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APPLICATION OF THEORY OF OPTIMAL PROCESSES TO

FUNCTION APPROXIMATION PROBLEMS

V. G. Boltyanskiy

Let F(x, y) be a function defined and continuous for all real

values of the arguments. Then for any functions x(t) and y(t) given

on interval a : t < b, the quantity

I,

J -- F (x (), y(1))dt (4 )
a

can be used to compare the functions x(t) and y(t). For example,

if F(x,y) = (x- y) 2  integral (1) assumes the form

b

and in this case represents the square of the distance between the

elements x(t) and y(t) on space L2 . (Here and henceforth all functions

of the argument t will be considered on one fixed interval a < t < b.)

The present article deals with the solution to the following

problem. Given are functions F(x, y) and y(t). Also given is integer

n > 0 and the real number a _ 0. Among all n times continously

differentiable functions x(t) given on the segment a < t < b and

having the property that the function x(n)(t) satisfies Lipshits'
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condition with the constant a, we will find a function such that Inte-

&ral (i) assumes the minimum value. Henceforth, we shall call this

problem the fundamental problem.

In the special case, when F(x,y) = (x - y) 2 (i.e., instead of

functional (i) we consider (2)) and the number a = 0, we arrive at

the problem of finding that nth decree polyncmial in x(t) which has

the least square deviation from the given function y(t) over the

interval a < t < b, i.e. , the classical problem of finding the Fourier

coefficients in the expansion of the function y(t) by Legendre poly-

nomials. Thus, the fundamental problem being considered here is a

generalization of this classical problem.

First of all we shall show in section I that when certain natural

requirements are imposed on the function F(x,y), the fundamental

problem Just formulated always (i.e., for any function y(t)) has at

least one solution, and that when functional (2) is being considered

this problem has exactly one solution (for any function y(t)).

The problem of finding a function x(t) which is a solution to

the fundamental problem is considered in section 2. The maximum

principle, which was discovered and proved in papers on the theory

of optimal processes published by L. S. Pontryagin, R. V. Gamkrelidze,

and the author of the present article (cf. [11-[51), is used to find

the solution. The "problem of finding a highway profile" is also

considered in section 2 as an example.

1. Existence of a solution. The question of the existence of

a solution to the fundamental problem (and the question of the

unique'ness of the solution in special case (2)) is considered in the

following theorem.

Theorem i. Let the function F(x,y) be defined for all real

FTD-TT-634A52 /+2-4 -2-



values of the argixments x and y and have the Prorerty that when y

varies over any finite inte:val, the ninct-lon F(x,y) tends uniformly

,with respect to y) toward +-, as x-. +. Then the fund&mental

solution has at least one solution for any contin-.,ous function y(t).

If, in particular, F(x,y) = (x-y) , then pA problem has exactly one

solution for any continuous function y(t).

Proof. The set of all real n tlmes continuously differentiable

functions x(t) given for interval a • t < b and having the property

that their nth derivatives x(n)(t) satisfy Lipshits' condition with

the constant a shall be denoted by f(n) Thus the inclusion xC S. (n)

implies that the function x(t) given for interval ta,b] has n

continuous derivatives in this interval and satisfies the inequality

:X . 0" (t' -- x" t/ . , t" -- t f

for any points t', t" of interval la,b] The set fla(n) is obviously

contained in the Banach space C[ab] of all continuous functions

given in interval [a,b].

Fundamental Lemma. The set 1(n) is a closed, convex, locallya

compact subset of space C[a,b]. Any closed bounded set contained

in(n) is compact.

