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1. INTRODUCTION

This report will discuss the experimental arrangement for generating
an axially nonuniform plasma in a shock tube and the preliminary data ob-
tained from the microwave measurements in such a medium. The quantative
interpretatioﬁ of the data is being conducted at the present time. Some of the
properties which are evident from the preliminary analysis of the experimental
results will be discussed in the following sections,

Furthermore the report presents the numerical calculations of the flow
field in the shock tube with a nonuniform temperature distribution in the driven
section. The preliminary theoretical analysis of this propagation of 5. micro-

wave signal in the nonuniform plasma will be presented.
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IL. THEORETICAL FLUID DYNAMIC AND ELECTROMAGNETIC
ANALYSES FOR A NONUNIFORM MEDIUM

A, Interaction of a Shock Wave with an Interface or
Contact Discontinuity

Contact discontinuities can occur betwcen gases of different properties,
for example, when two dissimilar gases exist side by side as in a shock tube,
or when a portion of a gas has been heated so that its density is considerably
different from the neighboring gas. This section is devoted to the inferaction
of a shock wave and a contact discontinuity of the latter type.

In the analysis of a shock wave propagating through a discontinuity
interface, it can be shown that the reflected wave is either a shock or a rare-
faction wave, In addition to this, the shock is part{ally tra.r‘i'smitted in the
second region. The general procedure followed in order to analyze the
physical state after the interaction process is discussed below.

In Fig. II.1.1, Si represents the incident shock wave, traveling
toward the interface I between the region (0) and (4) of the driven gas at
the same pressure, and temperature condition T4 > To' Fig. I1 1.2 pre-
sents the two possible configurations which correspond either to a reflected
shock S or an exponent wave R + S, denotes the transmitted shock.

The state of the gas in ( 3) and (0) remains the same but in the region
between reflected and transmitted waves, the gas is set in motion, In general
in this region an interface I is found between two regions at the same pressure
and velocity. In Fig. II.1.2, the pr’euure in each state is plotted against the

particle velocity,
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Because in (4) and (0) the gas is at rest and at the same pressure,
both regions are represented by the same point in particle velocity - pressure
(u, p) diagram., The disturbed left region (3) is connected to the undisturbed

region of the first medium (4) through a normal shock and the curve (3) - (4)

e ——— L L ] ——— —

PR

represents all the possible states that can be connected to (4) by means of a
normal shock wave traveling to the right in a medium at rest, The state of
the gas behind the incident normal shock has been computed using the equa-
tions derived from the conservation of mass, momentum and energy,
considering real gas effects,

In Fig, II.1.3, the curve (1) - (0) represents the totality of states
that can be connected to the second medium through a normal shock., It can
be seen that if the curve (3) - (4) lies below (0) - (1), the state of the gas
in region (3) can be connected to a state ( 2) only by means of a shock wave
since the pressure at ( 2) is greater than at (3), hence the reflected wave is
a shock, Ifthe curve (3) - (0) lies above the curve (1) - (0), both states
can be connected only by means of an expansion wave.

For cases where an adiabatic exponent can be introduced, it can
easily be proved that if Y4= Y, One obtains either a reflected shock or an
expansion wave depending upon whether p 4 : po respectively, For the
particular type of problems of interest, the transition between regions ( 2)

and ( 3) occurs through a reflected shock.
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B. Interaction of a Shock Wave with a Region with a Finite
Gradient in Temperature

Assume now that the transition from medium (4) ( hot gas) to medium
(0) (cold gas) occurs through a region of length L. with a finite gradient of
temperature, at constant pressure. This assumption is consistent with a
physical temperature distribution which can be obtained in the shock tube. For
this case the flow field calculations have been performed assuming a constant
temperature gradient over the length L ( see Fig. II. 2.1).

