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-STATIONARY FLOW OF A CONDUCTING MEDIUM IN THE

PRESENCE OF A MAGNETIC FIELD

Ya. P. Kotov, G. Ya. Umarov and D. F. FayzulJlayev

I. Rakhmatullin has derivad a closed system of hydrodynamic equ-&t~tinz

for the motion of monophase media [i]. Using this system makes it

pozasible to study the behavior of nonconducting liquid or gaseaui

mixtures.

Also of interest is the problem of the motion, for instance, of

a two-phase medium where one of the phases Is a conductor. A mixtrre

-of this type may evidently be described by the system of equations

indicated above,provided that an additional term of the electromagnetic

derivation is included in the equation of motion for the conducting

medium and if the system is completed with the Maxwell equations.

Study of such a system makes it possible to examine, for example, how

the nonconducting fluid influences the motion of tkn conducting one.

Limiting ourselves to two incompressible media, we may write
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djvv = 0

,r'-d-----fvPK V- + 1, ,

div v - 0S-" = -l.LKV.#+ -ILI

Here the first two equations refer to the conducting fluid and the

second two to the nonconducting one (corresponding quantities indicated

by the subscript n);

v, p - velocity and average density of the medium;
I - viscosity;

K - interaction factor which in the case of incompressible
media may be considered constant;

H p, p - density of the electrical current, magnetic field strength
and pressure common for a two-component mixture reapeotively;

S- permeability of the medium; and

where p. and pni are specific denaitlea.

The Maxwell equations must be added to system (i).

2, As an example of the application of the system of equations

(1) let us consider the problem of a stationary one-dimensional flow

of a conducting fluid in mixture with a nonconducting one between a

pair of parallel planes in the presence of a transverse external mag-

neticfield, Let the motion of the media be in the direction of the

x-axio, the external uniform magnetic field IO be directed along 1,

and the boundary planes be at z - Z.

As is known, flow spreads the lines of force of the magnetic field

perpendicular to It. Therefore, together with the transverse component

HO there appears also a component hx parallel to the motion. The
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latter is a function of z since the component of velocity in the x

direction depends on z. Let us consider an uncomplicated solution

af the problem where in the oy direction there is applied an exterml

.. *iiforam electrical field By= EO.

In the stationary case, (Z = 0), taking into account the geometry

of the problem we obtain thr. following system for determining

V., = V, (z)', ',. X (z), IA, = IL (z):

f" -( - V.) =0

S= 4-j,, j, =Ha(E o - 1itov)

The last two expressions are a Maxwell equation and a relationship

for the density of the electrical current, while a iz the conductivity

If the media. The pressure gradient = const.

Takii -advantage of the expression for ,jy we may determine v, and

vn from the first two equations of system (2). The problem is solved

for the boundary conditions v v = 0 for z = +a. The solution takes

the form

-- , .(a chzlr, +b chzlr. +.)"= -ri dx ( ch 11r, +- or - .. + u.(3)*

1 (a ch zir, + bchz/r 2 +,,, x , dX fir, cl fIr 2  L .) (4)

where u and un are the velocities specified by the presence of an

electrical field E0 perpendicular to H0

Eo chz/r, + ch z1/r 2  (
Eo [3 Cch lif +. ch-ir 2  )

""*H c• h=• + c+ (6)

c(.h = cosh
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The following definitions enter into expressions (3)-(6):

[(1)1 [(1)2( 11 1 8)2,v _ _ ( I= + _ -L _ I ]a= Z T1 ,).,, ,1- 1.

'I'

/~ ~ ) (_\ +. ~(2

r2 f 7Tf

L 2 2, ((}' Lo

/r 2 iI- % = - &rIs

2 r

((12

12 L2 -• ,L"=- +/• M2 q

I/f L- L. ,,q 1l-f-

which are dymensionless combinations (M being the Hartman number).

In order to determine the magnetic field h we have the equation

dzh dz W

Substituting here the value of v from Eq. 3)and integrating when th-

boundary conditions are h = 0 and z --' 41 these conditions follow

from the fact that the components of the magnetic field H are continu-

ously tangent to the boundary) we find

sA -/rA-lsh 1•hr + B,,h z/,,-z/,sh 1/,, (14)
hA 11/r, Ch i1r ,

where A 4•cr1 (•-a - =Eo)
S': " - 45)

B = 4%r 2 b -PE



The average value of the magnetic field h for -.Z < z < I is equal to

zero. In the region s12 << I for E0 = 0 it is proportional to

and does not depend on the interaction factor or the properties of the-

nonconducting fluid:

k -Zn OI Z (Z2 -12). (16)

3. Expressions (3)-(4) give the distribution of velocity over

the transverse cross section, while (14) and (16) determine the

distribution of the field. The quantities ri and r 2 which enter here&

are real since, as is easily seen from (ii) and (i2),

s'- 4q 10.

