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PREFACE

Work on a program to study the effects of natural phenomena on pre-
cise surveying and position determination methods and on the application of
natural phenomena to geodesy was initiated on 19 September 1958 under Contract
No. DA-44-009-ENG-3769 with the Topographic Systems Research Branch of the
Topographic Engineering Department of the U. S. Army Engineer and Development
Laboratories. On 30 January 1960, a supplemental agreement was executed which
extended the period of the contract to 19 December 1961 and redirected the
activities into narrower fields. On 26 January 1962, another agreement was

executed which extended the period of the contract to 19 December 1963 and
redirected the activities to the study of a particular distance measuring
system. The work conducted after 19 December 1961 is summarized in this
report.

During the current contract, the activity on the program has been
under the direction of Mr. P. C. Constant, Head, Electronics Section; Mr.
R. S. Brown has been the project leader, and is responsible for the theoret-

ical work. Mr. E. J. Martin, Jr., has been responsible for the experimental
designs.

Approved for:

MIEVIEST RESEARCH INSTITUTE

Harold L. Stout, Director

Engineering Division

14 January 1963
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SUIMARY

This project has been a feasibility study to determine whether it was

possible to deduce the index-of-refraction profile along some path in the atmos-
phere from physical measurements made external to that path. This problem was
solved and it was demonstrated that it was possible to make this remote meas-
urement of the index-of-refraction profile using a quantity called the "tran-
sient reflection coefficient" of the atmosphere.

'When an electromagnetic wave propagates into a medium of changing

index-of-refraction, a certain portion of the incident energy is reflected back
toward the source. The ratio of the reflected energy to the transmitted energy
is called the reflection coefficient of the atmosphere. It was first shown that
this reflection coefficient, which is a function of the frequency of the inci-
dent wave, is uniquely determined by the index-of-refraction profile. In addi-
tion, it was demonstrated that if the value of the reflection coefficient were
known for all frequencies, then it would be possible to reconstruct the index-
of-refraction profile.

Because the index-of-refraction profile changes with time, the reflec-
tion coefficient is also a time variable. Consequently, in order to determine
the value of the reflection coefficient at all frequencies, it would be neces-
sary to make a large number of simultaneous measurements each at a different
frequency. Such a system, although feasiblep would not be practical. It was
because of this objection that the concept of a "transient reflection coeffi-
cient" was introduced.

When a very short pulse is transmitted into a region of variable
index of refractions, the reflected energy will also be in the form of a pulse
rather than a continuous wave. It was demonstrated that if the transmitted
pulse were of a sufficiently short duration, then the ratio of the Fourier
transforms of the reflected and transmitted pulses would contain sufficient
spectral information to allow the construction of the index-of-refraction pro-
file. It is this ratio that is called the "transient reflection coefficient"
which differs from the ordinary reflection coefficient only in the way in which

it is measured. The principal advantage of measuring the reflection coefficient
by a transient method is that only a single measurement need be made. An addi-
tional advantage is that, because the caiplete measurement can be made in a very
short interval of time, the adverse effects of the temporal variations of the

index-of-refraction profile are nullified.

Experiments to check the utility of the inverse scattering theory are
proposed, and discussed. These experiments consist of (a) setting up a trans-

mission path whose length and index-of-refraction profile are accurately known,

-1.-



(b) measurement of the reflection coefficient of the transmission path, (c)
calculation of the index-of-refraction profile using data collected in (b),
(d) calculation of the length of the transmission path from the experimentally
determined index of refractionand (e) the results of (d) will be consared with
a true length of the line.



I. INTRODUCTION

This program has been a feasibility study of a new technique for

using the transient reflection coefficient of the troposphere to make cor-
rected distance measurements.

Present systems for making precise distance measurements transmit
electromagnetic energy, such as light or radio waves, through the atmosphere
to a reflector. The transmitted energy is then reflected back to the point

of transmission and, by measuring the time necessary for the energy to make
this transit, the distance between the transmitter and reflector is deduced.

In all the present systems, it is assumed that the energy travels with a con-
stant velocity, the value of which is determined by the local atmospheric
conditions at each end of the survey path.

The index of refraction varies in a random manner along the survey
path. These variations of the index of refraction cause corresponding varia-
tions in the velocity with which the electromagnetic energy propagates, and
these variations cause errors in the indicated path length. If the value of
the index of refraction were known everywhere along the survey path, then

these errors could be accounted for and corrected. The task of this program

has been to devise a method for measuring this index-of-refraction profile.

When a wave propagates into a medium of changing index of refraction,
not only does the velocity of the wave change, but, in addition, a portion of
the incident energy is reflected back toward the source. It has been shown*

that the index-of-refraction profile can be deduced from a knowledge of the

reflected energy. The demonstration of this fact represented the successful
completion of task 3a as specified in the contract:

"a. Conduct studies and investigations to determine the
feasibility of determining the index of refraction of the
troposphere between two points to be used for making a correc-
tion to a distance measurement made by the transmission of
electromagnetic waves between the two points."

* Brown, R.S., "Research Studies Related to Mapping, Geodesy and Position

Determination," 14th Interim Technical Report, Contract No. D-44-009-
ENG-3769, 10 July 1962. Also see Appendices A and C, this report.
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Subsequent work performed under this contract was concerned with
task 3b, the second and final provision of the contract:

"b. Contingent on the successful accomplishment of

a. above, specify the system characteristics necessary to
determine the refractive index of the troposphere between
two points, e.g., transmitter power, pulse width, receiver
sensitivity and noise figure, and computational circuitry."

With regard to task 3b, only a qualitative specification of the
system characteristics could be made. Any further efforts toward system
specification will have to be experimental because of (a) a lack of knowledge
of the characteristics of the tropospheric index-of-refraction variations,
and (b) the necessity of extending microwave techniques beyond the present
state of the art.

II. INVESTIGATION

The system investigated under this contract is shown in Fig. la. A
radar set transmits a wave, f(t) , into the turbulent region, i.e., into a
region of variable index of refraction. As the transmitted wave, f(t) , tra-
verses the turbulent region, reflections are produced and this reflected wave,
g(t) , travels back to the radar set where it is detected. In the course of
this investigation, it was shown that if both f(t) and g(t) were known,
then n(x) , the index-of-refraction profile characteristics of the turbulent
region, could be uniquely determined. Now, if two dielectric markers con-
sisting of sheets of lucite, teflon, or other dielectric material were intro-
duced into the propagation path, as shown in Fig. la, then they would produce
two characteristic marks in the index-of-refraction profile as shown in Fig.lb
and would serve to mark the beginning and end of the survey path. Thus, the
distance between the dielectric markers would be determined as the difference
between the abscissal values of the dielectric marks shown on the index-of-
refraction profile.

A. Remote Measurement of the Index-of-Refraction Profile

A wave, w(k~x) , propagating in a medium of changing index of re-
fraction, n(x) , satisfies the differential equation

"w(k,x) + L2n 2 (x)w(k,x) , 0 (1.1)
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where k is the free space wave number of the wave and is related to the
temporal frequency, w , of the wave, and the free space (in vacuum) velocity
of the wave, c , by

k -w/c • (1.2)

In order to determine n(x) , the equivalent equation,

U(klx) + [k2-v(x)] u(k,x) = 0 (1.3)

is first considered. Here, the term V(x) , called the scattering potential,
is equivalent to n(x) .

Now, assume that

V(x)=0 for x<o (1.4)

and that

u(k,x) = eikx + r(k•e"O' for x % 0 , (1.5)

where the term r(k) , the reflection coefficient, is completely known.

In Appendix A of this report, it is shown that r(k) is an element
of a certain operator, S , called the "Scattering Matrix':

s r(k) -(k))

t(k) p(k)

It is shown that the elements of this matrix, which are functions of the free
space wave number k only, are uniquely determined by the scattering potential,
V(x).
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Fortified with the knowledge of the uniqueness of S , the research
efforts were then directed toward the solution of the inverse scattering prob-
lem, namely, the problem of determining V(x) from a knowledge of S . This
problem was solved in terms of a function K(xy) defined by

L u(k~x)O(k.y) dk - K(x,y) + 6(x-y) (1.7)
21, -T It(k )12

(Eq. (A-41) of Appendix A), where t(k) is the transmission coefficient
(another element of S ) and O(ky) is a certain normalized wave (see Eq.
(A-38) et seq. of Appendix A). It was further shown that V(x) and K(x,y)
were related by

V(x) - 2 L K(x,x) (1.8)
dx

(see Eq. (A-55) of Appendix A), and that K(x,y) could be found by solving
the integral equation

X

0 - R(x+y) + K(x,y) + J R(y(z)K(x,z)dz , (1.9)
-x

where

R(x~y) - 1 r(k•"'ik(x~y) dk (1.10)

c

(see Eq. (A-57) et seq. of Appendix A).

Equation (1.9) represents a solution of the inverse scattering prob-
lem. It was shown that this solution would be valid whenever certain condi-
tions pertaining to R(x+y) were met (see conditions (1) to (5), p. 42,
Appendix A and also Eqs. (A-60) to (A-71), Appendix A).
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The next task was to determine a method whereby the index-of-refrac-

tion profile, n(x) , could be constructed from the scattering potential V(x)
This construction is given in Section IV of Appendix A and consists of the
following four steps:

1. Find U(z) from

i(Z) - V(z)u(z) - o , (0.u)

2. Find x(z) from

x(z) -c dz (1.12)

3. Invert x(z) to obtain z(x), and

4. Find n(x) from

n(x) = 12(x) . (1.1)

This construction completes the inverse scattering problem. The next
task was to investigate methods whereby r(k) could be measured.

B. The Measurement of the Reflection Coefficient, r(k)

The solution of the inverse scattering problem given in Section II-A
was based upon the assumption that r(k), the reflection coefficient, was
known. In Appendix B, a theory is presented for the measurement of r(k) ,
and it is upon this theory that the proposed experimental system to measure
the index of refraction is based.