This lemma is well known. For example, it follows easily from

theorem 3.5.1. cited on page 127 of Timan's book 16]. In fact, let us

use MR to denote all functions x ar(j)satisfying condition 1 x _ R,

and i-(') to denote the set of all functions of the form X(I~t), where

xev . By virtue of the theorem cited above, the sets R, 700

n)-are Wcompact in the space C[a,b] i.e., the closures of these

sets in the space C[a,b] are compact. If x is an arbitrary accumula-

tion point of the set Z., then there exists a sequence xV, x2 ,

of elements of the set £R convergent on x. By converting, if necessary,

FTD-TT-63- iP/i+2+4 -3-



to the sequence we may consider (by virtue of the fact that closure

oseZA iscompact) that the sequence xi ..(i)oneget
ofi convergent,ý

i - 1, 2, ... , n. From this it follows by virtue of the theorem on

the integration of uniformly convergent sequences, that the function

x(t) has continuous derivatives of orders i = 1, 2, ... , n, with x(i)
(i) (i) I atclr

being the limit of the sequence xI , x2 , ... In particular,

the function x (n)(t) as the limit of the sequence x(n), 4 n), satisfies

Lipshits' condition with the constant a, and therefore x-X.n). Thus

the set ZR is closed and consequently compact. The convexity of the

set 2n) is obvious. This the fundamental theorem has been proved.

Let us return to a proof of Theorem I. We shall denote by I the

interval which contains the values of the function y(t) when t C [a,b].

Since if yeI the.function F(x,y) tends toward += uniformly with-

respect to y, when x - 4-_m , the function F(x,y) is bounded below for

yeIand any x. Thus there exists a non-negative number N such that

F(x.y)> -x for yCI and any x. (3)

Let us select arbitrary mutually different points aO, a1 , ... ,

a. which are inside interval [a,b], and use qi(t) to denote a poly-

nomial of degree n which has value I at point ai and value 0 at the

remaining points aj. Further we shall use p to denote a positive

number small enough that in interval Ii of length p with center at

point ai (i = 0, i, ... , n) the polynomial qi(t) takes on values

greater than 2/3, while all other polynomials qP(t) take on values

less than n in absolute value. Finally, we use A to denote a positive3n
number such that Iqp(t)I (A when t e[a,bJ, i = 0, L, ... , n.

Now let x(t) be an arbitrary function belonging to the set N

and let 1I x 11 = max I x(t)l be its norm in the space C[a,b]. We
a,ýt- b



use •(t) to denote a polynomial of degree n satisfying conditions

x(i)(a) - 9(i)(a), i 0 O, i, ... , n. Then the function x1 (t) - x(t) -

- 9(t) satisfies conditions xI W (a) O 1 = 1..., n. In

addition, we have

. ' () ... , 'x" ') (a)

(since 9(n)(t) Is a constant). Since function x(n)(t) satisfies

Lipshits' condition with the constant a in interval [a,b],

x',"'(t) ! = 'x""(t1 -x'(a)! --< (i- -a) C,* b-a- ) fr I(- [a, b]. (14)

Expanding the function x1 (t) into a Taylor series, we find

x1 Q)=x1 ()--x 1(a) -- -(a)-+-...., Mt = - (a) .--t - ;1 n (U.) X ,: (,a) .

+ n ('-a -1 ,((a))

where e is an intermediate value between a and t. Since x1 (a) =

= xl(a) ..... = n-1) (a) = 0, when tP [a,b] we find by virtue of (4):

X. (t- a)! ,, ) * (b -- a+

Thus xc (b-a)"+' and therefore

q, x -X X! _- .. X, "..X. -- (b

Let us now select a number i = 0, 1, ... , n such that the number

1q(al)I is the largest among numbers I (a0)I, p(a1 j, "", I q(an)l'
By virtue of Lagrange's interpolation formula we have

q (1) = q (a0) o (t) + q, (a1), (t) , (a,,),, ,,

and therefore I '•() I <O("+ 1) q(a,) A when It(a,b], i.e.,
. .- 4 9(L,)i A. (6)

Combining inequalities (5) and (6), we obtain

- 5
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T" Inequalities

3 ~3n

are fu!filledaU interval I, and therefore we will have in this interval

q • () : - , (-o)q• 0(t+ i-((,)q1 , !)-+-...-., ,, .I'). •) ->

= , , ( . - a. . - t

(-(- 1)A L 3 ":n)

3(- I)A'L X

From this, finally, it follows that in interval I.

