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APPLICATION OF THEORY OF OPTIMAL PROCESSES TO
FUNCTION APPROXIMATION PROBLEMS

V. G. Boltyanskiy

Let F(x, y) be a function defined and continuocus for all real
values of the arguments. Then for any functions x(t) and y(t) given

on interval a { t { b, the quantity

7 ={Fe, yand (1)

-y

can be used to compare the functions x(t) and y(t). For example,

1f F(x,y) = (x- y)° integral (1) assumes the form

b
7=y —yya (2)

gnd in this case represents the square of thé distance between the

elements x(t) and y(t) on space Ly. (Here and henceforth éll functions

of the argument t will be considered on one fixed interval a { t S_b.)
The preéent article deals with the solution to the following

problem. Given are functions F(x, y) and y(t). Also given 1s integer

n > O and the real number a > O. Among all n times continously

differentiable functions x(t) gilven on the segment a < t < b and

having the property that the function x(n)(t) satisfies Lipshits!

FTD-TT-63-152/1+2+4 -1-



candition with the constant a, we will find a function such that inte-

gral !1) assumes the minimum value. Henceforth, we shall call this

problem the fundamental problem.

In the special case, when F(x,y) = (x - y)2 (1.e., instead of
functional (1) we consider (2)) and the number a = O, we arrive at
the problem of finding that nth deygree polyncmial 1n-x(t) which has
the least square deviation from the given function y(t) over the
interval a <t { b, i.e., the ciassical problem of finding the Fouriler
cqefficients in the expansion of the function y(t) by Legendre poly-
nomials. Thus, the fundamental problem being considered here is a
generalization of this classical problem. A

First of all we shall show in sectlon 1 that when certain natural
requirements are imposed on the function F(x,y), the fundamental
problem jJust formulated always (i.e., for any function y(t)) has at
least one solution, and that when functional (2) is being considered
this problem has exactly one solution (for any function y(t)).

The problem of finding a function x(t) which is a solution to
the fundamental problem 18 considered in section 2. The maximum
principle, whlch was discovered and proved in papers on the theory
of optimal processes published by L. S. Pontryagin, R. V. Gamkrelidze,
and the author of the present article (cf. [1]-[5]), 1s used to find
the solution. The "problem of finding a highway profile" 1is also
considered in section 2 as an example.

1. Existence of a solution. The question of the existence of

a solution to the fundamental problem (and the question of the
uniqueness of the solution in special case (2)) is considered in the

following theorem.

Theorem 1. Let the function F(x,y) be defined for all real

CEaiaf
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values o the arguments x and v ard have the prorerty that when y

varies over any finite interval, the functlon F(x,y) tends uniformly

{with respect to y) toward +w, as x — +». Then the fundamental

solution has at least one solution for any cont®nuous function y(t).

If, in particular, F(x,y) = (x- 7 )2, then +!; nroblem has exactly one

solution for any continuous function y(t).

Proof. The set of all real n times continuously differentiable
functions x(t) given for interval a { t < b and having the property
that their nth derivatives x(“)(t) satisfy Lipshits' condition with
the constant a shall be denoted by an) . Thus the 1ncluslon xg¢ S;a(n)
implies that the function x(t) given for interval [a,b] has n
continvous derivatlves in this iInterval and satisfies the inequality

(8 BT P Za t—r1
for any points t', t" of interval [a,b] The set Qa(n) is obviously

contained in the Banach space C[ a of all continuous functions

»b]
given in interval [a,b].

Fundamental I.emma. The set Q‘,(in) is a closed, convex, locally

compact subset of space C[a,b]’ Any closed bounded set contailned
}g__f_l‘(ln) is compact.

~This lemma 1is well knowh. For example, 1t follows easily from
theorem 3.5.1 cited on page 127 of Timan's book [6). In fact, let us
use Z; to denote all functions xéﬁén)satisfying condition ||x || < R,
and zgi) to denote the set of all functions of the form x(1{t), where
xGE.R. By virtue of the theorem cited above, the sets I, Z(g‘{), ceny
z}‘é)—are "compact in the space c[a,b] i.e., the closures of these
sets 1n the space c[a,b ] are compact. If x is an arbitrary accumula-

tion point of the set ZR, then there exists a sequence Xgs Xoy oo

of elements of the set ZR convergent on x. By converting, if necessai'y,

FID-TT-63-152/14+244 -3~



to the sequence we may consider (by virtue of the fact that closure

of set Zr(‘i) is compact) that the sequence xgi), xéi), ..+ 1s convergent,
1=1,2, ..., n. From this it follows by virtue of the theorem on

the Integration of uniformly convergent sequences, -that the function
x(t) has continuous derivatives of orders i1 = 1, 2, ..., n, with x(l)
belng the limit of the sequence xi(i), xz(i), In particular,

the function x(")(t) as the limit of the sequence xj(_n), xé"‘), satisfies
Lipshits! condition with the constant a, and therefore x(-.':.'.((‘n). Thus
the get ZR is closed and consequently compact. The convexity of the

set Qc(‘n) 1s obvious. Thws the fundamental theorem has been proved.

