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EXPERIMENTS ON HEAT TRANSFER OF A SUPERSONIC GAS FLOW IN

A CIRCULAR TUBE AT HIGH TEMPERATURE GRADIENTS

V. A. Mukhin, A. S. Sukomel, and V. I. Velichko

An experimental investigation was made of heat
transfer during the flow of a compressible gas in
a cooled circular tube at Mach number values from
0.1 to 4 and Ta.c/Tc from I to 3.1. A generaliza-

tion of the experimental data is given.

Most studies devoted to heat transfer in a flow of a compressible

gas in tubes pertain to the case of gas motion at subsonic velocities.

Only in a few investigations were heat transfer and drag. studied dur-

ing the flow of a supersonic gas [4-6] and in most of these, the meas-

urements were carried out at small temperature gradients. We made an

experimental investigation of heat transfer during supersonic air flow

in a circular tube at large temperature gradients.

Local heat transfer was measured by the thick-walled tube method.

The experimental heat exchanger was a thick-walled brass tube 575 mm

long, 20.2 mm in inside diameter and 87 mm in outside diameter. The

air flowed through the tube, the outside of the tube was bathed with

water, which moved through the annular gap between the casing of the

heat exchanger and the outer surface & the tube.
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The temperature close to the inner surface of the tube was meas-

ured at 20 points, and the temperature of the outer surface, at 6

points. Thermocouples, which were used to measure the temperature

close to the inner surface, were placed in radial drillings 1.5 mm in

diameter. The beads of the thermocouples were-soldered to the bottom

of the drilling by condensor welding. Openings with a diameter of

0.25 mm were made at V7 points along the length in order to sample

the static pressure.

The air entered the experimental section from the stagnation

chamber through interchangeable nozzles. The experiments were carried

out with five nozzles, of which one was subsonic and four were super-

sonic, calculated for Mach number values of 2.5, 3.0, 3.5, and 4.O.

After preliminary dust, oil, and moisture removal, the air passed

through a normal orifice which served to determine the discharge.

Further, the air entered an electric shaft furnace where it was heated

to the assigned temperature (200-800 0 C), and then flowed through the

chamber in which the flow stagnation parameters were measured. A

heater was wound on the wall of the stagnation chamber and a grid

mixer was installed at the chamber entrance. This enabled us to deter-

mine the stagnation temperature with a sufficient degree of accuracy.

The stagnation temperature was measured by a shielded chromel-alumel

thermocouple and the stagnation pressure by a class 0.35 standard

manometer.

The local density of the heat flux at the tube wall (excluding a

small area near the entrance about 5 diameters long) was determined

under the assumption that the temperature field in the wall was one-

dimensional, i.e., by the formula

q='AA 1c,

A _ _(1)
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The heat conduction of the wall was determined experimentally

for each thermocouple.

The flow parameters in the given section (velocity coefficient X

and flow temperature T) were found on the basis of a one-dimensional

flow model. The stagnation. tev.)erature To was determined from the

known stagnation temperature at the entrance and from the distribution

of the heat fluxes in the wall from the entrance to the section under

consideration. The heat-transfer coefficient was calculated by the

formula

T.r .- T, (2)

where

T, II r))",2

r Pr: - 7,6.1 OIf Re( P ;

D for-=o+15; (3)

f() 1 +0,0413 (--15) for -x-15.27;

T:* -- 7-i- T÷0,5 ('/T.--T) -- 0,22 (Tac -- T).

Formula (3) was derived from the generalization of the experi-

mental data [3]. All physical properties of the air were determined

from the thermodynamic temperature of the flow at the given section.

The experiments were carried out at Reynolds number values from

o.4 105 to 7.0 105 and Mach number values at the tube entrance

from 0.1 to 4.0, the entrance temperature varied from 200 to 8000 C.

An analysis of the experimental data showed that the velocity

and pressure distribution over the tube length mainly corresponded to
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the one-dimensional flow model. In the experiments with supersonic

velocitieg, we observed oblique shocks which led to a certain disturb-

ance in the smooth change of velocity and pressure over the tube

length. The magnitude of the oblique shocks mainly depended on how

well the nozzle was coupled with the experimental tube. Therefore,

we took measures to couple these units as best as possible.

The character of the lengthwise change of the local heat-transfer

coefficients showed that under certain conditions there is an area at

the start of the tube which is occupied by laminar and transition

"boundary layers. We can trace that the length of this area is re-

tained as the Re number increases. Hereafter we will examine only

points corresponding to a developed turbulent motion and to complete

thermal stabilization of the flow.

At first we carried out a series of experiments with low subsonic

velocities at low air temperatures at the inlet (200-300°C).

The results of this series of experiments agree, within an ac-

curacy to 5% with the formula of M. A. Mikheyev for heat transfer in

turbulent motion of an incompressible fluid in tubes. After this, we

carried out experiments at high temperatures in a subsonic nozzle and

experiments on supersonic nozzles both at low and high temperatures.

Figure i, which was calculated by means of parameter T, illus-

trates the effec- of gas compressibility on heat transfer:

TI k-I 1-
TO k-I I

It was assumed here that the dependence of heat transfer on the

Reynolds and Prandtl numbers is the same as for fluid incompressibility:

Nu -. Re°' 5 Pr°' 43 .

