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INVESTIGATION OF THE WORKING CASCADES OF TURBINES AT

SUPERSONIC VELOCITIES

A. V. Gubarev

The possibility of developing, in a single stage of a t'trbine,

large heat drops without a noticeable decrease in the efficiency is a

very attractive idea. However, up to now there have been no reliable

methods for profiling working cascades which operate with satisfactory

efficiency at high supersonic velocities. In addition, up to now

there have been no intense studies of working cascades at such veloci-

ties.

In this paper we present certain results of an investigation of

working cascades at supersonic velocities [i]. Profiles of the work-

ing cascades, built according to the recommended methods, made it

possible to noticeably increase the efficiency of certain turbines of

the Kaluga factory.

i. Features of Supersonic-Flow Structure in Working

Cascades and the Method of Designing New Cascades

In the literature [2] it is usually noted that at supersonic
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velocities, thick leading edges of the airfoils of a cascade are the

source of additional losses. However, recent studies [3, 4] have

shown that under certain conditions, tapering of the leading edge does

not produce the desired result. Moreover, Oswatisch [3] has established

that even in the case of a knife-edge on the airfoils a complex system

of head shocks forms at the cascade inlet. An analysis of the results

obtained at the Moscow Power Institue [2, 5] and those obtained by

other authors shows that the head shocks occurring ahead of the cascade

can be divided into three groups:

i. those caused by flow past the leading edge - "edge head

shocks,"

2. those that depend on the shape of the vane channel - "choking

of the vane channel," and

3. those caused by an off-design flow-inlet angle - an "oblique

frontal shock."

Occurring ahead of the cascade, they combine and form a complex

system of head shocks; therefore they cannot be examined individually

during experiments. However, such separate examination is expedient,

since it would make it possible to find a way to improve working air-

foil cascades designed for high supersonic velocities.

To decrease the intensity of the "edge head" shocks we must

attempt to decrease the thickness and the design angle of the leading

edge. However, such measures do not always make it possible to decrease

the intensity of the head shocks. This is observed when a "choking"

shock forms ahead of the cascade and a subsonic stream flows past the

leading edges. We should mention that "edge head" shocks are local

in nature, while "choking" shocks always partition off the entire

flow. Therefore we can state that a great percentage of the losses
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in head shocks is due to the presence of "choking" shocks.

Consequently, to decrease the losses in head shocks we must, in

addition to decreasing the thickness and design angle of the leading

edge, also design the vane channel of the cascade such that "choking"

shocks do not occur [6].

To decrease the intensity of "oblique frontal shocks" the "effec-

tive" slope of the inlet sector of the back of the airfoil must be

close to the flow-inlet angle into the cascade [5]. We should note

that the problem of lowering the intensity of the head shocks at the

cascade inlet should be solved complexly, since the above requirements

are mutually exclusive in certain cases.

Let us examine certain features of supersonic flow in the vane

channel of a cascade. We will consider that there are no head shocks

and that the flow is uniform at the cascade inlet.

Since disturbances in supersonic flow are propagated only along

the stream, the flow past the back of the airfoil in the inlet section

will be the same as flow past an isolated body. If this part of the

back of the airfoil is curvilinear, as is the case in cascades for

subsonic velocities, there will be intense flow acceleration along it.

Such overexpansion of the flow results in the formation of an intense

compression shock and a turbulent zone about the back of the airfoil

[3, il. According to Oswatisch [31, the losses in the turbulent zore

reach 6-8%. Therefore we must exclude the possibility of flow accel-

eration in the inlet section of' the airfoil. This problem can be

solved as follows.

First method - the airfoil back in the inlet section is made

with reverse concavity. This is the method of "stepwise flow stagna-

tion."
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Second method - flow stagnation in a steep shock occurring at the

leading edge from the concave surface.

In both cases the vane channel is convergent-divergent, or diver-

gent, since after the head shocks at the inlet section of the vane

channel the flow is stagnant.