Very briefly, a forward traveling wave, F(x-ct) , will be transmitted
into the region of nonconstant index of refraction and a backward traveling,
reflected wave, Q(x+ct) , will be produced. Both of these waves will be de-
tected and recorded. Then the quantities f(k) and g(k) will be conputed,
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f(k) F(x-t)ek(xct)d(X-ct) (1.14)

and

g(k) G (x~ct )elxct)x÷) (1.15)

and, from these, r(k) can be found from

r(k) -* (1.16)

f(k)

(see Eqs. (B-11, B-12, B-13), Appendix B).

C. An Alternate Derivation of the Inverse Scattering Theory

The representation of the reflection coefficient, r(k) , as the
ratio of the spectrum of the reflected wave to that of the transmitted wave
led to an alterrate derivation of the inverse scattering theory in which the
directly measurable terms, f(k) and g(k) , were used instead of their ratio.
This alternate derivation is presented in Appendix C, and follows exactly the

same course as the first derivation except that the wave, u(kjx) , was ini-

tially normalized as

u(k,x) - f(k)eikx + g(k)e"ikx for x s 0 , (1.17)

instead of as in Eq. (1.5). With this normalization, K(x,y) appears at the
solution of the integral equation

.x x

instead of

0 - R(x+y) + K(x,y) + / K(x,z)R(y+z)dz . (1.19)

-x



In Eq. (1.18), the functions F(x) and G(x) are the Fourier transforms of
f(k) and g(k) , respectively.

The two inversion formulae, Eqs. (1.18) and (1.19), are equivalent
in all respects. The primary difference between them lies in the fact that
Eq. (1.18) utilizes directly measurable data, whereas the function R(x+y)
appearing in Eq. (1.19) is the result of several mathematical operations per-
formed on F(x) and G(x) .

Two examples are presented in Appendix C which serve to indicate the
equivalence of the two inversion formulae. In the first example, the func-
tions

f(k) = i(k-i) (1.20)
(k+i)2

and

g(k) = -. (1.21)
(k+i )

were selected. Then

r(k) = k = -1 (1.22)
f(1cj k2 +1

It was then shown that both integral equations lead to the same differential
equation,

0 Ky,(x,y) - K(x,y) + K(x,-y) , (1.23)

whose solution is (taking into account the boundary conditions, see Eq. (C-30),
Appendix C)

K(x,y) = - sinh4 x + sinh4••,y (1.24)
42 cosh 4x
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From this value of K(xy) , it follows that

v(x) - -4 sinh2 14x (1.25)

In the second example, the functions

f(k) k-i (1.26)

g(k) - (1.27)

and

r(k) ) = - (1.28)
f(k) it+i

were selected. In this case, both integral equations lead to the differential
equation

0 = Ky(x,y) + K(xy) + K(x,-y) , (1.29)

whose only solution is

K(x,y) - constant . (1.30)

Thus, in the second example,

v(x) - 0 . (1.31)

-11-



D. Calibrated Transmission Path

To check the utility of the inverse scattering theory Just described,
it is proposed that certain physical experiments be performed. These experi-
ments will consist of setting up a transmission path whose length and index-
of-refraction profile are accurately known. Next, the reflection coefficient
of the transmission path will be measured and, from these data, the index-of-
refraction profile will be calculated with the methods of either Appendix A
or Appendix C. Finally, the length of the transmission path will be calculated
from the experimentally determined index-of-refraction profile, and this re-
sult will be compared with the true length of the line to obtain an estimate
of the accuracy which can be expected from a distance measuring system based
on the principles presented in this report.

The calibrated transmission path will consist of a section of Ku
band waveguide about 1 meter long. Associated equipment will consist of a
microwave oscillator covering the 10 to 20 Gc. band of frequencies and nec-
essary reflection measuring devices (a complete listing of the necessary equip-
ment is given in Appendix D). With this equipment, the length of the line can
be determined to an accuracy of ±1 mm. (when the index of refraction is con-
stant).

To perturb the index-of-refraction profile, blocks of dielectric
material such as teflon will be introduced into the waveguide. This will
cause the electrical length of the line to increase and will also cause a
certain portion of the electromagnetic energy propagating within the line to
be reflected. These reflections can be measured (on a steady-state basis) by
standard techniques, for instance, with a slotted line or with a Hewlett-
Packard 416A ratio meter.

In a more practical situation, i.e., for measuring the index-of-
refraction profile of a turbulent atmosphere, these steady-state techniques
will fail and a transient method must be used. As the term is used here, a
transient measurement is one in which the complete measure of the index-of-
refraction profile is made during an interval which is short with respect to
the rate of change of the index-of-refraction profile. To do this, a very
short impulse of electromagnetic energy will be transmitted into the turbulent
medium and a corresponding reflected impulse will be received. Then, if both
the transmitted and reflected impulses are known, the reflection coefficient
can be determined with the methods of Appendix B.

-12-



E. Radio Frequency Energy Source

Methods for obtaining the short pulses (of the order of a few nano-

seconds in duration) of radio frequency (rf) energy that will be necessary for

the actual index-of-refraction profile measurements have been investigated.

Among several approaches that have been considered, a method based on the use

of ordinary radar pulse tedhniques with subsequent shaping of the rf pulse has
been selected as most promising. This method contemplates the use of a stand-

ard pulser, a magnetron, and a rather unconventional application of a gas-
filled, transmit-receiver (T-R) tube as a pulse-shaping device.

Work on the radio frequency energy source has been concerned with
the specification of only (a) a magnetron and a suitable pulser (modulation
equipment), and (b) the design of appropriate control and monitoring equipment.
The tentative decision to perform the experiments of Ku-band frequencies led

to the selection of a Type QK 319 magnetron. Past experience has shown that

this tube can be successfully driven by an APS-2 hard-tube radar modulator.
Design of control circuitry has included means for selecting any one of nine
crystal-controlled pulse repetition frequencies between approximately 250 pps

and 1,650 pps. Means for selecting any one of three pulse durations (0.5,

1.0 and 2.0 1 jsec.) are also provided. For simplicity and flexibility, it is

contemplated that the radar modulator and associated control circuitry will
be mounted in a single, portable unit. This portable modulator unit will also
contain a Tektronix RM 16 oscilloscope for monitoring the operation of the
system.

The design of the radio frequency energy source is discussed in
detail in Appendix E. In addition, a pulse shaper to form nanosecond pulses

from the microsecond pulses generated by the radio frequency energy source

will be required. This ccmponent is discussed in Section III-B.

III. DISCUSSION

The problem of accurately measuring distances is of fundamental

importance in the science of mapping, geodesy, and position determination.

Variations in the process of determining the position of a point "A" with

respect to another point "B" can be obtained through application of different
trigonometric relations. But position determination must ultimately depend

upon either distance measurements or a combination of distance and angle
measurements.
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For centuries, the arts of surveying and mapping were coppletely
dependent upon some form of the level or transit for measuring angles and
upon some form of the chain or tape for making distance measurements. While
proper use of these devices can result in highly accurate determination of
the position of one point with respect to another, the process is a slow one,
especially when the position determination is to be carried out over relatively
large distances on the earth's surface. It has long been the desire of sur-
veyors and map makers to be able to acccoplish position determination, over
long distances, rapidly and accurately. The development of radar and similar
electronic devices during World War II provided a great step toward the reali-
zation of this goal.

Since 1945, a number of military equipments have been tried in pre-
cise, long-distance, measurement experiments. In addition, a number of devices
or systems have been developed specifically for the purpose of accurately
measuring long distances. Most of the members of this "first generation" of
distance-measuring instruments depend on the propagation of electromagnetic
energy, such as light or radio waves, through the atmosphere to a reflector.
A portion of the transmitted energy is reflected back to the point of trans-
mission, and the distance between the transmitter and the reflector is deduced
from the time required for the energy to make this transit.

In all existing systems of distance measurement by means of electro-
magnetic propagation, it is assumed that the energy travels with a constant
velocity, the value of which is determined from the local atmospheric condi-
tions at each end of the survey path. In reality, the index of refraction
can vary in a random manner along the survey path. Such variations of index
of refraction cause corresponding variations in the velocity of propagation
of the electromagnetic wave. These variations in propagation velocity can
produce errors in the indicated path length. The only sure means of elimina-
ting such errors depends on a knowledge of the index-of-refraction profile
along the entire transmission path.

The random variations of the index of refraction cause another
effect, namely, the reflection of a part of the incident electromagnetic
energy back toward the source. It was the purpose of this project to deter-
mine if this reflected energy could be utilized to obtain more precise dis-
tance measurements. The major result of the project was the theoretical
demonstration of the fact that the reflected energy carried with it sufficient
information to construct the index-of-refraction profile along the survey path.

14~



A. Determination of the Index-of-Refraction Profile

The starting point for the determination of the index-of-refraction
profile was the Schradinger wave equation

i(kx) + [-2_V(x)] u(kox) . (l.3)*

In this equation, the term u(k,x) represents a wave of spatial frequency or
wave number k , propagating in the x direction. The term V(x) is called
the scattering potential and represents the variations in the energy (or
velocity) of the wave. By assuming that V(x) = 0 for x < 0 , it was possi-
ble to write a partial solution of Eq. (1.3) as

u(k,x) - Aeikx + Be"ikx , x :r 0 .

In this representation, the term A exp(ikx) represents a wave propagating
from x = -w into the region where V(x) # 0 and the term B exp(-ikx)
represents a wave reflected fram the variations of V(x) . This identifica-
tion is consistent with the assumption of a suppressed temporal factor
exp(-iwt)

The terms A and B represent the magnitude of the transmitted and
reflected waves, respectively. In general, both A and B are functions of
frequency, k , and are related by the equation

{A1 2 kB 2 B

whiPh is a statement of the law of conservation of energy. However, because
JAI is a measure of the transmitted power, A may be arbitrarily selected
as being A = 1 . In this case, the partial solution of the Schrgdinger
equation takes the special form

u(k,x) - eikx + r(k)e•ikx , x 1 0 .