Equality occurs when H0 = K = 0.

In the limiting case of the absence of a magnetic and electrical-

field, the dependence of v and vn on z must be the same as if both

media were nonconducting. Passing to the limit indicated in the

expressions (3) and (4), we obtain the same result as did Fayzullayev

[21 for the case of the motion of a two-phase nonconducting medium.

When K-ý 0 and f = 1, formula (3.) becomes the well-known expression

for the case of flow of a conducting fluid in a magnetic field (see,

for example, Kauling [31).

The presence of both a transverse magnetic field and a nonconduct-.

ing medium shows up in the appearance of an additional resistance to

the motion of the conducting fluid. With the other given parameters

an increase in the magnetic field H0 or the coefficient of friction

K leads to a decrease in the velocities v and vn. The magnetic field

in altering the motion of the conducting medium by that very fact

affects the nonconducting medium because of friction.

From Fayzullayev's work [23 it follows that of two media moving
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t o gether, the one with the lowest viscosity has the greater velocity.

In the presence of a magnetic field this cannot be said since it

directly slows only the conducting component of the mixture. Whether

the inequality vn > v or the reverse takes place here depends also on

the magnetic field. Here it can only be said that both n. > n and

•n < q satisfy the inequality

c,. - v< (£())K dX (:17)
Kox

(the equals sign refers to the case i = 1n = 0). In a region where

the viscosity is slight and the field not too great it may be expected

that v > vn.

The velocity vn also depends on the electric field. The presence

of the latter leads to the appearance of an additional velocity un, it

being expected that un < u. Not only viscosity and induction braking

but also dynamic friction between the components of the mixture now

has an effect on the velocity profile.

In the case where Z << r, (s52 << i) the influence of the magnetic

field and of friction between the fluids becomes insignificant

in comparison with the internal friction in each component (n, nu)

and the expressions for velocity take the usual parabolic form

/ dxo, (iz2) (18)

- o, (£9)

When in Eq. (2) it is possible to neglect the term with viscosity

(low viscosity, large magnetic field) we obtain (in the absence of an

F. field)

X ... . (20)

)(21)---T-325/ + -6-(20



where

The basic influence here is magnetic "viscosity" which impedes motion

perpendicular to the lines of force.

Expression (20) and (21) for I << r takes the form

I p A12 + L
on = -- .,Y.. Mx , + .~ t_, • )(2)

p ,,f Ai, (A1, + f ") -

V-V - 'L -(251

If, moreover, it is possible in Eq. (2) to neglect the term with

viscosity nn then we will obtain expressions independent of z

I op E_,
'V = - -- ___ __

f. Op'V -*V=--•-.--*'C
V"V K ox

As can be seen from (24) the velocity v decreases inversely as the

square of the field and does not depend on the intL-.*action ftetor..

For very high values of K the velocities become the same for bath

components. It should be noted that expressions (24) and (25) =

actually be satisfied only at some distance from the walls where

viscosity can have no significant influence. However, in the thin

layer near the wall its influence always shows up.

In problems associated with flow rate of liquids (or gases) it I&

important to know the average velocity. From (3) and (4) we have

"P =-- .-(a ar, th 11/r, + brth zlr2 +--. (26)
-7 CHO t .

For the region where 72 is of the order of several units and grester
r
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formulas (26) and (27) may be approximated by the following expressions

(we will not write the terms proportional to E0 )

-+ + -+ + , (28)

I dp I! A41 1 29V =- T, + (29)

where
Q= -L ,/ ., -4 + V ,i_-w•

" "V (,- 4q-.I

Our results refer to the case of motion between a pair of parallel

flat walls. However, they may be extended for use with experiments

with tubes having rectangular cross section if one of the sides of

the rectangle is much longer than the other and the magnetic field is

perpendicular to the long side. It is possible to measure the average

velocities v and vn experimentally. Knowledge of the latter makes it

possible to determine for example K if the viscosities n and nn as

well as H0 , .f, and fn are known.
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