X" W '(n +) " X"- (b--, " +. I T (_), - X (1 --); +
"3 (n + 1) A X (7)

Thus for any functicn xle f(n) there is found a number 1 0 0, 1,

... , n such that inequality (7) is fulfilled in interval Ii.

Now let J0 be the value which functional (1) assumes for the

function x(t) m 0. Further, let P be a positive number such that

when IxJ > 'P, yCI we will have

P

(such a number P exists by virtue of the properties of the function

F(x,y) 3tated in the formulation of the theorem). Finally, let R

be a positive number such that when 11 xlj > R the right side of

relationship (7) is greater than P. Then for any function x 4E(n)

satisfying the condition j x 11 > R there will be found a numbers

-- 0,' i, ... , n such that inequality (7) is fulfilled in interval I,

and therefore the inequality Ix(t)I > P is fulfilled. It follows

from this that



(X) t,. y ( ' " -- . ' ,s-- - w h e n , ,-/. ( 8 )

Also, by virtue of (3),

F(.'tj. ./tig,, -- V when ti'Lj.b . (9)

Since the length of interval Ii is equal to p, we get from inequalities

(8) and (9)
I,
\ F(.\.(f. ":ttii~t! ./...-N'b -- a .)I, v-~ 4(o

Thus, for any function x S(n) satisfying conditions i x > R, inequal-

ity (iO) is fulfilled.

Finally, let us use 7R to denote the set of all functions

x•2(n) satisfying condition i~xi j R, and let J* denote the lower baund

of the values of functional (1) for the functions xEZR . Obviously

JO - J* and therefore \F(xt), !/(tl),!I .1" for any functin x :(n) this
0 a

follows from inequality (i0) when ijxil > R and from the definition

of a lower bound when 11 x 11 _< R. Therefore, to complete the proof

of the first part of the theorem we need only establish that there

exists such a function x (n)- for which functional (i) assumes the

value J*. This follows easily from the compactness of the set ZR

(cf. fundamental lemma) and the continuity of integral (1) considered

as a function of x 6l n)

Thus, the first part of the theorem (existence of a solution)

has been proven. Since in particular, the function F(x,y) = (x - y)2

satisfies the conditions stated in Theorem 1, the formulated problem

always has a solution also for functional (2). Let us show that in

this case the solution is unique. Since functional (2) equals d2

where d = d(x, y) - the distance between the functionals x and Z in

the sense of the space metric L2 , and since the quantities d and

d2 reach their minima simultaneously, the problem reduces itself to

-7-



finding the element xn , for which d(x,y) - min, i.e., to finding

the point xC1..n closest to Z. The space C[a,bi i3 naturally contained

In L2, with the straight lines in C[a,b] also being straight In 2-:

Therefore the set 5 (n), convex In C[a,b] (cf. fundamental lemma) is also

a convex subset of space L2 . But in space L2 (by virtue of the strict

convexity of Its unit sphere) a convex subset may not contain more thain

one point closest to j . Therefore in this case our fundamental problem

has only one solution.
Thus Theorem 1 has been proved.

2. The Use of the Theory of Optimal Processes In Finding a

Solution. Let x(t) be an arbitrary function of the class--1(n).

Then the function x(nkt) exists in interval [a,b] and satisfies

Lipshits t condition with the constant a and, consequently, is absolutely

continuous. Therefore there exists almost everywhere a measurable

function u = x("+l)(t), with the relationship Iu(t)l K a fulfilled

at all points where the function u(t) is defined. Thus, denoting the

functions x(t), x(t), ... , x (kt) , by x1 , x2 , ... , xn+l respectively,

we find that the following relationships are fulfilled:

ini

We note that this property of convex sets (having only one
closest point) is in a number of cases the characteristic property
of convex sets. This has been proven by Buseman for the case of
finite-dimensional Euclidian spaces. The more general cases (in
particular, the case of compact subsets of space L2 ) have been
investiated very recently by N. V. Yefimov and S. B. Stechkin [7],
181, 191.



where Iu(t)t , 3. These relationships are fulfilled almost everywhere

in internral [a, b] (everywhere even for the first n relationships).

