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STATIONARY FLOW OF A CONDUCTING MEDIUM IN THE
FRESENCE OF A MAGNETIC FIEID

Ya. P. Kotov, G. Ya. Umarov and D. F. Fayzullayev

4. Rakhmatullin has derived a closed system of hydrodynamic equations
for the motion of monophase media [1]. Using thls system makes 1t
‘posssible to study the behavior of nonconducting liquld or gaseous
mixtures.

Also of interest 1s the problem of the motlon, for instance, of
a two-phase medlium where one of the phases 1s a conductor, A mixthre
of thilis type may evlidently be described by the system of equations
indicated above,provided that an additional term of the electromagnetic
derivation 1s included in the equation of motion for the conducting
medium and if the system 1s completed with the Maxwell equatlons.

Study aof such a system makes 1t possible to examlne, for example, how
the nonconducting fluld influences the motion of the conducting one.

Iimiting ourselves to two lncompresslible medla, we may write
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Here the first two equations refer to the conducting fluid and the
second two to the nonconducting one (corresponding quantities indicated
by the subscript n);

7, p = velocity and average density of the medium;

N = viscogity;

K - interaction factor which in the case of incompressible
medla may be consldered constant;

Y
-5, H, p =~ denslty of the electrical current, magnetic field strength
and pressure common for a two~component mixture respectively;

K = permeability of the medium; and
g.—P. L.}
/ T VR F:T'

where p, and p,, are speclfic densitles,

The Maxwell equations must be added to system (1),

2, As an example of the application of the system of equations
(1) let us consider the problem of a stationary one~dimensional flow
of a conducting fluld in mixture with a nonconducting one between a
pair of parallel planes in the presence of a transverse external mag-
netlo fleld, Let the motlon of the media be in the direction of the
x=axis, the external uniform magnetic field 1?9 be directed along z,
and the boundary planes be at z = +1. ‘

As 1s known, I'low spreads the lines of force of the magnetic field
perpendicular to it, Therefore, together with the transverse ocomponent

Ho there appears also a component hx parallel to the motion, The
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Iatter is a furctlonm of z since the component of velocity in the x
direction deperids on z. Let us consider an uncomplicated solutlon
af the problem where in the oy direction there 1s applied an extermal
~-niform electrical fleld Ey = Ey.

In the stationary case (Eat;’ = 0), taking into account the geeometry
of the problem we obtain the following system for determining

v, =0(), v,, =v,(2), h,=L(2):

dz*

2o . Ot e N ‘
Pt vl e K (7= 9)=0 | (2)

dz2v, . Op .
f,,v,,,%:-f,,a_—‘:-+1\ (v—2,)=0

Cdh - .
=4, , j, =a(E, — pH)

The last two expresslons are a Maxwell equation and a relatlonship
for the denslity of the electrical current, while ¢ 13 the conductivity
of the medla., The pressure gradlent %E:— = const,

Taklig advantage of the expression for ,Jy we may determine v and
v, from the first two equatlons of system (2). The problem 1s solved
for the boundary conditlions v = v = O for z = +a. The solution takes

the form
Y op [ <chz/r ch z/r, LAY *
V= (“ i T i ’*‘}Wz)‘*‘ u. (3)
y b 9 chz/r, - chaz/r, e
R (a" 77, T b i, +H{T2§")+“n- (%)
where u and u, are the velocitles speclfled by the presence of an
electrical fleld Eo perpendleular to Ho
- Fo chziry ch z/r -\
b= \(a <k {jr, E r T 1)’ (5)
=L | chz/r chzlra
“n =y (“" Wi T Tx/.»?:‘ﬂ)' (&)

*eh = cosh
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The following definitions enter into expressions (3)-(6):

e[ )@
e ] e )T @

= (h—t L) e _L_ﬂi_‘_) (9)
EENTETTE) 2T a)
a2 - Py 1 (10)
@, =0/ry, B =8y, 0= e
—— — (11)
r= 1/s+ l/;’-“‘l' T2 = 1/:—_)7:17-7(]'
(12)

s

K He K Yia
e8] i)
'y s
M= !‘Hol(’:_) y My=pHil (;i;)

which are dimensionless combinations (M being the Hartman number).

Msl2
=ue(ins s o), = et

In order to determine the magnetic field h we have the equation

ddit dv
=4 g (13)

Substituting here the value of v from Eq. (3) and integrating when tkL-
boundary conditions are h = O and z = +l (these conditions follow
from the fact that the components of the magnetic fleld -I_{) age continu-

ously tangent to the boundary) we find

shz/r—z/lsh t/r, shz/ry—z/lsh l/ry (1)* )
h=A chijr, +8 chijra d
where a0 \
A = 4ror, (’:—n—"-a b'?x— — aE,)

(15)

B = dxor (*‘-;ie b — £, )
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The average value of the magnetic field h for -1 < z2< 1 1s equal to
zero, In the region 512 < 4 for EO = 0 1t is proportional to Hb
and does not depend on the interaction factor or the properties of the-

nonconducting fluid:

_ n only 9 ” "
h=—sp LTz (22— 1), (16)

3. Expressions (3)-(%4) give the distribution of velocity over
the. transverse cross section, while (14%) and (16) determine the
distribution of the field. The quantities ry and Ty which enter here-
are real since, as i1s easily seen from (11) and (12),

' —dg > Q.
Equallty occurs when Hy = K = 0.

