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Abstract of "A Duality Theorem for a Class of

Continuous Linear Programming Problems"
by
Willlam F, Tyndall

Consider the dual palr of continuous linear programming
problems defined in the following manner. Let 2z be a mapping
of the closed interval [0, T] of the real line into real
euclidean space EN such that each component functilon 1is
bounded, measureable, and non~-negatlve. Iet w be a similar
map intc EM. If B and C are real M X N matrices and
a and c¢ are continuous maps of [0, T] into EN and EM
respectlvely, let Z be the set of such functions =z satisfy-
ing Bz(t) < c(t) + J¥ ca(s)ds, 0 < 6 < T; and let W be
the set of w satisfying w(t)B 2 a(t) + fg w(s)Cds, © <tg T
Iet the primal continuous linear programming problem be: Find
Z € Z maximizing fg z(t) » a(t)dt, for =z e Z; and let
its dual problem be: Find W € W minimizing fg w(t) « c(t)dt,
for w € W The following duality theorem 1s proved.

THEOREM. Hypothesis: I. (x ¢ BN . Bx < 0 and

x 20} = (0}, II. B, €, and c(t) have non-negative
components, O g t § T. Conclusion: There exist optimal
solutions z € Z, W € W. Furthermore, two functions z ¢ Z,
w € W are optimal if and only if fg z(t) . a(t)dt =

fg w(t) « c(t)dt.

Examples demonstrate that nelther hypothesis alone 1is
sufficient.

The economic motivation of these problems is discussed,
and the theorem 1s applied to a dynamic Leontilef model of
production.

This paper was submitted in partial fulfillment of the
requlirements for the degree of Doctor of Phllosophy at Brown
University, June 1963. The author wishes to express his
gratlitude to Professor David Gale for hls helpful guldance
in the preparation of this paper.
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1. PREFACE

The main result of this dissertation is a duality theo-
rem for a class of economically meaningful continuous linear
programming problems, a class whlch 1s a natural extension of
(finite) linear programming problems. The class of problems
1s defined and the theorem stated in Section 2.

In keepling with the economic motivation of these problems
an attempt is made to 1llustrate by several examples some
simple problems of economic significance. In fact, Sections 3,
4, and 6 are devoted primarily to an exposition of this
economlc background together with a detailled solution of one
example which serves to 1llustrate the usefulness of the con-
cept of duallty as a technique for arriving at solutions and
proving the results obtained are lndeed optimal. The connec-
tion between these continuous llnear programming problems and
finite linear programming problems should become apparent.

The filnal section applies the duality theorem to a dynamic
ILeontief production model.

The mathematical results are contailned in Sections 5 and
T=-12. Section 5 contalns some results relating the primal and
dual problems, whlle Section 7 demonstrates that a duality
theorem for this class of continuous linear programming prob-
lems requires hypotheses which are more restrictive than those
required 1in the filnite case.

Section 8 contalns the proof of the main lemma, which



itself 1s a duality theorem with some rather restrictive hy-
potheses. Sectlons 9 and 10 demonstrate that the hypotheses
of the duality theorem ensure that the main lemma is appli-
cable. The proof of the duality theorem 1s completed in

Section 11, while Sectlon 12 contains some related results.
2, STATEMENT OF THE DUALITY THEOREM

Iet 2z be a function mapping the closed interval [0, T]
of the real line into EN, real euclidean space of dimension
N. For t e [o, Tl 1et =z(t) = (§1(t), cees QN(t)). We
shall assume that QJ is a bounded, measureable (with respect
to Iebesgue measure of the real 1line) function for
J=1, «eey, N, and call such a function =z bounded and
measureable.

Iet a and ¢ be continuous functions mapplng [0, T]
into EN and E', respectively, and let B and C be real
M X N matrices. We use the followling notation: For

N

d = (81, cees SN) e E, e = (81, ey EM) € EM, and for A

any real M X N matrix, let eA and Ad denote the sultable

vector-matrix products. (Note that we do not use the familiar

N

notation AdT.) The inner product of d, d!' ¢ E° 1s gilven

by d « d' = z§;1 8353' Finally, we say d < d' 1if and only
1
if BJ g 5J fOI‘ J = 1, coey N-

Define Z to be the set of all bounded, measureable

functions z : [o, T] —> EN  such that z(t) 2 0 and



Bz(t) < o(t) + [loz(s)ds for o< t < T. Similarly, define

W to be the set of all bounded, measureable functions
w: lo, T —> E' such that w(t) > 0 and w(t)B
a(t) + fzw(s)c ds for 0 < t< T. A function z ¢ Z or
w € W will be called feaslible. We shall assume that nelther
B nor C 1s a zero matrix.

The continuous linear programming problem to be discussed
can now be stated.

PRIMAL PROBLEM. Find some 2z ¢ Z such that

T

T
f z(t) - a(t)dt = max{f z(t) - a(t)dt : z € z} .
(o]

o}

This problem 1s called the primal problem to distinguish
it from the related dual problem.

DUAL PROBLEM. Find some w € W such that
T

T
f w(t) - c(t)dt = min{f w(t) o c(t)dt : w ¢ w} .
(o]

o

Observe that 1f C were a zero matrix, contrary to our
assumption, and if a and c¢ were constant, then we are left
with a standard maxlimum problem and its dual, well-known ob~
jects 1n the theory of linear programming. (See [1], for ex-
ample,) It is reasonable, therefore, to consider this class
of continuous linear programming problems as an extension of

a class of (finite) linear programming problems and to attempt



to extend the baslic theorems of linear programming to this
larger class.

Indeed, the main result of this thesls 1s an analogue of
the duality theorem valid for a class of economically meaning-
ful continuous linear programmlng problems.

THEOREM 1.,

Hypothesls:

I. {x ¢ EN : Bx

<0 and x 2 0} = {0}
II. B, C, and c(t) have non-negative
components for 0 <t < T
Concluslon: There exist optimal solutions z e Z
and w € W. Furthermore, two feasible
functions 2z and w are optimal if and
only 1f [lz(t) - a(t)at = fTw(t) - c(t)at.

Theorems 5 and 6, p. 16, demonstrate that neither hy-
pothesls alone 1s sufficlent.

It should be noted that the condition that both primal
and dual problems be feaslble, a sufficlent condition for the
duality theorem of (finite) linear programming, is no longer
sufficient to yleld a duality theorem for these contlnuous

linear programming problems. Thls is demonstrated by Theoren

,"': b. 16,
3. ECONOMIC MOTIVATION: AN EXAMPLE

The continuous linear programming problem which has been

defined 1s called a "bottleneck problem" by Richard Bellman.
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In [2] he examines several economically meaningful examples
and discusses the dual problem, using properties of the dual
to obtaln solutions to hils examples., Furthermore, Dorfman,
Samuelson, and Solow in [3] discuss a discrete version of this
problem in thelr examinatlion of a dynamic Ieontief system.

In order both to 1lllustrate the economic background and to
give an i1llustratlon of the practical usefulness of the prop-
erties of duality, we shall look at a simple example, a modifil-
cation of one due to Philip Wolfe [4],

EXAMPIE 1. Iet us Imagine a steel manufacturer who 1s
faced with the cholce of allocating part of hls steel output
at a rate §1 to bulld a larger steel factory, thereby en-
abling steel to be produced more rapidly, and, on the other
hand, allocating the remainder at a rate §2 to his stock-
plle of steel, the ultimate goal of his production effort,

Assume that there are 7 units of steel capacity initially,

1
and the units are chcsen so that one unlt of steel capacity
enables steel to be produced at the rate of one unlt of steel
per unlt time.

The rate of production of steel, §1 + §2, 1s assumed to
depend llnearly on the capacity of the factory. Moreover, it
1s assumed that the value of the steel séockpile depends
linearly on the quantity of steel avallable, so that the manu-~
facturer seeks to maximize hils stockplle of steel by the end

of T units of time.



At each time t, 0 < t < T, the manufacturer must de-
termine the rates of allocation, 21(t) and Qe(t), both of

1

which are to be non-negative (i.c., no "scrapping" is allowed).

