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INVESTIGATION OF THE WORKING CASCADES OF TURBINES AT
SUPERSONIC VELOCITIES

A. V. Gubarev

The possibility of developing, in a single stage of a t'irbine,
large heat drops without a noticeable decrease in the efficlency 1s a
very attractive ldea. However, up to now there have been no reliable
methods for profiling working cascades which operate with satisfactory
efficlency at high supersonic veloclities. In addition, up to now
there have been no intense studies of working cascédes at such velocl-
ties,

In this paper we present certain results of an investigation of
working cascades at supersonic velocities [1]. Profiles of the work-
iﬁg cascades, bullt according to the recommended methods, made 1t
possible to noticeably increase the efficiency of certain turbires of

the Kaluga factory.

1. PFeatures of Supersonic-Flow Structure in Working

Cascades and the Method of Designinngew Cascades

In the literature [2] it is usually noted that at supersonic
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velocities, thick leading edges of the ailrfoils of a cascade are the

source of additional losses. However, recent studies [3, 4] have

shown that under certain conditlons, tapering of the leading edge does
not produce the desired result. Moreover, Oswatilsch (3] has established

| that even in the case of a knife-edge on the airfolls a complex system

of head shocks forms at the cascade 1nlet. An analysis of the results

obtained at the Moscow Power Institue [2, 5] and those obtained by

other authors shows that the head shocks occurring ahead of the cascade

can be divided into three groups: |

1. those caused by flow past the leading edge — "edge head
shocks," ‘

2. those that depend on the shape of the vane channel — '"choking
of the vane channel,"” and

3. those caused by an off-design flow-inlet angle — an "oblique
frontal shock."

Occurring. ahead of the cascade, they combine and form a complex
system of head shocks; therefore they cannot be examined individually
during experiments. However, such separate examination 1s expedient,
since 1t would make "1t possible té find a way to improve working air-
foll cascades designed fop high supersonic velocitiles.

To decrease the intensity of the "edge head" shocks we must
attempt to decrease the thickness and the deslgn angle of the leading
edge. However, such measures do not always make 1t possible to decrease
the intensity of the head shocks. This 1s observed when a "choking"
shock forms ahead of the cascade and a subsonic stream flows past the
leading edges. We should mention that "edge head" shocks are local
in nature, while "choking" shocks always partition off the entire

flow. Therefore we can state that a great percentage of the losses
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in head shocks 1s due to the presence of "choking" shocks.

Consequently, to decrease the losses I1n head shocks we‘must, in
addition to decreasing the thickness and design.angle of the 1eadihg
edge, also design the vane channel of the cascade such that "choking"
shocks do not occur [6].

To decrease the intensity of "obligue frontal shocks" the "effec-
tive" slope of the inlet sector of the back of the airfoil must be
close to the flow-inlet angle into the cascade [5]. We should note
that the problem of lowering the intensity of the head shocks at the
cascade inlet should be solved complexly, since the above requirements
are mutually exclusive 1n certain cases.

Let us examlne certain features of supersonic flow in the vane
channel of a cascade. We willl consider that there are no head shocks
and that the flow is uniform at the caséade inlet.

Since disturbances in supersonic flow are propagated only along
the stream, the flow past the back of the airfoil in the inlet section
wlll be the same as flow past an isolated body. If thls part of the
back of the airfoil is curvilinear, as is the case in cascades for
subsonlic velocities, there will be intense flow acceleration along 1it.
Such overexpansion of the flow results in the formation of an intense
compression shock and a turbulent zone about the back of the alrfoll
[3, 1]. According to Oswatisch [3], the losses in the turbulent zore
reach 6-8%. Therefore we must exclude the possibility of flow accel-
eration 1n the inlet sectlon of the airfoll. Thils problem can be
solved as follows.

First method — the airfoll back in the inlet section is made
wlth reverse concavity. This 1s @he method of &stepwise flow stagna-

tion."
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Second method — flow stagnation in a steep shock occurring at the
leading edge from the concave surface.

In both cases the vane ohapnel is convergent-divergent, or diver-
gent, since after the head shocks at the inlet section of thé vane
channel the flow is stagnant.

