn), k = 1, ... , n

ii=O

while (3.2) becomes

(4.2) • 1 (tk) - 72' k = 0, ... , n

We thus seek •j(tn) > 0 for j = 1, 2; k = 0, ... ,

maximizing E0  t(tn), thereby maximizing tn =o (t nk=ximizkng ok2ok

subject to (4.1) and (4.2). We remark that z(tn) is sought

for purely formal reasons. The introduction of this variable

yields a more useful formulation for the discrete dual problem.

In vector-matrix notation this reads: Find non-negative
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vectors z(tk) c: E2, k = 0, ... , n, maximizing

n z(tn a(tn) subject to
k=o k) k

(4.3) k-i
BZ(tn) < c(tn) + Atn ' cz(tn)k n

v=O

This discrete version of the problem is just an example

of a finite, if overblown, standard maximum problem. To this

linear programming problem is paired a standard minimum prob-

lem, its dual problem. It is: Find non-negative vectors

w(t) e E2 , k = 0, ... , n, minimizing E-ow(t) n

subject to

W(tnn)B >= a(tn)

n n

w4) )B n

w(t ) B> a (t) + Atn W(tn)C, k = 0, ... , n - o
v =k+1

It is informative to compare this discrete dual problem

with the continuous dual problem. We see in the comparison

that the dual problem associated to the discrete version of

the continuous primal problem is itself a discrete version

of the dual problem associated with the continuous primal

problem.
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5. SOME PROPERTIES OF DUALITY

In this section we extend some of the theorems of linear

programming to continuous linear programming problems. These

results are proved in [21, but are included here for the sake

of completeness.

For any bounded, measureable function z : [0, TI -> EN,

let us define the function 1(z) : [0, TI -> EM by

1(z)(t) = Bz(t) - f•Cz(s)ds, for t c [0, TI. It is clear

that 1(z) is again a bounded, measureable function.

Similarly, for any bounded, measureable function

w : [0, TI -> EM, we define the (bounded, measureable)

function 2*(w) : [0, TI -> EN by *(w)(t) =

w(t)B - f Tw(s)Cds for t e [0, TI.
t *

LEMMA . is "adJoint" to 2 in the sense that

T T

f 2(z)(t) - w(t)dt =1 f *(w)(t) • z(t)dt

0 0

PROOF. Clearly both integrals are defined and finite.

By expanding the products in the integrands we see that it

suffices to prove that fo( Mi(t)fu (s)ds)dt

fT(t (t)fT.i(s)ds)dt for i = 1,..., M; J = ,..., We

use integration by parts, letting u(t) = ft (s)ds and0 an

v(t) = fT Wi(s)ds. Note that fT(ci(t)f j(s)ds)dt =

- fTu(t)v'(t)dt = - u(t)v(t)]T + fTv(t)u'(t)dt =

fT( t (t )fT i (s)ds )dt.
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LEMMA 2. If z c Z and w c W, then fTz(t) . a(t)dt <

fTw(t) • c(t)dt.
0

PROOF. By the hypothesis 1(z)(t) • c(t) and

*(w)(t) Ž a(t), 0 < t < T. Since z(t) and w(t) are

non-negative, 1(z)(t) • w(t) < w(t) • c(t) and

S*(w)(t) • z(t) Ž z(t) • a(t), 0 < t < T. The conclusion

follows by integrating and using Lemma 1.

This lemma has an immediate corollary.

COROLLARY. When the quantities exist

sup { f z(t) a(t)dt : z eZ

0

inf { f w(t) - c(t)dt : w c W }
0

THEOREM 2 (Optimality Condition). If there exist func-

tions z c Z and 71 c W such that foTF(t) • a(t)dt
0

fow(t) • c(t)dt, then E and w are the optimal solutions

of their respective problems.

PROOF. Using Lemma 2 note that for all z e Z,

f z(t), a(t)dt f fT0t)(t) t)dt - fT0(t). a(t)dt, and
for all w c W, fTw(t) . c(t)fdt >_ TF(t) • a(t)dt

Twt-.ct(tt) ~td
fT(t) • c(t)dt.

Let us denote the ith component of Bz(t) e EM, for

example, by (Bz(t))i.
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TI[EOREM 3 (Equilibrium Conditions). Let z c Z and

w c W. Then fTz(t) • a(t)dt = fTw(t) • c(t)dt if and only

if both (i) and (ii) are satisfied for almost all t e [0, TI.

(i) For i I, ... , M,(Bz(t))i < Yi(t) + ( tCz(s)ds)i

implies wi(t) = 0.

(ii) For J = I, ... , N,(w(t)B)j > a(t) + (fTw(s)Cds)j

implies %(t) = 0.

PROOF. Suppose the conditions (1) and (ii) are satisfied

almost everywhere in [0, TI. Multiply the ith inequality

by wni(t) and the jth inequality by j(t) and sum to get

the equalities

M M

a i(t)(Bz(t))i = Z W(t)y 1 (t)

(51)M t+ N •i(t) (f Cz(s)ds )

1=1 0 1

N N

I j(t)(w(t)B)j = , j(t)cj(t)
J=1 J=1

(N T

+ X %(t) (f w(s)Cds )
J=1 t

which hold for almost all t c [0, TJ. The equality

fTz(t) • a(t)dt f T w(t) . c(t)dt then follows by in-

tegrating and using Lemma 1.
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Conversely, if the conditions fail for t in some sub-

set of [0, TI having positive measure, the equality in

(5.1) or (5.2) must be replaced by strict inequality for t

in a set of positive measure. Consequently, foTz(t) - a(t)dt <
T0

foTw(t) • c(t)dt. This completes the proof.

6. SOLUTION OF EXAMPLE 1

We now return to the example of Section 3. We shall use

the equilibrium conditions to arrive at a solution.

The dual problem is defined to be: Find non-negative

functions wI and c2 minimizing fT(,1 (0 (t) + 72 a 2 (t) )dt

subject to

T

(6.1) cnt(t) + c 2 (t) >f I)1 (s)ds, 0 < t < T

t

(6.2) w1(t) _> , 0 _ t _ T

We saw that for 0 5 t !g t1 , t 1 (t) = r~et and t 2 (t) = 0

satisfy the constraints (3.1) and (3.2). Now at the end of

the time interval [0, TI we suspect that an optimal policy

would stockpile all of the steel produced. We thus want to

set t 1 (t) = 0 and let t2 satisfy (3.1) as an equality for

t 2 _ t !g T, where t 2 , tI 5 t 2 < T, is to be determined.