The equation of motion in the region behind the shock is:

]

put + puux +px =0

Pt + puy + upx=0 > (1)

Pt + upx - az(pt +upy) =0

where p is the density, u the velocity of the particles, p the pressure, a, the

speed of sound and t the time. These equations are formally the same if  is

: L
scaled to Po» Ptop,, uandato 's/'RTo, xto L andt to VRL.
o
It is well known that the system of differential equations governing a

one dimensional non-isentropic flow ( Ref. 4), is totally hyperbolic, Thus

one obtains three real and distinct characteristics 'which are defined as follows:
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dx
I) G =u-a
m 4x _

m u+a (2)
my 9 -

dt

With reference to these three directions, the system of differential

equations (1) has the form

R;-apu, =0

+ apu =0

P 11 (3)

ph =0

P 111

resgpective to I, II and III above.

In these equations, the subscripts mean differentiation along the
characteristic direction (the enthalpy h has been scaled to RT,).

The real gas effects have been considered in the numerical computations
with the simplifying assumption of chemical equilibrium. Once p and h have
been determined at C, (Fig. II.2,2), p, a, Sand T can be computed’ at C by
means of a special subroutine described in Ref. 6.

The shape of the transmitted shock wave traveling to the right is de-

termined as follows: (Fig. 1II.2.3) if U is the shock wave velocity, scaled to

'J-RTO and an index N indicates values in the region at rest in front of the




traveling shock the fundamental equations are:

£ U
PN U-u
2 P
- = -— 4
P - Py pNU (1 PN (4)
h-hy= L (p- o1

where symbols without indexes mean values at point C behind the shock wave.

The length L of variable temperature ahead of the shock is divided into
N intervals, Then Ax = L/N, and in each interval A x constant properties of
the gas are assumed,

The shock velocity at A being known, the location of point C can be
determined at a distance Ax, The physical parameters of the flow at C
behind the shock wave can also be determined if the state of the gas is given
along the I-characteristic originating from A.

Once the point D has been computed by using a backwards interpola-
tion technique, the second equation of (3)is valid between C and D and
together with the Mollier subroutine, provides the required information at C,
considering C as a point located immediately behind the shock wave., Then
the unknown shock wave velocity U at C is calculated from the system of

equations ( 4),
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A comparison between the above calculation using a finite temperature
gradient and the calculation assuming a step change in temperature is pre-
sented in Fig. II. 3,

C. Preliminary Theoretical Analysis of the Propagation of Electro-
magnetic Radiation into a Nonuniform Plasma

The propagation constant k, as defined from the equation

2
d°E | k’E =0
dx

can be written in terms of the plasma frequency and collision frequency as:

k=/_a;27;[1_w2 1 ]-,2
i

where y is the root of the Bessel function divided by the tube radius for the
TE,, circular waveguide mode. The propagation constant k can be written
as,

K

g
with 2
w 2 *
ko= Vg -y
C
2
—«/1 “p 1

of

where wp= 5. 64::104 Nng

The resl and imaginary components of k are plotted in Fig:; 11,4 as a function

of the electron density and collision frequency for \ ;= 18.0 cm,
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Propagation from.a Free Space Region into a Uniform Plasma Region
Let the radial electric field and tangential magnetic field in the free
space region be given by,

E,.= Acl, e"ikox + Agelkox

oo [ o [rheriber - a3 <57
N
o

and in the region of uniform plasma

Erg All e-ikl X

Hg=k - [G [A,l ik x]
No
Matching boundary condition and letting Ag 51,

E = e-iKo* 4+ eikoXx

where
1 -
g = _fﬂ_ and K_ is defined above,
1 + Kgl g
Hence,

ErE’:. = 14 pp* +p e-ikox p'* elkoX
where k, is defined above,

This reduces to,
2
EE = [1 £ -\[ R B + (xme)z]

where the plus and minus indicate maximum and minimum values,

Thus,

-

: 2
(ReB) + (Ipp)

