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PREFACE

solutions to mathematical equations are often

approximated by numerical solutions to approximate equa-

tions. It is helpful, in bounding numerical errors, to

know general properties of solutions to the perturbed

equations. In this Memorandum the author describes a

class of unbounded solutions obtained by perturbing the

initial data in an equation for the scattering (reflection)

function in radiative transfer in a homogeneous slab.

I!



I -v-

SUMMARY

In the theory of radiative transfer in a homogeneous

isotropic slab of thickness T the scattering (reflection)

function can be determined by a nonlinear integro-differential

equation and initial conditions. For a numerical analysis

of this equation it is often important to know the behaviour

of solutions in the vicinity of the desired solution.

We extend in this Memorandum our previous treatment,

RM-3548-PR, of conservative and isotropic scattering to

the nonconservative case. We exhibit a set of initial

/ conditions for which the solutions to our nonlinear

integro-differential equation are infinite for finite

Svalues of the parameter T. Some of these singilar

solutions first come close to the desired solution and

then diverge to infinity. The nearness of approach of

these singular solutions is proportional to a quantity

which measures the nearness of local scattering to the

conservative case. The conservative case is again found

by a continuous passage from nonconservative to conservative

scattering.

IN
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SINGULAR SOLUTIONS OF AN INTEGRO-DIFFERENTIAL EQUATION

IN RADIATIVE TRANSFER

1. INTRODUCTION

In a previous Memorandum [5] we studied an integro-

differential equation satisfied by the scattering function

S for a homogeneous slab of finite thickness T with

isotropic and conservative scattering. We exhibited

singular solutions by imposing initial conditions different

from those determining the desired solution. We showed

that some of these singular solutions first come arbitrarily

close to the desired solution for 7 sufficiently large

and then diverge to infinity for a larger, but finite,

value of T.

We now extend this analysis to isotropic and non-

conservative scattering. We again exhibit singular

solutions, some of which first approach the desired

solution and then go to infinity. The closeness of

approach depends on a measure of the nearness of local

scattering to the conservative case. The conservative

case is again obtained by letting the albedo of local

scattering a3 tend to 1.

We have been unable to think of any physical model

that would correspond to the initial conditions on S

that yield singular solutions. Since S goes to infinity

for finite 7, we suspect that this may correspond to

criticality for some type of neutron reactor in which a
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plane of fissionable material is backed by a reflector of

scattering material.

Aside from representing any physical model, these

singular solutions could be of importance in a numerical

integration of the integro-differential equation with the

usual initial conditions [1]. The presence of singular

solutions near the desired solutions limits integration

step size and permissible error accumulation since the

numerical solution must be prevented from jumping to one

of these singular solutions.

2. NONCONSERVATIVE SCATTERING

We consider the equation [3, 1). 169)

(I ! )S&L, o'A T) + aS

(2.1)

+ f 1 S(/.A Or, T ]) 1 + f 1s(V, Ao, T)d]
10 

o

with 0 < T < o, 0 < A, A° _< 1. In this section we

restrict w to the interval 0 < a) < 1. The usual initial

conditions on (2.1) are

(2.2) S(.J, AoM, 0) a 0.

We shall determine solutions to (2.1) of the form

1A+o
(2'.3) aOJ., 'o, T") ,, •' [XOP",")X('° T") -1'/./, 1-)Y('o, 1")]
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where X and Y are solutions to Chandrasekhar's

equations [3]

X(A) = ! + 0? 1 X(A)X(v) - Y(d)Y(V) dv,

(2.4)

Y(A) m e- T/I + A0Jf 1 X(i)Y(v) - Y(M)X(V) dv.

A particular solution to (2.4) is given by Busbridge [2],

which we designate by (Xo, Yo).

To exhibit all solutions to (2.4), we let k be the

nonzero root of the equation

(2.5) 2k= C1n I-k 0<k<1.

We have shown [4] that for a fixed T all solutions to

(2.4) are

(fa - g3A) + kt2(fa +g
x& l - (k) 2  ] 0

(2.6)

+ (f- ga)A + k2(fA + go)
1 - (kM)2

and

2
I [ (fa - g)A - kA 2 (fa + go) Yo (A)

S- (kA) 2

(2.7)

(fP - Ga)A - kA2 (f3 + ga)

1- (kA)2
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The constants a and 0 are given by

1 X 0 (v)dv

"(2.8)1- 
0 V

1 Y (V)dv"1 J0 T1+iv"

The parameters f and g in (2.6) and (2.7) are

constrained by

(2.9) (f-2 _ g2)(a2 2) a 2k(fa + 0).

We shall show that Busbridge's solutions (Xo, Yo)

in (2.3) give a solution to (2.1) and (2.2). We shall

show, however, that f and g can be computed as

functions of T so that (2.3) satisfies (2.1) and initial

conditions different from (2.2). Some of these functions

are singular.

With S given by (2.3), (2.6), and (2.7), an

elementary computation shows that

I+ 0fI S(&, a)-.= X(M)
10 or

(2.10)

+ A(f 2 g2)(a ( 22) - 2k(fa +
1 - (2.)2

With this and (2.9) we reduce equation (2.1) to
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0 x• (A' T)X (.o, 7) - Y(A, T)YO.Lo, T)]

(2.11)

Y Y(A, "T)Y(Ao, T).