To do this we now look at the dual problem. If t, = 0

for t 2 5 t _ T, (3.2) is a strict inequality, and hence,



from the equilibrium conditions (Theorem 3) the dual variable

W P corresponding to the relation (3.2) must vanish* in this

interval in order for w2 to be part of an optimal policy.

Furthermore, since it is desired that 2 be positive, the

corresponding dual relation (6.2) must be an equality for

t K t < T. In this interval we thus desire that ai (t) W I

and 1 > 1 dt. This will be true if t2- = T - 1. But by

the assumption (".3), P. 7, T - > In 72/71 --- so

w(t) = (i, O) for t t < T is the function desired.

To complete our solution to the primal problem we see

that for tI < t < t 2  (3.1) and (3.2) can be solved as

equalities by taking 1(t) = .2 and 2 (t) = (t - t1 )2"

The equilibrium conditions now require that in (t , t 2 )

the dual functions cn1 and m 2 must satisfy (6.1) and (6.2)

as equalities. Solving for cu1 and w 2 we obtain cI (t) = I

and a2 (t) = t2 - t, t1 < t < t2.

Finally we seek a w to pair with z for 0 < t _t 1 .

The equilibrium conditions lead to the equations cD2 (t) = 0

and a 1 (t) = f Tw(s)ds. Thus let w1 (t) = (T - t )e-t

and w 2(t) = 0 for t E [0, t I

Since the functions z and w which we have obtained

are feasible and satisfy the equilibrium conditions, we are

guaranteed by Theorem 3 that these z and w are the optimal

solutions of the problem and its dual. As a check, using the

*The "almos, t everywhere" wil.l not be repeated in this
discussion.
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optimality condition of Theorem 2, we note that

T ý (t)dt =2 (t 2 _ t ) 2 + 72 (T - t)

0

T

f (7 1 WI (t) + 72 w2 (t))dt
0

This example illustrates the complexity already en-

countered in the 2 X 2 case. With a greater number of vari-

ables and constraints one is forced to turn to more elaborate

techniques to obtain a solution. Bellman approaches this

problem employing a functional equation. Several examples are

solved using this method in [2]. R. Sherman Lehman, leaning

more heavily on the linearity of the problem, has devised a

"continuous simplex method" to solve some of these problems

in [5]. Neither of these treatments is a model of mathe-

matical rigor. Indeed the avowed purpose of these authors

is to discover solutions where possible; they are not con-

strained by a desire for complete rigor in their methods.

7. ON EXTENDING THE DUALITY THEOREM

In Section 5 it was noted that the optimality and equi-

librium conditions have been extended without difficulty to

this class of continuous linear programming problems. The

important duality theorem, on the other hand, does not extend
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to this class without modifying the hypothesis.

In this section we discuss two examples which will prove

Theorems 4, 5, and 6. These theorems justify the inclusion

of Hypotheses I and II in Theorem 1, stated on p. 4.

THEOREM 4. The existence of functions z and w,

feasible for their respective problems, is not sufficient to

guarantee the existence of optimizing solutions.

PROOF. Example 2, to follow.

THEOREM 5. Hypothesis I without Hypothesis II is not

sufficient to guarantee the existence of optimizing solutions.

PROOF. Example 2.

THEOREM 6. Hypothesis II without Hypothesis I is not

sufficient to guarantee the existence of optimizing solutions.

PROOF. Example 3, to follow.

EXAMPLE 2. Let Y and Y2 be positive numbers and

assume that T > Y I/Y22. Find a non-negative function

maximizing fT(t)dt subject to

t

(7.1) 0 Y,1 -f f (s)ds, 0 < t < T

0

(7.2) Y(t) 0 <2'0 t < T

If one imagines ý to be the rate of production of auto-

mobiles, say, and 72 to be the (constant) auto capacity

available, (7.2) gives a realistic bound on this rate. If

Y1 is the amount of steel initially available, and if units
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are chosen so that one unit of steel is required to make one

automobile, then (7.1) is the requirement that the amount of

steel at any time be non-negative.

The solution of this problem is obvious. Let

t(t) = 71 /T. By the hypothesis 7 1/T < Y2; also

f (s)ds = t7 1 /T < Y1, for 0 • t • T, so that this

is feasible. In view of (7.1) this • will produce the

maximum value 1

The dual of this problem is a different matter, however.

One seeks non-negative functions wI and w2 minimizing

f • (71(t) + 72 2 (t))dt subject to

T

(7.3) w2 (t) Ž 1 - f i 1 (s)ds, 0 • t • T

t

Now if there are feasible functions w 1 and m2

attaining a minimum Y1, they must satisfy the equilibrium

conditions when paired with t(t) = YI/T (Theorem 3). Since

(7.2) is a strict inequality throughout the interval [0, TI,

W2 must vanish almost everywhere; and since t(t) > 0,

) 1must satisfy (7.3) as an equality almost everywhere. We

thus seek a) such that f 1 (s)ds = 1 almost everywhere

in [0, T1. But no measureable function has this property,

so we must conclude that the dual problem has no solution,

even though the primal problem does.

This dual problem is feasible, however. In fact there
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exists a sequence of functions wn e W such that

lir foTwn(t) c(t)dt
n

Define wn(t) for n > I/T by

0, 0o< t < T1

Ln, T < t • TnT n

0, 0 K t < T

W(t)= 

n

21
1 - (T - t)n, T < t < T

Now observe that each wn is feasible, and, moreover,

0T(71 n(t) + Y W2(t))dt = 1 + 7as n -> ,.

0 1 1 2=

In this example both primal and dual problems are

feasible, so the proof of Theorem 4 is now complete. Further-

more, since the matrix B of Hypothesis I is (0), I is

satisfied. The matrix C (0), however, is not non-

negative, so Hypothesis II is not satisfied. This proves

Theorem 5.

REMARK. Note that lim wn(t) = 0 for 0 • t < T.
n 2

Looking at Wn one might be tempted to say, naively, that
1

"itn approaches a delta function with unit weight at t = T."