Now the amount of steel capacity at time t 1s just
7, fz §1(s)ds. The constraint that limited factory capacity

imposes upon the rate of production §1(t) + C?(t) is

' t
(3.1) () + 6 S+ [ te)as, ogEgT .
@]

We dmpose the reasonable technologlcal constraint

(3.2) 6,(8) £ 7, 0S8

(17aN

T

which Just says that the factory cannot be enlarged arbitrarily
in a limlited amount of time.

Given a technology constrained by (3.1) and (3.2), the
manufacturer 1s faced with the problem: Find non-negative
functions §1, §2 maximizing fg Eg(t)dt subject to (3.1)
and (3.2).

If we let B = (;g), C

(39)» alt) = (0, 1),

(€1(t), Qz(t)), the problem can

il

c(t) = (71, 72), and z(t)

be stated: Find a (bounded, measureable) function .

z : Lo, TI —> B° with z(t) 2 0 and Bz(t) < c(t) +

fi Cz(s)ds, for 0<t < T, maximizing fg z(t) * a(t)dt.
In order to examine in detall just one of the several

possible cases which arise, we shall assume that



Y
(3.3) o<71<72 and T > 1 + fn == .

74

It will be seen later and might be argued now from a
commonsense point of view that an optimal allocation policy
will consist of bullding steel capacity initially (at the ex~-
pense of not increasing the steel stockpile) and toward the
end of the production interval using this enlarged capacity to
produce steel exclusively for the stockpile at the larger rate
then permlsslible. Anticipating this, we set €2 =0 1in (3.1)
and solve §1(t) =7, + fg §1(s)ds to get 51(t) = 7.,
This policy 1s feasible so long as 71et g 72. When
t =t, E In 72/71, a "bottleneck'" develops; one cannot con-

1
tinue to build steel capacity at the rate 7y et for t > t1

1
since (3.2) would be violated. As a result of this factory
bullding bottleneck a new policy must be adopted for t > t1.
We postpone the solution of this example until after we
have proved some useful results extending some theorems of
linear programming relating the primal and dual problems.
Then we will solve concurrently both the primal and dual
problems for this example, thereby 1llustrating the useful-
ness of the dual problem, both in arriving at a solution to
the primal problem and in proving that the result so obtained

1s 1ndeed the optimal one.
k, A DISCRETE VERSION OF THE PROBLEM

In order to motivate the definition of the dual problem



we shall examlne a dlscrete versilon of the continuous problem.
This concept, expounded in [2], will be used later in proving
the duality theorem.

Suppose that the interval [0, T] 1s divided into n
equal parts of length At" = T/n. If t} = kT/n,
Kk =0, e0ey, n, let us reformulate the example of Section 3.
We shall now regard §1(tﬁ), for example, as the (constant)
rate at which steel 1s used to enlarge the factory during the
time interval [tE, tﬁ+1). During this interval, therefore,
the steel capacity is enlarged by §1(tﬁ)Atn. The constraint

(3.1) now becomes
§1(tg) + §2(tg) <7, , and
(he1) k-1

6, (tp) + 6,08 S 7, + ath Z ¢, (t7), k=1, «euy n

y=0
while (3.2) becomes
(u'g) C‘, (tﬁ) g 72, k = O’ esey NN .

We thus seek CJ(tE) 20 for J =1, 2; k=0, ceey D,
maximizing =2t (D) thereby maximizing AtPsR (1)
k=02*"k’? k=0>2""k’?
subJect to (4.1) and (k.2). We remark that z(t]) d1s sought
for purely formal reasons. The introduction of this variable
yields a more useful formulation for the dlscrete dual problem,

In vector-matrix notation this reads: Find non-negative



vectors z(tE) € Ee, k =0, ves, n, maximizing

n ny , ny )
Zk=oz(tk) a(tk) subject to

Bz (t7) < c(ty)
(4.3)

k-1
Bz(tlrcl) < c(tlr{l) + AtH Z Cz(t:‘), K =1, eoe, N
y=0
This dlscrete version of the problem 1s just an example
of a finite, 1f overblown, standard maximum problem. To this
linear programming problem is palred a standard minimum prob-

lem, its dual problem. It 1s: PFind non-negative vectors

w(th) e E°, X

i

Oy eee, N, minimizing Z;=Ow(tﬁ) . c(tﬁ),

subject to

w(tD)B 2 a(ty)

(h.4)

n

w(ty) B2 a(ty) + at” Z W(t7)C, k= 0, suo, n = 1.
v =k+1

It 1s informative to compare thils dlscrete dual problem
with the continuous dual problem. We see 1n the comparison
that the dual problem assoclated to the dlscrete version of
the continuous primal problem is 1tself a discrete véfsién
of the dual problem assoclated with the contlnuous primal

problem.
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5. SOME PROPERTIES OF DUALITY

In thils sectlon we extend some of the theorems of linear
programming to continuous linear programming problems. These
results are proved in [2], but are included here for the sake
of completeness.

For any bounded, measureable function 2z : [0, T] —> EN;
let us define the function £(z) : [0, T] —> gl by
£(2)(t) = Bz(t) - [Cca(s)as, for t e lo, T, It is clear
that £(z) 1s again a bounded, measureable function.

Similarly, for any bounded, measureable function
ws: [o, T] —> EM; we define the (bounded, measureable)
function £*(w) : (o, T] —> ol by E*(w)(t) =
w(t)B - fgw(s)Cds for t e [0, Tl.

LRMMA 1. £ is "adjoint" to £ 1in the sense that

T T
Jf 2(z)(8) - wit)at =df ) (b) - z(b)at .
(¢] O

PROOF. Clearly both integrals are defined and finite,
By expanding the products in the integrands we see that it
suffices to prove that fg(mi(t)fgﬁj(s)ds)dt =
IE(CJ(t)IEwi(S)dS)dt for 1 = 1,...’ M; J = 1,0.', No We
use integration by parts, letting u(t) = fgCJ(S)dS and
T T t

v(t) = ftwi(s)ds. Note that fo(wi(t)fOEJ(s)ds)dt =

- [Tate)vr(t)as = = u(e)v(e)1D + [Tv(t)ur(t)at =

T T [} a -
Jo (84 (8) o, (s)ds)at.



1M

LEMMA 2. If z e 2 and weW, then [iz(t) « a(t)dt g
STu(e) + c(t)at.

PROOF. By the hypothesis £(z)(t) < c(t) and
25 (w) () 2 a(t), 0 £t T Since z(t) and w(t) are

non-negative, £(z)(t)

25w () -+ z(t) 2 2(t)

w(t) €< w(t) + c(t) and

a(t), 0 £ t < T. The conclusion
follows by integrating and using Lemma 1.
This lemma has an immedlate corollary.

COROLLARY, When the quantitles exist

sup { \/$ z{(t) « a(t)dt : z € Z }
o ,

< inf { \/? w(t) » c(t)dt : w e W } .
o

THEOREM 2 (Optimality Condition). If there exist func-~
tions Z ¢ Z and @ € W such that [.Z(t) - a(t)dt =
fgﬁ(t) « c(t)dt, then Z and Ww are the optimal solutions
of thelr respective problems,

PROOF. Using Lemma 2 note that for all 2 ¢ Z,

[T2(t) + a(t)at § fow(t) « e(t)at = [Z(t) + a(t)dt, and
for all w e W, [Tw(t) « c(t)at 2 [LZ(t) - a(t)at =
ITa(t) - c(t)at.

Iet us denote the ith component of Bz(t) ¢ EM, for

example, by (Bz(t))i.