As we see from Fig. i, the Nusselt number varies in proportion

to To' 4 2
. Thus the dependence of the Nusselt number on T was somewhat
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greater than in Petukhov's study [61, which led to a difference in

Nusselt number values which did not exceed i0%. This small divergence

can be explained by the different experimental conditions in these

studies (different pressure gradients, temperature gradients, exponent

in the temperature dependence of viscosity).

Figure 2 confirms the usual dependence of heat transfer on the

Reynolds number.

As a result of treating the experimental data, we obtained the

dependence

Nu = 0,022Re", Pr04•., o. (04)

The formula is valid for cooling of a turbulent gas flow in a

tube in the section having thermal stabilization at values of

Re =(0,4--.7,0). 105, A4 = 0,1--3,0"), 0= 1 -'-3,1.Tý

The scatter of the experimental points relative to the curve cor-

responding to formula (4) does not exceed +10%, which is within the

accuracy of the experimental data.

S t I > -q

•,'H~~~6 ' ',u ,.,•-%-

•7. • -,-- -~... :• ",,.,' __ ,_ '-=I

054 Lt 0,6 0,7 0,a 09 r

Fig. i. Effect of gas compres-
sibility on heat transfer

A = Nu I) Min< 1;
Reo' PrO, 43

2, .3, 4, 5) Min respectively

equal 2.5, 3.0, 3.5, 4.0.

V;[ * The Mach number at the inlet varied from 0.1 to 4.
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Thus, the results of the investigation show that within the ac-

curacy of the experiments, the Nusselt number does not depend on the

temperature factor in spite of the fact that the latter varies in wide

limits (from i to 3.-1). Of course, this conclusion is valid only if

the gas flow is cooled, and is in conformity with the results obtained

in earlier studies [i, 7].

600___ y [~j~
_______ I7! " I ii.

"400 _ __

200 ,/0 .--

80 ,,/04, 6 t6 "10- 2 ,l" e

Fig. 2. Dependence of the Reynolds (des-
ignations are the same as in Fig. i),

Nu
pro, 

4 3 T 0 ,' 4 2

DESIGNATIONS

Atc is the local temperature drop at the tube wall; A is the wall

heat conduction; Ro, Rl, R2 are the radius of the tube and radii of

the hot junction inserts of the inside and outside thermocouples; Tc

is the wall temperature; Ta.c. is the adiabatic wall temperature; r

is the temperature recovery coefficient; Pr* is the Prandtl number

value taken at a certain temperature T* calculated by Eckert's method.
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SOLUTION OF AN EQUATION OF GAS MOTION IN A RECTANGULAR

CHANNEL WITH FRICTION AND HEAT TRANSFER

Yu. I. Danilov and B. M. Galitseyskiy

A method is given for the solution of a differential
equation of gas motion in a rectangular channel under
the combined influence of friction and heat transfer.

As a gas moves along a channel, the gas parameters at a given

section depend on the friction factor, on the starting parameters of

the gas in front of the channel, and also on the law and intensity of

the heat effect.

We will assume that the law and the form of the heat effect are

already given, therefore the stagnation temperature distribution over

the length of the channel is easily determined from the equation of

thermal equilibrium

dq - p, w• (CPT). W1

The equation of a uniform steady-state gas flow in a rectangular

channel in the presence of friction and heat transfer has the follow-

ing form:

2D +(2)
dx - 2D
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Let us change to the parameters of stagnation and the gasdynamic

functions

P+rw2=,,wz).2l+1+RT ; PW 2 =PW 2/1zRT) (3)

Then Eq. (2) is written:

d - I k , I
dx 2 k+; D

To solve Eq. (4) we will make a change of variables

,. I k -

D +1 -- (5)

where u is the unknown function subject to determination.

Then Eq. (4) is transformed:

du 2 + + C du tý
(6)

-I k

The constant of integration c can be assumed equal to zero,

since the change of variable r = v - c reduces Eq. (6) to the form

-- | + /I ( + m-7'= 0.
dx ) dx

Equation (6) at a constant value of m and a linear change of the

stagnation temperature over the channel length is easily integrated.

Actually, let

T T ... TL ,T
_LT i " x, ( '

I

where T, and T2 are respectively the stagnation temperature at the

channel inlet and exit. Then Eq. (6) is written:

( +111 1 (111 r--T. (8)

,-x ) + (L , - -T, +
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This equation will be integrated by introducing a parameter. Let us

du
designate a- = z, then

+" "17 zuzz-"1&• !T r T" - x =0. (9)

Differentiating Eq. (9) in terms of u, we derive after appropriate

transformations a first-order linear equation

du za 2z-

lZ z .+ , 72-T, ' ,, . ,,. (±o)+

The solution of this equation is written in the form

z rT,_,--TI Iz,ý z [ .i-n T , l

-- ~Z + /"it n

Eliminating u from equations (9) and (ii), we obtain an equation

relative to the parameter z:

mT T[ . - Ti. z T2T Ti)- F/(, T,~T)~ - (±2)A
z (12)

-- zC TZ2 2 Tl T 1)