It should be noted that in their attempt to treat a large

class of these problems Bellman and Lehman admit delta func-

tions or even derivatives of delta functions in their

solutions when the problem or its dual has no measureable
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function as a solution ([2] and [5]). From a rigorous point

of view one is led to try to reformulate the problem so as

to accept a measure as a solution in these cases; but this

extension leads to even more difficulties (see 151, p. 21).

As formulated here, however, only functions will be admitted

as possible solutions.

EXAMPLE 3. Let 7 be a positive number. Find non-

negative functions and •2 maximizing foTl (t)dt

subject to

t

S(t) •7 +f ý2 (s)ds, 0 • t • T
0

By letting n(t) = n and In(t) = 7 + nt for 0 _ t _ T,

we find that foT1(t)dt = 7T + nT 2/2, so that there is no

maximum.

Here Hypothesis I is not satisfied, while Hypothesis II

is. This proves Theorem 6.

8. THE MAIN LvIMA

We turn now to the proofs of some lemmas which will lead

to the proof of the duality theorem.

We shall approach the solution of the continuous problem

by means of a sequence of finite discrete approximations.

This idea was discussed in Section 4.

For n = 1, 2, ... let Atn = T/n and let tn = kT/n

for k = 0, ... , n.
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Let
tnak+ 1

a k) =- a(t)dt
A tn

tnk

foi. k 0, ... , n - 1, and let an(tn) = an(tn_n n

Let

tn
tk

cn(tn) f c(t)dt,k Atn
t n
k-1

for k = 1, ... , n, and let cn(tn) = cn(tn).
0

We now let pfn be the problem of finding non-negative

vectors zn(tn), ... , zn(tn) maximizingn nn

k n=oz(tk) an(tnk) subject to

Bzn(tn) < cn(tn)
00

and
k-i

Bzn(tn) - cn(tn) + Atn Czn(tn), k = 1, ... , n

V=O

The dual of this finite linear programming problem seeks

non-negative vectors w(t), ., wn(tn) c EM minimizing

Ekn=ow n ) cn(tn) subject to
wn(tnn)B => ,n(tn)

n n
and n

wn(t)B > an~tk) + Atn w n(tn)C, k = 0, .. , n- 1
V = k--i1
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If zn(tn), ... , zn(tn) are feasible for pn, define

Ann

nf zAnN

an associated step function z o w[0, T0I -> E by

zn(tn)o tn < t < tn

zn(t) = wn(tn), tn< t < tn k = 2, .- n 2-k k• k+1' ""
z n(tn I)tn t < t n

- 1 n-i I = n

Similarly, if wfn(tn),s are feasible fore

problem. fo

the dual of P n define the step function o Zn : 0, T h EM

by

w n (t I) t o =< t _• t I

w n(t) = wn(tk)" tk-1 < t k"t k = 2, ... , n-I

Wrn(tnn), tn < t < tn
nIn-1 = n

We remark that it is not true in general that such

associated step functions are feasible for the continuous

problem.

In order to prove the main lemma it is necessary to re-

lax temporarily the requirement that inequalities be satisfied

for all t c [0, T] in the definitions of Z and W, the

sets of functions feasible for the continuous problem and

its dual.

For p = 1, o, let LP[o, T] be the family of equiva-

lence classes of real-valued Lebesgue-measureable functions

on [0, TI having finite LP norm. For a map

z : [0, TI -> EN we shall say z c L if j e LP[o, TI

for j = 1, ... , N.
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Define

t

ZL =z C LX: Bz(t) • c(t) +f Cz(s)ds and

0

z(t) > 0 for almost all t e [0, TI

and let

t 2  t2

tZ, =z e :I Bz(t)dt < c(t)dt
ti tI

t 2  t

+f ( Cz(s)ds )dt for 0 t< t 2 < T

t 1 )

and z(t) > a.e.C}

Similar definitions of W L and WL can be associated

to W.

We assert: ZL = ZL. Since the function z(t) -> Bz(t) -

ftoCz(s)ds maps into one seec by looking at. each
0

component separately that it su'Tices to prove ZL = ZLI

for the special case N = M = I.

Now clearly ZL C ZL The other inclusion follows from

a well-known result in the theory of real functions, namely:

If f r, LI and F(x) = fxf.(t)dt, then F' exists almost

everywhere ,and ]P'(x) = f'(x) almost everywhere.

We consider t fixed, 0 • t K t , T. Then
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t 2  t2
1 ~ f Bz(t)dt t 1 t< c(t)dt

t 2 -t =2

tI2  t

1 f (f Cz (s )cs )dt
t2 0

But, as t -> the left hand side approaches Bz(t )But a1 t2 
I- 

I

and the right hand side approaches c(tl) + 0 Cz(s)ds for

almost all values of tI e [0, T). Hence ZLC ZL.

A similar proof show2 that WL = Wý.

We shall need a result from the theory of Banach spaces

(see [6], p. 123). The dual space of the separable Banach

space L1 [0, T] can be identified with LC[O, TI. An

important property enjoyed by the dual of a separable Banach

space is weak sequential compactness for sets bounded in the

strong topology. Restated for our purposes, this becomes:

Let X n e L[O, TI and assume l1xnil < p for n = 1, 2,....

Then there exist X c L [O, TI and a subsequence In k

such that X -> X (weak*); that is o nkf f T Xf,n k 0fnk

for all f E L'[0, TI. It is convenient to restate this as

LEMMA 3. Lot 'n e Lf[0, TI and assume that lJXnlI

for n = 1, 2, .... Then there exist X e 1[O, TI and a

subsequence In k such that

t 2  tP

n d--> d x(tt)(t, for o < t t 2 _ T

tI t
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PROOF. Let X be the characteristic function for

[t 1 , t 2 ] . Since [0, TI has finite measure, X E L'[0, T],

and the conclusion follows from the result quoted above.

We are now able to prove the main lemma.

LEMMA 4. For n = 1, 2, ... let Pn be the discrete

problem associated to the continuous problem. Assume that

for all n there exist vectors (zn(tn) ' z n and0 ' n~t)

(wn(tn), ... , wn(tn)n solving pn. Assume, furthermore,

that all such sets of solutions lie in bounded subsets of

EN and EM, respectively. Then there exist bounded functions

T-z C ZL and w E WL such that f 0o(t) - a(t)dt
T-tfoT (t) c(t)dt.