* Note that the equation numbers used in this section are identical to the

numbers used on the corresponding equations in Section II.
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In Eq. (1.5), the term r(k) is called the reflection coefficient;
it is a measure of the amount of energy which is reflected. It is also an
element of a certain matrix, S , called the scattering matrix:

(r(k) T(k)(

t(k) p(k

In Appendix A, the significance of S is discussed and a number of mathemati-
cal expressions relating its elements are derived.

Once the scattering matrix and its relationship to the scattering
potential had been defined, it was possible to give a concise mathematical
statement of the problem: If r(k) is known, can V(x) be found? This
problem was solved by presenting a method whereby V(x) could be uniquely
constructed frc r(k) .

It is a well-known fact that both u(kx) and a(kx) are con-
tinuous functions of x . Thus, since u(kx) was known for all negative
values of x , it was only necessary to determine a method whereby this known
function could be extrapolated into the space x k 0 in such a way that
u(k,x) and i(k,x) would be continuous and such that

U(k,x) - [V(x)-k2]u(k~x)

This extrapolation was performed by introducing two new functions, v(k~x)
and' K(xy) . The first of these functions, v(kjx) , was defined as the wave
which would (a) be equal to u(kx) for x s 0 , and (b) would satisfy the
Schr6dinger equation for x a 0 if V(x) were equal to zero. The second
function, K(xy) , was not explicitly defined; it appeared as the kernel of
the integral transform

x
u(kx) - v(kx) + f K(xy)v(k,)dy (a)

-1

(see Bq. (A-46), Appendix A). The use of this extrapolation forim•la is a
rather standard technique in the theory of partial differential equations.
It was known that u(ksx) obtained from Eq. (a) satisfied all of the required
boundary conditions (this fact is demonstrated in Appendix A); it, was necessary,
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however, to demonstrate that a relationship did exist (a) between K(x,y)
and V(x) , and (b) between K(x,y) and r(k) . This demonstration is pre-
sented in Appendix A, Eq. (A-47) et seq. Very briefly, the results are:
(a) K(x,y) is related to V(x) by

V(x) - 2 A K(xx) , (1.8)
dx

and (b) K(x,y) is related to r(k) by

x
0 - R(x+y) + K(x,y) + f R(y+z)K(x,z)dz (1.9)

-X

where

R(x+y) 1 r(k)e'ik(x+y) d. (1.10)
c

In other words, if r(k) were known, then K(x,y) could be found from
Eq. (1.9) and V(x) froum Eq. (1.8).

Attention is now turned to the problem of determining the index-of-
refraction profile, n(x) . If u(kx) represents an electrcoagnetic wave
propagating in the atmosphere, then it satisfies not the Schrgdinger equation.,
but rather the Helmholtz equation:

u(k,x) + k2 n2 (x)u(kx) - 0

However, the effort involved in finding V(x) was worthwhile. In Appendix A,
Eq. (A-72) et seq., it is shown that if V(x) is known, then the correspond-
ing n(x) can be found. This fact is demonstrated by a standard, but rather
involved, change of variable techniques; the reader is referred to Appendix A,
Eqo. (A-72) to (A-92) for the details.

The next task in this study was concerned with the method whereby
r(k) could be measured. This problem is discussed in Appendix B where it is
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shown that if a short impulsep F(x-ct) , is propagated into the medium of
varying index of refraction and if a reflected pulse, G(x+ct) , is received,
then r(k) can be found from the equation

r(k) =& (1.16)f(k)

where

f(k) = 1 F(x-ct)e-ik(x'ct)d(x-ct) (1.14)

and

g(k) - 1 G(x+ct)eik(x+ct)d(x+ct) (1.15)

B. Proposed Experimental Verification of the Theory

On the basis of the theoretical results obtained under this program,
it is possible to deduce the index-of-refraction profile from measurements of
the reflections. However, because it is always desirable to have experimental
evidence to support a theory, an experimental research program to obtain these
data has been designed. The objectives of this program will be:

1. To verify the theory presented in this report;

2. To design and assemble an experimental system, based on estab-
lished theory, which can be used to accurately determine the index-of-refrac-
tion profile along a prescribed transmission path; and

3. To develop the techniques of using this system for the precise
measurement of distance.

To achieve these objectiveso it will be necessary to accomplish the
following tasks, in essentially the order listed:
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1. Establish a calibrated transmission path for electromagnetic
waves, along which the index of refraction can be precisely controlled and
(within limits) changed at will.

2. Design and fabricate a radio frequency energy source capable of
generating, on a repetitive as well as a triggered or single-shot basis, very
short pulses (of the order of a few nanoseconds in duration) of electrcuag-
netic energy at a relatively high peak power level.

3. Design and fabricate a signal separation system capable of
sampling the pulses transmitted by the system described in (1) and the re-
flections of those signals from the calibrated transmission path described
in (2).

4. Design and fabricate a monitor system capable of measuring per-
tinent characteristics of the direct and reflected signals produced by the
signal separation system described in (3).

5. Establish data processing techniques suitable for handling the
experimental data obtained from the monitoring system described in (4),
thereby obtaining the index-of-refraction profile along the calibrated trans-
mission path.

6. Perform a sufficient number of experiments, using the combina-
tion of equipment and techniques described in (1) through (5),to establish the
feasibility of accurately measuring distance by this method.

The calibrated transmission path mentioned in task 1 has been de-
signed and the major components are listed in Appendix D. The radio frequency
energy source (task 2) has been partially designed and is reported in Appendix
E. Further design must be made on an experimental or cut-and-try basis because
the requirements outlined in tasks 1 through 4 are beyond the present state-
of-the-art of microwave technology.

The proposed research program could, theoretically, be carried out
using either optical or radio frequency electromagnetic energy. However,
there are certain factors which make microwaves a much more attractive choice
than light for the purposes of this investigation. First, the signal that
will be reflected from regions of varying index of refraction on the calibrated
transmission path will be only a small fraction of the incident signal; pre-
liminary analysis indicates that reflections will be about 100 db below in-
cident signal power levels. Consequently, quantitative reflected signals
would be extremely difficult to measure if the transmitted signals were not
incident on the transmission path at relatively high power levels. Recent
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advances in laser technology have resulted in devices capable of producing
well-collimated, high-intensity beams of light, but techniques for obtaining
very short (nanosecond) pulses of laser output have not been fully developed.
Pending advances in the laser field may alter this situation in the near
future, but microwave techniques which offer a great deal of promise obtaining
short-duration pulses of rf energy are in existence. Second, even if short
pulses of high-intensity light could be produced, practical limitations on
the power levels of incident signals that could be handled safely in the pro-
posed experimental system would result in reflected signals so weak as to be
difficult to detect by any known optical method. This is not believed to be
the case for microwave signals because amplification techniques are highly
developed in the field of microwave electronics.

On the basis of the foregoing considerations, it is contemplated
that the proposed experimental research program will be carried out using
radio frequency (microwave) electromagnetic waves. The exact microwave fre-
quency that will be employed depends on a number of factors. The shorter
wavelengths of the higher microwave frequencies offer the promise of greater
inherent accuracy in distance measurement. However, the variety of cer-
cially available components and equipment suitable for use above the K-band
frequencies (18.0-26.5 Gc. ) is very limited. Therefore, K-band is considered
optimum for the proposed program. Other frequencies could be used, with
X-band being the lower limit.

On the other hand, if equipment which would operate in the millimeter
wavelength range were to become commercially available, it would be interesting
to extend the range of investigation up to, perhaps, 130 Gc. to evaluate more
carefully the effects of atmospheric attenuation. A curve of attenuation
versus frequency is shown in Fig. 2.

Regardless of the microwave frequency that is finally selected for
the performance of the experiments, the general nature of the experimental
system will be as shown in Fig. 3. The shaded portions of this figure indi-
cate those portions of the system that can be easily established with present-
day technology. Although some effort will be required to procure, assemble,
and adjust these portions of the system, no major technical problems are
anticipated in these areas. The major part of the research effort on the
proposed program will be devoted to the design and assembly of those portions
of the system shown by the unshaded blocks: (1) the yuse shaper in the rf
energy source, (2) the signal separation system- and (3) the amlifier in the
monitor system.

The calibrated transmission path will consist of a section of wave-
guide several hundred wavelengths long at the selected operating frequency.
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An additional 15-30 ft. of waveguide will be used to produce a delay in the
reflected signal so that switching operations can be performed in the signal
separation system. The remainder of the waveguide path vill be sealed and
evacuated to provide a constant, stable atmosphere in which the actual dis-
tance measurements will be made. However, provisions will be made for opening
the evacuated line so that dielectric perturbations of known characteristics
can be introduced into the waveguide at various places. The entire waveguide
system will be set up on a stable foundation which will include provisions for
leveling and accurately aligning the path.

For actual index-of-refraction profile measurements, the tunable,
c-w sources used in the calibration of the transmission path will be replaced
by a pulsed source. This pulsed source will consist of a magnetron tube and
associated modulation circuitry for producing pulses of rf energy either on a
single-shot or repetitive basis, as desired. To obtain the extremely short
pulses (of the order of a few nanoseconds in duration) necessary for the pro-
posed experiments, additional microwave circuitry will be necessary in the
form of a pulse-shaping system at the output of the magnetron. The develop-
ment of this pulse-shaping system represents one of the major areas of re-
search effort on the proposed program.

An approach to the solution of the pulse-shaping problem is suggested
in Fig. 4. Here, a fast-ionizing gas tube is used to limit the transmitted
signal to a "leakage spike" which is only a few rf cycles in duration; a fer-
rite circulator device provides protection for the magnetron. The use of a
secondary-emission "multipactor" device rather than a gas "transmit-receive"
(T-R) tube presents an alternate approach to the solution of the pulse-shaping
problem. Certain new types of voltage-controlled ferrite or solid-state wave-
guide switches offer additional prcmising approaches to the solution of this
problem.