THEOREM 3 (Equilibrium Conditions). Iet 2z € Z and
w ¢ W, Then fgz(t) . a(t)dt = fgw(t) » ¢(t)dt 4if and only
if both (1) and (11) are satisfled for almost all t e [o, T].
(1) For 1 =1, .uu, M (B2()); < 7,(t) + (fng(s)ds)i
implies wi(t) = 0.
(11) For J =1, oo, N(w(E)B), > a,(t) + (,r%'w(s)Cds)J
implies CJ(t) = 0.
PROOF., Suppose the conditions (1) and (11) are satisfied

almost everywhere in [0, T]. Multiply the 1th

inequality
by wi(t) and the Jth inequality by QJ(t) and sum to get

the equalilties

M M
Zmi(t)(laz(t))i = z w, (£)7,(¢)
1= i=
(5.1) | M1 t
+ Z wi(t) <f Cz(s)ds)
1=1 ‘ o] 1
N N
) O MEE) = )t (e)a ()
(5.2) = J;1
T
+ ¢, (t) w(s)Cds
J
J=1 t J

which hold for almost all t e [0, T]. The equality
2(t) « a(t)at = fTw(t) + c(t)at then follows by in-

tegrating and using Lemma 1.



Conversely, if the conditions fall for t 1n some sub-
set of [0, T] having positive measure, the equality in
(5.1) or (5.2) must be replaced by strict inequality for ¢t
in a set of positive measure. Consequently, fgz(t) » a(t)at <
fgw(t) « c(t)dt. This completes the proof.

6. SOLUTION OF EXAMPLE 1

We now return to the example of Section 3. We shall use
the equilibrium condltions to arrive at a solution.
The dual problem 1s deflned to be: Find non-negative

functions o, and o, minimizing fg(71m1(t) + 72w2(t))dt

1 2
subject to
T .
(6.1) o (8) + ay(t) 2 [(o (s)as, ogtgT
t
(6.2) o, (t) 21 , 05tgT .

We saw that for 0 t < t,, §1(t) = 71et

and §,(t) =0
satisfy the constraints (3.1) and (3.2). Now at the end of
the time interval [0, T] we suspect that an optimal policy
would stockpile all of the steel produced. We thus want %o
set §1(t) = 0 and let ;2 satisfy (3.1) as an equality for

t, <t < T, where ts, t1 < t, < T, 1is to be determined.

1]}
(@]

To do this we now look at the dual problem. If C1

for t, gt<T, (3.2) 1s a strict inequality, and hence,



i

from the equilibrium conditions (Theorem 3) the dual variable
Wy corrcsponding to the relation (3.2) must vanish* in this
interval in order for w, to be part of an optimal policy.
Furthermore, since 1t is deslred that §2 be positive, the
corresponding dual relation (6.2) must be an equality for

t, <t £ T. In this interval we thus desire that w1(t) =

and 1

i

[T 1 dt. This will be truc if t, = T - 1. But by
the assumption (3.3), p. 7, T - 1 > £n 7?/71 =t,, so

w(t) = (1, 0) for t, <t < T is the function desired.

To complete our solutlon to the primal problem we see
that for t, <t< t, (3.1) and (3.2) can be solved as

equalitics by taklng 21(t) =.7, and Cg(t) = (t - t1)72.

The equllibrium conditions now require that in (t,, te)
the dual functions o, and o, must satisfly (6.1) and (6.2)
as equalities. Solving for o, and ®, we obtain m1(t) =1

and mQ(t) =t, - t, t, <t <t,.

Pinally we scek a w to palr with 2z for 0< t ¢ t1.

The equilibrium conditlions lead to the cquations m2(t) =0
tqi-t

fEm1(s)ds. Thus let m1(t) = (7 - t1)e !

it

and wT(t)
and me(t) =0 for t e lo, t1].

Since the functions =z and w which we have obtalned
arc fTeasible and catisfly the cqulllibrium conditions, we are

guaranteed by Thecorem 3 that these 2z and w are the optimal

solutions of the problem and i1ts dual. As a check, using the

The "almost cverywherce" will not be repcated in thils
discusgslon,
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optimallty conditlon of Theorem 2, we note that

T
75 2
f 6, (t)at = £ (t, = £,.)% + 7,(T - )
(@]

I

L/‘ (71w1(t) + 72w2(t))dt .

@)

This example 1llustrates the complexity already en-
countered in the 2 X 2 case. With a greater number of vari-
ables and constraints one 1is forced to turn to more elaborate
techniques to obtain a solution. Bellman approaches this
problem employing a functional equation. Several examples are
solved using this method in [2]. R. Sherman Lehman, leaning
more heavily on the linearity of the problem, has devlsed a
"eontinuous simplex method" to solve some of these problems
in [5]. ©Neither of these treatments is a model of mathe-
matical rigor. Indeed the avowed purpose of these authors
is to discover solutions where possible; they are not con-

strailned by a desire for complete rigor in their methods.
7. ON EXTENDING THE DUALITY THEOREM

In Section 5 it was noted that the optimality and equi-
librium conditions have been extended without difficulty to
this class of continuous linear programming problems. The

important duality theorem, on the other hand, does not extend
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to thils class without modifying the hypothesis.

In this section we dlscuss two examples which will prove
Theorems 4, 5, and 6. These thcorems Justify the inclusion
ol Hypotheses I and II in Theorem 1, stated on p. k.

THEORIM 4. The exilstence of functions z and w,
feasible for their respective problems, is not sufficient to
guarantee the existence of optimizing solutlons.

PROOF,. Example 2, to follow.

THEOREM 5. Hypothesis I wilithout Hypothesis II is not
sufficlient to guarantee the existence of optimlzing solutions.

PROOF., Example 2.

THEOREM 6. Hypothesis II without Hypothesis I is not
sufficient to guarantee the existence of optimizing solutions.

PROOF. Example 3, to follow,

EXAMPLE 2. Iet 7, and 7,
assume that T > 71/72; Find a non-negative function

be positive numbers and

maximizing fgg(t)dt subject to

(7.1) 0 T

A
A

t
7, —\/\C(s)ds, 0<t
o

(7.2) £(t) £ 75, o<t

VAN
H

If one ilmagines ¢ +to be the rate of production of auto-

mobiles, say, and v to be the (constant) auto capacity

2
avallable, (7.2) gives a realistic bound on this rate. If

74 1s the amount of steel 1nitlally avallable, and 1f units



are chosen so that one unit of steel is required to make one
automobile, then (7.1) is the requirement that the amount of
steel at any time be non-negative.
The solution of this problem 1s obvious. Let
t(t) = 71/T. By the hypothesis 71/T <755 also
fgg(s)ds = t71/T < 7. for 0 t< T, so that this ¢
is feasible. In view of (7.1) this ¢ will produce the
maximum value 7.
The dual of this problem 1s a different matter, however.
One seeks non-negative functions o, and o, minimizing
fg(71w1(t) + 72w2(t))dt subject to

T

(7.3) w,(t) 21 - f w,(s)ds, o< tLT .
t

Now 1f there are feasible functions w and o

1 2

attalning a minimum 7 they must satlsfy the equilibrium

-IJ
conditions when paired with ¢(t) = 71/T (Theorem 3). Since
(7.2) is a strict inequallty throughout the interval [o, TI],

o, must vanlsh almost everywhere; and since ¢§(t) > o,

2
», must satisfy (7.3) as an equality almost everywhere. We
thus seek o, such that fgw1(s)ds = 1 almost everywhere
in [0, Tl. But no measureable function has this property,
so we must conclude that the dual problem has no solution,

even though the primal problem does.

This dual problem is fecaslible, however, In fact there
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exlsts a sequence of functilons w? e W such that

11im fgwn(t) - c(t)at = 7
n

1°

Define w(t) for n > 1/T by

( 0, 0¢tgT-1
W) = ¢
1 1 ~
[ Togp<EgT
0, 0 t<T- %
wg(t) =

1 - (T -thn, T-2<tgT .

n .. a
Now observe that each w is feasible, and, moreover,

T n n . ~ —_—
fo(71m1(t) + 7 0,(t))dt = 7.+ 72/Ln > 7, as n > o,

In this example both primul and dual problems are
feasible, so the proof of Theorem & 1s now complete. PFurther-
more, since the matrix B of Hypothesis I is (?), I is
satisfied. The matrix C = (—é), however, 1s not non-
negative, so Hypothesis II is not satisfied. This proves
Theorem 5.