We will determine the constant of integration c from the condition

z = z, when T - TI, then Eq. (12) is transformed to

nzT .~_t[,~T I 'i~T \mT "•T2 T.. - - T , "V" --. 1L t

= m T- -L z2 + II I + I tri a z ý /i

tnT, z 2+ T 2 -T +1 T.2 - T, si12h1 Z, /itT 2 - T, il
z V I

Since the parameter z is uniquely associated with X and T:
d u • -m 4-, then subotituting its value Into Eq. (13), we obtain

the following expression:

A4 A4+

I= ] +AT, +±,s.-,A,. (A, )
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where

A2 / I /T2  \-

k+ I D T,

k I T1.I-
k -I -D ~T.)

or, designating

A4 + -4 - • A = O(X,, A),

finally for determining the reduced velocity in the channel we will

have (Fig. 1)

,'( A1, A Q) 1(X,, A2). (16)

Analogously for the case of gas cooling according to the linear law,

the function

CI)1 Ak =I$--A' + Arc'sine I A (17)

~2

4
2

6 -- "6

0 f 2 A

Fig. 1. Dependence of
ýD on X: 1, 2, 3, 4, 5,
6) Values of A equal
respectively to 1, 0.9,
0.8, 0.7, 0.6, and 0.5.
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Knowing the magnitude of the reduced velocity, we easily deter-

mine all remaining gas parameters (static temperature, pressure, den-

sity) by using the gasdynamic functions. For example, the pressure

losses in the channel will equal:

AP=P1 -Po K - (=)I
"L tO,.) LZ..) J

where

I-

When the change of stagnation temperature over the channel

length differs from the linear law and the friction factor varies

appreciably of the channel length, we recommend the method of divid-

ing the channel into a number of segments in which we can assume ap-

proximately a constant value of the friction factor ý and a linear

rise of the stagnation temperature. Thus, we can calculate with any

degree of accuracy a channel with any predetermined law of heat trans-

fer.

For sufficiently small values X << i, the function z(x) 71- and

Eq. (6) will have the form

nu du + I"T = 0. (18)
dx

Solving this equation, we derive the following expressions for

determining the reduced velocity at the channel exit relative to the

reduced velocity at the channel inlet:

7,~ . 2S mnTdx) (19)



When the magnitude X >> i, function z(X) can be assumed approximately

equal to z(X) x X. Then Eq. (6) is transformed as

+ (20)

Its solution is written

1', = • exp indx. (21)
0 (22

Formulas (i9) and (21) are derived in the case of gas flow in a

channel with a heat conductor and respectively reflect the character

of subsonic and supersonic flow wherein when we derived them we did

not permit the adsumption of a linear change of stagnation temperature

over the channel length, i.e., they are valid for any law of a heat

conductor. However, upon using the obtained relationships in practice,

it is necessary to take into account the specific conditions of the

problem and the required accuracy of the calculations.

The function 0 (%, A) depends on the two variables A and X and

has a minimum at X = 1. Having tabulated the function 0 (x, A) and

compiled a table for a wide range of values of X and A, we can fairly

easily and rapidly determine the distribution of the reduced velocity

X over the channel length and, consequently, all other parameters for

any predetermined law of heat exchange.

DESIGNATIONS

Sis the heat supplied to the gas in the channel; F is the flow

area of the channel; Cp is the heat capacity of the gas at constant

pressure; T is the gas stagnation temperature; p is the density; w is

velocity; x is the abscissa readable along the channel axis from the

channel inlet; P is static pressure; ý is the friction factor; D is

the hydraulic diameter; k is the index of the adiabatic curve; X is
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the reduced velocity; R is the gas constant; c is the constant of

integration; 1 is the channel length.
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HEAT AND MASS TRANSFER IN EVAPORATION PROCESSES

A. V. Lykov

The effect of a crossflow of a substance on heat
transfer in a laminar flow past a moist capillary-
porous plate is analyzed. Regularities in heat and
mass transfer during liquid evaporation from capil-
lary-porous bodies are established. It is shown
that in the case of deepening the evaporation sur-
face, the heat-transfer coefficients are larger
than those in evaporation at the surface of a body.

Heat and mass transfer in liquid evaporation from an exposed

surface and from capillary-porous bodies is not only of theoretical

interest, but also of practical value for engineering.

Heat and mass transfer between the surface of a liquid and the

ambient medium (moist air) is a single mutually associated process

having its own characteristics which differ from a heat transfer proc-

ess complicated by mass transfer. An even more complex process is

heat and mass transfer of a moist capillary-porous body with the flow

of a heated gas. In this case, heat and mass transfer of the body

surface with the ambient medium is continuously associated with heat

and mass transfer inside the capillary-porous body (the interdepend-

ence of the external and internal problems). Such processes of heat

-15-



and mass transfer include those of drying and transpiration cooling by

means of liquid evaporation. Heretofore there has been no single

opinion not only on the physical mechanism of transfer, but also on

the qualitative effect of mass transfer on heat transfer. A number

of investigators, based on the theory of gas injection into the bound-

ary layer through a porous plate, consider that in liquid evaporation

the heat-transfer coefficient decreases with an increase in evapora-

tion intensity, whereas in condensation of vapor, conversely, the

heat-transfer coefficient increases with an increase of condensation

intensity.* In the first case the crossflow of a substance is di-

rected to the side opposite the heat flow and in the second case these

flows have the same direction. Then the boundary-layer thickness in

evaporation increases(the boundary layer "swells"), which leads to a

reduction of the heat-transfer coefficient. During condensation the

reverse picture occurs, which leads to an increase of the heat-trans-

fer coefficient with an increase of condensation intensity.