Since the determination of the index-of-refraction profile depends
on a knowledge of the signal incident upon the transmission path, as well as
the signal reflected frco variations in the index of refraction along the
path, a means for monitoring both incident and reflected signals is an essen-
tial portion of the experimental system. The fact that the reflected signal
will, very likely, be quite small makes the separation of incident and reflec-
ted signals rather complicated. Separation of the signals must be accolished
with approximately 100 db attenuation of the incident pulse and practically no
attenuation of the reflected signal. The developejnt of such a signal separa-
tion system represents a second major area of research on the proposed progras.
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A possible approach to the solution of the signal separation problem
is presented in Fig. 5. The ferrite circulator "1" allows the signal from the
pulse shaper to be transmitted to the calibrated transmission path with prac-
tically no attenuation in the forward direction (the direction of the arrows).
Leakage in the reverse direction through this circulator results in approxi-
mately 20 db of attenuation of the incident signal that reaches the ferrite
circulator "2". The major portion of the signal which reaches circulator "2"
is transmitted to the termination "A". Leakage in the reverse direction
through circulator "2" results in an additional 20 db of attenuation of the
incident signal which reaches circulator "3". The process is repeated through
circulators "4" and "5" to provide approximately 100 db of attenuation of the
incident signal which is ultimately transmitted to the monitor system. After
a sufficient delay to allow the incident pulse to reach the monitor system, a
striking voltage is applied to the four T-R tubes causing them to ionize. If
the section of waveguide between the first ferrite circulator and the cali-
brated transmission path is sufficiently long, the T-R tubes will be fully
ionized by the time the reflected signal returns fran the transmission path,
and the four terminations will be essentially replaced by short circuits. The
reflected signal will be readily transmitted from the circulator "'" to the
circulator "2", to the short circuited section, back to circulator "2", to
circulator "3", and so on through the entire signal separation system (with
only a few decibels of attenuation) to the monitor system.

Both the incident and reflected signals which reach the monitor
system will be small. Consequently, the first portion of the monitor system
must provide amplification of the signal. If it is assumed that output of the
pulse shaper comprises 1.0-nanosecond pulse of 50 kw. peak power at 1,000
pulses/sec, it is readily seen that the average power output of the rf source
is about 50 my. Thus, about 80 db of the 100 db attenuation introduced by
reflection or signal separation or both must be restored by an appropriate
amplifier if a conveniently detectable 0.5 mw. signal level is to be maintained
at the detector system input. The assembly of a suitable amplifying system is
the third major area of research effort associated with the proposed program.
Traveling wave tubes and parametric amplifiers offer promise in meeting the
requirements for restoration of the 100 db attenuation.

The remainder of the monitor system comprises instrumentation for
measuring pertinent characteristics of both the transmitted and reflected
signals. Amplitude versus time informationj obtained with a nanosecond sam-
pling oscilloscope, and power level measurements, obtained with a bolc eter
and rf power meter, will be necessary for the determination of the index-of-
refraction profile along the path. It is contemplated that comrcially
available instruments will suffice for the collection of these data. at least
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in early phases of the program. Modifications of commercial equipment or the
development of specialized instrumentation may become necessary in later phases
of the program.

Processing of experimental data will be accomplished manually or
with the help of Midwest Research Institute's computer facilities. Although
automatic data processing will be desired at some future time, practically no
effort in the development of a special data processing system is contemplated
in connection with this program. Since the data processing requirements are
well defined by the theory which forms the basis of the proposed experimental
program, only a small amount of project effort will be necessary to establish
the computational procedure.

Experiments will actually begin with the testing of the various
systems and combinations of systems as they are developed. However, once the
over-all experimental system has been perfected, efforts will be directed
toward the perfection of techniques for operation of the system in the precise
measurement of distance. Also, experimental evidence of the system's over-all
capabilities will be gathered.

IV. CONCLUSIONS

1. The reflection coefficient, r(k) , associated with an index-of-
refraction profile, n(x) , can be determined from the spectral interpretation
of two impulses of electromagnetic energy.

2. If r(k) is known, then n(x) can be computed.

3. Experimental verification of the theory presented in this report
should be pursued.

V. QTIER APPLICATIONS OF TH THEORY

Although the theory presented in this report was developed for the
purpose of obtaining highly accurate distance measurements, it has a number of
other far-reaching applications. Basically the theory indicates the method
whereby the characteristics of a medium in which a wave can propagate can be
measured remotely and rapidly and without appreciably disturbing the medium.
For instance, not only could the spatial characteristics of the index of
refraction be measured but, by making a sequence of such measurements, the
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temporal structure of the turbulence could also be investigated. An investi-
gation such as this would provide data invaluable to, for instance, the study
of energy transfer in turbulent flow.

Other applications of the theory arise in the study of plasmas. If
a transverse electric wave penetrates a plasma, then its behavior within the
plasma is described by the equation

+ 4i~e~x+ [i2 lu(ksx) 0 , (5.1)
m(w2_2)

where N(x) represents the electron density of the medium, v the collision
frequency of the electrons, w the frequency of the incident wave, e and m
the charge and mass of an electron, respectively, and all other symbols are
as previously defined. For very high frequencies or in the case of a tenuous
plasma, v2  is very much less than w2  and may be neglected. Thus, Eq. (5.1)
becomes

i(kx) + [k2 - 41122 N(x)] u(k'x) = 0 " (5.2)

Equation (5.2) is exactly the same as the Schr6dinger equation considered
previously with the term V(x) replaced by

V(x) - 4"112 N(x) . (5.3)

Thus, the electron density of a plasma may be deduced from the characteristics
of the reflections produced, and it may be concluded that the theory presented
here is applicable to the investigation of plasmas, including shock waves and
re-entry sheaths.

Waves propagating in a magnetoionic medium also obey Eq. (5.2)
whenever the electric vector of the wave lies parallel to the direction of the
superimposed magnetic field. For this reason, the theory is also applicable
to the design of an ionosphere probe. This would be a particularly important
application because, using this theory, it would be possible to make a measure-
ment in an interval of time that was short ccoared to the rate of change of
the ionospheric structure; consequently, information concerned with the space-
time development of the ionosphere could be obtained.
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APPENDIX A

REMOTE MEASURD4ET OF THE INDEX-OF-RUFRACTION PRCFILE
MATHEMATIC&L THMY

I. Introduction

The problem to be considered here is that of determining the index-
of-refraction profile along some prescribed path from measurements made ex-
ternal to that path. To make this determination, a sharp impulse of electro-
magnetic energy will be propagated into a medium whose index of refraction
changes from point to point. As the impulse traverses the medium, the energy
stored in its electric and magnetic fields will be continuously redistributed,
and a portion of the energy will be reflected back toward the source. In the
following, it will be shown first that the characteristics of the reflected
impulse are uniquely determined by the index-of-refraction profile, and
second, that the index-of-refraction profile can be determined from measure-
ments of the reflection. From a physical point of view, this fact represents
a possible solution to the problem because the reflected impulse can be meas-
ured at an arbitrary point located external to the path.

Any wave, w(k,x) , propagating in a medium with index of refraction
u(x) satisfies the Maxwell wave equation

ii(k,x) + k2n2 (x)w(kx) - 0

where k is the wave number or spatial frequency of the wave. For reasons
of mathematical expediency, however. we shall at first concern ourselves not
with the Maxwell wave equation, but with the Schr6dinger wave equation

u(k,x) + [k2-V(x)] u(kx) - 0

where V(x), called the scattering potential, is analogous to the index-of-
refraction profile. These two equations can be tied together by assuming that
n(x) - 1 and that V(x) - 0 for x < 0 . Thus, the two equations are identi-
cal for x < 0 and we can assume that u(kx)- w(k,x) for x < 0
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Subsequently, in Section II of this Appendix, it will be shown that
the incident and reflected waves are related by a certain operator S , called
the scattering matrix. Study of this operator will yield considerable insight
to the nature of the reflection coefficient. Then, in Section III, it will be
shown that the scattering potential, V(x) , can be determined if the reflec-
tion coefficient is known. In Section IV it will be shown how n(x) can be
determined from V(x)

II. The Scattering Matrix

Scattering, or radiative transfer, processes are of fundamental
importance in many fields of mathematical physics such as electromagnetic
theory, quantum mechanics, neutron diffusion, etc. Usually, the aim is to
determine the asymptotic scattered field in terms of the incident field and
some prescribed potential field or medium which is responsible for the
scattering. However, in this study, interest will be focused on the inverse
problem, that of specifying the characteristics of the scatterer in terms of
the incident and scattered fields.

This discussion will be concerned with the one-dimensional case
which is governed by the Schrodinger wave equation

U(kx) + jk2_V(x)]u(kx) - 0 (A-1)

and it will be assumed that

V(x) = 0 for x < 0 (A-2)

throughout this discussion, although the results to be obtained will be valid,
or can be easily generalized, when a less severe condition replaces Eq. (A-2).
For purposes of illustration, it will also be assumed that

V(x)o0 for x>xo . (A-3)

However, it will become apparent (because xo nowhere enters into the argu-
ment) that this condition is invoked purely for purposes of illustration and
represents no limitation to the theory.
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Let u(kx) be any solution of Eq. (A-1). Then it can be decomposed
into two parts, the incident and the reflected wave:

u(k.x) - ui(kx) + ur(k,x) • (A-4)

Consider first the incident wave ui(kx) ; it can be further decomposed into
two parts, one incident on the perturbation from the left:

ui(k,x) =A..eikx for x < 0 (A-5)

and one incident from the right:

ui(k,x) = A+e-ikx for x > xO . (A-6)

Let it be emphasized at this point that the only significance of the condition
implied by Eq. (A-3) is that it allows one to speak of the "right side of the
perturbation"; if that condition had not been invoked, it would be necessary
to write Eq. (A-6) as

""rn [u(kx)-A~eik] - 0 ( CA-7)
I -*-

In a similar manner, the reflected wave can be decomposed into two components,
a right-hand component and a left-hand component:

ur(k,x) - B.-eikx for x < 0 (A-8)

and

ur(k,x) - B+eikx for x > xo (A-9)

3 51 -



Ccmbining the above notation,

u(k,x) = A~eikx + B-e"ikx for x < 0 (A-10)

and

u(k,x) = A+e"ikx + B+eikx for x > xo . (A-il)

It is convenient to consider the incident wave components, A. and
A+ , as being "prescribed" quantities and the reflected or scattered compo-
nents, B. and B+ , as being "measured" quantities. Clearly, B± depends
in a linear fashion upon both A+ and upon V(x) . This dependence can be
easily expressed in terms of an operator S , the scattering matrix, a nota-
tion introduced by Heisenberg in 1943:

B s 
(A-12)

B÷ A

This matrix S is a 2 x 2 square matrix having the elements

S .(r(k) T(k)) . (A-13)
r (k) p(k)

Clearly, these elements are determined by V(x) alone and are functions of
the complex variable k . Before proceeding to the actual discussion of the
inverse problem, it is expedient to derive some relations concerning the
elements of S

The first item of interest is the fact that

1A.1' + IA+12  l I1I +l3+12 .(A-14)
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Equation (A-14) is no more than a statement of the first law of thermodynamics.
The term on the left of Eq. (A-14) is a measure of the energy incident on the
scatterer; the term on the right is a measure of the scattered energy; and
because V(x) is real, the scattering process is lossless and the equality
must hold. From a mathematical point of view, Eq. (A-14) can be proved quite
easily by considering the Wronskian of two solutions of Eq. (A-1).