PROOF. For the step function zn associated to
n(tn), ... , zn(t n)] write zn(t) = (n(t), ... , (t)),

0 < t < T. By hypothesis there exists p > 0 such that

It,(t)i !5 p for J = 1, ... , N; n = 1, 2, ... ; and

o < t < T, so n n L[O, TA for j = 1, ... , N;

n= 1, 2, ... , and II~lII = P.

We use a diagonal process to find a weak limit. By

Lemma 3 there exist TI : Lf[n, T] and a subsequence (n k

such that
t 2  t 2f k(t~ ->t f ~d

t1 t

as k -> co for 0 < t < t 2 < T. Next, apply Lemma 3 to



25

n•2k to obtain a •2 e L'[0, TI such that a subsequence

nk .*
of 2k converges weak to 2" Repeat taking successive

subsequences to obtain j LI[0, TI for J = I, ... , N,

and a common subsequence (nji such that

t 2  1-
n, (t)dt .j(t)dt as -

tI tI

(8.1)

for j = 1, ... , N; 0 < t < t < T
= ~2=

n•
Since 0< •j (t) K p for t E [0, T],j = 1, ... , N

and 2 = 1, 2, ... , it follows immediately from (8.1) that

0 Z_ (t) < pu for almost all t E [0, TI, where

u = (1, 1, ... , ) E EN. By taking an equivalent representa-

tive in L we may assume that
N

(8.2) 0 < 7(t) pu, 0 t T.

To prove e ZL it is convenient to define a step

function c: [0, TI associated to
(cn~t cn(tn) )bfcn(t ), ... , . no") by

I n n, n*< t < tn

c(tk) • t k k+1 , k = 0, ... , n - 1

cn(t)

cn(tn), t = tn
n n

We now assert: For all n and for t, 0 •_t < T,
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there exists xn(t) e EM such that

tAn~t nt An

(8.3) Bzn(t) _ c +f Cn(s)ds + x (t)

0

where lim xn(t) = 0, uniformly in t for t e t0, T).

n

Now given any n and t c [0, T), there exists a unique

k, 0 k _ n - 1, such that tn <t +<1t By definition
k = k+1

n(t) -- zn(t•) and 3n(t) = cn(t•). Also by definition

t k-1

cn(s)ds n Z•czn(tn) + (t_ tk)Czn(tn)

0 V•0

where we agree that E-1 zn(tn) = 0 should k = 0.v=O V

It is clear that this procedure uniquely defines the term
(t - t )czn(tn) (call it - x(t)) for any n and t E [0, T)

provided k is such that tn •t < tn k Note that (for any

linear norm on EM) ItXn(t)lI • AtnIICzn(tn)Il for all n and

t [0o, T). Now by hypothesis there exists p > 0 such that

0 < zn(tk) _ Pu, for all n and k, 0 < k _ n. Hence there

exists P' > 0 such that IICzn(tn)l p, for all n and

k, 0 < k < n. Thus for all n and for t e [0, T),

lxn (t)lI K T/n p', so that lim xn(t) = 0, uniformly in t
---- n

for t e [O, T). The inequality (8.3) now follows from the

fact that the zn(tn) are feasible for Pn In particular
V
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k-1
(8.4) Bzn(tk) •c(tn) Atn Czn(tn)

so that Bzn(t) - ft c~n(s)ds < ^n(t) + Xn(t). This proves

the assertion.

Now integrating (8.3) from t to t2' 0 t < t T,

we get, for n = 1, 2,

t 2  t 2

f B~n(t)dt < f 3 n(t)dt

ti tI

(85)t2 t t2

+f (t c^n(s)ds )dt +÷f Xn(t)dt
ti 0 t

But by (8.1), p. 25,

t 2  t 2

tI tI

and

t 2  t t2  t

t 0 tI 0

as - o>o for 0 t < t 2 T. Now if
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t 2  t2

f c (t)dt-> c(t)dt

ti ti

as c o> •, for 0 < t < t 2 • T, then it follows from

(8.5) and these results that F e ZL, and hence • £ ZL.

We prove that

t 2  t 2

f (t)dt f c(t)dt

ti t1

by proving that for i = I, ... M ,

t 2  t 2f i(t)dt Y-> 71 (t)dt
ti t
o I I

0 < t < t 2  T, as n-->co. Let

max f1ri(t)I i = I, ... , M, 0 ý t < T)

>sup ( i = I . M, n 2, ... ; 0 < v < n)

Now it is clear that for any i l$"(t)l < p for 0 S t • T,

n = 1, 2, .... Thus it suffices to prove that

Yn (t) -> 71(t) almost everywhere, since the desired result

then follows from the Lebesgue dominated convergence theorem.

If to E (0, T) then there is a unique interval

t(n) tv(n)+1) containing to. Consider i fixed,
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S_< i < M. By definition and the law of the mean, for each

n > T/to there exists Tn' tn(n) < n < tn such that0 ~ )i= -n = (n)' uhta

tn

v(n)

At ( 7 (t)dt =itn0) At nf n

tn
v (n)-1

But it is clear that T n -> t as n -> o, so that

Si(T n) -> 7i(t 0 ), giving 7i(to) -- > 7(to) for

to C (o, T). This was to be shown.

To obtain the desired w c WL look at the sequence

], where -j > - j (weak*) for J 1, ... , N,

as 2-> ((8.1), p. 25). By a diagonal process similar

to that used previously there exists a function w e L and
nrasubsequence of fn2), say tnr), such that -i >

(weak*) as r -> - for i = i, ... , M.

By an argument analogous to the previous one, we get

W E WL, and it may be assumed that for some positive p

0 =< w(t) P v, 0 <_ t =< T,

(8.6)

where v (I, 1, ... , I) E EM.

To complete the proof of the lemma it remains to prove

that fT(t) • a(t)dt = 0Twt) • c(t)dt.

Now using tho duality theorem of linear programming and

the hypothesis that for n = 1, 2, ... the vectors zn(tn)
V
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and wn(tn) solve pn . we get
V

n n

(8.7) Z n(tn) * an(tn) = wn'(tn) . n(tn), n 1 2,

Note that ror v = 0, .... n - , if tn < t < t
V V+1'

zn (t) = zn(tn). Hence, by the definitions
V

ri-1 n-i tn

Atn Z zn(tn) .an(tn) =) Zn(tn) . + ~td
V V J

V=O V=o t n
V

An

Z fn(t) . ~td
V=o n

T
z f -n~ a(t)dt

0

Similarly, for v =,..,n, if tn V V < ' w

Sn (tn), so that
V n n t

Atn Z wn(tn) . n(tn) = wn(tn) *f c(t)dt

V=1 V=1 fln
tv-1

n =n

= Z f An(t) c*t~tt
v~t~d n ctd

=1tvn
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Thus, from (8.7), for n = 1, 2j ...