It is not difficult to see, what is the opposite of this, that if

the absolutely continuous functions xI 2, ... , 1almost every-

where in interval [a, u] satisfy relationships (1i), where u(t) is

some measurable function satisfying the condition Ju(t)l < a, then

the function x(t) = xl(t) belongs in the class f2(') . In fact, sinceCL
the function xi+i(i = 1, 2, ... , n) is absolutely continuous and

therefore continuous, it follows from relationship x= xi+i that

the absolutely continuous function xi is the Riemann integral of

continuous function x . Therefore function x has a continuous

derivative equal to x i+(i = i, 2, ... , n) everywhere in interval

[a, b] . Thus in interval [a, b] the function xi(t) has a continuous

nth derivative equal to xn+i (t), and this derivative, by virtue of

relationships xn+1 = u(t), Iu(t)l e, a, which hold nearly everywhere

satisfies Lipshits' condition with the constant a, i.e., xle _(n).

Thus, instead of functions of the class 12(n) we may consider

(absolutely continuous) solutions to system (11) with the restriction

Ju(t)l • a. Thus the fundamental problem is equivalent to the follow-

ing optimum problem: in the class of measurable controls u(t) satis-

fying the restriction ju(t)l < a, we will find a control for which

the solution to system (ii) realizes a minimum for the integral

J - \F(x', y(.))d1;

the end values xi(a) and xi(b), i = 1, 2, ... , n + i are arbitrary.

Since the integrand in the integral for J depends explicitly on

t (by means of the given function y(t)), we shall introduce the

auxiliary variable xn+2 . t, which of course satisfies the differential

"-9-



equation

with initial condition x n+2(a) = a. Then the optimum problem being

considered will assume the following form:

On apace X of variables x1, x2 , ... , xn+l, xn+2 there is given

an initial manifold M0 with equation xn+2 = a and a finite manifold

M1 with equation xn+2 = b (each of the manifolds has dimensionality

n + 1). In the class of measurable controls u(t), satisfying the

restriction Iu(t)l < a find the control for which the solution to

the system

!X x'.,

, :3 ,(12)

Ix -e

starting at the moment t = a from some point of the manifold M0 and

arriving (obviously, at the moment t = b - by virtue of Eq. (12) at

the manifold M1 brings about a minimum for the integral

F F(x', y (.x"• -,)) d.,.

This problem (equivalent to our fundamental problem) shall also

be solved. For this purpose we shall make use of Theorems ± and 3 from

the literature [5]. The functions F(x,y) and y(t) will be assumed

continuously differentiable. The use of the maximum principle requires

the setting up of a function H, which for the optimal problem under

consideration has the form

H -- .F(x', y (x+')) + , i j~x= :3  - V•" + ,i -,,+ ,. (±3)

With the aid of this function I we shall set up a system of differential

equations for the auxiliary unknowns #,:

-10-



'S. MI•i i tl F "N'. .r -#

S.. . . . ,,,(£14)

V31 -- h.,

(we will not write out the expression for in+2' since we do not need

it).

Let x(t) be a solution to the fundamental problem. Then, in

accordance with what was said above, the functions

. x ( t ..... X " -- " , -'

yield a solution to the optimum problem considered above (cf. (12)).

Therefore there exists a non-zero solution *0, #, ..."0' n+1' *n+2 to

system (14) (completed by the equation for *n+2 which has not been

written out) which satisfies the conditions stated in Theorem i in an

article from the literature [5]. The maximum condition of the function

H gives (almost everywhere in interval [a,b]):

max ,.+- (i)u 'r•.÷ (1), (I),

i.e.,

a sign iPn.t(t), if V',.-., (1) . O, (15)

(not defined, if V-+'(t) - 0.

