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EXPERIMENTS ON HEAT TRANSFER OF A SUPERSONIC GAS FLOW IN
A CIRCULAR TUBE AT HIGH TEMPERATURE GRADIENTS

V. A. Mukhin, A.4S. Sukomel, and V. I. Velichko

An experimental investigation was made of heat
transfer during the flow of a compressible gas 1in
a cooled circular tube at Mach number values from
0.1 to 4 and T, /T, from 1 to 3.1. A generaliza-

tion of the experimental data 1s given.

Most studies devoted to heat transfer in a flow of a compressible
gas 1n tubes pertailn to the case of gas motion at subsonic velocitiles.
Only in a few investigations were heat transfer and drag studied dur-
ing the flow of a supersonic gas [4-6] and in most of these, the meas-~
urements were carried out at small temperature gradients. We made an
experimental 1nvestigation of heat transfer during supersonic air flow
iIn a circular tube at large temperature gradients.

Local heat transfer was measured by the thick-walled tube method.
The experimental heat exchanger was a thick-walled brass tube 575 mm
long, 20.2 mm in inside diameter and 87 mm in outside diameter. The
alr flowed through the tube, the outside of the tube was bathed with
water, which moved through the annular gap between the casing of the

heat exchanger and the outer surface of the tube.
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The temperature close to the inner surface of the tube was meas-
ured at 20 points, and the temperature of the outer surface, at 6
polnts. Thermocouples, whilich were used to measure the temperature
close to the inner surface, were placed 1n radial drillings 1.5 mm 1n
diameter. The beads of the thermocouples were-rsoldered toc the bottom
of the drilling by condensor welding. Openings with a diameter of
0.25 mm were made at 17 points along the length in order to sample
the static pressure.

The alr entered the experimental sectlion from the stagnation
chamber through interchangeable nogzzles. The experlments were carried
out with five nozzles, of whlich one was subsonlc and four were super-
sonlc, calculated for Mach number values of 2.5, 3.0, 3.5, and 4.0. |

After prelimlnary dust, oll, and molsture removal, the alr passed
through a normal orifice which served to determlne the discharge.
Further, the alr entered an electric shaft furnace where 1t was heated
to the assigned temperature (200-800°C), and then flowed through the
chamber 1n which the flow stagnation parameters were measured. A
heater was wound on the wall of the stagnation chamber and a grid
mixer was installed at the chamber entrance. Thls enabled us to deter-
mine the stagnatlion temperature with a sufficlent degree of accuracy.
The stagnation temperature was measured by a shlelded chromel-alumel
thermocouple and the stagnatlion pressure by a class 0.35 standard
manometer.

The local density of the heat flux at the tube wall (excluding a
small area near the eﬁtrance about 5 diameters long) was determined
under the assumptlion that the temperature fleld in the wall was one-

dimensional, 1l.e., by the formula
qC =‘AA -/; )

P S (1)

R, Wi RyR,

FTD-TT-63-158/1+2+4 -2



The heat conduction of the wall was determined experimentally
for each thermocouple.

The flow parameters in the given section (velocity coefficlent A
and flow temperature T) were found on the basis of a one-dimenslional
flow model.’ The stagnation teiperature Mo was determined from the
known stagnation temperature at the entrance and from the distribution
of the heat fluxes in the wall from the entrance to the section under

consideration. The heat-transfer coefficient was calculated by the

formula

T-M:""T A (2)

where

) I X SR .
() =1 for - =osis: | -G
T =T+ 05(Tc—T)+0,22(T, .~ T).

Formula (3) was derived from the generallzation of the experl-
mental data [3]. All physical properties of the alr were determined
from the thermodynamic temperature of the flow at the glven section.

The experiments were carried out at Reynolds number values from
O.4 - 10° to 7.0 * 10° and Mach number values at the tube entrance
from 0.1 to 4.0, the entrance temperature varied from 200 to 800°c¢.

An analysis of the experimental data showed that the velocity

and pressure distribution over the tube length mainly corresponded to
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the one-dimensional flow model. In the experiments with supersonic
veloclties, we observed oblique shocks which led to a certaln disturb-
ance in the smooth change of velocity and pressure over the tube
Length. The magnltude of the obllque shocks mainly depended on how
well the nozzle was coupled with the experlmental tube. Therefore,

we took measures to couple these units as best asfpossible.

The character of the lengthwlse change of the local heat-transfer
coefficlents showed that under certailn conditlions there 1s an area at
the start of the tube which 1s occupled by lamlnar and transition
’boundary layers. We can trace that the length of thls area is re-
talned as the Re number Increases. Hereafter we wlll examine only
polnts corresponding to‘a developed turbulent motion and to complete
thermal stablllization of the flow.

At filrst we carrled out a serles of exper;ments wlth low subsonic
veloclitles at low alr temperatures at the inlet (QOO—BOOOC).

The results of thils serles of experiments agree, withlin an ac-
curacy to 5% with the formula of M. A. Mikheyev for heat transfer In
turbulent motion of an incompressible fluld in tubes. After thls, we
carrled out experiments at high temperatures in a subsonlic nozzle and
experiments on supersonic nozzles both at low and high temperatures.

Figure 1, which was calculated by means of parameter T, 1llus-

trates the effec. of gas compressibility on heat transfer:

It was assumed here that the dependence of heat transfer on the
Reynolds and Prandtl numbers 1s the same as for fluld ilncompressibllity:
Nu ~ Re®s8pr©,43,

As we see from Flg. 41, the Nusselt number varies in proportlion

to 19,42, Thus the dependence of the Nusselt number on T was somewhat

e
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greater than in Petukhov's study [6], which led to a difference in
Nusselt number values which did not exceed 10%. This small divergence
can be explained by the different experimental conditions in these
studies (different pressure grédients, temperature gradients, exponent
in the temperature depéndence of viscosity). ‘

Flgure 2 confirms the usual dependence of heat transfer on the
Reynolds number.