Let us return to a proof of Theorem 1. We shall denote by I the
interval which contains the values of the function y(t) when t € [a,b].
Since if y€I the function F(x,y) tends toward +w uniformly with-
respect to y, when x = +e , the functlon F(x,y) 1s bounded below for
y€Iand any x. Thus there exlsts a non-negative number N such that

F(x.y)>—Y for y&I and any x. (3)

Let us select arbitrary mutually different points ags 845 cees
a_ which are inside interval [a,b], and use q)i(t) to denote a poly-
nomial of degree n which has value 1 at polnt ay and value O at the
remaining points aJ. Further we shall use p to denote a positive
number small enough that in interval I1 of length p with center at
point a, (1 =0, 1, ..., n) the polynomial @1(t) takes on values
greater than 2/3, while all other polynomials cpJ(t) take on values
less than -3-1-;‘- in absolute value. Finally, we use A to denote a positive
number such that |o,(t)] < A when t €[a,b), 1 =0, 1, ..., n.

Now let x(t) be an arbitrary function belonging to the set Qc(‘"),
and let || x || =a2%2b | x(t)| be its norm in the space Cla,p]- Ve



use ¢(t) to denote a polynomial of degree n satisfying conditions
x(i)(a) = qa(i)(a), 1=0,1, ..., n. Then the function xl(t) = x(t) -
- ¢(t) satisfies conditions xi(i)(a) =0,1=0,1, ..., n. In
addition, we have

D A R P I AR \'"'4-')1-K'r‘"‘u)—-fs M) =

()

o

T

(since w(“)(t) is a constant). Since function x(“)(t) satisfies
Lipshits® condition with the constant a in interval [a,bl,
!x',n)(p) I o= '.\C""(t)“x""(a) S T ) Ta—y) tor t€]a, b}. (1;)

Expanding the function xi(t) into a Taylor seriles, we find

a)’

X () = x, (@) ~ a4

x@)+...

1 —a)’l

( X" Va) = (1—-0) A
A
T =y @)+ .

where 6 is an lntermediate value between a and t. Since xl(a) =

= xi(a) = .. = (n 1) (a) = 0, vhen te [a,b] we find by virtue of (4):

V., a . . :
Ln ()= S el gy g e
H l()l 1 Py Xy V)l N s J(b (1)‘_3'———7—.
nsq
Thus 1y, g;<;.&:ﬂ‘_;ﬁ. and therefore
L‘M’:le—x,::',);,xy_‘_xl LS x Jlb_—‘:_)_- (5)

n!

Let us now select a number 1 = 0, 1, ..., n such that the number
I(p(ai)l 1s the largest among numbers |e(a )|, ](p(ai)l, ceey |(p(an)l.
By virtue of Lagrange!s interpolatlon formula we have

q‘ (’) = q (00) q'o(f)‘i' ‘f’(‘h)‘fl (’) '-— ves T ‘J (an) Y u (t)'

and therefore le@ | <t+NDlg@)] A when /Cl¢, 0, 1l.e.,

. LRIl )] ga) A, (6)
Combining inequalities (5) and (6), we obtain

q. 1 T ) (b —e7d
- $@) > (u-;—nA'L""“_’"_n!,—'J‘
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The 1nequalities |

4 R .
’ ‘h(’)<,“"l‘ wher ] o ¢,

o fee

q.4) -

are fulfilled mm interval Ii’ and therefore we will have in this interval

(), =14 G T+ G @)g, )+ oo @) S
S216@)q. () — ¢(a)g () G, () +
e A CTR L PN (I SRR S 2 T e
>090@) 00, =1 (). )+
= Ceall)i = 24 >
1T tb—aftr o2 ._L)_
- )4y w XL n! L3 " n)
_ 1 T (b-—a)”“;
TTdmr DAL WX n! e

From this, finally, it follows that in interval I1

KO =10 T 50> e, — x5 ), >

(b= a)"*’ (b—a)*H?