Let us now write out the transversality conditions (Theorem 3 from

the literature [5]). Since the vectors pointing along the axes

x1 , x2 , 2 ., xfn+l are parallel to the hyperplanes of M0 and M., then

the conditions of transversality have the form

i, ,(a)=o , i -- 1,2 ... .. n+ (16)

(b) =0, i I, 2...., ,1+ I. (17)

-ii-



By virtue of the first of Eqs. (14) we have -0 - const, where,

according to Theorem i in the literature [5], 0 <-- 0. It is not

difficult to see that the assumption *0 = 0 leads to a contradiction.

In fact, if *0 = 0, then = 0 (cf. (14)) and by virtue of (16),

0 E 0. From this we get i2 = 0 (cf. (i4)) and, by virtue of (16),

*2 0 0; etc. In this way we find successively *0 - *1 - *2 = "'"

= *n+i 0 0. Since function H Is identically equal to zero along the

optimal trajectory (Theorem 1. from the literature [5]), we get by

virtue of (W3), 4 n+2 0= . But this contradicts the fact that *0,

*i' *@2 ' "'' 0n+2 is a non-zero solution. Thus *0 < 0 and we may

assume that *0 = -1 (since all the quantities *, are defined with an

accuracy to a common, constant, positive proportionality factor).

System (14)'now assumes the form (after the substitution x = t)

F (-.y (0))

from here, by taking into account the transversality conditions (16),

we obtain
dt

' =F WF(x' 1a. !(t) ) d, l t,

and in general

- F Cx' (. u 'I)
1? (...d) d (kdudr.ue

k .... ,2..... n-.*I

-12-



According to the well known analysis formula

*° . ". I - -i

k quadrature

we can rewrite the value found for *k(t) in the farm

___-Jr. k 1 2 . (i2)

The transversality conditions (17) now takes the form

a•'j~b) -= • g-b i-OF(x'r• i() • )d-=O. k-I'l __. n•-I.
(k - I): ox 0....

Multiplying this relationship b. (k-i)!ck-1 and summing with respect

to k = 1, 2, ... , n + I we obtain
I. I•J 0 -c , l -- b )-"j"c 2 ( •- b)' -j"• . ".. c, b( -- , 'ji' ''i •'' • -,,o'"

for any values of the constants co, ce, ... , cn. Since c + ci(k-b) +

+ c n(-b)" is an arbitrary polynomial of degree 4 n, we can combine

all transversality conditions (17) into one requirement
b

a Ox'

for any polynomial P(g) of degree < n.

Further, formula (15) is rewritten, by virtue of (18), in the

form:

xsign ( 1__. if the expression in the parentheses
"u- cF ( )) is different from zero;

not defined, if this expression is equal to zero.

In other words, almost everywhere on the segment (a,b] one of the

relationships:

(O-,FF ' .

(Ito | .
-oi-



is fulfilled. Finally, from relation3hips (12) we obtain

(almost everywhere on interval [a,b]). Combining all that has been

said and again denoting xl(t) by x(t), we obtain the following state-

ment.

Theorem 2. Let the fu:;ctlc:' F(x.y) and y(t) have continuous

first derivatives. In order that the function x(t) be a. solution to

the fundamental problem, it is necessary that one of the relationships:

d 0.

x"+ 2t) sign ( - ) ° x•' (i dt
* Ox

be fulfilled almost everywhere on interval [ab] and, in addition,

that for any polynomial P(t) of degree <. the condition

\P (1) %®r (' ) 1 'u )) di = 0.
a d

is fulfilled.

Example (problem of finding a highway profile). Considering

functional (2), we arrive at the following problem when n = 0. Given

are the function y(t) differentiable on interval [a,b] and the

number a z 0. Find the function x(t) satisfying Lipshits' condition

with the constant a. for which integral (2) assumes the least possible

value. This problem may be interpreted in the following way. It is

required to build a highway between the two points A and B, where the

contour of the locality between these points is given (the function

y(t)), and in accordance with the conditions of highway operation the

Inclination of the road at any point should be < a, i.e., the longi-

tudinal section of the highway (its profile) should be described by

_14_



a function which satisfies Lipshits' condition with the constant a.