If u and v are two solutions of Eq. (A-i) (or, for that matter,
of any differential equation), then W(u,v) , the Wronskian of these solutions,
is defined as the determinant

W(uv) = j (A-15)

where the dots indicate differentiation with respect to x It will first
be demonstrated that W(u,v) is a constant. Differentiate W(u,v) with
respect to x to obtain

d w(u'v) =(A-16)

Substitute the values of U and v into Eq. (A-16):

d__ W(uv) = -uv (A-17)
dx [k2.v(x)] [O.-V(x)]

Then

dSW(u,v) - 0dx

and

W(uv) - constant . (A-Is)
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Nov to prove Eq. (A-14) let u be the solution given by Eqs. (A-10) and
(A-il) and let v be the complex conjugate of u . Then,

B_ A*
W = 2ik for x < 0 (A-19)

A B:

and
A+, B+

W = 2ik for x > xo (A-20)
B+ A*

Because W is constant, these two expressions can be equated to obtain
Eq. (A-14).

It will next be shown that S is unitary; this follows immediately

A' E
frcm the fact that (a) S transforms the vector into the vector i

(see Eq. (A-12)), (b) the length of these two vectors is equal (see Eq. (A-14)),
and (c) any operator which transforms a vector, having a finite number of
components, into another vector of equal length is unitary. An algebraic
proof of this statement can be obtained by substituting values of B. and
B+ , obtained from Eq. (A-12), into Eq. (A-14) to obtain

- AA+[r*T+t*pJ = 0 . (A-21)

Because A_ and A+ are arbitrary, it is necessary that

1rl2 + Itl2 _ 1 , (A-22)

IP12 + I 12 _ 1 (A-25)

and

rT* + tp* - 0 . (A-24)
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By making use of these last three expressions, it follows immediately that

s ý =(A-25)

which proves the assertion.

The last result of interest at this time is the reciprocity law:

t = . (A-26)

To prove the reciprocity relation, first write down the matrix representation
of u*(k,x) remembering that, in the conjugate wave, the roles of the inci-
dent and scattered waves are interchanged:

A* , SB* (A-27)

Then

B*=sA* . (A-28)

However, the complex conjugate of Eq. (A-12) is

B* - S*A* . (A-29)

camparison of Eq. (A-28) with Eq. (A-29) shows that

s - T (A-5O)

which proves the assertion.
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As mentioned previously, the vector (A) can be considered to be

arbitrary. Thus, by selecting A- - 0 and A+ - 1 , we obtain

u(k,x) = •ikx + r(k)e-ikx , for x < 0 (A-31)

and

lir [u(kIx)-t(k)ekx -]= 0 . (A-32)
x--h'0

III. The Inverse Scattering Problem

The wave u(kx) is assumed to satisfy the Schr6dinger wave equation

u(k,x) + [k2-V(x)] u(kx) = 0 (A-33)

where the scattering potential, V(x) , is a real, piecewise continuous function
of x and

V(x)=0 for x<o . (A-34)

Consequently, u(k,x) can be defined for negative values of x as

u(kx) -ei•kx + r(k)e-ikx , x < 0 . (A-55)

The inverse scattering problem is that of constructing an expression for V(x),
valid for all x , from the known reflection coefficient, r(k) .

Let v(k,x) be a wave solution of the differential equation

v(k,x) + k 2v(k,x) - 0 (A-36)
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which is equal to u(k,x) for x < 0 . By the term "wave solution", we mean
a solution whose first derivative exists and is continuous for all values of
x . Consequently,

v(k,x) - eikx + r(k)eillC4 , all x . (A-37)

Let V(kx) be another wave solution of Eq. (A-36) and be given by

v(k,x) = e-ik - r*(k)eikx (A-38)

where, as usual, the asterisk indicates a complex conjugate quantity. These
two wave solutions were selected because they have the property that

1 f v(k.x)O(k.y) dk = 6(x-y) (A-39)
Y It(k)12

where t(k) is the transmission coefficient associated with r(k) and
6(x-y) is the Dirac delta function,

6(x-y) 1 ik(x'y) . (A40)

From another point of view, the function ) may be looked upon as the
It(k){2

kernel of a certain integral transform acting on v(kx) . Noting the simi-
larity between Eqs. (A-33) and (A-36), we apply the same integral transform
to u(kx) and write the result in terms of a new function K(x,y):

1 2 u(k~x)O(k~y) dk - K(x,y) + 6(x-y) (A-4I)2f. -, It(k) 12

Now, if this new function K(x,y) does, in fact, exist (ve shall prove
its existence later), it is easy to show that
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1 Go u(Jx)V(J.y)V(ky) djdk M v(k,x) + K(xz)v(kz)dz (A-42)1. . it(j)l2

whereas

Su(jxW(j , ddj a u(k,x) (A-43)

Now, under very general conditions (Fubini's theorem) Eqs. (A-42) and (A-43)
can be equated to give

u(k,x) = v(k,x) + K(x, z)v(k,z)dz (A-44)
-m

However, because u(k,x) = v(k,x) for x < 0 , K(x,y) is triangular in the
sense that

K(x,y) - 0 for y<-x . (A-45)

Thus, Eq. (A-44) beccmes

x
u(k,x) = v(k,x) +/ K(x,z)v(k,z)dz . (A-46)

-x

It is now necessary to prove the existence of K(xy) . To do this,

apply the operator _- V(x) to Eq. (A-46). After substitution frcm

Eqs. (A-33) and (A-36), this gives
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-k 2 u(k,x) - -k 2v(kx) - V(x)v(k,x) - V(x) I K(x,y)v(ky)dy

d.2 K(x,y)v(ky)dy . (A-47)

The derivative in Eq. (A-47) is evaluated according to Leibnitz' rule to yield

-k 2 u(k,x) -1c'v(kx) - V(x)v(k,x) + v(k,x) dK(xlx)
dx

+ K(x,x) dv(kIx) + v(k,-x) dK(x,-x) + K(x,-x) L v(k,-x)
dx dx dx

X

+ Kx(x,x)v(k,x) + Kx(x,-x)v(k,-x) +f Kx(x,Y)v(ky)dy

x-

- V(x) f K(x,y)v(k,y)dy . (A-48)
-x

Next, Eq. (A-46) is multiplied by -k2

wx-k.~u(k,x) - -k2v(k~x) +f K(x,y) [-k~v(k~y)] dy . (A-49)
-x

The bracketed term in the integral of Eq. (A-49) is evaluated from Eq. (A-36).
Thus, from Eq. (A-49)

2x
-k u(k,x) -kev(k,k) + K(x(,y) ' v(k,y)dy (A-50)
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The integration indicated in Eq. (A-50) can be performed twice by parts to
yield

-kZu(k,x) - -kv(k,x) + K(x,x)
dx

+ K(x,-x) dv(k.-x)
dx " K(x'xv(k'x)

+ KY(x,-x)v(k,-x) +1 KIy(x,y)v(k,y)dy . (A-51)

Next, Eq. (A-51) is subtracted from Eq. (A-48) and use is made of the
relation

K (x,x) + Ky(x,x) = dK(x.x) (A-52)
dx

0 = {K1 x (, y)-Kyy(x, y)-v(x)K(x, y) } v(k,y)dy

+{2 dK(x.x "v(x) v(k'x) + 2 dK(x.-x) v(k''x) (A-53)
f dx -VXJIkX dx vk-) . (-5

Equation (A-53) will be satisfied if the following three conditions are valid:

K,((x,y) - K (x,y) - V(x)K(x,y) = 0 , (A-S4)

2 dK(xx). v(x) , (A-ss)

dx

and

dK(x.-x) - o (A-se)
dx
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Now, we know from the theory of second order differential equations that a
solution of Eq. (A-54) which satisfies the boundary conditions, Eqs. (A-55)
and (A-56), does exist. Thus, we have proved the existence of K(x,y) and
may assume Eq. (A-46) to be valid.

The next step is to find K(x,y) . To this end, apply the operator

1 f eik dy (A-57)*
C

to Eq. (A-46) (c is a contour, extending from K = -m to K +. and lying
in the upper half of the complex K-plane above any poles of r(k) ). This
yields

0 -R(x~y) + K(x,yv) +J R(y+z)K(x,z)dz (A-58)
.x

where

R(x+y) = 1 / r(k)e'ik(x+Y)dk . (A-59)
c

Equation (A-58) is a Fredholm integral equation of the second kind and can be
solved for K(x.y) . Thus, Eqs. (A-55), (A-58), and (A-59) represent a solu-
tion to the inverse scattering problem.