As a result of treating the experlmental data, we obtalned the

dependence
Nu = 0,022ReM 50t <042 (%)

The formula 1s valid for cooling of a turbulent gas flow 1n a

tube in the section having thermal stabilizatlon at wvalues of

Re = (0.4 =7,0)-10°, M=0,1-307 0= TT =131,

c

The scatter of the experimental points relative to the curve cor-
responding to formula (4) does not exceed +10%, which is within the

accuracy of the experlimental data.
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Fig. 1. Effect of gas compres-
sibility on heat transfer

Nu
A= ReO,BPrO,43 1) Min < 1"
2, 3, 4, 5) M, respectively

equal 2.5, 3.0, 3.5, 4.0.

* The Mach number at the inlet varied from 0.1 to 4.

~5-



Thus, the results of the investigation show that within the ac-
curacy of the experiments, the Nusselt number does not depend on the
temperature factor in splte of the fact that the latter varles in wide
limits (from 1 to 3.1). Of course, this conclusion 1s valid only 1f
the gas flow 1s cooled, and is in conformity with the results obtained
in earlier studles [1, 7].
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Fig. 2. Dependence of the Reynolds (des-
ignations are the same as in Fig. 1),
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DESIGNATIONS

Atc 18 the local temperature drop at the tube wall; A 1s the wall
heat conductlon; Ro, Ri, Rz are the radius of the tube and radil of
the hot Jﬁnction inserts of the inside and outslide thermocouples; Tc
is the wall temperature; Ta.c. is the adliabatic wall temperature; r
1s the temperature recovery coefflcient; Pr* 1s the Prandtl number

value taken at a certaln temperature T¥ calculated by Eckert's method.



REFERENCES

1. L. N. Il'in. Kotloturbostroyeniye, No. 41, 1951.
2. B. S. Petukhov. Teploenergetika, No. 10, 1956.

3. B. 8. Petukhov, A. 8. Sukomel, and V. A. Mukhin. Izv. VUZ,
Energetika, No. 2, 1G50.

k¥, 0. Saunders and P. Calder. Problems of Rocket Englneering
[Russian Translation], No. 1, 1954.

5. I..E, Blalokoz and 0. A. Saunders. Combustion and Boiler-
house Eng., Nov., 1950,

6. B. S. Petukhov and V. V. Kirillov. Teploenergetika, No. 5,

1960.

7. L. V. Humble, W. H. Lowdermilk and L. G.'Desmon. NACA' Report,
1020, 1951.




SOLUTION OF AN EQUATION OF GAS MOTION Iﬁ A RECTANGULAR
CHANNEL WITH FRICTION AND HEAT TRANSFER

Yu. I. Danilov and B. M. Galitseyskiy

A method 18 given for the solutlon of a differential
equation of gas motion in a rectanguldr channel under
the comblned influence of friction and heat transfer.

As a gas moves along a channel, the gas parameters at a glven
section depend on the frictlon factor, on the starting parameters of
the gas in front of the channel, and also on the law and intensity of
the heat effect.

We will assume that the law and the form of the heat effect are
already gilven, therefore the stagnation temperature distribution over
the length of the channel 13 edsily determined from the equation of
- thermal equilibrium

dg = s wFd(C,T). (1)

The equatlon of a uniform steady-state gas flow in a rectangular
channel in the presence of friction and heat transfer has the follow-
ing form: '

nwt

§;W+NH+LET=Q (2)
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Let us change to the parameters of stagnation and the gasdynamic

functions
Wt = 0 /'7k+1 ‘/’- 0t = y, 2k Id \‘/.
Potpu = pwzl( 225 gRT) .pw’—-pw/\(k_*.leT} : (3)
Then Eq. (2) 1is written:
> 1 N ~
VT ]+E‘,——-‘C+ICB—AVT-O. (%)

To solve Eq. (4) we will make a change of variables

1 = du ]
D k V ~_—71: (5)

where u 1s the unknown functlion subject to determination.

Then Eq. (4) is transformed:

(%y—%—m(u—{—c)—dl—f—-}-m’f =0,
& (6)
., Lk

M == 5 —. ——.

\ D k+1
The constant of integration ¢ can be assumed equal to zero,

since the change of variable r = v - ¢ reduces Eq. (6) to the form

22 -+ my o 4 m*T =0,
; dx

Equation (6) at a constant value of m and a linear change of the
stagnation temperature over the channel length 1s easily integrated.

Actually, let

’ y -"'"‘T
T=T,+ Ty ; Lk, (7)

where T, and T2 are respectlvely the stagnation temperature at the

channel inlet and exit, Then Eq. (6) 1s written:
. o~ 8)
(—ﬂ) + nu L -+ m* (Tl + L—=T , ) = {), (8)
dx dx {
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This equation will be integrated by introducing a paramzter. Let us

designate g—;‘% = z, then

2 ez ot '{Tl -+ T”—l' T, X ) =0, (9)

Differentiating Eg. (9) in terms of u, we derive after appropriate

transformations a first-order linear equatlon

.“_’“_.. -t aul A 222 0

dz 224+ m =T m <z‘3 4+ m Z_:._IL) ) (10)
) !
The solution of this equation 1s written 1n the form
u=—Z + [n _T‘smh‘lz,/m =T )— 'ZZJ (z'z-i-mT'-' =T )_% —
m l \ l ‘ !

[, To—Ty\=" (11)
—C \Z' -—m ! ) . . .