Supersonic cascades are usually used in stages with low volume

gas passage; tHerefore they should be designed such that the total

losses are minimum. As has been shown by studies at the Dzerzhinskiy

All-Union Heat Engineering Institute and the Moscow Power Institute,

for this there must be relatively low flow rates at sections of maximum

curvature in the vane channel. Consequently, the terminal and airfoil

losses in cascades operating at supersonic velocities can be decreased

by the same method - stagnation of the flow in the initial section of

the vane channel. However, the degree of stagnation of the flow, from

the standpoint of lowering the total losses, can be greater than

necessary to insure minimum airfoil losses.

Figure i shows types of airfoils designed according to recommenda-

tions. We investigated about 30 different cascades that had differing

airfoil shapes, relative pitch, and angles of incidence. The table

gives the basic geometric characteristics of the cascades; we will

next discuss the results of their investigation.

2. Results of Investigation of the Cascades

A. Investigation of Type V Cascades

The geometric features of type V airfoils (Fig. ia) are as

follows: the thickness and design angle of the leading and trailing

edges are small; the elongated sections on the airfoil back, at the

flow inlet and in an oblique section, and small sectors on the convex
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surface, near the edges, are straight; the curvature of the back and

the convex surface near the vane channel changes smoothly.

Figure 2 gives the curves of pressure distribution along the

airfoil TR-iV in cascade No. 2. The vane channel in this cascade is

convergent-divergent, with its minimum cross section located at the

beginning of the channel (points 7-8 and 13-14). Examination of the

curves shows that with supersonic flow-inlet velocities (M > i), a

plane shock occurs ahead of the cascade channel; with increasing speed

this shock shifts along the stream. For regimes M > 1.5 the head

shocks enter the vane channel. In it the flow is accelerated, and at

subsonic velocities in the minimum cross section its deep overexpansion

is noted at the back and at the convex surface. At supersonic veloci-

ties the minimum dimensionless pressure is decreased considerably,

and shifts noticeably along the flow. The intensity of the diffuser

section at points 14-i7 decreases.

Figure 2b gives a comparison of the pressure distribution along

the airfoil in cascade No. 4 for three flow-inlet angles. The vane

channel of this cascade has two narrow sections, one at the inlet

and the other at the exit from the channel. After the second throat

the channel expands. An examination of the curves shows that in sub-

soni- regimes the pressure distribution along the airfoil depends

little on the flow-inlet angle. At supersonic velocities (M = 1.45)

a change in the flow-inlet angles within the same range results in a

substantial change in the pressure curves: with increasing angle, the

flow velocity at the inlet section of the back of the airfoil decreases,

with a simultaneous abrupt increase in the flow stagnation intensity

in the compression shock.

Such a change in the pressure curves can be explained as follows:
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with an increase in the flow-inlet angle ahead of the cascade there

occurs an "oblique frontal shock," and the flow velocity at the inlet

decreases; the increased intensity of flow stagnation at tlm inlet

to the vane channel is caused, in turn, by the displacement of the

"choking" shock against the flow, caused by decreased velocity.

Figure 3 gives the curves of the dependence of the total losses

in the cascades of airfoils TR-iV and TR-2V. In the case of convergent-

divergent vane channels (Fig. 3a) the maximum losses are reached at

M = 1.0. The losses decrease in subsonic and supersonic regimes.

Characteristically, maximum losses at M = i.0 are found in cascade

No. i (at T - 0.657), while the minimum losses occur in cascade No. 5

(at T = 0.909). This fact, and also the nature of the change of

losses versus M, agree with data from Laval-nozzle studies. With

increased flow-inlet angle the losses decrease throughout the entire

range of velocities, which can be explained as follows: first, for

large inlet angles flow stagnation occurs stepwise (in an "oblique

frontal shock and, subsequently, at the leading edge and ahead of the

vane channel), and second, in the investigated types of cascades the

channel at the inlet is divergent, and therefore there is observed no

increase in the flow-outlet angle for high M values of flow expansion

in the oblique section of the cascade [5].

Figure 3b gives curves of the total losses in cascades of airfoils

with a slight change in the width of the channels. This type of cas-

cade is characterized by weak dependence of losses on Mach number.