However, the experimental investigations of A. V. Nesterenko [i],

G. T. Sergeyev [23, and of other investigators on evaporation of var-

ious liquids from an exposed surface showed that the heat-transfer co-

efficients in evaporation are larger than those without mass exchange

(dry heat transfer) under the same hydrodynamic conditions and temper-

ature differences. This difference increases with an increase of the

relative humidity of the air. When drying moist materials, the heat-

transfer coefficients are larger than the corresponding coefficients

of a dry body [3-63. During transpiration cooling, when the fluid is

continuously fed into a capillary-porous body, we have different re-

sults for different investigators. In some investigations [7) the

* Here it is assumed that the heat needed for evaporation is
mainly transmitted by convection from the heater air.
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heat-transfer coefficients increase with an increase of the evaporation

intensity and in others, conversely, they decrease [8, 9]. The results,

obtained experimentally, are of considerable interest. In our article

we will explain them on the basis of the theory of liquid evaporation

from capillary-porous bodies.

Transpiration Cooling in Gas Injection

into the Boundary Layer

A calculation of transpiration cooling by the method of boundary-

layer injection through porous walls was studied in greatest detail

by E. Eckert [i02. It is based on a solution of a system of differ-

ential equations of heat and mass transfer for a laminar boundary

layer with flow of a binary gas mixture past a flat, porous

plate. The system of differential equations has the form:

+ 0()

at• at__L _ a ' a,'
,, •• • -- , •, a~j a~j • a 1'(2)

CP+r' C :, = + , a .,ax a a!/ oy (,)
a,,, al

x ,, a al,,

Thermal diffusion (Soret effect) and the diffusion thermo effect

(Dufour effect) are disregarded as small magnitudes.

The following boundary conditions were taken:

'Avit 0,I = = 0.•, = , I = t., Po = ,-;. (5)

-17 -



Whun Y " = 1 c= PI ý PIOc (6)

In addition, it was assumed that the linear transverse velocity

of the change along the surface ws (in the x-direction) is inversely

proportional to 47.

The results of the calculations for the case where the mass flow

of the injected gas is directed from the body surface (analog of the

evaporation process) are shown in Fig. i. We see from this figure

that the heat- and mass-transfer coefficients decrease with an in-.

crease of the parameter

Z - =/1!J (7)

where J, - pws is the intensity of mass transfer in a direction normal

to the wall surface (the intensity of the mass crossflow of a sub-

stance).

Consequently the heat-transfer coefficient a decreases with an

increase of intensity of the crossflow of the substance. The ratio

c/ao = 0.9 when Z = 0.05 (Fig. i). Consequently, when Z = 0.05 the

decrease in the heat-transfer coefficient is ±0%. A twofold decrease

(a/ao = 0.5) corresponds to a value of Z - 0.3. In the study by

Shulman [9] with transverse flow past a hollow, porous ceramic cylin-

der, inside which water was fed to certain regions, the parameter Z

varied from 0.015 to 0.05. The evaporation intensity was from 3.6 to

18.6 kg • m-2 • hr-1 in the Reynolds number range from 2 IO4 to

8 . 104 and with an air temperature change from 70 to 130 0 C. Conse-

quently, a decrease in the heat-transfer coefficient caused by cross-

flow was less than i0%, i.e., it lies within the accuracy of the ex-

periment. Moreover, a decrease in the local heat-transfer coefficient

was noted upon an increase in the evaporation intensity by a factor of

-18-
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I "'t

0.2

0 02 0/1 O6 z

Fig. 1. Dependence
of relative heat-
transfer coefficient
(a/ao) on parameter
Z based on Eckert's
data [101: 1) Pr =
= Sc = iJ; 2) Pr -
= Sc = 0.7.
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1.5-1.9, i.e., by 50-90%. If we take into account that the process

of liquid evaporation is analogous to the process of blowing air into

the boundary layer, then under conditions of adiabatic evaporation

the parameter Z characterizing the effect of crossflow of a substance

on heat and mass transfer can be presented in a different form. The

intensity of evaporation is

S=- --(1'.-- i.,) Nu IJx . :o -t,. (8)
r x

In a laminar flow of moist air past a plate Nux = A. %Rx, where Ax

is a constant. Then the parameter

A . c A I ( 9 )
Pr r

Consequently, Z does not depend on the velocity of air motion,

but depends on the psychrometric difference.

Let us make an approximate calculation. For Z = 0.05 the temper-

ature difference At will be At = 260 0 C. In the calculation we assumed

t - 30 0 C, r - 579 kcal * kg-', Ax = 0.33. Consequently, only at a

temperature difference of At = 2600 will the reduction of the heat-

transfer coefficient be of the order of i0%.