Eliminating u from equations (9) and (11), we obtain an equation

relative to the parameter z:

g —T - —1/y —_— -4/ .
T [T" T etnn™? 2 ( m L—T ) ] ( Z+m T"l T‘) -
z

(12)

We will determine the constant of integration ¢ from the condition

z = z; when T = Ty, then Eq. (12) 1s transformed to

; Ty,—T - Ty, =T\
mT /Z*rlll 1‘1 '—'—'—'—s‘..nh‘Z(m"l l) ==

l
-7 )—‘/n

7‘ , (13)
24+m 2'— -}- s '12,<m "'l

_o.mTy

Since the parameter z 1s uniquely associated with A and T:

z m'%é- « -mA VT, then substituting its value into Eq. (13), we obtain

the followlng expression:

l/'l -:-—-+sm‘1/ A= /-A‘+—+mx'1) A, (1%)

-10-



where

or, designating
AN ' .
: At e +sintid L A= (1, A),

finally for determining the reduced veloclty in the channel we will
have (Fig. 1)

B0y, A)= Ol Ay). (16)

Analogously for the case of gas cooling according to the linear law,
the function

DA, 1) = g/’,l——m +Arcsine X A (17)

Fig. 4. Dependence of
® on x: 1, 2, 3, 4, 5,
6) Values of A equal

respectively to 1, 0.9,
0.8, 0.7, 0.6, and 0.5.
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Knowing the magnitude of the reduced velocity, we easily deter~
mine all remaining gas parameters (statlic temperature, pressure, den-
sity) by using the gasdynamic functions. For example, the pressure

losses in the channel will equal:

AP=P —P, =

pw [1/g;\>'r1 Vv glm] '
mep L y(hy) gla,) J’

where

2 i

$ - 2 =1
Mgp = k| —— :
br ,// (Ic+ l) '

. /c+17e'—",( k—1,
= — -
o= (457) 7 (1= 15 “)”

When the change of stagnation temperature over the channel

length differs from the linear law and the frictlion factor varles
appreclably of the channel length, we recommend the method of divid-
ing the channel into a number of segments in which we can assume ap-
proximately a constant value of the frictlon factor £ and a linear
rise of the stagnation temperature. Thus, we can calculate with any
degree of accuracy a channel wlth any predetermined law of heat trans-
fer.

For sufficiently small values A << 1, the function z(A) = ék and

(6) will have the form

mu % + m'T =0, (18) | |

Solving this equatlon, we derive the foilowing expressions for

determining the reduced velocity at the channel exit relative to the

reduced veloclity at the channel 1n1et'

e =] / ( 2§ de\) ' - (19)

-4.20-



When the magnitude X >> 1, function z()A) can be assumed approximately
equal to z()\) =~ %.x. Then Eq. (6) is transformed as

‘—,”— - mu=0, (20)
Its solution 1s written
o . .
hy =iy }'/7%'— exp [-— S’ mdx ] . (21)
- I

Formulas (19) and (21) are derived in the case of gas flow in a
channel with a heat conductor and respectl vely reflect the character
of subsonlec and supersonic flow wherein when we derived them we did
not permit the assumption of a linear change of stagnation temperature
over the channel length, 1l.e., they are vallid for any law of a heat
conductor. However, upon using the obtailned relationships in practice,
it 18 necessary to take into account the specific conditions of the
problem and the required accuracy of the calculations.

The function & (A, A) depends on the two variables A and x’and
has a minimum at A = 1. Having tabulated the function ¢ (i, 4) and
compiled a table for a wlde range of values of A and A, we can falrly
easlly and rapidly determine the distribution of the reduced veloclty
A over the chénnel length and, consequently, all other parameters for

any predetermined law of heat exchange.

DESIGNATIONS

g 1s the heat supplled to the gas in the channel; F is the flow

area of the channel; C_ 1s the heat capaclity of the gas at constant

p
pressure; T 1s the gas stagnation temperature; p 1s the density; w 1s
veloclty; x 1s the absclssa readable along the channel axls from the
channel inlet; P 1s static pressure; £ is the friction factor; D is

the hydraulic diameter; k 1s the index of the adlabatic curve; A is

-13~



the reduced velocity; R 1s the gas constant; c 1s the constant of

integration; 1 is the channel length.

-14-



HEAT AND MASS TRANSFER IN EVAPORATION PROCESSES

A. V. Lykov

The effect of'a crossflow of a substance on heat
transfer in a laminar flow past a molst caplllary-
porous plate 1s analyzed. Regularitles in heat and
mass transfer during liquid evaporation from capil-
lary-porous bodles are established. It is shown
that 1n the case of deepening the evaporation sur-
face, the heat-transfer coefficients are larger
than those in evaporation at the surface of a body.

Heat and mass transfer in liquid evaporation from an expoééd
surface and from .capillary-porous bodles 1s not only of theoretical
interest, but also of practical value for engineering.

Heat and mass transfer between the surface of a liquld and the
amblent medium (moist air) is a single mutually assoclated process
having i1ts own characteristics which differ from a heat transfer proc-
ess compllcated by mass transfer. An even more complex process 1s
heat and mass transfer of a molst capillary-porous body with the flow
of a heated gas. In thls case, heat and mass transfer of the body
surface with the ambient medium 1s continuously assoclated with heat
and mass transfer inside the capillary-porous body (the interdepend-

ence of the external and internal problems). Such processes of heat

-15-



and mass transfer include those of drying and transpiration cooling by
means of llquld evaporation. Heretofore there has been no single
opinlon not only on the physical mechanism of transfer, but also on
the qualitative effect of mass transfer on heat transfer. A number
of lnvestigators, based on the theory of gas injection into the bound-
ary layer through a porous plate, consider that in liquid evaporation
the heat-transfer coefficient decreases wlith an lncrease in evapora-
tion intensity, whereas in condensation of vapor, conversely, the
heat-transfer coefflclent increases wlth an Ilncrease of condensation
Intensity.* 1In the first case the crossflow of a substance 1s di-
récted to the side opposite the heat flow and In the second case these
flows have the same dlrection. Then the boundary-layer thickness in
evaporation increases (the boundary layer "swells"), which leads to a
reduction of the heat-transfer coefficient. 'During condensatlon the
reverse picture occurs, which leads to an increase of the heat-trang-
fTer coefflclent with an increase of condensation intensity.