T
z •n(t) a(t)dt + Atnzn(tn) *antn

n n n
0

(8.8)
T

=/ w n(t) c(t)dt + Atnwn(tn) . cn(tn)
f0 0

0

It is clear, however, that the vectors zn(tn), an(tn),

w n(tn) and cn(tn) remain bounded for all n so that
0'0

lim Atnzn(tn) . an(tn) = lim Atnwn(tn) . c(tn) =0
n n

n n

We now use the fact that there is a common subsequence
n n

(nr] such that jr -> •j and wir -> oi (weak*) as

r -o for i = 1, ... , M, j = 1, ... , N. Thus, as

r -> co,

T T
rt) M a(t)dt -> j (t) • a(t)dt, since a e LN

0 0

and

T Tfnr(t). c(t)dt -W f •(t) c(t)dt, since c E L.

0 0

But these limiting values fT E(t) • a(t)dt and
T

fT v(t) • c(t)dt must be equal. This fact follows from

(8.8) and the observation that the terms involving Atn
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tend to zero.

This completes the proof of the main lemma.

We note that such functions F and 7 may not be

solutions to the original problem, since they satisfy the

inequalities only almost everywhere.

LEMMA 5 (Patch-up process). Given z e ZL with

0 _ z(t) < Pu for 0 < t < T, there exists a z E Z such

that z = z almost everywhere. (A similar result holds for

the dual problem.)
PROOF. Let S = (t E [0, TI : Bz(t) < c(t) + ft Cz(s)ds].

Then, by the hypothesis, if S denotes the complement of S

in [0, TI, S has Lebesgue measure zero. Thus S is dense

in [0, T].

By the axiom of choice we wish to choose some bounded,

measureable, non-negative function z such that z(t) = z(t)

for t c S and such that

t

(8.9) Bz(t) !g c(t) + Cz(s)ds, 0 < t < T

0

Instead of (8.9) it suffices to have

t

(8.1o) Bz(t) _ c(t) + Cz(s)ds, 0 < t < T
o
0

since z is to be equal to z almost everywhere, that is,

for t c S.
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To prove the existence of such a function it suffices

to prove that for each t e S there exists some x E EN

such that Bx <(t) + f t Cz(s)ds and 0 < x < pu.

0Accordingly, let to 0 -S. Since S is dense in [0, T1,

for k = 1, 2, ... there exist tk c S with tk -- > to

as k -> o. Now by the hypothesis 0 < z(tk) = pu for

k = 1, 2, ... , so by compactness there exist x : EN and

a subsequence {k•e) such that z(tk ) -- x. But for each
tk~g

•, Bz(tk ) < c(tk ) + fk Cz(s)ds so that in the limit
t

Bx • c(to)+ fo° Cz(s)ds. This uses the continuity of c

and of the integral. Furthermore, for Y = 1, 2, ... ,

0 < z(tk )Pu, so that 0 < x < pu.

Therefore, by the axiom of choice there exists some

z having the desired properties.

9. BOUNDEDNESS FOR THE PRIMAL PROBLEM

Having proved the main Lemma 4 we shall seek to show

that hypotheses I and II of Theorem 1, p. 4, are sufficient

to reduce the theorem to a point where Lemma 4 may be

applied.

In this section we show that Hypothesis I guarantees

boundedness for the primal problems.

In EN we know that if (x c EN : Ax • b) is not

empty, then
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(x c EN Ax• b) is bounded if and only if

ix EN- Ax _ 0) = (o).

(A proof is given in [7].) We now prove

LEKMA 6. If ix e EN : x > 0 and Ax _ b) is not

empty, then ix c EN : x > 0 and Ax _ b) is bounded if

and only if (x e EN : x > 0 and Ax < 0 - (0o].

PROOF. Let A be the (M + N) x N matrix with rows

A 1% 1 N
ai defined by ai -ai, i I, , M, a M+i 5 ij EN,

i = I, ... , N, where 6ij is the Kronecker delta. Let

b = EM+N be defined by pi = i i ,..., M,

i= 0, 1 = M + 1, ... , M + N. Then Ax < b if and only if

Ax b and x > O. Also, Ax < 0 if and only if Ax < 0

and x > 0. Thus Lemma 6 follows immediately from (9.1).

We will find it useful to define the following linear

norm on EN.

DEFINITION. For x = (Qj) £ EN, let ijxIi N It I.J=l •

It is clear that a subset of EN is bounded with respect

to this norm if and only if it is bounded in the euclidean

norm. Furthermore, the topologies induced on EN by these

norms are identical.

LEVMA 7. Suppose (z c EN : Az o) = o). Then there

exists p > 0 such that Az < x implies lizil < PlIxII,

whenever z e EN and x E EM.

PROOF. Let sM= fly e E : Ilyll = 1). Note that SM
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is compact. Now for y e SM the set (z e EN : Az < y)

is compact, for it is either empty or bounded and closed by

the hypothesis and (9.1). Define T : SM -> reals by

max (Ijzjl : Az < y), if not empty

cP(y) -

0, otherwise.

We assert that T is bounded on SM, for suppose not.

Then there exist y,, Y2 " "-" c SM such that y(yn) -> 0.

We may assume that cp(yn) > 0 for each n. Hence for each

n,[ z Az < y_) is not empty. Let zn satisfy

Cp(yn) 11 = 11 and AZn - Yn for n = 1, 2,.. Define

Z n z/Z 11. Note that IIznII = 1 for all n. Hence

zn E SN' so by compactness there exist S • SN and a

subsequence ]nk) such that z nk--> z as k -> Now

for k-- 1, 2, ... Azn•k _ Ynk/Iznk 11; but since Ynk e SM,

Ynk /Ilzn -> 0. Hence in the limit AF •ý 0. But 7 e SN

so z j 0. This contradicts the hypothesis. Hence there

exists p > 0 such that 0 ý q(y) < p for y c SM.