Supersonic cascades are usually used in stages with low volume
gas passage; therefore they should be designed such that the total
losses are minimum. As has been shown by studles at the Dzerzhinskiy
Al1-Union Heat Engineering Instlitute and the Moscow Power Instiltute,
for this there must Be relatively low flow rates at sectlons of maximum
curvature in the vane channel. Consequently, the terminal and airfoil
losses in cascades operating at supersonic velocitles can be decreased
by the same method — stagnation of the flow in the 1nitlal section of
the vane channel. However, the degree of stagnation of the flow, from
the standpoint of lowering the total losses, can be greater than
necessary to insure minimum airfoill losses.

Figure 1 shows types of ailrfolls designed according to recommenda-
tlons. We investigated about 30 different cascades that had differing
alrfoil shapes, relative pitch, and angles of inclidence. The table
gives the basic geometric characteristics of the cascades; we will

next discuss the results of their investigatilon.

2. Results of Investigation of the Cascades

A. Investigation of Type V Cascades

The geometric features of type V airfoils (Fig. 1a) are as
follows: the thickness and design angle of the leading and trailing
edges are small; the elongated sections on the alrfoll back, at the

flow inlet and in an oblique section, and small sectors on the convex
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surface, near the edges, are strailght; the curvature of the back and
the convex surface near the vane channel changes smoothly.

Figure 2 gives the cur&es of pressure distribution along the
alrfoll TR-1V in cascade No. 2. The vane channel in this cascade 1s
convergent-divergent, with its minimum cross sectlon located at the
beginning of the chamnnel (points 7-8 and 13-14). Examination of the
curves shows that with supersonic flow-inlet velocities (M > 1), a
plane shock occurs ahead of the cascade channel; with increasing speed
this shock shifts along the stream. TFor regimes M > 1.5 the head
shocks enter the vane channel. In 1t the flow 1s accelerated, and at
subsonic velocities in the minimum cross section lts deep overexpansion
1s noted at the back and at the convex surface; At supersonic veloci-
ties the minimum dimenslonless pressure 1s decreased considerably,
and shifts noticeably along the flow. The intensity of the diffuser
section at points 14-17 decreases.

Figure 2b gives a comparlson of the pressure distributlion along
the airfoll in cascade No. 4 for three flow-inlet angles. The vane
channel of this cascade has two narrow sectlons, one at the inlet
and the other at the exit from the channel. After the second throat
the channel expands. An examination of the curves shows that in sub-
sonl. regimes the pressure distribution along the airfoil depends
1ittle on the flow-inlet angle. At supersonic velocitles (M = 1.45)

a change in the flow-inlet angles within the same range results in a
substantial change in the pressure curves: with Increasing angle, the
flow veloclty at the inlet sectlon of the back of the airfoll decreases,
with a simulteneous abrupt increase in the flow stagnation intensity

in the compression shock.

Such a change in the pressure curves can be explained as fdllows:
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with an increase in the flow-inlet angle ahead of the cascade there
occurs an "oblique frontal shock," and the flow velocity at the inlet
decreases; the Increased intensity of flow stagnation at the inlet

to the vane channel is caused, in turn, by the displacement of the
"ehoking" shock against the flow, caused by decreased velocity.

Figure 3 gives the curves of the dependence of the total losses
in the cascades of airfoils TR-1V and TR-2V. In the case of convergent-
divergent vane channels (Fig. 3a) the maximum losses are reached at
M = 1.0. The losses decrease in subsonic and supersonic regimes.
Characteristically, maximum losses at M = 1.0 are found 1n cascade
No. 4 (at T = 0.657), while the minimum losses occur in cascade No. 5
(at T = 0.909). This fact, and also the nature of the change of
losses versus M, agree with data from Laval-nozzle studles. With
increased flow-inlet angle the losses decrease throughout the entire
range of velocities, which can be explained as follows: first, for
large inlet angles flow stagnation occurs stepwise (in an "oblique
frontal shock and, subsequently, at the leading edge and ahead of the
vane channel), and second, in the investigated types of cascades the
channel at the inlet is divergent, and therefore there is observed no
increase in the flow-outlet angle for high M values of flow expansion
in the oblique sectlion of the cascade [51.