REMARK. Note that 1im w,(t) =0 for 0 t < T.
n

Looking at @} one might be tempted to say, nalvely, that

1
"w? approaches a delta function with unit weight at t = T."
It should be noted that in their attempt to treat a large
class of thesc problems Bellman and Lehman admlt delta func-
tions or cven derivatlves of delta functions 1n thelr

solutions when the problem or its dual has no measureable
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function as a solution ([2] and [51). From a rigorous point
of view one 15 led to try to reformulate the problem so as
to accept a measure as a solutlon in these cases; but this
extension leads to even more difficulties (see [5], p. 21).
As formulated here, however, only functions will be admitted
as possible solutions.

EXAMPLE 3. Let 7> Dbe a positive number. Find non-
negative functions 21 and §, maximizing fg§1(t)dt
subject to

t
£,(t) £ +-JF (,(s)ds, o0gt<T .
o

By letting (,(t) =n and t1(t) =7 +nt for 0Lt T
we find that fg&?(t)dt = 7T + nT2/2, so that there 1s no
maximum.

Here Hypothesis I 1s not satisfiled, whlle Hypothesis II

is. This proves Theorem 6.
8. THE MAIN LEMMA

We turn now to the proofs of some lemmas which will lead
to the proof of the duaillty theorem.

We shall approach the solution of the continuous problem
by means of a sequence of finite dilscrete approximations.
Thic idea was discussed in Section k.

For n=1, 2, ... let At" =T/n and let tﬁ = kT/n
for k=0, «¢e., N,
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Iet
n
Lk+1
a(e]) = —= a(t)at
At
0
k
for k=0, «v., n -1, and let an(tg) = an(t2_1).
Let

N
by
cn(t{j) = f c(t)dt,
4 Atn
n

Bt

for k=1, ..., n, and let cn(tg) = cn(t?).
We now let P% be the problem of finding non-negative

vectors zn(tg), oo zn(tg) e BN maximizing

n

n _n,.n n e g
Epe o? (tk) <at(t k) subject to

ne.n n,.n
Bz (to) <ec (to)
and
k-1
an(tﬁ) < cn(tﬁ) + AT Z Czn(t?), K=1, veey, nn .

v=0

The dual of thils [initce linear programming problem seeks
non-ncgative vectors wn(tg), ey wn(tg) ¢ T minimizing

Ii n,.n ne,.n - tand 4
DN (Lk . c (Lk) subject to

n,.n ne.n
and n
W(t)B 2 a(t]) + At Z whH(th)e, k=0, ..., n =
v=i-1



If zn(tg), cees zn(tg) are feasible for Pn, define

an assoclated step function 20 . (o, 7] —> EN by

( zn(tg), th ¢ £ < P

o = 1
2 (t) = 2 () tﬁ St<tl,, k=1,...,n-2
n n n n
2 (b )5 th, St

Similarly, 1if wn(tg), e, wn(tg) are feasible for

the dual of P%, define the step function W' : [0, T] —> o

by
n n n
W (t1), to <tg t1
wi(t) = W (£, t2_1 <t < tlré, K=2, vev, n = 1
n n n n
L_ W (tn), to, <t < t,

We remark that 1t is not true i1n general that such
assoclated step functions are feaslble for the continuous
problem.

In order to prove the main lemma 1t 1s necessary to re-
lax temporarily the requlrement that inequalities be satisfied
for all t e [0, T] 1n the definitions of Z and W, the
sets of functions feaslible for the continuous problem and
1ts dual.

For p=1, », let LPlo, Tl be the family of equiva-
lence classes of real-valued lLebesgue-measureable functions
on [0, T} having finite IP norm. For a map
z : lo, Tl —> EN we shall say z € Lﬁ if EJ ¢ IPlo, ]

for J=1, «o., N
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Define
t
Zp = {z ¢ L& : Bz(t) < c(t) +\/q Cz(s)ds and
o
z(t) 2 0 for almost all ¢t e [o, T] }
and let
t? t?
! 1. o (4 -
2, ={4 e Ly f z(t)dt <f c(t)at
t1 tT
to g
-+J[ <\/‘Cz(s)ds >dt for o< t1 < t2 T
t ¢}

1
and z(£) > 0 a.e. } .

1
Similar definitions of W, and WL can be agsoclated

L
to W.
1
We agcert: ZL = ZL' Since the function z(t) —> Bz(t) -
fng(s)ds mapo L& into L&, onc seec by loocking at each
component sceparatcely that it sulflices to prove ZL = Z£

for the cpecial cagse N =M= 1.
!
Now clearxrly ZI,C ZIP The other inclusion follows from
a well-known repult in the theory of real functilions, namely:

I te 1 and 1 (x)

fﬁf(t)dt, then F' ocxists almost

(x) almost cverywhere.

everywhere and 101 (x)

We consider L, fixed, o< t, < t, < T. Then



t2 t2
1 _ 1 _
N JF Bz (t)dt £ T——= \/ﬂ c(t)at
2 1 £ 2 1 t
1 ' 1
I
1 ( s
+ "t—g——_—t—‘f ! f CZ(S)do)dL .
1
t1 o]
But, as t, _— tT, the left hand side approaches Bz(t1)
t

and the right hand side approaches c(t1) + fO1Cz(s)ds for

1
almost all values of t. e [0, 7). Hence ZI,C Z

1 L’

A similar proof shows that WL = WL.

We shall need a recult from the theory of Banach spaces
(see [6], p. 123). The dual space of the separable Banach
space L1[O, T] can be identified with I [o, T]. An
important property enjJoyed by the dual of a separable Banach
space 1s weak* sequential compactness for sets bounded in the
strong topology. Restated for our purposes, this becomes:
Let e I’[o, T] and assume Han < e for n=1, 2, ...
Then there exist *» e L [o, T] and : subsequence {nk}
such that A —> A (weak'); that is S, £ —> [,

k k

for all f e L1[O, Tl. It is convenicnt to restate this as

LEMMA 3. Iet A ¢ °lo, T} and assume that Han
o0

for n=1, 2, ... . Then there exist A ¢ L°[0o, T] and a
subscquence [nk] such that
tg tQ
JF xnk(t)dt _— J[ A(t)at, for 0 £ t, < t2 <T .

A v
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PROOF. Iet X ©Dbe the characteristic function for

[t1, t,]. Since [0, T] has finite measure, X e L'[o, T,
and the conclusion follows from the result quoted above.

We are now able to prove the main lemma.

LEMMA 4. For n=1, 2, ... let P  be the discrete
problem associated to the continuous problem. Assume that
for all n there exist vectors [zn(tg), cees zn(tg)] and
{wn(tg), ceey wn(tg)] solving P". Assume, furthermore,
that all such sets of solutions lie in bounded subsets of
EN and EM, respectively. Then there exist bounded functlons
Z e Z; and W e Wy such that fgi(t) « a(t)dt =
ITa(t) « c(t)at.

PROOF. PFor the step function 20 associated to

0] g t § T, By hypothesils there exists e > 0 such that
|§?(t)| <p for J=1, «oe, Nz n=1, 2, ...; and
0t <, so tyeL’lo, T for J=1, ..., N;

n=1, 2, «v., and IIC?Hoo < r.
We use a diagonal process to find a weak* limit. By

Iemma 3 there exlst €. e I°[0, T] and a subsequence (nk]

1
such that

2 23

f Q?k(t)dt —_ f ET(t)dt

t1 , tT

as k —> w for 0 < t, < t, < T. Next, apply Lemma 3 to
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n -
[Cgk] to obtaln a C2 e T’lo, T] such that a subsequence
n -
of {gzk) converges weak* to 22. Repeat taking successive

subsequences to obtain ¢, € I°[0o, T] for J = 1, ..., N,

J
and a common subsequence [nz] such that
t2 t

Yo
JF Cjz(t)dt———> JF Ej(t)dt as

t1 t1

=
\I/
8
-

(8.1)
for j =1, «o., NJ 0<E, < t, T,

Since 0X< §§ﬂ(t) <p for telo, Tl,y=1, ..., N
and £ =1, 2, ..., it follows immediately from (8.1) that
0< z(t) € pu for almost all t e lo, T], where
U= (1,1, eoey ) € N, By taking an equivalent representa-

tive 1n o

N We may assume that

(8.2) 0<Lz(t)Lpu, 0gELLT .