Now suppose Az < x. If IjxjI - 0, x = 0, so z = 0

and clearly 11z4j • pjlxIj. If jlxii > 0, then xt x/jIxII c sME

Hence A z/1ixII • x/IlxII so Ilz/IlxI1 1 cp(x') • p. This

completes the proof.

LEMA 8. Suppose [z N : z > 0 and Az 0 )l = (0).

Then there exists p > 0 such that z > 0 and Az x

irmplies lizil • p lxil whenever z c EN and x e EM.
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PROOF. Lemma 8 follows immediately from Lemma 7 using

the device employed in the proof of Lemma 6, p. 34.

LEIMA 9. Assume that z EN : z > 0 and Bz < 0]) ( 0).

For n = 1, 2, ... let zn(tn), ... , zn(tn) be feasible
0 n

nfor P Then there exists R > 0 such that for all n

and k, 0 < k < n, llzn(tn)l <= R.

PROOF. Recall (p. 28) that I1 = max ([Yi(t)I

1= 1, ... , M, 0 < t < T) so that for all n and k,

0 _ k < n, cn(tn) _< v.

Let an arbitrary n be given. By the hypothesis

zn(tn) > 0 and Bzn(tn) cn(tn) _ -v, so by Lemma 8,00 0

llzn(tn)ll !g pjljvl. Also zn(tn) 0 and

Bzn(tl) - cn(tl) + AtnCzn(tn) <= 'v + AtnCzn(tn) so

0(9.2) Ilzn(tn)II <• pIIl~v + Atnczn(tn)II

We now claim

There exists 0 > 0 such that for z c EN

(9.3) 1 _ 0

For the proof let C be the M x N matrix (Yij), and

let O/M = maxijjI7ij1. Now Cz = (c, • z, ... , cM• z) C EM,

where c. is the ith row of C. Note that I'ci • zi =

Iz jyijtjI e/M Ej 1I = o/M 11z4j for i = 1, ... , M. Hence

laCzil = EM Ici z Zi zM e/M jlzil = elizil, proving the

assertion.
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Using this result in (9.2) we get

llzn(tl)II • p[IJIIvI + Atnellzn(tn) II]

< P([JIIvj + Atne ilvii, i

= p ljjvl (I + Atnep)

We now assert: For 0 < k <= n, lIzn(tn)I <=

PIIPvII 0I + Atnep)k. This is true for k = 0, 1. Assume

true for all v, 0 < v <= k < n. Now zn(t+I) >= 0 and

(t n ntn ) + Atn Zk Czn(tn) < v + At, k oCzn(tn),Bzn(k+1 ) = cn(t )1

so
k

zn(tn+ k1 )- l + Atn Z IICzn(tn)II
V=O

k

_P 1pV~l + Atn. l Ilzn(tn)II}
v=O

k

P {,,tvj + AtnepJvII,, z 01 + Aznep)vl
v=O

= PjII•vl (1 + Atnep)k+l

The assertion thus follows by induction on k.

Now ep > 0 and Atn = T/n, so (I + Tep/n)k •

(I + Tep/n)n for 0 _ k_ n. Hence for 0 < k < n,

Ilzn(tn)l _< plilivil (1 + Tep/n)n. But ((1 + Tep/n)n)n is



38

an increasing sequence ([8], p. 72) and limn (I + TOP/n)n

exp TOp. Therefore for n = 1, 2, ... , 0 < k < n,

llzn(tn)ll •P 1IitvII exp TOp. If this upper bound is called

R it is clear that R is independent of n and k. This

proves the lemma.

10. EFFECTIVE BOUNDEDNESS FOR THE DUAL PROBLEM

We turn now to the dual problem using Hypothesis II.

LEMMA 10. Assume that B, C, and c(t) have non-

negative components, 0 -_ t < T. Then there exists p > 0

such that if the dual of Pn has a solution it has solution

vectors with no component bigger than p.

PROOF. Define a = max (Ic j(t)l J = I, ... , N,

0 < t < T). Note that J• >= n(tn) for J = I, ... , N, and

all n and k, 0 k n. Let =min [pij pij > 0)

and =maxj (Zi~ij where B =(ij) and C = (7ij).

Note that F, 7 > 0, since we have assumed in the definition

of the problem that neither B nor C is a zero matrix.

Now for n = 1, 2, o.. define 7n(tn) by vwn(tn)

cn(tn)v, 0 _ k _ n, where W-n(tn) = (i + Atn)n-k.

Note that for 0 < k _ n, (I + 7/F Atn)n-k _ (I + :/F Atn)n

and (i + 7/F Atn)n ' exp 7YT/F as n -> •. Therefore,

-n(tn) K / exp 7T/F for n = 1, 2, ... , 0 k n.

This bound will be the desired p.

Now consider n fixed and let wn(tn) w n(tn)0 n
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be feasible for the dual of Pn. The argument to follow

will hold independently of n.
An,.n) = n (,ntn, . n tn E b

Define w n•kJ (k M(tk) "" k'tk)) EM byAn n) ti ), jt))

(t = min ((t, wn(t ] for i = M ... ,;

k = 0, ... , n. Clearly wn(tk) = wn(tk , and wn(t <k

(t) ,and n(t) an 0 for k 0, ... , n.An n), .. 'nctn) sfail

We will show that wn(t w is feasible

for the dual of pn so that if wn(tn), ... , wn(tn) is
o n

optimal for PnI

n n
wn(tn) . cn(tn)= wn(tk) . c(tk)

k=o k=o

and we see that n(tn), ... , w n(tn) is also optimal.
0n Antn 7n(tn)

Furthermore, since w k n f ork = 0, n,

each component of wn(t ) is no more than ý/F exp 7T/ý = p.
n~t) ..° ^ntn) sIt remains to prove that ^nW ), . , nn)i

feasible for the dual of pn that is

wn(tn )B >a~n
n n

and

n
^n(tn)B > an(t•) + Atn nn(tn)C, 0, n-w •k; k "X°

v=k+1

In the sequel fix j at an arbitrary value 1 • J < N.

The argument will be independent of J.