Figure 3b gives curves of the total losses 1n cascades of alrfoils
with a slight change in the width of the channels. Thls type of cas-
cade is characterized by weak dependence of losses on Mach number.
Only at 61 = 170 (cascade No. L) do the losses sharply increase in
M = 1.0 regimes. Such behavior of thg curves 1s caused by the struc-
ture of the shocks and the expansion waves at the cascade inlet.

Actually, when Bi = 17° an expansion wave forms ahead of the cascade,
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since Bi < ﬁc. The flow accelerates. Therefore, at low supersonic
velocitiles the intensity of the "choking" shock increases considerably
compared wlth the case Bi 2 Bc, and then, for high Mach numbers, when
the head shocks enter the vane channel, the losses decrease and even

become somewhat smaller than for large flow-inlet angles. This can be

. explained by the fact that when Bi = 17° there is no flow deviation

in the obligque section.

B. Investilgation of Cascades Consisting of
Modiflied TR-1V Alrfoils

To explain the influence of the geometric shape of the vane chan-
nel and the airfoll on the characteristics we investigated Cascades
Nos. 6-11. The TR-1V-II airfoil differs from the TR-1V in that there
1s a break in the leadlng section of the back and 1n the middle cross
sections of the vane channel the convex surface and the airfoill ﬁack
have arcs of greater radius. There is no break in the back of the
leading section of ailrfoil TR-1V-I.

From an examination of the spectra and also measurements of the
pressure distribution along the profile we can draw the following
conclusions: a) at low supersonic velocities, flow stagnation at the
cascade inlet 1s caused by channel blockage; by wlth 1increasing veloc-
ity the shock shifts along the flow, and only aﬁ M > 1.5 1s the shock
at the break in the alrfoil back (Fig. 4a), i.e., the effect of step-
wise flow stagnation hegins to be manifested at the cascade inlet.

For greater clarity, graduatlion lines sre plotted on the alrfoll sur-
faces; as a result, the structure of the characteristic 1s quite
evident.

For cascades Nos. 6 and 9 it 1s characteristic that the minimum
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section of the vane channel is at the inlet section. Main expansion

of the channel occurs at the point of maximum curvature. In Fig. 4b
(flow spectrum for cascade No. 9) we see the shocks in the vane channel.
Fbr'a broad set of regimes (M = 1.2-1.9) the positilon and shape of the
shocks did not change. This shock 18 caused by overexpansion of flow
w;th flow past the airfoil back and by intense compression of the flow
along the convex surface [5].

Flgure 3¢ gives curves of the dependence of losses in cascades
consisting of TR-1V-I, TR-1V-II, and TR-1V-2 airfolls. Since the vane
channels of these cascades were divergent at the outlet, we detect the
characteristic dependenée of losses on Mach number: when M = 1 there
are maximum losses, which then decrease conslderably. For cascades
Nos. 6 and 9 the calculated regimes (M = 1.6), determined from the
ratio of the outlet area to the minimum area, were not reached during
the experiment, and therefore the losses contlnually decreased with
increasing veloclity. We should note that when M = 0.5-1.3 the losses
are greater in cascade No. 9, while when M > 1.3 the losses are higher
in'cascade No. 6 (by 2%); cascade No. 6 differed from No. 9 only in
the absence of a break in the outlet section of the airfoil back.
Consequently, stepwise stagnation 1s expedlent at high supersonic
velocities. ¢ '

The hilgh level of losses (about 17%) in cascades Nos. 7 and 10 in
the calculation regimes (M = 1.45) can be explained by the fact that
dest intense expansion of the channel occurs before 1its maximum curva-
ture. Therefore the flow at the airfoil back 1s overexpanded, and an
intense shock occurs in the channel; as observations showed, its
intensity was higher than in cascade No. 9 (see Fig. 4b). 1In addition,

the secondary flows in thls cascade were also relatlvely great.
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In cascade No. 11 (airfoil TR-1V-2) the losses at M = 0.5-1.3
were lower than in cascades No. 6-10, which can be explained by the
high value of the parameter T and the position of the maximum cross
section at the outlet section of the channel. Minimum losses (about
13.5%) are attained at regimes M = 1.35-1.55, which are the calculation‘

regimes for the glven cascade.
C. Investigatlion of VS-Type Cascades

The geometric features of type VS airfoils (Fig. 1b) are as
followé: a) a convex surface formed by an arc c¢f a single radius}-b) ‘
the design angles of the leading and trailing edges are zero. The
TR-4VS-2 airfoil has a break (6 = 100) at the 1nlet part of the back.
"The inlet sector of the vane channel is minimum and the channel diverges
uniformly (f = 0.827). For the TR-1VS-3 airfoll “the break is decreased
to 5O and the vane channel is convergent-divergent (T = 0.9). The
channel width i1s constant in a cascade conslsting of TR-1V3-5 alirfolls.