Only at P, = i70 (cascade No. 4) do the losses sharply increase in

M = i.0 regimes. Such behavior of the curves is caused by the struc-

ture of the shocks and the expansion waves at the cascade inlet.

Actually, when Pi = 170 an expansion wave forms ahead of the cascade,
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since • < The flow accelerates. Therefore, at low supersonic

velocities the intensity of the "choking" shock increases considerably

compared with the case pi > Pc, and then, for high Mach numbers, when

the head shocks enter the vane channel, the losses decrease and even

become somewhat smaller than for large flow-inlet angles. This can be

explained by the fact that when P. = 170 there is no flow deviation

in the oblique section.

B. Investigation of Cascades Consisting of

Modified TR-iV Airfoils

To explain the influence of the geometric shape of the vane chan-

nel and the airfoil on the characteristics we investigated Cascades

Nos. 6-1i. The TR-iV-II airfoil differs from the TR-iV in that there

is a break in the leading section of the back and in the middle cross

sections of the vane channel the convex surface and the airfoil back

have arcs of greater radius. There is no break in the back of the

leading section of airfoil TR-iV-I.

From an examination of the spectra and also measurements of the

pressure distribution along the profile we can draw the following

conclusions: a) at low supersonic velocities, flow stagnation at the

cascade inlet is caused by channel blockage; b) with increasing veloc-

ity the shock shifts along the flow, and only at M i. 5 is the shock

at the break in the airfoil back (Fig. 4a), i.e., the effect of step-

wise flow stagnation begins to be manifested at the cascade inlet.

For greater clarity, graduation lines are plotted on the airfoil sur-

faces; as a result, the structure of the characteristic is quite

evident.

For cascades Nos. 6 and 9 it is characteristic that the minimum
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section of the vane channel is at the inlet section. Main expansion

of the channel occurs at the point of maximum curvature. In Fig. 4b

(flow spectrum for cascade No. 9) we see the shocks in the vane channel.

For a broad set of regimes (M = 1.2-1.9) the position and shape of the

shocks did not change. This shock is caused by overexpansion of flow

with flow past the airfoil back and by intense compression of the flow

along the convex surface [5].

Figure 3c gives curves of the dependence of losses in cascades

consisting of TR-IV-I, TR-iV-II, and TR-iV-2 airfoils. Since the vane

channels of these cascades were divergent at the outlet, we detect the

characteristic dependence of losses on Mach number: when M = i there

are maximum losses, which then decrease considerably. For cascades

Nos. 6 and 9 the calculated regimes (M = 1.6), determined from the

ratio of the outlet area to the minimum area, were not reached during

the experiment, and therefore the losses continually decreased with

increasing velocity. We should note that when M = 0.5-1.3 the losses

are greater in cascade No. 9, while when M > 1.3 the losses are higher

in cascade No. 6 (by 2%); cascade No. 6 differed from No. 9 only in

the absence of a break in the outlet section of the airfoil back.

Consequently, stepwise stagnation is expedient at high supersonic

velocities.

The high level of losses (about 17%) in cascades Nos. 7 and 10 in

the calculation regimes (M = 1.45) can be explained by the fact that

most intense expansion of the channel occurs before its maximum curva-

ture. Therefore the flow at the airfoil back is overexpanded, and an

intense shock occurs in the channel; as observations showed, its

intensity was higher than in cascade No. 9 (see Fig. 4b). In addition,

the secondary flows in this cascade were also relatively great.
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In cascade No. ii (airfoil TR-IV-2) the losses at M = 0.5-1.3

were lower than in cascades No. 6-i0, which can be explained by the

high value of the parameter T and the position of the maximum cross

section at the outlet section of the channel. Minimum losses (about

13.5%) are attained at regimes M = 1.35-1.55, which are the calculation

regimes for the given cascade.

C. Investigation of VS-Type Cascades

The geometric features of type VS airfoils (Fig. ib) are as

follows: a) a convex surface formed by an arc of a single radius; b)

the design angles of the leading and trailing edges are zero. The

TR-iVS-2 airfoil has a break (6 = 100) at the inlet part of the back.