Similar results were obtained earlier [8] with the flow of hot

air past a porous plate. The evaporation intensity in these experi-
-2 -

ments did not exceed 22.7 kg * m hr-1. The Reynolds number varied

from 10 to 2 ' 106, and the air temperature from 18 to 1400. Evapor-

ation was under adiabatic conditions. The temperature difference did

,not exceed 790. Consequently, crossflow of a substance cannot render

a perceptible effect on the reduction of the heat-tranofer coefficient.

However, the authors established that there is a dependence for the

average Nusselt number:

NU, = 0,00.155 R&8 
( " ((o)
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Therefore, the reduction of the heat-transfer coefficient was

more than threefold.

Although this analysis of the study [8] is of a somewhat a-rbi-

trary nature since evaporation of water from a porous plate occurred

in a turbulent flow, the decrease in the heat-transfer coefficient

with an increase of the temperature difference At is the result of

other causes. We must point out that in a turbulent flow, the effect

of crossflow of a substance on the change of the heat-transfer coef-

ficient will be less than in a laminar flow.

Drying of moist materials in convective driers is done approx-

imately under adiabatic conditions. The temperature differences in

hot-air drying is considerably lower than 2500 in the overwhelming

majority of cases. Therefore, crossflow of a substance through the

boundary layer produced by moisture evaporation has virtually no ef-

fect on the value of the heat-transfer coefficient. Numerous experi-

ments established that at a constant drying rate the heat-transfer

coefficient is considerably larger than in heat transfer of a dry

body, all other conditions being equal. Starting at the critical

moisture content, the heat-transfer coefficient decreases during the

course of drying time, gradually approaching the value of the heat-

transfer coefficient of a dry body. Consequently, the heat-transfer

coefficient decreases with a decrease in the drying rate.

Liquid Evaporatiop from an Exposed Surface

In liquid evaporation from an exposed surface, the heat-transfer

coefficient increases with an increase of evaporation intensity. This

effect of the evaporation process on heat and mass transfer is char-

acterized by the Gukhman number which is the thermodynamic criterion

of evaporation.

-20-



The calculation formulas in a criterial form are:

NU= APt0,3Rc nGu,,. (ii)

Nu' = A'ScO.3.Re,'GU, (12)

where A, A', n, n', m, m' are constants, determinable by experiment,

dependent on the hydrodynamic flow conditions (Reynolds number range).

For example, according to the data of G. T. Sergeyev [21, in the

Reynolds number range from 4 • 104 to 16 j04, the constants in

formulas (i1) and (12) are equal to: A = 0.086; A' = 0.094; n = n' =

= 0.8; m = m' = 0.2.

The most probable explanation of the evaporation effect on the

intensity of heat and mass transfer is the hypothesis of volume evap-

oration associated with the dynamic character of the processes of

sorption and desorption.

The essence of this hypothesis is that minute liquid droplets

impinge upon the boundary layer. The main cause of the separation of

droplets from an exposed surface of a liquid is the presence of the

processes of focal condensation and the interaction of the gas flow

with the liquid surface. According to de Bour's dynamic theory of ad-

sorption [i:], the evaporation process is a dynamic process of desorp-

tion and sorption. The molecules of the liquid not only leave the

surface (evaporation) but are continuously returned (condensation).

"The evaporation rate is proportional to the difference of the molecu-

lar flows leaving and returning to the liquid surface. The investiga-

tions of N. N. Fedyakin [12] showed that condensation does not occur

unlfomQnly along the surface, but on certain sections, and incomplete

wetting of the liquid surface by the adsorbed layer of liquified vapor

takes place. In the condensation regions drops are formed which,
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being less strongly bound with the liquid, are carried away by the air

flow to the boundary layer.

The evaporation of drops in the boundary layer we will call

volume evaporation, it is a volume source of vapor and a negative

source of heat in boundary-layer equations. In the presence of vol-

ume evaporation, the right-hand part of Eq. (3) will contain a

third term equal to rI, where I is the volume capacity of the vapor

source (kg m- hr). The right-hand part of Eq. (4) must be sup-

plemented by the magnitude of the positive vapor source (I).

By methods of the similarity theory, we will find from Eq. (3)

the dimensionless variable

X-- (T13)

The magnitude rI equals the amount of heat which is needed for volume

evaporation. If we designate in terms of Nv the number of drops per

unit volume of the boundary layer, and I is the mean radius of a drop,

then an elementary calculation leads to the relationship

x,= A=z t .(14)
Tl:.

The magnitude 8 --Nv 12 depends on the physical properties of the liquid

and the hydrodynamics of the flow.

The temperature difference At = ft(x, y) - tim] varies in the di-

rection of the x- and y-coordinates. The relative value At/Tc char-

acterizes the local thermodynamic intensity of evaporation. The max-

imal value of this magnitude equals the Gukhman number (Gu =

= (Tc - Tm)/Tc). From this point of view, Gu characterizes the poten-

tial possibility of humid air in volume evaporation. The hypothesis

of volume evaporation is in need of confirmation by direct experiments.
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The second cause of the intensification of the heat-transfer process

in evaporation is the disturbance in the near-wall boundary layer by

focal evaporation processes. In liquid evaporation at ordinary temper-

ature and pressure, the volume of the substance increases by about i0s

times, and on condensation of the vapor the same decrease in volume

occurs. As a result of focal processes of evaporation and condensation

the structure of the laminar boundary layer is disturbed, which leads

to an intensification of heat and mass transfer. This effect is espe-

cially demonstrated upon evaporation in a vacuum, when the change of

volume in phase transformations reaches an order of ±06. This leads

to an increase in the heat-transfer coefficient by about one order.