Figure 4c shows the flow spectrum of cascade No. 12. At low
supersonic veloclities we detected two head shocks: a disconnected shock,
ahead of the break polnt on the back, and a curvilinear shock ahead "
of the edge. With lncreasing Mach number the disconnected shock becomes
oblique while the curvilinear shock shifts along the flow, and in
regimes greater than M = 1.5 1ts right btranch enters the vane channel.
Flow stagnatlon at the cascade lnlet occurs in a system of obllique
shocks.

Figure 3¢ gives curves of the total losses 1In VS cascades. The
minimum losses in these cascades correspond to the calculation values
of M for the divergent part of the channel. Characteristically, when 
M> Mb the losses in cascade No. 13 increase only Insignificantly.
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Analogous behavior of the curves was also observed for cascades Nos.

10 and 11. The losses in No. 14 for M > 1.3 are higher than in Nos.
12 and 13.

D, Investigation of the Flow Field Behind the Cascades

Figure 5 gives certéin characteristic curves of the loss distri-
bution along the height of the cascades. In subsonic regimes, as a
rule, there are Intense loss peaks caused by the secondary flows. With
In¢creasing M the loss peaks decrease; however, for most of the investil-
gated cascades the losses in the average cross section (airfoil losses)
- Increase. This 1s due to boundary layer separation in transonlc regimes.
With a fﬁrther increase in velocilty M > 1) most cascades are character-
1zed by a conslderable decrease of the loss peaks near the end walls
" and also airfoil losses.' At high supersonic regimes the end losses in
thé cascades are very slight.

Figure 6 gives distribution curves for flow-outlet angles along
the helght of the cascade. With increasing M nonuniformity of flow
along the height of the cascade decreases conslderably, which I1s
 reflected in a decrease in the intensity of secondary flows 1n the
cascades. We must also note that in all the investigated lmpulse cas-
cades there was no flow expansion in the oblique section for regimes
M> 1.

Conclusilons

The results of sysftematic studles conducted at the Moscow Power
Institute showed the expediency of designing three different types of
worklng cascades: for subéonic, transonic, and supersonic velocities
[7, 8]. From our work we can draw the following conclusions:

1. We have verifled the developed recommendations on the design
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of more effective cascades for supersonic velocities (loss levels 1.5-
2-times lower). However, the loss level (13-15%) should not yet de
considered satisfactory.

2. The efficlency of working cascades at transonic velocities
and the calculation Mach number are determined mainly by the parameﬁer

f = anan/ 2o
3. In regimes M > Mp the losses in the working cascades increase
insignificantly, which allows us to recommend, Just as for Laval noz-
zles, desligning cascades from a calulatlion in order to use them 1n
regimes greater than those calculated. However, the'physical signifi-
cance of these recommendations 1dffers from analogous ones proposed
for gulde cascades, since flow 1is not deflected in the oblique section
of working cascades.

4., To decrease losses in the head shocks for high Mach ﬁumbers
1t 1is expedlent to use stepwlse flow stagnation.

5. For high supersonic velocitles the end losses 1in cascades
developed by the Moscow Power Instltute are very slight compared with

the total losses. This makes 1t possible to recommend the use of

these cascades In the first control stages of turbines.

Department of Steam and Gas Turbines Submitted October 13, 1961

-14-



¢t straigzht section

straight “section

o

‘ '\[__St!‘a-ixm_s!ﬁ&ion

‘©

. . .
/ T ,
S e, _ LY}

Fig. 1. Shapes of airfoils (Moscow Power Institute)
for supersonlc velocities: a) V-type airfolil,
b) VS-type airfoil.