The inlet sector of the vane channel is minimum and the channel diverges

uniformly (T = 0.827). For the TR-iVS-3 airfoil-the break is decreased

to 50 and the vane channel is convergent-divergent (T = 0.9). The

channel width is constant in a cascade consisting of TR-IVS-5 airfoils.

Figure 4c shows the flow spectrum of cascade No. 12. At low

supersonic velocities we detected two head shocks: a disconnected shock,

ahead of the break point on the back, and a curvilinear shock ahead

of the edge. With increasing Mach number the disconnected shock becomes

oblique while the curvilinear shock shifts along the flow, and in

regimes greater than M = 1.5 its right branch enters the vane channel.

Flow stagnation at the cascade inlet occurs in a system of oblique

shocks.

Figure 3c gives curves of the total losses in VS cascades. The

minimum losses in these cascades correspond to the calculation values

of M for the divergent part of the channel. Characteristically, when

M > mp the losses in cascade No. 13 increase only insignificantly.
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Analogous behavior of the curves was also observed for cascades Nos.

10 and ii. The losses in No. 14 for M > 1.3 are higher than in Nos.

12 and 13.

D. Investigation of the Flow Field Behind the Cascades

Figure 5 gives certain characteristic curves of the loss distri-

bution along the height of the cascades. In subsonic regimes, as a

rule, there are intense loss peaks caused by the secondary flows. With

increasing M the loss peaks decrease; however, for most of the investi-

gated cascades the losses in the average cross section (airfoil losses)

increase. This is due to boundary layer separation in transonic regimes.

With a further increase in velocity (M > i) most cascades are character-

ized by a considerable decrease of the loss peaks near the end walls

and also airfoil losses. At high supersonic regimes the end losses in

the cascades are very slight.

Figure 6 gives distribution curves for flow-outlet angles along

the height of the cascade. With increasing M nonuniformity of flow

along the height of the cascade decreases considerably, which is

reflected in a decrease in the intensity of secondary flows in the

cascades. We must also note that in all the investigated impulse cas-

cades there was no flow expansion in the oblique section for regimes

M > i.

Conclusions

The results of systematic studies conducted at the Moscow Power

Institute showed the expediency of designing three different types of

working cascades: for subsonic, transonic, and supersonic velocities

[7, 8]. From our work we can draw the following conclusions:

i. We have verified the developed recommendations on the design
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of more effective cascades for supersonic velocities (loss levels 1.5-

2-times lower). However, the loss level (13-15%) should not yet be

considered satisfactory.

2. The efficiency of working cascades at, transonic velocities

and the calculation Mach number are determined mainly by the parameter

am n/a2.

3. In regimes M > MP the losses in the working cascades increase

insignificantly, which allows us to recommend, Just as for Laval noz-

zles, designing cascades from a calulation in order to use them in

regimes greater than those calculated. However, the physical signifi-

cance of these recommendations idffers from analogous ones proposed

for guide cascades, since flow is not deflected in the oblique section

of working cascades.

4. To decrease losses in the head shocks for high Mach numbers

it is expedient to use stepwise flow stagnation.

5. For high supersonic velocities the end losses in cascades

developed by the Moscow Power Institute are very slight compared with

the total losses. This makes it possible to recommend the use of

these cascades in the first control stages of turbines.

Department of Steam and Gas Turbines Submitted October 13, 1961
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Fig. i. Shapes of airfoils (Moscow Power Institute)
for supersonic velocities: a) V-type airfoil,
b) VS-type airfoil.