12
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The above equation has been programmed for the CDC computer in terms of
the electron 'density and collision frequency. Typical curves are shown

in Fig. III. 3,

Propagation from the Free Space Region into a Step-wise Changing Plasma
Region

The model for the following calculation is presented below,

Here the free space region is characterized by subscripts O, and

the plasma regions by 1,2,and 3. The electric and magnetic field equation
can be written as before and by matching boundary conditions the following

set of equations is obtained:
aferibom | 0 ikon . pletim | pliks,
ko[A? ek | Ageik z,] = Kk [A,l e ~iln 2 -Azl eil '1]
Al el 22 4 4 leik 2, = A‘z e-ikaz2 4 2 iK%,
k [All °.ikl L Ai okt zz]= k; [A,z e “ikata -Alie ik“']
'Alz o ika%s A.zeik3‘3 = A,3 o kst

bt ] o o)



twsed v R S e e

preny  pewwg  peawed s

=]
E 1]

st

WS s

L I |

14

In choosing the root of k, the Imk <0, The above set of equations has
been programmed for the 7090 computer in terms of the electron densities,
plasma frequencies and velocities of each region. This program has been
used to compute the standing wave pattern for tﬁe idealized plasma configura-

tion resulting from the calculations in Section II. A,
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1, EXPERIMENTAL RESULTS

A, Uniform Plasma

At the onset of the air plasma measurements it was deemed essential
to first measure the range of electron densities which can be obtained in the
shock tube facility, - It was found that sufficiently high electron densities
(ng> 1011 e/cc) can be obtained at the test section by increasing the tempera-
ture of the hydrogen in the driver to 475°K and the driver pressure to 17
atmospheres, The equilibrium electron density of the plasma behind the
shock at the test section can be computed by using standard tables in terms of
the shock velocity and initial pressure in the driven section. An experimental
curve of shock velocity vs. initial driven pressure for the above stated driver
conditions is shown in Fig. III.1, The velocity is measured directly from the
reflected microwave signal. In these measurements the temperature of the
driven gas is kept uniform at room conditions.

In the plasma the electron density increases with the temperature at
constant gas density and decreases with the gas density at constant tempera-
ture, For the experimental conditions encountered in the present measure-
ment the change of electron density is relatively small over a rather extended
range of shock velocities with constant driver gas conditions. This is
apparent from Fig. IIl. 2 where the change in electron density is within a
factor of 3 over the range of velocities from 3000 to 4000 meters per second,
The critical electron density for total microwave reflection (ngm 3, 0x1 010 e/cc),

is indicated and the corresponding shock velocity is 3470 meters per second.
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For the above operating conditions of the shock tube the calculated electron
density level at a given shock velocity is strongly influenced by the initial
conditions of the air in the driven section among other factors. The standing
wave ratio of the reflected microwave radiation becomes a critical function

of the electron density in the neighborhood of the total reflection condition,
This property is apparent in Fig. IIl. 3 where the theoretical standing wave
ratio is computed ( using the equations of Section II-C) for a uniform plasma
in terms of shock velocity in the range of the present experimental conditions.
Fig, III. 3 is plotted with the collision frequency as a variable parameter.

T he calculated value of collision frequency is plotted in Fig, III. 2.

As stated above, slight perturbations of the operating conditions ( due
to changes in driven temperature, rate of initial shock formation, varying
shock attenuation and impurities) may produce a large scattering of the
experimental results in the neighborhood of the shock velocity at which the
critical electron density is attained. A pair of pictures is presented in
Fig., 1II,4 representing the standing wave pattern below and above the
critical velocity. The real significance of these pictures is the large change
of the standing wave ratio obtained with a small change in shock velocity in
the vicinity of the critical value.

In the pictures in Fig. III. 4 a blanking signal is apparent on the
trace, The start of the blanked portion corresponds to the arrival of the
shock front at the position of the field detector. The distance from this

marker to the last maximum in the magnetic field trace corresponds to the
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distance from the shock interface to the cross section where a value of
electron density of approximagely 3x1 0l0 e/cc is obtained. For the case of
these two pictures, the critical electron density is essentially the same as the
equilibrium electron density. Hence the penetration distance may be related
to the characteristic ionization relaxation distance. For Fig. III. 4b the
equilibrium electron density is slightly above critical; the measured distance
is 1, 6 centimeters, For Fig. IIl. 4a the density is approximately critical and
the measurement distance is 4 centimeters,

B. Generation of an Axially Nonuniform Plasma

The general procedure for obtaining an axially nonuniform plasma was
described in Ref. (1). The specific experimental arrangement is discussed
below.