TABLE
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2 § 3 . miniman
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* @ | Type of b L1 e ', angle | outlet oross
'ﬁ airfoil - b ° 'é‘ﬁ " © | section
g 3 K] ] Paff = %nin
© C?:) gm;.' -g ST a;

TRelV 20 0,525 | 88°517 | " 1,70 17°45" 0,658

2l opely 20 0,575 | 89°057 | 1,30 18457 0,760

© 3 | 1RelV 20 0,500 | 87°51” 250 1754 0,970
4 | ypav 15, 20, 30| 0,625 | 88°517 | 30 am 15°5: 0,960
5 | ppaoy 20 0,770 | 89°05 1,50 | 29093 0,910
6 |vgely —! 20 0,600 | 90° 1,50 10°007 0,810
7 |gpery —! 20 0,625 | 90° 1,50 10°26¢ 0,850
8 | qpagy — 1 20 0,575 | $5°05° | 1,50 170497 0,500

c 0 lppyy —lE L 20 0,600 | 90° 1,50 19%07 . 0,810
w [ < | owss | oo 1,50 1920 | 0'850
11 | TRely —2¢ 20 0,625 | qo° 1,60 | 18507 | 0,52
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14 [TRelvs —
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¥ The outlet section of the airfoil back 1s bent,
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AN APPROXIMATION METHOD FOR CALCULATING STEADY-STATE UNIFORM:
GAS FLOW IN A TUBE WITH EQUILIBRIUM DISSOCIATION AND
IONIZATION, TAKING INTO ACCOUNT RESiSTANCE
AND HEAT TRANSFER

I. I. Suksov

At high temperatures we must take into account gas dissoclation
and lonizatlon, whilch greatly compllicates the calculation of gas flow.
For equlilibrium processes the calculations are simplified considerably
if we have tables of the thermodynamic functioné. Such tables are
available for alr [1, 2]. The handbook "Physical Gasdymamics" [3]
contains, 1n additlon to the theoretical bases for the compllation of
these tables, the solutlon of certain gasdynamlc problems for dissoci- -
ated and lonlzed air. Individual problems of gasdynamics, taking
into account the influence of dissoclatlion and ionization of the alr,
have been treated previously [4].

On the basis of the tables [1, 2] data have been obtained from a
calculation of one-dimensional 1sentropic alr flow with equilibrium
dissoclation and ionization [12].

In this work we glve an approximate graphoanalytic method which

makes it possible to calculate one-dimensional isentropic flow in
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tubes, i.e., to take into account the influence of resistance and heat

transfer.

Yu. I. Balakleyevskiy helped in the calculations used to develop
this method.

1. An Approximate Solution to the Equatilons

Let us wrlte the equations of steady-state one-dimensional move-
ment of a viscous compreésible gas In a tube during constant flow with
removal of heat from the gas [5]:

flow equation:

Fgow = G == const, (1- 1)
energy equation: |

(1.2)

lodh +-wdw-+Jgdg, =0,
equatlion of the first law of thermodynamics:
=di— - L= — (g, — (1.3)
= — P _1
dg=dh T e (dqa 7 dly,

where F 15 the cross-sectional area of the tube (m>); g 1s the accelera-
tion of gravity (m/sece); p 1s the density (kg—secz/mu); W 1s the
velocity (m/sec); G is the weight flow (kg/sec); I = 427 kg-ﬁ/kcal is
the mechanical equivalent 6f heat; h 1s the enthalpy (kcal/kg); dq 1s
the elementary amount of heat (kcal/kg); dq, 1s the elementary amount

of heat released from 1 kg of gas (kcal/kg); p 1s pressure (kg/mz);

and di, 1s the elementary work of drag (mQ/Secz).

On the basis of (1.3) we get an equation for entropy s:
. 1, 1 -
N ——dl,y. 1.4
ds T ([/(]“ Ig ¢ r> ( )
The value of dzr is defined by the expression

W dx ‘
d=t5 =, (1.5)
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where { 1s the resistance coefficlent; x 1is the coordinate read along
the tube axis (m); D is the tube diameter (m); for tubes of noncircular
cross sectlon, D is understood to be the hydraulic diameter.

The elementary heat

dF, : (1.6)
d(/a == T ’
where

G = Q11" Trads ( 1.7 )

dF s 13 an area element of the slde of the tube (me); qQ, 1s heat flow
to the wall (kcal/mzsec);-qk 1s convective heat fIOW‘(kcal/mzsec); and
1s radiation heat flow-(kcal/mzsec).