TABLE

2 6atio of
i Effective G ross 000-

CodfowOte tifn to

Type of b I o cross
airfoil > 0nl ule rso -- • " Isection

U _--' I _ _ _ _ _ _ _ _ _ _ _ _

1 TR-lV 20 0,525 8851' 150 17*45' 0,658
T ?l-IV 20 0,575 89"05' 150 18"4,5' 0.79-0

--20 0,50 87"51' 1,50 17'42' 0,970
4 TP-1 )S, 20, 30 0,625 88"51' 30 m+t 18"52' 0,960
5 TR-2V 20 0,570 89°05, 1,50 22"25'/ 0,9()

6 ''-lV -- 20 0,'W 90" l, 50 191001' 0,810
7 TR-IV 20 0,625 900 1'•0 19*261 0,850
.8 T-].V - 11:1 20 0,575 8905o' 1 50 17"42' 0,800

.9 ?R- - II1* 20 0,6100 90" i,50 19"00' 0 (,16i0
10 T'-1V 11 ': 20 0,625 90" 1.50 19"20' 0,850
II TF.-lV -,2Y: 20 0,625 90" 1,50 18"50' 0,920
i2 T1-1VS _ 21 2( 0,625 88"34 1 ,50 18'25' 0,827
13 T.R-lVS - 31* 20 0, 625 88*34' 1 50 18"25' 0,910

:14 I TRol.VS - 5" 20 0,625 88"341 1 ,-0 18-25' 1,00

SThe outlet section of the airfoil back is bent*
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Fig. 2. Pressure distribution along the airfoil
in a cascade: a) for cascade No. 2 as a function
of the M~ach number (P - 17"); b) for cascade No.

4~ as a function of the flow-inlet angle.
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,i K V I I i,,+

Fig. 3. Total losses in cascades vs. Mach number and
flow-inlet angle: a) for type V cascades with a con-vergent-divergent vane channel; b) for type V cascades

with slight divergence of the vane channel at the out-
let; c) for modified TR-IV airfoil cascades, and type
""cS cascades.
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Fig. 6. Distribution of flow-outlet angles along the
height of the cascade: a) cascade No. 4, b =150 mm~f,

=210; b) cascade No. 12, b = 20 nmm, 200.
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AN APPROXlIATION METHOD FOR CALCULATING STEADY-STATE UNIFORM

GAS FLOW IN A TUBE WITH EQUILIBRIUM DISSOCIATION AND

IONIZATION, TAKING INTO ACCOUNT RESISTANCE

AND HEAT TRANSFER

I. I. Suksov

At high temperatures we must take into account gas dissociation

and ionization, which greatly complicates the calculation of gas flow.

For equilibrium processes the calculations are simplified considerably

if we have tables of the thermodynamic functions. Such tables are

available for air [1, 21. The handbook "Physical Gasdynamics" [3]

contains, in addition to the theoretical bases for the compilation of

these tables, the solution of certain gasdynamic problems for dissoci-,

ated and ionized air. Individual problems of gasdynamics, taking

into account the influence of dissociation and ionization of the air,

have been treated previously [41.

On the basis of the tables [1, 2] data have been obtained from a

calculation of one-dimensional isentropic air flow with equilibriunm

diss'ociation and ionization [12].

In this work we give an approximate graphoanalytic method which

makes it possible to calculate one-dimensional isentropic flow in
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tubes, i.e., to take into account the influence of resistance and heat

transfer.

Yu. I. Balakleyevskiy helped in the calculations used to develop

this method.

i. An Approximate Solution to the Equations

Let us write the equations of steady-state one-dimensional move-

ment of a viscous compressible gas in a tube during constant flow with

removal of heat from the gas [51:

flow equation:

Fgpw = 0 = const, (i.1)

energy equation:

Igdlz -1wdw-'-Jfgdq = O, (1.2)

equation of the first law of thermodynamics:

Iqap -=-J -dq,, -- dzd) (1.35)

where F is the cross-sectional area of the tube (m ); 2 is the accelera-

tion of gravity (m/ 2); is the density (kg-sec2/mI)} w is the

velocity (m/sec); G is the weight flow (kg/sec); I = 427 kg-m/kcal is

the mechanical equivalent of heat; h is the enthalpy (kcal/kg); dq is

the elementary amount of heat (kcal/kg); dqa is the elementary amount

of heat released from I kg of gas (kcal/kg); p is pressure (kg/m2);

and di r is the elementary work of drag (m 2/sec2).