The above presentation represents only a theoretical solution of
the inverse scattering problem. From a practical point of view, the solution
is not yet complete. In order to apply the theory so far expounded, it is
necessary that r(k) be known for every value of k . However, because
r(k) will be determined experimentally, it can at best be known on a bounded
real interval or, even more likely, for only a finite set of discrete fre-
quencies. Now, because not every function r(k) can be used to construct a
potential V(x) , a very real problem does exist. Accordingly, we vish to
determine those requirements which, when placed on r(k) , are sufficient to
insure that a scattering potential, V(x) , can be constructed.

* For instance, this operator applied to the function f(y) would be

vrittei L If (y~e--- (1.-
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First, let us consider R(x) . We state, and shall subsequently
prove, that the following requirements are sufficient to insure that V(x)
can be constructed from Eq. (A-55):

1. R(x)-O for x<O,

2. R(x) exists,

3. R(x) exists,

4. R(x) is continuous, and

5. R(x) is continuous.

To prove (.), we note that if R(x) - 0 for x < 0 , then K(x,y) =

0 for x < -y and, consequently, V(x) - 0 for x - 0 . The proof of the
remaining four conditions requires somwhat more detail.

Our starting point will be the integral equation

x

O = R(x+y) + K(x,y) + R(y+z)K(xz)dz (A-60)
_x

If R(x) is continuous, then Eq. (A-60) can be written

0 - R(x+y) + K(x,y) + f R(yFz)K(x,z)dz (A-61)

If i(x) exists, Eq. (A-61) can be differentiated with respect to x to
obtain

0 - A(x+y)+Kx(x,y) + K(xx)R(x+y) +f KX(x, z)(y+)dz • (A-62)

If R(x) exists, then Sq. (A-62) can be differentiated with respect to x to
obtain
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0 - ii(x+y) + Kxx(xy) + K(xx)i(x+y) + R(x+y) d K(xx)
dx

+ KX(x,x)R(x+y) +fy K.(x,y)R(y+z)dz (A-63)

Next, differentiate Eq. (A-61) with respect to y to obtain

x

0 i-(x+y) + Ky(x,y) + K(x,-y)R(o) +f K(x,z)k(y+z)dz (A-64)
.y

If R(x) is continuous and if R(x) = 0 for x < 0 , then R(O) 0 and
Eq. (A-64) becmes

x

0o i(x+y) + KY(x,Y) +f K(x,z)R(y+z)dz (A-65)
-Y

Next, differentiate Eq. (A-65) with respect to y to obtain

x

0 - i(x+y) + K.7(x,y) + K(x,-y)R(o) +f K(x,z)i(y+z)dz (A-66)
-y

If R(x) is continuous, then R(o) = 0 and Eq. (A-66) becomes

x
0 = i(x+y) + % (x,y) +! K(x,z )i(y+z) dz 1(A-67)

-y

Next, the integral in Eq. (A-67) is integrated twice by parts and Eq. (A-67)
beccmes

0 -i(x+y) + Kyy(x,y) + K(x,x)h(x+y) - K.Y(x,x)R(x+y)

+ f Ky (,sx)R(yz)dz . (A-e6)
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Next, Eq. (A-68) is subtracted from Eq. (A-63) and, from this result, the

dxprdutof 2 d K(xlx) and Fq. (A-61) is subtracted. This yields

0 - .,•(x,y) - ,,(xy) - 2K(x,y) A K(x,x)
dx

Sx
+ R(z).(x,)- (x,)-2(x,z) K(xxdz (A-69)
.y d

Obviously, Eq. (A-69) is satisfied if

Kx(x,y) - 1yy(x,y) - 2K(xy) L K(xX) - 0 (A-70)

dx

Subtracting Eq. (A-70) fron Eq. (A-54), we obtain the desired result:

V(x) - 2 L K(x,x) (A-71)
dx

Thus, the sufficiency of conditions (1) to (5) has been demonstrated and we
see that if r(k) is a function whose transform B(z) satisfies thes con-
ditions (as well as the conditions specified in II), then the construction
will be successful.

IV. The Determination of n(x)

Now that we have determined the scattering potential, V(z) , which
appears in the equation

i(kz) + [-2_v(s)] u(kz) - 0 ,(A-7)

our next task will be to find the index-of-refraction profile, n(x) , which
appears in the equation

u(kx) + k2 n2 (x)w(kx) n 0 . (A-.7)



The requirements imposed on V(z) ,

V(z)-0 for z<o (A-74)

and

lim V(z) - 0 (A-75)
Z---)mo

and those which apply to n(x) ,

n(x) 1 for x < 0 (A-76)

and

lim n(x) - 1 (A-77)
X --)m

are sufficient to insure that

u(k,x) - w(k,x) for x < 0 (A-78)

and

imr [u(kx)-w(kx)]- 0 . (A-79)
X -.-*C

Thus, Eqs. (A-78) and (A-79) serve to prescribe boundary conditions for Eq.

(A-73).

In Eq. (A-72), let x = x(z) . Then we obtain

U(k,x) + x zl(icX) + u(kx) - 0 (A-80)

where the dots indicate differentiation with respect to x and the primaes
indicate differentiation with respect to z . Next, in Eq. (A-80), lot



u(k..x) - V(k,x)(x) 4  (A-81)

Then we obtain

(x' 4(x? 2(x)5(p

By inspection, we see that Eq. (A-83) is equivalent to Eq. (A-75) if

1 n(x) (A-83)

and

Consequently, if we can find an expression for x from Eq. (A-84), we can
determine n(x) from Eq. (A-83). It is also significant to note that, because

n(x) 1 1 for x < 1 , w(k~x) in Eq. (A-82) satisfies the prescribed boundary
conditions.

In Eq. (A-84), let
ofy = x( - )

T (A-85)
x

Then
If,

2,+ =ý (A-86)

and Eq. (A-84) becomes

2-(z) - y2 (z) + 4V(z) - 0 . (A-87)
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Equation (A-87) will be recognized as the Ricatti equation. The substitution

y(z) - -2 U (A-)
U(z)

transforms it into

U(z) - V(z)U(z) - 0 . (A-89)

If we solve Eq. (A-89) for U(z) , we can then find x from

, 1 (A-9O)
19(z)

and x(z) from

x(z ) dz (A-91)
U21(z)

Then, inverting x(z) to find z(x) , we obtain

nUx) z(x) (A-92)

For x<O, n(x)- 1. Thus z(x)-x and U(z)-1 for z<O.
By requiring that U(z) and 6(z) be continuous, we obtain

u(o)-1 and U(O)-O . (A-93)

These are the boundary conditions which allow us to solve Eq. (A-89) and this
completes the problem.

In sumary, we are given the function r(k) and want to find n(x)
To do this, we =est cceqlete the following se.xence of operations:
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1. Compute R(x) from

R¢x) - - fr(k)ei• dk (A-94)
C

where c is a contour extending from k - -, to k - +m and lying in the

upper half of the K-plane above the poles of r(k) .

2. Find K(x,y) from the integral equation

I

0 =R(x+y) + K(x,y) + f R(y+z)K(x,z)d. (A-95)
-x

3. Find V(x) from

V(x) = 2 L. K(x,x) (A-9)
dx

4. Find U(z) from

U(z) - V(z)U(z) - 0 , (A-97)

u(o) 1 1 and 6(0) - o (A-g9)

5. Find x(z) from

x(z) - cf dz (A-99)

6. Invert X(z) to obtain z(x)

7. Compute n(x) from

n(x) _ U2(x) .(A-100)

The constant c in Eq. (A-99) can be evaluated if one value of n(x) , i.e.,

n(O) is knon.



APPENDIX B

THE MEASUREMENT OF THE REFIECTION CCEFFICIEK, r(k)

The mathematical theory for the remote measurement of the index of
refraction, which was advanced earlier in this report, depended succinctly
upon a certain quantity, r(k) , called the reflection coefficient. In this
section, we consider the manner in which this quantity may be measured.

The reflection coefficient, r(k) , first appeared in the equation

u(kx) - eikx + r(k)eikx , (B-i)

where u(kx) was assumed to be a solution of the (separated) wave equation

i(k,x) + k2 u(k,x) = 0 . (B-2)

Equation (B-2) had, in turn, been obtained from the (total) wave equation

(ks,t)- L- u(kxt) - o (B-3)ax c2 at2

by separation of the temporal factor exp(-ikct) ; that is, by assuming
that

u(kx,t) - u(kx)e'ikct • (B-4)

Thus, we can write

u(kx,t) - •ik(x-ct) + r(k)e"Ik(x+ct) (B-5)
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Now, u(k,x,t) as defined by Eq. (B-5) represents a particular solution of
Eq. (B-3); a general solution can be obtained by multiplying by f(k) , an
arbitrary function of the wave number k only. Let

g(k) - r(k)f(k) , (B-6)

and this general solution is

ug(kxlt) - f(k)eik(x-ct) + g(k)eik(x+ct) (B-7)

This general solution represents the sum of two waves, a forward (toward
x = +- ) traveling wave, f(k) exp[ik(x-ct)] , and a backward (toward x -- )
traveling wave, g(k) exp[-ik(x+ct)] . Both waves travel with a velocity c

C (B-8)

By further inspection, we see that the forward traveling wave is
actually the sum of an infinite number of sinusoidal components, each ccaponent
having a spatial frequency, or wave number, k , and an uTlitude of f(k) . A
similar interpretation can be given to the backward traveling wave. Accord-
ingly, the total waves can be obtained by summation:

F(x-ct) - 1_• f(k)e ik(x-ct) dk (B-9)

and

0(x+ct) - f f g(k)e•ik(x'ct) dk (B-10)

NOw, the two functions F(x-ct) and G(x+ct) are the space-time
profiles of the incident and reflected waves, respectively. They represent
two measurable quantities. and it is these two quantities which we shall
measure.
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Now notice that F(x-ct) and G(x+ct) are Fourier transforms of
the functions f(k) and g(k) , respectively. Accordinglyp once F(x-ct)
and G(x+ct) have been measured, f(k) and g(k) can be obtained by in-
version:

f(k) -f 1 F(x-ct)e"ik(x-ct) d(x-ct) (B-11)

and

g(k) - 1.- G(x+ct)eik(x+ct) d(x+ct) (B-12)

Then, r(k) may be found from

r(k) Aiz (B-13)
f(k)

In practice, a very short impulse, F(x-ct) , will be transmitted
into the region of nonconstant index of refraction and a, presumably longer,
impulse G(x+ct) will be reflected. The requirement that F(x-ct) be a very
short impulse stems from the fact that the index-of-refraction profile will be
slowly changing with time. If F(x-ct) is too long, or, in other words, if
too much time is taken to make the measurement, then a "smearing" will take
place which will invalidate the results. From another point of view, we wish
to measure the value of the reflection coefficient over as broad a band of
spatial frequencies, k , as is practicable. To do this, it is necessary that
the spectrum of F(x-ct) be as broad as possible and one way of obtaining a
broad spectrum is to use a very short impulse.
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APPNDIX C

AN ALTERNATE DERIVATION OF THE INVERSE SCATTERING THEORY

In this section we shall present an alternate derivation of the
inverse scattering theory and obtain, as a consequence, a different (but
equivalent) inversion formula which may be useful under some circumstances.
We shall also present examples to demonstrate the utility of both inversion
formulae.