Qraqg
The following relations hold:
dF; = 4F 4% (1.8)
D .

gp =0, (g — hg), (1.9)

ah==gpwcm‘ “ (12.10)
— ST oAl TeY

qu“Opowsl*%F<um> A(HN>J’ (1.11)

where oy 1s the local heat-transfer coefficient (kg/mesec); €rall =

= 0.5(1 + ¢ h = qw/qu(hi-hw) is the local Stanton number;

wall>; C

€rall 18 the degree of blackness of the wall; e 1s the degree of black-

ness of the gas at temperature T; A 1s the absorptivity of the gas at
temperature T_ (assumed equal to the value of ¢ at temperature Tw).
The subscripts "1" and "w" indicate conditions of a heat-insulated
and cooled wall, respectively. '

' Taking into account (1.5)-(1.11) we get for dq, and ds the expres-

sions
(g = — bt EEEW :f', .I..{._ 477'4.‘_\d_ '
gy =4 (ks = 1) Gy 000544 e (Y = 4 (B) ) % (2.22)
. 1 v o dy
e ) (1.13)

The enthalpy hi 1s defined by the formula
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hy =h+"/i‘;”;;» (1.14)

where Ty 1s the recovery factor.

Let us examine the problem\of determining the veloclty w, tempera-
ture T, pressure p, and density p of a high-temperature gas fn eross
sections of a tube in presence of dissoclation and ionization, consider-
ing these processes to be equilibrium processes. The starting data
are: gas flow G, temperature TOO and pressure pOO‘Of isentropic stag-
nation in cross section x = Xq» and also the geometry of the tube. In
addition, we should know the dependences of the dimensionless values
&, Ty and Ch on the similarity parameters; the degree of blackness of
the gas €; the degree of blackness of the surface of the tube walls
€wall’ and we should have the distribution of enthalpy or temperature
on the wall for the length of the tube.

' As will be shown, with tables of the thermodynamic functions
simi;ar to those for air [1, 2], the problem can be solved relatively
Simpiy by means of graphoanalysis.

Using Eqs. (1.1), (1.2), (1.%), and (1.5); the systemof equations

-

for the given problem can be written:

o 1.15)
w=V2g vVhy --h--3, Ei 16)

§ = S5y, — s, : '
G = ywF, : (1.17)
w=aM, (1.18)

where v = gp; & 1s the speed of sound;

= (g A 1.19
h ;qu,,, As f T ((/q,, g D) ( )

The value of dq, 1s determined from (1.142). The subscript "00"
indicates, as before, stagnation parameters when x = Xy
Let us first examine flow without resistance and heat transfer

(dlr = dg, = 0), i.e., isentropic flow.
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For this case, Egs. (1.45)-(4.418) assume the form

w=y2g Vh, h (1.20)
s == §,, == const, (1 21)

T .
w=aM. . (1.23)

t

&
Knowing Togfand pOO‘let us determlne, from the tables of thermodynamlc

functions, the enthalpy hOO and the entropy Sao* For a number of valqes
.of pressure p < Poo and when s = Sngr We detenmine; from the tables,
the corresponding values of temperature T, enthalpy h, speed of sound
a, and the value of y. Using Eq. (1.20) ‘let us construct a graph of

w vs. h; using (1.23) let us construct w vs. h for a number of given.
values of M (a set of curves). The intersection of the curves deter-
mines the values of w and h corresponding to the selected M values.
Then (graphically or by»interpolation using the tables) we detefmine
the deslred values of T, p, and p, and from Formula (1.22) we calculate
the values of the cross-sectional area F (if p is given, we determine
the flow from (1.22)).

The solution for isentropic flow 1s the first approximation when
solving the problem of gas flow in a tube.

This method Just examined differs somewhat from that used previously
[12]. We note that the graphic data [12] in many cases are sufficient
to determine all the parametersAof lsentroplc air flow and for a logi-
cal division of the tube into parts in order to take into account the
influence of resistance and heat transfer.