The driven section of the shock tube is uniformly heated from the
diaphragm section up to the transition region ( see Fig., III, 5. The heating
elements are made by winding nichrome wire on top of thermal setting glass
tape wound on the tube. All of the heated sections of the tube are insulated,
The temperature in the transition region is controlled by several variable
pitch heater sections, The temperature is measured by 24 thermocouples
located on the outer surface of the tube, However, since the tube is re-
latively thin compared with the characteristic transition length, the tempera-
ture measured is essentially the temperature of the inner wall surface. An
experiment has been performed to ascertain the relation between the gas

temperature and the wall temperature for a change of 200°C in one meter,
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In the range of pressure of . 001 atm, the radial and longitudinal difference in
temperature between local gas temperature and wall temperature is less than
1. 5°C, in the center of the transition region, Near the ends of the transition,
this difference was less than 10°C. Fig. IIl. 5c represents the temperature
distribution for a transition length of 1 meter,

C. Measurements in Nonuniform Plasmas - CASE 1

Using the method outlined in the previous section to generate a non-
uniform plasma, the electromagnetic propagation into such a plasma has
been experimentally examined for two gradient conditions in the driven
section, For Case I, the transition length as defined above was 1,5 meters.
Typically, this would produce a plasma where the electron density at the first
shock interface could be 2x1 09 e/cc increasing to 5x1010 e/cc in a length of
about 15 cm. Such an electron density gradient is similar to that measured
for argon (Refs, 2 and 3). Using the same analysis as in Ref, (2), the last
maximum of the magnetic field trace corresponds to a value of electron

density such that:

5. 64x1 04 '\fne

-

Q
€

o
u"

where, 2
14
/xg

X3

and xg = waveguide wavelength,

For A\, = 18,05 cm ( condition for plotted data)

Ne= 3x10' 0 e/cc.




. PRSY SADTE SSDPS FOSRE PREY) SRR PR S m:& 188 SEQNE AFRES! LT T e T GRS DESE) PRPDE! )SEESINEN SESSR BRSPS

TS s e ol ) sb oty S 50005 55553 4208 22004 81 23944 Fua gl FRes! + 494 B80S it IR0 SRS RN

ST R R g i s e R R R e HEH R R R T

111 Hpbilaiashn: 3855958

— jOUNY SORETORES BOSSE HEEeY Su Ry B O S I L sl atet] noa MJ. v g 9990 NIESY DEOES RRGSE hESY TR TIMN T

e D Pt S CERES *ERsS EESEE FRs e banas SEBE, 56501 SES Y S : 13 |96 boont $0es SE00¢ Fobey 55000 peded -

ISRt ESSE3 PSS FEOea EOPEE sRut FROLL ERESEEC RS Ruces Phncq Eogns Saacs bt : EESSs EESte SOOT! PRI RNl Ho1 Sebet LR

OtHJA OHH O&U.HA N .y v.|¢A0L -4

et o : i B e

3 s

ownee [SE0S ppaey w‘. POPHE B PUBRE! + i1 &

o e e ERE i

: e H janss SEEES Eegut

pPes SEpRy Brope pe-p : 1

EeRseats BPTs - E 10 ]

1 -x

T ux.r, 1 o

ISSSSSEaet &= o pos ]

RS K oy 3 H

snbitleligs 1 Bl

EREELEREHE - S MR SEESS ER0S1 EERE: EERRL EObR Soet: oot H

s B R o B Ry Bl Bt P Ree PEass Rose: soott i

o T [

w: S IRERE BEO BE203 SR80S oboes bepey .