The hypothesis of stream heat and mass transfer in evaporation

in a vacuum was developed by A. A. Gukhman [±131. It is completely

natural that these effects intensifying heat and mass transfer take

place in evaporation under conditions of ordinary barometric pressure

although their influence will be appreciably smaller.

When drying moist materials the effect of volume evaporation on

the heat- and mass-transfer process will be smaller as compared with

liquid evaporation from a free surface. However, the intensification

of heat transfer by the effect of focal evaporation will evidently be

greater. This is because sorption and desorption processes take place

on the surface of macro- and microcapillaries in capillary-porous bod-

ies. It is important to note here that the external heat and mass

transfer of moist materials is continuously associated with physico-

chemical processes on the surface of a capillary-porous body. Deepen-

ing of the evaporation surface is the principal factor influencing hent

and mass transfer between moist capillary-porous bodies and hot gas.

Thus heat and mass transfer of a body sus4>'ce with the ambient medium

should be considered as a combination of heat and mass transfer in
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the boundary layer of humid air and in the boundary layer of a capil-

lary-porous body (evaporation zone).

Liquid Evaporation from Capillary-Porous Bodies

To analyze the complex problem of heat and mass transfer in evapor-

ative transpiration cooling, we will use 0. Krisher's method [iA4.

The essence of this method is as follows.

If we neglect the effect of a crossflow of a substance, the dif-

ferential equation of heat transfer in the boundary layer with laminar

flow past a flat plate can be written as*:

a.- (15)
Av Ox ofl

The boundary conditions are

1= J (.. (x, 0)= t'., • .•' =( 1(o, )= , (±6 )
•:•/,• (X, 00) =1.

The flow velocity wx is a function of the coordinates which is deter-

mined from the solution of the equation of motion. Krisher's method

assumes that wx is a constant magnitude and equal to the average flow

velocity in the boundary layer (wx = Wx). In actual processes a con-

stant velocity occurs only with liquid flow without friction, i.e.,

at a very small coefficient of internal friction. In the case of a

viscous liquid such an assumption (wx = Vx - const) is a method for

solving the problem of heat transfer in the boundary layer.

In the case of flow about an infinitely long plate (1 - )the

solution of differential equation (15) with boundary conditions (16)

has the form

* Heat transfer by vapor diffusion can be disregarded as a small

magnitude.
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1,~ --. 7~2~

The local Nusselt number is

YJu. - -., A (•/(x, i))( 8
u ,- )' l (( 

8

Differentiating solution (17) with respect to y and assuming y = 0,

we obtain

Nit .• , L ,

x,.,. 7= -- z ... 1 (19)

The average Nusselt number over the surface is

,I NIT 1A - (20)
U

/

-yI 0

i-i L

Fig. 2. Diagram of
the calculation of
heat transfer in -
evaporative trans-
piration cooling.

In order to compare the obtained results with known formulas for

the Nusselt number in a laminar flow past a plate, we must determine

the magnitude ýW. If the velocity profile wx(y) is assumed a cubic
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parabola, the mean integral velocity [15] is

(21

where 6 is the boundary-layer thickness.

Then for moist air (Pr - 0.7)

I= ;, - I l " 0 , 1 '1/ (22)

This result differs only by 12% from the known empirical formula

Nu = 0.66 4FR. The assumption of the constancy of velocity w x in

the solution of the differential equation of the boundary layer is

thus fully admissible.

Our problem concerning evaporative transpiration cooling can be

set up as in Fig. 2.

The differential equation of heat transfer stays the same (15).

The boundary conditions will be:

1 (O, y/)= I, (X, CQ) = , 1 t(V, ) = 1; (23)

.- O!(o. ) X = .. 1t (0, . 'IL (0, x) --/21. (24)

Here it is assumed that the temperature at the evaporation surface

equals the temperature of a wet-bulb thermometer. Owing to the small

boundary-layer thickness of a body the temperature distribution in it

follows the linear law. In this case (24) we can write:

/0, - H [1(0, x) -- tt = 0. (25)

xt

where H = •- is some magnitude analogous to the relative heat transfer

coefficient.

The solution of differential equation (25) with boundary condi-

tions (23) and (25) has the form
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crf
2 (2 " /

-I- .\p I-! - .c -I -)•

From (26) we derive the solution of (i7) as a particular case. If

evaporation occurs at the body surface (ý = 0), then the second term

of the right-hand part of (26) equals zero, because when

0-( I/ .

The temperature at the body surface (y = 0) will not be constant,

but varies along th6 x-axis:

(A .... )... ..... U (27)

/C _-x IM ~ w

At the plate edge (x = 0) the temperature of the body surface

ts [ts = t(x, 0)] equals the air temperature (ts = tc), whereas at an

appreciable distance (x - -) it equals the temperature of the wet-

bulb thermometer (ts = tm). Consequently, the temperature difference

At (At = tc - ts) varies from zero at the plate edge to a constant

magnitude (tc - tm). This is a very important fact determining the

specific characteristics of heat and mass transfer upon deepening of

the evaporation surface into the body. If evaporation occurs at the

body surface, then under adiabatic conditions the body surface temper-

ature is constant and equals the temperature of the wet-bulb thermom-

eter.