Now let us examine the solution of Eqs. (1.15)-(1.18) for the
genéral case. Let us divlide the tube into parts and examine the k-th
section. The values at the beginning and end of this section will bde
designated by the subscripts (k-1) and k, respectively.
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On the basis of Eqs. (1.45)-(1.18) we have

— e (1.24)
wk=/2lg Vho' ‘_l-h‘-Ahk’ ( )
Sy=S,_; —Asp (1. 25)
G
W, = wFr (1.26)
.;.l'M-‘ﬂ' »

o {1.27)

2 R
where ho’k_1 = hk71 = wk_i/eIg is stagnation enthalpy in the (k-1)-th

section,

W\

o x
Alrsz dq, 38, ;—-:f

Ry .| by

A .

L L dx . .
’F(d-"" 5z D)' (1.28)
1

where dq, 1s taken on the basis of (1.12).
The integrals in each section are deflned approximately by the

system

Xk .
/kzj <D,‘dx=¢k“5x’ (1'29)

P
where the subscript "am" indicates the taking of the arithmetic mean.
Ax =Ky~ Xy

Uslng the known parameters in the (k-1)~-th section, the gas para-
meters 1in the k-th sectlon are determined as follows.

First we find the gas parameters in the k~th section, considering.
that the flow in the examined section is isentropic (these parameters
are given the subscript "ki"). Knowing the parameters with the sub-
seripts "k-1" and "ki" let us calculate the integrals according to
system (1.29); let us determine the entropy s, according to (1.25).

Asslgning, when s = s several test values to Py close to Ply and

k’
determining hk and Y by interpolation of the tables, we calculate the
corresponding values of w, from Formulas (1.24) and (1.26) (the values
of Fk are the same as those obtained earlier for isentropic flow). Let

us construct the curves w, = fi(hk) and wy = fe(hk,Fk); the intersection
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of these curves gilves the desired values cf Wy and hk’ Then we deter-
mine the parameters Tk’ Ppos ak, and Py and calculate the number M
from (1.27). Thus is calculated flow in a tube, beginning with the
first section.

In this calculation method, as the thermodynamic magnitudes which
uniquely define all parameters of gas flow ln a'tube, we selected
enthalpy h and entropy 8. Let us note that it becomes ambiguous to
determine the gas parameters using total enthalpy ho ane entropy s =

= 84 In the case of isentropic flow.

2. Data for Approxlimate Evaluatlons

When using this approximation calculation method we mﬁst know,
a8 has been saild, the dependences of the values ¢, r,, and Ch on the
similarity parameters, and the dependence of the degree of blackness
of the gas & on temperature, pressure, and path length for the dis-
soclated gas. As far as we know, there are no such data for tubes.
For effusers and tubes of constant cross section, in particular for
nozzles and the working part of thermal wind tunnels, we can consider
that the resistance 1s exhausted by friction, i.e.,

C=4C‘/, (2.1)

where c, = QTW/pWQ 1s the local friction factor, and Tw is frictional
stress on the wall (kg/me).

In these cases, 1f the boundary layer occuples a small portion of
the cross section, the use of rules of frictlon and heat transfer for
a flat plate in the calcuiations will glve a good approximation. How-
ever, even for a flat plate we do not have available systematized data
on friction and heat transfer for a sufficiently broad range of changes

in the similarity criteria.



| To obtaln approximate evaluations of the influence of convection
heat transfer and friction we can, untll more reliable data are forth-
coming, use formulas in which account is taken of the variablility of
the physical pérameters across the boundary layer and the basic effect
of dissociation [6].

For a laminar boundary layer

Llw - (2.2)
¢/ Rel = 0(»(.1( ae ( 15 "1 -
s 12" ) Pz v)
1

C 05 = () Pada ) < .(, "1

"o RE%F =0,332 Pr ( et - ‘ (2.3)

where 9, 1

&, == =W , G, =~ Hu — WX
[ Pt 113 fow (——“‘—‘hi ""u) Rt " ,

h, 1s determined from Formula (1.14) where r = 0.84 and Pr, = 0.71 =

= const. For a turbulent boundary layer

e = 00m8 (82 1 eh)

o

0,39

CoReE%? = 0,029 P,-"“(h" ) (-0 2rp Y, (2.5)

where r = 0.89. The function h(T) is given in Fig. 1.
The subscript "*" indicates parameters pertaining to maximum

enthalpy in boundary layer h, whereupon we have the relation

h
/1. . 1 +uo—';!- o (2.6)
Le " Tw .- (0,9f S = __I__._.. Do ——
ho—{'w 0,25 " /I h { 2Ig [} Slan

Exceptions to this formula: if @ < 1 - h./h, hy = h; if h /hy >

21, by = by
The formulas for the transition from C o and Chw to Ceo and Ch:

) .
‘./_'T Cran C/1 = fe Clu.