RN L Eie B oot e tot e g

153 FSSB: Shpad Febss shuss rpaed 5 tH

ST 5= S ESCEL ECEEY KSUS! ESTRS BERUE SBERS Eo¥es =

o RN Bt rEes ek iigse Padsifeas e TH

..u. B B S S g D vt et 2Ss s o ™

-k REE N - b B PSSR SE231 pases pzel 2. i

.r” IR IES IRER Ioest ioenae: poes .

@ SUVR P ISER! 1pSt stensasns sens :

- e Tt Suee: ESSE! 15352 sEossasens savee ;

s a, b FEESE $3353 Saaat saatt bbb :

5 o S5 FEE30 s255¢ bcel pevt ;)

e ‘-vg.v - e . . B RS CEEET By - .

I SRR BN AN ‘d4 k& a: BSEE! ISS31 EREES SIS SasHy :
25 £ 5 : SSEH $Sede sbes]

‘ TR ey .“O =R )O0DS MGt OGS PRSP BRRBE m
g [T 1. A oD W : [S003 P500S 29055 S80es sooNy .
St et S SRS o IS0 MOSOE SEPRE SPNNE PRGN a8
S PO C RSO b @ = — aes
ool L 8. B EEERE SERE3 EENt Pt J5s
Sonos sablll CEESs SIS SSSsenan S SOl FEEES sPRas SSEE? o 3

) S SSEE? o8 4
3SR CETEE STESTIEEES SoaSs CEES o m IEEEt CRE3 BRTRL 37 4 BBEH: o
: < . m,v. IEEON SESTE SESEE ¥ 483 SEvs: t
0 1 H = 133
O L ~ sSEEs
" ed 2 5y o9 SS2es
N . - h PObed
a! SN g % ! o5t 1
‘m. - I . . by P it
! ~: & o o8 258
e . YV . . nav“ntnn ; cew b =3
T ~:i : Ce IBEH I328¢
- L) L9 T S
T -4 =4 T
~d_ 1! =y LDio 533! 38
N -3 o’ aiet
1 T : . % HeH H11
II ! L. [l e “.uw_
) ' L= mcr i !
L TR
1- , . [ S
N o e : Q-iap - U P -
& i S8 X
2 . o ,,,,, - ,OA .

v 5 oiN
U3 N39Z1310

3N
AN I3

Il IA-43 ]

HONI 83d 012 X OZ

Hov N9

N3IDZ11a 0Z-40re

‘ON




m-_ﬁ

24
Figure III, 6 diagramatically represents the electron density distribu-

tion for Case I behind the shock interface for different shock -*=locities, The
distance behind the shock at which the critical electron density is attained
increases as the shock velocity is decreased, Fig. III. 7 represents three
typical magnetic field traces for different shock velocities, for the Case I
plasma. The start of the blank trace is the location where the shock front

is coincident with the magnetic field detector. From these measurements
the curve in Fig. III. 8 has been obtained.

In the interpretation of these pictures, it should be clearly under-
stood that the measured velocity is the velocity of the region where the
transition from below to above critical electron density occurs, Only for
the highest velocity case does the observed velocity approach the shock
velocity, This occurs when the initial jump in electron density at the front
of the shock exceeds the critical value,

For the low velocity range in Fig. III. 8, the plasma is becoming
transparent to the microwave radiation. From Fig. III. 8 it appears the
velocity at which the plasma becomes transparent is 2200 m/sec. This
velocity should be compared with the interface velocity between region 1
and 2 ( as defined in Section II1 -A) when the electron density in region 2 is
just critical, This velocity as calculated by the method in Section II-A is

2300 m/sec.
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Figure III 7a

Figure III 7b

Figure III Tc
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D. Measurements in a Nonuniform Plasma - Case II

The temperature distribution along the driven tube to produce the
Case II gradient is shown in Fig. 1II.9 along with the estimated internal gas
temperature distribution. This Case II should approach the step change in
temperature assumed for the calculation of shock properties in Section II. A,
From the temperature and gas densities calculated from this ideal step
transition, the equilibrium electron density in the regions behind the in-
cident shock are plotted against the shock velocity prior to the arrival of
the shock at the temperature discontinuity in Fig. III, 10 and Fig. IIL.11.
The two figures are for two driven pressures typical of the experimental
conditions. From the experimental curve of shock velocity ( prior to
temperature transition) vs. initial pressure, Fig. IIl.12, the ideal electron
density profiles in the axial direction can be ascertained for the actual
operating conditions. Using the values of electron density and collision
frequency as determined above, the system of equations outlined in Section
II. C can be solved.