To prove 2z € ZL it 1s convenlent to define a step
function ¢% : [o, T —> B! associlated to

[c“(tg), cee, cn(tg)] by

n n’ n
M(t)s b St <t k=0, ceey n=
S (t) =

Ne,n _4n
¢ (Ln), t=t, .

We now assert: Tor all n and for t, 0 < t< T,
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there exlsts xn(t) e BV such that

(8.3) B2 (t) < ¢™(t) +f c2™(s)as + x,(¢)
0]

where 1im xn(t) = 0, uniformly in t for t ¢ [o, T).
n

Now given any n and t e [o, T), there exists a unique

k, 0 S kgn -1, such that t <t< £ By definition

kt+1°
2% (%) = zn(tﬁ) and ¢%(t) = cn(tﬁ). Also by definition

. k-1
fc%“(s)ds = AP z Czn(t Y + (£t -t )Czn(tk)
(e} v=0

where we agree that Z;lozn(tﬁ) = 0 should k = 0.
It 1s clear that this procedure uniquely defines the term
(t - tk)Czn(tn) (call 1t - x (¢)) for any n and t e [o, T)

provided k 1s such that t < t <t Note that (for any

k+1°
linear norm on EM) Hx (£)] < AthCzn(tn)H for all n and

t e [0, T). Now by hypothesis there exists p > 0 such that
o< zn(tﬁ) < pu, for all n and k, 0 < k< n. Hence there
exists p!' > 0 such that HCzn(tE)H < p!' for all n and

k, 0 k<n. Thus for all n and for t e [o, T),

Hx (t)l € T/n p?, so that lgm xn(t) = 0, uniformly in ¢t
for t e [0, T). The inequality (8.3) now follows from the

fact that the zn(t?) are feasible for P". 1In particular
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k=1

(8.4) Bz (ty,) < o™(t]) + A" Z cz(¢0)
v=0

so that B2(t) - fg c2™(s)ds < 3Nt) + xn(t). This proves

the assertion.

Now integrating (8.3) from t, to t,, 0% b, < t,
we get, for n=1, 2, ...
t2 t2
f B27(t)at < f e (t)at
t1 t1
(8.5)
by t ts
+f <f c2™(s)ds >dt +f x (t)at .
t, 0 t1
But by (8.1), p. 2%,
t2 n t2
f 8 L(tyar —> f Bz (t)dt
t t1

1

and
t t
f2 (ft C%nz(s)ds >dt ———>f2 <ft Cz(s)ds >dt
t1 o} t1 o]

as b —> o for 0 <t <t, < T Now if
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t2 t

f Sn['(t)dt——> f2 c(t)at

t1 t1

as £ —> w, for 0 t, < t, < T, then 1t follows from

- 1 -
(8.5) and these results that 2z € ZL’ and hence 2z € ZL.

We prove that
t2 t2
An,ﬂ
f c “(t)at ——>f c(t)dat

t1 t1

by proving that for 1 =1, ..., M,

t2 t2
AN L
f 7i(t)dt > f Vi(t)dt,
t1 t1
o< t1 < t, <T as n —> o, ILet

p o= max [IVi(t)l ti=1, «oo, M, 0Kt < T

n

sup {I';ril(t?)l 1 =1, eee, M, N =1, 2, vau3 O

A
<
VN

2

Now 1t is clear that for any 1 |9§(t)| <uw for 0t<T,
n=1, 2, «.. « Thus 1t suffices to prove that

3?(t)-——%> 7i(t) almost everywhere, since the desired result
then follows from the Iebesgue domlnated convergence theorem.

If t, e (0, T) then there 1s a unique interval

n n N o .
[Lv(n)’ tv(n)+1) containing t_. Conslder i fixed,
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1 <1< M. By definition and the law of the mean, for each

] ] P n n
n > T/Lo there exists «t , tv(n)—1 <, g Lv(n)’ such that

= Vi(Tn) .

2
s
pha
ct
(@]
L —
I
=
SC\\j
=2
}—‘
P
<t
[eN
[
|

But 1t 1s clear that = —_ t, as n —> ©, go that
an
71(1n) —_ 7i(to), glving 7i(to) —_ 7i(to) for

t, € (0, T). This was to be shown.

Tc obtailn the desired w e Wy
n n _
(% Z], where Qjﬂ _ Qj (weak') for J =1, eee, N,

as £ —> o ((8.1), p. 25). By a dlagonal process similar

look at the sequence

to that used previously there exists a function w € Iﬁ and
n
a subsequence of {nﬂ), say {nr}, such that wir’———> w,

(weak*) as r —~—> o for 1 =1, ..., M

By an argument analogous to the previous one, we get

Wwew and 1t may be assumed that for some positive o

L’

o< wlt) gpv, O

A
(3
VAN
H

(6.6)

where V=(1_, ], seey 1)€ENIQ

To complete the proof of the lemma it remains to prove
that [E(t) - a(g)at = [or(t) « c(t)at.
Now using the duality theorem of linear programming and

the hypothesis that for n =1, 2, ... the vectors zn(tc)
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and wn(tﬁ) solve P%, we get

n n
(8.7) z 22(t7) « 2 (t]) = z WD) - (D), n= 1, 2,

v=0 v=0

n n
Note that for v = 0, +seey, n = 1, 1f tv <t< tv+1’
20(t) = Zn(t?). Hence, by the definitions

. - n
-1 n-1 tv+1
At™ z zn(tzl) . an(tfj) = z zn(t?) . f a(t)dt
v=0 y=0 tn
)
: N
n-1 Lv+1
= ) 2™ (t) . a(t)dt
v=0 tn
v
7

Similarly, for v = 1, ..., n, if t7__ <t < £7, W E) =

wn(tﬁ), so that

n
n n tv
at? Z wn(t?) . cn(tl;l) = Z wn(tl;l) . f c(t)dt
yv=1 v=1 tn
v=1
_n
t P

v=1 tn o



Thus, from (8.7), for n =1, 2; ...

T

f 2R(¢) - a(t)at +Atnzn(tg) . a“(tg)
(8.8) 0
T

=f W) - c(t)at + At“wn(tg) . cn(tg)

@)

It is clear, however, that the vectors zn(tg), an(tg),

wn(tg), and cn(tg) remain bounded for all n so that
1im At72R () . a(t?) = 1im At™WR(ED) . c(tT) = o
n n o 0
n n
We now use the fact that there is a common subsequence
n n
T - r - *
(nr] such that CJ —_ Ej and o, —_— @y (weak ) as
r—>0 for 1 =1, vee, My, =1, ¢o., N. Thus, as

r —> o,

T
n
Jf 2 () « a(t)at —> JF z(t) - a(t)dt, since a ¢ L&
0 o

and

1

T T
f ?Jnl"(t) . c(t)dt —> f w(t) « c(t)dt, since ¢ ¢ Ly-
o}

(e}

But these limiting values fg z(t) «» a(t)dt and
fg w(t) - c(t)dt must be equal. This fact follows from

(5.8) and the observation that the terms involving Ath
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tend to zero.

This completes the proof of the maln lemma.

We note that such functions Zz and w may not be
solutions to the original problem, since they satlsfy the
Inequalities only almost everywhere,

LEMMA 5 (Patch-up process). Given 2z € ZL with
0 < z{(t) <pPu for 0< t< T, there exists a Z € Z such
that 2 = z almost everywhere. (A similar result holds for
the dual problem.)

PROOF. Let S = (t e [0, T : Bz(t) < c(s) + [¥ cz(s)as).
Then, by the hypothesils, if E denotes the complement of S
in (o, T1, g has Lebesgue measure zero, Thus S 1s dense
in [o, TI].

By the axiom of cholce we wish to choose some bounded,
measureable, non-negative function z such that ;(t) = z(t)
for t € 8 and such that

t
(8.9) Bz (t) € c(t) + f C2(s)ds, 0<t<T

o}

Instead of (8.9) it suffices to have

t
(8.10) Bz (t) < c(t) + f Cz(s)das, ©

e}

A

t<T

agince g 1s to be equal to 2z almost everywhere, that is,

for t e S,
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To prove the existence of such a function 1t suffices

to prove that for each t « § there exlists some x € EN
such that Bx < c(t) + fg Cz(s)ds and 0 £ x < Pu.