¢
"’s(n-rw[ jTe—— (7)

Thus for any rumtidx x€ an) there 1s found a numbér 1i=0,1,
.«., n such that inequality (7) is fulfilled in interval 1.

Now let J, be the value which functional (1) assumes for the
function x(t) = O. Further, let P be a positive number such that
when |x] > P, y€I we will have

Fxy) Lot lib—a)
P

(such a number P exists by virtué of the properties of the function
F(x,y) s3tated in the formulation of the theorem). Finally, let R
be a positive number such that when || x|| > R the right side of
relationship (7) 1s greater than P. Then for any function xGQC(zn)
satisfying the condition [x|| > R there will be found a number

?;' 0, 1, ..., n such that inequality (7) is fulfilled in interval I,
and therefore the inequality lx(t)l > P 18 fulfilled. It follows
from this that |



o Fuxinnyun, - 20 N8 ypen e, (8)

Also, by virtue of (3),

F(xur.yuny -— N when 1 la, bl (9)

Since the length of interval Ii' 1s equal to p, we get from inequalities
(8) and (9)

b
\Focan gandt 7 -'1‘37‘-'-’4'—"3--:' =N —ay—= 0] (-0)

o

Thus, for any function x€ Q((,‘n) satisfying conditions ” b 4 H > R, inequal-
ity (10) 1s fulfilled.

Finally, let us use ZR to denote the set of all functions
xéﬂgn) satisfying condition ||x|]] < R, and let 5* denote the lower baund
of the values of functional (1) for the functlons x€Zp . Obviously
Jo 2 J* and therefore §F(.\'(l),y(n)d1‘ J* for any functim xéﬂc(xn): this
follows from inequality 210) when [ x]| > R and from ‘ghe definition
of a lower bound when || x H < R. Therefore, to complete the proof
of the first part of the theorem we need only establish that there
exists such a function x€ﬂc(!n) for which functional (1) assumes the
value J*. This follows easlly from the compactness of the set ZR
(¢f. fundamental lemma) and the continuity of integral (1) considered
as a-function of xGQ‘Sn) .

Thus, the first part of the theorem (existence of a solution)
has been proven. Since in particular, the function F(x,y) = (x - y)?
satisfies the condltions stated in Theorem 1, the formulated problem
always has a solution also for functional (2). Let us show that in
this case the solution is unique. Since functional (2) equals d2,
where d = d(x,y) — the distance between the functionals x and y in
the sense of the space mgtric L2, and since the quantities 4 and

2

d” reach their minima simultaneously, the problem reduces itself to

-7-



finding the element x‘?ﬂé“), for which d(x,y) = min, i.e., to finding
the point x€a{?) c1csest to J. The zpace C v 13 naturally contatned |

a [aob.l '

)
in L2, with the straight lines 1in c[a,b] also belng straight in LQ: !
Therefore the set né"), convex in Cr, 1) (ef. fundamental lemma) 1s also
4

a convex subset of space L?‘ But 1n space 12 (by virtue of the strict
convexity of its unit sphere) a convex subset may not contain more than

one point closest to xf. Therefore in this case our fundamental prcblem

has only one solution,
Thus Theorem 1 has been proved.

2. The Use of the Theory of Ontimal Processes in Findlng a

Solution. Let x(t) be an arbitrary function of the class Qi“).

Then the function x(n)('c) exists in interval [a,b] and satisfies
Lipshitst* condition with the constant a and, consequently, is absolutely
continuous. Therefore there exists almost everywhere a measureble
function u = x(n+1)(t), with the relationship |u(t)| < a fulfilled

at all points where the function u(t) is defined. Thus, denoting the
functioms x(t), xi(t), ...,<xb*t), by xi, x2, ceey X respectively,
we find that the following relationships are fulfilled:

= . (11) ;

*

We note that this property of convex sets (having only one
closest point) 1s in a number of cases the characteristic property
of convex sets. This has been proven by Buseman for the case of
finlte-dimenslonal Euclidian spaces. The more general cases (in
particular, the case of compact subsets of space L2) have been

%ggesf;ﬁated very recently by N. V. Yefimov and S. B. Stechkin [7],
» g .



where |u(t)| < 3. These relationships are fulfilled almost everywhere
in interval [a, b] (everywhere even for the first n relationships).