It is known from the general theory of heat transfer that if the

temperature difference At increases in the flow direction, the
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heat-transfer coefficient becomes larger than at a constant temperature

[i4]. Consequently, upon deepening the evaporation surface the heat-

transfer coefficient is larger than when evaporation occurs at the

surface. If in the first approximation we assume that the heat-

transfer coefficient in evaporation at a body surface equals the heat-

transfer coefficient of a dry body, then on drying with a deepening

of the evaporation surface the heat-transfer coefficient will be larger

as compared with the heat-transfer coefficient of a dry body. This

increase of the heat-transfer coefficient must be reflected in the

calculation formulas Nu = f(Re) by introducing an additional general-

ized argument. Since At is the cause of the change in the heat-

transfer coefficient, then, naturally, the parametric criterion (gen-

eralized argument) will be the Gukhman number or . We will dwell

on this in detail.

The local Nusselt number is

•.,, = ., • ., oA =V•J.e.Kep A?"crfc 10< ×(28)
X • -t _(o , X ) - a u ( 8

X [I -expA'%rfcl--

where the dimensionless variable

Hx
- (29)

characterizes the effect of deepening the evaporation surface on heat

and mass transfer of capillary-porous bodies.

We will designate

A(KC) -- I (exp ., ,rfc K. (30)

Then

-- (31)
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We derive (19) from the solution of (31). If evaporation occurs at

the surface (K = c), then N = i since f(K) = 1, i.e.,

NLI,

which fully agrees with solution (19).

Thus the dimensionless magnitude N characterizes the relative

increase of the local Nusselt number during evaporation of moisture

from capillary-porous bodies as compared with evaporation of moisture

at the body surface.

Figure 3 shows a graph of N = f(K) from where we see that the

magnitude N decreases with an increase of K, gradually approaching

unity.

In the range of K values from 0.1 to 5 (0.1 < K < 5.0) the depend-

ence N = f(K) can be approximated by the relationship

A' i,31 /ý$.O.!2 (32)

It is known from the theory of drying moist materials that the

distance of the evaporation surface from the body surface in the con-

stant drying rate period in the first approximation is directly pro-

portional to the psychrometric difference At(At = tc - tm). Then the

dimensionless variable K will be inversely proportional to (tc -tm)

and consequently inversely proportional to the Gukhman number (K

SGu-'). Hence it follows that N 'v GO,', which takes place in exper-

iments on heat and mass transfer in the drying process [2].

Only at the constant'drying rate period is the temperature of the

evaporation surface t(x, -e) constant, starting with the critical

moisture content its temperature increases with time of drying, grad-

ually approaching the air temperature which it achieves at equilibrium

moisture content. Hence it follows that Nux in the falling drying
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rate period will decrease with time, gradually approaching the Nusselt

number for a dry body.

mT

"L..I I

I'

Fig. 3. Dependence of
coefficient N on param-
eter K.

It is of interest to determine approximately the magnitude •.

For a porous ceramic (X = 0.2 kcal • m-1 • hr-1 • deg-') when Re

= 6 104 and for x = 20 mm and parameter K = 1.5, the magnitude

0.5 mm. In this case, according to the graph in Fig. 3, coef-

ficient N = 1.25, i.e., the heat-transfer coefficient in drying is

approximately 25% greater than that for a dry body, if we consider

that heat transfer in evaporation at the surface of a body is identi-

cal to heat transfer of a dry body. For the parameter K = 0.25, the

magnitude • = 3 mm, and the coefficient N = 1.55, i.e., the heat trans-

fer coefficient is about 25% greater during drying as compared with

heat transfer of a dry body.

It is completely natural that at small values of • it is prac-

tically impossible to measure accurately the temperature of the body

surface. Thermocouples embedded on the "surface" of a body for all

practical purposes show the wet-bulb temperature. Therefore the heat-

transfer coefficient can be considered as the ratio of heat flow to

the psychrometric differences (tc - tm):
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~ q ... (33)(I4.-- I,)

Then the local Nusselt number is

N" ~ I X .(( 0) (3).~- •.-- u'e - M•) d,,y ... (3

After simple transformations we obtain

., i. -:- . .. (K),(35)

where Nm is the coefficient showing the relative change of the number

Nuxm and consequently, of the coefficient axm owing to deepening of

the evaporation surface. The graph Nm = f(K), given in Fig. 4, shows

that the coefficient N increases with increase of K.

t 4? 0.L3 ,.'' . , A'

.v., • I ::.Tii i~ l,
S.. ..-- . .. i,- . • (.. . .I - - ', - A-

Fig 4. bDepenenc of the coef-- ,:

____ .. . '-,-- .~.... -- - '

, ', -- 'I' [ , -- - -

fiet i p K i or-l•' / I I I I i i

&:• -) i -

0 / 2 ' 4 ,

Fig. •4. Dependence of the coef-
ficient Nm on parameter K in or-

dinary and logarithmic scales.

Since the dimensionless variable K is inversely proportional to

the psychrometric difference (t. - tm), the Nusselt number will de-

crease with its increase or that 'of the Gukhman number.