On the basis of (1.3) we get an equation for entropy s:

I/Sdq, -(1.. 4)

The value of dir is defined by the expression

": "x (1. 5)
2 L1



where C is the resistance coefficient; x is the coordinate read along

the tube axis (m); Dis the tube diameter (m); for tubes of noncircular

cross section, D is understood to be the hydraulic diameter.

The elementary heat

where 
dq, -q ,

q .. q,, 1 ýIrd, '( i

dF 6 is an area element of the side of the tube (m2 ); qw is heat flow

t'o the wall (kcal/m 2sec); q is convective heat flow (kcal/m sec); and

qrad is radiation heat flow (kcal/m 2see).

The following relations hold:

1F, = 4. F (±.8)
D

, = ' -( / IT._,,), I (i( . 9)
•h =9PwC, (C.mO

qrad0,001361;ýI (- )I- A(L)] (.i

where ah is the local heat-transfer coefficient (kg/m2 see); awall -

= 0.5(1 + Swall); Ch = qwlqpW(hi-hw) is the local Stanton number;

Ewall is the degree of blackness of the wall; s is the degree of black-

ness of the gas at temperature T; A is the absorptivity of the gas at

temperature Tw (assumed equal to the value of e at temperature Tw).

The subscripts "i" and "w" indicate conditions of a heat-insulated

and cooled wall, respectively.

Taking into account (i.5)-(i.1i) we get for dqa and ds the expres-

sions

dq,.-4( --. ) ,,-, A 0,05444-A U (1. 12)
1100/ \ IOU.• ;. 7W1

ds =7- (dqa - 2 ) (i.13)

The enthalpy hi is defined by the formula
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where rh is the recovery factor.

Let us examine the problem of determining the velocity w, tempera-

ture T, pressure p, and density p of a high-temperature gas in cross

sections of a tube in presence of dissociation and ionization, consider-

ing these processes to be equilibrium processes. The starting data

are: gas flow G, temperature T0 0 and pressure P 00 of isentropic stag-

nation in cross section x = x 0 , and also the geometry of the tube. In

addition, we should know the dependences of the dimensionless values

ý, rh, and Ch on the similarity parameters; the degree of blackness of

the gas s; the degree of blackness of the surface of the tube walls

ewall; and we should have the distribution of enthalpy or temperature

on the wall for the length of the tube.

As will be shown, with tables of the thermodynamic functions

similar to those for air [1, 2], the problem can be solved relatively

simply by means of graphoanalysis.

Using Eqs. (i.i), (1.2), (1.4), and (1.5), the systemof equations

for the given problem can be written:

(1.15)•=V•g •h•,-.--•&(1. 16)
s = SO (1.17)

G = wF,J_-1
T VM, (=. ±8)

where 7 = gp; a is the speed of sound;

h=Jdq1 ,, As= .(4q,,. I .dq) (1.19)

The value of dqa is determined from (1.12). The subscript "00"

indicates, as before, stagnation parameters when x = xO.

Let us first examine flow without resistance and heat transfer

(dlr = dqa w 0), i.e., isentropic flow.
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For this case, Eqs. (i.±5)-(!.i8) assume the form

W == /Tj VhJh, (1.20)
S S(. = const, (i 21)

(F (1. 22)

w aM. (i. 23)

Knowing To0 and p0 0 let us determine, from the tables of thermodynamic

functions, the enthalpy ho0 and the entropy so0. For a number of values

of pressure p < p 00 and when s = s00, we determine, from the tables,

the corresponding values of temperature T, enthalpy h, speed of sound

a, and the value of -y. Using Eq. (1.20) let us construct a graph of

w vs. h; using (1.23) let us construct w vs. h for a number of given.

values of M (a set of curves). The intersection of the curves deter-

mines the values of w and h corresponding to the selected M values.

Then (graphically or by interpolation using the tables) we determine

the desired values of T, p, and p, and from Formula (1.22) we calculate

the values of the cross-sectional area F (if p is given, we determine

the flow from (1.22)).

The solution for isentropic flow is the first approximation when

solving the problem of gas flow in a tube.