Accordingly, let to € E. Since S 1s dense in [o, T],
for k=1, 2, ... there exist t, € S with ¢ —_— t,
as k —> o, Now by the hypothesis o0 < z(t

IN =

) € eu for

k=1, 2, ¢+es, 50 by compactness there exist X € EN and

a subsequence {kz) such that z(tk ) —> x. But for each
£

ti
2, Bz(‘ck ) < e(tk ) + [ £Cz(s)ds o that in the 1limit
A ) °

Bx < c(to)+ IZO Cz(s)ds. This uses the continulty of ¢
and of the integral. Furthermore, for £ = 1, 2, coa,
0< z(tkﬂ) < pu, so that 0 < x < pu.

Therefore, by the axliom of cholce there exists some

Z having the desired propertiles.
9. BOUNDEDNESS I'OR THE PRIMAL PROBLEM

Having proved the main Iemma 4 we shall seek to show
that hypotheses I and II of Theorem 1, p. 4, are sufficient
to reduce the theorem to a point where ILemma 4 may be
applied.

In this section we show that Hypothesis I guarantees
boundedness for the primal problems.

In EV we know that if {x e EN : Ax < b} 1s not

empty, then
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(x ¢ BY : Ax < b} 1is bounded 1f and only if

l

(9.1)
(x e BV : Ax < o) = (o).

(A proof is given in [7].) We now prove

LEMMA 6. If (x e EN

empty, then {x € BN ox

and only if {x € BV : ox

: x 20 and Ax < b} 1s not

2 0 and Ax £ b} 1is bounded if
2 0} = {o}.

WA

0 and Ax

PROOF. Iet A be the (M + N) X N matrix with rows

2, defined by a, = 1= M, & .. =-(5,,) ¢ BN
a; defined by ay =ay, 1 =1, «oo, M, Gy, = - (8;4) ¢ E,
1 =1, «cs, N, where Bij 1s the Kronecker delta. Iet

B = (8) ¢ ®"V ve defined by By =By, L= 1, «uu, N,

By =0, 1=M+1, eoo, M+ N. Then Ax < b 1f and only if

Ax {' b and x 2 0. Also, Ax £ 0 1f and only i1f Ax < ©
and x 2 0, Thus Lemma 6 follows immediately from (9.1).

We will find it useful to define the following linear
norm on EN.

DEFINITION. For x = (8,) e B, let [xl| = zJ_, I¢,l.

It is clear that a subset of EN 1s bounded with respect
to this norm 1if and only if i1t is bounded 1in the euclidean
norm., PFurthermore, the topologiles induced on EN by these
norms are identilcal. o

LEMMA 7. Suppose {z € N

E' : Az £ 0) = {0}. Then there
exists o > 0 such that Az < x implies |zl < ellxl,
whenever 2 € EN and x € EM.

PROOF. Let Sy = [y e B! : Jlyll = 1}. Note that Sy
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N oaz < v)

1s compact. Now for y e Sy the set {z ¢ E
is compact, for i1t is either empty or bounded and closed by

the hypothesis and (9.1). Define ¢ :

Sy > reals by

max {[zll : Az < y), if not empty

o(y) =
0, otherwise.

We assert that ¢ 15 bounded on SM’ for suppose not.
Then there exlst ¥,, ¥ps see © Sy such that m(yn) — »,
We may assume that w(yn) > 0 for each n. Hence for each

n,{ z : Az < yn] is not empty. ILet =z = satlsfy

¢(yn) = Han and Az Sy, for n=1,2, «oc . Define
~ ~

Z, = Zn/”Zn”’ Note that Han =1 for all n. Hence

%n € SN’ so by compactness there exilst Z € SN and a
subsequence {nk} such that %n —> 7z as k —> o, Now

e .
for k=1, 2, ees Aznk < ynk/Hznk ;5 but since ynk € Sys
y_ /lz_ || —> 0. Hence in the limit AZ £ 0. But Z e 8

n, ny = N
so z # 0., This contradicts the hypothesils. Hence there
exists p > 0 such that 0 ¢ p(y) < p for y e Sye

Now suppose Az < x. If [x]

i
o
.
o
li

0, S0 2z =0
and clearly [zl < elxll. If [zl > o, then x!' = x/ (x|l e Sy
Hence A z/llxl < x/lxll so l=z/lxlll € o(x*) £ p. This

completes the proof.

ILEIMMA 8., Suppose {z € N oz 20 and Az g 0} = (o],
Then there exists p > 0 such that z 2 0 and Az € x
implies |lz]| < ellx| whenever =z e B and x e BN
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PROOF. Iemma 8 follows immediately from Lemma 7 using
the device employed in the proof of Iemma 6, p. 3k%.

N

LEMMA 9. Assume that { z € B : z 2 0 and Bz < 0} = (o).

For n=1, 2, ... let zn(tg), cees zn(tﬁ) be feasible
for P". Then there exlsts R > 0 such that for all n
and k, 0 { k < n, Hzn(tﬁ)ﬂ < R.

PROOF. Recall (p. 28) that u = max [|7,(t)] :

1

1, eaesy M, 0 <t £ T) so that for all n and k,
0<k<n, cn(tﬁ) < mv.

ILet an arbitrary n be given. By the hypothesis
zn(tg) 2 0 and an(tg) < cn(tg) < wv, 50 by Lemma 8,
Iz%(e DI S elluvll.  Also 2%(t1) 2 0 and

an(t?) < cn(t?) + AtnCzn(tg) < uv + AtnCzn(tg) so
(9.2) 127 () < plluv + atPez” (D) .

We now claim

There exlists o 2 0 such that for =z € EN

(9.3)
ozl <6 =zl -«

For the proof let C be the M X N matrix (713), and

let 6/M = maxi’3|7ij . Now Cz = (c1 *Zy ey Oyt z) € EM,
where ¢ 1s the ith row of C. DNote that lci . z| =
< o/M Zjlgjl = 0/M |zl for 1 =1, «e.y, M. Hence

Ici -zl g z§=1 o/M |zl = ollzll, proving the



37
Using this result in (9.2) we get
Hzn(t?)u < ollluvll + at™ollz™(£0) 113
< ollluvl + at"e fuv])

olluvl (1 + atPep) .

We now assert: For 0 £ k < n, Hzn(tE)H <
olluvl (1 + Atnep)k. This 1s true for k = 0, 1. Assume
true for all v, O € v<k<n. Now zn(t§+1) 2 0 and
) + o™ 25 oa(6D) € wv 4+ at” 2 e (£D),

k+1 k+1 V=0
SO
k
1222, 01 S vl + a6™ ) ezms?y}
v=0
L
g o {levll + ot ) 12(em 1}
v=0

Kk
<e {HHVH + atMep v }Z (1 + Acnep)v}

v=0

olluvll (1 + AtPep)KT! |

Il

The assertion thus follows by induction on k.
Now 6p » 0 and At® = T/n, so (1 + Tep/n)k <

(1 + Tep/n)* for o < k< n. Hence for 0< k< n,
Hzn(tﬁ)n < elluvl (1 + Tep/n)?. But ((1 + Tep/n)n]n is
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an increasing sequence ([8], p. 72) and 1im (1 + Tep/n)? =

exp Tép. Therefore for n =1, 2, ..., 0L k<n,

zn(tﬁ)u <0 luv] exp Top. If this upper bound 1s called
R it is clear that R 1s independent of n and k. Thls

proves the lemma.
10. EFFECTIVE BOUNDEDNESS FOR THE DUAL PROBLEM

We turn now to the dual problem using Hypothesils IT.
LEMMA 10. Assume that B, C, and c(t) have non-
negative components, O g t g T. Then there exists p > 0

such that 1f the dual of P°

has a solution it has solution
vectors with no component bigger than p.