However, the experimental investigations of A. V. Nesterenko [1],
G. T. Sergeyev [2], and of other investigators on evaporation of var-
lous liquilds from an exposed surface showed that the heat-transfer co-
effliclents in evaporation are larger than those without mass exchange
(dry heat transfer) under the same hydrodynamié conditions and temper-
ature differences. Thils difference Increases with an increase of the
relative humldity of the air. When drying molst materials, the heat-
transfer coefflclents are larger than the corresponding coefficlents
of a dry body [3-6]. During transpiration cooling, when the fluid is
continuously fed into a caplllary-porous body, we have different re-

sults for different investigators. In some investigations [7] the {

*# Here 1t 1s assumed that thé heat needed for evaporation 1s
mainly transmitted by convectlon from the heater alr.

-16-



heat-~-transfer coefficlents increase with an increase of the evaporation
intensity and in others, conversely, they decrease [8, 9]. The results,
obtalned experimentally, are of considerable interest. In our article
we will explaln them on the baéis of" the theory of liquid evaporation
from capillary-pofous bodies.

Transpiration Cooling in Gas Injection

into the Boundary Layer

A calculation of transpiration cooling by the method of boundary-
layer injectlion through porous walls was studled in greatest detaill
by E. Eckert [10]. It 1s based on a solution of a system of differ-
entlal equations of heat and mass transfer for a laminar boundary
layer with flow of a binary gas mixture past a flat, porous

plate. The system of differential equatlions has the form:

dw, dw,
- — =0,
T Ty (1)
ow, aJ dw,
0w, LAy = ‘ 0,
‘ Wy 3y oy <’2 oy ) (2)
ot :
(3)
—T—I;D(C . c l) afilr; ol
M 0y oy
Ay _1_ Qg 0 Dy
Py e Ry, ——— = pD 201, ‘
s oy o 14 0!/ 0!/ (l ()_1/ / (4)

Thermal diffusion (Soret effect) and the diffusion thermo effect
(Dufour effect) are disregarded as small magnitudes.

The following boundary conditlions were taken:

v =0 W =0, @, =y, { =1, b4= s ‘ (5)

17~



when § = 0 Wy =W, I =1y b1y = Ojper (6)

In addition, it was assumed that the linear transverse velocilty
of the change along the surface Wy (in the x-direction) 1s inversely
proportional to vx.

The results of the calculations for the case where the mass flow
of the injected gas 1s directed from the body surface (analog of the
evaporation process) are shown in Fig. 1. We see from this figure
that the heat- and mass-transfer coefficients decrease with an in-.

crease of the parameter

w

Z =

. VRe, = -l V/Re,, (7)

3 o
4 ¢ we

dJ

where Jy = PV 1s the Intenslty of mass transfer in a direction normal
to the wall surface (the intensity of the mass crossflow of a sub-
stance).

Consequently the heat-transfer coefficlent a decreases with an
increase of i;tensity of the crogsflow of the substance. The ratio
a/ae = 0.9 when Z = 0.05 (Fig. 1). Consequently, when Z = 0.05 the
decrease in the heat-transfer coefficient is 10%4. A twofold decrease
{(a/ao = 0.5) corresponds to a value of Z =~ 0.3. In the study by
Shulman [9] with transverse flow past a hollow, porous ceramic cylin-
der, inside which water was fed to certaln reglons, the parameter Z

varied from 0.015 to 0.05. The evaporation intensity was from 3.6 to

-2 -1

18.6 kg -+ m™" + hr™" 1n the Reynolds number range from 2 - 10* to

8 * 10* and with an air temperature change from 70 to 130°C. Conse-
quently, a decrease 1in the heat-transfer coefficlent caused by cross-
flow was less than 10%, 1.e., 1t lies within the accuracy of the ex-
periment. Moreover, a decrease in the local heat-transfer coefficient

was noted upon an increase 1n the evaporation intensity by a factor of

-18 -
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Fig. 1. Dependence
of relative heat-
transfer coefficient
(a/ao) on parameter
Z based on Eckert's
data [10]: 1) Pr =
=S¢ =4; 2) Pr =

= Sc = 0.7.
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1.5-1.9, 1.e., by 50-90%. If we take into account that the process
of 1liquid evaporation is analogous to the process of blowing air into
the boundary layer, then under conditions of adlabatic evaporation
the parameter Z characterlizing the effect of crossflow of a substance
on heat and mass transfer can be presented in a different form. The

intensity of evaporation is
o= = (e 1) = = Nug (1), (8)

In a laminar flow of moist air past a plate Nux = Ax JRex, where Ax

1s a constant. Then the parameter

1o Ao Gl (9)

Pr P

Consequently, Z does not depend on the veloclty of air motion,
but depends on the psychrometric difference.

Let us make an approximate calculation. For Z = 0.05 the temper-
ature difference At will be At = 260°C. In the calculation we assumed
ty = 30°C, r = 579 keal * kg *, A, = 0.33. Consequently, only at a
temperature difference of At = 260° will the reductlion of the heat-
transfer coefficilent be of the order of 10%.