This method Just examined differs somewhat from that used previously

[12]. We note that the graphic data [12] in many cases are sufficient

to determine all the parameters of isentropic air flow and for a logi-

cal division of the tube into parts in order to take into account the

influence of resistance and heat transfer.

Now let us examine the solution of Eqs. (I.15)-(1.18) for the

general case. Let us divide the tube into parts and examine the k-th

section. The values at the beginning and end of this section will be

designated by the subscripts (k-i) and k, respectively.
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On the basis of Eqs. (i.15)-(i.18) we have

w,=j1TfgVI 0,kj- Ahk- k(1.2k)

Sk• Sk- I - ASk, (1.25)
G,"= -(1.26)

k / (1.27)

where h0ki =hk =w2_i/2Ig is stagnation enthalpy in the (k-i)-th

section, dq u2

Ah,• f dq,,, As,•'- ldýa ;fit
r hJT - 2!!g• b (1.28)

where dqa is taken on the basis of (1.12).

The integrals in each section are defined approximately by the

system Xk

k f j kdx (Pk-, AX, (1.29)

where the subscript "am" indicates the taking of the arithmetic mean.

Ax Xt - XkI.

Using the known parameters in the (k-i)-th section, the gas para-

meters in the k-th section are determined as follows.

First we find the gas parameters in the k-th section, considering

that the flow in the examined section is isentropic (these parameters

are given the subscript "ki"). Knowing the parameters with the sub-

scripts "k-i" and "ki" let us calculate the integrals according to

system (1.29); let us determine the entropy sk according to (1.25).

Assigning, when s = sk' several test values to Pk close to Pki and

determining hk and 7k by interpolation of the tables, we calculate the

corresponding values of wk from Formulas (1.24) and (1.26) (the values

of Fk are the same as those obtained earlier for isentropic flow). Let

us construct the curves wk = f±(hk) and wk = f 2 (hk,Fk); the intersection
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of these curves gives the desired values of wk and h Then we deter-

mine the parameters Tk, Pk' ak' and pk' and calculate the number M

from (1.27). Thus is calculated flow in a tube, beginning with the

first section.

In this calculation method, as the thermodynamic magnitudes which

uniquely define all parameters of gas flow in a tube, we selected

enthalpy h and entropy s. Let us note that it becomes ambiguous to

determine the gas parameters using total enthalpy h0 ane entropy s -

= 0 in the case of isentropic flow.

2. Data for Approximate Evaluations

When using this approximation calculation method we must know,

as has been said, the dependences of the values C, rh, and Ch on the

similarity parameters, and the dependence of the degree of blackness

of the gas s on temperature, pressure, and path length for the dis-

sociated gas. As far as we know, there are no such data for tubes.

For effusers and tubes of constant cross section, in particular for

nozzles and the working part of thermal wind tunnels, we can consider

that the resistance is exhausted by friction, i.e.,

4c1, (2.1)

where cf = 2'rw/PW2 is the local friction factor, and Tw is frictional

stress on the wall (kg/mr2).

In these cases, if the boundary layer occupies a small portion of

the cross section, the use of rules of friction and heat transfer for

a flat plate in the calculations will give a good approximation. How-

ever, even for a flat plate we do not have available systematized data

on friction and heat transfer for 'a sufficiently broad range of changes

in the similarity criteria.
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To obtain approximate evaluations of the influence of convection

heat transfer and friction we can, until more reliable data are forth-

coming, use formulas in which Acoount is taken of the variability of

the physical parameters across the boundary layer and the basic effect

of dissociation [6].

For a laminar boundary layer

.3 W (2.2)
c,•, Rc:• 0 'G•(,,66 •T ( __::,) ,,

'2 1 Ii"

C,,,Rejl,= 0,332 pr , ,3  
hi (2.3)

\WtL•? / \'tw•w/I

w h e re 2"w, 2T Ce x

/u'mg~ w (hi - h,) W

hi is determined from Formula (i.14) where r = 0.84 and Prw = 0.7i =

- const. For a turbulent boundary layer

cpw , Re02 = 0,058 ) 0,•, . q:,. (I 0,2rM 2'•),'| (2 . 4 )
W h .,:

C,,,,,ReO,' = 0,029.p;-0.6 -'-'. 0 -39 ( -(I - 0,2r/M'•)', (2.5

where r = 0.89. The function h(T) is given in Fig. i.