Figure 2 gives the coefficlent of viscosity pvs. h for T 1873°K.
When T > 200°K we can use the familiar graphic function u(T,P) [11].
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Let us note that the last term in (2.2) and (2.3) can be dis-
regarded because of the small exponent.

A We should bear in mind that the anproximate nature of data on
convection heat transfer and friction introduce no noticeable error
into the tlow parameters, since the estimated influence 1s relatively
A slight, even in a turbulent regime.

The values of Eya1] Decessary for calculating radlation heat trans-
fer are familiar for a great many materials [7, 8]. The accessible
literature contains no data on the degree of hlackness of a gas e at
temperatures higher than 2000°K. For temperatures T < 2000°K we have
data on gas radiation [7], in which 1s noted the negligible radlation
absorptivity of monatomic and dlatomlc gases. We also know [9] that
at low pressures (p < 0.1 atm) the role of atmospheric radiation in
the general heat balance 1s slight, even at very hlgh temperatures
(8000-10,000°K). From physical concepts it follows that wlth increas-
ing pressure and increasing beam path length the radiation absorptivity
of a gas 1increases [7], 1.e., its degree of blgckness Increases, tend-
ing toward a limiting value & = 1 for an absolute;y black body. Such
conditions can be realized, e.g., wlth high-voltage arc dlscharge;
then 1t 1s assumed that the arc radlates as an absolutely black body
(10].

3. Calculatlon Results

To extimate the combines influence of convection heat transfer,
radiétion, and frictlon we calculated the air friction in a sectlon
of a round cylindrical tube with diameter d = 20 mm and length 1 = 50
mm (1/d = 2.5). The flow regime was assumed to be turbulent. We used
the following data: stagnatioh témperature and pressure in the initial
section TOO = 12,000°K, Pog = 200 atm; M = 41; cooled-wall temperature

25~



'I‘W = 900°K; the value 0.5(1 + ¢ =~ 1; degree of blackness of the

wall)
alr e ~ 1. The section was not divided into parts, since the tube was
cylindrical and the ratio 1/d was small. After determining the para-
meters of isentroplc flow we calculated the drop in total enthalpy -

Ah and entropy As from the formulas

dhp 4 Bhtpog— By
T

H

All =Ahk —{—- A"'&d’ AS:

My =10,116 Pr;O,ﬁ[‘_&(’L'@_ 039
! 1y

. Roz wa(1-H0,2rM™ (gt~ ) =,

T\ I {
A ={,0054 —_—) ——
/lred (.005 4(!0) e d »

M, = 0116 5 (2T ooz gt o.ormey @ L
hy = 0,116 £ <"1) RegSa(l -+ 0,2rM*y ! %

The derived working formulas or Ah, , Ahrad’ and Ahf were obtained
on the basis of relations (1.12), (4.49), (2.1), (2.4), (2.5), and (2.7).
When calculating Ahraa the term A(T’w/:LOO)4 was discarded.

We obtained the following values: Ahy = 5414, ah 4 = 390, Ahf =
= 67, bh = 904, As = 0.0758.

Then, using the glven method we determined the flow parameters
at the end of the tube. .

Figure 3 and 4 gives the graphic determination of the parameters
W, h, T, p, and p for 1sentroplc flow and at the end of the tube,
respectively (the velocities w, were calculated from (2.20) and (1.24%)).

The table gives the calculation results.

_ This example of a calculatlon shows that heat transfer and fric-

tion can have a substantial influence on the parameters of the flow of

a high-temperature gas in a tube. Thls can happen, e.g., in the initial

sectlions of nozzles of supersonic hyperthermal tubes.

Submitted September 18, 1961
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‘ Type of flow hy, 8 I w'l T I’ a P M i

. Isentropie 10950 3,300 | 10006 | 2665 { 11040 112,5 | 2665 10,1989 1

¥ith friotion ¢ "
and heat trensfer | 10046 3,933 8972 | 3000 110250 88,2 | 2492 |0,1764} 1,204

—
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