It 1s not difficult to see, what is the opposite of this, that if

1.2 n+l

the absolutely continuous functions x*, x, ..., X almost every-

where in interval [a, u] satisfy relationships (12), where u(t) 1s
some measurable function satisfying the condition |u(t)] < a, then
the function x(t) = xi(t) belongs in the class Qé”) . In fact, since

the function x>71(1 = 1, 2, ..., n) 1s absolutely continuous and

therefore continuous, it follows from relationship x1 = xi+1

the absolutely continuous function x1 1s the Riemann integral of

continuous function x1+1. Therefore function x1 has a continuous

10, |

that

derivative equal to x 1, 2, ..., n) everywhere in interval
[a, b] . Thus in interval [a,b] the functlion x(t) has a continuous
nth derivative equal to xn+1(t),_and this derivative, by virtue of
relationships o u(t), Ju(t)| < @, which hold nearly everywhere
satisfies Lipshits! condition with the constant a, 1.e., x1€ .(n)
Thus, instead of functions of the class Q&n) we may consider
(absolutely continuous) solutions to system (11) with the restriction
|u(t)] < a. Thus the fundamental problem is equivalent to the follow-

ing optimum problem: in the class of measurable controls u(t) satis-

fying the restriction {u(t)] < @, we will find a control for which

the solution to system (11) realizes a minimum for the integral

[
J - NF(s, yendr,

the end values xi(a) and xi(b), 1i=1, 2, ..., n+ 1 are arbitrary.

Since the integrand in the integral for J depends explicitly on

t (by means of the given function y(t)), we shall introduce the

auxliliary variablé xn+2 & t, which of course satisfies the differential



equation

L

AT

with initial condition xn+2(a) = a. Then the optimum problem being

considefed will assume the following form:

On space X of varlables xl, x2, vees xn+1, xn+2

an initial manifold Mo with equation xn+2 = a and a finite manifold

2

there 1s given

M, with equation x™*C = b (each of the manifolds has dimensionality

n+ 1). In the class of measurable controls u(p); satisfying the

restriction Iu(t)l £ a find the control for which the solutlion to

the system

bt = 2,

,x’ =2 ‘

':,‘\'nx-_-.x"&l' (12)
l’lfl =,

starting at the moment to = a from some point of the manifold Mo and

arriving (obviously, at the moment t, = b — by virtue of Eq. (12) at

the manifold M1 brings about a minimum for the integral
4y

S F(' y(x" %) dt.

te

This problem (equivalent to our fundamental problem) shall also
be solved; For thils purpose we shall make use of Theorems 1 and 3 from
the literature [5). The functions F(x,y) and y(t) will be assumed
continuously differentiable. The use of the maximum principle requires

the setting up of a function H, which for the optimal problem under

consideration has the form
H = yoF (a8, g (V7)) = 0t Yo = m T e g Vaise (13)

With the aid of this function H we shall set up a system of differential
equatioms for the auxiliary unknowns 111:

-10- .
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|"' ’ "“ Dt e 9.{.“_." i {.i’"",?‘

L M Vo uad

: o g

Vg-s—=_ =Y. ] (14)
{ [ ST

v Ay

3 an?
cH
Vo T A T

(we will not write out the expression for $n+2’ since we do not need
it).
Let x(t) be a solution to.the fundamental problem. Then, in

accordance with what was sald above, the functions

B 11 N S T WO ATV, x

yield a solution to the optimum problem considered above (cf. (12)).
Therefore there exists a non-zero solution wo, *1' ceey wn+1’ ¢n+2 to

system (14) (completed by the equation for ¥ which has not been

n+2
written out) which satisfies the conditions stated in Theorem 1 in an
article from the iiterature [5]. The maximum condition of the function

H gives (almost everywhere in interval [a,b]):

max
-aQugu

$ata(f)u = Casa (u(l),

il.e.,
0] ot aeEinea, 18 Y0 <0 (25)

Let us now write out the transversality conditions (Theorem 3 from
the literature [5]). Since the vectors pointing along the axes
xi, x2, cory xm'1 are parallel to the hyperplanes of Mo and Mi' then
the conditions of transversality have the form

T.(@)=0, i=12...,n=1, (16)

v.0)=0, i=1,2..,n+1 (17)

-11-



By virtue of the first of Egs. (14) we have ¥o = const, where,
according to Theorem 1 in the literature [5], Vo < 0. It 1s not
difficult to see that the assumption ¢o = 0 leads to a contradiction.
In fact, 1f y5 = 0, then y; = C (ef. (14)) and by virtue os (16),