Firstly, for k = n we must show zi="a n(tn nij >= jn(tn)"

CASE 1. 'There exists i° such that pi J > 0 and

An (tn) = n(tn). Then Zi1i(tn),ij >A n (tn) =W onn Thn i n i~j 1i n i 30 0

-ntn n)(3 > n(tn), 0
nin ji = jn since pioj

implies Pi > 1 and a > = tn) independent of J.o == jn
>,Aýn) = )n (tn) The

CASE 2. Whenever ij > , i(t) = n Then

imn(tn),ij = ,i n(tn)(i >n (tn) since
i Mi n i) i n ij=- j n sic

(wn(tn), ... , wn(tn)] is feasible for Pn.
0 n

It remains to chow for k = 0, ... , n - 1

M n M
n(t n) n) > .(t )+ Atn A L 7,n, 3 n( )
i tk) ij J k Z_1 i Yi <V)

i= 1=k+1 i.i

Consider k fixed, 0 < k < n - 1.

CASE 1. There exists io such that i > 0 and
,An (tn) = tn). Thn ntnf ,An (tn)=
Wi 0 k) W k Then E Mitk ij = Pi 0 io

0 0 0

Pi o•/n) ( + / AFtn)n-k > Atn)n-k

^n wn n~t)fo

Now since W (t < wn(t for v 0, ... , n,

n n __)< }<iijn(tn) < •n(tn) Therefore
i ij I V i t
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n M n

(t + A (tn) ) < a + Atn 7ZVn(tn)

v=k+1 i=1 v=k+1

n

fn-v= n (i + 7I/ Atn)

v=k+1

n-k-1
= •(1+ 7/F tn (1 + 7/F Atn)'-

r=o

n-k

ZO(i + 7/5 Atn)

which was to be shown.

CASE 2. Whenever p > 0, p(tn)

Then

Ani(tk),ij = n(tk),i = n(tk)

i i

n

+ Atn wn(tn)C

v=k+l

n

(tn) + At n(t)> w (,)

v=k+1

since wn(tn) >_ wn(tn) for v 0, ... , n, and C > o.
V V

This proves Iemma 10.

REMARK. It is easily seen that if B > 0 then

{x E ,N : x > 0 and Bx 0 = (0) if and only if each



column of B has a positive entry.

Lemma 10 has an immediate corollary.

LEMMA 11. If the hypotheses of Lemma 10 are satisfied

and if each column of B has a positive entry, then the

-n(tn), _., wn(tn) are feasible for the dual of pn

n = 1, 2,....

PROOF. We are in Case 1 of the proof of Lemma 10.

11. PROOF OF THE DUALITY THEOREM

After proving Lemma 12 we shall be in a position to

prove Theorem 1.

LEMMA 12. Under Hypotheses I and II of Theorem 1, for

n = 1,2, ... each Pn has optimizing solutions zn(tn),

wn(tn), k = 0, ... , n.

PROOF. For any positive integer n we need only show

that both Pn and its dual problem have feasible vectors,

since the duality theorem of linear programming will then

yield the existence of optimizing solutions.

We note that cn(tn) > 0 for k = 0, ... , n so that

zn(tn) = 0, k = 0, ... , n, is feasible for Pn. By Lemma

i1 qnd the remark preceding that lemma there are vectors

feasible for the 01ual of Pn This completes the proof.

We now prove Theorem 1. Lemma 12 applies, so for

n I1, 2, let zn~tk)n wn(tI)n 1 0 0 n be the

optimizing solutions of Pn By Lemma 9, p. 36, there



.3

exists R > 0 such that for n = 1, 2, ... and 0 < k < n,

llzn(tn)ll R R. Furthermore, by Lemma 10, p. 38, we may

assume that for some F > 0, Iwn(tk) II _ • for n = 1, 2, ...

and 0 < k < n.

We have now succeeded in satisfying the hypotheses of

the main Lemma 4, p. 24. Thus there exist functions Z E ZL

T T-and w e WL with foTE(t) • a(t)dt = f 0oT(t) • c(t)dt. By

condition (8.2), p. 25, we may assume that 0 _< •(t) = Ru,

0 ý t < T, since R is clearly adequate to play the role

of P, which was an upper bound on each component of

zn(tn) for all n and k, 0 k k _ n. Similarly, by con-

dition (8.6), p. 29, we may assume that 0 < ;(t) _v,

0 < t < T.

We may now use the patch-up process (Lemma 5, P. 32)

and further assume that F e Z and w e W.

We have thus completed the proof of Theorem 1, for by

the optimality condition of Theorem 2 (p. 11) 1 and v

are solutions of their respective problems.

12. RELATED RESULTS

We have seen that Hypothesis I was sufficient to give

a uniform bound on the functions [zn] for the primal

problem Pn and that Hypothesis II guaranteed a uniformly

bounded set of functions [wn] for the dual of pn

That I is related to Z and II is related to W is



even more apparent in the following two theorems, which can

be proved with a minimum of further work.

THEOREM 7. Under Hypothesis I, if Z is not empty,

then there exists a F e Z which maximizes foTz(t) • a(t)dt,

for z e Z.

THEOREM 8. Under Hypothesis II, if W is not empty,

then there exists a w e W which minimizes foTw(t) . c(t)dt,

for w e W.

We need

LEMMA 13. Let u and v be bounded, measureable,

non-negative functions on [0, T] satisfying u(t) < A +

ftou(s)v(s)ds, 0 < t < T, where A > 0. Then u(t) <

A exp f v(s)ds, for 0 < t < T.

For a proof, see [9], pp. 35-36.

We can now prove a continuous analogue of Lemma 9, p.36.

LEMMA 14. Under Hypothesis I Z is either bounded

or empty.

PROOF. If z e Z let x(t) = c(t) + f tCz(s)ds,

0 t .T Then for 0 < t T

M t

~x(t)II = I 17it) j ci • z(s)ds

i 0
•M t

<Ml + fC fc • z(s)ds

oo
<MI-L + IICz(s)Ijds < Mga + 0J Ijz(s)fids

0 0



where ýt is defined on p. 28 and e on P. 36, (9.3).

Now by Lemma 8, P. 35, there exists a p > 0 such

that z(t) >= 0 and Bz(t) ý x(t) implies Ilz(t)II <_ p jlx(t)II,

0 < t < T. In fact p is independent of z, x. Hence

Ilz(t)II =< p(M + I) + peft Jjz(s)jjds, o _< t =< T. Note that

p(M•t + 1) > 0. Letting u(t) = Ilz(t)II and v(t) = pO,

we apply Lemma 13 to get for 0 < t < T

t

Ilz(t)II =<p(Mp + 1) exp pO• ds <: p(Mi + 1) exp POT

Since this bound is independent of z, the lemmna is

proved.