Similar results were obtained earlier [8] with the flow of hot
alr past a porous plate. The evaporation lntensity in these experi-

2 . hr”'. The Reynolds number varied

ments did not exceed 22.7 kg * m_
from 10% to 2 * 10°, and the alr temperature from 18 to 140°. Evapor-
ation was under adlabatic conditions. The temperature difference did
-not exceed 79°. Consequently, crossflow of a substance cannot rendér‘:
a perceptible effect on the reduction of the heat-transfer coefficlent.
However, the authors established that there is a dependence for the

average Nusselt number:

Nu=o,oo-xssRe«L8( ; )M. -~ (10)
¢, Al
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Therefore, the reductlion of the heat-transfer coefficlent was
more than threefold.

Although this analysis of the study [8] is of a somewhat arbi-
trary nature since evaporation‘of water from a porous plate occurred
in a turbulent flow, the decrease in the heat-transfer coefficient
with an increase of the temperature difference At 1s the result of
other causes. . We must point out that in a turbulent flow, the effect
of crossflow of a substance on the change of the heat-transfer coef-
ficlent will be less than 1n a laminar flow.

Drying of molst materials 1n convective driers 1s done approx-
imately under adiabatic conditlons. The temperature differences 1in
hot-air drying 1s considerably lower than 250° in the overwhelming
majority of cases. Therefore, crossflow of a substance through the
boundary layer produced by moisture evaporation has virtually no ef-
fect on the value of the heat-transfer coefficient. Numerous experi-
ments established that at a constant drylng rate the heat-transfer
coefficlent 1s considerably larger than 1n heat transfer of a dry
body, all other conditions belng equal. Starting at the critical
molsture content, the heat-transfer coefficlent decreases during the
course of drying time, gradually approachling the value of the heat-
transfer coefficlent of a dry body. Consequently, the heat-transfer

coefficient decreases with a decrease in the drying rate.

Liquld Evaporation from an Exposed Surface

In liquid evaporation from an exposed surface, the heat-transfer
coefficient increases with an increase of evaporation intensity. This
effect of the evaporation process on heat and mass transfer 1is char-
acterized by the Gukhman number which is the thermodynamic criterion

of evaporation.
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The calculation formulas in a criterial - form are:
Nu == AP ReGum, (11 )

Nu/ = A'SCO.:;:;RQI;'GU,”" (12)

where A, A', n, n', m, m' are constants, determinable by experiment,
dependent on the hydrodynamic flow conditions (Reynolds number range).
For example, according to the data of G. T. Sergeyev [2], in the
Reynolds number range from 4 *+ 10* to 16 - 10%, the constants in
formulas (11) and (12) are equal to: A = 0.086; A' = 0.094%; n =n' =
=08; m=m =0.2,

The most probable explanation of the evaporatlon effect on the
intensity of heat and mass transfer 1s the hypothesls of volume evép-
oration assoclated with the dynamlc character of the processes of
sorption and desorption.

The essence of thls hypothesis 1s that minute liquid droplets
impinge upon the boundary layer. The main cause of the separation of
droplets from an exposed surface of a liquid 1s the presence of the
processes of focal condensation and the interaction of the gas flow
with the liquid surface. According to de Bour's dynamic theory of ad-
sorption [11], the evaporation process 1s a dynamic process of desorp-
tion and sorption. The molecules of the 1iquld not only leave the
surface (evaporation) but are continuously returned (condensation).
The evaporation rate 1s proportional to'the difference of the molecu-
lar flows leaving and returning to the liquild surface. The Investiga-
tions of N. N. Fedyakin [12] showed that condensation does not occur
uﬁiformly along the surface, but on certain sections, and incomplete
wetting of the liquild surface by the adsorbed layer of liquified vapor

takes place. In the condensation reglons drops are formed which,
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being less strongly bound with the liquid, are carried away by the alr
flow to the boundary layer.

The evaporation of drops in the boundary layer we will call
volume evaporatlion, 1t 1s a volume source of vapor and a negative
source of heat iﬁ boundary-layer equations. In the presence of vol-
ume evaporation, the right-hand part of Eq. (3) will contain a
third term equal to rl, where I 1s the volume capacity of the vapor
source (kg * m~ > - hr). The right-hand part of Eq. (4) must be sup-
plemented by the magnitude of the positive vapor source (I).

By methods of the similarity theory, we will find from Eq. (3)

the dlmensionless variable

, rlf?
RKew= o (13)

The magnitude rI equals the amount of heat which 18 needed for volume
evaporation. If we designate in terms of Nv the number of drobs per
unit volume of the boundary layer, and R is the mean radius of a drop,

then an elementary calculation leads to the relationshilp

K= 8= RN, -?‘ . (1%)

The magnitude 8#§Nvla‘depends on the physical properties of the liquid
and the hydrodynamics of the flow.

The temperature difference At = [t(x, y) - tm] varies in the di-
rection of the x- and y-coordinates. The relative value At/Tc char-
acterizes the local thermodynamlic intensity of evaporation. The max-
imal value of this magnitude equals the Gukhman number (Gu =
= (Tc - Tm)/Tc)‘ From this point of view, Gu characterizes the poten-
tial possibility of humld alr in volume evaporation. The hypothesis

of volume evaporation is 1n need of confirmation by direct experiments.
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The second cause of the lntensificatlion of the heat-transfer process

in evaporation is the disturbance in the near-wall boundary layer by
focal evaporation processes. In liquid evaporatién at ordinary temper-
ature and pressure, the volume of the substance increases by about 102
times, and on condensation of the vapor the same decrease in volume
occurs. As a result of focal processes of evaporation and condensation
ihe structure of the laminar boundary layer 1s disturbed, which leads
to an intensification of heat and mass transfer. This effect 1s espe-
clally demonstrated upon evaporation in a vacuum, when the change of
volume in phase transformations reaches an order of 10%. This leads

to an increase in the heat-transfer coefficlient by about one order.