In a small variation range of K the dependence Nm = f(K) can be
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presented as

Nm =BKb, (36)

where B and b are constants (0'< q < i). For example, in the range 0.3 <

< K < 1.5 B = 0.73, b - 0.46, and when 1.5 < K < 5 B - 0.80, b - 0.15

(Fig. 4).

Consequently, in the range 0.3 < K < 1.5 the coefficient Nm will

be directly proportional to Gu- 46 A similar relation occurred in

Shull'man's work [9] in which he experimentally obtained the relation-

ship

Nux

where f(Y) is a function of a dimensionless coordinate.

By its structure Nm = 0.73K°'4 6 is close to empirical formula

(10), since the variable K is inversely proportional to At. We can

note that the authors of article [8] carried out their experiments

using the Gukhman number. In this treatment they obtained the fol-

lowing dependence:

0,00695) 'N'(5(V' G1 . (38)

which almost agrees with the calculation formula with respect to the

exponent q in spite of the different conditions of flow past the

plate. We should point out that a comparison of these formulas is

tentative since the magnitude ý depends on the capillary-porous struc-

ture of the body, its physicochemical properties, and in the general

case is a function of the parametric criterion (Tc/Tm). However

formulas (31), (35) convincingly show that in these studies [8-9))

evaporation of water occurred at a certain depth from the body surface

and the decrease in the heat-transfer coefficient with an increase of
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evaporation rate, established from experimental data. is explained

not by the crossflow of mass to the boundary layer but by the method

of calculating the value of the heat-transfer coefficient. The heat-

transfer coefficient in drying of capillary-porous bodies or in evapor-

ative transpiration cooling is greater than the heat-transfer coef-

ficient of a dry body at ordinary temperature differences (At

= 250-3000C).

Actually in these studies [8-9] not the heat-transfer coefficient

ax was determined but the over-all heat transfer coefficient

It is completely natural that the coefficient k decreases with an in-

crease of the psychrometric difference (tc - tim) since ý in the first

approximation is proportional to (tc - tm).

The basic conclusion of our investigation is that heat and mass

transfer of capillary-porous bodies with the ambient medium is a

single interrelated process of heat and mass transfer in the boundary

layer of the body and in the boundary layer of the medium.

CONCLUSIONS

In this article we have analyzed Eckert's solution [10] on the

effect of mass transfer on heat transfer with gas injection into a

laminar boundary layer. It was shown that with liquid evaporation

from a porous plate, a decrease in the heat transfer coefficient of

more than I0% can take place only at a temperature head At > 260 0 C.

Under the usual conditions of drying and evaporative transpira-

tion cooling this effect can be neglected. An analysis of the exper-

imental data on liquid evaporation from a free surface shows that an

additional argument, the Gukhman number, should be introduced into the
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impirical relations Nu = f(Re, Pr) (see formulas (II), (12)). The

Gukhman number characterizes the thermodynamic intensity of volume

evaporation in a boundary layer.

The problem of heat transfer in evaporative transpiration cooling

with the presence of deepening of the evaporation surface is Solved

by Krisher's method [14l (see Eq. (26)). It was shown that in this

case the heat-transfer coefficients are larger than those with evapor-

ation at a body surface, all other things being equal. A decrease in

the heat-transfer coefficient with a decrease of the temperature dif-

ference is accounted for in the calculation formulas by the Gukhman

number.

It was shown that in other studies [8, 91 not the heat-transfer

coefficient a was calculated but the over-all heat-transfer coeffi-

cient k (see forrmula (39)), which decreases with an increase of the

temperature difference. Heat and mass transfer of capillary-porous

bodies with the ambient medium is a single interconnected process of

heat and mass transfer in the layers of the body and gas.

DESIGNATIONS

a - coefficient of thermal diffusivity (m2 /hr); cp - specific iso-

baric heat capacity of moist air (kcal/kg •deg); J, - evaporation

rate for flow density of a substance (kg/m 2 • hr); 1 - a character-

istic dimension (m); D - mass (kg); p - over-all air pressure (mm Hg);

q - density of heat flow (kcal/m2 • hr); t'- temperature (OC); T -

absolute temperature (OK); r - specific heat of evaporation (kcal/kg);.

w - velocity of air motion (m/sec); a - heat-transfer coefficient

(kcal/m2 • hr),; i - coefficient of dynamic viscosity (kg/m. • sec);

X - coefficient of thermal conductivity (kcal/m - hr • deg); v - co-

efficient of kirematic viscosity (m2/sec); p - density (kg/m3 );
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Po -- relative vapor concentrations; T - time; • - distance of the

evaporation surface from the body surface (m).

Similarity numbers: Rex -local Reynolds number value; Pex-

local Peclet number value; 5 -e local Peclet number value referredx

to the average integral velocity w in the boundary layer (Ie =

- x/a); Nux - local Nusselt number; Sc - Schmidt number; Pr -

Prandtl number; Gu - Gukhman number.

Indexes: c - ambient medium (moist air);, m - state of adiabatic

saturation; s - surface; t - solid body; x - local value depending on

the x-coordinate; i - vapor; 2 - dry air; 0 - heat transfer without

mass transfer.
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