We now prove Theorem 7. Let (zn]) be a maximizing

sequence; that is limn T z n(t) • a(t)dt=

sup [I T z(t) •a(t)dt : z e Z), where zn E Z for

n = ,2, ... Let m be the value of this supremum.

Since Z is bounded by Lemma 14 m < -, and we may apply

a diagonal process to each sequence {,n.] to obtain a
Sn k

z e Z L and some subsequence n k such that ý j •>

(weak*) as k -> -, for J = 1, ... , N. Hence

fTz n (t) • a(t)dt -> fo 2(t) • a(t)dt = m. By the patch-

up process, Lemma 5, p. 32, we may assume F E Z. This

proves Theorem 7.

For the proof of Theorem 8 we need the continuous

analogue of Lemma 10, p. 38.
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LEVMA 15. Under Hypothesis II if w e W then there
AtA

exists w c W such that mi(t) • exp 7T/F,

, Nand (t) • c(t)dt < fo w(t) • c(t)dt.

PROOF. Analogous to the 7n(tk) of Lemma 10 define

7(t) = exp (T - t)lF v = 1(t)v, for 0 < t <•T.
A A

For w c W define w by mi(t) = min 1wi(t), FD(t)) for
A

i = 1, . M., N. The proof that w e W is analogous to the

proof that the wn(tn), ... , n(tn) were feasible for the

dual of pn and is omitted. By the definition

(t) w(t), 0 < t < T, so that foT(t) • c(t)dt<

fT w(t) • c(t)dt. Also wi(t) _ J(t) • E/F exp 7T/F

for 0 t < T and for i=i, ... , M. This proves the

lemma.

For the proof of Theorem 8 let (wn) be a minimizing

sequence. That is limn fT w n(t) . c(t)dt =

inf t(fT w(t) • c(t)dt : w E W) > 0. Let m' be the value

of this infimum. By Lemma 15 we may assume that each

wn c W satisfies 1Iwn(t)II < M 3/F exp 7T/t, for

0 < t < T. Again using a diagonal process and the patch-
.

up lemma, we find a function w c W and a subsequence

ink3  such that fT wnk(t) - c(t)dt -> fT w*(t) • c(t)dt =

M'. This w e W is the desired minimizing function, so

the proof of Theorem 8 is complete.



13. AN ECONOMIC APPLICATION TO A DYNAMIC
LEONTIEF MODEL

In view of the economic motivation of Theorem 1, one

might well question whether Hypothesis I and, particularly,

Hypothesis II are too restrictive for any fruitful economic

application. In this section we describe a dynamic "closed-

end" Leontief production model, one in which all goods are

accumulated or consumed in the production system itself,

with no flow of goods to or from the system. This model is

based upon a continuous version of the discrete Leontief

model discussed in [], particularly on p. 289, with the

additional requirement that there be no outside consumption.

We shall see that Hypothesis II is satisfied for this model.

Furthermore, Hypothesis I will seem not unreasonable.

Consider a production system consisting of N

activities and N goods, where each activity produces ex-

actly one good. Assume that units and notation are chosen

so that operating the ith activity at unit rate produces

one unit of good Gi. Let aij be the amount of Gi con-
sume by he th

sumed by the j activity in producing one unit of Gj,

and let pij be the amount of Gi required as capital

stock in order to produce G. at a unit rate. Let

A = (aij) and B = (P ij), and note that the aip ij

are non-negative by definition.

If we assume that
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x : [0, TI-> EN is a bounded, measureable
(13.1)

function,

then the instantaneous net production resulting from

operating the activities at a level x(t) Ž o is

(I - A)x(t). We impose the condition

(13.2) (I - A)x(t) > o, 0 < t < T

which states that there should be no disinvestment (or de-

cumulation) of stocks in the production process. (In [3]

this condition is imposed on the model described on p. 289,

but not imposed on the model described on p. 338.)

Now it is known (see, for example, [I1, pp. 296-297)

that a consumption matrix A is productive (meaning that

some positive bill of goods (I - A)x can be produced by

some x > O) if and only if I - A has a non-negative

inverse. We make the assumption that A is productive, so

if x(t) satisfies (13.2) x(t) > o.

Now if co denotes the initial stock bundle (co e EN

co ý 0), then the stock bundle accumulated by time t is

c + ft(I - A)x(s)ds. The technological constraint imposed

by limited capital stocks is, then,

t

(13.3) hx(t) ! co +• (I - A)x(s)ds, 0 < t < T
0

Let a : [0, T] -> EN be a continuous map and regard

a(t) ac the value of the goods bundle (1, 1, ... , I) c EN
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at time t. Denote by P the problem of maximizing the

value f'(T - A)x(t) • a(t)dt subject to the constraints

(13ý1), (13.2), and (13.3), with the assumption that A

is productive.

We have the following corollary to Theorem I

COROLLARYo If in the dynamic Leontir< production model

P the matrix A is productive , -he matrix T satisfies

hypothesis I of Theorem 1, then the conclusion of Theorem I

is valid for the model P.

PROOF. We employ a change of variable, letting

z(t) = (I - A)x(t). Since A is productive x(t) =

(I - A)-1z(t), and (13.3) becomes

t

(13.4) B(I - A)-Iz(t) _ co + z(s)ds, 0 < t < T
0

Denote by P' the problem of finding some bounded,

measureable, non-negative function z : [0, TI -> EN

subject to (13.4) and maximizing foT z(t) - a(t)dt. Since

z(t) _ 0 if x satisfies (13.2), and x(t) > 0 and x

satisfies (13.2) if z(t) _ 0, it is readily verified that

the problems P and P' are equivalent. Furthermore, it

is a straight-forward exercise to verify that the dual

problems, for P and P' also are equivalent, if one notes

that the dual of the program P (with no sign restriction

on x) requires strict equality in the dual constraints.

For the proof o[' the corollary we let B B(I - A)-,
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C = I, and c(t)=- co to employ the te:2ms used in defining

the continuous linear programming prcu):lems on p. 3 and

verify that the hy'potheses of Thu,,.,em 1 are satisfied. Since

B, (I - A)-, I, and c all have non-negative components,

Hypothesis II follows at once. TUing the fact that (I - A)-'

is both non-negative and noa-singular, one easily verifies

that B satisfies Hypothesis I if B does, and this

completes the proof.
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