The hypothesls of stream heat and mass transfer in evaporation
in a vacuum was developed by A. A. Gukhman [413]. It 1s completely
natural that these effects intensifyling heat and mass transfer take
place in evaporation under conditions of ordlnary barometrlec pressure
although thelr influence will be appreclably smaller.

When drying molst materiais the effect of volume evaporation on
the heat- and mass-transfer process will be smaller as compared with
liqulid evaporation from a free surface. However, the intensifilcation
of heat transfer by the effect of focal evaporatlion will evidently be
gréater. Thils 1s because sorption and desorption processes take place
on the surface of macro- and microcapillaries 1n caplllary-porous bod-
ies. It is important to note here that the external heat and mass
transfer of moist materlals 1s continuously assoclated with physico-
chemical processes on the surface of a capillary-porous body. Deepen-
ing of the evaporation surface 1s the princlpal factor influencing heat
and mass transfer between molst caplllary-porous bodies and hot gas.
Thus heat and mass transfer of a Body surface witihh the amblent medium

should be considered as a combination of heat and mass transfer in

-23-



the boundary layer of humid air and in the boundary layer of a capil-

lary-porous body (evaporation zone).

Liquld Evaporation from Caplllary-Porous Bodles

To analyze the complex problem of heat and mass transfer in evapor-
ative transpiration cooling, we will use 0. Krisher's method [14].
The essence of this method 1s as follows.

If we neglect the effect of a crossflow of a substance, the d4if-
ferentlal equation of heat transfer in the boundary layer with laminar

flow past a flat plate can be written as*:

@ £L=a_ﬁ)fl . (15)

iy

ox (7yr
The -boundary conditions are
wrg (=0 /(.\', “) = (qs when XN = () ¢ (O’ y) = tc-v
) (16)
whe [ =00 [ (X, 00) =

The flow veloclty Wy 1s a function of the coordinates which 1s deter-
mined from the solution of the equation of motion. Krisher's method
assumes that Wy 1s a constant magnltude and equal to the average flow
velocity in the boundary layer (wx =‘ﬁ%). In actual processes a con-
stant veloclty occurs only with liquid flow without friction, 1l.e.,
at a very small coefficlent of internal friction. 1In the case of a
viscous liquid such an assumption (wx = W% = const) 1s a method for
solving the problem of heat transfer in the boundary layer.

In the case of flow about an infinitely long plate (1 — ) the
solution of differential equation (15) with boundary conditions (16)

has the form

!

* Heat transfer by vapor diffusion can be disregarded as a small
magnltude.
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I{x,y)y—t, —orf 5/1/:3,._) .
21/ ax

(17)

fi—1lg
The local Nusselt number 1s

a,x X at (x, 1)

N U, = - ==
A (le—1t) Oy

(18)

Differentiating solutlon (17) with respect to y and assuming y = O,

we obtaln

Mg (5] =R VR (19)

| =

The average Nusselt number over the surface 1s

!

- Y .
Nu = } Nugde = -7 v/ pg., (20)
e
e
bod %
o N 1
|y

]

Flg. 2. Diagram of
the calculation of

heat transfer in =

evaporative trans-

plration cooling.

In order to compare the obtained results with known formulas for
the Nusselt number in a laminar fiow past a plate, we must determine

the magnitude W&. If the velocity profile wx(y) 1s assumed a cublc

-25-
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parabola, the mean integral velocity [15] is

e
» =

I ;
Wy ==, — \I w () die --?— W, (21)
g o

I
V]

where & 1s the boundary-layer fhickness.
Then for moist air (Pr = 0.7)

: R e —
NUE(HUD—Vzwi‘PcuOJ+I’Re. (22)

This result differs only by 12% from the known empirical formula
Nu = 0.66 JRe. The assumptlon of the constancy of velocity Wy in
the solution of the differential equation of the boundary layer is
thus fully admissible. |

Cur problem concerning evaporative transpiration cooling can be
set up as 1in Fig. 2.

The differential equation of heat transfer stays the same (15).

The boundary conditions will be:

({0, )=t t(x, o) =1, ({5, 5} == I, (23)

L {0, ) .0, x) i : ‘
) i e D= e [ = T l O, X} - [‘:‘ .
A oy : 1£(0, %) 1] (24)

Here 1t 1s assumed that the temperature at the evaporation surface
equals the temperature of a wet-bulb thermometer. Owing to the small
boundary-layer thickness of a body the temperature distribution in it

follows the linear law. In thls case (24) we can write:

—FE 1, —b) =0 (25)

by
where H = t is some magnitude analogous to the relative heat transfer
£

coefficient.
The solution of differential equation (25) with boundary condi-
tions (23) and (25) has the form
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' I’ ~ [’ '—E:_ 2 (26)
- exp ( Hy - 1P - «)‘ eric { — e .
\ / g ‘

From (26) we derive the solution of (17) as a particular case. If
evaporation occurs at the body surface (€ = 0), then the second term

of the right-hand part of (26) equals zero, because when
Ewl) Moo,

The temperature at the body surface (y = 0) will not be constant,
but varies along thé x-axis:
fi, ) =ty

' [ . ax / RV
= e (1P e (T, (en)

wy

At the plate edge (x = 0) the temperature of the body surface
tg [ts = t(x, 0)] equals the air temperature (ts = tc), whereas at an
appreciable distance (x — «) 1t equals the temperature of the wet-

bulb thermometer (tS = t ). Consequently, the temperature difference

m)