PROOF. Define a = max [Iaj(t)| :J =1, eee, N,
0<t< T). Note that a 2 a?(tﬁ) for J =1, eees, N, and
all n and k, 0 {k{n. Iet B =min {p;y 2 Byy > 0)
and 7 = max 4 {217131, where B = (Bij) and C = (713).
Note that g, 7 > 0, since we have assumed in the definition
of the problem that neither B nor C 1s a zero matrix,

Now for n =1, 2, ... define ﬁn(tﬁ) by Wn(tﬁ) =
(v, 0 ¢ k< n, where FNtP) = &/F (1 + 7/B atMHE,
Note that for 0 < k< n, (1 + 7/ at™)PK < (1 + 7/5 at™™

and (1 + 7/B at™P N exp 7T/ as n —> ». Therefore,
5n(tﬁ) < aff exp YT/B for n=1, 2, «c., 0 kS N
This bound will be the deslred op.

Now consider n fixed and let wn(tg), cees wn(tg)
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be feasible for the dual of P". The argument to follow
wlll holid independently of n.

Define W7 (tp) = (& (£)), +.., an(tl)e B by
&?(tﬁ) = min {w?(tﬁ), 5n(tﬁ)) for i =1, ev., M;
K =20, «o., n. Clearly Qn(ti) < wn(tﬁ), and Qn(tﬁ) <
Wi(ty), and W7(t3) 2 0 for k=0, ..., n.

We will show that x?zn(tg), cees v“vn(tg) 1s feasible

for the dual of FP®, so that if wn(tg), ceey wn(tg) is

optimal for Pn,

n n
Z Qn(tﬁ) o cn(tﬁ) < Z wn(tﬁ) . cn(trlz)
k=0 k=0

and we see that @n(tg), cees @n(tg) is also optimal.
Furthermore, since Qn(tﬁ) < ﬁn(tﬁ) for Kk = 0, ee., N,

each component of an(tﬁ) is no more than a/f exp 7T/B = o.
It remains to prove that ﬁn(tg), ceos Qn(tﬁ) is

feasible for the dual of Pn, that is
An,.n n,.n
W (tn)B 2 a (tn)

and
n

Gn(tﬁ)Bz an(t}nc) + AtH Z ?vn(t?)c, K= 0, vee, N =1
v=Kk+1

In the sequel fix j at an arbltrary value 1 < j

N.

VAN

The argument will be independent of j.
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Pirstly, for k =n we must show Z 1 n(t )B .2 an(t .

CASE 1. There exists 1, such that By g >0 and

AN ,,.ny _ =n/.n n 3
wio(tn) = o (t)). Then Elw (L )B (2 n)By J T
= a —-y= N = n o
(t2 )fSi J = Bioj a/B > & > onj(tn), since By J >0
implies B, j/é 2 1, and a2 a?(tﬁ) independent of j.
o
_ ns.n
CASE 2. Whenever Bij > 0, m (t ) = mi(tn). Then

AN/ ,.n . .ns.n n,.ny
Zlmi(tn)ﬁij = Liwi(tn)aij > aj(tn) since
(wn(tg), cees wn(tg)] 1s feagible for P".

It remains to chow for k= 0, ..., n - 1

M

~y.n r¢.n n
Z BHERIBy 4 2 oB(E]) + At
1=1 vkl 1s=1

s
N
=
~
=
[
>
s
N
'
S

Consider k fixed, 0 < k<n-1.

CASE 1. 'There exists io such that By j > 0 and

I ny _ =n,g.n Ay N A n
wio(tk) = o (t,). Then 2,05 (6,85 2 Biojwio(tk)

aiojan(tﬁ) = gioja/é (1 + 7/8 Atn)n—k >a( + 7/8 at™"

Now since %n(t?) < ﬁn(t?) for v = 0, .u., 1,

. -n,,.n ==N,, N :
Zi71Jml(t ) < By 74 50 (Lv) < 7w (LV). Therefore
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o () + b Z <Z 75 405 (6)) > <@+ ag? Z 78" (t))

v=k-+1 l"“ v=k+1
n
N~y
=a + A7 3/B Z (1 + /8 at™)
v=k+1
n-k-1
- stz AL == AT
=al 1+ 7/F At (1 + 7/8 at™)
=0

n-k
= a(1 + 7/8 at™)

which was to be shown.
a an PRoygn.
CASE 2. Whenever By 5 >0 (tk) i(tk).

Then

) B, =) B 2 A
i

1
n
+ A" Z W (£ e
=k
n
2 oy(ty) + oL" z%n(t?)c
y=k+1

since wn(t?) 2 ﬁn(t?) for v = 0, +es, n, and C 2 0,
This proves Lemma 10,
REMARK. It i easily seen that if B> 0 then

(x e TV ¢ x >0 and Bx < 0} = (0} 1if and only if each
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column of B has a positive entry.

Lemma 10 has an dmmediate corollary.

LEMMA 11. IL the hypotheses of Lemma 10 are satisfied
and if each column of B has a poszsitive entry, then the
™

tg) are Teasible for the dual of Pn,

W (to), ceesy W
n = 1, 2’ e ve o

PROOF. We are in Case 1 of the proof of Lemma 10.
11. PROOF OF THE DUALITY THEOREM

After proving Iemma 12 we chall be in a position to
prove Thcorem 1.

LEMMA 12. Under Hypotheses I and IT of Theorem 1, for
n=1, 2, ... €ach ' has optimizing solutions zn(tﬁ),
wn(tﬁ), K =0, oo, N.

PROOF. For any pocitive intepger n we need only show
that both P* and its dual problem have feasible vectors,
since the duallty theorcem of linear programming will then
yield the existencc of optimizing solutions.

We note that cn(tﬁ) >0 for k=0, ..., n so that
zn(tﬁ) =0, k=20, «v., n, is feasible for P". By Lemma
11 and the remark preceding that lemma there are vectors

n

feacible for the dual of FP°. This completes the proof.

We now prove Theorem 1. Iemma 12 applles, so for

n
k?

optimizing solutions of P, By ILemma 9, p. 36, there

n=1, 2, ... let 2™t wn(ti), kK = 0, «ssy n be the
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exists R > 0 such that for n=1, 2, ... and 0< k< n,
Hzn(tﬁ)ﬂ < R. Furthermore, by Lemma 10, p. 38, we may
assume that for some p > O,Hwn(tE)H <p for n=1, 2, ..
and 0 < k £ n.

We have now succeeded 1In satisfying the hypotheses of
the main Lemma 4, p. 24%. Thus there exist functions Z ¢ Zr
and W e W with [.Z(t) - a(t)at = [Ta(t) - c(t)dt. By
condition (8.2), p. 25, we may assume that o0 g z(t) g Ru,
0L t< T, since R is clearly adequate to play the role
of p, which was an upper bound on each component of
zn(tﬁ) for all n and k, 0 < k< n. Similarly, by con-
dition (8.6), p. 29, we may assume that 0 < w(t) < ov,
0L t<T.

We may now uce the patch-up process (Lemma 5, p. 32)
and further assume that Z € Z and W € W.

We have thus completed the proof of Theorem 1, for by
the optimality conditlon of Theorem 2 (p. 11) Z and w

are solutions of thelr respective problems.
12. RELATED RESULTS

We have seen that Hypothesls I was sufficient to give
a uniform bound on the functions (2"} for the primal
problem P and that Hypothesls II guaranteed a uniformly
bounded set of functions (W') for the dual of PV,

That T 1s rclated to Z and II is related to W is
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even more apparent in the following two theorems, which can
be proved with a minimum of further work.

THEOREM 7. Under Hypothesis I, 1f 2 1s not empty,
then there exists a Z e Z which maximizes fgz(t) - a(t)at,
for 2z € Z.

THEOREM 8. Under Hypothesis II, 1if W i1is not empty,
then there exists a w ¢ W which minimizes fgw(t) . c(t)dt,
for w e W,

We need

LEMMA 13. Let u and v Dbe bounded, measureable,
non-negative functions on [0, T] satisfying u(t) < A +
fgu(s)v(s)ds, 0 t<T, where A > o0, Then u(t) <
A exp fgv(s)ds, for 0L t< T

For a proof, sece [9], pp. 35-36.