It can easily be shown [3, p. 185] that X and Yo

satisfy

p 8Xo
(2.12) -- (A' 7T) Yo (A, T)y_1 (T)

and

|i ~ ~~8Yo o('T

(2.13) By 0 (A, 7) = + Xo(A, T)Yl()y ).

The quantity y- 1  is given by

1

(2.14) Y-(T) * fY (V, T for T > 0.

If we demand that f and g in (2.6) and (2.7) be

functions of 7, so that X and Y satisfy (2.12) and

(2.13) with y_1  computed for Y given by (2.13), it

follows easily that (2.11) is satisfied. To use this

fact in finding differential equations for f and g,

we shall need properties of a and P. Using (2.12) and

(2.13) in (2.8), We easily establish that

(2.15) = y • =k - ay 1(s.1 W Pt Y-1 ,"a-
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Here and in subsequent equations, y_1  is computed with

the Y function.

An elementary but detailed calculation shows that X

and Y satisfy (2.12) and (2.13) if and only if f and

g satisfy the equations

df
- gy- 1 = - - ga)g

(2.16)

+ kg - fy = - (f - ga)f
dT

We shall see that these equations are compatible with the

constraint (2.9).

We first introduce new variables so that (2.9) is in

the canonical form

(2.17) 7 = 1.

This is accomplished by the transformation

= (f + g -k-)

j7 -- a : (f - g -

By means of (2.15) we can transform the equations

(2.16) to the variables 4 and ?7, obtaining
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y-lt = k( [(e-a) + (a+p) J)] _ 3a•_•k

(2.19) : _a2-_2

We see that not only are these compatible with (2.17),

but they uncouple along this hyperbola. We then have

(2.20) - y a+ -22 - ._2L -
dT -ta _Pa-

Since f = g = 0 is a particular solution of (2.9)

and (2.16), a particular solution of (2.20) is given by

(2.21) ,o 'n'• o = -a

By the standard transformation

(2.22) C = o + u-1
0

we obtain the equation

du
(2.23) ru + pu = q,

with

_______"_ ____II__lln______ __________ _._______.__.!__.___L.___I_ ...
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P(2 Y-1 k - -242 -

a a-

q - "4-" "

From (2.15) we readily obtain

p k + (a2_-92 )-1 d (a2_ 2) + 1( a -1da

(2.25)
I a + )1d a

T-(5 + 1).

With this we get from (2.23) the general solution to (2.20):

(2.26) C(T) = C (T) 1_ E0a2 - 92)e-kT
0i T- 0fre-kt[a(t) _ p(t),2dt ]

0

with E an arbitrary constant.

If in (2.26) we set E = 0, we obtain the solution

(c, 7o) corresponding to f = g = 0 in (2.6) and (2.7).

Thus (2.3) computed with X° and Yo gives the solution

to (2.1) and (2.2). We now investigate other values of

E corresponding to initial conditions on S other than

(2.2).

First let Ro be the value of Z determined by

(2.27) i 0- (t) - (t) 2 dt - 1.
0
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Then • in given by

(2.28) e(T) : - 1 - kr
k fae-kt[,(t) 0 (t)]2d

e() dt]

We see that

(2.29) UMr ((T) = lia 17(T) = 1.
T-KD T-000

For all R other than %o, we have

(2.30) lia C(T) = lirn 77() =- 1.

With A defined by

(2.31) a a-a (0) - f3(0) = 1 - 1 n(l + k)

we get

(2.32) (0) = " (FA - 1).

Therefore we have the following description of the

functions C and 17:
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(i) E = o implies that • and n bounded and

positive with lia C(T) = 1 = iir 7(T).
TioD T4OW

(ii) s- E < EE implies that • tends to 0,

and 71 tends to ao, for a finite value of T.(2.33) - __________

(iii) Eo < E implies that • tends to co, and

77 tends to 0, for a finite value of T.

(iv) E < implies that • and 17 bounded and

lim ((T) = hirm •() = - 1.

To establish (i) we need only to show that

(2.34) C(0) >0 for E :

that is, we need to show that

(2.35) k fc*-ktC, _ p)2dt<2

e dt < 21A
0

By (2.15) we have

d (a -j3) = Y-- kf (a -j)-

(2.36) (a - p3)-1 1

and by (2.13) we have

(2.37) dy = - Y(1 - x

L ~~T 0l ii
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where

1 1

(2.38) xo = • X.,)di , Yo .y Y.(v)dv.

Two known results [2, p. 971 are

(2.39) (1 - x) 2 -y2 =2 -
0 0

and

(2.40) 1 - x + yo = (/XoD T) < 1.

Therefore we obtain

T

(2.41) k--(l-• x + yo)exp[- k dt] <4x

and

CD

(2.42) 2a- k i e-kt(a 2) dt > (2 - s) > 0

since 0 < A< 1.