At (ot =t - ts) varies from zero at the plate edge to a constant

c

magnitude (tc -t This 1s a very important fact determining the

m)'

specific characteristics of heat and mass transfer upon deepening of

the evaporatlon surface Into the body. If evaporation occcurs at the

body surface, then under adilabatic conditions the body surface temper-

ature 1s constant and equals the temperature of the wet-bulb thermom-

eter. é
It 1s known from the general‘theory of heat transfer that 1if the

temperature difference At increases in the flow dlrection, the

5
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heat-transfer coefficlent becomes larger than at a constant temperature
[14]. Consequently, upon deepening the evaporation surface the heat-
transfer coefficient 1s larger than when evaporation occurs at the
surface. If in the first appréximation we assume that the heat-
transfer ccocefficient in evaporation st a body surface equals the heat-
transfer coefficlent of a dry body, then on drylng with a deepening

of the evaporation surface the heat-transfer coefflcient will be larger
as compared wlth the heat-transfer coefficlent of a dry body. This
increase of the heat-transfer coefficient must be reflected‘in the
calculation formulas Nu = f(Re) by introducing an additional general-
1zed argument. Since At 1s the cause of the change in the heat-

transfer coefficient, then, naturally, the parametric criterion (gen-

eralized argument) will be the Gukhman number or TS . We will dwell
m
on this in detail.
The local Nusselt number is
Nii, = X ot (x, 0) RV
: —10, 9 2 /1 ey Kexp K*erfc X X (28)
K1 —exp Kerfc K|, -
where the dimensionless variable
Hx 7 —
Ko —— = 5 av 2
Pe. w ¥V o (29)

characterizes the effect of deepening the evaporation surface on heat
and mass transfer of caplllary-porous bodies.

We will designate
JUO == | % KexpA®erle K. (30)

Then

L e ~~“|.’.'—”‘-"T;\; P _-_.[_.(—l}:)..-_____ (31)

0 .
l — — L (N
Krﬁ/(w
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We derive (19) from the solution of (31). Tf evaporation occurs at
the surface (K = ), then N = 1 since f(X) =1, i.e.,

Nu, = —'—_11 - '}frl’c.\. )

i

which fully agrees with solution (419).

Thus the dimenslionless magnitude N characterizes the relative
increase of the local Nusselt number during evaporatlion of moisture
from capilllary-porous bodies as compared with evaporation of moisturé
at the body surface.

Figure 3 shows a graph of N = £(K) from where we see that the
magnitude N decreases with an lncrease of K, gradually approaching
unity.

In the range of K values from 0.1 to 5 (0.1 < K < 5.0) the depend-

ence N = £(K) can be approximated by the relationship
N = 31RO (32)

It 1s known from the theory of drying molst materials that the
distance of the evaporation surface from the body surface in the con-
stant drylng rate period in the first approximation 1s directly pro-
portional to the psychrometric difference At (At = tc - tm). Then the
dimensionless variable K willl be inversely proportional to (tC -tm)
and consequently inversely proportional to the Gukhman number (K ~
~ Gu ). Hence it follows that N ~ Gu®:!, which takes place in exper-
iments on heat and mass transfer in the drylng process [2].

Only at the constant drying rate period 1s the temperature of the
evaporation surface t(x, -E) constant, starting with the critical
molsture content 1ts temperature increases with time of drying, grad-
ually approachling the alr temperéture which 1t achieves at equilib?ium

molsture content. Hence 1t follows that Nu, In the falling drying
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rate period will decrease with time, gradually approaching the Nusselt

number for a dry body.

5 X

1
4, [ \\j\\ﬁf‘~-a

a 2 4 K
Flg. 3. Dependence of

coefficient N on param-
eter K.

It is of Interest to determine approximately the magnitude E£.
For a porous ceramic (A = 0.2 kcal » m~* « hr ' - deg™®) when Re =
=6 + 10%* and for X = 20 mm and parameter X = 1.5, the magnitude
£ = 0.5mm. In this case, according to the graph in Fig. 3, coef-
ficient N = 1.25, 1i.e., the heat-transfer coefficient 1n drying 1s
approximately 25% greater than that for a dry body, if we consider
that heat transfer in evaporation at the surface of a body is identi-
cal to heat transfer of a dry body. For the parameter K = 0.25, the
magnitude £ = 3 mm, and the coefficient N = 1.55, 1.e., the heat trans-
fer coefficlent 1s about 25% greater during drying as comparéd with
heat transfer of a dry body.

It 1s completely natural that at small values of € it 1is prac-
tically 1mpossible to measure accurately the temperatufe of the body
surface. Thermocouples embedded on the "surface" of a body for all
practical purposes show the wet-bulb temperature. Therefore the heat-

transfer coefficient can be consldered as the ratio of heat flow to

the psychrometric differences (tc - tm):
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. A
Ban = (Ic - lu) (33)
Then the local Nusselt number is

Nty == el ol f.)_[i\ 3 .O)

i (te—t)  og (34)

After simple transformations we obtailn
\ 1% N, g

"‘\,.\x = e (),

Yl (35)

where Nm is the coefficlent showlng the relative change of the number

Nuxm and consequently, of the coefficilent %em owlng to deepening of

the evaporation surface. The graph Nm = £(K), glven in Fig. 4, shows

that the coeffilcient N Increases with increase of K.

a M0k
i b

[/ s B R

i) / 2 3 4 K

Fig. 4. Dependence of the coef-
ficlent Nm on parameter K in or-

dinary and logarithmlc scales.