We can now prove a continuocus analogue of Lemma 9, p.36.

ILEMMA 14. Under Hypothesis I Z i1s eilther bounded
or empty.

PROOF. If z ¢ Z let x(t) = c(t) + flcz(s)ds,

0 S t S T. Then for 0 g t g T
t

M
Ej 7i(t) +\/‘ cy - z(s)ds‘

1=1 o)

Mo

Mp -k }; ‘L/‘ci « z(s)ds

i=1" o

M +\/¢ lcz(s)llds < Mp + 9\/$ lz{s)llds
0

e}

[E3E

I

A
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where p 1s defined on p. 28 and 6 on p. 36, (9.3).

Now by Lemma 8, p. 35, there exists a p > 0 such
that z(t) 2 0 and Bz(t) € x(t) implies [z(t)| < o lx(£)l,
0 t< T Infact p 1s independent of =z, x. Hence
lz(t)] < e(Mp + 1) + pefg lz(s)llds, 0 < t £ T. Note that
p(Mu + 1) > 0. Letting u(t) = [lz(t)| and v(t) = po,

we apply Lemma 13 to get for 0 <t T

t
lz(t)]| € p(Mu + 1) exp p6 /‘ ds £ p(Mp + 1) exp pOT .
o

Since thls bound i1s 1ndependent of 2z, the lemma is
proved.
)

We now prove Theorem 7. Iet {z be a maximlzing

sequence; that is 1im_ fg 22 () + a(t)at =

sup {fg z(t) « a(t)dt : z ¢ 2), where z® € Z for
n=1,2, see » Let m Dbe the value of this supremum.
Since Z 1s bounded by Lemma 14 m < », and we may apply

a dlagonal process to each sequence (E?] to obtain a

n
zZ € 2 and some gubsequence nk such that Cjk —_— EJ

L
(weak*) as k —> o, for J =1, ..., N. Hence
T Pk T -
fo z “(t) « a(t)dt —> fo z(t) « a(t)dat = m. By the patch-

up process, Lemma 5, p. 32, we may assume 2z € Z, This
provec Theorem T.
For the proof of Theorem 8 we need the continuous

analogue of Iemma 10, p. 38.
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LEMMA 15. Under Hypothesis II if w € W then there
exlsts W e W such that &i(t) < a/f exp 7T/E,
1=1, .00, M and [o ¥(t) - c(t)at < ST w(e) « c(t)at.
PROOF. Analogous to the #'(t;) of Iemma 10 define

w(t)

af/B exp 7(T ~ t)/B v = o(t)v, for O <t <.
For w e W define W by &i(t) = min {wi(t), o(t)) for
1 =1, «eo, M The proof that % € W 1s analogous to the
proof that the @n(tg), csey ﬁn(tg) were feasible for the
dual of P% and i1s omitted. By the definition
F(t) <w(t), 0 <t < T, so that fg W) + e(t)at €
[Tw(t) « c(t)at. Also o (t) € 8(t) < @/F exp 7T/P
for 0 t< T and for 1 =1, ..., M. This proves the
lemma.

For the proof of Theorem 8 let (W™} be a minimizing
sequence. That is 1lim, fg wit) .« c(t)dt =
inf [fg w(t) « c(t)dt : w e W) 2 0. Iet m' be the value
of this infimum. By Lemma 15 we may assume that each
w? ¢ W satisfies |w™(t)| < M &/ exp 7T/B, for
0 g t g T. Agaln using a diagonal process and the patch-
up 1eﬁma, we find a functlion w* € W and a subsequence

k

T Tk T %
{n,.} such that fo w S (t) . c(t)dt —> fo w (t) « c(t)dt =
m!, Thils w* € W 1s the desired minimizing function, so

the proof of Theorem & is complete.
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13, AN ECONOMIC APPLICATION TO A DYNAMIC
LEONTIEF MODEL

In view of the economic motivation of Theorem 1, one
might well question whether Hypothesis I and, particularly,
Hypothesls II are too restrictive for any frultful economic
application. In this section we describe a dynamic "closed-
end" ILeontief production model, one in which all goods are
accumulated or consumed in the production system itself,
with no flow of goods to or from the system. This model 1is
based upon a continuous version of the diliscrete Ieontief
model discussed in [3], particularly on p. 289, with the
additional requlrement that there be no outside consumption.
We shall see that Hypothesis II is catisfied for this model.
IFurthermore, Hypothesis I will seem not unreasonable.

Consider a production system congisting of N
activitieé and N goods, where each activity produces ex-
actly one good. Assume that units and nofation are chosen
so that operating the ith activity at unit rate produces
one unit of good Gi. Let “ij be the amount of Gi con-
sumed by the jth activity in producing one unit of Gj’
and let Bij be the amount of Gi required as capital
stock in order to produce Gj at a unlt rate. Let
A= (aij) and B = (Bij), and note that the o4 Bij
are non-nepgative by delinitilion.

I we agsume that



( ) x : [o, T]l—> BV is a bounded, measureable
1341

function,
then the 1nstantaneous net production resulting from
operating the activities at a level x(t) 20 1is
(I - A)x(t). We impose the condition

(13.2) (I -A)x(t)20, 0<t<gT

which states that there should be no disinvestment (or de-
cumulation) of stocks in the production process. (In [3]
this condition is imposed on the model described on p. 289,
but not imposed on the model described on p. 338.)

Now it is known (see, for example, [1], pp. 296-297)
that a consumption matrix A 1s productive (meaning that
some positive bill of goods (I - A)x can be produced by
some X 2 0) 4if and only if I - A has a non;negative
inverse. We make the assumption that A is productive, so
1f x(t) satisfies (13.2) x(t) > o.

Now if s denotes the initial stock bundle (cO € EN,

&)
n

o 0), then the stock bundle accumulated by time t 1is

(@]
+

fg(I - A)x(s)ds. The technological constraint Imposed

by 1limited capital stocks is, then,
t

(13.3) B (t) <ey t /‘ (I - A)x(s)ds, 0t<T .
o

N

Iet a : [0, T] —> &' be a continuous map and regard

2(t) ag the value of the goods bundle (1, 1, eeey 1) € joul
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at time +t. Denote by P the problem of maximizing the

value f?(I - A)x(t) « a(t)dt subject to the constraints

(13.1), (13.2), and (13.3), with the assumption that A ywz”ﬂffﬂ
/
¥

1s productive. y///,/’
)

We have the following corollary to Theorem 1 4.~

COROLILARY. If in the dynamic Leonticl-production model
P the matrix A iz productive and-fhe matrix B satisfles
hypothesis I of Theorem 1, then the conclusion of Theorem 1
is valid for the model P.

PROOF. We employ a change of variable, letting
z(t) = (I - A)x(t). Since A is productive x(t) =

(I - A)—1z(t), and (13.3) becomes
t
(13.4) B(T - A)_1z(t) < ¢y +L/\ z(s)ds, 0

O

A
<t
A
=]

Denote by P' the problem of finding come bounded,
measureable, non-negative function z : [0, T] —> EN
subject to (13.4) and maximizing fg z(t) ¢ a(t)dt. Since
z(t) 2 0 if =x satisfies (13.2), and x(t) 2 0 and x
satisfies (13.2) if =z(t) 2 0, 1t is readily verified that
the problemsz P and P' are equivalent. FPFurthermore, it
is o otraipht-forward exercise to verify that the dual
problems for P and P' also are equivalent, 1f one notes
that the dual of the program P (with no sign restriction
on %) requires gtrict equality in the dual constraints.

For the proof of the corollary we let B = B(IL - A)~',



C=1I, and c(t) E Cq to employ the terms used In defining

the continuous lilnear programming probdlems on p. 3 and

verify that the hypotheses of Th:u-.cem 1 are satisfied. Since

B, (I - Ay, I, and ¢, all have non-negative components,
Hypothesis II follows at once. U~ing the fact that (I - A)
1s both non-negative and nori-singular, one easily verifies
that B satisfiles Hypothesis I if B does, and this

completes the proof.

-1
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