¥, ® 0. From this we get @2 = 0 (cf. (14)) and, by virtue of (16),
¢2 ®» 0; etc. In thls way we find successively ¥, - wl =¥, = ... =
= wn+1 = 0. Since functlion H 1s identically equal to zero along the
optimal trajectory (Theorem 1 frcm the literature [5]), we get Ly

virtue of (13), y = 0. But this contradicts the faet that yg,

n+2
¢1’ wz, eses ¢n+2 is a non-zero solution. Thus wo < O and we may
assume that ¥y, = -1 (since all the quantitles y, are defined with an

accuracy to a common, constant, positive proportionality factor).

System (1%) now assumes the form (after the substitution X2 t)
i wo_ OF (s g (n)
| ‘rl - ot B
{ ‘!'z =—1,
' Ya=—1,
1 ‘-r'lé 1=~V

from here, by taking into account the transversality conditions (16),

we obtain

t
{ OF (x}

¥ ¢) =}

«(I). ()] dr, =
ot .

t gt
Vall) =— _\ (S oF (xl,g:_':'.'i’..))..dl) dt,

a & ¢

and in general

tt i
: IR TSI Y AU AL
() = (=D P di...cdt (k quadrature)

“ -

kR -1,2....,n-1

-12-



According to the well kncwn analysis formula
.\..\.....\.,"l.'h.".'...d"-f[ PR (u-—';.’.‘"[\;)..'i.

STl ® =1

— et

k quadrature

we can rewrite the value found for wk(t) in the fam

- YA S R S B S ) 15
(k 1 }(. P = ' ' ' ( )

Yall) -
The transversallty conditions (17) now takes the form

b
. b " . -
Kaid) = ———\ (5 —b) P EEBLVEN = o pya n+ 1.
( L oxt

Multiplying this relationship b; (k-i)!ck_1 and summing with respect

tok=1, 2, ..., n+ 1 we obtain

\
Ve - 60 =B+ GG b o m e — i LR B gy

+

for any values of the constants Co» Cq» -5 C Since co + c1(§-b)

ne
+ cn(i-b)" 1s an arbitrary polynomial of degree { n, we can combine

all transversality conditions (17) into one requirement

»
\P‘(.s.)(l". (a1 (2). p (ZN d: -0
A oxl

for any polynomial P(£) of degree < n.
Further, formula (15) 1s rewritten, by virtue of (18), in the

form:

Cme §= @) ) 1F the expression in the parentheses
= xsign ;ﬁ ) ox is different from zero;

uft)
not defined, 1f this expression 1s equal to zero.
In other wards, almost everywhere on the segment [a,b] one of the

relationships:

1
\(z— Ry @)
L

£
uy) = 1Sig (\ 1— n0F (x'l,) wiin d,) .
)

oxt

-13-



1s fulfilled. Finally, from relationships (12) we obtaln

. 1
Wiy S
e

(almost everywhere on interval [a,b]). Combining all that has been
sald and again denoting xl(t) by x(t), we obtzain the following siate-
ment.

Theorem 2. Let the fu-~cticns F(x,y) and y(t) have continuous

first derivatives. In ordér that the function x(t) be a_sclution to

the fundamental problem, 1t 1s necessary that one of the relationships:

!

\ = J 2L .
Vg —oyr LR ED 4 L,
. ar

t

xn+l (‘,) s Sigﬂ (\(;:. _ ’)n of & (;_)_:__U‘.in d.;)
M ox

be fulfilled almost everywhere on interval [a,b] and, in addition,

that for any polynomial P(t) of degree { n the condition

4
\P(l) AF (x (D), u (!l)_ dt = 0.
a ax

1s fulfijled.
Example (problem of finding a highway profile). Considering
fdnctional (2), we arrive at the following problem when n = 0. Given

are the function y(t) differentiable on interval [a,b] and the

number a > 0. Find the function x(t) satisfying Lipshits' condition

with the constant a, for which integral (2) assumes the least possible

value. This problem may be Interpreted in the following way. It is
required to build a highway between the two points A and B, where the
contour of the locality between these points 1s given (the function
y(t)), and in accordance with the conditions of highway operation the
inclination of the road at any point should be < a, 1.e., the longi-
tudinal section of the highway (its profile) should be described by

-14_
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a function which satisfies Lipshits' condition with the constant a.