In the limiting case of the absence of a magnetlic and electrical.
field, the dependence of v and v, on z must be the same as 1f both
media were nonconducting. Passing to the limit indicated 1in the
expressions (3) and (4), we obtain the same result as did Fayzullayev
[2] for the case of the motlon of a two-phase nonconducting medlum.
When K- 0 and f = 1, formula (3) becomes the well-known expression
for the case of flow of a conducting fluid in a magnetic fleld (see,
for example, Kauling [3]).

The presence of both a transverse magnetic fleld and a nonconduct-.
ing medlium shows up 1n the appearance of an additional resistance to
the motion of the conducting fluld. With the other given parameters
an i1ncrease in the magnetlc fleld HO or the coefflclent of friction
K leads to a decrease 1n the velocitles v and v The magnetic fleld
in altering the motlion of the conducting medium by that very fact
affects the nonconductlng medium because of friction.

From Fayzullayev's work [2] it follows that of two media moving
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t ogether, the one with the lowest viscosity has the greater veloclty.
In the presence of a magnetic fleld this cannot be said since it
directly slows only the conducting component of the mixture. Whether
the inequality Va > v or the reverse takes place here depends also on
the magnetic field. Here i1t can only be said that both T > n and
N, < 1 satisfy the inequality
v,~v<—L (17)

(the equals sign refers to the case n=n7n,= 0). In a region where
the vliscoslty 1s slight and the fleld not too éreat i1t may be expected
that v > Vi

The velocity Vi also depends on the electriec fleld. The presence
of the latter leads to the appearance of an additional velocity s it
being expected that u, < u. Not only visco§1ty and induction braking
but also dynamic friction between the components of the mixture now
has an effect on the velocity profile.

In the case where 1 << ry (322 << 1) the influence of the magnetic
field and of frictlion between the flulds becomes insignificant
in comparison with the internal friction in each component (7, nu)

and the expressions for veloclty take the usual parabollic form
%‘(E““ )U‘—zﬁ. (18)

= (-2, (19)

U= 2v dx

When in Eq. (2) it 13 possible to neglect the term with viscosity
(1ow viscosity, large magnetic field) we obtain (in the absence of an
Fo field)

L d2op (1 1 _char
Ca a0 (,u + .){l chl/r)’

(20)

—_—p = — 1 op 1 1 (., _chayr ‘
v—o, ————7—“”, [,‘ ,\.(L+ M’)(I m,,,)]. (21)

FTD-TT-63-205/1+2+4 6=



where

ram/ -—f-f'- 1 .—l_
Ay T

The basic influence here is magnetic "viscosity" which impedes motiom
perpendicular to the lines of force,
Expression (20) and (21) for 1 << r takes the form

10p AMi4 1L}

U =TT 0x M2+ f /_‘,‘;_( F==) (22)
1 dp ope M (L, + ,,_) . o
A "'-TT.ZE[ L+ ML (all A ) —2)| (23]

If, moreover, it 1s possible in Eq. (2) to neglect the term with
viscosity M then we willl obtaln expressions independent of z

L B ok}

v=- ay‘flg ox ' oully’ ( I
Su Op ‘

omom— ik (25)

As can be seen from (24%) the velocity Y decreases inversely as the
square of the fleld and does not depend on the interaction factor.
Por very high values of K the veloclitles become the same for beoth
components. It should be noted that expressioms (24) and (25) mey
actually be satlsflied only at some dlstance from the walls where

viscoslity can have no significant influence. However, in the thin

layer near the wall 1ts influence always shows up.

In problems assoclated with flow rate of liqulds (or gases) it is

important to know the average velocity. From (3) and (4) we have

D= — _I_“;—i- (ar, th fry 4 bry th liry 4 -c—'Hé—) -+ i, (25)
- 1 & t Us\ - =
v.=--l-3;(a,r'thl/r,+blr,thl/r,+ Y +—£—) +u,. (27}

For the reglon where =, 2 1s of the order of several units and greatex
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formulas (26) and (27) may be approximated by the following expressions
(we will not write the terms proportional to Eo)

R lC R RIS
Ly T

where

Q_i_v/»qﬁtw_ St Vsizig
=1 2q (32—q) 2q(s3—1q) |

Our results refer to the case of motion between a palr of parallel
flat walls. However, they may be extended for use with experiments
with tubes having rectangular cross section if one of the sides of
the rectangle 1s much longer than the other and the magnetic fleld 1is
perpendicular to the long side, It is possible to measure the average
velocities v and v, experimentally. Knowledge of the latter makes 1t
possible to determine for example K 1f the viscosities n and N, as

well as Ho, S, and fh are known.
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