Formally, we are given the differential equation

u(k,x) + [k2-V(x)] u(k,x) - 0 (C-i)

where

V(x) = 0 for x < 0 (C-2)

and u(kx) is known for x s 0 . We wish to find the value of V(x) for
x . 0 . Now, assume that

u(kx) - f(k)eIOC + g(k)e"ikx , x r 0 . (C-3)

Following the same procedure as in Appendix A, we define the two unperturbed
solutions

v(kx) - f(k)eIky + g(k)e"ikx (C-4)

and

A,(k,x) - f*(k)eikc - g*(k)eikx . (C-5)
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Next, we define the function Ih(k)12 by

Ih(k)12 _ If(k)l 2 -_l(k)l2  , (c-e)

Consequently, v(kx) has been normalized so that

1 -" v(k.x)A( dk - 6(x-y) (C-7)
FI jh(k)1 2

Ncw, assume that there exists a function K(xy) such that

1 f u(kx)ý(ky) dk 6(x-y) + K(x,y) (C-8)
ý f-C* Ih(k) 12

The existence of this function, K(xy) , may be verified by exactly the same
method used in Appendix A, Eqs. (A-47) to (A-56), and we find that it must
satisfy the equations

Kx(x,y) - Kl,(x,y) - V(x)K(x,y) -0 (C-9)

d K(x,x) - ½ V(x) (C-10)

and

K(x,-x) constant (C-11)

By the same token, using the methods of Appendix A, Eqs. (A-42) to (A-46), we
see that

x
u(k,x) -Y(k,-x) + 5- (x,,)v(k,) (C-12



Now, apply the operator

1feiydk (C-13)
C

to Eq. (C-12) to obtain

x x
0 G(Y+x) + K(x,z)F(y-z)dz + f K(x,z)G(y+z)dz , (C-14)

-x -X

where

F(x) - f f(k)e"Ikx dk (C-15)

and

G(x) =- f g(k)e"kx dk (C-16)
C

Equation (C-14) is the alternate inversion formula.

To indicate the equivalence of the two inversion formulae, as well
as to demonstrate one method of solution, we shall consider two examples. In
the first example, let

f(k) - i•-i (C-17)

and

g(k) - . (C-18)
(k+i) 3

Then

r (k) " -1 (.9-,
f(k) k2+1 (c-s)

5'-



Using the calculus of residues,we may easily ascertain that

F(x) - (l-2x)ex , x k 0

F(x)-O ,x<O , (C-20)

G(x) - j x2 e" , x 0

G(x) - 0 ,x :r 0 (C-21)

and that

R(x) - sinh x x : 0

R(x) = , x S o (c-22)

Consequently, we are concerned with the two integral equations

0 = G(x+y) + j K(x,z)F(y-z)dz + K(x,z)G(y+z)dz (C-23)
-X -

and

0 = R(x+y) + K(x,y) + K(x,z)R(y*z)dz (c-24)
-y

We shall solve Eq. (C-24) first.

Note that

P(p)R(y) - o (c-25)

where

p(p) - p2 _- (C-26)
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and

p. d (c-27)
dy

Applying this operator to Eq. (C-24), we obtain

o -P(p)R(x+y) + P(p)K(xy) + Y K(x,z)P(p)R(y+z)dz
-Y

+ K(x,-y) [R(o)A(0)] - K,(x,-y)R(o) . (C-28)

Now, because R(O) = 0 , and R(O) = 1 , Eq. (C-28) becomes

0 - •(x,y) - K(x,y) + K(x,-y) . (C-29)

The solution of Eq. (C-29) is

K(x,y) - a(x) + b(x) sinh 42y (C-30)

where a(x) and b(x) are arbitrary functions of x alone. By substituting
the expression for K(x,y) from Eq. (C-30) into Eq. (C-24) and preforming the
indicated integrations, we obtain

K(x,y) - 1 sinh 4-2x +sinh,42-y ya
- cosh 4x

K(x,y) - 0 , y < -x . (c-31)

Consequently, from Eq. (C-1O) we easily obtain

V(x) - -4 sinh2 , x a 0

v(x) -o ,0x < (C-32)
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Next, we turn our attention to Eq. (C-23). We obtain easily

P(p)F(y) - 0 (C-33)

where

P(p) - p2 + 2p + 1 (C-34)

and that

(p+l)P(p)G(y) - 0 . (C-35)

Thus, by applying the operator (p+l P to Eq. (C-23), and using the values

A(O) = 1 , •(o) = -3 , A*(o) = 5 (C-36)

and

B(0) = 0 , i(o) = 0 , B"(O) - 1 (C-37)

we obtain

0 - K.y(x,y) - K(x,y) + K(x,-y) (C-38)

Equation (C-38) is identical to Eq. (C-29). Consequently, its solution is
given by Eq. (0-31) and V(x) by Eq. (c-32).

It is important to note fron this example that, while R(x) and
G(x) are continuous, A(x) has a discontinuity at the origin. From this, we
may assume that it is not necessary that A(x) be continuous. Hwever, it
would be incorrect to assume, in this respect, that Eq. (C-23) represents a
generalization of Eq. (C-24) as the next example will show.
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For the second example, let

f(k) - I ,(k) -(C-39)
k+i (k+i) 2

and

r(k) = ) (c-40)
f(k) k+i

Then

R(x) - -ex, x 0

= 0 ,x<O0 (C-41)

In this case, R(x) is discontinuous and we would expect the theory to fail
(which it does). R(x) satisfies

(p+1) (x) ( x . (C-42)

Thus, by inserting the value of R(x) into Eq. (C-24) and performing the
operation (p+l) , we obtain

0 - (x,y) + K(x,y) - K(x,-y) . (C-43)

The solution of Eq. (C-43) is

K(xy) - K(x) . (C-")

But, from the relation

K(x, -x) - constant (C-45)
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we obtain

K(x,x) - constant (c-46)

and

V(x) SE 0 , all x (C-47)

However, the reflection coefficient r(k) = 0 corresponds to V(x) a 0 , not
the one given in Eq. (C-40).

Continuing the example, we have

F(x) = ex , x 2t 0

F(x)=o , x<o (c-48)

and

G(x) = -xeX , x a 0

G(x) - 0 , x : 0 (C-49)

These functions satisfy the equation

(p+1)F(x) (p+l)G(x) - 0 . (c-5o)

Thus, by substituting the value of F(x) and G(x) into Eq. (C-23) and per-
forming the operation (p+1)2 we obtain

0 - K,(x,y) + K(xy) - K(x,-y) (C-51)

and, as before, the theory fails.

In concluding this Appendix, let us point out that the second exam-
ple, used here to demonstrate the failure of the theory, is exactly the same
as the example used in Appendix C of the Fourteenth Interim Technical Report
(10 July 1962) to demonstrate the validity of the theory. The answer to this
unseemly contradiction is that all the work appearing in Appendix C of the
Fourteenth Interim Technical Report is Incorrect.
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APPENDIX D

CALIBRATED TRANSMISSION PATH

The calibrated transmission path will consist of a section of K
band waveguide (either RG-91/U brass guide or RG-107/U silver guide) approxi-
mately one meter long. This vaveguide will be carefully assembled and cali-
brated and will provide the experimenter with a transmission path whose index-
of-refraction profile and other pertinent characteristics are accurately
known. Initially, experiments will be performed to indicate how variations in
the index-of-refraction profile along the line will affect length measurements
made using a phase-null or interferometer technique. Later experiments will
be aimed at determining how accurately the reflections caused by the varia-
tions of the index-of-refraction profile can be measured and how these meas-
urements can be used to more accurately determine the length of the path.

The length of the guide will be determined using the equipment shown

in Fig. 6. This equipment will consist of the following components:

1. Huggins Model 615 Oscillator (10-20 Gc.,O.5 mw.),

2. Huggins Model 322 TW" Amplifier (30 db, 1 w.),

3. Waveguide Tee (Demornay Bonardi DBF620),

4. Crossguide Coupler (DBF631),

5. Matched Load (DB7450),

6. Elbow (DBF224),

7. Attenuator, 0-50 db (DBF420),

8. Thermistor Mount (Hewlett-Packard P487B), and

9. Power Meter (Hewlett-Packard 430 C).

To determine the waveguide length using the phase-null system, a
short circuit will be placed at one end of the guide and a microwave signal
from the phase-null equipment, Fig. 6, fed into the other. The electric field
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Fig. 6 - Phase-Null Equinent
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within the guide will be zero at the short circuited end and, because of the
standing waves caused by the short, will also be zero every one-half guide
wavelength along the line measured from the short.