This result (2.34) shows that 4 and 17 are on the

positive branch of 4n = 1 and establishes (1). The

validity of the other parts of (2.33) follows from the

fact that the point (4, n) can pass through co at

most once, and indeed must do so if ((0) > 0 and

m~ milm•, ~ mm. *m'm' Ir m
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B i o since then ( 1, ?7) tends to ( -1, -1) as

T --0 ODo

We now write (2.6) and (2.7) as

(2.43) X(A) - [1 + 'A + d 2  ('2 Yb(A),
l-(ICA) 1-(kA) 0

and

(2.44) Y(A) = [1  c - d2/ 2( aA -

S2 2 Yk()2
S1 (ICA)(A

The functions a, b, c, and d are given by

k fa-- ( - _ a:+ )a ~ ~ :_ q) ~/iI + ýLL

k 2 Fa -13j

(2.45)

ka_ 2) +a k- 2

d a• -( + Vn+ + k2

Since Xo(0) = YO(0) = 1, we see that each value of

the parameter E gives a solution 83 to (2.1) and the

initial condition

(2.46) 8 (A'' 0' 0) + k" (1 + C(O) ) Ao •o
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with

(2.47) •(0) = 1/n(O) = I (Ex- 1).

If E satisfies either (ii) or (iii) of (2.33), then

SE is infinite for a finite value of T.

Since liM P(T) = 0, we can choose E satisfying

31 < IE < Zo and so near to E0  that, when ( 1, 7)

passes through (1, 1), 0 is negligible. Therefore,

from (2.45) we see that there are singular solutions 8

to (2.1) and a value T(E) of T so that SE is given

approximately at r(E) by

8~~~ ~ Wo AoT() 0[(1 + ICA) ( + kCAo)X ATEX(V(I)
SE' 'Ao'L T() -o(1 - kI)(M - KAo) Xo0 TZXo"'~)

(2.48)
S(1 - kA.)(1 - k/t) YoI(A, T(E))Y (A.o, T(E))/I (-+ku)(l + ICA 0 ) 0'

For a larger value of T, this solution goes to infinity.

The difference at T(E) of this singular solution from

the solution to (2.1) and (2.2) is proportional to the

quantity k/(1 - k). Therefore for small k, i.e., a)

near 1, there are singular solutions to (2.1) that first

come close to the solution to (2.1) and (2.2) and then go

to infinity.
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3. CONSERVATIVE SCATTERING

We wish to show that the solutions to (2.1) found in

the previous sections for 0 < w < 1 tend, as a) tends

to 1, to the solutions given in [5] for a3 - 1.

We express solutions in terms of the functions

a, b, c, and d. In terms of f and g, these are given

by

a a fA - ga

b - k(fP + ga)
(3.1)

c = fa - g,

d = k(fa + gp)

We see then that the hyperbola (2.9) can be expressed in

terms of a and b by

(3.2) (k~a)2 + 20Cab - 2Ck 2 a + (Cb) 2 
- 25b I 0,

where

(3.3) C and .

From the fact [4] that

1 x°(I/)dv/lk •• Y°(V)dVIk(3.4) a(1 - I

I _T
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we find

(3.5• . .2k V. 2 d +-
-(k I-MY

Therefore we have

(3.6) ii a =lta YO
k.*0 k.O

This gives

xl + Yl
(3.7) Ilia 3 i + 1 and lira 8 1 ,

k-*O Yo k40

where

1 1

(3.8) x, - 4v1(vdl' , yl I .~4VY.(&)dy

We see that the hyperbola (3.2) tends, as m tends

to 1, to the constraint

(3.9) (2ya + v2b - 2)b = 0.

This rgroee with the constraint given in [5].

We now use (2.26) in (2.45) to write these functions

SO
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k2
a .7 # + a+0 r

b (t [ -r] I

(3.10)

k 2

d I*[ +r]

Now * and r are given by

(a2 - 2 )Ee-kT

kP-kt - 2

(3.11)

r L.

We fix T and consider the limits in (3.10) as k

decreases to 0.

We first let E depend on k as

2AI

(3.12) E = 2' 1

We then find that

4A(3.12) lir 7 Yo(xl + yl)
k..0

This gives the solutions obtained in [5] for k = 0,
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namely,

4AY2o
a =C= 1 -All 4y 4Yo(x1 + yl)]

(3.13)

b d O0

We now let E be given by

4B

(3.14) E = 4B

k7

and find that

(3.15) lim k2 2 8By0 (xI+ y)

k-PO 1 - 2B I(xI + yl) 2 dt

This also gives solutions obtained in [5] for k = 0,I namely

1I - 2B j(xl + yl)2dr

(3.16) b = d = 4Byo(xi + Yi)
7 2

1 - 2B I(x 1 + yl) dt

c= a + b.

If we let E ..be given by

(3.17) Z A 1 <a <3
k
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for k = 0 we obtain

a y-1auc=vI

(3 .18)

b = d =0.

This solution satisfies both of the linear constraints

expressed by (3.9).

We have thus obtained all the functions discussed in

our previous study of the case o = 1 as limits of

solutions as U) tends to 1.
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