The subscript. "*" indicates parameters pertaining to maximum

enthalpy in boundary layer h, whereupon we have the relation

I +, W . -. (2.6)h -,,=0,2,5 ' h /0=11t+ .•g; ,,=
ho -- /1 2Igh

Exceptions to this. formula: if co < i - hw/h, h4 = h; if h,/ho >

I , h. = hw.

The formulas for the transition from c fw and Chw to c f and Ch:

,f - C , C, 0 = C,.

Figure 2 gives the cbefficient of viscosity p. vs. h for T < 18730 K.

When T > 2000K we can use the familiar graphic function [i(T,P) [11.
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Let us note that the last term in (2.2) and (2.3) can be dis-

regarded because of the small exponent.

We should bear in mind that the anproximate nature of data on

convection heat transfer and friction introduce no noticeable error

into the Ilow parameters, since the estimated influence is relatively

slight, even in a turbulent regime.

The values of swall necessary for calculating radiation heat trans-

fer are familiar for a great many materials [7, 81. The accessible

literature contains no data on the degree of blackness of a gas e at

temperatures higher than 2000 0K. For temperatures T < 20000K we have

data on gas radiation [7], in which is noted the negligible radiation

absorptivity of monatomic and diatomic gases. We also know [9] that

at low pressures (p < 0.1 atm) the role of atmospheric radiation in

the general heat balance is slight, even at very high temperatures

(8000-10,000°K). From physical concepts it follows that with increas-

ing pressure and increasing beam path length the radiation absorptivity

of a gas increases [7], i.e., its degree of blackness increases, tend-

ing toward a limiting value s = i for an absolutely black body. Such

conditions can be realized, e.g., with high-voltage arc discharge;

then it is assumed that the arc radiates as an absolutely black body

[io].

3. Calculation Results

To extimate the combines influence of convection heat transfer,

radiation, and friction we calculated the air friction in a section

of a round cylindrical tube with diameter d - 20 mm and length I - 50

mm (1/d = 2.5). The flow regime was assumed to be turbulent. We used

the following data: stagnation temperature and pressure in the initial

section Too =± 2,000 K, p0 0 = 200 atm; M = i; cooled-wall temperature
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T = 9Q00 K; the value 0.5(1 + Sall) i 1; degree of blackness of the

air e - i. The section was not divided into parts, since the tube was

cylindrical and the ratio J/d was small. After determining the para-

meters of isentropic flow we calculated the drop in total enthalpy

Ah and entropy As from the formulas

/1 ý "hk h,,,hk + Ahrad- Ahmp,
T

0/t,- , ,116 Pr-Ao, , h. 0,39Re-,(1 + 0,2rM0)"' (h •I-h,)

100 Tw d

11f. j0 116 I ) Re ;.( -2 - 0 2r I2)1'tl g d

The derived working formulas or Ahk, Ahrad, and Ahf were obtained

on the basis of relations (1.12), (i.i9), (2.1), (2.4), (2.5), and (2.7).

When calculating Ahrad the term A(Tji00)4 was discarded.

We obtained. the following values: Ahk = 514, Ahrad = 390, Ahf

= 67, Ah = 904, As = 0.0758.

Then, using the given method we determined the flow parameters

at the end of the tube.

Figure 3 and 4 gives the graphic determination of the parameters

w, h, T, p, and p for isentropic flow and at the end of the tube,

respectively (the velocities w. were calculated from (1.20) and (1.24)).

The table gives the calculation results.

This example of a calculation shows that heat transfer and fric-

tion can have a substantial influence on the parameters of the flow of

a high-temperature gas in a tube. This can happen, e.g., in the initial

sections of nozzles of supersonic hyperthermal tubes.

Submitted September 18, 1961
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