Since the dimensionless variable X 1s inversely proportional to
the psychrometric difference (tc - tm), the Nusselt number willl de-
crease with 1ts increase or that 'of the Gukhman number.

In a small variation range of K the dependence Nm = f(K) can be
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presented as

b
N, =BK, (36)

‘where B and b are constants (Ofs q‘g,i). For example, in the range 0.3 <
<K<2.5B =0.73, b = 0.46, and when 1.5 < K < 5B = 0.80, b = 0.15
(Fig. 4).

Consequently, in the range 0.3 < K 5,1.5 the coefficilent Nm will

be directly proportional to Gu-°'46. A similar relation occurred in

Shull'man's work [9] in which he experimentally obtained the relation-

ship

AY
i

= = [(X) Gu—o.1 (37)

¥ Re,
where £(X) 1s a function of a dimensionless coordinate.

By 1ts structure Nm = 0.73K%- 46 15 close to empirical formula
(10), since the variable K is inversely proportional to At. We can
note that the authors of article [8] carried out their experimegts
using the Gukhman number. In this treatment they obtained the fol-

lowlng dependence:
Nt = 0.00695 Re™ Gu v (38 )

which almost agrees with the calculation formula with respect to the
exponent g in spiterf the different conditions of flow past the
plate. We should polnt out that a comparison of these formulas 1is
tentative since the magnitude £ depends on the capillary-porous struc-
ture of the body, 1ts physlcochemical properties, and in the general
case 1s a function of the parametric criterion (Tc/Tm). However
formulas (31), (35) convincingly show that in these studies (8-9],
evaporatlon of water occurred at a certain depth from the body surface

and the decrease in the heat-transfer coefficient with an increase of
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evaporation rate, established from experimental data., 1s explained
not by the crossflow of mass to the boundary layer but by the method
of calculating the value of the heat-transfer coefficient. The heat-
transfer coefficient 1in drying of caplllary-porous bodies or in evapor-
ative transpiration cooling 1s greater than the heat-transfer coef-
ficient of a dry body at ordinary temperature differences (At =
= 250-300°C).

Actually in these studies [8-9] not the heat-transfer coefficient

o, was determined but the over-all heat transfer coefficilent

kom oy = !/'—1' - “.E"“}‘l . (39)

It 1s completely naturai that the coefficient k decreases with an in-
crease of the psychrometric difference (tc - tm)‘since € in the first
approximation 1is proportional to (tc - tm).

The baslc concluslon of our investigatlion isthat heat and mass
transfer of caplllary-porous bodles wlth the amblent medium is a
single interrelated proeess of heat and mass transfer in the boundary

layer of the body and in the boundary layer of the medium.
CONCLUSIONS

In this article we have analyzed Eckert's solution [10] on the
effect of mass transfer on heat transfer with gas injectlion into a
laminar boundary layer. It was shown that with liquld evaporation
from a porous plate, a decrease 1n the heat transfer coefficlent of
more than 10% can take place only at a temperature head At 2_260°C.

' Under the usual conditions of drying and evaporatlive transpirs-
tion cooling this effect can be neglected. An analysls of the exper-
imental'data on liquid evaporatioh from a free surface shows that an

additional argument, the Gukhman number, should be Introduced into the
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impirical relations Nu = f(Re, Pr) (see formulas (11), (12)). The
Gukhman number characterizes the thermodynamic intensity of volume
evaporation 1n a boundary layer.

The problem of heat transfer in evaporative transpiration cooling
with the presence of deepening of the evaporation surface 13'501ved
by Krisher's method [14] (see Eq. (26)). It was shown that 1in this
case the heat-transfer coefficients are larger than those with evapor-
ation at a body surface, all other things being equal. A decrease 1in
the heat-transfer coefficient wiﬁh a decrease of the temperature dif-
ference 1s accounted for in the calculation formulas by the Gukhman
number.

It was shown that in other studies [8, 9] not the heat-transfer
coefficlent o was calculated but the over~all heat-transfer coeffi-
cient k (see formula (39)), which decreases with an increase of the
femperature difference. Heat and mass transfer of capillary-porous
bodies with the ambient medium 1s a single interconnected process of

heat and mass transfer in the layers of the body and gas.

DESIGNATIONS

a — coefficient of thermal diffusivity (m®/hr); ey = specific iso-
barlic heat capacity of moist air (kcal/kg + deg); Ji — evaporation
rate for flow density of a substance (kg/m® + hr); 1 — a character-
fstic dimension (m); D— mass (kg); p — over-all air pressure (mm Hg);
q — density of heat flow (kcal/m® : hr); t — temperature (°C); T —
absolute temperature (°K); r — specific heat of evaporation (kcal/kg);.
w — velocity of alr motion (m/sec); a — heat-transfer coefficient
(kcal/m® + hr); n — coefficient of dynamic viscosity (kg/m - sec);

A — coefficient of thermal conductivity (kcal/m - hr - deg); v — co-
efficient of kirematic viscosity (m?/sec); p — density (kg/m®);

FTD-TT-63-158/1+2+4 ~34-



p1o — relative vapor concentrations; 1 — time; ¢ — distance of the
evaporation surface from the body surface (m).

Similarity numbers: Rex — local Reynolds number value; Pex -
local Peclet number value; ?E% — local Peclet number value referred
to the average integral velocity ﬁ% 1n.the boundary layer (FE%l=
= W*x/a); Nu, — local Nusselt number; Sc — Schmidt number; Pr —
Prandtl number; Gu — Gukhman number.

| Indexes: ¢ — ambient medium (moist air); m — state of adilabatic
saturation; s — surface; t — solld body; x — local value depending on
the x-coordinate; 1 — vapor; 2 — dry alr; O — heat transfer without

mass transfer.
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