The oscillator frequency will be varied until the voltage at the
sending end is zero, and the half guide wavelength, X, , corresponding to
this frequency will be measured. Then, the length of the guide, L , can be
ex.pressed as

L = l

where m is an integer yet to be determined. Next, increase the oscillator
frequency. The voltage at the sending end will increase (as the frequency
increases), reach a maximum, and then decrease to zero. Denote the half guide
wavelength at which this zero occurs as X2 . The waveguide length can now be
expressed in terms of X2 as

L = (m+l) X2-

From these two results, it follows that

L - XI2

and, since both X1 and X2 are known, L can be determined.

Unfortunately, computational difficulties arise at this point be-
cause of the necessity of dividing by the difference of two numbers, X, and
X2 , which are nearly equal. To illustrate, assume that X, = 2 cm. and that
L = 100 cm. Then m = 50 and

X2 a100 = 1.960784 ... cm.
2 51

Now, assume that X can only be measured to an accuracy of +0.001 cm. Then
the two measured quantities would be
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X1 M 2.000 cm.,

X2 = 1.961 cm.

and

L = (2.000)(1,961) = 100.564 .... ,
2.000-9.161

resulting in an error of 0.564 cm. in L

To remedy this problem, assume that, as before, X, represents the
half guide wavelength at which a zero of the input voltage occurs. Then in-
crease the oscillator frequency noting that the input voltage varies through
successive maxima and zeros. Let Xn be the half guide wavelength at which
the nth zero occurs. Then

1 = MX1 = (m+n)Xn

and

l=n - .
nXl*Xn

Now, assume that 1 = 2 cm., L - 100 cm., and n = 40 . Then

X40 = 1.111 ... cm.

Assume, once again, that Xn can be measured to an accuracy of ±0.001 cm.
Then the measured quantities will be

X1 2.000

X40 =1.ii1

and
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1 4* (2.ooo)(l.l1) 99.97•
2.000-1.111

or, an error of only 0.022 cm. in L .

These numerical examples serve only to illustrate the nature of the
error which will result and also to indicate that the error can be minimized
by maximizing the term "n" in the formula

L =n hlhn .

Xl-xn

For a line one meter long and a range of frequencies 12-18 Gc.,the maximum
value of n will be approximately 50 (when Xl = 2) 50 - 2 cm.). To obtain
an approximation of the error which can be expected, use the above values to
write

L = 50 (2+-l)(*+o50) _ 100
(2+* 1 )-(ieC50 )

where AL is the error in L and l1 and ¢50 are the errors in X and
X5O . Expanding the above equations,

A.= -50 €150"€1
1+€1-€50

Next, assume that Il11 - 16501 = 0.001 cm. and maximize the numerator and
minimize the denominator to obtain

AL < 50 0.001001 = 0.05 cm.
0.998

In other words, with the equipment specified, the length of a one-meter
section of guide can be determined to better than t+ am.



Before making measurements, the test equipment, Fig. 6, must be cali-
brated. To do this, connect a calibrated-movable-short such as Demornay
Bonardi DBF969-1 to the test equipment (the open arm of the tee). Then,
follow the procedure below:

1. Set the oscillator to that frequency near 12 G. where zero

power is indicated (on the 430 C power meter).

2. Move the short in a direction away from the tee, noting that the
power indicated on the 430 C will increase and then decrease again to zero.
Record the distance which the short has moved as X1 and return the short to
its original position.

3. Increase the oscillator frequency to about 18 Ge. noting that as
the frequency is increased, the indicated power varies through successive
maxima and zeros. Set the oscillator to that frequency where a zero is ob-
tained and record the total number of zeros as n .

4. Measure this new wavelength by the procedure in (2) and record
this value as Xn .

5. Compute the effective length of the calibration equipment, Le ,
from

L =n - •l
e AI°An

This length must be subtracted from all subsequent measurements. It should,
of course, be measured several times and the results averaged to obtain maxi-
mum accuracy.

TO measure the length of a section of waveguide, connect the cali-
brated length measuring equipment to one end of the guide and the short to the
other. Repeat the procedure above to determine the combined length of the
guide and effective length of the equipment, L+Le . Subtract Le from the
result and the remainder will be the length of the guide.

Once the measuring equipment and test line have been set up and
calibrated, the next step will be to introduce artificial dielectric perturba-
tions into the test line and the experimenter will attempt to (a) measure the
reflections produced by the perturbations, and (b) use these measurements to
prove the validity of the inverse scattering theory.



Whenever a dielectric is introduced into a vaveguide, the effect will
be to increase the length of the guide. This fact can be demonstrated with a
simple example.

Assume that the guide is 100 cm. long and that the operating fre-
quency is 15 Gc. Then, for an air filled guide (r = 1), the guide wavelength
will be about 2.5 cm. (refer to Fig. 7 which shows the relationship between
guide wavelength and frequency for guides filled with various dielectrics).
Thus, the length of the guide will be 100 + 2.5 - 40 wavelengths. Now,
suppose that a block of dielectric having a relative dielectric constant of
Cr - 20 and a length of 10 cm. is inserted into the guide. Referring to
Fig. 7, one sees that the wavelength in this dielectric is about 0.45 cm.
Thus, the line length will be 90 + 2.5 + 10 + 0.45 = 145 wavelengths, an in-
crease of over 100 wavelengths. If one were to attempt to measure the length
of this line using the phase-null method Just described, the result would be
145 x 2.5 = 362.5 cm. It is toward the correction of errors of this nature
that the present research is directed.

Initially, the reflection coefficient of the artificial dielectric
perturbations will be measured using standard techniques and the data so ob-
tained will be used to prove the validity (and utility) of the inverse scat-
tering theory. However, it is apparent that, in order to measure reflection
coefficients of -120 db or less, new techniques will have to be perfected.
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APPEN•IX E

RADIO FREQUENCY ENERGY SOURCE

For actual index-of-refraction profile measurements, the tunable,

C-W source used in the calibration of the transmission path will be replaced

by a pulsed source. This pulsed source will consist of a pulse-producing

system and a pulse-shaping system. The pulse-producing system will comprise
an ordinary Ku-band magnetron and associated modulation circuitry for pro-

ducing pulses of rf energy (either on a single-shot or a repetitive basis)
which are of the order of one microsecond in duration. The pulse-shaping sys-

tem, at the output of the magnetron, will convert these microsecond-pulses into
the extremely short-duration pulses (of the order of a few nanoseconds) that
will be necessary for the experiments. Since the development of the pulse-

shaping system represents a major area of research effort, very little can be

said about the final form of this portion of the pulsed source. However, the
design of the pulse-producing portion of the pulsed source (i.e., the modulator

and magnetron) can be specified within the existing state of the art.

Experience has shown that a QK319, Ku-band magnetron can be success-
fully pulsed with an APS-2, hard-tube radar modulator. Since both the QK319
magnetron and the APS-2 modulator are readily available, at very reasonable
cost, a pulse-producing system based on these items is contemplated. Som

construction work will be necessary in the preparation of a modulator control
system, and an appropriate means for monitoring the operation of the pulse-

producing system will have to be provided.

A block diagram, showing the essential features of the pulse-producing
system, is presented in Fig. S. Typical features of the APS-2 radar modulator
are shown in the schematic diagram of Fig. 9. A triggering signal, provided

through contact F on J805 is impressed on the pulse forming network, which is

shown in the lower right-hand corner of the diagram. The actual arrangement of
the pulse forming network is determined by two relays, K803 and K804, which are
controlled, through contacts A. E, and H of J805, from the "pulse duration"
selector in the modulator control system. In turn, the arrangement of the

pulse forming network determines the duration of the pulses produced by the
driver tube, V802, and consequently the duration of the pulses developed by the
output tube, V805. Pulse duration of 0.5, 1.0, and 2.0 psec. is available
in all models of the APS-2 modulator.

Normally, the output pulses developed by V805 are delivered directly
to the cathode of a 9212 (S-band) magnetron of a 725-A (X-band) magnetron which
is mounted in the lover portion of the APS-2 modulator. However., by wains of
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a slight modification of the APS-2 modulator circuitry, the output pulses can
be delivered to the cathode of a QK319 (Ku-band) magnetron through a short
length of high voltage cable. Experience has shown this arrangement to be
quite satisfactory in that it provides for a great deal of flexibility in the
physical location of the magnetron. In other words, the magetron, along with
its filament transformer, can be mounted at any desired location in an experi-
mental setup (or even moved from one location to another) without the necessity
of making complicated changes in waveguide connections to the heavy, rather
immobile, modulator unit.

It sbould be noted that under typical operating conditions, the
WC319 magnetrozi requires a 15-kv.pulse for satisfactory operation. Since the
APS-2 radar modulator is capable of producing only a 12-kv. pulse, a modifica-
tion of the Q(319 magnetic circuit is necessary. Although such a modification
results in a reduction of the power output of the WCZl9, peak powers of as much
as 15-20 kw. can still be obtained with this magnetron-modulator combination.

Control and triggering of the APS-2 radar modulator can be accom-
plished with the special modulator control systesm shown schematically in Fig.
10. This modulator control circuit includes a 10 kc, crystal controlled oscil-
lator which provides a stable reference signal for pulse repetition frequency.
Five flip-flop circuits are used as frequency dividers; a suitable switching
circuit allows nine different arrangements of the five flip-flop circuits and
consequently provides nine different (crystal controlled) pulse repetition

frequencies between approximately 250 pps and 1,650 pps. The output of the
frequency divider circuit drives a blocking oscillator which provides the

trigger pulses for the APS-2 radar modulator through contact F on P805. "On-

off" control of the modulator plate supply is accomplished with the circuitry

shown in the upper, right-hand portion of Fig. 10. The various voltages re-
quired for the modulator control system are furnished by the power supply

shown schematically in Fig. ll.

A Tektronix RMI6 oscilloscope provides means for monitoring signals
within the pulse producing system. For convenience and flexibility of opera-
tion, the monitor oscilloscope, APS-2 radar modulator and modulator control

system (including its power supply) can be arranged in a portable modulator

unit as shown in Fig. 12.
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