The results of the electromagnetic calculation can be presented in
terms of the reflected power. This information is plotted in Fig. III.13
where the calculation is started at the temperature transition and proceeds
for two meters (location of detectors) duplicating the actual experimental

conditions,

28
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Three pictures for incident shock velocities in the range of the theo-
retical curves of Fig. III. 13 are presented in Figs, III, 14, III.15, and III, 16,
As the shock traverses the transition region the measured velocity change is
in good agreement with the aerodynamic calculations made in Section II. A,
The change in standing wave ratio as observed in Fig. IIl. 14 corresponds to
the predicted SWR for curve a) of Fig. III. 13, Similarly the increase in
SWR just after the transition is clearly evident from Figs. III. 15 and III. 16,
corresponding to curves b,c of Fig, IIl.13. However, for the latter experi-
mental curves, there is no apparent modulation as pred;cted by the calcula-
tion. This modulation should be a direct consequence of the fact that some
power is reflected from both the shock front and the interface between
regions (1) and (2). For the case wherein region (1) the electron
density is just below the critical value ( curve b), this modulation should be
clearly evident and the period should be related to the difference in velocities
of the two interfaces,

Another observed difference between the experiment and the ideal
calculations is that in Fig. III.15, some evidence of wave propagation should
be found in region (1) since for this shock condition, the electron density in
region (1) is slightly below critical. Experimentally the electric field is

observed to decay rapidly inside region (1).
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Additional experiments were made with the initial pressure in the
driven section an order of magnitude below that used in the tests discussed
above. The combination of increased velocity and decreased density pro-
duced the same range of electron densities as those produced in the higher
pressure cases. For the low pressure cases, some evidence of propagation
inside region (1) was observed.

E. Improvement in the electric and Magnetic Field Detectors

The electric field detector is basically a resonant coaxial line,
capacitively coupled to the waveguide at the open end and with the crystal
detector connected between center and outer conductor at ZL. from the open
end. The center conductor is flush mounted with respect to the inner surface
of the tube (see Fig. III.17a). The coupling can be modified by changing
the size of the washer located at the end of the center conductor., The system
is tuned with a sliding short-circuit.

The magnetic field detector consists of a slot normal to the current
flow in the wall of the tube, The signal induced between the two sides of the
slot, excites a two-conductor resonant line., A crystal detector is connected
between the conductors (see Fig. III, 17b).

In both detectors the main improvements are:

a) no aerodynamic perturbations

b) larger output and, at the same time, better signal to
noise ratio because of the resonant circuits,

Characteristic values for the output are .5 volts. In order to eliminate

the phase difference between the two signals, both detectors have been mounted

U ———
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in the same transversal section of the tube. Provision has been made to locate
in the same plane of the microwave detectors either a pressure gage or an
ionization gage 8o as to correlate microwave signals with the shock interface

position,
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IV. CONCLUDING REMARKS

This semi-annual technical summary report presents the initial
geries of electromagnetic measurements in a nonuniform air plasma. In the
range of measurements conducted thus far the beginning of the transient process
in the electron distribution behind the shock interface is clearly shown in the
signals from the microwave detectors. The change of shock velocity in the
transition region is in good agreement with the preliminary theoretical analysis
of the flow field.

The measured ionization relaxation lengths are of the order of
several centimeters in the present range of experimental conditions. The ra.r;ge
of equilibrium electron densities appears to be in good agreement with the expect
theoretical values. The absorption of the microwave signal in the plasma region
appears, for some cases, to be exceedingly high compared with the theoretical

values obtained on the basis of the simple uniform plasma model used in the

theoretical calculations,
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