To achieve this goal it 1is possible either to lay the roaq over the
existing terrain, or to construct a causeway, or to cut through a

trench for the road. If x(t) 1s the planned profile of the road, then
let the cost o: excavation (constructnng causeways for sections where

x(t) is greater than y(t) and excavating trenches for sections where

x(t) 18 less than y(t)) be eyaluated by integral (2). Find the most
suitable (from the standpoint of material expenditures) profile for
the highway.

| The solution to this problem exists and is unique (Theorem 1).

In order that the function x(t) be the desired solution it is neces-

sary (by virtue of Theorem 2) that almost everywhere on interval [a,b],

one of the reldtionships

t

V@ —y@na =0, | (29)

f ,
A =asign (S (x(E)—y(E)ldE) . (20)

be fulfilled and, in addition, that the condition

L] [
| St~ y@rar=o. | (21)

be fulfilled, L,

If relationship (19) 1§ fulfilled on some interval contained
within [a,b] , x(t) = y(t) on this interval, i.e., the road should
be laid directly on the existing terrain. But if relationship (20)
1s fulfilled on some interval, then at the points of this interval
x'(t) = +a, 8o that on this interval the road consists of one or
several pieces with inclination a or -a. Thus the over-all character-
istic of the road is that 1t consists of individual pileces laid on

the existing terrain, and pieces of maximum allowable inclination,

“15-



which go along causeways or through trenches,

Far example, let points A and B be located right at the place
where a hollow (let us say a zully which the road must cross) occurs
in the road between points A and B, so that a cross section of the
terrain along the line AB has the shape shown in Fig. 1. We shall -
conslder the line shcwn in Flg. 1 to be a graph of the function
y(t), assuming tha’t.' the abscissa coincides with straight line AB,
and the abscissas of points A and B are equal respectively to a and

b.

it o
\
2
<

o}

Flg. 2.

Fig. 3.

Let us assume that the walls of the gully are steep (having an

inclination greater than a). The function, whose graph is the desired

highway profile, will be denoted, as above, by x(t). It is easy to

-16-



see that x(t) < O for all t. In fact if x(t') > O, then, by virtue
of the continuity of function x(t), the inequality x(t) > O will also
apply in some neighborhood of the point t', Therefore, by slightly

displacing point t', if necessary, we can ensure fulfilliment of

o
inequalities x¢").-0, _\(x(:)-y(t))drqso_ If inequality \tv¢i—uyunir>o,
L]

applies, then, by virtue of (20), x'(t) = +a when t > t' (Fig. 2),

and therefore

n t’ lv‘
\'(,\-u)—— wiyde =\ () — yinde = \x () — yupde . 0,
" - r

1

which contradicts relationship (21). If inequality Ny =gy o,

a
applies then by virtue of (20), x'(t) = -a when t < t' (Fig. 3), but
this implies that x(t) > y(t) when a { t < t', in spite of inequality

t

Vx(y—yepat 0. The obtalned contradiction indicates that

x(t) < O for all t.
!

¢ b
| a i :
' ) :
! !
| : [
1 [
\ £7%) E
|
Fig. 4.
[
a _ _-& _ b
1
(2R
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Let us now assume that inequality x(t') < y(t') 1s fulfilled at

e
some point t'. Moreover, 1f | .,—yupi.20, then when t > t' the

highway descends with an inclination a, 1i.e., x'(t) = -a until tue

!
inequality (\(x(j—yups.z0  breaks down. Furthermore the graphs

of the functions x(t) and y(t) must necessarily intersect when t > t',
otherwise we would have x(t) < y(t) for all t > t' (Fig. 4), and

therefore .

F() =yt = \(x (= y ()t = Yx () — y ) <O

et o>

in spite of relationship (21). Analogously, if inequalities x(t') <

.
< y(t') and i(xur—yundu>0. are fulfilled, then when t < t' the

highway approaches point t' while ascending at inclination a (i.e.,
x'(t) = +a), wherein when t < t' the point of intersection between

the graphs of x(t) and y(t) must occur.

Fig. 6.

All that has been sald permits us to find a function x(t) for
different graphs of y(t). Examplés are given in Fig. 5 and 6. For

the determination of point t, and the value x(ti) we have the

1
relationship

1 "
SWU)—UU»W-:O. V() —y@)de =0,
s . A

while for the determination of points t, and t, in Fig. 6 we have the
relationship

o 5
.\(x(l)——y(r))dl, 0, '\(Avu)——yu))u’l = 0.

] 12
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