To achieve this goal it is possible either to lay the road over the

existing terrain, or to construct a causeway, or to cut through a

trench for the r9ad. If x(t) is the planned profile of the road, then

let the cost of excavation (constructitng causeways for sections where

x(t) is greater than y(t) and excavating trenches for sections where

x(t) is less than y(t)) be evaluated by Integral (2). Find the most

suitable (from the standpoint of material expenditures) profile for

the highilay.

The solution to this problem exists and is unique (Theorem I).

In order that the function x(t) be the desired solution it is neces-

sary (by virtue of Theorem 2) that almost everywhere on interval [a,,b],

one of the relationships

a

be fulfilled and, in addition, that the condition

be fulfilled.

If relationship (19) is fulfilled on some interval contained

within fa,b]h, x(t) a y(t) on this interval, i.e., the road should

be laid directly on the existing terrain. But if relationship (20)

is fulfilled on some interval, then at the points of this interval

x'(t) w, +qa, so that on this interval the road consists of one or

several pieces with inclination a or -a. Thus the over-all character-

istic of the road is that it consists of individual pieces laid on

the existi•g terrain, and pieces of maximum allowable inclination,

-15-



which go along causeways or th'ough trenches.

For example, let points A and B be l.ocated right at the place

where a hollow (let us jay a gully which the road muzt cross) occurs

in the road between points A and B, so that a cross section of the

terrain along the line AB has the shape shown in Fig. i. We shall

consider the line shown in Fig. i to be a graph of the function

y(t), assuming that the abscissa coincides with straight line AB,

and the abscissas of points A and B are equal respectively to a and

Fig. i

a Cb

Fig. 2.

a C

Fig. 3

Let us assume that the walls of the gully are stee (having an

inclination greater than a). The function, whose graph is the desired

highway profile, will be denoted, as above, by x(t). It is easy to

-16-



see that x(t) < 0 for all t. In fact If x(t') > 0, then, by virtue

of the continuity of function x(t), the inequality x(t) > 0 will also

apply in some neighborhood of the point t'. Therefore, by slightly

displacing point t', It necessary, we can ensure fulfillment of

inequalities (x'(O ) -x(f--y(1)dt Y6 O. If inequality 1 0.

applies, then, by virtue of (20), x'(t) +a when t t' (Fig. 2),

and therefore

which contradicts relationship (21). If inequality

applies then by virtue of (20), x'(t) = -a when t < t' (Fig. 3), but

this implies that x(t) > y(t) when a < t < t', in spite of inequality

•(x(t)--y('))dt.<O. The obtained contradiction indicates that

x(t) < 0 for all t.

b

I-a
I $

Fig. 4.

a b

Fig. 5.

FTD-TT-63-i52/i+2+4



Let us now assume that inequality x(t') < y(t') is fulfilled at
2'

some point t'. Moreover, if , then when t > t' the
a

highway descends with an inclination a, i.e., x'(t) = -a until tije

inequality \(X(1)--ytz)•!.•0 breaks down. Furthermore the Graphs

of the functions x(t) and y(t) must necessarily intersect when t > t',

otherwise we would have x(t) < y(t) for all t > t' (Fig. 4), and

therefore
b b

i(x (1) -y(1))= (x(t- y(t)) di + S(x&- y,,))- < o
a I'

in spite of relationship (21). Analogously, if inequalities x(t') <
I.

< y(t') and are fulfilled, then when t < t' the
a

highway approaches point t' while ascending at inclination a (i.e.,

x'(t) = +a), wherein when t < t' the point of intersection between

the graphs of x(t) and y(t) must occur.

b

Fig. 6.

All that has been said permits us to find a function x(t) for

different graphs of y(t). Examples are given in Fig. 5 and 6. For

the determination of point tI and the value x(t.) we have the

relationship '
I(X(1)-- Y (t)) di ý- 0, Yt- V(t)) (ft = 0,

while for the determination of points tI and t 2 in Fig. 6 we have the

relationship

(X (1) - y (1))+dl - 0,8..
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